

1

FINAL: 8/2005

2

ACETONE CYANOHYDRIN

3

(CAS Reg. No. 75-86-5)

4

ACUTE EXPOSURE GUIDELINE LEVELS

(AEGLs)

5

August 2005

6

7

PREFACE

8 Under the authority of the Federal Advisory Committee Act (FACA) P. L. 92-463 of 1972, the
9 National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances
10 (NAC/AEGL Committee) has been established to identify, review and interpret relevant toxicologic and
11 other scientific data and develop AEGLs for high priority, acutely toxic chemicals.

12 AEGLs represent threshold exposure limits for the general public and are applicable to
13 emergency exposure periods ranging from 10 minutes to 8 hours. AEGL-2 and AEGL-3 levels, and
14 AEGL-1 levels as appropriate, will be developed for each of five exposure periods (10 and 30 minutes, 1
15 hour, 4 hours, and 8 hours) and will be distinguished by varying degrees of severity of toxic effects. It is
16 believed that the recommended exposure levels are applicable to the general population including infants
17 and children, and other individuals who may be sensitive or susceptible. The three AEGLs have been
18 defined as follows:

19 AEGL-1 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it
20 is predicted that the general population, including susceptible individuals, could experience notable
21 discomfort, irritation, or certain asymptomatic, non-sensory effects. However, the effects are not disabling
22 and are transient and reversible upon cessation of exposure.

23 AEGL-2 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it
24 is predicted that the general population, including susceptible individuals, could experience irreversible or
25 other serious, long-lasting adverse health effects, or an impaired ability to escape.

26 AEGL-3 is the airborne concentration (expressed as ppm or mg/m³) of a substance above which it
27 is predicted that the general population, including susceptible individuals, could experience
28 life-threatening health effects or death.

29 Airborne concentrations below the AEGL-1 represent exposure levels that could produce mild
30 and progressively increasing odor, taste, and sensory irritation, or certain asymptomatic, non-sensory
31 effects. With increasing airborne concentrations above each AEGL level, there is a progressive increase in
32 the likelihood of occurrence and the severity of effects described for each corresponding AEGL level.
33 Although the AEGL values represent threshold levels for the general public, including sensitive
34 subpopulations, it is recognized that certain individuals, subject to unique or idiosyncratic responses,
35 could experience the effects described at concentrations below the corresponding AEGL level.

36

TABLE OF CONTENTS

37	PREFACE	ii
38	EXECUTIVE SUMMARY	vi
39	1. INTRODUCTION	1
40	2. HUMAN TOXICITY DATA	3
41	2.1. Acute Lethality	3
42	2.2. Nonlethal Toxicity	3
43	2.3. Developmental/Reproductive Toxicity	3
44	2.4. Genotoxicity	4
45	2.5. Carcinogenicity	4
46	2.6. Summary	4
47	3. ANIMAL TOXICITY DATA	5
48	3.1. Acute Lethality	5
49	3.1.1. Rats	5
50	3.1.2. Mice	6
51	3.2. Nonlethal Toxicity	7
52	3.2.1 Rats	7
53	3.3. Developmental/Reproductive Toxicity	9
54	3.3.1 Rats	9
55	3.4. Genotoxicity	10
56	3.5. Carcinogenicity	10
57	3.6. Summary	10
58	4. SPECIAL CONSIDERATIONS	12
59	4.1. Stability, Metabolism and Disposition	12
60	4.2. Mechanism of Toxicity	13
61	4.3. Structure-Activity Relationships	14
62	4.4. Other Relevant Information	14
63	4.4.1. Effects of Cyanides and Acetone in Humans	14
64	4.4.2. Lethality of hydrogen cyanide in animals	16
65	4.4.3. Species Variability	17
66	4.4.4. Intraspecies Variability	17
67	5. DATA ANALYSIS FOR AEGL-1	19
68	5.1. Human Data Relevant to AEGL-1	19
69	5.2. Animal Data Relevant to AEGL-1	19
70	5.3. Derivation of AEGL-1	19

71

72	6. DATA ANALYSIS FOR AEGL-2	21
73	6.1. Human Data Relevant to AEGL-2	21
74	6.2. Animal Data Relevant to AEGL-2	21
75	6.3. Derivation of AEGL-2	21
76	7. DATA ANALYSIS FOR AEGL-3	22
77	7.1. Human Data Relevant to AEGL-3	22
78	7.2. Animal Data Relevant to AEGL-3	22
79	7.3. Derivation of AEGL-3	22
80	8. SUMMARY OF AEGLs	23
81	8.1. AEGL Values and Toxicity Endpoints	23
82	8.2. Comparison with Other Standards and Criteria	25
83	8.3. Data Adequacy and Research Needs	25
84	9. REFERENCES	27
85	APPENDIX A	
86	Derivation Summary for Acetone Cyanohydrin AEGLs	31
87	AEGL-1	32
88	AEGL-2	34
89	AEGL-3	35

90

LIST OF TABLES

91	SUMMARY TABLE OF AEGL VALUES FOR ACETONE CYANOHYDRIN	viii
92	TABLE 1: CHEMICAL AND PHYSICAL DATA	1
93	TABLE 2: SUMMARY OF ACUTE LETHAL INHALATION DATA IN LABORATORY	
94	ANIMALS	6
95	TABLE 3: SUMMARY OF NON-LETHAL SIGNS OF ACETONE CYANOHYDRIN	
96	EXPOSURE IN LABORATORY ANIMALS	8
97	TABLE 4: SUMMARY OF ORAL LD ₅₀ DATA FOR ACETONE CYANOHYDRIN	17
98	TABLE 5: AEGL-1 VALUES FOR ACETONE CYANOHYDRIN	20
99	TABLE 6: AEGL-2 VALUES FOR ACETONE CYANOHYDRIN	21
100	TABLE 7: AEGL-3 VALUES FOR ACETONE CYANOHYDRIN	23
101	TABLE 8: SUMMARY/RELATIONSHIP OF AEGL VALUES FOR ACETONE CYANOHYDRIN	23
102	TABLE 9. EXTANT STANDARDS AND GUIDELINES FOR ACETONE CYANOHYDRIN	25

103

LIST OF FIGURES

104	FIGURE 1: CATEGORICAL REPRESENTATION OF ACETONE CYANOHYDRIN	
105	INHALATION DATA	24

106

EXECUTIVE SUMMARY

107 Acetone cyanohydrin is a colorless to yellowish liquid with a characteristic bitter almond odor
108 due to the presence of free HCN. The major use of acetone cyanohydrin is in the production of α -
109 methacrylic acid and its esters; the latter are used for the production of plexiglass. Further uses of acetone
110 cyanohydrin are in the production of acrylic esters, polyacrylic plastics and synthetic resins as well as in
111 the manufacture of insecticides, pharmaceuticals, fragrances and perfumes. Acetone cyanohydrin
112 decomposes spontaneously in the presence of water to acetone and hydrogen cyanide.

113 Fatalities and life-threatening occupational intoxication have been described after accidental
114 inhalation, skin contact and ingestion. Initial symptoms following mild exposure to acetone cyanohydrin
115 range from cardiac palpitation, headache, weakness, dizziness, nausea, vomiting to nose, eye, throat and
116 skin irritation. Acetone cyanohydrin behaves as its molar equivalent in cyanide both in vitro and in vivo.
117 All of the pharmacological actions of cyanide result from cyanide's reversible complex with the ferric
118 (+3) state of mitochondrial cytochrome c oxidase also known as ferrocyanochrome c-oxygen
119 oxidoreductase. Cessation of electron transport across the inner mitochondrial membrane results in
120 inhibition of oxygen utilization and causes hypoxia and cellular destruction.

121 Four studies exposed rats repeatedly to acetone cyanohydrin at about 10, 30 and 60 ppm for 6
122 hours/day, 5 days/week for a total of 4 weeks (Monsanto, 1986a; using groups of 10 male and 10 female
123 rats), 10 weeks (Monsanto, 1982b; using groups of 15 male rats) and 14 weeks (Monsanto, 1986b; using
124 groups of 15 male and 15 female rats) or for 6 hours/day for 21 days (Monsanto, 1982c; using groups of
125 15 female rats). Death was observed at 60 ppm after the first exposure in 3 animals of the Monsanto
126 (1986a) study, but not in subsequent exposures or in the other studies conducted under similar protocols.
127 Preceding death, respiratory distress, prostration, convulsions and tremors were obvious. In all studies,
128 exposure to 60 and 30 ppm caused signs of irritation (red nasal discharge, clear nasal discharge, perioral
129 wetness, encrustations) during the first and subsequent weeks of exposure. At 10 ppm, red nasal discharge
130 was not observed in one study (Monsanto, 1986a); its incidence was not increased compared to the
131 concurrent control group in two studies (Monsanto, 1982b; 1982c), but it was increased compared to the
132 control group in the fourth study (Monsanto, 1986b). No other signs of intoxication were reported in
133 these four studies.

134 The derivation of AEGL-1 values was based upon the facts that acetone cyanohydrin decomposes
135 spontaneously to hydrogen cyanide and acetone and that both local and systemic toxic effects of acetone
136 cyanohydrin are due to free cyanide. Once absorbed, a dose of acetone cyanohydrin behaves in a manner
137 identical to that of its molar equivalent in absorbed free cyanide. It is appropriate to apply the AEGL-1
138 values (on a ppm basis) derived for hydrogen cyanide (NRC, 2002) to acetone cyanohydrin. This
139 procedure is supported by the fact that similar values would be derived on the basis of available acetone
140 cyanohydrin studies in rats (derivation basis would be exposure to 9.2 ppm for 6 hours/day, 5 days/week
141 for 4 weeks, which did not result in red nasal discharge; Monsanto, 1986a) using a total uncertainty factor
142 of 10.

143 The odor threshold of acetone cyanohydrin has not been firmly established. Shkodich (1966)
144 published the odor threshold for acetone cyanohydrin in water (0.06 mg/l). However, the odor would
145 necessarily be the consequence of a mixed presentation of the HCN and acetone cyanohydrin levels in air.

146 Since no definitive reports on the odor threshold of acetone cyanohydrin were located in the literature, no
 147 level of distinct odor awareness (LOA) was derived.

148 The derivation of AEGL-2 values was based upon the facts that acetone cyanohydrin decomposes
 149 spontaneously to hydrogen cyanide and acetone and that the systemic toxicity of acetone cyanohydrin is
 150 due to free cyanide. Once absorbed, a dose of acetone cyanohydrin behaves in a manner identical to that
 151 of its molar equivalent in absorbed free cyanide. It is appropriate to apply the AEGL-2 values (on a ppm
 152 basis) derived for hydrogen cyanide (NRC, 2002) to acetone cyanohydrin. This procedure is supported by
 153 the fact that similar values would be derived on the basis of available acetone cyanohydrin studies in rats
 154 (derivation basis would be exposure to 29.9 ppm for 6 hours/day, 5 days/week for 4 weeks, which caused
 155 signs of irritation, while the next higher concentration produced respiratory distress, prostration,
 156 convulsions and tremors; Monsanto, 1986a) using a total uncertainty factor of 10.

157 The derivation of AEGL-3 values was based upon the facts that acetone cyanohydrin decomposes
 158 spontaneously to hydrogen cyanide and acetone and that the systemic toxicity of acetone cyanohydrin is
 159 due to free cyanide. Once absorbed, a dose of acetone cyanohydrin behaves in a manner identical to that
 160 of its molar equivalent in absorbed free cyanide. It is appropriate to apply the AEGL-3 values (on a ppm
 161 basis) derived for hydrogen cyanide (NRC, 2002) to acetone cyanohydrin. This procedure is supported by
 162 the close similarity of acetone cyanohydrin and hydrogen cyanide regarding death in rats: Blank (1983)
 163 reported that 3 of 10 rats died after the first exposure to 68 ppm hydrogen cyanide, while the subsequent
 164 two exposures on the following days caused no additional deaths. This finding closely resembles that of
 165 Monsanto (1986a) reporting death of 3 of 20 animals after the first exposure to 60 ppm acetone
 166 cyanohydrin (the actual exposure concentration on the first day might have been slightly higher than the
 167 average 59.6 ppm), while no additional deaths were found in the 19 subsequent exposures.

168 The derived values are listed in the table below.

SUMMARY TABLE OF AEGL VALUES FOR ACETONE CYANOHYDRIN ^{a b}						
Classification	10-Minute	30-Minute	1-Hour	4-Hour	8-Hour	Endpoint (Reference)
AEGL-1 (Nondisabling)	2.5 ppm (8.8 mg/m ³)	2.5 ppm (8.8 mg/m ³)	2.0 ppm (7.0 mg/m ³)	1.3 ppm (4.6 mg/m ³)	1.0 ppm (3.5 mg/m ³)	application of AEGL-1 values for hydrogen cyanide
AEGL-2 (Disabling)	17 ppm (60 mg/m ³)	10 ppm (35 mg/m ³)	7.1 ppm (25 mg/m ³)	3.5 ppm (12 mg/m ³)	2.5 ppm (8.8 mg/m ³)	application of AEGL-2 values for hydrogen cyanide
AEGL-3 (Lethal)	27 ppm (95 mg/m ³)	21 ppm (74 mg/m ³)	15 ppm (53 mg/m ³)	8.6 ppm (30 mg/m ³)	6.6 ppm (23 mg/m ³)	application of AEGL-3 values for hydrogen cyanide

177 ^a Acetone cyanohydrin decomposes spontaneously in the presence of water to yield hydrogen cyanide and
 178 acetone. Therefore, both acetone cyanohydrin and hydrogen cyanide concentrations should be considered.

179 ^b Cutaneous absorption may occur; direct skin contact with the liquid should be avoided.

180 References

181 Blank, T.L. 1983. Inhalation Pilot Study of Hydrogen Cyanide Exposure in Sprague-Dawley Rats. Report
182 No. MSL-2985, Monsanto Company. U.S. EPA OTS Submission 88-920007543.

183 Monsanto, 1982b. Male fertility study of Sprague-Dawley rats exposed by inhalation route to acetone
184 cyanohydrin. Monsanto Co. Report No. ML-82-144, Monsanto Co., St. Louis, MO, USA.

185 Monsanto, 1982c. Female fertility study of Sprague-Dawley rats exposed by inhalation route to acetone
186 cyanohydrin. Monsanto Co. Report No. ML-82-125, Monsanto Co., St. Louis, MO, USA.

187 Monsanto, 1986a. One-month inhalation toxicity of acetone cyanohydrin in male and female Sprague-
188 Dawley rats with cover letter dated 04-25-86. Report No. BN-81-178, Monsanto Co., St. Louis, MO,
189 USA.

190 Monsanto, 1986b. Three-month inhalation toxicity of acetone cyanohydrin in male and female Sprague-
191 Dawley rats with cover letter dated 04-25-86. Report No. ML-82-143, Monsanto Co., St. Louis, MO,
192 USA.

193 NRC, National Research Council, 2002. "Hydrogen Cyanide" in Acute Exposure Guideline Levels for
194 Selected Airborne Chemicals. Volume 2, pp. 211-276, National Academy Press, Washington, D.C.

195 Shkodich P.E., 1966. Experimental determination of the maximum permissible concentration of acetone
196 cyanohydrin in water basins. *Hygiene and Sanitation* 31, 335-341.

197

1. INTRODUCTION

198 Acetone cyanohydrin is a colorless to yellowish liquid with a characteristic bitter almond odor
 199 due to the presence of free hydrogen cyanide (HCN) (ACGIH, 1996). The major use of acetone
 200 cyanohydrin is in the preparation of α -methacrylic acid and its esters; the latter are used for the
 201 production of plexiglass. Further uses of acetone cyanohydrin are in the production of acrylic esters,
 202 polyacrylic plastics and synthetic resins as well as an intermediate in the manufacture of insecticides,
 203 pharmaceuticals, fragrances and perfumes (UN, 1997). About 0.5-1 million metric tons of acetone
 204 cyanohydrin are produced worldwide annually (IUCLID, 1996), principally by reaction of hydrogen
 205 cyanide with acetone. Chemical and physical properties of acetone cyanohydrin are listed in Table 1.

206 Since the elimination reaction of HCN from acetone cyanohydrin is an endothermic reaction, the
 207 decomposition of acetone cyanohydrin is accelerated by heat. At temperatures of 120 °C or higher,
 208 acetone cyanohydrin decomposes with the evolution of HCN (IUCLID, 1996). Water and ethanol (esp. in
 209 the presence of amines) exert specific dissociative effects on acetone cyanohydrin, rather than acting as
 210 mere diluents (Stewart and Fontana, 1940). The very rapid breakdown of acetone cyanohydrin with
 211 moisture would present some challenges in any accidental spill or release. Because acetone cyanohydrin
 212 breaks down so readily to HCN, and the toxicity is due to HCN, both materials are present in a mixture
 213 and the ratio of the two could be rapidly changing. Therefore, both materials would need to be tracked to
 214 give an indication of the risk.

215 **TABLE 1: CHEMICAL AND PHYSICAL DATA**

216 Parameter	217 Value	218 Reference
217 Molecular formula	218 $(CH_3)_2C(OH)CN$	219 IUCLID, 1996
218 Molecular weight	219 85,1	220 E.I. du Pont de Nemours and Co., 1998
219 CAS Registry Number	220 75-86-5	221 IUCLID, 1996
220 Physical state	221 liquid	222 E.I. du Pont de Nemours and Co., 1998
221 Color	223 colorless colorless to yellowish	224 E.I. du Pont de Nemours and Co., 1998 ACGIH, 1996
222 Synonyms	225 2-propanone cyanohydrin; 2-cyano-2-propanol; 2-cyano-2-hydroxypropane; α -hydroxyisobutyronitrile; 2-methyl-lactonitrile; 2-hydroxy-2-methyl-propionitrile; Acetoncyanhydrin	226 IUCLID, 1996
223 Vapor pressure	227 1.07 hPa at 20 °C 0.8 mm Hg at 20 °C 1 mm Hg at 25 °C 1.6 hPa at 40 °C 12.5 hPa at 72 °C	228 IUCLID, 1996 229 E.I. du Pont de Nemours and Co., 1998 230 E.I. du Pont de Nemours and Co., 1998 231 Grybat et al., 2003 232 Grybat et al., 2003
224 Density	225 0.932 g/cm ³ at 19 °C 0.9267 g/cm ³ at 25 °C	226 IUCLID, 1996 227 IUCLID, 1996
225 Melting point	228 -19 °C to -20 °C	229 IUCLID, 1996

	Parameter	Value	Reference
226	Boiling point	81 °C at 30.7 hPa 82 °C at 23 mm Hg 95 °C at 1013 hPa (decomposition to acetone and HCN)	IUCLID, 1996 E.I. du Pont de Nemours and Co., 1998 IUCLID, 1996
227	Solubility	very soluble in water, alcohol and ether	E.I. du Pont de Nemours and Co., 1998
228	Odor	characteristic bitter almond odor of free HCN	ACGIH, 1996
229	Explosive limits in air	2.2 % (LEL) to 12 % (UEL)	IUCLID, 1996
230	Conversion factors	1 ppm = 3.5 mg/m ³ 1 mg/m ³ = 0.28 ppm	E.I. du Pont de Nemours and Co., 1998

231 Acetone cyanohydrin in air can be specifically determined using solid sorbent sampling (samples should
 232 be stored water-free and frozen to avoid decomposition), elution with a water-free solvent (ethylacetate)
 233 and gas chromatographic analysis (Glaser and Fey O'Connor, 1985; NIOSH, 1985). Also available are
 234 methods for total cyanide determination involving sampling in alkaline solutions or infrared spectroscopy
 235 (Singh et al., 1986). Electrochemical detectors for hydrogen cyanide and Draeger tubes for hydrogen
 236 cyanide will not detect acetone cyanohydrin. However, these devices can be used to detect hydrogen
 237 cyanide that will form rapidly in a case of acetone cyanohydrin release due to its decomposition to
 238 acetone and hydrogen cyanide.

239 **2. HUMAN TOXICITY DATA**240 **2.1. Acute Lethality**

241 Although deaths have occurred from exposures to acetone cyanohydrin, specific exposure
242 concentrations and exposure periods have not been reported (Sunderman and Kincaid, 1953; NIOSH,
243 1978; DECOS, 1995; ACGIH, 1996). Fatalities and life-threatening poisonings with clonic-tonic
244 convulsions in workers have been described after inhalation (Krefft, 1955) and skin contact (Sunderman
245 and Kincaid, 1953; Thiess and Hey, 1969) as well as after accidental ingestion (Sunderman and Kincaid,
246 1953). Following mild exposure to acetone cyanohydrin patients presented with cardiac palpitation,
247 headache, weakness, dizziness, nausea, vomiting and nose, eye, throat and skin irritation (Ballantyne and
248 Marrs, 1987; DECOS, 1995).

249 **2.2. Nonlethal Toxicity**

250 No relevant studies documenting nonlethal effects in humans after a single inhalation exposure to
251 acetone cyanohydrin were located in the available literature. Cases of intoxication in workers after dermal
252 contact with acetone cyanohydrin have been reported (Lang and Stintzy, 1960; Zeller et al., 1969).

253 Sunderman and Kincaid, (1953) described at least 3 pumpers lost consciousness during the
254 packing operation of acetone cyanohydrin. The men recovered after they had been revived on exposure to
255 fresh air and cleaning their hands. No permanent injury apparently occurred following these exposures. It
256 had been noted that the pumpers usually had their hands covered with grease. When the employees had
257 covered their hands so, the effects of acetone cyanohydrin were minimal, suggesting dermal penetration
258 of acetone cyanohydrin as the principal route of exposure in these cases. The symptoms following mild
259 exposure to acetone cyanohydrin were predominantly cardiac palpitation, headache, nausea and vomiting.
260 No details about the exposure conditions were reported.

261 Oral exposure to acetone cyanohydrin may occur as a consequence of its liberation from
262 linamarin, a cyanogenic glycoside found in cassava and other plant foodstuffs (Conn 1979). Linamarin is
263 the common name given to a molecule composed of glucose and acetone cyanohydrin. Since toxic effects
264 of linamarin usually become evident only after long term, low dose exposure toxicity data for linamarin
265 are not considered relevant to AEGL development and thus are not presented here.

266 Shkodich (1966) reported that according to a majority of people smelling and tasting acetone
267 cyanohydrin-containing water, the sensory threshold of smell for this substance is at a level of 0.06 mg/l
268 and that of the after taste is 0.48 mg/l. No experimental details were reported.

269 **2.3. Developmental/Reproductive Toxicity**

270 No studies documenting potential developmental or reproductive toxicity of acetone cyanohydrin
271 exposure in humans were located in the available literature.

272 **2.4. Genotoxicity**

273 No studies documenting the genotoxic potential of acetone cyanohydrin exposure in humans were
274 located in the available literature.

275 **2.5. Carcinogenicity**

276 No studies documenting the carcinogenic potential of acetone cyanohydrin exposure in humans
277 were located in the available literature.

278 **2.6. Summary**

279 Deaths associated with inhaled acetone cyanohydrin have occurred, but exposure concentrations
280 are unknown. Likewise, airborne exposure levels for those who survived the initial acute intoxication
281 were not provided, but in each instance there was ample opportunity for skin absorption. No information
282 on developmental/reproductive effects, genotoxicity or carcinogenicity was located.

283 **3. ANIMAL TOXICITY DATA**284 **3.1. Acute Lethality**

285 Lethality data are available for the rat; only one study reporting lethality in mice was located. The
286 lethality data are summarized in Table 2.

287 **3.1.1. Rats**

288 Smyth et al. (1962) exposed groups of 6 albino rats to acetone cyanohydrin vapors that were
289 produced by passing a 2.5-l/min-air stream through a fritted glass disc immersed in 50 ml acetone
290 cyanohydrin. Doses were logarithmically distributed, differing by a factor of two (doses were not stated
291 explicitly). The observation period was 14 days. After exposure for 4 hours, 2/6 rats were killed at 62.5
292 ppm and 6/6 rats were killed at 125 ppm. The maximum time rats could be exposed to saturated vapor
293 (about 1300 ppm) without producing any deaths was 5 minutes. No other signs of toxicity were reported.

294 Izmerov et al. (1982) reported an LC₄₀ of 185 mg/m³ (51.8 ppm) for 2 hours in rats (no details
295 were reported).

296 Sunderman and Kincaid (1953) using saturated vapors of commercially available acetone
297 cyanohydrin reported that 6/6 rats died after 1.5 minutes. When the free HCN contained in the acetone
298 cyanohydrin was removed by precipitation with silver nitrate prior to exposure, the authors found that
299 collapse occurred after an average time of 4 minutes and 50 % mortality after 10 minutes (number of
300 animals was not stated exactly).

301 ***Studies with repeated inhalation exposure***

302 Monsanto (1986a) exposed groups of 10 female and 10 male Sprague-Dawley rats to acetone
303 cyanohydrin at 0, 10, 30 or 60 ppm for 6 hours/day, 5 days/week for 20 exposure days (28 days in total).
304 Concentrations in the exposure chamber were calculated by dividing the net amount of acetone
305 cyanohydrin delivered to the chamber per unit time by the airflow per unit time and, in addition,
306 measured by a Miran® infrared analyzer (using the C-N triple bond frequency, which detects both acetone
307 cyanohydrin and hydrogen cyanide) four times daily. For the total exposure period, mean analytical
308 concentrations (\pm SD) were determined as 9.2 \pm 0.9, 29.9 \pm 1.2 and 59.6 \pm 1.4 ppm, respectively. In the
309 highest exposure group respiratory distress and tremors or convulsions or both, foaming at the mouth, and
310 prostration were observed in 4 males following the first exposure. Of these 4 animals, 3 died. No deaths
311 occurred in the 29.9-ppm group (see Section 3.2.4 for nonlethal effects). In three other studies conducted
312 under similar protocols no deaths were observed at 60 ppm for 6 hours/day (Monsanto, 1982b; 1982c;
313 1986b) (see Sections 3.2.1 and 3.3.1 and Table 2). The authors suggested that the differences between the
314 28-day study and the 14-week study (Monsanto, 1986b) were possibly due to the very steep dose-
315 response for acetone cyanohydrin or to the normal variation in experimental animals of the same strain.
316 Evaluation of the nominal and analytical concentrations revealed that the animals in the 60-ppm group
317 may, indeed, have been exposed to a slightly higher concentration during the second half of the first day:
318 the nominal concentration of 64.8 ppm for the first day was the highest of all days (mean for the other 19
319 exposure days was 60.4 \pm 1.8 ppm), likewise, the last two analytical concentrations measured during the
320 first day (55.5, 60.5, 63.5 and 63.5 ppm; mean 60.8 \pm 3.8) were greater than those measured on all

321 subsequent exposure days (the highest individual value for exposure days 2-20 was 61.5 ppm; mean for
 322 exposure days 2-20 was 59.5 ± 1.4 ppm).

323 **3.1.2. Mice**

324 Gabor et al. (1962) exposed albino mice to different acetone cyanohydrin concentrations (0.5-3
 325 mg/l (140-840 ppm)) for 2 hours. Deaths were reported as 0/10 at 140 ppm, 0/10 at 280 ppm, 8/10 at 420
 326 ppm, 18/44 at 560 ppm, 4/10 at 700 ppm, and 10/10 at 840 ppm. The authors found a 50 % narcosis level
 327 at 1.65 mg/l (462 ppm) and calculated a LC_{50} of 2.05 mg/l (574 ppm). The mouse strain, analytical
 328 methods and postexposure observation period were not reported.

329 Izmerov et al. (1982) reported an LC_{30} of 70 mg/m³ (19.6 ppm) for 2 hours in mice (no details
 330 were reported).

331 **TABLE 2: SUMMARY OF ACUTE LETHAL INHALATION DATA IN LABORATORY ANIMALS**

Species	Concentration (ppm)	Exposure time	Effect	Reference
Rat	saturated vapor (about 1300 ppm)	1.5 min (time to death)	6/6 animals died during exposure period; using commercially available acetone cyanohydrin	Sunderman and Kincaid, 1953
Rat	saturated vapor (about 1300 ppm)	10 min (time to death)	6/6 animals died during exposure period; using commercial acetone cyanohydrin with free HCN removed	Sunderman and Kincaid, 1953
Rat	125	4 h	6/6 animals died	Smyth et al., 1962
Rat	62.5	4 h	2/6 animals died	Smyth et al., 1962
Rat	59.6	6 h/d, 5 d/w, 4 w	3/20 animals died (deaths occurred after first exposure during which exposure to an elevated concentration may have occurred)	Monsanto, 1986a
Rat	58.6	6 h/d, 7 d/w, 21 d	no deaths in 24 animals	Monsanto, 1982c
Rat	57.7	6 h/d, 5 d/w, 14 w	no deaths in 30 animals	Monsanto, 1986b
Rat	57.2	6 h/d, 5 d/w, 48 d	no deaths in 15 animals	Monsanto, 1982b
Rat	51.8	2 h	LC_{40}	Izmerov et al., 1982
Mouse	574	2 h	LC_{50}	Gabor et al., 1962
Mouse	19.6	2 h	LC_{30}	Izmerov et al., 1982

344 **3.2. Nonlethal Toxicity**

345 No studies evaluating nonlethal consequences of acetone cyanohydrin after a single inhalation
346 exposure were located. Studies using repeated inhalation exposure report signs of irritation, such as red
347 nasal discharge and perioral wetness. These data are summarized in Table 3.

348 **3.2.1 Rats**349 *Studies with repeated inhalation exposure*

350 Monsanto (1986a) exposed groups of 10 female and 10 male Sprague-Dawley rats to mean
351 acetone cyanohydrin concentrations of 9.2 ± 0.9 , 29.9 ± 1.2 and 59.6 ± 1.4 ppm, respectively for 6 hours/day,
352 5 days/week for 20 exposure days (28 days in total) (see Section 3.1.4). Three of 20 animals that inhaled
353 59.6 ppm died after the first exposure. The three animals that died and another animal that survived
354 showed respiratory distress, prostration, tremors and/or convulsions (observed in 3 of the 4 animals) and
355 foaming of the mouth (observed in 2 of the 4 animals). During the first week of exposure, red nasal
356 discharge was reported in 0/20 control animals, 0/20 animals in the 10-ppm group, 4/20 animals in the 30-
357 ppm group and 2/20 animals in the 60-ppm group (the authors reported incidences of irritation only for
358 whole weeks, but not for single days). Reduced ($p>0.05$) body weight was found in the high exposure
359 group. No gross or microscopic lesions attributable to acetone cyanohydrin exposure were observed.
360 Total serum protein was reduced in male rats at all exposure levels, but only statistically significant in the
361 mid- and high exposure groups.

362 Monsanto (1986b) conducted exposures of 15 female and 15 male Sprague-Dawley rats to
363 acetone cyanohydrin at 0, 10, 30 or 60 ppm for 6 hours/day, 5 days/week for 14 weeks. Concentrations in
364 the exposure chamber were calculated by dividing the net amount of acetone cyanohydrin delivered to the
365 chamber per unit time by the airflow per unit time and, in addition, measured by a Miran® infrared
366 analyzer (using the C-N triple bond frequency, which detects both acetone cyanohydrin and hydrogen
367 cyanide). For the total exposure period, mean concentrations ($\pm SD$) were determined as 10.1 ± 0.9 ,
368 28.6 ± 1.8 and 57.7 ± 2.9 ppm, respectively. No deaths were observed. During the first week of treatment,
369 blood-like discharge about the nose was observed in 6/30 control animals, 17/30 animals in the 10-ppm
370 group, 18/30 animals in the 30-ppm group and 20/30 animals in the 60-ppm group; clear nasal discharge
371 was reported in 0/30, 3/30, 3/30 and 2/30 animals, respectively (the authors reported incidences of
372 irritation only for whole weeks, but not for single days). No exposure related signs of toxicity or changes
373 in hematological or clinical chemistry parameters were observed. No effect on body weight was found.
374 No gross or microscopic lesions attributable to acetone cyanohydrin were observed.

375 Monsanto (1982b) exposed male Sprague-Dawley rats (15/dose group) by inhalation to acetone
376 cyanohydrin at 0, 10, 30 or 60 ppm for 6 hours/day, 5 days/week for 48 exposure days (69 days in total).
377 Concentrations in the exposure chamber were calculated by dividing the net amount of acetone
378 cyanohydrin delivered to the chamber per unit time by the airflow per unit time and, in addition,
379 measured by a Miran® infrared analyzer (using the C-N triple bond frequency, which detects both acetone
380 cyanohydrin and hydrogen cyanide). For the total exposure period, mean concentrations ($\pm SD$) were
381 determined as 10.0 ± 1.0 , 28.5 ± 1.9 and 57.2 ± 3.0 ppm, respectively. For the period of exposure days 1-10,
382 red nasal discharge was observed in 10/15 concurrent control animals and in 10/15, 12/15 and 14/15
383 animals that inhaled 10, 30 or 60 ppm, respectively; perioral wetness/red stain was observed in 2/15, 2/15,

384 4/15 and 8/15 animals, respectively (the authors did not report the incidence of signs of irritation for
 385 single days).

386 Monsanto (1982c) exposed female Sprague-Dawley rats (24/dose group) by inhalation to acetone
 387 cyanohydrin at 0, 10, 30 or 60 ppm for 6 hours/day, 7 days/week for 21 days. Concentrations in the
 388 exposure chamber were calculated by dividing the net amount of acetone cyanohydrin delivered to the
 389 chamber per unit time by the airflow per unit time and, in addition, measured by a Miran® infrared
 390 analyzer (using the C-N triple bond frequency, which detects both acetone cyanohydrin and hydrogen
 391 cyanide). For the total exposure period, mean concentrations (\pm SD) were determined as 10.7 ± 0.4 ,
 392 30.4 ± 2.1 and 58.6 ± 2.3 ppm, respectively. During the first week of exposure, red nasal discharge or
 393 encrustations were observed in 6/24 animals of the control group and in 9/24, 10/24 and 12/24 animals
 394 exposed to 10, 30 and 60 ppm, respectively (the authors reported incidences of irritation only for whole
 395 weeks, but not for single days).

396 **TABLE 3: SUMMARY OF NON-LETHAL SIGNS OF ACETONE CYANOHYDRIN EXPOSURE IN**
 397 **LABORATORY ANIMALS**

Species	Target [analytical] concentration (ppm)	Exposure Time	Effect	Reference
Rat	60 [57.2]	6 h/d, 5 d/w, 48 d	red nasal discharge in 14/15 animals vs. 10/15 in controls and perioral wetness/red stain in 8/15 animals vs. 2/15 in controls during first 10-day period; 15 males tested	Monsanto, 1982b
Rat	60 [58.6]	6 h/d, 7 d/w, 21 d	red nasal discharge and encrustations during week 1 in 12/24 animals vs. 6/24 controls; 24 females tested	Monsanto, 1982c
Rat	60 [59.6]	6 h/d, 5 d/w, 4 w	respiratory distress, prostration, tremors/convulsions in 4/20, red nasal discharge in 2/20 animals vs. 0/20 in controls during week 1; 3/20 males died after first day; 10 females and 10 males tested	Monsanto, 1986a
Rat	60 [57.7]	6 h/d, 5 d/w, 14 w	blood-like discharge about the nose in 20/30 animals vs. 6/30 in controls and clear nasal discharge in 2/30 animals vs. 0/30 in controls during week 1; no deaths occurred; 15 females and 15 males tested	Monsanto, 1986b
Rat	30 [28.5]	6 h/d, 5 d/w, 48 d	red nasal discharge in 12/15 animals vs. 10/15 in controls and perioral wetness/red stain in 4/15 animals vs. 2/15 in controls during first 10-day period; 15 males tested	Monsanto, 1982b
Rat	30 [30.4]	6 h/d, 7 d/w, 21 d	red nasal discharge and encrustations during week 1 in 10/24 animals vs. 6/24 controls; 24 females tested	Monsanto, 1982c

Species	Target [analytical] concentration (ppm)	Exposure Time	Effect	Reference
Rat	30 [29.9]	6 h/d, 5 d/w, 4 w	red nasal discharge in 4/20 animals vs. 0/20 in controls during week 1; 10 females and 10 males tested	Monsanto, 1986a
Rat	30 [28.6]	6 h/d, 5 d/w, 14 w	blood-like discharge about the nose in 18/30 animals vs. 6/30 in controls and clear nasal discharge in 3/30 animals vs. 0/30 in controls during week 1; 15 females and 15 males tested	Monsanto, 1986b
Rat	10 [10.0]	6 h/d, 5 d/w, 48 d	red nasal discharge during week 1 in 10/15 animals vs. 10/15 in controls; 15 males tested	Monsanto, 1982b
Rat	10 [10.7]	6 h/d, 7 d/w, 21 d	red nasal discharge and encrustations during week 1 in 9/24 animals vs. 6/24 in controls; 24 females tested	Monsanto, 1982c
Rat	10 [9.2]	6 h/d, 5 d/w, 4 w	no signs of irritation; 10 females and 10 males tested	Monsanto, 1986a
Rat	10 [10.1]	6 h/d, 5 d/w, 14 w	blood-like discharge about the nose in 17/30 animals vs. 6/30 in controls and clear nasal discharge in 3/30 animals vs. 0/30 in controls during week 1; 15 females and 15 males tested	Monsanto, 1986b

3.3. Developmental/Reproductive Toxicity

3.3.1 Rats

No studies documenting potential developmental or reproductive toxicity of acetone cyanohydrin after a single inhalation exposure were located in the available literature.

Studies with repeated inhalation exposure

In fertility studies, Monsanto (1982b) exposed male Sprague-Dawley rats (15/dose group) by inhalation to acetone cyanohydrin concentrations (\pm SD) of 0, 10.0 ± 1.0 , 28.5 ± 1.9 or 57.2 ± 3.0 ppm for 6 hours/day, 5 days/week for 48 exposure days (69 days in total) (see Section 3.2.1 for details and signs of irritation). After the treatment period, each male was mated consecutively with three untreated females. There were no adverse effects of inhaled acetone cyanohydrin on males as indicated by mortality, mean body weights (the high-exposure group showed a lower mean body weight which was not significantly different from that of the concurrent control group), clinical observations and necropsy (males were killed about 3 weeks after the end of the exposure period). The number of live implants and pre- and post-implantation losses were comparable for females mated with untreated or treated males. The authors concluded that exposure to 60 ppm acetone cyanohydrin failed to demonstrate any potential for reproductive toxicity in male rats.

427 In fertility studies, Monsanto (1982c) exposed female Sprague-Dawley rats (24/dose group) by
428 inhalation to acetone cyanohydrin at 0, 10.7±0.4, 30.4±2.1 and 58.6±2.3 ppm for 6 hours/day, 7
429 days/week for 21 days (see Section 3.2.1 for details and signs of irritation). There was no indication of a
430 treatment-related adverse effect on body weight during exposure or during gestation. After cessation of
431 exposure, the females were mated with untreated males. At examination on gestational day 13-15, fertility
432 of mated females was comparable between treated groups and the control group for mating efficiency,
433 pregnancy rates, number of live implants and pre- and post-implantation losses. The authors concluded
434 that repeated inhalation of 60 ppm acetone cyanohydrin failed to demonstrate any adverse effects on
435 fertility of female rats.

436 ***Studies with repeated non-inhalation exposure***

437 Monsanto (1982a; 1983) treated groups of 25 pregnant Sprague-Dawley rats by gavage to 0, 1, 3
438 or 10 mg acetone cyanohydrin/kg/day on days 6-15 of gestation. No deaths were observed. Maternal
439 toxicity was evident by slight reductions in body weight gain in the mid- and high dose groups.
440 Statistically significant differences between the high dose group and controls were observed for the
441 reduction of the number of corpora lutea per dam and the number of implantations per dam. Numbers of
442 viable fetuses/dam, post-implantation losses/dam (non-viable fetuses, early and late resorptions), mean
443 fetal body weight and fetal sex distribution for all dose groups were comparable with controls. The
444 incidence of malformations and developmental variations for all fetuses of treated animals were
445 comparable to the concurrent control group fetuses.

446 **3.4. Genotoxicity**

447 In tests using different *Salmonella* strains, acetone cyanohydrin failed to yield a reproducible
448 positive response. No mutagenic activity was observed in vitro using the Chinese hamster ovary (CHO)
449 gene mutation assay. No significant increases in the frequency of chromosome aberrations were observed
450 in bone marrow cells of Sprague-Dawley rats (24 rats/sex/group) taken 6, 12, 24 or 48 hours after
451 administration of 0, 1.5, 5 or 15 mg acetone cyanohydrin/kg by gavage (IUCLID, 1996; E.I. du Pont de
452 Nemours and Co., 1998).

453 **3.5. Carcinogenicity**

454 No information regarding the carcinogenic potential of acetone cyanohydrin exposure was
455 located in the available literature. Genotoxicity studies with cyanide salts were generally negative, and no
456 cancers were induced in rats in a two-year feeding study with HCN (NRC, 2002).

457 **3.6. Summary**

458 Inhalation data were available mainly for the rat. During exposure of rats, death was observed at
459 saturated concentration (about 1300 ppm) after 1.5 or 10 minutes (Sunderman and Kincaid, 1953) or 5
460 minutes (Smyth et al., 1962). Other studies [failing to provide experimental details] report death of 2/6
461 rats after 4 hours at 62.5 ppm (Smyth et al., 1962), an LC₄₀ of 51.8 ppm for rats and an LC₃₀ of 19.6 ppm
462 for mice (Izmerov et al., 1982) and an LC₅₀ of 574 ppm for 2 hours in mice (Gabor et al., 1962). In a
463 series of studies exposing rats repeatedly at about 60 ppm for 6 hours/day, deaths in 3/20, 0/20, 0/24 and
464 0/15 animals were observed (Monsanto, 1986a; 1986b; 1982c; 1982b). Preceding death, respiratory
465 distress, prostration, convulsions and tremors were observed after the first exposure to 60 ppm

466 (Monsanto, 1986a). In the other three studies exposure at 60 ppm and in all studies exposure at 30 ppm
467 caused red nasal discharge and encrustations during the first week of exposure. At 10 ppm, the incidence
468 of red nasal discharge was significantly increased in one of the four Monsanto studies.

469 **4. SPECIAL CONSIDERATIONS**470 **4.1. Stability, Metabolism and Disposition**

471 Upon release into moist air, acetone cyanohydrin decomposes to yield hydrogen cyanide and
472 acetone. This process is accelerated by heat and catalyzed by the presence of water. In dilute aqueous
473 solutions acetone cyanohydrin will fully decompose. The half-life for decomposition is pH dependent and
474 was calculated for a 0.1 % solution as 57 minutes at pH 4.9, 28 minutes at pH 6.3 and 8 minutes at pH 6.8
475 (ICI, 1993). From the rate constant for decomposition at pH 7 and 26 °C of 4.47 hours⁻¹, a half-life of 9
476 minutes was calculated (Ellington et al., 1986).

477 In the humid air and the moist mucosa of the respiratory tract, acetone cyanohydrin decomposes
478 to yield its molar equivalent in hydrogen cyanide and acetone. This reaction is a result of the physical
479 chemistry of acetone cyanohydrin (Stewart and Fontana, 1940) and it is not known to be enzyme-
480 catalyzed in animals or humans (DECOS, 1995; Kaplita and Smith, 1986).

481 Acetone cyanohydrin is miscible with water and is taken up by the moist respiratory passages.
482 The pulmonary retention of acetone cyanohydrin has not been reported, but it is probably in the range for
483 hydrogen cyanide (about 58%; ATSDR, 1997), acrylonitrile (about 50 %; ATSDR, 1990) and acetone
484 (70-80 %; ATSDR, 1992). Cyanide concentrations in liver and brain of CD-1 mice were similar after a
485 single intraperitoneal injection of an equimolar dose of acetone cyanohydrin or sodium cyanide. After
486 injection of 9 mg/kg acetone cyanohydrin, 108.0±27.5 and 30.0±4.6 mmol/kg were found in liver and
487 brain, respectively. After a single injection of a single dose of 4.8 mg/kg sodium cyanide, cyanide
488 concentrations in liver and brain were 87.8±31.2 mmol/kg and 24.9±4.8 mmol/kg, respectively (Willhite
489 and Smith, 1981).

490 With regard to the metabolism of cyanide, it is important to distinguish between low-dose
491 cyanide metabolism, which occurs under circumstances in which cyanide is present in physiological
492 concentrations, and high-dose cyanide disposition, in which there are amounts of cyanide far in excess of
493 those present under normal physiological conditions. Low-dose cyanide metabolism involves
494 incorporation via vitamin B₁₂-dependent enzymes of cyanide into the C₁-metabolite pool from which it
495 can be eliminated as carbon dioxide. Under physiological conditions, the normal capacity of rhodanese to
496 handle cyanide is not overwhelmed and circulating cyanide remains in metabolic equilibrium with the C₁-
497 metabolic pool (DECOS, 1995; ATSDR, 1997).

498 At high doses of cyanide, the metabolic pathway via the C₁-metabolite pool becomes quickly
499 saturated and detoxification occurs involving enzymatic thiocyanate formation. The enzyme rhodanese
500 (E.C. 2.8.1.1) catalyzes the transfer of a sulfane sulfur atom from sulfur donors, such as thiosulfate, to
501 cyanide, which acts as an sulfur acceptor, thus forming thiocyanate (DECOS, 1995; ATSDR, 1997). The
502 activity of rhodanese is variable between species and tissues, but is high in liver and kidney in most
503 species (Ballantyne and Marrs, 1987). The quantitative contribution to thiocyanate formation of beta-
504 mercaptopyruvate-cyanide sulfurtransferase (E.C. 2.8.1.2), which is found in blood, liver and kidney and
505 catalyzes the transfer of a sulfur atom from 2-mercaptopyruvate to cyanide forming pyruvate and
506 thiocyanate, is not known (DECOS, 1995). The half-life time for the conversion of cyanide to thiocyanate
507 from a non-lethal dose in man is between 20 and 60 minutes (ATSDR, 1997).

508 A minor pathway for cyanide detoxification is the formation of 2-aminothiazoline-4-carboxylic
509 acid from cyanide and cystine. This reaction occurs spontaneously both in vitro and in vivo and is not
510 enzyme-dependent. The reaction product has been identified in urine of experimental animals and in
511 humans exposed to high concentrations of cyanide (Wilson, 1987; Wood and Cooley, 1956).

512 Acetone is oxidized in the liver by cytochrome P450 2E1 to acetol. Acetol in turn can be used for
513 gluconeogenesis, i.e. biosynthesis of glucose, either via further oxidation to methylglyoxal in the liver or
514 extrahepatically via reduction to L-1,2-propanediol which can return to the liver where it is oxidized to L-
515 lactaldehyde and further to L-lactate which is then incorporated into glucose. Alternatively, L-1,2-
516 propanediol can be degraded to acetate and formate in the liver (Casazza et al., 1984; Kosugi et al., 1986).

517 Data regarding the excretion of acetone cyanohydrin per se are not available. The cyanide
518 metabolic products thiocyanate, cyanocobalamin and 2-aminothiazole-4-carboxylic acid are excreted into
519 urine. Hydrogen cyanide and carbon dioxide are expired (DECOS, 1995; ATSDR, 1997).

520 4.2. Mechanism of Toxicity

521 Acetone cyanohydrin behaves as its molar equivalent in cyanide both in vitro and in vivo. All of
522 the pharmacological actions of cyanide result from cyanide's reversible complex with the ferric (+3) state
523 of mitochondrial cytochrome c oxidase also known as ferrocyanochrome c-oxygen oxidoreductase. This
524 enzyme is also known as cytochrome aa₃, and it is the terminal oxidase in aerobic metabolism of all
525 animals, plants, yeasts, and some bacteria. This enzyme is a heme-copper lipoprotein and cytochromes a
526 and a₃ are combined in the same large oligomeric protein molecule. Mammalian cytochrome c oxidase
527 contains two molecules of heme A and two copper atoms. This helical protein also contains 820 amino
528 acids. The integrity of the disulfide groups to maintain the 30% helix structure is essential to the oxidase
529 mechanism. Cessation of the mitochondrial electron transport results in inhibition of oxygen utilization
530 and causes hypoxia and cellular destruction.

531 The interaction of cytochrome c oxidase with cytochrome c was reviewed by Lemberg (1969).
532 The reaction proceeds by first-order kinetics with respect to the concentration of cytochrome c (Smith et
533 al., 1979). Once absorbed, cyanide complexes with many metal ions and interferes with the activities of at
534 least 39 heme-zinc, -copper, and -disulfide enzymes (e.g., catalase, peroxidase) whose activities depend
535 on either metals as cofactors or prosthetic groups (Dixon and Webb, 1964). Cyanide also binds to
536 non-hematin metal-containing enzymes, like tyrosinase, ascorbic acid oxidase, xanthine oxidase, amino
537 acid oxidase, formic dehydrogenase, and various phosphates. The cyanide concentration required for
538 cytochrome c oxidase inhibition is 2-6 orders of magnitude less than that required for inhibition of these
539 other enzymes. Thus, it is the critical position of cytochrome c oxidase in aerobic metabolism that makes
540 its inhibition felt earliest, such that the effects of HCN on other enzyme systems have scant chance to
541 appear (Rieders, 1971). The oxidase-HCN (not CN-) (Stannard and Horecker, 1948; Gibson and
542 Greenwood, 1963) complex is dissociable (Swinyard, 1975).

543 Willhite and Smith (1981) measured the inhibition of the oxidation of purified bovine cardiac
544 cytochrome c in vitro by a number of nitriles. In the presence of KCN or acetone cyanohydrin the reaction
545 was inhibited in a concentration-dependent fashion. The addition of acetone cyanohydrin inhibited the
546 reaction in a manner kinetically similar to the addition of KCN. Since the inhibitory effects of KCN and
547 acetone cyanohydrin were observed at pH 6.0 and the pKa of HCN is 9.2, the data indicate that the

548 inhibitory species is the undissociated acid HCN as suggested previously (Stannard and Horecker, 1948;
549 Gibson and Greenwood, 1963).

550 **4.3. Structure-Activity Relationships**

551 Willhite and Smith (1981) demonstrated that the behavior of acetone cyanohydrin parallels that of
552 its molar equivalent of cyanide in vivo. For example, the intraperitoneal LD₅₀ in mice for acetone
553 cyanohydrin (equivalent to 2.65 mg cyanide ion/kg) is similar to that of sodium cyanide at 2.54 mg
554 cyanide ion/kg; mean time-to-death was 5 minutes for both compounds. Pretreatment with sodium nitrite
555 or thiosulfate [standard cyanide antidotes] protected mice against lethal doses of acetone cyanohydrin and
556 hydrogen cyanide. The authors also studied the acute toxicity in mice for a series of seven aliphatic
557 nitriles (acetonitrile, propionitrile, acrylonitrile, n-butyronitrile, malononitrile, succinonitrile, acetone
558 cyanohydrin) and sodium cyanide. Only the latter two compounds produced death within 5 minutes. All
559 other nitriles produced death at widely varying intervals from a few minutes to many hours. Pretreatment
560 with the liver toxicant carbon tetrachloride protected mice against death from all nitriles, except acetone
561 cyanohydrin, suggesting that all nitriles examined (except for acetone cyanohydrin) possess little if any
562 acute toxicity in the absence of normal hepatic function and that these nitriles (except acetone
563 cyanohydrin) underwent hepatic metabolism to release cyanide which accounts for their acute toxicity. In
564 contrast, acetone cyanohydrin did not require metabolic activation and released its cyanide moiety
565 spontaneously in vivo.

566 Johannsen and Levinskas (1986) undertook a structure-activity comparison of acetone
567 cyanohydrin, lactonitrile, four mononitriles (aceto-, propio-, butyro- and acrylonitrile) and two dinitriles
568 (succino- and adiponitrile). The authors observed that with regard to oral and dermal LD₅₀ as well as
569 repeated administration, acetone cyanohydrin was the most potent compound tested. While for other
570 nitriles the time to onset of signs of toxicity in rats was between 50 and 300 minutes after exposure, a
571 rapid onset of signs (within 5 minutes) before death was found for acetone cyanohydrin. The authors
572 concluded that the signs of acetone cyanohydrin toxicity resembled those seen after exposure to sodium
573 cyanide.

574 **4.4. Other Relevant Information**

575 **4.4.1. Effects of Cyanides and Acetone in Humans**

576 Since acetone cyanohydrin exerts toxicity through rapid release of cyanide, it is appropriate to
577 take relevant studies describing effects in humans after exposure to cyanide into consideration
578 (summarized in NRC, 2002). Several studies reporting effects after repeated occupational exposure to
579 cyanides are available, however, accurate empirical exposure data usually were not reported.

580 Bonsall (1984) described the case of a worker who was exposed to hydrogen cyanide during
581 inspecting a tank containing a thin layer of hydrazodiisobutyronitrile. The tank had been washed with
582 water, which resulted in hydrolysis of the nitrile into hydrogen cyanide and acetone. The man collapsed
583 after 3 minutes, was fitted with a breathing apparatus after another 3 minutes and removed from the tank
584 after 13 minutes. At this time the worker was unconscious with imperceptible breathing and dilated pupils
585 and was covered with chemical residue. Immediately after the accident, a concentration of hydrogen

586 cyanide of about 500 mg/m³ (450 ppm) was measured. The victim was administered sodium thiosulfate
587 and was discharged from hospital two weeks later without apparent sequelae.

588 El Ghawabi et al. (1975), compared the symptoms of 36 workers exposed to HCN in three
589 electropating factories in Egypt with a control group; employment ranged between 5 and 17 years. None
590 of the workers in either the exposed or control groups were smokers. Cyanide exposure resulted from a
591 plating bath that contained copper cyanide, sodium cyanide, and sodium carbonate. Concentrations of
592 cyanide in the breathing zone of the workers ranged from 4.2 to 12.4 ppm (means in the three factories: 6,
593 8, and 10 ppm). Fifteen-minute air samples were collected in NaOH and analyzed colorimetrically.
594 Symptoms reported most frequently by exposed workers compared with the referent control group were,
595 in descending order of frequency: headache, weakness, and changes in taste and smell. Lacrimation,
596 vomiting, abdominal colic, precordial pain, salivation, and nervous instability were less common. The
597 authors made no attempt to correlate the incidences of these symptoms with concentrations. Although
598 there were no clinical manifestations of hypo- or hyperthyroidism, 20 of the workers had thyroid
599 enlargement to a mild or moderate degree; this condition was accompanied by higher ¹³¹I uptake
600 compared with the referent controls. Exposed workers also had significantly higher blood hemoglobin,
601 lymphocyte cell counts, cyanmethemoglobin, and urinary thiocyanate levels than controls. Urinary
602 thiocyanate levels were correlated with cyanide concentration in workplace air. Two workers in the
603 factory with a mean exposure of 10 ppm suffered psychotic episodes; recovery occurred within 36 to 48
604 hours. Although the sample size was small, the study used well-matched controls and included a
605 biological index of exposure (urinary thiocyanate). The NRC Subcommittee on Spacecraft Maximum
606 Allowable Concentrations, in evaluating the El Ghawabi et al. (1975) data, concluded that "8 ppm would
607 likely produce no more than mild CNS effects (e.g., mild headache) which would be acceptable for 1-
608 hours exposures" of healthy adults (NRC, 2000).

609 Blanc et al. (1985) surveyed and examined 36 former employees of a silver reclaiming facility in
610 order to determine acute and potential residual adverse health effects resulting from occupational HCN
611 exposure. The study was prompted by a worker fatality from acute cyanide poisoning. The workers had
612 been chronically exposed to airborne cyanide at time-weighted average (TWA) concentrations (taken 24
613 hours after the plant had closed down) of at least 15 ppm. The most frequent symptoms included
614 headache, dizziness, nausea or vomiting, and a bitter or almond taste, eye irritation, loss of appetite,
615 epistaxis, fatigue, and rash. The most prevalent symptoms (headache, dizziness, nausea or vomiting, and a
616 bitter or almond taste) were consistent with cyanide poisoning. A concentration-response relationship
617 corresponding to high- and low-exposure jobs was demonstrated, but exact breathing zone concentrations
618 were not quantified. Some symptoms exhibiting a dose-response trend occurring seven or more months
619 after exposure had ceased. Mild abnormalities of vitamin B₁₂, folate, and thyroid function were detected
620 and those results suggested cyanide and/or thiocyanide involvement. The NRC (2000), pointed out that
621 the 24-hour TWA of 15 ppm was measured one day after the plant had ceased operation, suggesting that
622 these workers may have been exposed to cyanide at more than 15 ppm.

623 Leeser et al. (1990) reported a cross-sectional study of the health of cyanide-salt production
624 workers. Sixty-three cyanide production workers employed for 1 to 40 years were compared with 100
625 referent workers from a diphenyl oxide plant. Workers were examined before and after a block of six 8-
626 hour shifts. All workers had full medical examinations, routine clinical chemistry tests, and blood samples
627 taken for measurement of blood cyanide and carboxyhemoglobin. In addition, circulating levels of
628 vitamin B₁₂ and thyroxin (T4) were measured. Atmospheric cyanide was monitored with static monitors,

629 Draeger pump tests, and personal monitoring. For the personal monitoring, air was drawn through
630 bubblers which contained sodium hydroxide. Cyanide collected in the sodium hydroxide solution was
631 measured using an anion-selective ion electrode. All results (a total of 34 samples) were between 0.01 and
632 3.6 mg/m³ (0.01 and 3.3 ppm). Geometric mean values for eight job categories ranged between 0.03 and
633 1.05 mg/m³ (0.03 and 0.96 ppm). Values for only one job category (eight personal samples) averaged
634 0.96 ppm. Results of routine Draeger pump tests (area samples) were between 1 and 3 ppm (measurement
635 method not stated). This increased exposure was reflected in an increase in mean blood cyanide level in
636 the workers following a block of six 8-hour shifts, and there was an increase of 5.83 µmol during the 6
637 ppm exposure compared with a decrease of 0.46 µmol across the shift block in the spring. Static monitors
638 on all floors, set to trigger alarms at 10 ppm, failed to sound during the study. Circulating cyanide
639 concentrations in exposed workers, though low, were generally higher than in control workers, and the
640 highest levels were measured in cyanide-exposed nonsmokers compared with the nonsmoking control
641 group (cyanide-exposed nonsmokers, 3.32 µmol; controls 1.14 µmol; p<0.001). For ex-smokers, the
642 difference was smaller (cyanide exposed, 2.16 µmol; controls, 1.46 µmol), and for current smokers, the
643 blood cyanide level was actually higher in the control group (2.94 µmol for cyanide workers who
644 smoked; 3.14 µmol for controls who smoked). The percentage of workers reporting shortness of breath
645 and lack of energy was higher in cyanide workers than in the diphenyl oxide plant workers. These
646 differences were partially explained by the greater number of cyanide workers who were shift workers.
647 Slightly higher hemoglobin values and lymphocyte counts in the cyanide workers were not dose-related.
648 Results of clinical and physical examinations and evaluation of medical histories failed to reveal any
649 exposure-related health problems.

650 Compared to cyanide, the acute toxicity of acetone is low (ATSDR, 1992). This fact is reflected
651 in comparatively high values for the TLV (ACGIH, 1996) of 500 ppm for 8 hours with a 750 ppm STEL,
652 the IDLH (Immediately Dangerous to Life and Health Concentrations) of 2500 ppm (NIOSH, 1996) and
653 the EEGL (Emergency Exposure Guidance Levels) of 1000 ppm for 24 hours and 8500 ppm for 1 hour
654 (NRC, 1985). Acetone and its metabolic products (Casazza et al., 1984; Gentry et al., 2003; Kosugi et al.,
655 1986) contribute only insignificantly to the toxicity of acetone cyanohydrin.

656 4.4.2. Lethality of hydrogen cyanide in animals

657 Only one study was located that evaluated lethality of hydrogen cyanide in rats for an exposure
658 time comparable to that of the 6-hour studies of Monsanto (1982b; 1982c; 1986a; 1986b) using acetone
659 cyanohydrin.

660 Five male and five female Sprague-Dawley Crl:CD rats were exposed at 68 ppm hydrogen
661 cyanide in a stainless steel chamber for 6 hours/day for 3 days (Blank, 1983). Hydrogen cyanide was
662 generated by passing nitrogen over the liquid contained in a 500-mL flask. The concentration in the cage
663 was measured with an infrared analyzer. During the exposures, hypoactivity and quick shallow breathing
664 were observed in all animals. During the first day, three males exhibited anoxia/hypoxia followed by
665 convulsions (one male). One male rat died during the exposure, a second male died during the post-
666 exposure observation period, and a third male was found dead prior to the second day of exposure. Two
667 additional males and all five females exhibited breathing difficulties following the first exposure. No
668 additional mortality was observed following the second and third days of exposure; body weights by the
669 third day were below pre-exposure weights. Necropsy of the three dead males revealed cyanosis of the
670 extremities, moderate-to-severe hemorrhage of the lung, lung edema, tracheal edema, blanched

671 appearance of the liver, singular occurrences of blood engorgement of the heart and surrounding vessels,
 672 chromorhinorrhea, urine-filled bladder, and gaseous distension of the gastrointestinal tract. Survivors
 673 were sacrificed following the last exposure. Of the seven survivors, three females developed slight-to-
 674 moderate pulmonary hemorrhage.

675 **4.4.3. Species Variability**

676 Due to the lack of sufficient data (see Table 2), the potential interspecies variability for acute
 677 inhalation toxicity of acetone cyanohydrin cannot be assessed directly. However, data on acute lethality
 678 after oral administration (see Table 4) indicate that lethal doses are similar for different species.

679 Likewise, nearly identical LD₅₀ values have been found in rats and mice after parenteral
 680 application: LD₅₀ values of 8.7 mg/kg (95% C.I. 8-9 mg/kg) (mean time to death 5±1 min) have been
 681 found after intraperitoneal injection in CD-1 male mice (Willhite and Smith, 1981) and 8.5 mg/kg after
 682 subcutaneous injection in male albino rats (Magos, 1962).

683 **TABLE 4: SUMMARY OF ORAL LD₅₀ DATA FOR ACETONE CYANOHYDRIN**

Species	LD ₅₀ (mg/kg)	References
Rat	17	Smyth et al., 1962
Rat	13.3	Shkodich, 1966
Rat	17.8	Marhold, 1972
Mouse	14	Marhold, 1972
Mouse	15	Hamblin, 1953
Mouse	2.9	Shkodich, 1966
Guinea pig	9	Shkodich, 1966
Rabbit	13.5	Shkodich, 1966

693 For hydrogen cyanide, LC₅₀ values for various species differ by a factor of 2-3 (ATSDR, 1997)
 694 and an interspecies extrapolation factor of 2 was used for derivation of AEGL-3 and -2 values for
 695 hydrogen cyanide (NRC, 2002).

696 **4.4.4. Intraspecies Variability**

697 People at potentially increased risk for toxic effects caused by exposure to acetone cyanohydrin
 698 include those with chronic exposure to cyanide (e.g. heavy smokers) or cyanogenic glycosides from
 699 edible plants (e.g., cassava or lima beans) and those with an inadequate detoxification of cyanide
 700 (reviewed in NRC, 2002). The latter condition can result from inadequate dietary intake of vitamin B₁₂
 701 and/or sulfur-containing amino acids as well as from inborn metabolic errors, such as the genetic
 702 component responsible for Leber's hereditary optic atrophy, which is possibly associated with a reduction
 703 in rhodanese activity, dominantly inherited optic atrophy and recessively inherited optic atrophy
 704 (DECOS, 1995). However, for a single acute exposure to high acetone cyanohydrin concentrations, the
 705 interindividual differences are probably not great because the decomposition of acetone cyanohydrin to

706 cyanide is not dependent on metabolism and the cyanide detoxification pathway becomes quickly
707 saturated at higher exposure concentrations. Due to conservatism of the cytochrome c oxidase during
708 evolution, interindividual differences in the affinity of cyanide binding to its target receptor are unlikely
709 to occur.

710 For hydrogen cyanide, an intraspecies extrapolation factor of 3 has been used for derivation of
711 AEGL-3 and -2 values for hydrogen cyanide (NRC, 2002).

712 **5. DATA ANALYSIS FOR AEGL-1**713 **5.1. Human Data Relevant to AEGL-1**

714 The odor threshold of acetone cyanohydrin has not been firmly established. Shkodich (1966)
715 published the odor threshold for acetone cyanohydrin in water (0.06 mg/l). However, the odor would
716 necessarily be the consequence of a mixed presentation of the HCN and cyanohydrin levels in air. Human
717 data on irritation effects of acetone cyanohydrin are lacking.

718 Since the effects of acetone cyanohydrin are due to the release of cyanide after its rapid
719 decomposition, data on exposure of humans to cyanide are relevant. In humans occupationally exposed to
720 cyanide, no adverse effects have been found after exposure to a geometric mean cyanide concentration of
721 1 ppm (Leeser et al., 1990). At concentrations of 6-10 ppm, there were increased complaints of mild
722 headache after repeated occupational exposure (El Ghawabi et al., 1975).

723 **5.2. Animal Data Relevant to AEGL-1**

724 During the first week of repeated 10 ppm 6-hour exposure studies in rats, there was no sign of red
725 nasal discharge in one study (Monsanto, 1986a). The incidence of nasal discharge was not increased
726 compared to concurrent control groups in two studies (Monsanto, 1982b; 1982c), but it was increased
727 compared to the control group in a fourth study (Monsanto, 1986b). No other adverse effects were
728 reported in these four studies.

729 **5.3. Derivation of AEGL-1**

730 Human data on acetone cyanohydrin relevant for the derivation of AEGL-1 are lacking. One
731 study in rats (Monsanto, 1986a) reported red nasal discharge (which was interpreted as a sign of local
732 irritation in the upper respiratory tract) in 4/20 animals at 29.9 ppm and in 2/20 animals at 59.6 ppm, but
733 not in control animals and in animals exposed to 9.2 ppm, during the first week of repeated 6-hours/day
734 exposures. However, red nasal discharge was not consistently seen in any of the other Monsanto studies
735 and, when present, was not always dose-responsive. In addition, control animals varied widely in terms of
736 whether that endpoint was present or not. In light of the variability of the red nasal discharge in repeat
737 studies, it seemed a poor endpoint on which to base the AEGL-1. Also, the repeat exposures used in the
738 Monsanto studies were not appropriate for the derivation of AEGL-1 values.

739 The pathogenesis of red nasal discharge in rats is not entirely clear. In the case of acetone
740 cyanohydrin it may be related to local tissue hypoxia leading to vasodilatation and subsequent
741 extravasation of red blood cells, which could explain the lack of histopathological findings. Red nasal
742 discharge in rats occurs at the plexus antebrachii, which is very prominent in the rat. In the rat,
743 extravasation of red blood cells visible as red nasal discharge is caused easily not only by locally acting
744 chemicals, but also by stress, dry air or upper respiratory tract infections.

745 The derivation of AEGL-1 values was based upon the facts that acetone cyanohydrin decomposes
746 spontaneously to hydrogen cyanide and acetone and that the local and systemic toxic effects of acetone
747 cyanohydrin are due to free cyanide. Once absorbed, a dose of acetone cyanohydrin behaves in a manner

748 identical to that of its molar equivalent in absorbed free cyanide. It is appropriate to apply the AEGL-1
749 values (on a ppm basis) derived for hydrogen cyanide (NRC, 2002) to acetone cyanohydrin.

750 This procedure is supported by the fact that similar values would be derived on the basis of
751 available acetone cyanohydrin studies in rats. The derivation basis would be an exposure at 9.2 ppm for 6
752 hours/day, 5 days/week for 4 weeks, which did not result in red nasal discharge (Monsanto, 1986a). Using
753 the default time scaling procedure and a total uncertainty factor of 10 AEGL-1 values of 2.1, 2.1, 1.7, 1.1
754 and 0.69 ppm would be derived for the 10 and 30 minute and 1, 4 and 8 hour periods, respectively.

755 The AEGL-1 values for acetone cyanohydrin are set at the same values (on a ppm basis) as the
756 AEGL-1 values for hydrogen cyanide (NRC, 2002). The values are listed in Table 5 below.

757 Since no definitive reports on the odor threshold of acetone cyanohydrin were located in the
758 literature (see Section 5.1), no level of distinct odor awareness (LOA) was derived.

759 **TABLE 5: AEGL-1 VALUES FOR ACETONE CYANOHYDRIN ^a**

AEGL Level	10 minutes	30 minutes	1 hour	4 hours	8 hours
AEGL-1	2.5 ppm (8.8 mg/m ³)	2.5 ppm (8.8 mg/m ³)	2.0 ppm (7.0 mg/m ³)	1.3 ppm (4.6 mg/m ³)	1.0 ppm (3.5 mg/m ³)

762 ^a Acetone cyanohydrin decomposes spontaneously in the presence of water to yield hydrogen cyanide and
763 acetone. Therefore, both acetone cyanohydrin and hydrogen cyanide concentrations should be considered.

764 **6. DATA ANALYSIS FOR AEGL-2**765 **6.1. Human Data Relevant to AEGL-2**

766 Human exposure data relevant for the derivation of AEGL-2 values are lacking. Since the effects
 767 of acetone cyanohydrin are caused by the release of cyanide after rapid decomposition of acetone
 768 cyanohydrin, data on exposure of humans to cyanide are relevant. Chronic occupational exposure to
 769 cyanide concentrations of about 6-10 produced mild CNS effects (mild headache) (El Ghawabi et al.,
 770 1975) while more distinct symptoms were reported for occupational exposure to 15 ppm and higher
 771 (Blanc et al., 1985).

772 **6.2. Animal Data Relevant to AEGL-2**

773 Four studies using repeated 6-hour inhalation exposures of rats, performed according to good
 774 laboratory practice, report signs of irritation at an exposure concentration of about 30 ppm (Monsanto,
 775 1982b; 1982c; 1986a; 1986b), such as red nasal discharge and encrustations and perioral wetness/red
 776 stain. Red nasal discharge was also observed also at about 10 ppm in two of the four studies. At higher
 777 concentrations of about 60 ppm, in one study (Monsanto, 1986a) respiratory distress, prostration,
 778 tremors/convulsions were observed after the first exposure in 4/20 animals and of these 3 animals died.
 779 No studies showing irreversible, nonlethal effects in animals were available in the literature.

780 **6.3. Derivation of AEGL-2**

781 The derivation of AEGL-2 values was based upon the facts that acetone cyanohydrin decomposes
 782 spontaneously to hydrogen cyanide and acetone and that the systemic toxicity of acetone cyanohydrin is
 783 due to free cyanide. Once absorbed, a dose of acetone cyanohydrin behaves in a manner identical to that
 784 of its molar equivalent in absorbed free cyanide. It is appropriate to apply the AEGL-2 values (on a ppm
 785 basis) derived for hydrogen cyanide (NRC, 2002) to acetone cyanohydrin.

786 This conclusion is supported by the fact that very similar AEGL-2 levels would be derived on the
 787 basis of chemical-specific data: in the Monsanto (1986a) study repeated exposures to 29.9 ppm acetone
 788 cyanohydrin for 6 hours/day, 5 days/week for 4 weeks, resulted in irritation, but not in respiratory
 789 distress, which was observed in 4/20 animals during the first exposure to 60 ppm. Using the default time
 790 scaling procedure and a total uncertainty factor of 10 AEGL-2 values of 6.8, 6.8, 5.4, 3.4 and 2.5 ppm
 791 would be derived for the 10 and 30 minute and 1, 4 and 8 hour periods, respectively.

792 The AEGL-2 values for acetone cyanohydrin are set at the same values (on a ppm basis) as the
 793 AEGL-2 values for hydrogen cyanide (NRC, 2002). The values are listed in Table 6 below.

794 **TABLE 6: AEGL-2 VALUES FOR ACETONE CYANOHYDRIN ^a**

AEGL Level	10 minutes	30 minutes	1 hour	4 hours	8 hours
AEGL-2	17 ppm (60 mg/m ³)	10 ppm (35 mg/m ³)	7.1 ppm (25 mg/m ³)	3.5 ppm (12 mg/m ³)	2.5 ppm (8.8 mg/m ³)

797 ^a Acetone cyanohydrin decomposes spontaneously in the presence of water to yield hydrogen cyanide and
 798 acetone. Therefore, both acetone cyanohydrin and hydrogen cyanide concentrations should be considered.

799 **7. DATA ANALYSIS FOR AEGL-3**800 **7.1. Human Data Relevant to AEGL-3**

801 Human exposure data relevant for the derivation of AEGL-3 values are not available.

802 **7.2. Animal Data Relevant to AEGL-3**803 Reliable LC₅₀ studies for acetone cyanohydrin performed according to good laboratory practice
804 are not available. Single-exposures killed 2/6 rats that inhaled 62.5 ppm for 4 hours (Smyth et al., 1962).
805 The LC₄₀ was 51.8 ppm for 2 hours in rats and the LC₃₀ was 19.6 ppm for 2 hours in mice (Izmerov et al.,
806 1982); however due to the small number of animals in the study by Smyth et al. (1962), the lack of
807 information on the rodent strain and number of animals used in the study by Izmerov et al. (1982) and the
808 failure of both studies to report experimental details, a thorough evaluation of these data is not possible.809 The study by Sunderman and Kincaid (1953) used saturated acetone cyanohydrin vapor that led
810 to death within 1.5 or 10 minutes. Likewise, Smyth et al. (1962) reported death of rats after 5 minutes of
811 exposure to saturated vapor concentrations.812 Four studies, performed according to good laboratory practice, exposed rats repeatedly at about
813 60 ppm acetone cyanohydrin for 6 hours/day (Monsanto, 1982b; 1982c; 1986a; 1986b). Only in one of
814 the studies (Monsanto, 1986a) lethal effects were reported: 3/10 males died after the first exposure, while
815 none of 10 female rats died and no further deaths of males were observed in subsequent exposures. No
816 deaths occurred in the other studies that used 15 males and 15 females (Monsanto, 1986b), 24 females
817 (Monsanto, 1982c) or 15 males (Monsanto, 1982b).818 In the hydrogen cyanide study by Blank (1983), 3 of 10 rats died after the first exposure to 68
819 ppm hydrogen cyanide for 6 hours.820 **7.3. Derivation of AEGL-3**821 The derivation of AEGL-3 values was based upon the facts that acetone cyanohydrin decomposes
822 spontaneously to hydrogen cyanide and acetone and that the systemic toxicity of acetone cyanohydrin is
823 due to free cyanide. Once absorbed, a dose of acetone cyanohydrin behaves in a manner identical to that
824 of its molar equivalent in absorbed free cyanide. It is appropriate to apply the AEGL-3 values (on a ppm
825 basis) derived for hydrogen cyanide (NRC, 2002) to acetone cyanohydrin.826 This conclusion is supported by very similar observations of lethal effects in rats: Blank (1983)
827 reported that 3 of 10 rats died after the first exposure to 68 ppm hydrogen cyanide, while the subsequent
828 two exposures on the following days caused no additional deaths. This finding closely resembles that of
829 Monsanto (1986a) reporting death of 3 of 20 animals after the first exposure to 60 ppm acetone
830 cyanohydrin (as discussed in Section 3.1.1., the actual exposure concentration on the first day might have
831 been slightly higher than the average 59.6 ppm), while no additional deaths were found in the 19
832 subsequent exposures.

833 The AEGL-3 values for acetone cyanohydrin are set at the same values (on a ppm basis) as the
834 AEGL-3 values for hydrogen cyanide (NRC, 2002). The values are listed in Table 7 below.

TABLE 7: AEGL-3 VALUES FOR ACETONE CYANOHYDRIN ^a					
AEGL Level	10 minutes	30 minutes	1 hour	4 hours	8 hours
AEGL-3	27 ppm (95 mg/m ³)	21 ppm (74 mg/m ³)	15 ppm (53 mg/m ³)	8.6 ppm (30 mg/m ³)	6.6 ppm (23 mg/m ³)

835
836
837
838 ^a Acetone cyanohydrin decomposes spontaneously in the presence of water to yield hydrogen cyanide and
839 acetone. Therefore, both acetone cyanohydrin and hydrogen cyanide concentrations should be considered.

840 **8. SUMMARY OF AEGLs**841 **8.1. AEGL Values and Toxicity Endpoints**

842 The AEGL values for various levels of effects and various time periods are summarized in Table
 843 8. They were derived using the following key studies and methods.

844 The derivation of AEGL values was based upon the facts that acetone cyanohydrin decomposes
 845 spontaneously to hydrogen cyanide and acetone and that the local and systemic toxicity of acetone
 846 cyanohydrin is due to free cyanide. Once absorbed, a dose of acetone cyanohydrin behaves in a manner
 847 identical to that of its molar equivalent in absorbed free cyanide. It is appropriate to apply the AEGL
 848 values (on a ppm basis) derived for hydrogen cyanide (NRC, 2002) to acetone cyanohydrin.

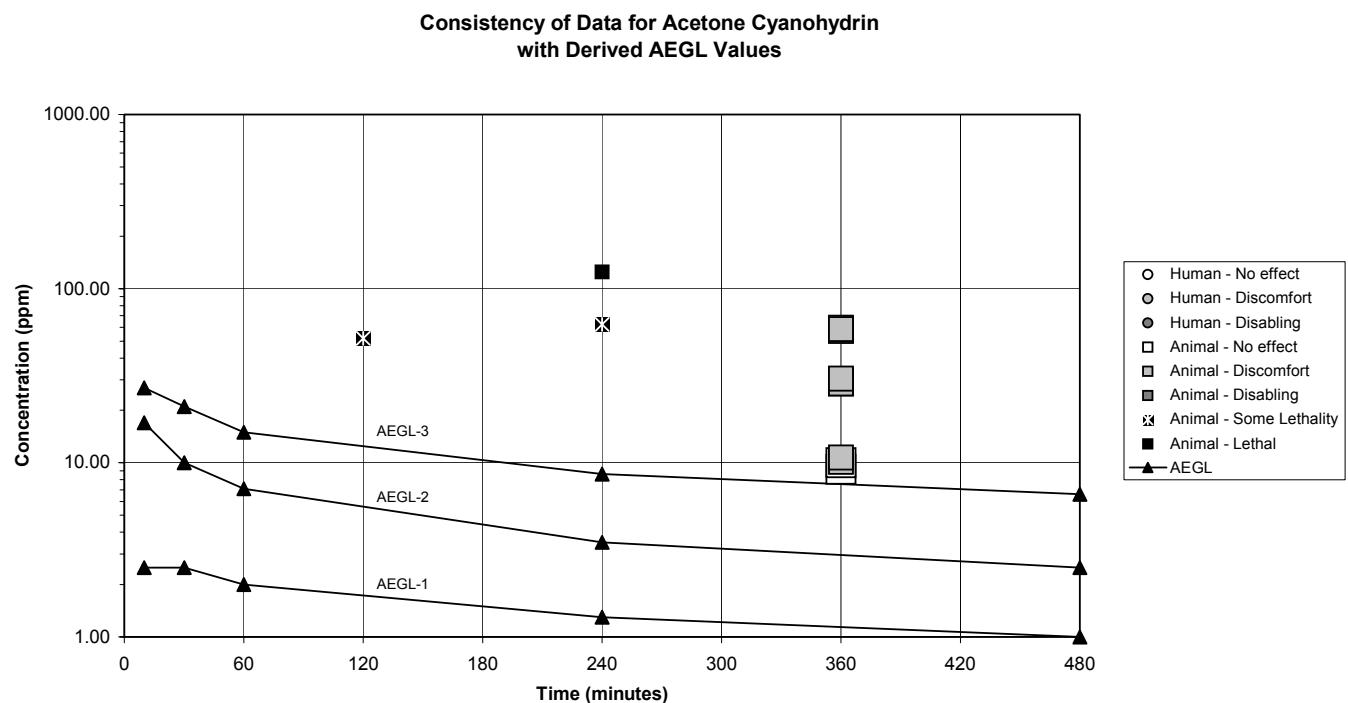

849

TABLE 8: SUMMARY/RELATIONSHIP OF AEGL VALUES FOR ACETONE CYANOHYDRIN ^{a b}					
Classification	10-Minute	30-Minute	1-Hour	4-Hour	8-Hour
AEGL-1 (Nondisabling)	2.5 ppm (8.8 mg/m ³)	2.5 ppm (8.8 mg/m ³)	2.0 ppm (7.0 mg/m ³)	1.3 ppm (4.6 mg/m ³)	1.0 ppm (3.5 mg/m ³)
AEGL-2 (Disabling)	17 ppm (60 mg/m ³)	10 ppm (35 mg/m ³)	7.1 ppm (25 mg/m ³)	3.5 ppm (12 mg/m ³)	2.5 ppm (8.8 mg/m ³)
AEGL-3 (Lethal)	27 ppm (95 mg/m ³)	21 ppm (74 mg/m ³)	15 ppm (53 mg/m ³)	8.6 ppm (30 mg/m ³)	6.6 ppm (23 mg/m ³)

857 ^a Acetone cyanohydrin decomposes spontaneously in the presence of water to yield hydrogen cyanide and
 858 acetone. Therefore, both acetone cyanohydrin and hydrogen cyanide concentrations should be considered.

859 ^b Cutaneous absorption may occur; direct skin contact with the liquid should be avoided.

860 All inhalation data are summarized in Figure 1 below. The data were classified into severity categories
 861 chosen to fit into definitions of the AEGL level health effects. The category severity definitions are "No
 862 effect"; "Discomfort"; "Disabling"; "Lethal"; "Some lethality" (at an experimental concentration in which
 863 some of the animals died and some did not, this label refers to the animals which did not die) and
 864 "AEGL". Note that the AEGL values are designated as triangles without an indication to their level.
 865 AEGL-3 values are higher than the AEGL-2 values and the AEGL-2 values are higher than the AEGL-1
 866 values.

867 **FIGURE 1: CATEGORICAL REPRESENTATION OF ACETONE CYANOHYDRIN**
868 **INHALATION DATA**

869 **8.2. Comparison with Other Standards and Criteria**

870 Standards and guidance levels for workplace and community exposures are listed in Table 9.

871 **TABLE 9. EXTANT STANDARDS AND GUIDELINES FOR ACETONE CYANOHYDRIN**

Guideline	Exposure Duration				
	10 minutes	30 minutes	1 hour	4 hours	8 hours
AEGL-1	2.5 ppm	2.5 ppm	2.0 ppm	1.3 ppm	1.0 ppm
AEGL-2	17 ppm	10 ppm	7.1 ppm	3.5 ppm	2.5 ppm
AEGL-3	27 ppm	21 ppm	15 ppm	8.6 ppm	6.6 ppm
WEEL (AIHA) ^a	5 ppm for 15 minutes				2 ppm
TLV-Ceiling (ACGIH) ^b			4.7 ppm as cyanide		
REL-Ceiling (NIOSH) ^c			1 ppm		

881 ^a **AIHA WEEL (American Industrial Hygiene Association, Workplace Environmental Exposure Level Guide)**
882 (AIHA, 1999) represent workplace exposure concentrations, to which, it is believed, nearly all employees
883 could be repeatedly exposed without adverse effects. WEELs are expressed as time-weighted average
884 values for different time periods.885 ^b **ACGIH TLV-Ceiling (American Conference of Governmental Industrial Hygienists, Threshold Limit**
886 **Value)** (ACGIH, 1996) is defined as a 15 minute TWA exposure concentration, which should not be
887 exceeded at any time during the workday. Because acetone cyanohydrin behaves qualitatively and
888 quantitatively both in vitro and in vivo exactly as does its molar equivalent in free cyanide, the TLV for
889 acetone cyanohydrin is assigned so as to be identical to that for free hydrogen cyanide.890 ^c **NIOSH REL-Ceiling (National Institute of Occupational Safety and Health, Recommended Exposure**
891 **Limits)** (NIOSH, 1978) is defined analogous to the ACGIH-TLV-Ceiling. NIOSH based the value on the
892 assumption that acetone cyanohydrin was approximately 18.3 times as toxic as acetonitrile by inhalation.893 **8.3. Data Adequacy and Research Needs**894 Definitive exposure-response data for acetone cyanohydrin in humans are not available. Data
895 from earlier animal studies were often compromised by uncertain quantitation of exposure atmospheres,
896 small numbers of animals and poor data presentation. Four more recent repeated inhalation exposure
897 studies in rats sponsored by Monsanto Company utilized accurate and reliable methods for characterizing
898 concentrations. However, repeat exposure studies were considered of limited relevance for the derivation
899 of AEGL values.900 With regard to toxic effects, the similarity between acetone cyanohydrin and hydrogen cyanide
901 concerning both the mechanism of toxic effects and dose-response relationships was considered high
902 enough to apply the AEGL-1, AEGL-2 and AEGL-3 values derived for hydrogen cyanide to acetone

903 cyanohydrin on a ppm basis. In contrast to hydrogen cyanide, for acetone cyanohydrin appropriate studies
904 in exposed workers for the derivation of AEGL-1 or well-performed inhalation exposure studies
905 evaluating neurotoxic or lethal effects for the derivation of AEGL-2 and AEGL-3 values are not
906 available. However, the available results of studies in rats are in good agreement with hydrogen cyanide
907 studies. LC₅₀ studies for acetone cyanohydrin performed according to good laboratory practice would
908 strengthen the derived AEGL-3 values.

909 It should be noted that due to the steep dose-response relationship, concentrations of AEGL-2 und
910 AEGL-3 values differ only by a factor of 1.6 to 2.6, which could cause problems in regulatory
911 applications of AEGL values especially when it is considered that uncertainties of measurements and
912 dispersion (plume) calculations can be in the same order of magnitude or even higher.

913 **9. REFERENCES**

914 ACGIH, American Conference of Governmental Industrial Hygienists, 1996 supplement. Documentation of the
915 Threshold Limit Values and Biological Exposure Indices. Acetone Cyanohydrin. Pp. 1-4, Cincinnati, OH, USA.

916 AIHA American Industrial Hygiene Association, 1999. The AIHA 1999 Emergency Response Planning Guidelines
917 and Workplace Environmental Exposure Level Guides Handbook. AIHA Press, Fairfax, VA, USA.

918 ATSDR, Agency for Toxic Substances and Disease Registry, 1990. Toxicological Profile for Acrylonitrile. U.S.
919 Department of Health and Human Services, Public Health Service.

920 ATSDR, Agency for Toxic Substances and Disease Registry, 1992. Toxicological Profile for Acetone. Draft for
921 Public Comment. U.S. Department of Health and Human Services, Public Health Service.

922 ATSDR, Agency for Toxic Substances and Disease Registry, 1997. Toxicological Profile for Cyanide. Update. U.S.
923 Department of Health and Human Services, Public Health Service.

924 Ballantyne B. and T.C. Marrs (Eds.), 1987. Clinical and experimental toxicology of cyanides. Wright, Bristol, UK,
925 1987, cited in DECOS, 1995.

926 Blanc, P., M. Hogan and K. Mallin, 1985. Cyanide intoxication among silver-reclaiming workers. *J. Am. Med.*
927 *Assoc.* 253, 367-371; cited in ATSDR, 1995.

928 Blank, T.L. 1983. Inhalation Pilot Study of Hydrogen Cyanide Exposure in Sprague-Dawley Rats. Report No.
929 MSL-2985, Monsanto Company. U.S. EPA OTS Submission 88-920007543, cited in Hydrogen Cyanide. Proposed
930 Acute Exposure Guideline Levels. Technical Support Document, version of January 2000.

931 Bonsall J.L., 1984. Survival without sequelae following exposure to 500 mg/m³ of hydrogen cyanide. *Human*
932 *Toxicology* 3, 57-60.

933 Casazza, J.P., M.E. Felver, and R.L. Veech, 1984. The metabolism of acetone in the rat. *J. Biol. Chem.* 259,
934 231-236.

935 Conn, E.E. 1979. Cyanogenic glycosides. *Int. Rev. Biochem.* 27, 21-43.

936 DECOS, Dutch Expert Committee on Occupational Standards, 1995. Acetone cyanohydrin: Health based
937 recommended occupational exposure limit. Health Council, Den Haag, Netherlands, 1995, pp. 1-96.

938 Dixon, M., and E.C. Webb, 1964. Enzymes. Pp. 337-340.

939 E.I. du Pont de Nemours and Co., 1998. Acetone Cyanohydrin. Haskell Laboratory, Newark, DE, USA, 1998.

940 El Ghawabi A., M. Gaafar, A. El Saharta, S.H. Ahmed and K.K. Malash, 1975. Chronic cyanide exposure: a clinical
941 radioisotope and laboratory study. *Brit. J. Ind. Med.* 32, 215-219.

942 Ellington, J.J., F.E. Stancil and W.D. Payne, 1986. Measurement of hydrolysis rate constants for evaluation of
943 hazardous waste land disposal. Volume 1. US-EPA 600/3-86/043 (NTIS, National Technical Information Service,
944 No. PB87-140349), cited in OECD 1997.

945 Gabor, S., C. Raucher, M. Leoca and R. Geleru, 1962. Experimental studies on the toxicity of some chemical
946 substances used in the manufacturing of organic glass (plexiglass) (in Rumanian). Igiena 11, 27-30.

947 Gentry, P.R., T.R. Covington, M.J. Clewell, and M.E. Anderson, 2003. Application of a physiologically-based
948 pharmacokinetic model for reference dose and reference concentration estimation for acetone. J. Toxicol. Environ.
949 Health 66, 2209-2225.

950 Gibson, Q.H., and C. Greenwood, 1963. Reactions of cytochrome oxidase with oxygen and carbon monoxide.
951 Biochem. J. 86, 541-554.

952 Glaser, R.A. and P. Fey O'Connor, 1985. The analysis of air for acetone cyanohydrin using solid sorbent sampling
953 and gas chromatography. Anal. Lett. 18, 217-237; cited in DECOS, 1995.

954 Grybat, A., S. Laue, R. Boelts and K. Fischer, 2003. Experimental determination of the vapor-liquid equilibrium for
955 the binary systems acetone cyanohydrine + water and acetone cyanohydrine + benzene. Unpublished report dated
956 05.08.2003, Laboratory for Thermophysical Properties GmbH and University of Oldenburg.

957 Hamblin, D.O., 1953. Personal Communication, cited in Sunderman and Kincaid, 1953.

958 ICI, Imperial Chemical Co., 1993. Kinetics for the dissociation of acetone cyanohydrin in water. Unpublished
959 report, Imperial Chemical Co., UK, 1993, cited in OECD, 1997.

960 IUCLID (International Uniform Chemical Information Database), 1996. Release on CD-ROM, European
961 Commission, European Chemicals Bureau, Joint Research Centre, Ispra, Italy.

962 Izmerov, N.F., I.V. Sanotsky and K.K. Sidorov, 1982. Toxicometric parameters of industrial toxic chemicals under
963 single exposure. Centre of International Projects, GKNT, Moscow.

964 Johannsen F.R. and G.J. Levinskas, 1986. Relationships between toxicity and structure of aliphatic nitriles. Fund.
965 Appl. Toxicol. 7, 690-697.

966 Kaplita P.V. and R.P. Smith, 1986. Pathways for the bioactivation of aliphatic nitriles to free cyanide in mice.
967 Toxicol. Appl. Pharmacol. 84, 533-540.

968 Kosugi, K., V. Chandramouli, K. Kumaran, W.C. Schumann, and B.R. Landau, 1986. Determinants in the pathways
969 followed by the carbons of acetone in their conversion to glucose. J. Biol. Chem. 261, 13179-13181.

970 Krefft, S., 1955. Vergiftungen durch Acetoncyanhydrin bei Mensch und Tier. Arch. Gewerbepathol. Gewerbehyg.
971 14, 110-116.

972 Lang, J., and F. Stintzy, 1960. Un cas d'intoxication lente a l'acide cyanhydrique par l'acetone-cyanhydrine [in
973 French]. Arch. Mal. Prof. Med. Hyg. Travail 21, 652-657.

974 Leeser, J. E., J.A. Tomenson and D.D. Bryson, 1990. A cross sectional study of the health of cyanide salt
975 production workers. Unpublished study report No. OHS/R/2. ICI Central Laboratory, Alderley Park, Macclesfield,
976 Cheshire, UK, 1990.

977 Lemberg, M.R., 1969. Cytochrome oxidase. Phys. Rev. 49, 48-121.

978 Magos L., 1962. A study of acrylonitrile poisoning in relation to methemoglobin-CN complex formation. Brit. J.
979 Ind. Med. 19, 283-286.

980 Marhold, J.V., 1972. Sbornik Vysledku Toxicologickeho Vysetreni Letek A Pripravku. Inst Pro Vychovu
981 Vedoucien Pracovniku Chemickeho Proumychu, Praha, 1972, cited in IUCLID, 1996.

982 Monsanto, 1982a. Range-finding teratology study in the rat. Report No. IL-83-094. Monsanto Co., St. Louis, MO.
983 U.S. EPA/OPTS Public file No. 878216399, Environmental Protection Agency, Washington, USA, cited in
984 IUCLID, 1996 and NLM, 1999.

985 Monsanto, 1982b. Male fertility study of Sprague-Dawley rats exposed by inhalation route to acetone cyanohydrin.
986 Monsanto Co. Report No. ML-82-144, Monsanto Co., St. Louis, MO, USA.

987 Monsanto, 1982c. Female fertility study of Sprague-Dawley rats exposed by inhalation route to acetone
988 cyanohydrin. Monsanto Co. Report No. ML-82-125, Monsanto Co., St. Louis, MO, USA.

989 Monsanto, 1983. Teratology study in rats. Report No. IL-83-105, Monsanto Co., St. Louis, MO. EPA/OPTS Public
990 file No. 878216401, Environmental Protection Agency, Washington, USA, cited in IUCLID, 1996 and NLM, 1999.

991 Monsanto, 1986a. One-month inhalation toxicity of acetone cyanohydrin in male and female Sprague-Dawley rats
992 with cover letter dated 04-25-86. Report No. BN-81-178, Monsanto Co., St. Louis, MO, USA.

993 Monsanto, 1986b. Three-month inhalation toxicity of acetone cyanohydrin in male and female Sprague-Dawley rats
994 with cover letter dated 04-25-86. Report No. ML-82-143, Monsanto Co., St. Louis, MO, USA.

995 NIOSH, National Institute for Occupational Safety and Health, 1978. Criteria for a recommended standard ...
996 occupational exposure to nitriles. NIOSH Publication 78-212, U.S. Department of Health, Education, and Welfare.

997 NIOSH, National Institute of Occupational Safety and Health, 1985. Manual of analytical methods. Method 2506
998 issued 5/15/85; 6 pp. U.S. Department of Health, Education, and Welfare; cited in DECOS, 1995.

999 NIOSH, National Institute of Occupational Safety and Health, 1996. Documentation for Immediately Dangerous to
1000 Life and Health Concentrations. [Http://www.cdc.gov/niosh/idlh/75865.html](http://www.cdc.gov/niosh/idlh/75865.html).

1001 NLM, U.S. National Library of Medicine, 1999. HSDB, Hazardous Substances Databank. Release of May 1999.
1002 U.S. NLM, CD-ROM data base, Silver Platter, USA.

1003 NRC, National Research Council, 1985. Emergency and continuous exposure guidance levels for selected airborne
1004 contaminants. National Research Council, Commission of Life Sciences, Board on Toxicology and Environmental
1005 Health Hazards, Committee on Toxicology, National Academy Press, Washington, DC, USA.

1006 NRC, National Research Council, 2000. Hydrogen cyanide. In Spacecraft Maximum Allowable Concentrations for
1007 Selected Airborne Contaminants, Volume 4, pp. 330-365. National Academy Press, Washington, D.C.

1008 NRC, National Research Council, 2002. "Hydrogen Cyanide" in Acute Exposure Guideline Levels for Selected
1009 Airborne Chemicals. Volume 2, pp. 211-276, National Academy Press, Washington, D.C.

1010 OECD, Organization for Economic Cooperation and Development, 1997. Acetone Cyanohydrin. High Production
1011 Volume Chemicals Programme, Phase 2, SIDS Initial Assessment Report, OECD, 1997.

1012 Rieders, F., 1971. Noxious gases and vapors. I. Carbon monoxide cyanides, methemoglobin and sulfhemoglobin.
1013 Pp. 1180-1205 in: Drill's Pharmacology in Medicine, 4th Ed, J. Dipalma (Ed.). McGraw-Hill, New York, N.Y.

1014 Shkodich P.E., 1966. Experimental determination of the maximum permissible concentration of acetone
1015 cyanohydrin in water basins. Hyg. Sanit. 31, 335-341.

1016 Singh, H.B., N. Wasi and M.C. Mekra, 1986. Detection and determination of cyanide - a review. Int. J. Environ.
1017 Anal. Chem. 26, 115-136; cited in DECOS, 1995.

1018 Smith, L., H.C. Davies, and M.E. Nava, 1979. Kinetics of reaction of cytochrome c with cytochrome c oxidase. Pp.
1019 293-304 in: Cytochrome Oxidase, Developments in Biochemistry, Vol. 5, T.E. King et al. (Eds.) Elsevier/North-
1020 Holland Biomedical Press, Amsterdam, The Netherlands.

1021 Smyth H.F., C.P. Carpenter, C.S. Weil, U.C. Pozzani and J.A. Striegel, 1962. Range-finding toxicity data: List VI.
1022 Ind. Hyg. J. 23, 95-107.

1023 Stannard, J.N., and B.L. Horecker, 1948. The in vitro inhibition of cytochrome oxidase by azide and cyanide. J.
1024 Biol. Chem. 172, 599-608.

1025 Stewart, T.D., and B.J. Fontana, 1940. Effect of salvation upon the dissociation of acetone cyanohydrin. J. Am.
1026 Chem. Soc. 67, 3281-3285.

1027 Sunderman F.W. and J.F. Kincaid, 1953. Toxicity studies of acetone cyanohydrin and ethylene cyanohydrin. Arch.
1028 Ind. Hyg. Occup. Med. 8, 371-376.

1029 Swinyard, E.A., 1975. Noxious gases and vapors. Pp. 900-911 in: The Pharmacological Basis of Therapeutics, 5th
1030 Ed, L.S. Goodman and A. Gilman (Eds.), Macmillan, New York.

1031 Thiess, A.M. and W. Hey, 1969. Zur Tocizität des Isobutyronitrils und des α -Hydroxyisobutyronitrils
1032 (=Acetoncyanhydrin). Dargestellt an 2 Vergiftungsfällen. Arch. Toxikol. 24, 271-282.

1033 UN, United Nations, 1997. Acetone Cyanohydrin. In: Screening Information Data Set (SIDS) for High Production
1034 Volume Chemicals, Vol. 4, Part 1. United Nations, New York and Geneva, 1997, pp. 1-30.

1035 Willhite C.C. and R.P. Smith, 1981. The role of cyanide liberation in the acute toxicity of aliphatic nitriles.
1036 Toxicol. Appl. Pharmacol. 59, 589-602.

1037 Wilson, J., 1987. In Clinical and experimental toxicology of cyanides, B. Ballantyne and T.C. Marrs (Eds.), Wright,
1038 Bristol, UK, 1987, pp. 292-311.

1039 Wood, J.L. and S.L. Cooley, 1956. Detoxication of cyanide by cystine. J. Biol. Chem. 218, 449-457.

1040 Zeller, H., H.T. Hofman, A.M. Thiess, and W. Hey, 1969. Zur Toxizität der Nitrile. Tierexperimentelle
1041 Untersuchungsergebnisse und werksärztliche Erfahrungen in 15 Jahren [in German]. Zbl. Arbeitsmed. 19, 225-238.

1042

APPENDIX A

1043

Derivation Summary for Acetone Cyanohydrin AEGLs

ACUTE EXPOSURE GUIDELINES FOR ACETONE CYANOHYDRIN (CAS NO. 75-86-5)

AEGL-1 VALUES ^a				
10 minutes	30 minutes	1 hour	4 hours	8 hours
2.5 ppm	2.5 ppm	2.0 ppm	1.3 ppm	1.0 ppm
Reference: The AEGL-1 values for acetone cyanohydrin are set at the same values (on a ppm basis) as the AEGL-1 values for hydrogen cyanide.				
NRC, National Research Council, 2002. "Hydrogen Cyanide" in Acute Exposure Guideline Levels for Selected Airborne Chemicals. Volume 2, pp. 211-276, National Academy Press, Washington, D.C.				
^a Acetone cyanohydrin decomposes spontaneously in the presence of water to yield hydrogen cyanide and acetone. Therefore, both acetone cyanohydrin and hydrogen cyanide concentrations should be considered.				
Test Species/Strain/Number: not applicable				
Exposure Route/Concentrations/Durations: not applicable				
Effects: not applicable				
Endpoint/Concentration/Rationale:				
Human data on acetone cyanohydrin relevant for the derivation of AEGL-1 are lacking. One study in rats (Monsanto, 1986a) reported red nasal discharge (which was interpreted as a sign of local irritation in the upper respiratory tract) in 4/20 animals at 29.9 ppm and in 2/20 animals at 59.6 ppm, but not in control animals and in animals exposed to 9.2 ppm, during the first week of repeated 6-hours/day exposures. However, red nasal discharge was not consistently seen in any of the other Monsanto studies and, when present, was not always dose-responsive. In addition, control animals varied widely in terms of whether that endpoint was present or not. In light of the variability of the red nasal discharge in repeat studies, it seemed a poor endpoint on which to base the AEGL-1. Also, the repeat exposures used in the Monsanto studies were not appropriate for the derivation of AEGL-1 values.				
The pathogenesis of red nasal discharge in rats is not entirely clear. In the case of acetone cyanohydrin it may be related to local tissue hypoxia leading to vasodilatation and subsequent extravasation of red blood cells, which could explain the lack of histopathological findings. Red nasal discharge in rats occurs at the plexus antebrachii, which is very prominent in the rat. In the rat, extravasation of red blood cells visible as red nasal discharge is caused easily not only by locally acting chemicals, but also by stress, dry air or upper respiratory tract infections.				
The derivation of AEGL-1 values was based upon the facts that acetone cyanohydrin decomposes spontaneously to hydrogen cyanide and acetone and that the systemic toxicity of acetone cyanohydrin is due to free cyanide. Once absorbed, a dose of acetone cyanohydrin behaves in a manner identical to that of its molar equivalent in absorbed free cyanide. It is appropriate to apply the AEGL-1 values (on a ppm basis) derived for hydrogen cyanide (NRC, 2002) to acetone cyanohydrin.				
Uncertainty Factors/Rationale: not applicable				
Modifying Factor: not applicable				

1082	Animal to Human Dosimetric Adjustment: not applicable
1083	Time Scaling: not applicable
1084	Data Quality and Support for A EGL Levels:
1085	Similar values would be derived on the basis of available acetone cyanohydrin studies in rats
1086	(derivation basis would be exposure to 9.2 ppm for 6 hours/day, 5 days/week for 4 weeks, which did
1087	not result in red nasal discharge; Monsanto, 1986a) using a total uncertainty factor of 10.

ACUTE EXPOSURE GUIDELINES FOR ACETONE CYANOHYDRIN (CAS NO. 75-86-5)

AEGL-2 VALUES ^a				
10 minutes	30 minutes	1 hour	4 hours	8 hours
17 ppm	10 ppm	7.1 ppm	3.5 ppm	2.5 ppm
Reference: The AEGL-2 values for acetone cyanohydrin are set at the same values (on a ppm basis) as the AEGL-2 values for hydrogen cyanide.				
NRC, National Research Council, 2002. "Hydrogen Cyanide" in Acute Exposure Guideline Levels for Selected Airborne Chemicals. Volume 2, pp. 211-276, National Academy Press, Washington, D.C.				
^a Acetone cyanohydrin decomposes spontaneously in the presence of water to yield hydrogen cyanide and acetone. Therefore, both acetone cyanohydrin and hydrogen cyanide concentrations should be considered.				
Test Species/Strain/Sex/Number: not applicable				
Exposure Route/Concentrations/Durations: not applicable				
Effects: not applicable				
Endpoint/Concentration/Rationale: The derivation of AEGL-2 values was based upon the facts that acetone cyanohydrin decomposes spontaneously to hydrogen cyanide and acetone and that the systemic toxicity of acetone cyanohydrin is due to free cyanide. Once absorbed, a dose of acetone cyanohydrin behaves in a manner identical to that of its molar equivalent in absorbed free cyanide. It is appropriate to apply the AEGL-2 values (on a ppm basis) derived for hydrogen cyanide (NRC, 2002) to acetone cyanohydrin.				
Uncertainty Factors/Rationale: not applicable				
Modifying Factor: not applicable				
Animal to Human Dosimetric Adjustment: not applicable				
Time Scaling: not applicable				
Data Quality and Support for AEGL Levels: Very similar values would be derived on the basis of available acetone cyanohydrin studies in rats (derivation basis would be exposure to 29.9 ppm for 6 hours/day, 5 days/week for 4 weeks, which caused red nasal discharge as a sign of irritation, while the next higher concentration produced respiratory distress, prostration, convulsions and tremors; Monsanto, 1986a) using a total uncertainty factor of 10.				

ACUTE EXPOSURE GUIDELINES FOR ACETONE CYANOHYDRIN (CAS NO. 75-86-5)

AEGL-3 VALUES ^a				
10 minutes	30 minutes	1 hour	4 hours	8 hours
27 ppm	21 ppm	15 ppm	8.6 ppm	6.6 ppm
Reference: The AEGL-3 values for acetone cyanohydrin are set at the same values (on a ppm basis) as the AEGL-3 values for hydrogen cyanide.				
NRC, National Research Council, 2002. "Hydrogen Cyanide" in Acute Exposure Guideline Levels for Selected Airborne Chemicals. Volume 2, pp. 211-276, National Academy Press, Washington, D.C.				
a Acetone cyanohydrin decomposes spontaneously in the presence of water to yield hydrogen cyanide and acetone. Therefore, both acetone cyanohydrin and hydrogen cyanide concentrations should be considered.				
Test Species/Strain/Sex/Number: not applicable				
Exposure Route/Concentrations/Durations: not applicable				
Effects: not applicable				
Endpoint/Concentration/Rationale: The derivation of AEGL-3 values was based upon the facts that acetone cyanohydrin decomposes spontaneously to hydrogen cyanide and acetone and that the systemic toxicity of acetone cyanohydrin is due to free cyanide. Once absorbed, a dose of acetone cyanohydrin behaves in a manner identical to that of its molar equivalent in absorbed free cyanide. It is appropriate to apply the AEGL-3 values (on a ppm basis) derived for hydrogen cyanide (NRC, 2002) to acetone cyanohydrin.				
Uncertainty Factors/Rationale: not applicable				
Modifying Factor: not applicable				
Animal to Human Dosimetric Adjustment: not applicable				
Time Scaling: not applicable				
Data Quality and Support for the AEGL Levels: Support comes from the close similarity of acetone cyanohydrin and hydrogen cyanide regarding death in rats: Blank (1983) reported that 3 of 10 rats died after the first exposure to 68 ppm hydrogen cyanide, while the subsequent two exposures on the following days caused no additional deaths. This finding closely resembles that of Monsanto (1986a) reporting death of 3 of 20 animals after the first exposure to 60 ppm acetone cyanohydrin (the actual exposure concentration on the first day might have been slightly higher than the average 59.6 ppm), while no additional deaths were found in the 19 subsequent exposures.				