Cooperation for the promotion of human biomonitoring

RefineryClick to enlarge
Refinery
Source: Aaron Kohr / Fotolia.com

The German Environment Agency supports the cooperation on human biomonitoring between the Federal Ministry for the Environment and the German chemical industrial association (VCI). The cooperation is significant for the development of new analytical methods to enable the detection of chemicals in urine or blood samples to which the population may have increased exposure or which are of special rel

Table of Contents

 

Background, objectives and tasks of cooperation

The German Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU ) and the German Chemical Industry Association (VCI) initiated collaboration in 2010 to provide funding for human biomonitoring (HBM). The main objective of the cooperation is to improve the knowledge about newer chemicals to which the population might be increasingly exposed or which might have an effect on health. Therefore analytical methods are developed which can demonstrate a potential exposure of the general population. Main aim is to develop sensitive methods which are able to detect the smallest concentrations of these substances which occur in the unexposed general public (known as background concentration).

One of the main objectives of the cooperation between the BMU and the VCI is to select up to 50 substances within ten years (substance prioritisation) which meet the criteria of consumer relevance, special relevance to health, or the fact that there is no specific HBM method available. This is where work begins on the development of specific methods of analysis and their application in suitable population surveys. The VCI is responsible for the development of methods, and the German Environment Agency (UBA) supports the Federal Environment Ministry (BMU) in the application of the methods in suitable studies. UBA provides administration and management of the cooperation.

The cooperation originally was formed for ten years. The selection of substances will be finished in early 2020. The development of the analytical methods is a complex and lengthy process therefore the cooperation has now been extended by another five years to 2025.

 

Committees and members

The BMU and the VCI cooperate in two committees: the HBM Expert Group and the Steering Committee.

The members of the HBM Expert Group have backgrounds in chemical-analytical science, expertise in toxicology, environmental medicine and/ or regulatory affairs and work for the Federal Environment Ministry (BMU), the "Federal Institute for Risk Assessment (BfR)", the "Federal Institute for Occupational Health and Safety (BAuA)" and the German Environment Agency (UBA ), in science (universities, private and state institutes), and in the chemical industry.

Membership is contingent upon recommendation and approval by both cooperation partners; membership is – apart from the governmental representatives - personal rather than institutional.
The members of the Steering Committee are representatives from the BMU, UBA and VCI (or its membership organisations).

 

Selection of substances and method development

The HBM Expert Group convenes at the beginning and in autumn of every year to select the substances for which methods are to be developed and to discuss the individual critical steps of this development.

First discussions on the selection of substances commenced before the official start of the cooperation and were based on lists compiled by different international organisations (e.g. the list of CMR (carcinogenic, mutagenic, reprotoxic) substances, the Candidate List to REACH Annex XIV, or the list of endocrine disruptors) and also considered substances of concern under discussion at the time. The BMU commissioned the BfR in 2010 to draw up a list of some 120 substances which might be relevant for the cooperation. This list was based on BfR’s assessment work in the frame of consumer health protection and on basis of worldwide on different levels discussed consumer relevant substances (e.g. Candidate List of REACH, and cosmetics ingredients). The basic criteria for selection of substances from the available lists were:

  • Good to very good bioavailability of the substances
  • Toxicological relevance
  • Exclusion of substances for which an HBM method exists, either for the compound itself or for its active components or metabolites (related research in “The MAK Collection for Occupational Health and Safety” https://onlinelibrary.wiley.com/doi/book/10.1002/3527600418  and laboratory list of the IPASUM (Institute and Outpatient Clinic of Occupational, Social, and Environmental Medicine), Erlangen). If the methods found seemed not appropriate for this cooperation (e.g. not sensitive enough) an intense study of the provided methods was performed.
  • Exclusion of substances with low likelihood of exposure (no consumer relevance) (e.g. research in the SPIN database)

The finally compiled list built the bases for further discussions on appropriate substances within the HBM Expert Group. Subsequent meetings have focused on a regular review of international chemical lists. Recommendations of the participating institutions to take up new substances are heard, and toxicological fact sheets are used to determine the substance’s appropriateness for the cooperative project.

Regular items on the agenda of the HBM Expert Group discussion include: aspects of substance toxicity (health relevance), potential of consumer exposure to the substances, and the availability of a specific HBM method for tracing the substance itself or its metabolites (as exposure or effect biomarkers) in human urine or blood samples. In cases where an HBM method exists in the occupational safety field (MAK Collection), the expert group discusses the biomarkers used, possible detection and determination limits and/or the need for an additional metabolism study. The decision-making process increasingly weighs whether the available information from human, animal and cell culture tests enable the HBM Commission to derive an assessment (HBM) value.

The results of the HBM Expert Group’s discussion generate a list of proposed substances, which features about ten chemicals every year and for which there was sufficient data available to classify them as eligible for the cooperation project.

The list of proposed substances from the HBM Expert Group is submitted to the Steering Committee for its annual spring meeting. The Steering Committee selects up to 5 substances per year for which the cooperative partners are to develop HBM methods. Consideration is given to whether the VCI is able to find industrial sponsors for the substance whose expertise is required for the effective development of analysis methods.

After the up to five substances have been chosen by the Steering Committee, the VCI commissions a laboratory (often a member of the HBM Expert Group) to develop a suitable method. The June 2013 issue of BMU-Umwelt features an article with details of the challenges involved in developing these methods.

 

Selected substances

Till March 2019, 47 substances have been selected since the start of the BMU and the VCI cooperation on the development of human biomonitoring (HBM) methods; they include phthalates and phthalate substitutes (plasticizers), flame retardants (for furniture or clothes), solvents (in cleaning products or wall colours), cosmetics additives (UV filters, fragrances, preservatives), plastics additives (UV-stabilizers), biocides and allergenic substances (preservatives for food, cosmetics or household products).

Detailed information on the selected substances, their uses, and their chemical names are to be found in the Table Selected Substances.

The webpages of the Human Biomonitoring Commission have information on toxicological effects and any HBM values.

Table Selected substances
Table Selected substances
Source: Umweltbundesamt table_selected_substances_en_20191024.pdf
 

Several analytical methods have been developed

The BMU /VCI cooperation already has developed several analytical methods for the determination of so far non-measurable substance quantities (at least at such low concentrations) in urine and blood samples.

These include a method for the analysis of metabolites of the phthalate DPHP and the phthalate substitutes DINCH, DEHTP, TOTM and DEHA. These plasticizers are increasingly used to replace e.g. the now banned DEHP in different fields of application, for example in toys, food packaging or medical tubes. A method has also been developed for the analysis of MDI, an ingredient in single-component foam for the fixing and insulation of window and door frames. Methods to measure the following have been developed for: 2-MBT, which is used as a vulcanisation accelerator in the production of household rubber products and tyres; Lysmeral, 7-Hydroxycitronellal and Geraniol, fragrances frequently used in cosmetics and cleaning products and detergents. UV-filters and preservatives can be found in several cosmetics (like cream and sun blocker) for some of them analytical methods have been developed (4-MBC, Octocrylene, CMI/MI (3:1), EHS, DHHB). Appropriate analytical methods to measure the background level for the flame retardants HBCDD and TDCPP are also available.

More information on the single methods developed can be found in the Table “Developed analysis methods”.

The development of a method for three substances (cyclosiloxanes D4, D5, D6) was discontinued due to difficulties of analysis. Additionally, it was not possible to develop a method for the substance Keromet MD as it degrades to unspecific parts very fast once it has entered the human body.

Once a method has been developed by an internationally renowned laboratory commissioned by the VCI, the method and the established exposure biomarkers is presented in peer reviewed journals and is often also presented at specialist conferences, whereby the method becomes publicly available.

The new analytical methods fulfill the high standards on validity and quality of the working group ‘Analyses in biological Materials’ of the Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area (known as the MAK Commission: https://www.dfg.de/en/dfg_profile/statutory_bodies/senate/health_hazards/index.html) of the German Research Foundation (DFG). These standards include:

  • Identification of one or more specific biomarkers (mainly metabolites)
  • Development and validation of an analytical method for the determination and quantification of the biomarker(s) in urine or blood.

In addition, the new method has to be applied by 40 non-occupationally exposed volunteers to approve the capability of the method to measure the background exposure.

Table Developed analysis methods
Table Developed analysis methods
Source: Umweltbundesamt table_methods_developed_en_20191024.pdf
 

Application of the new methods/publications

The first application of the methods in population surveys occurs through the German Environment Agency in the analysis of human samples of the Environmental Specimen Bank or samples taken for the German Environmental Survey (GerES), a population representative survey.

For example, the methods for DINCH, DPHP, DEHTP, the solvents NMP and NEP and the methode for 2-MBT have been applied to the German Environmental Survey for Children and Adolescents, GerES 2014-2017 (GerES V) . The samples of the Environmental Specimen Bank  have been used to apply the methods for DINCH, DPHP, NMP und NEP, HBCDD, DEHTP and CMI/MI (3:1).  Some methods will also be applied in GerES VI (German Environmental Survey on Adults). The results of these studies will be presented in peer reviewed journals or on the respective web pages. 

With these results, for example, an estimation of the average corporal burden of the population with these substances is possible. This supports the assessment of the effectiveness of existing European and German legal regulations for the use of these substances – or may contribute to further regulations.

Progress made in the BMU /VCI project was part of the reason why Germany has been asked to coordinate an EU-wide programme on human-biomonitoring with the acronym HBM4EU. Under this initiative, the European Commission supplies a co-fund of 50 million euros between 2017 and 2021 to bring together and advance human-biomonitoring activities in the EU member states and a couple of associated countries. The German Environment Agency (UBA ) is leading and successfully managing this complex project and is also incorporating the results of the BMU/VCI cooperation into this work.