

Resources for the Energiewende – examples on the German level and need for policy action & research

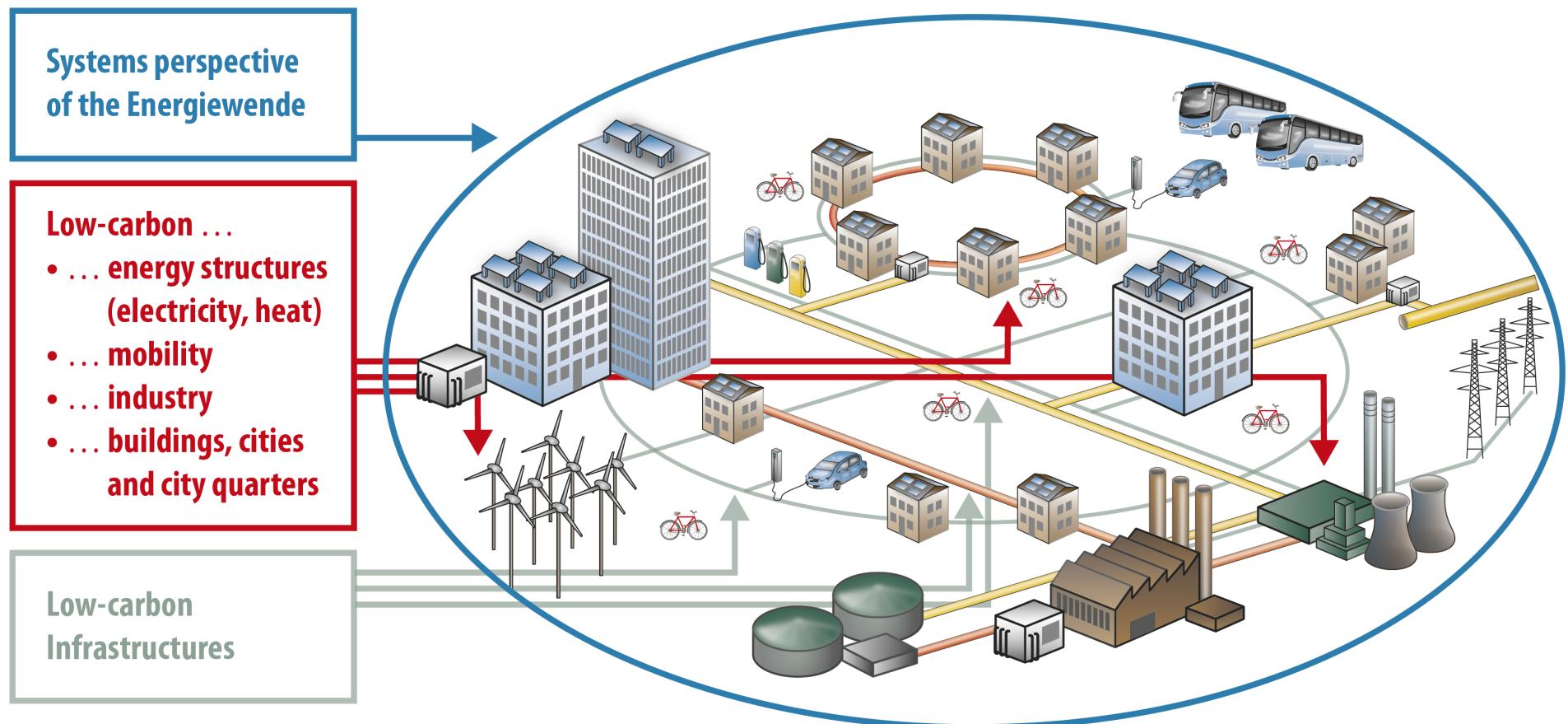
11.11.2014, European Resource Forum

Peter Viebahn
Klaus Wiesen

Content

Energiewende and existing approaches for resource assessment

Exemplary results of selected studies



Outlook: need for action

Energiewende and existing approaches

Dimensions of the Energiewende

Source: WI

Energiewende and existing approaches

Long-term energy and resource scenario analysis of the Energiewende

	Resource focus	Efficiency		Renewable		Fossil	
		Static	Dynamic	Static	Dynamic	Static	Dynamic
Electricity sector	CritMin				KRESSE (2014)		
	TMR			Single figures		Single figures	
Heat Sector	CritMin				KRESSE (2014)		
	TMR			MaRess (2009)			
Mobility sector	CritMin				STROM (ongoing)		
	TMR				STROM (ongoing)	STROM (ongoing)	
Integration (Energiewende)							
Integration (all sectors)							

CritMin = critical minerals

TMR (MIPS of abiotic plus biotic resources for economies, including import/export balances)

Exemplary results of selected studies

KRESSE

Gefördert durch:

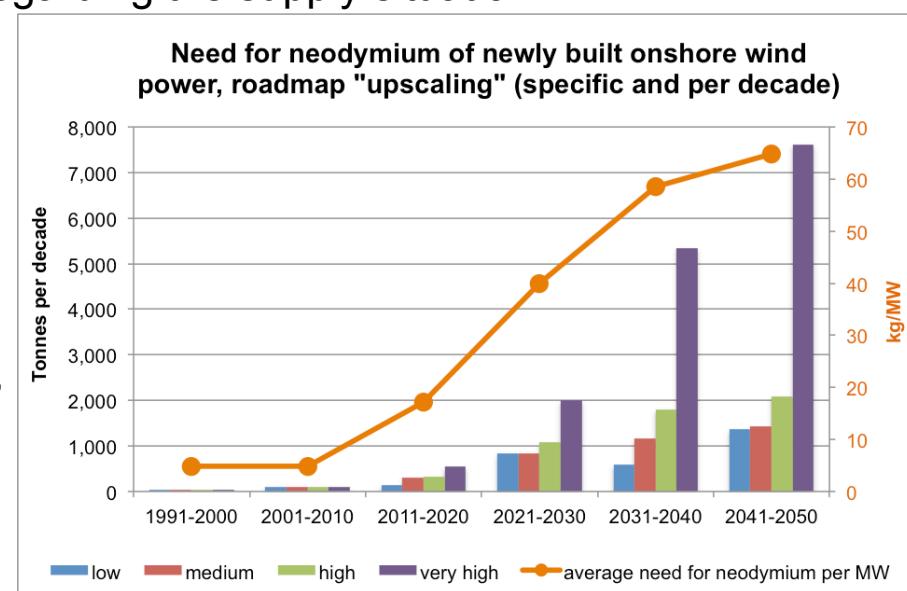
Bundesministerium
für Wirtschaft
und Energie

Bundesministerium
für Umwelt, Naturschutz
und Reaktorsicherheit

aufgrund eines Beschlusses
des Deutschen Bundestages

KRESSE – Critical Resources and Material Flows during the Transformation of the German Energy Supply System

■ Objective


Assessing which critical minerals are relevant in Germany for the production of

- technologies that generate electricity, heat and fuels from *renewable energies*
- large energy storage and transmission systems

and depicting potentially conflicting goals regarding the supply situation

■ Dynamic perspective

- need for new capacities based on 9 long-term energy scenarios (2050)
- technology roadmaps estimating future market shares
 - Wind energy: “Continuity”, “Upscaling” and “HTS”
 - Solar PV: “Continuity”, “Thin film renaissance”
- regarding specific critical material consumption over time

Exemplary results of selected studies

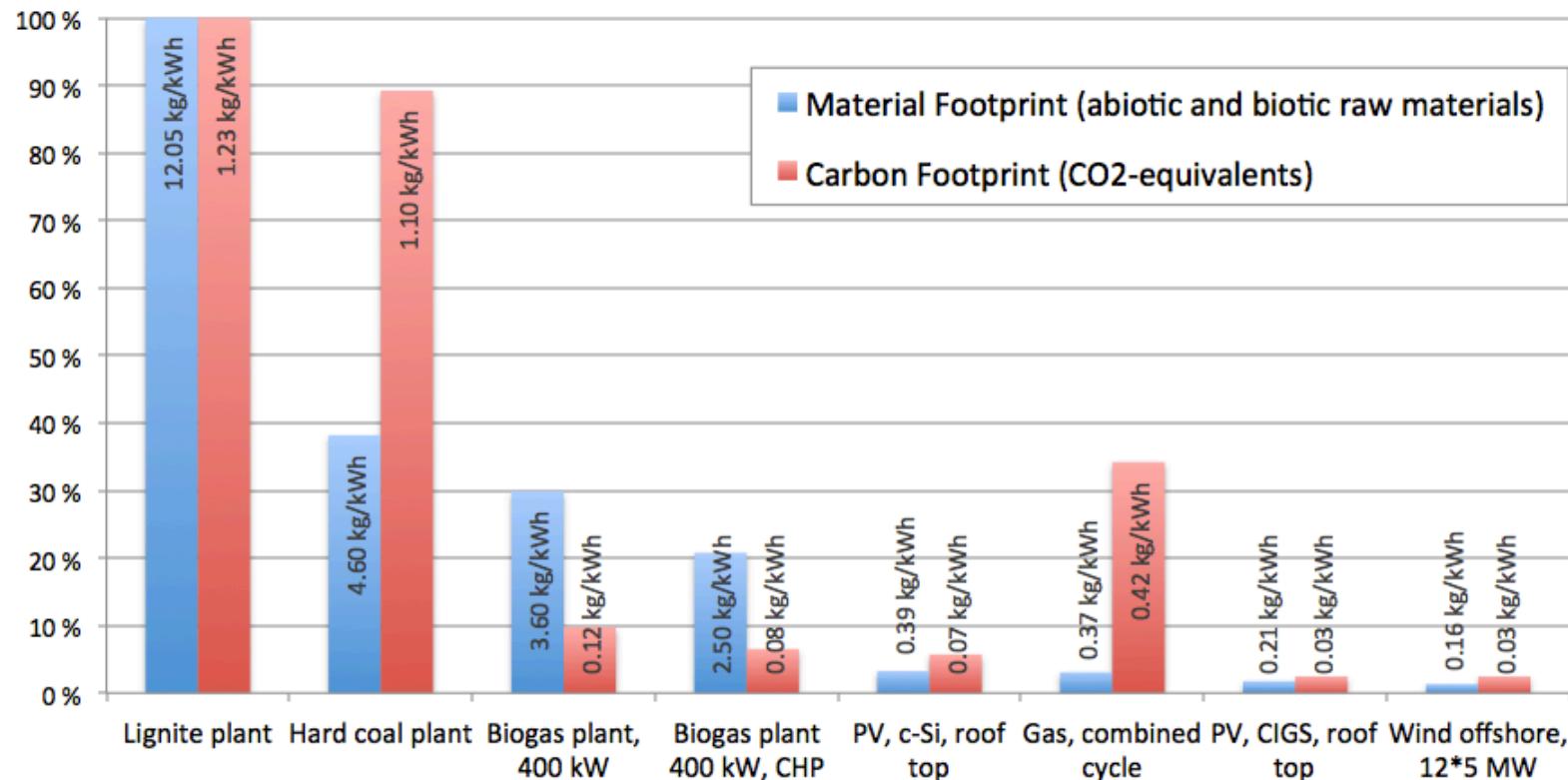
KRESSE

Gefördert durch:

Bundesministerium
für Wirtschaft
und Energie

Bundesministerium
für Umwelt, Naturschutz
und Reaktorsicherheit

aufgrund eines Beschlusses
des Deutschen Bundestages

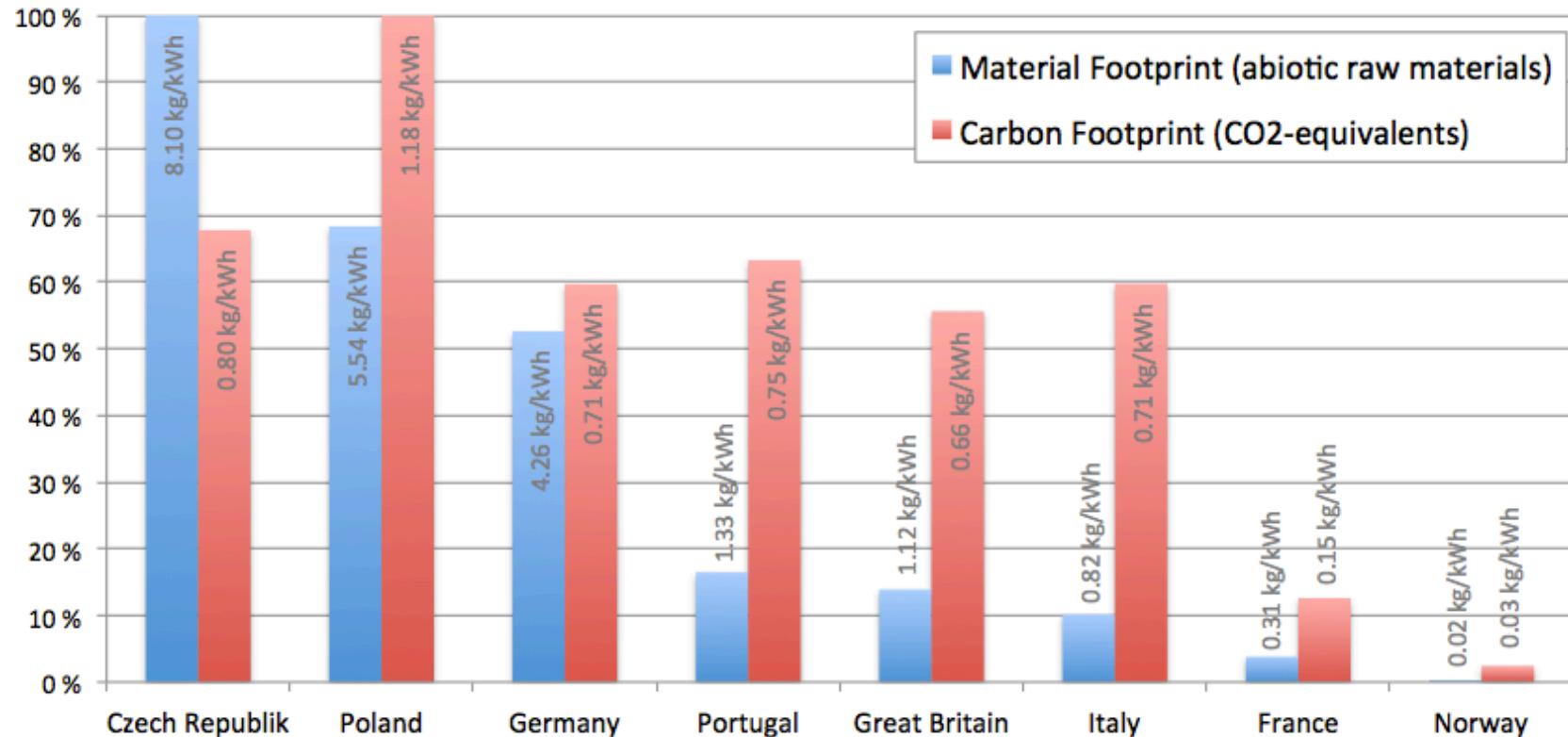

Main Results

- The geological availability of minerals does not generally represent a limiting factor in the planned expansion of renewable energies in Germany. However, some sub-technologies might be critical with regard to the supply of minerals:
 - wind energy
 - adequate supply of Nd and Dy can not necessarily be guaranteed for Germany
 - considering onshore facilities, the use of Nd and Dy is non-essential
 - considering offshore plants, novel technologies and recyclability should be further developed
 - thin-film photovoltaics – Cl(G)S
 - demand for *indium* does not appear to be secured, not even for the current 3% market share
 - major expansion must be considered as being critical since the need for *selenium* might not be met
 - large-scale battery storage
 - supply for vanadium-based redox flow batteries must be considered as being critical
 - less critical are lithium-ion batteries (long-term), not critical physical storage facilities
- Fortunately, non-critical alternatives to these technologies generally exist.

Exemplary results of selected studies

Material and carbon footprint of different electricity generation systems in Germany

Material and Carbon Footprint of different energy systems in Germany



- Overall resource utilisation of an energy system is considerably lower if it is based on renewable energies rather than on fossil fuels (exception: biomass).

Calculations based on: Ecoinvent V2.2, Wagner et al. 2014, Wiesen et al. 2013, 2014, Wuppertal Institute 2014, Rausch and Fritsche 2012

Exemplary results of selected studies

Material and carbon footprint of different EU electricity mixes

- The higher the share of coal, the higher are both material and carbon footprint.
- High shares of gas and oil cause a low material footprint, but a high carbon footprint.
- Electricity supply mixes based on renewable energies (wind, PV) would minimise both footprints.

Calculations based on: Wuppertal Institute 2013, JRC 2014

Outlook: need for action

Recommendations for research

- Our results confirm that – in the electricity sector – massive GHG reduction goals combined with a deployment of renewable energies conform to massive TMR reduction and are principally compatible with the supply of mineral resources.
- However, critical minerals for the Energiewende must be evaluated on an integrated, long-term level, also considering other economic sectors and major economies.
- For instance, first results of STROM show that an electro-mobility strategy might lead to supply problems of dysprosium.
- Integrated energy and resource scenarios are needed to combine resource and low-carbon targets.
- Material footprint indicators, e.g. MIPS, should be adapted to future situations (dynamic approach) and data should become internationally validated.

	Resource focus	Efficiency		Renewable		Fossil	
		Static	Dynamic	Static	Dynamic	Static	Dynamic
Electricity sector	CritMin	?			KRESSE (2014)		
	TMR			Single figures		Single figures	
Heat Sector	CritMin				KRESSE (2014)		
	TMR			MaRess (2009)			
Mobility sector	CritMin				STROM (ongoing)		
	TMR				STROM (ongoing)		STROM (ongoing)
Integration (Energiewende)							?
Integration (all sectors)							?

CritMin = critical minerals
TMR = total material requirement (calculated as MIPS, including economically unused material)

Outlook: need for action

Policy recommendations

- Even if the availability of minerals for the relevant technologies is not a problem, potential supply risks owing to dependencies on a few supplier countries and competing use should be borne in mind.
- Key elements of technology development to secure Germany's raw material supply therefore are
 - extended cooperation with companies and governments of supplier countries
 - increasing resource efficiency and recyclability strategies
- Where top-quality recycling is difficult, strategies for prolonging the useful life and life cycle of systems should be pursued alongside recycling strategies.
- In general non-critical alternatives to the identified technologies should increasingly be used in future.
- Schemes for generally minimising the use of resources, not only the critical ones, in the transformation of the energy system should be developed and included in an integrated assessment.

Sources

- ifu Hamburg GmbH *Ecoinvent Version 2.2*; Swiss Centre for Life Cycle Inventories, 2010.
- JRC (2014): European Life Cycle Database. European Commission
- Rausch, L.; Fritsche, U. R. (2012): Aktualisierung von Ökobilanzdaten für Erneuerbare Energien im Bereich Treibhausgase und Luftschadstoffe
- Wiesen, K.; Teubler, J.; Rohn, H. (2014): Measuring side-effects of a closed carbon cycle. Paper submitted to the journal Energies. Under review
- Wiesen, K.; Teubler, J.; Rohn, H. (2013): Resource Use of Wind Farms in the German North Sea – The Example of Alpha Ventus and Bard Offshore I. Resources 2013, 2, 504-516.
- Wagner, H-J. et al. Die Ökobilanz des Offshore-Windparks alpha ventus 2010.
- Wuppertal Institut (2014): KRESSE – Kritische mineralische Ressourcen und Stoffströme bei der Transformation des deutschen Energieversorgungssystems. Abschlussbericht an das Bundesministerium für Wirtschaft und Energie (BMWi) unter Mitarbeit von Karin Arnold, Jonas Friege, Christine Krüger, Arjuna Nebel, Michael Ritthoff, Sascha Samadi, Ole Soukup, Jens Teubler, Peter Viebahn, Klaus Wiesen.

Thank you very much for your attention!

Contact:

www.wupperinst.org

peter.viebahn@wupperinst.org
Research Group 1 Future Energy and Mobility Structures

klaus.wiesen@wupperinst.org
Research Group 4 Sustainable Production and Consumption