
Sustainability in Organic Chemistry Lab Courses

Müfit Bahadir

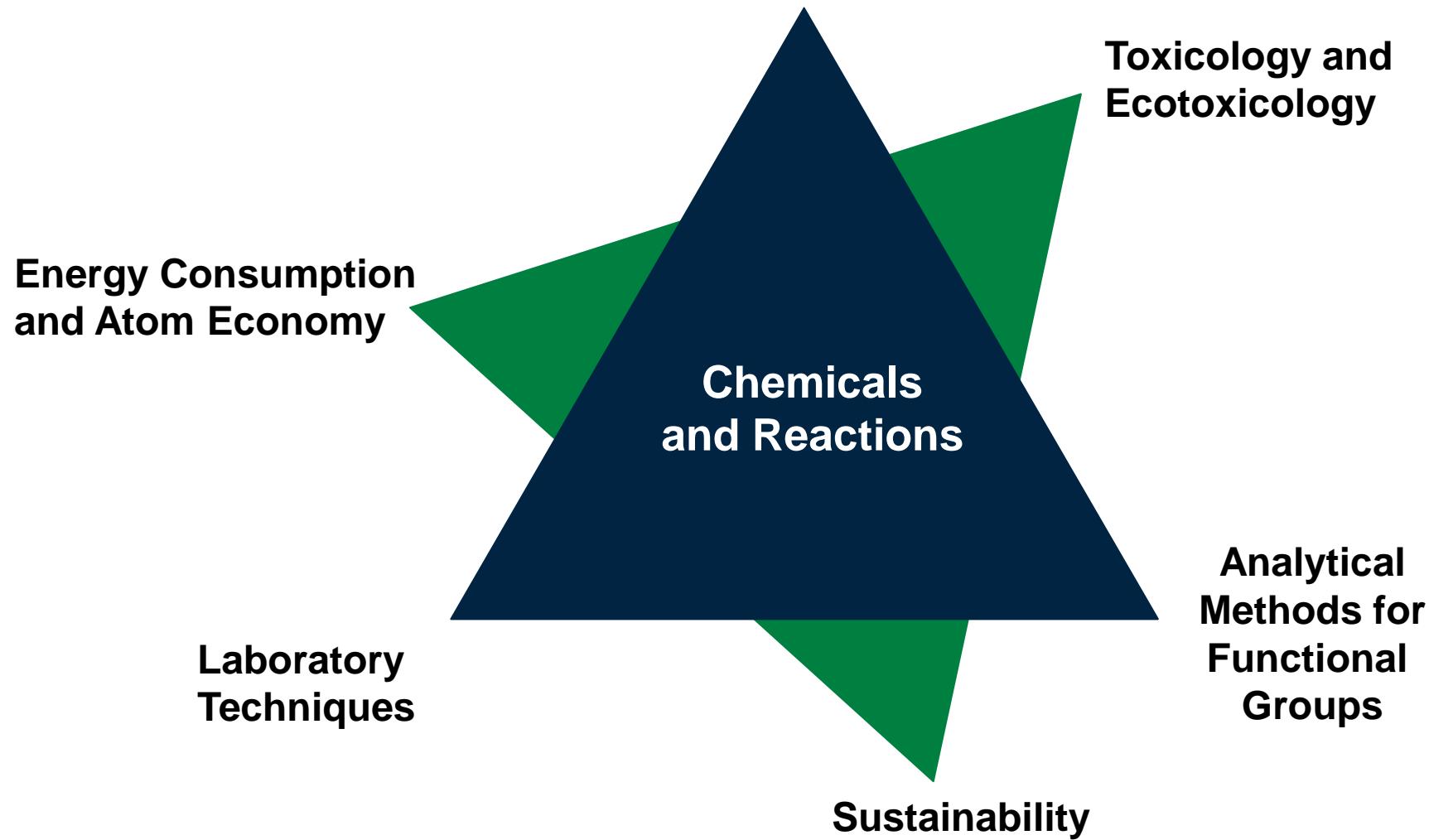
**Institute of Environmental and Sustainable Chemistry
Technische Universität Braunschweig**

m.bahadir@tu-bs.de

Pharmaceutical Laboratory in 1894

Liebig's Analytical Laboratory at 1840

Chemical Laboratory in Vietnam 2004



Chemical Laboratory
in Kazakhstan 2005

Chemical Laboratory
in Indonesia 2006

Theory of Organic-Chemical Reactions

New Aspects of Sustainable Chemistry Education

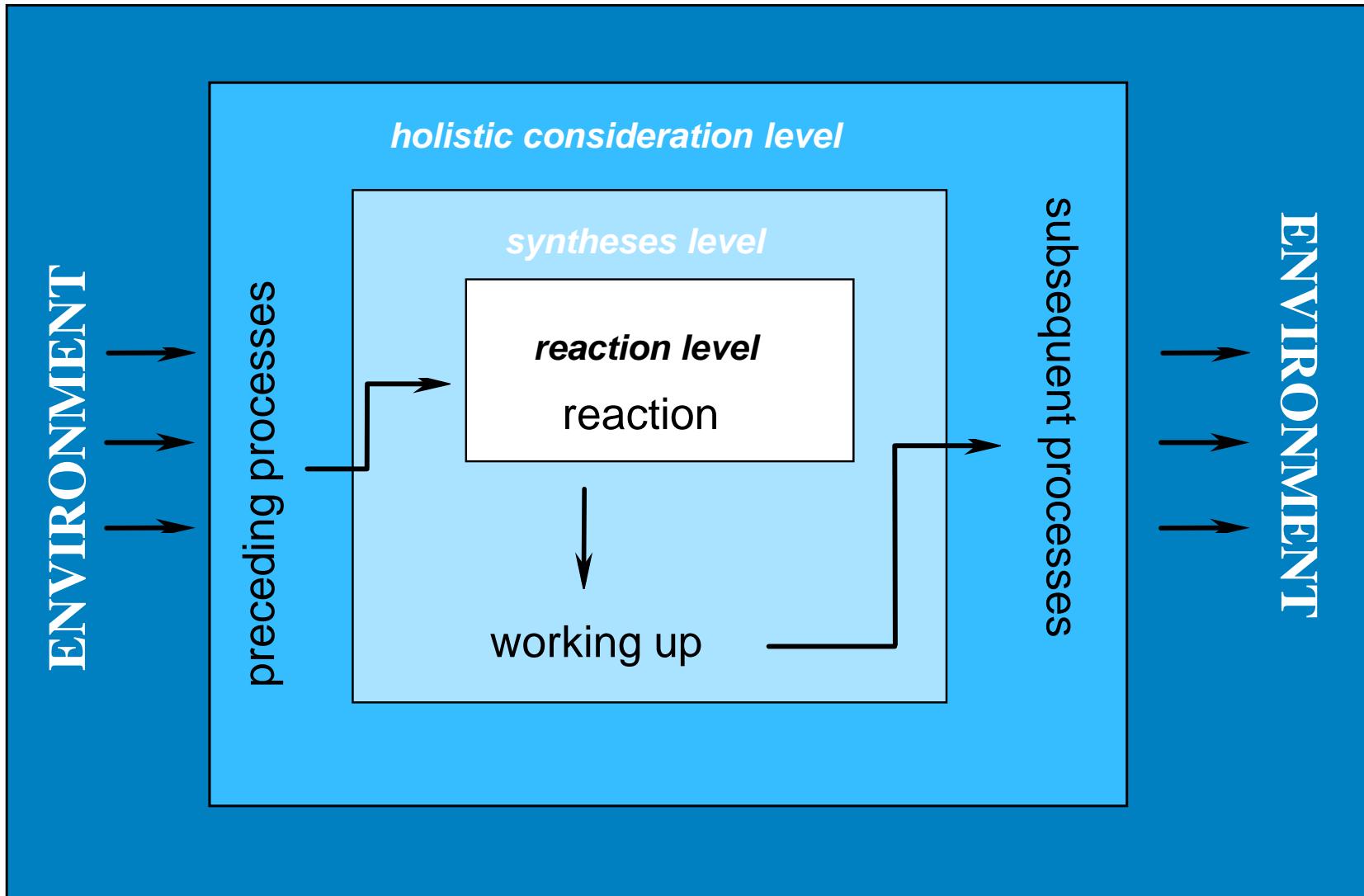
How good does a chemical reaction work?

What is about the atom economy – yields vs. by-products?

State-of-art analyses of raw and final products

Alternative reaction control

Factors of energy consumption and losses


Effect factors for hazard – toxic or not?

In general:

Which are the factors of environmental acceptability?

Chemicals do not respect national borders !

NOP - Sustainability in the organic chemistry lab course - Microsoft Internet Explorer

Datei Bearbeiten Ansicht Favoriten Extras ?

Zurück Suchen Adressen Wechseln zu Links >

Adresse: http://www.oc-praktikum.de/index.php?page=entry&lang=en

Sustainability in the organic chemistry lab course

Nachhaltigkeit lernen

Weltdekade der Vereinten Nationen 2005-2014 Bildung für nachhaltige Entwicklung

NOP ONLINE

Why NOP? ?

Sustainability

Experiments

NOP - How?

Glossar

Techniques

Glossary

Suche

Funding

Impressum

DBU

For optimal viewing of the NOP pages JavaScript has to be activated in your browser and the Chime plugin must be installed. The pages were optimized for a screen resolution of 1024 x 768. Help with the installation of Chime with newer browsers is available.

SOME RIGHTS RESERVED

English Change language

pages/entry.php: March 03, 2006
en/index.html: March 03, 2006

www.oc-praktikum.de

Internet

Start

17:25

NOP - Sustainability in the organic chemistry lab course - Microsoft Internet Explorer

Datei Bearbeiten Ansicht Favoriten Extras ?

Zurück Suchen Adresse <http://www.oc-praktikum.de/index.php?page=substances&lang=en&type=all&term=amine> Wechseln zu Links >

NOP
ONLINE

Link collection for complementary searches

Search category: All Search term: amine Search

Every occurrence of the search term in the chosen category will lead to a hit

Show all substances

Name	CAS No	Experiments
3,4-Dibromo-2-chlorophenylamine	none	1013
4-Bromo-2-chlorophenylamine	38762-41-3	1013
Benzylamine	100-46-9	2006
Bromo-2-chlorophenylamine	118804-39-0	1013
Chloramine T trihydrate	7080-50-4	3003
N-[(5R)-2-Methyl-5-(1-methylethyl)-2-cyclohexen-1-ylidene]benzylamine	74275-49-3	2006
Tri-n-propylamine	102-69-2	3005
Triethylamine	121-44-8	0003

SOME RIGHTS RESERVED English Change language pages/substances.php: March 03, 2006

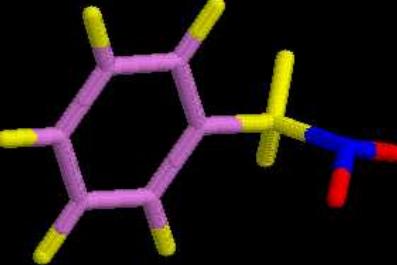
Start Internet 17:34

NOP - Sustainability in the organic chemistry lab course - Microsoft Internet Explorer

Datei Bearbeiten Ansicht Favoriten Extras ?

Zurück Suchen Wechseln zu Links >

Adresse http://www.oc-praktikum.de/index.php?page=substance&client_id=187&view=3D&lang=en


Benzylamine [100-46-9]

NOP
ONLINE

Identity
3D Structure
Safety classifications

Go Legend:
 Topology
 Volume
 Dot surface
 Surface
 Chirality
 MIP - no CT
 MIP - incl. CT
 Chameleon
 Charges
 Potential
 Lipophilicity
 CPK-Colours
 Transparent

MDL

The 3D structure has been optimized with the MOPAC PM3 method.

English Change language

pages/substance.php: March 03, 2006
views/3D.php: March 03, 2006

Chime script completed.

Start Internet 17:42

NOP - Sustainability in the organic chemistry lab course - Microsoft Internet Explorer

Datei Bearbeiten Ansicht Favoriten Extras ?

Zurück Suchen Wechseln zu Links >

Adresse: http://www.oc-praktikum.de/index.php?page=substance&chent_id=187&view=3D&lang=en

Benzylamine [100-46-9]

NOP
ONLINE

Identity
3D Structure
Safety classifications

Go Legend:
 Topology
 Volume
 Dot surface
 Surface
 Chirality
 MIP - no CT
 MIP - incl. CT
 Chameleon
 Charges
 Potential
 Lipophilicity
 CPK-Colours
 Transparent

 MDL

The 3D structure has been optimized with the MOPAC PM3 method.

 SOME RIGHTS RESERVED

English Change language

pages/substance.php: March 03, 2006
views/3D.php: March 03, 2006

Chime script completed.

Start Internet 17:41

NOP - Sustainability in the organic chemistry lab course - Microsoft Internet Explorer

Datei Bearbeiten Ansicht Favoriten Extras ?

Zurück Suchen Favoriten Wechseln zu Links >

Adresse http://www.oc-praktikum.de/index.php?page=substance&client_id=187&view=classifications&lang=en

Benzylamine [100-46-9]

NOP
ONLINE

Identity
3D Structure
Safety classifications

Cc1ccccc1CN

	value	comment	source
Permissible air concentration:	not assigned		TRGS 440 (German), 2001
Effect factor after TRGS 440 (German)	100		Catalog of water polluting substances (German)
Water pollution class:	2		EU
Hazard symbols:			EU
Risk phrases:	R 21/22-34		EU
Safety phrases:	S 1/2-26-36/37/39-45		EU
Data availability	Toxicity and Ecotoxicity data		AG Jastorf

Permissible air concentration:

Effect factor after TRGS 440 (German)

Water pollution class:

Hazard symbols:

Risk phrases:

Safety phrases:

Data availability

effect factor

The effect factor is a dimensionless number that is determined according to a method outlined in the German Technical Rules for Hazardous Substances (TRGS) 440. This method uses as input the known R phrases and the German threshold limit values. It also provides a classification of substances with not fully determined or unknown dangerous properties.

[HTML] Evaluation of chemical substances

English Change language

pages/substance.php: March 03, 2006
views/classifications.php: March 03, 2006

Fertig

Start NOP - Sustainability in t... 17:48

NOP - Sustainability in the organic chemistry lab course - Microsoft Internet Explorer

Datei Bearbeiten Ansicht Favoriten Extras ?

Zurück Suchen Wechsel zu Links >

Adresse http://www.oc-praktikum.de/index.php?page=entry&lang=en

Sustainability in the organic chemistry lab course

Why NOP?

Sustainability

Experiments

?

NOP - How?

Glossar

Substances

Techniques

Glossary

Suche

DBU

Funding

Impressum

For optimal viewing of the NOP pages JavaScript has to be activated in your browser and the Chime plugin must be installed. The pages were optimized for a screen resolution of 1024 x 768. [Help with the installation of Chime with newer browsers is available.](#)

SOME RIGHTS RESERVED

English Change language

pages/entry.php: March 03, 2006
en/index.html: March 03, 2006

Internet

Start

17:25

NOP - Sustainability in the organic chemistry lab course - Microsoft Internet Explorer

Datei Bearbeiten Ansicht Favoriten Extras ?

Zurück Suchen

Adresse <http://www.oc-praktikum.de/index.php?page=experiments&lang=en&term=%25&type=title&difficulty=%25> Wechseln zu Links >

NOP
ONLINE

Search category Search term Degree of difficulty

Every occurrence of the search term in the chosen category will lead to a hit
 Experiments that are part of the NOP teaching module are shown on a grey background

NOP- No	Title	Substance classes	Reaction type	Techniques	Difficulty
2003	Acid catalyzed acetalisation of 3-nitrobenzaldehyde with ethanediol to the correspondent 1,3-dioxolane	aldehyde, acetal, alcohol, protecting group, acid catalyst	reaction of the carbonyl group in aldehydes, acetalisation	removal of water by azeotropic distillation, heating under reflux with Soxhlet extractor (for 10 mmol preparation), stirring with magnetic stir bar, evaporating with rotary evaporator, shaking out, extracting, recrystallizing, filtering, heating with oil bath	Easy
5004	Acid catalyzed acetalisation of 3-nitrobenzaldehyde with ethanediol to the correspondent 1,3-dioxolane	aldehyde, acetal, alcohol, protecting group, acid catalyst	reaction of the carbonyl group in aldehydes, acetalisation	microwave-assisted reaction, stirring with magnetic stir bar, heating under reflux, distillation, introduction of gas, shaking out, extracting, evaporating with rotary evaporator, filtering, recrystallizing	Medium
1001	Nitration of toluene to 4-nitrotoluene, 2-nitrotoluene and 2,4-dinitrotoluene	nitroaromatics, aromatics	electrophilic substitution of aromatics, nitration of aromatics	distilling under reduced pressure, adding dropwise with an addition funnel, working with wash bottles, extracting, shaking out, recrystallizing, filtering, evaporating with rotary evaporator, stirring with magnetic stir bar, draining of gases, use of a cooling bath, heating with oil bath	Difficult
5026	Oxidation of anthracene to anthraquinone	aromatics, quinone	oxidation	mechanochemical reaction, grinding with a planet ball mill, filtering, evaporating with rotary evaporator	Easy
3021	Oxidation of anthracene to anthraquinone	aromatics, quinone	oxidation	stirring with magnetic stir bar, evaporating with rotary evaporator, filtering, recrystallizing	Easy
1021	Isolation of trimyristin from nutmeg	carboxylic acid ester, triglyceride, natural product	isolation of natural products	extracting with Soxhlet extractor, evaporating with rotary evaporator, recrystallizing, filtering, heating under reflux, heating with oil bath, stirring with magnetic stir bar	Easy
5019	Isolation of trimyristin from nutmeg	carboxylic acid ester, triglyceride, natural product	isolation of natural products	microwave-assisted extraction, recrystallizing, filtering, evaporating with rotary evaporator	Medium
4010	Synthesis of p-methoxyacetophenone from anisole	aromatics, carboxylic acid anhydride, acid catalyst	electrophilic substitution of aromatics, Friedel-Crafts acylation, reaction of the carbonyl group in carboxylic acid derivatives	heating under reflux, stirring with magnetic stir bar, filtering, evaporating with rotary evaporator, distilling under reduced pressure, heating with oil bath	Easy
1035	Synthesis of p-methoxyacetophenone from anisole	aromatics, carboxylic acid anhydride, acid catalyst	electrophilic substitution of aromatics, Friedel-Crafts acylation, reaction of the carbonyl group in carboxylic acid derivatives	working with cover gas, adding dropwise with an addition funnel, shaking out, extracting, filtering, distilling under reduced pressure, evaporating with rotary evaporator, stirring with magnetic stir bar, heating with oil bath	Medium
4027	Synthesis of 11-chloroundec-1-ene from 10-undecen-1-ol	chloroalkane, alcohol	nucleophilic substitution	heating under reflux, stirring with magnetic stir bar, adding dropwise with an addition funnel, distilling under reduced	Medium

Fertig Internet

17:52

NOP - Sustainability in the organic chemistry lab course - Microsoft Internet Explorer

Datei Bearbeiten Ansicht Favoriten Extras ?

Zurück Suchen Adresse http://www.oc-praktikum.de/index.php?page=experiment&exp_id=2003&view=instructions&lang=en Wechseln zu Links

NOP
ONLINE

NOP-Nr: 2003
Alternative: 5004

Chemical Reaction:

3-Nitrobenzaldehyde + Ethanediol $\xrightarrow{4\text{-toluenesulfonic acid}}$ 3-(2-Ethoxyethoxy)-4-nitrobenzaldehyde + H₂O ; Side reactions

Reaction Conditions:

Batch scale: 0.1 mol 0.01 mol 3-Nitrobenzaldehyde

Reaction:

3-Nitrobenzaldehyde (15.1 g, 100 mmol), ethanediol (6.83 g, 6.20 mL, 110 mmol) and 4-toluenesulfonic acid monohydrate (1.00 g, 5.30 mmol) are dissolved in cyclohexane (200 mL) in a dry 500 mL round bottom flask equipped with magnetic stirring bar, Dean Stark trap and reflux condenser. The reaction mixture is refluxed until no more water is collected in the Dean-Stark trap (approx. 2-3 h).

Work up:

The hot reaction mixture is poured into another 500 mL round bottom flask to separate it from an oily sediment (800 mg) which has formed at the bottom of the reaction vessel. The sediment consists predominantly of product, starting material and 4-toluenesulfonic acid (¹H-NMR spectrum). The solvent of the decanted solution is directly removed with a rotary evaporator . A yellow crystalline solid remains as crude product.

Crude product yield: 19.7 g; melting point 50-52 °C; Purity according to GC: 95% acetale + 4% aldehyde

In order to remove unreacted aldehyde as hydrogensulfite adduct, the crude product is dissolved in 200 mL *tert*-butyl methyl ether and extracted once with 20 mL saturated aqueous sodium hydrogen sulfite solution. The organic phase is dried over sodium sulfate, the sodium sulfate is removed by filtration and the solvent is evaporated with a rotary evaporator to yield a nearly colorless crystalline residue.

Yield: 17.9 g; melting point 57-58 °C; Purity according to GC: more than 99%.

The product is for most uses pure enough. If further purification is required, recrystallization from a solvent mixture of cyclohexane / *tert*-butyl methyl ether in a ratio of 1:1 (approximately 45 mL) can be carried out. The solution should be allowed to stand covered at room temperature until crystals form (if needed 1 to 2 days). If the solution is cooled quickly in an ice bath, only an oil generally forms. After cooling for a short time in an ice bath, the crystals are filtered and dried until constant mass is achieved in a desiccator at reduced pressure.

[Synthesis instructions as PDF file for printing](#)

Internet 17:56

http://www.oc-praktikum.de/en/instructions/pdf/2003_en.pdf - Microsoft Internet Explorer

Datei Bearbeiten Ansicht Favoriten Extras ?

Zurück Favoriten Suchen Wechseln zu Links >

Adresse http://www.oc-praktikum.de/en/instructions/pdf/2003_en.pdf

Lezezeichen

Piktogramme

Kommentare

Unterschriften

NOP

http://www.oc-praktikum.de

2003 Acid catalyzed acetalisation of 3-nitrobenzaldehyde with ethanediol to the correspondent 1,3-dioxolane

Classification

Reaction types and substance classes
reaction of the carbonyl group in aldehydes, acetalisation
aldehyde, acetal, alcohol, protecting group, acid catalyst

Work methods
removal of water by azeotropic distillation, heating under reflux with Soxhlet extractor (for 10 mmol batch scale), stirring with magnetic stir bar, evaporating with rotary evaporator, shaking out, extracting, recrystallizing, filtering, heating with oil bath

Instruction (batch scale 100 mmol)

Equipment
500 mL round-bottom flask, water separator, reflux condenser, heatable magnetic stirrer with magnetic stir bar, separating funnel, rotary evaporator, suction flask, suction filter, desiccator, oil bath

Substances

3-nitrobenzaldehyde (mp 58 °C; product from NOP-Nr. 1003)	15.1 g (100 mmol)
ethanediol (bp 198 °C)	6.83 g (6.20 mL, 110 mmol)
4-toluenesulfonic acid monohydrate (mp 103-105 °C)	190 mg (1.00 mmol)
cyclohexane (bp 81 °C)	200 mL
<i>tert</i> -butyl methyl ether (bp 55 °C)	200 mL
sodium disulfite	about 13 g (for 20 mL saturated aqueous NaHSO3-solution)
sodium sulfate for drying	about 5 g
cyclohexane (bp 81 °C) for recrystallization	about 30 mL
<i>tert</i> -butyl methyl ether (bp 55 °C) for recrystallization	about 30 mL

1 July 2005

1 von 12 209,9 x 297 mm

Fertig

Start Internet

NOP - Sustainability in the organic chemistry lab course - Microsoft Internet Explorer

Datei Bearbeiten Ansicht Favoriten Extras ?

Zurück Suchen Favoriten

Adresse http://www.oc-praktikum.de/index.php?page=experiment&exp_id=2003&view=substances&subview=required&scale=a&lang=en Wechseln zu Links >

NOP
ONLINE

NOP-Nr: 2003
Alternative: 5004

Overview
Instructions
Operating scheme
Substances
- Substances required
- Substances produced
- Data availability
- Effect factors TRGS 440
- Stoichiometry
Equipment
Evaluation
Analytics
User comments

Substances required

Batch scale: 0.1 mol 0.01 mol 3-Nitrobenzaldehyde

	Amount	Risk	Safety
Educts			
3-Nitrobenzaldehyde		15.1 g R 22-36/37/38	S 22-24/25-26-36
1,2-Ethanediol		6.83 g R 22	S 2
Catalyst			
4-Toluenesulfonic acid monohydrate		0.19 g R 36/37/38	S 2-26-37
Solvents			
Cyclohexane		~ 230 mL R 11-38-50/53-65-67	S 2-9-16-33-60-61-62
tert-Butyl methyl ether		230 mL R 11-38	S 2-9-16-24
Others			
Sodium disulfite		~ 13 g R 22-31-41	S 2-26-39-46
Sodium sulfate		~ 5 g R 36/37/38	S 26-36
Molecular sieve 4A		0 g R 36/37/38	S 24/25
Solvents for analysis			
tert-Butyl methyl ether		5 mL R 11-38	S 2-9-16-24

English

pages/experiment.php: March 03, 2006
views/required.php: March 03, 2006

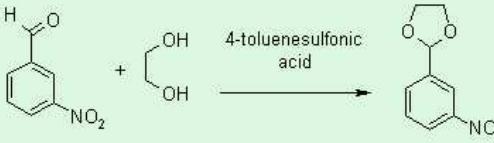
Fertig

Müfit NOP Brazil 2006-10... NOP - Sustainability in...

Internet DE

NOP - Sustainability in the organic chemistry lab course - Microsoft Internet Explorer

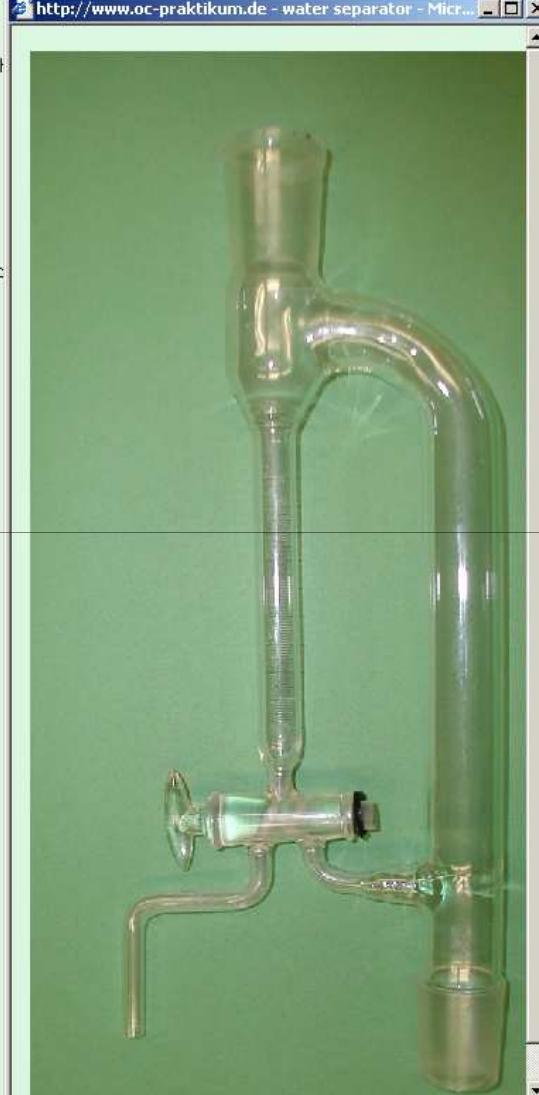
Datei Bearbeiten Ansicht Favoriten Extras ?

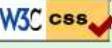
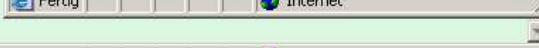

Zurück Wechseln zu Links >

Adresse http://www.oc-praktikum.de/index.php?page=experiment&exp_id=2003&view=equipment&lang=en

NOP
ONLINE

NOP-Nr: 2003
Alternative: 5004


Overview
Instructions
Operating scheme
Substances
Equipment
Evaluation
Analytics
User comments

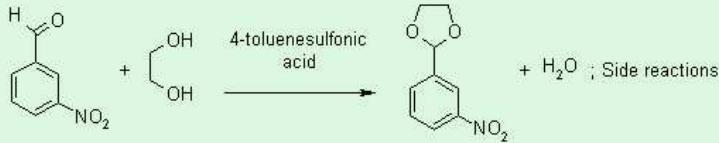
Equipment

Batch scale: 0.1 mol 0.01 mol 3-Nitrobenzaldehyde

	round bottom flask 500 mL		water separator
	reflux condenser		heatable magnetic
	separating funnel		rotary evaporator
	suction flask		suction filter
	exsiccator with drying agent		oil bath

W3C XHTML 1.0 W3C CSS SOME RIGHTS RESERVED English Fertig Internet

NOP - Sustainability in the organic chemistry lab course - Microsoft Internet Explorer


Datei Bearbeiten Ansicht Favoriten Extras ?

Zurück Adress: http://www.oc-praktikum.de/index.php?page=experiment&exp_id=2003&view=evaluation&subview=exp_text&lang=en Wechsel zu Links >

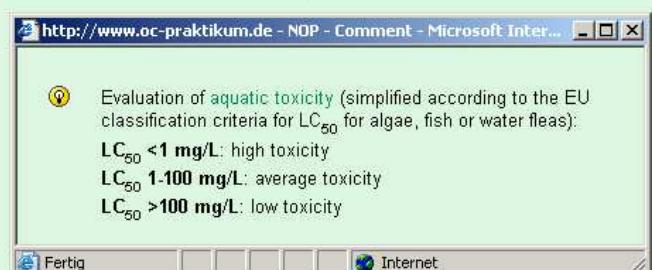
NOP
ONLINE

NOP-Nr: 2003
Alternative: 5004

Overview
Instructions
Operating scheme
Substances
Equipment
Evaluation
- Indices
- Evaluation text
Analytics
User comments

Evaluation text

The classical variant of the "Acid catalyzed acetalisation of 3-nitrobenzaldehyde with ethanediol to the correspondent 1,3-dioxolane" is an easily performed experiment. The desired product is obtained in high yield and high selectivity. Also the purity of the end product is very high.

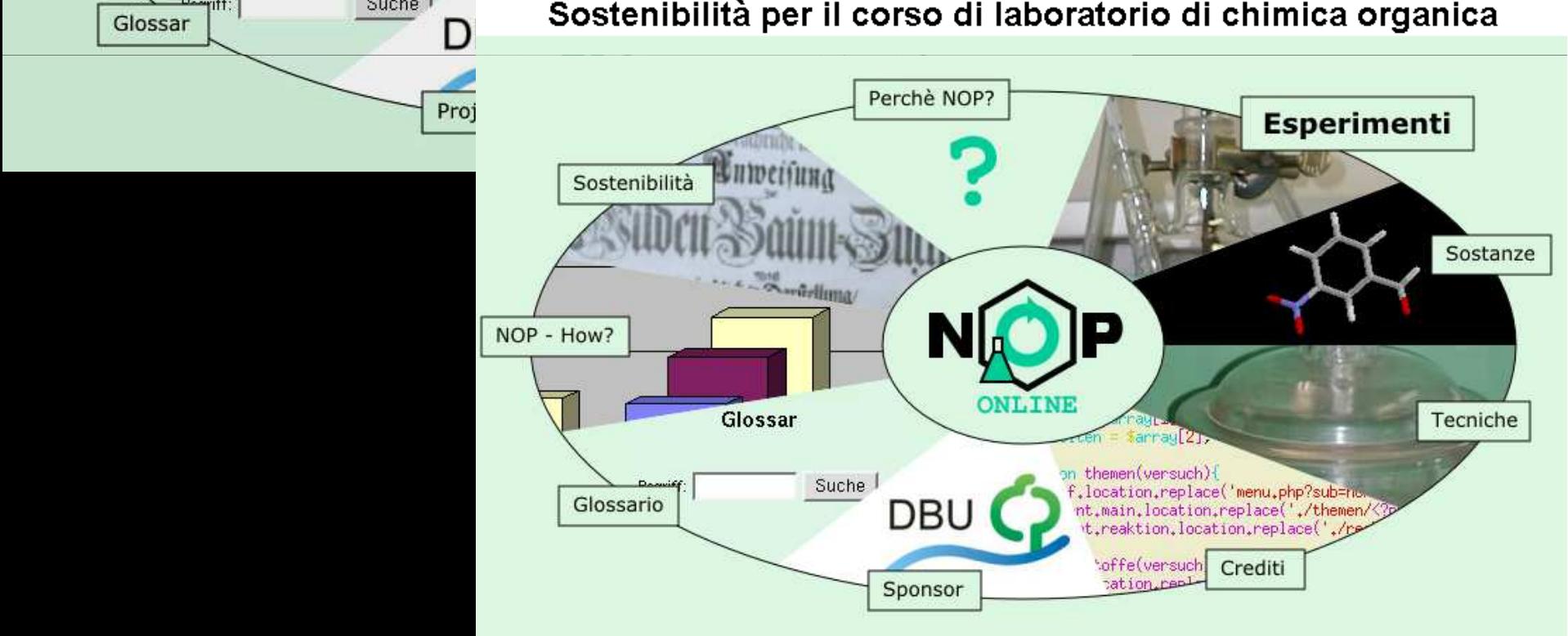

The **mass efficiency** is high to medium, compared to the other NOP experiments and thus evaluates as good . The **energy efficiency** of the classical experiment is highly dependent on the method of heating .

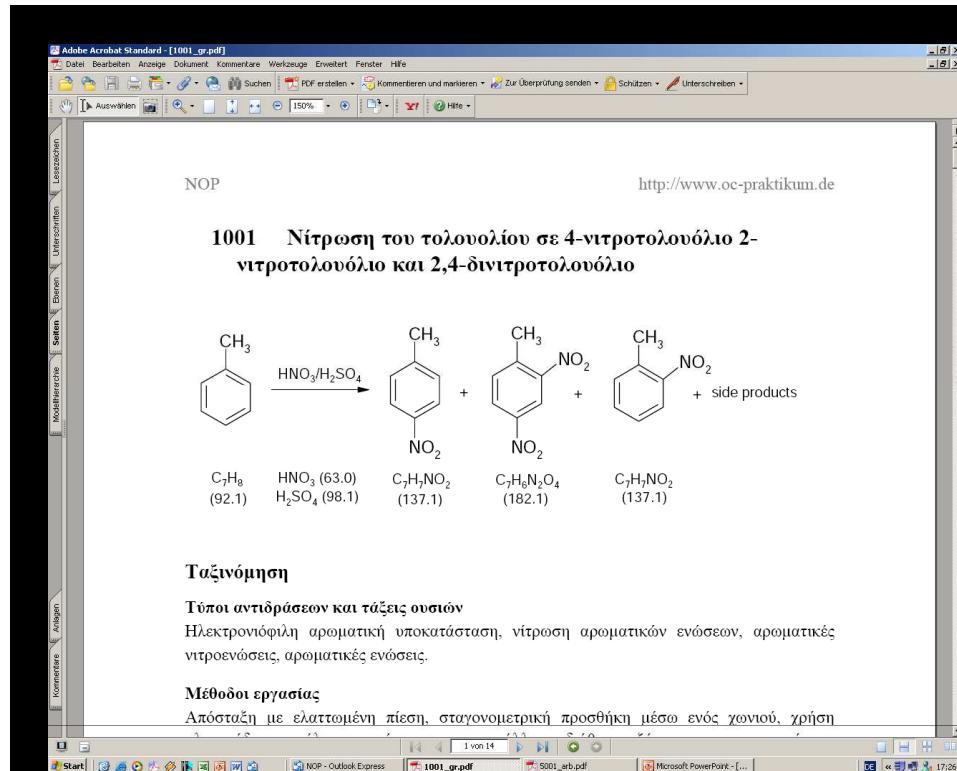
(Eco)toxicological data for the educt **3-nitrobenzaldehyde** are incomplete, toxicological data for the product **2-(3-nitrophenyl)-1,3-dioxolane** have not been determined at all. According to theoretical prediction methods both product and educt are suspected to have mutagenic, carcinogenic and sensitizing properties. The organic solvents used in this experiment **ethanol**, **cyclohexane** and **tert-butyl methyl ether** exhibit relatively low acute toxicity. Also the inorganic auxiliary materials do not pose significant dangers to human health .

Edukt, product and the solvents **cyclohexane** and **tert-butyl methyl ether** are biologically not easily degradable, and some are classified as dangerous to the environment because of their toxicity to aquatic organisms .

Summed up we evaluate this experiment with good economic efficiency and acceptable toxicological risks, but a relatively high environmental persistence of the used substances with the "yellow light".

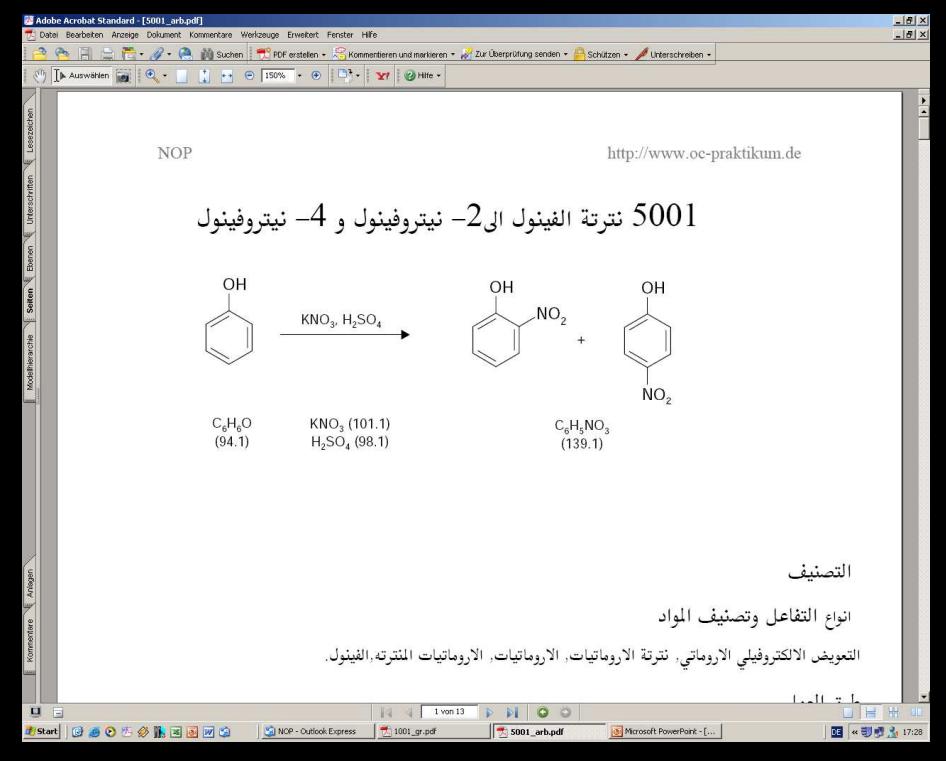
 English pages/experiment.php: March 03, 2006
en/exp_evaluations/html/2003.html: March 03, 2006




Start Internet 18:20

Nachhaltigkeit im organisch-chemischen Praktikum

Sostenibilità per il corso di laboratorio di chimica organica



NOP in Greek

Available Languages

Arabic
Georgian
German
Greek
English

Indonesian
Italian
Portuguese
Russian
Spanish
Turkish

NOP in Arabic

NOP - Sustainable Organic Chemistry Lab Course

International Partners

Project granting

Development of the database for
NOP – *Organic Chemistry Lab Course*
was granted by:
Deutsche Bundesstiftung Umwelt
(German Environmental Foundation)

**UMWELT
STIFTUNG**

