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Kurzbeschreibung: Erarbeitung von Referenzwerten für Bodenorganismen für die Böden in 
Deutschland  

Da in Deutschland keine flächendeckenden Referenzwerte für die Bodenbiodiversität insbeson
dere für Bodentiere vorliegt ist es schwierig einen sinnvollen Schutz für den Bereich Bodenbio
diversität zu entwickeln. Das Projekt Bodentierkartierung setzt an dieser Stelle an. Ziel des Pro
jekts ist die Erarbeitung von großskaligen, räumlich expliziten Referenzwerten für die Boden
biodiversität. Hierfür werden zoologische Daten der Bodentierfunddatenbank Edaphobase des 
Senckenberg Museums für Naturkunde Görlitz und Bodendaten der Bundesanstalt für Geowis
senschaften und Rohstoffe (BGR) genutzt. 

Dem Projektplan folgend wurde die bodenbiologische Untersuchungslage der Bundesländer 
überprüft, um etwaige in der Edaphobase fehlende Fundortdatensätze aufzuspüren. Die Fund
ortdaten der Edaphobase wurden daraufhin durch Datensätze der Bodenübersichtskarte 
1 : 200 000 der Bundesanstalt für Geowissenschaften und Rohstoffe ergänzt. Zur Vorbereitung 
der folgenden Modellierung wurden Daten zu Habitateignung, Landnutzung, Klima und Bodenei
genschaften zusammengestellt. 

Abstract: Development of reference values for soil organisms for the soils of Germany  

Since there are no comprehensive reference data for soil biodiversity in Germany, especially for 
soil animals, it is challenging to develop a useful protection for soil biodiversity. Here, the project 
"Soil Animal Mapping" approaches the problem. The aim of the project is to develop large-scale, 
spatially explicit reference values for soil biodiversity. For this purpose, zoological data of the 
Edaphobase of the Senckenberg Museum of Natural History Görlitz and soil data of the Federal 
Institute for Geosciences and Natural Resources (BGR) are used. 

Following the project agenda, the soil biology survey situation of the federal states was reviewed 
in order to detect any site data sets missing in the Edaphobase. The Edaphobase site data were 
then supplemented with data sets from the Soil Survey Map 1 : 200,000 of the Federal Institute 
for Geosciences and Natural Resources. Data on habitat suitability, land use, climate and soil 
properties were compiled in preparation for the following modeling. 
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Zusammenfassung 

Die im Boden lebenden Organismen machen nicht nur einen großen Teil der terrestrischen Bio
diversität aus, sondern tragen auch zu einem Großteil der Bodenprozesse und -funktionen bei, 
die die Ökosystemleistungen des Bodens ausmachen. Die enorme biologische Vielfalt im Boden 
und ihre funktionelle Bedeutung haben lassen die Notwendigkeit der Erhaltung der Bodenbio
zönosen erkennen. Viele nationale und EU-Rechtsvorschriften fordern ausdrücklich den Schutz 
und die Erhaltung der biologischen Vielfalt des Bodens und entsprechende Monitoringpro
gramme. Für ein Monitoring der Bodenbiodiversität kommen verschiedene Ansätze in Frage, die 
alle auf einer Bewertung der Ergebnisse anhand eines Vergleichs mit Referenzwerten basieren, 
die aus Felduntersuchungen an ausgewählten Referenzstandorten abgeleitet werden. Für die Er
haltung und den Schutz von Bodenlebensgemeinschaften sind jedoch evidenzbasierte Referenz
werte erforderlich, die auf einer breiteren räumlichen Skala die lokale und regionale Verteilung 
sowie die zugrundeliegenden Ursachen dieser Verteilung ableiten und Referenzwerte im Sinne 
von standard	operational	ranges für das Monitoring und die Bewertung der Bodenbiodiversität 
auf nationaler Ebene bereitstellen. Ein Ansatz zur Ableitung verallgemeinerungsfähiger Refe
renzwerte für die Bodenbiodiversität ist die Hochskalierung lokaler Beobachtungsdaten auf grö
ßere räumliche Maßstäbe unter Verwendung korrelativer Modellierungsmethoden. 

In den letzten Jahren wurde mit der Entwicklung von Artenverteilungsmodellen (SDM) ein leis
tungsfähiges Instrument zur Bewertung und Vorhersage der räumlichen Verteilung der biologi
schen Vielfalt und ihrer potenziellen Einflussfaktoren entwickelt. SDMs modellieren statistisch 
die Korrelationen zwischen Arten oder Lebensgemeinschaften einerseits und Umweltparame
tern andererseits und nutzen diese Korrelationen, um das potenzielle Vorkommen der Arten 
bzw. Lebensgemeinschaften auf der Grundlage der räumlichen Ausprägung der Umweltparame
ter auf größere räumliche Maßstäbe hochzuskalieren (und zu kartieren) (Modelle der "Artenver
teilung" oder der "Lebensraumeignung"). Dieser Ansatz bietet eine Lösung für die Entschei
dungsunterstützung von Maßnahmen zur Erhaltung der biologischen Vielfalt. Mittlerweile gibt 
es verschiedene SDM-Modellierungsalgorithmen, wie z. B. General	Linear	Models (GLM), Classifi
cation	Tree	Analysis (CTA), Multivariate	Adaptive	Regression	Spline (MARS), Maximum	Entropy 
(MAXENT), Random	Forests (RF) und Generalised	Boosted	Regression	Models (GBM), die alle ihre 
Stärken und Schwächen haben. Zur Bewertung ihrer jeweiligen Fähigkeit Verteilung einer be
stimmten Organismengruppe vorherzusagen, wird die Anpassungsgüte der Modelle u. a. anhand 
konventioneller Statistik wie R2, Root	Mean	Square	Error (RMSE) sowie schwellenwertunabhän
giger Area	under	the	Receiver	Operating	Characteristic	Curve (AUCROC) oder Kappa-Statistiken 
verglichen. 

SDMs können auch zur Vorhersage der Verbreitungsgebiete von Arten verwendet werden. Wäh
rend das "Verbreitungsgebiet einer Art" das Vorkommen eines Taxons innerhalb eines geografi
schen Gebiets beschreibt, ist die "Größe des geografischen Verbreitungsgebiets einer Art" (in 
km²) die Fläche, auf der ein Taxon vorkommt. Die Größe des geografischen Verbreitungsgebiets 
wird als Indikator für den Bedrohungsstatus einer Art verwendet. Arten mit einem engen Ver
breitungsgebiet sind viel stärker gefährdet als Arten mit einem größeren Verbreitungsgebiet. 
Zwei etablierte Maße für die Größe des geografischen Verbreitungsgebiets von Arten existieren: 
die (räumliche) Ausdehnung des Vorkommens (extent	of	occurrence,	EOO) und das Verbrei
tungsgebiet (area	of	occupancy, AOO), die von der IUCN als Standardmaße für die Einstufung von 
Arten in Bedrohungskategorien verwendet werden.  

Regenwürmer haben sich als äußerst wertvolle Indikatoren für die Bodenbiodiversität erwiesen, 
die zum Monitoring eines breiten Spektrums von Lebensräumen und Landnutzungen nützlich 
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sind. Obwohl die Rolle der Regenwürmer z. B. bei der Verbesserung der Bodenqualität seit lan
gem bekannt ist, wurde bisher noch nicht untersucht, wie die Verbreitung dieser Bodentier
gruppe entlang von Umweltgradienten beeinflusst wird und welche Faktoren wirksam sind. Re
genwurmarten können in verschiedene ökologische Lebensformen eingeteilt werden (klassisch 
definiert als epigäische, die auf der Bodenoberfläche und in der Streu leben, endogäische, die im 
Mineralboden wühlen, und anözische, die in permanenten Röhren von der Bodenoberfläche bis 
in den Mineralboden hinein leben). Aufgrund ihrer unterschiedlichen Bindung an den Lebens
raum Boden können sie tatsächlich unterschiedlich auf Umweltfaktoren reagieren. Soweit uns 
bekannt ist, wurde bisher in keiner Studie die Verteilung bestimmter Regenwurmarten mit meh
reren Modellalgorithmen modelliert und räumlich kartiert, weder in Deutschland noch an
derswo. 

In der vorliegenden Studie wird die räumliche Verteilung von Regenwurmgemeinschaften (Ge
samtdichte bzw. -abundanz, Artenreichtum) sowie die Wahrscheinlichkeit des Vorkommens und 
die Größe des geografischen Verbreitungsgebiets von zwölf ausgewählten Regenwurmarten in 
Deutschland vorhergesagt. Hierzu werden unter mehrere Modellalgorithmen geprüft und auf 
Grundlage der jeweiligen Modellleistung das geeignetste Modell für die Projektion der Regen
wurmverbreitung in ganz Deutschland ausgewählt. Die Studie folgt den ODMAP-Standardproto
kollen für die Implementierung von Artenverbreitungsmodellen (SDMs) (Zurell et	al., 2020). 
Darüber hinaus werden mehrere Methoden (Expertenurteil, statistische Verfahren, ökologische 
Relevanzanalyse) zur Auswahl von Umweltprädiktoren verwendet, um eine Verzerrung bei der 
Variablenauswahl zu vermeiden und so ein breites Spektrum relevanter Umweltvariablen für 
eine robuste Modellierung der Verbreitung von Regenwurmarten abzudecken.  

Algorithmen des maschinellen Lernens, wie Random	Forests	(RF),	Generalized	Boosted	Regres
sion	Models	(GBM) oder die Maximum-Entropie-Methode (MAXENT) haben in jüngster Zeit bes
sere Ergebnisse erzielt als traditionelle Regressionsmodelle, wie Generalized	Linear	Regression	
Models	(GLM) oder Generalized	Additive	Regression	Models (GAM) (Elith et	al., 2006; Li & Wang 
2013; Valavi, 2022). Obwohl RF bisher nur selten verwendet wurden und ihr Potenzial in SDMs 
nicht ausreichend genutzt wurde, hat ihre hohe Vorhersageleistung in letzter Zeit in angewand
ten ökologischen Studien Aufmerksamkeit erregt (z. B. Mi et	al., 2017). RF und GBM als Ensem
ble-Klassifikatoren bestehen aus mehreren alternativen Bäumen und verwenden diese bei der 
Entscheidungsfindung während der Erstellung von Modellvorhersagen (Li & Wang, 2013; 
Guisan et	al., 2017). Obwohl in dieser Studie die Leistung von GLM und GAM übertroffen wurde, 
sagt GBM nur innerhalb des dritten Quartils der Daten zur Gesamtabundanz und zum Arten
reichtum voraus. Der Vergleich der Anpassungsgüte-Statistiken (R², CI, AUC, Kappa), der beo
bachteten im Vergleich zu den vorhergesagten Datenanpassungen sowie der daraus resultieren
den Karten der vorhergesagten Abundanz und des Artenreichtums durch alle Modelle veran
schaulicht die gute Leistung von RF. So war dieser Algorithmus beispielsweise in der Lage, Vor
hersagen über den Bereich des dritten Quartils der Dichtefelddaten hinaus zu treffen, ein
schließlich maximaler Dichten von über 600 Ind m-2, und eine große Anzahl von Arten in den Da
ten zu erfassen. Frühere Studien bestätigen unsere Feststellung, dass Random-Forest-Algorith
men die beste Vorhersageleistung zeigen (z. B. Marmion et	al., 2008; Mi et	al., 2017; Valavi et	al., 
2022). Es wurde jedoch eine Verbesserung der Anpassungsgüte für Dichtevorhersagen in RF 
sichtbar, nachdem zusätzliche Daten (aus Bayern) einbezogen wurden, was bestätigt, dass RF 
datenabhängig sein kann (s. a. Valavi et	al., 2021; Yiu, 2021). Die resultierenden partiellen 
Responsekurven, die die Beziehungen zwischen Gemeinschaften (oder Arten) und der Umwelt 
offenlegen, sind ein weiteres Beispiel dafür, wie RF-Modelle ökologisch relevante Ergebnisse lie
fern (Cutler et	al., 2007, Mi et	al., 2017).  
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Trotz der hohen Anpassungsgüte der RF-Modelle ist jedes Vorhersagemodell nur so gut wie die 
zugrunde liegenden Daten, die zur Kalibrierung verwendet werden. Mit über 20 000 Datensät
zen von fast 1000 Fundorten können die biologischen Hintergrunddaten als umfangreich und 
ausreichend angesehen werden. Nur gut 40 % der Regenwurmdatensätze enthielten auch Daten 
zu den Umweltprädiktoren, mit einer entsprechend hohen ökologischen Interpretierbarkeit der 
Funde. Die entsprechend großen Datenlücken wurden aufwändig durch externe Daten aus der 
Bodenübersichtskarte 1 : 200 000 von Deutschland (BGR 1997–2018) und weiteren Datenquel
len ergänzt. Dies ist für einige Bodenparameter durchaus kritisch, für die flächenhafte Daten 
weiträumig auf Interpolationen beruhen, weil Böden kleinräumig sehr heterogen sein können 
und Interpolationen die Gefahr der räumlichen Überinterpretation der Umweltdaten mit sich 
bringen. Auch konnten nicht alle relevanten Parameter erfasst werden. So halten Creamer et	al. 
(2019, in Baritz et	al., 2021) Indikatoren für die Qualität der organischen Bodensubstanz (z. B. 
C/N-, N/P-Verhältnis) auch für Bodenorganismen für sehr wichtig. Entsprechende Daten sind 
für Deutschland jedoch nicht flächendeckend verfügbar.  

Es muss auch auf die potenziellen Schwierigkeiten bei der Verwendung externer Habitatdaten 
hingewiesen werden, da eine zeitliche Trennung zwischen Regenwurmbeobachtungen und Ha
bitattypenübersichten eine auf Landnutzungsänderungen zurückgehende Fehlzuweisung ent
halten kann. Glücklicherweise war der Habitattyp die häufigste Umweltmetadatengruppe, die 
mit den Regenwurmdaten erfasst wurde, so dass eine insgesamt befriedigende Modellkalibrie
rung gewährleistet war. Schließlich wurden nur abiotische Variablen als Prädiktorvariablen be
rücksichtigt; etwaige Wechselwirkungen mit anderen Organismen (d. h. zwischen Regenwurm
arten, anderer Bodenfauna oder Mikroorganismen) wurden nicht berücksichtigt, da auch für an
dere Organismen(gruppen) keine entsprechenden Daten verfügbar sind (und Studien über meh
rere Bodenorganismengruppen an denselben Standorten äußerst selten sind). Obwohl nicht alle 
potenziellen Einflussfaktoren auf die Verbreitung von Regenwürmern berücksichtigt werden 
konnten, enthielten die Modelle eine große Anzahl der wichtigsten Umweltparameter, von de
nen bekannt ist, dass sie die Fitness von Regenwürmern beeinflussen (z. B. Lee, 1985; Edwards 
& Arancom, 2022). 

Obwohl die Modellvorhersagen noch nicht im Freiland validiert wurden (hier können die im 
Rahmen von Monitoringprogrammen des Bundes und der Länder vorgesehenen Erhebungen ein 
erster Schritt sein), bestätigen die veröffentlichten Zusammenstellungen der Autökologie der 
Regenwurmarten die Mehrzahl der Vorhersagen. Bemerkenswert ist der vorhergesagte 
Response der Arten auf den pH-Wert des Bodens, wobei viele acidophobe und einige acidophile 
oder -tolerante Arten mit einem Schwellenwert zwischen pH 4 und 5 ermittelt wurden. Graefe & 
Beylich (2003) berichten ebenfalls über eine solch starke artspezifische Differenzierung mit ei
nem gemeinsamen Schwellenwert von pH 4,2, mit Ausnahme z. B. der acidophoben A.	longa mit 
einem Schwellenwert von pH 5, der auch von unseren Modellen vorhergesagt wurde. Unsere 
Vorhersagen zu den Reaktionen der Arten auf die Bodenazidität werden auch weitgehend bestä
tigt, z. B. von Sims & Gerard (1999), Jänsch et	al. (2013), Krück (2018) und Sherlock (2018). 
Diese Autoren sowie Römbke et	al. (2018) und Lehmitz et	al. (2016) beschreiben auch artspezi
fische Präferenzen für den Gehalt an organischer Bodensubstanz (SOM), die durch die Modell
vorhersagen fast vollständig bestätigt werden. Einige dieser Autoren berücksichtigten auch Prä
ferenzen für den Tongehalt, die im Allgemeinen, aber nicht immer, von den hier vorgelegten Mo
dellvorhersagen bestätigt werden. So berichten Jänsch et	al. (2013) über die Vorliebe von D.	
octaedra für Böden mit niedrigem Tongehalt und die leichte Vorliebe von A.	cholorotica für 
Tonböden, die beide durch unsere Ergebnisse widerlegt werden. Auch die von uns vorherge
sagte positive Reaktion von L.	terrestris auf Böden mit geringerem Ton- und Schluffgehalt steht 
im Widerspruch zu der Einschätzung von Sims & Gerard (1999) und Sherlock (2018), dass diese 
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Art lehmreiche Böden bevorzugt (diese Autoren beziehen sich allerdings auf britische Populatio
nen). 

Die vorliegende Studie bestätigt die Aussagen früherer Arbeiten zu den Auswirkungen von Nie
derschlag und Bodenfeuchtigkeit; diese Variablen sind für die Zunahme der Population und die 
Verteilung erwachsener Regenwürmer nach Regenfällen verantwortlich, insbesondere in relativ 
trockenen Gebieten oder nach langen Dürreperioden (Lavelle, 1978; Lavelle & Spain, 2005; Kalu 
et	al., 2015; Rajwar et	al., 2022). Phillips et	al. (2019) ermitteln mit einfacheren statistischen Me
thoden das Klima (insbesondere den mittleren Jahresniederschlag und die Temperatur) als fast 
ausschließlichen Einflussfaktor auf die Regenwurmgemeinschaften (Gesamtdichte, Artenreich
tum) auf globaler Ebene. Unsere Studie bestätigt zwar die kombinierte Rolle von Temperatur, 
Niederschlag und Bodenfeuchtigkeit, identifiziert aber auch den Lebensraumtyp, den pH-Wert 
des Bodens und die organische Bodensubstanz als wichtige Einflussfaktoren, die zusammen 
etwa 70 % zu den Vorhersagen beitrugen. Da das Klima auf globaler Ebene z. B. auch die natürli
che Vegetation (die zu Biomen und Lebensraumtypen führt) und teilweise auch die Bodenge
nese beeinflusst, ist es plausibel, dass statistische Methoden das Klima gegenüber anderen Um
weltparametern als treibende Kraft auf globaler Ebene identifizieren. Unsere Studie auf regiona
ler Ebene zeigt jedoch auch die Bedeutung von Lebensraum- und Bodenparametern als zusätzli
che Faktoren für die Verbreitung von Regenwürmern. Im Gegensatz dazu bezweifeln Hodson et	
al. (2021), dass Bodenfaktoren ein wichtiger Faktor für die Regenwurmdichte und -verteilung 
sind, insbesondere auf nationaler Ebene. Die maßgeblichen Faktoren für die biologische Vielfalt 
der Regenwürmer sind also offensichtlich skalenabhängig; Klimaparameter sind auf globaler 
und regionaler Ebene wichtig, während Lebensraum- und Bodenfaktoren auf kleineren räumli
chen Skalen an Bedeutung gewinnen. Auf lokaler Ebene (wo ähnliche klimatische Bedingungen 
herrschen) dürften die letztgenannten Faktoren am wichtigsten sein, und auch anthropogene 
Landnutzungsmaßnahmen werden die Artenvielfalt der Regenwürmer zunehmend beeinflussen. 

Die vorliegende Studie sagt Vorkommenswahrscheinlichkeiten jenseits der traditionellen Nut
zungstypen Wald, Grünland und Acker vorher, indem alle terrestrischen EUNIS-Level-1-Lebens
raumtypen, einschließlich mariner (d. h. Inseln), küstennaher und städtischer Standorte, einbe
zogen wurden. Diese Vorhersagen stimmten in hohem Maße mit den vorgeschlagenen Klassifi
zierungen der Verbreitungsgebiete auf der Grundlage der Verbreitungsvorhersagen überein. So 
wurde für die meisten Arten mit großem Verbreitungsgebiet eine weite Verbreitung in vielen 
Regionen Deutschlands und ein Vorkommen in vielen verschiedenen Lebensraumtypen prog
nostiziert, oft mit Wahrscheinlichkeiten von mehr als 50 – 60 %, was auf ihren ökologisch gene
ralistischen Charakter hinweist. In der Roten Liste Deutschlands werden alle diese Arten als 
sehr häufig aufgeführt (Lehmitz et	al., 2016), und in der Literatur werden sie als euryök bzw. 
wird ihr Vorkommen als ubiquitär beschrieben (z. B. Sims & Gerard, 1999; Jänsch et	al., 2013; 
Römbke et	al., 2018; Sherlock, 2018), was unsere Ergebnisse bestätigt. Obwohl L.	terrestris	im 
Allgemeinen als eurytop angesehen wird, wird gelegentlich auf eine leichte Präferenz für Grün
landstandorte hingewiesen (Sims & Gerard, 1999; Jänsch et	al., 2013; Sherlock, 2018), was durch 
unsere Vorhersagen bestätigt wird, die aber in sehr ähnlichem Maße auch Waldhabitate vorher
sagen. Die Art gilt als störungsintolerant (Lehmitz et	al., 2016; Römbke et	al., 2018), was ihre ge
ringe Wahrscheinlichkeit für natürliche Sonderstandorte (z. B. Auen, Moore) sowie anthropogen 
stark beeinflusste Lebensraumtypen erklären könnte. Vorsicht ist u. U. bei den Aussagen zu A.	
caliginosa geboten, die kryptische Arten enthalten kann (Lehmitz et	al., 2016; Römbke et	al., 
2018); dies ist jedoch eine Frage der Taxonomie und der Artbestimmung und nicht der Modellie
rungsverfahren.  
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Den von uns als Arten mit mittlerem Verbreitungsgebiet eingestuften Arten wird ebenfalls ein 
weites Vorkommen in Deutschland vorhergesagt, wenn auch oft mit deutlich geringerer Wahr
scheinlichkeit. In der Roten Liste Deutschlands werden sie alle als häufig	geführt. Obwohl für sie 
ein Vorkommen in vielen verschiedenen Lebensraumtypen prognostiziert wird (euryöke Arten), 
scheinen sie stärker habitatabhängig zu sein und ein Optimum in bestimmten Lebensraumtypen 
zu haben. So wurde beispielsweise für A.	chlorotica ein stärkeres Vorkommen auf landwirt
schaftlich genutzten Flächen (Acker oder Grünland) vorhergesagt, was auch aus Beobachtungs
daten hervorgeht (z. B. Jänsch et	al., 2013; Römbke et	al., 2018). Andererseits wird D.	octaedra 
hauptsächlich in Waldhabitaten vorkommend vorhergesagt, was mit Erkenntnissen von z. B. 
Jänsch et	al. (2013), Römbke et	al. (2018) und Sherlock (2018) korrespondiert. In Anbetracht 
der acidophilen Natur der Art ist eine Präferenz für Nadelwälder wahrscheinlich (vgl. Sherlock, 
2018). Während A.	castaneus eher ein Generalist zu sein scheint, zeigen die vorliegenden Ergeb
nisse die höchsten Vorkommenswahrscheinlichkeiten in Wäldern und Auen, was u. a. Jänsch et	
al. (2013), Römbke et	al. (2018) und Krück (2018) widerspricht, die eine Präferenz auch für 
Grasland sehen. Interessanterweise wurde A.	longa von unseren Modellen auch als Generalist 
vorhergesagt, der in verschiedenen Lebensraumtypen vorkommt, aber in feuchteren Lebensräu
men (z. B. Inseln, Küsten, Überschwemmungsgebieten, Mooren) fehlt. Dies wird von Krück 
(2018) bestätigt, der A.	longa	eine Vorliebe für trockenere Lebensräume bescheinigt, im Gegen
satz zu Sims & Gerard (1999), die ein Vorkommen der Art in Überschwemmungsgebieten Groß
britanniens feststellten. 

Die Arten mit eingeschränktem Verbreitungsgebiet weisen alle eine auf bestimmte Regionen 
und Lebensraumtypen beschränkte Vorkommenswahrscheinlichkeit auf. In der Roten Liste 
Deutschlands sind sie alle als selten oder sehr	selten aufgeführt. Zum Beispiel liegen die höchsten 
Verbreitungswahrscheinlichkeiten von D.	attemsi eher in den Hügelländern und Mittelgebirgen; 
die höchsten Wahrscheinlichkeiten wurden für die Nutzungsart Acker (und in zweiter Linie für 
Wälder) vorhergesagt. Dies steht im Widerspruch zu früheren Arbeiten, mit Ausnahme von 
Sherlock (2018), der Vorkommen von D.	attemsi in Wäldern Großbritanniens feststellte. A.	eiseni 
wird von den Modellen als am wahrscheinlichsten in Wäldern (in Mittel- und Süddeutschland) 
vorkommend vorhergesagt, wie auch Römbke et	al. (2018) und Lehmitz et	al. (2016) berichten. 
A.	limicola ist als hydrophil bekannt (Sims & Gerard 1999; Lehmitz et	al. 2016; Krück 2018; 
Römbke et	al., 2018; Sherlock, 2018). Dementsprechend sagen die Modelle voraus, dass die Art 
mit hoher Wahrscheinlichkeit in Überschwemmungsgebieten sowie im Grasland und in Wäldern 
vorkommt – die sich möglicherweise ebenfalls in Überschwemmungsgebieten u. ä. befinden, de
ren Funddaten aber möglicherweise fälschlich allgemeineren Lebensraumtypen zugeordnet 
wurden. Die Modelle sagen voraus, dass A.	limicola vor allem in Westdeutschland (und am 
stärksten im Rheintal) vorkommt, was zu den Befunden von Krück (2018) passt, dass die Art in 
Nordostdeutschland selten vorkommt. L.	badensis ist eine in Deutschland endemische Art, die in 
den Wäldern des Hochschwarzwalds (Südwestdeutschland) vorkommt (Lehmitz et	al., 2016), 
was sich auch in den Modellvorhersagen zeigt. 

Interessant sind die wenigen Arten, die nach den Modellierungen in Ausnahmehabitaten vor
kommen. So wurde für A.	limicola, L.	rubellus und L.	castaneus ein Vorkommen in marin beein
flussten Lebensräumen (d. h. auf Inseln) und für A.	caliginosa, A.	chlorotica und A.	limicola in 
Küstengebieten vorhergesagt; alle jedoch mit einer geringen (<35 %) Vorkommenswahrschein
lichkeit. Das weist auf ein lückenhaftes Vorkommen in diesen Lebensräumen hin. Auffallend ist 
die große Anzahl von Arten, die mit mäßiger Wahrscheinlichkeit in städtischen, industriellen 
und anderen anthropogenen Gebieten vorkommen. Diese neuen Ergebnisse können bei der Be
wertung von Erhebungen zur biologischen Vielfalt des Bodens in solchen Gebieten helfen. 
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Auf der Ebene der Lebensgemeinschaften ist die geografische Variation und die inverse Bezie
hung zwischen Artenreichtum und Gesamtabundanz, wie sie in dieser Studie (hauptsächlich für 
Nordostdeutschland) festzustellen ist, ein häufiges Phänomen in der Ökologie. Gesamtabundanz 
und Artenreichtum verhalten sich oft gegenläufig, so dass ein Gebiet eine hohe Individuendichte, 
aber einen geringen Artenreichtum aufweist (Verberk et	al., 2011). Eine Region mit ungünstige
ren Umweltbedingungen ermöglicht ggf. nur das Vorkommen einiger weniger Arten, diese aber 
in durchaus großen Populationen (hohe Individuenzahlen), u. U. gerade aufgrund geringerer 
Konkurrenz durch andere Arten (Groves, 2022). Dies könnte möglicherweise die hohe Individu
endichte, aber den geringen Artenreichtum erklären, der für Nordostdeutschland (insbesondere 
Brandenburg) vorhergesagt wird, wo vergleichsweise trockenere, sandige Böden vorherrschen 
und wo vorwiegend Nadelbaumforste stocken. In diesem Zusammenhang sind die hohen Vor
kommenswahrscheinlichkeiten von D.	octaedra und L.	rubellus in diesen Gebieten auffällig, bei
des epigäische, acidophile (oder -tolerante) Arten mit einer vermuteten Affinität zu Wäldern. Ei
gene Erhebungen der biologischen Vielfalt im Boden haben oft hohe Populationsdichten von 
sehr wenigen epigäischen Arten in Wäldern auf sandigen Böden gezeigt. Andererseits werden 
für die bayerischen Alpen und das Rheintal als einige der wenigen Regionen mit hoher Regen
wurm-Biodiversität (sowohl Gesamtabundanz als auch Artenreichtum) in Deutschland vorher
gesagt. Das Rheintal ist für reiche Böden und eine hohe allgemeine Biodiversität bekannt, und 
die Vorhersagen für die alpinen Regionen gehen konform mit der Alpenkonvention (2014), die 
die Alpen aufgrund ihres natürlichen Zustands und der geringe(re)n menschlichen Störungen als 
eine der reichsten Regionen Europas in Bezug auf die Vielfalt von Pflanzen und Tieren aner
kennt. 

Die Größe des Verbreitungsgebiets ist seit langem als guter Indikator für die Bewertung der Be
drohung einer Art anerkannt. Der Bedrohungsstatus der Regenwürmer in Deutschland ist in der 
entsprechenden Roten Liste dokumentiert (Lehmitz et	al., 2016). Die Kartierung der räumlichen 
Verbreitung der Regenwurmarten und die Bestimmung der Flächengröße erlauben, die Arten in 
Verbreitungsgruppen (Arten mit großem, mittlerem und kleinem Verbreitungsgebiet) einzutei
len und Aussagen zum Bedrohungsstatus und Schutzbedarf der Arten abzuleiten (IUCN 2012 a, 
b; 2022). 

Keine Art wurde nach den Kriterien des Verbreitungsgebiets als bedroht eingestuft (die Verbrei
tungsgebiete aller Arten überstiegen den Mindestschwellenwert von 20 000 km2), was darauf 
hindeutet, dass die untersuchten Regenwurmarten in Deutschland potenziell weit genug ver
breitet sind, als dass sie durch Einzelereignisse aussterben (IUCN 2012, a, b). Dennoch zeigt ein 
Vergleich der prognostizierten Verbreitungskarten und des berechneten Verbreitungsgebiets 
(Area of Occupancy, AOO), dass bestimmte Arten aufgrund ihres eingeschränkten Verbreitungs
gebiets zur Anlass zur Sorge geben, z. B. L.	castaneus, D.	octaedra und A.	longa (als gefährdete Ar
ten) sowie A.	eiseni, D.	attemsi und A.	limicola (als stark	gefährdete Arten nach den AOO-Krite
rien) oder weil sie in Deutschland endemisch sind, wie L.	badensis. Über den Status von A.	eiseni 
in Deutschland existieren unterschiedliche Meinungen; während Bouche (1972) und Graff 
(1953) die Art in Frankreich bzw. Deutschland als selten einstufen, stufen Römbke et	al. (2017) 
die die Art als häufig ein. Unsere Ergebnisse unterstützen teilweise die älteren Befunde von Graff 
(1953) und Bouche (1972) sowie die Zwischenposition von Lehmitz et	al. (2016), die die Art als 
mäßig häufig einstuften (die vorliegende Studie bevorzugt den Begriff des eingeschränkten Ver
breitungsgebiets).  

Dagegen müssen die hier gemachten Vorhersagen über ein begrenztes Vorkommen von A.	eiseni 
in hessischen Wäldern (Römbke et	al., 2017) und einigen anderen Gebieten zurückhaltend beur
teilt werden. Die Art wird ist wahrscheinlich arboral und kortikal, und die begrenzten Beobach
tungsdaten (auf denen die Modelle basieren) könnten methodisch verzerrt sein, da die üblichen 
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Methoden zur Regenwurmextraktion die bevorzugten Mikrohabitate dieser Art möglicherweise 
nicht ausreichend erfassen (Lehmitz et	al., 2016; Römbke et	al., 2018). A.	limicola ist die einzige 
hier untersuchte Art, die in der deutschen Roten Liste der Regenwürmer als gefährdet aufge
führt ist. Sein prognostiziertes Vorkommen in Feuchtgebieten, das seinen Status als hydrophile 
Art bestätigt, sowie seine prognostizierte begrenzte Verbreitung in Deutschland spiegeln seinen 
Gefährdungsstatus wider. Die übrigen Arten sollten bei künftigen Erhebungen zur biologischen 
Vielfalt im Boden als Schwerpunktarten betrachtet werden. 

Besonders hervorzuheben ist L.	badensis, eine endemische Art, die in der Hochschwarzwaldre
gion vorkommt und wahrscheinlich gefährdet ist (Lehmitz et	al., 2016). Obwohl keine ausrei
chenden Funddaten für die Berechnung von EOO oder AOO zur Verfügung standen, wurde für 
diese Art ein sehr eingeschränktes und enges Verbreitungsgebiet vorhergesagt, was ihrer Ein
stufung als gefährdet untermauert. Diese Art verdeutlicht auch einen wichtigen Aspekt der Ver
breitungsmodellierung: Obwohl die Modelle ein potenzielles Vorkommen z. B. in den bayeri
schen Alpen vorhersagen, wurde die Art dort noch nie nachgewiesen. Die Modellergebnisse zei
gen demnach nur eine hohe potenzielle Lebensraumeignung für die Art in den Alpen, sind aber 
kein Beleg für ihr dortiges Vorkommen. 
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Summary 

Soil-dwelling organisms comprise not only a major portion of terrestrial biodiversity, but also 
drive a majority of the soil processes and functions that lead to terrestrial ecosystem services. 
The immensity of soil biodiversity and its functional importance has led to the appreciation of 
the conservation needs of soil biocoenoses, whereby much national and EU legislation specifi
cally calls for protecting and conserving soil biodiversity through explicit monitoring programs. 
Many approaches have been outlined for monitoring soil biodiversity, whereby all of these base 
an assessment of monitoring results on a comparison with “reference values” derived from field 
surveys in selected reference sites. However, conservation and protection of soil biotic commu
nities require evidence-based baseline information – derived at broader spatial scales   on their 
local and regional distributions as well as the drivers of this distribution, which is necessary for 
formulating reference values (“standard operational ranges”) for national-level soil-biodiversity 
monitoring and assessment. An approach for deriving generalizable soil-biodiversity baselines is 
to upscale local observational data to broader spatial scales using correlative modelling method
ologies. 

In recent years, the development of species distribution models (SDMs) has advanced a powerful 
tool for assessing and predicting biodiversity distribution and its potential drivers. SDMs statis
tically model species’ or community’s correlations with environmental parameters and use these 
correlations to upscale (and map) their potential occurrences to larger spatial scales based on 
the spatial distribution of the environmental parameters (“species distribution” or habitat” suit
ability” models). Such mapping methodologies represent a core solution for decision support of 
biodiversity conservation policies. Various SDM modelling algorithms exist today, such as Gener
alised Linear Models (GLM), Classification Tree Analysis (CTA), Multivariate Adaptive Regres
sion Spline (MARS), Maximum Entropy (MAXENT), Random Forest (RF) and Generalised 
Boosted Regression Model (GBM), among others, each of which possess inherent strengths and 
weaknesses. To assess their specific capacity to accurately predict the distribution of a specific 
organism group, model goodness-of-fits are compared using conventional statistics such as R2, 
root mean square error (RMSE) as well as threshold-independent “area under the receiver oper
ating characteristic curve” (AUCROC) or Kappa statistics, among others. 

SDMs can also be used to predict species’ distribution ranges. While a “species distribution 
range” describes the occurrence of a taxon within a geographic area, “species geographic range 
size” is the geographic area (in km²) in which a taxon is found. Geographic range sizes have been 
used as an indicator for the threat status of a species, narrow-range species being much more 
vulnerable than species with wider range sizes. Two established metrics measure species geo
graphic range size: extent of occurrence (EOO) and area of occupancy (AOO), which have been 
adopted by the IUCN as standard practice for classifying species into threat categories.  

Earthworms have been identified as being highly valuable indicators of soil biodiversity, useful 
in monitoring a broad range of habitats and land-uses. Although the role of earthworms in, e.g., 
improving soil quality has long been established, assessing how this soil-animal group’s distribu
tion is influenced along environmental gradients and quantifying the drivers of such distribution 
has not yet been undertaken. Earthworm species can be classified into different ecological life-
form types (classically defined as “epigeic” living on the soil surface and litter, “endogeic” bur
rowing in the mineral soil, and “anecic” living in permanent burrows between the soil surface 
and the mineral soil). Due to their different associations with the soil habitat, they may indeed 
react differently to important environmental drivers. To the best of our knowledge, no study has 
yet been conducted to model and spatially map the distribution of specific earthworm species 
testing multiple model algorithms, in Germany or elsewhere. 
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The current comprehensive study statistically modelled the potential earthworm distribution 
throughout Germany, evaluating both general community parameters (species richness and to
tal density) as well as the occurrence probabilities of individual species. The general goal was to 
predict and map earthworm spatial distribution to order to determine their conservation needs 
and provide baseline reference data for Germany. It therefore sought to achieve the following 
objectives: (1) apply and compare correlative modelling techniques to predict and map the spa
tial distribution and geographic range of earthworm community parameters as well as carefully 
selected earthworm species in Germany, (2) identify and determine the importance of environ
mental predictors (drivers), and (3) evaluate whether earthworm life-form types are predicted 
to generally react differently to environmental drivers. The results are intended to provide back
ground reference values for comparison with future monitoring results, as a first step in defining 
site-specific soil-biodiversity baseline values. As a final goal, this study also strove to (4) estab
lish the species distribution pattern and density relationships to determine the conservation 
needs of earthworms in Germany. 

SDMs are based on the correlation between a taxon’s true observed distribution and the envi
ronmental conditions of the observed sites of occurrence. For this, observational data on earth
worms in Germany was downloaded from the soil-biodiversity data warehouse “Edaphobase”. 
Additional earthworm data was obtained from data providers or by consulting provider’s re
ports and publications. This resulted in a dataset consisting of 22,134 individual data records 
(rows) from 992 locations (sites of occurrence) throughout Germany, which can be considered 
to be sufficiently large for distribution-modelling purposes. All available metadata concerning 
soil, habitat types, climate, etc. were downloaded with the earthworm data, being specifically 
linked to the earthworm data per specific site of occurrence. For community-level modelling, the 
data was aggregated to “total earthworm density” (harmonized to individuals per square meter 
[ind. m-2]) and “earthworm species richness” (average number of species found occurring in a 
site). For species-level data, data was transformed to “occurrence” (yes/no [= 1/0] for each spe
cies and site. The Edaphobase data included occurrence information on 45 valid species. While 
all were used to model community density and richness, only 12 species were selected for mod
elling species-level spatial distribution due to limited data on other species as well as available 
time and resources. Selection choice was based on (1) sufficient data for modelling purposes, (2) 
common species based on literature and expert knowledge, (3) species with apparent unique 
habitat preferences, (4) species considered or speculated to have limited distribution and (5) 
species considered to be endemic. 

A number of environmental predictor variables known to be physiologically and ecologically im
portance for earthworms were initially selected. As many Edaphobase records did not contain 
all of these variables, external data was used to augment data gaps. Climate data was down
loaded from Climatologies at High resolution for the Earth Land Surface Areas (CHELSA); topo
graphic data (altitude) from USGS-NASA; habitat-type data from the Ecosystem Types of Europe 
based on the EUNIS (European Nature Information System) habitat classification. The habitat 
data was grouped into 11 level-1 habitat-type classes. Data on soil parameters was obtained 
from the German Federal Institute of Geoscience and Natural Resources (BGR), e. g. from the na
tionwide Soil Map 1 : 200,000 of Germany (BGR 1997–2018), except for soil moisture which was 
downloaded from the European Space Agency’s (ESA) Climate Change Initiative (CCI) Soil Mois
ture product. To avoid autocorrelation and multicollinearity within these predictor variables, 
significant and independent predictor variables were selected during model calibration using 
principal component analysis (PCA), Pearson correlation and variance inflation factors (VIF) as 
well as AIC criteria during model building. This resulted in a final set of 11 environmental pre
dictor variables on climate (average annual temperature and precipitation), habitat type and soil 
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(soil depth, soil pH, soil moisture, soil organic-matter content, texture [clay & silt content] and 
structure [bulk density, porosity]). 

Four different model algorithms were tested for their abilities to predict earthworm distribu
tion: two traditional regression models (Generalized Linear regression Models [GLMs], General
ized Additive Models [GAMs]) and two machine-learning algorithms (Generalized Boosting Mod
els [GBM] and Random Forest models [RF]. The models were calibrated using the 11 predictor 
variables and – as response variables   total density and species richness at the community level 
as well as occurrence probabilities at the species level. We ultimately used macro-ecological 
methods (MEM) to predict and map earthworm species richness and total community due to its 
advantages over stacked species distribution models (SSDM), in particular because data for rare 
species were very patchy resulting in underprediction of these metrics with SSDMs.  

Model performance was assessed using a split-sample (cross validation) approach, whereby the 
data was split into training and test datasets at a 70:30 ratio. The training datasets were used to 
calibrate the models, while the test datasets were used to evaluate model predictive perfor
mance. Model goodness-of-fit was evaluated using the coefficient of regression determination 
(R2) as well as the concordance index (C-index) for the quantitative response variables (commu
nity total density and species richness) and the threshold independent statistics “Area Under the 
receiver operating characteristic Curve” (AUCROC) and Kappa scores for the species-specific dis
tribution-probabilities. Furthermore, for the quantitative response variables, plots and regres
sions of the observed-to-predicted values were calculated.  

All model predictions (as spatial raster files) were imported to a GIS environment for visualisa
tion (mapping) and further assessment. As a first approximation of earthworm potential diver
sity, a GIS “overlay” of the earthworm community total-density and species-richness modelling 
results was generated, producing a five-level scale of potential habitat suitability for earthworm 
diversity. Species’ range size were estimated from the model prediction results, quantifying for 
each evaluated species the extent of occurrence (EOO) and area of occupancy (AOO), which were 
used to categorize species into IUCN threat classes. 

Finally, each predictor variable’s quantitative contribution to the model results was determined 
as well as the response variables’ (earthworm total density or species richness, as well species’ 
occurrence probability) response curves to each numerical environmental variable. 

While calibrating the GLM models, a polynomial effect was very marginal when assessed by AIC. 
Therefore, for comparability, only the linear GLM model was retained. The GAMs were also sub
sequently dropped, as there was no significant difference in its performance compared to GLMs. 
Overall, the tested models’ prediction performance showed that GLM performance was very low. 
RF had the highest predictive performance for both community- and species-level models, while 
GBM goodness-of-fits were intermediary between GLM and RF. RF was therefore selected for all 
final predictions and mapping. 

The models predicted earthworm community total density to range from 10 to maximally 800 
ind. m-2, with an average of 350 ind. m-2 per site. Species richness predictions ranged from 1 to 
12 species, with an average of 3 species per site throughout Germany. Higher total community 
densities (> 400 ind. m-2) were predicted especially in forests and grasslands in north-eastern 
Germany. However, in these regions, species richness was predicted to be relatively poor with 
an average of 2 species per site. An inverse relationship between species richness and total den
sity is a common occurrence in ecology. The density/species-richness relationship often follows 
a negative slope, where areas may exhibit high individual densities, but low species richness. A 
region with less favourable environmental conditions may only allow occurrence of few species, 
but these in large populations (individual densities), perhaps due to reduced competition from 
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other species. A comparison with predicted species distributions revealed that in these areas 
primarily epigeic species such as D.	octaedra (but also L.	rubellus) were primarily responsible for 
the predicted high total densities. 

Higher earthworm density and species richness were predicted for regions along the Rhine Val
ley, in Thuringia, and in Bavarian grasslands, with the average number of occurring species per 
site predicted to reach 10 and total density 300 ind. m-2. The GIS overlay of earthworm diversity 
suitability showed especially the Rhine River valley, large areas in Thuringia, and the Bavarian 
Alps to be regions of potentially high earthworm diversity. 

Three general patterns of spatial distribution ranges were identified in the model predictions of 
species occurrence probabilities: (1) species with large distribution ranges, (2) species with 
mid-range distributions, and (3) species with restricted or small distributional ranges, including 
endemic species or those limited to unique habitats. “Large-range” species in Germany consisted 
of two endogeic species (A.	caliginosa,	A.	rosea) and one epigeic and anecic species each (L.	rubel
lus and L.	terrestris, respectively). The Red List of Germany lists all these species as being “very 
common”. These species were predicted to occur equally in many diverse habitat types, confirm
ing reports documenting them as being ubiquitous or euryoecious, occurring in various habitat 
and land-use types.  

The mid-range species, consisting of one endogeic (A.	cholorotica), two epigeic species (D.	octae
dra, L.	castaneus) and one anecic species (A.	longa) were predicted to be mostly distributed in 
regional clusters, but not as broadly as the “large-range species”. The German Red List lists these 
all as being “common”. Although predicted to occur in many different habitat types (eu
ryoecous), they appear to be more habitat discriminant, with preference optima in specific habi
tat types, which differ from species to species. Other observational reports of the habitat prefer
ences of these species are generally in accord with the model predictions. 

The species identified as “restricted-range” all showed higher occurrence probabilities limited to 
specific regions and habitat types. The Red List of Germany lists them all as being “rare” or “very 
rare”. Among the species predicted to have restricted distribution ranges were two epigeic spe
cies (D.	attemsi and A.	eiseni). A.	limicola, as a habitat-specific species and known to occur in 
moist to wet sites, was predicted to show its strongest populations along the Rhine river, while 
L.	badensis, a species endemic to south-western Germany, was predicted to have a very re
stricted and narrow distributional range in this region but also predicted, i.e., for the Bavarian 
Alps, where it has to date never been found. Nonetheless, the models predict a high potential 
habitat suitability for L.	badensis in the Alps, despite its observed absence, underscoring its sta
tus as endemic to southwest Germany. 

According to the IUCN criteria for classifying species’ threat status (EOO and AOO), none of the 
evaluated species were considered to be critically endangered. Four species with extensive EOO 
and AOO sizes (A.	caliginosa, A.	rosea, L.	terrestris, and L.	rubellus) cannot be considered to be 
threatened. Based on AOO assessment, three species can be classified as being vulnerable (A.	
longa, D.	octaedra, L.	castaneus) and three species (A.	eiseni, A.	limicola, D.	attemsi) as endan
gered. The occurrence data for L.	badensis was not sufficient to calculate geographic range sizes. 

The environmental variables contributing most to the predictions of earthworm total density 
were soil moisture, habitat type, and average annual precipitation. The remaining predictors for 
total density contributed less, but fairly equally to the model results, with the exceptions of aver
age annual temperature and soil pH, which accounted for less than 5%. The environmental con
tributions to predicted species richness were dominated by clay content and habitat type. Cli
mate variables (average annual precipitation and temperature and pH contributed moderately 
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to the species-richness predictions, while the remaining variables equally contributed slightly. 
Soil depth played the most minor role in the species-richness predictions. 

Density predictions increased below 500 mm a-1 total annual precipitation, but reduced above 
this threshold. Average annual temperature did not affect density predictions below 10 °C, but 
increases were predicted above 10 °C. These climate parameters had an inverse effect on spe
cies-richness predictions, which increased above 500 mm a-1 precipitation and decreased be
tween 6 °C and 10 °C average annual temperature. Increasing soil moisture led to lower total 
density predictions, but did not strongly influence the species-richness projections.  

Density predictions dramatically reduced at about pH 4, only to increase again above pH 5. The 
predictions of species richness, on the other hand, remained very low below pH 4, and strongly 
increased above this value. The density predictions increased above SOM contents of 6 %, while 
showing little influence to species-richness predictions. An influence of soil texture was best rep
resented by clay content, where predictions of both total density and species richness increased 
at high clay contents. Soil structure also influenced the earthworm community predictions, 
whereby density projections strongly increased at a total porosity above 15 %, but species-rich
ness projections decreased continuously with increasing porosity. Soil bulk density apparently 
negatively affects earthworm communities, as both total-density and species-richness predic
tions abruptly and dramatically decreased above bulk densities of 1.5 g cm-³. 

Previous studies using simpler statistical methods also identified climate (average annual pre
cipitation and temperature) as the almost exclusive driver of earthworm communities (total 
density, species richness) at global or continental scales. While our study confirmed the com
bined role of temperature, precipitation and soil moisture, it also identified, i.e., habitat type, soil 
pH and soil organic matter as important drivers. The relevant drivers of earthworm biodiversity 
are apparently scale dependant; climate parameters being important at global and (sub-) conti
nental scales, while habitat and soil factors become more important at smaller spatial scales. 

Regarding the species-specific models of occurrence probability, total annual precipitation and 
the related soil moisture accounted for up to 25 % or more of the predictions in many species 
and were found to be essential predictor variables for ¾ of the tested species. The occurrences 
of D.	attemsi, A.	eiseni, L.	rubellus and A.	chlorotica were predicted to also be generally highly de
pendent on climate (average annual precipitation and temperature), while the occurrence prob
ability of D.	octaedra was predicted to be highly related to annual average temperature. Habitat 
type was the next environmental predictor contributing importantly to species’ occurrence 
probabilities. Only for A.	eiseni was habitat type less important (7 %). The contribution of soil pH 
to the occurrence predictions was moderate across all species. A.	longa and A.	caliginosa were 
predicted to be highly dependent on soil pH. Soil organic matter contributed more strongly to 
the predictions of epigeic species and endogeic species such as A.	limicola and A.	caliginosa, com
pared to much lower prediction contributions for the majority of endogeic and anecic species. 
Soil texture (clay and silt content) had comparatively less influence on most species’ occur
rences, except for A.	longa, D.	octaedra and L.	terrestris, which were moderately influenced by 
soil texture. Soil structure (porosity and bulk density) in general only moderately influenced 
model results, although occurrence probabilities of species such as L.	rubellus and L.	badensis 
were highly influenced by bulk density and L.	castaneus and A.	rosea by porosity. Soil depth con
tributed least to the model results. 

Climate parameters (average annual temperature and precipitation) and the related soil mois
ture presented different patterns of influence on the occurrence predictions of epigeic and en
dogeic species. Whereby the occurrence probabilities of epigeic species generally decreased 
with increasing annual mean temperature and decreasing mean annual precipitation and soil 
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moistures, the occurrence predictions of endogeic species often increased with higher annual 
mean temperature and precipitation as well as soil moisture. The precipitation thresholds at 
which occurrence probabilities increased were species specific.  

Species’ prediction responses to soil pH were also different between epigeic and endogeic/an
ecic species. The occurrence probabilities of epigeic species were generally larger at lower pH 
values, while that of endogeic and anecic species were larger at higher pH values. Interestingly, 
the threshold at which occurrence probabilities either increased or decreased were generally 
around pH 4.0. The predictions thus identified acidophobus and acidophilus (or -tolerant) spe
cies, which confirm species classifications given by previous authors, who also described a 
threshold of pH 4 - 5. No consistent response to soil organic matter was observed among life-
form groups, and the prediction responses were instead species specific. While some species 
showed reduced occurrence probabilities with increasing SOM content (with optima < 6 %), 
other species exhibited positive responses to increasing SOM (with maximum probabilities at 8 
– 12 % SOM). These results corroborate earlier descriptions of species-specific preferences of 
organic matter contents. 

Soil texture (included into the models as clay and silt content) only contributed substantially to 
the occurrence predictions of a few species, and were not related to earthworm life-form. For 
instance, the predicted occurrence probabilities were larger at both higher clay and silt contents 
for A.	eiseni, A.	rosea, A.	caliginosa and L.	terrestris as did those of A.	limicola at higher clay con
tent   suggesting a preference for finer textured soils. Contrarily, the responses of L.	rubellus, D.	
attemsi, A.	chlorotica and A.	longa generally decreased with higher clay and silt content – sug
gesting preferences for coarser soils. Differences between life-form types were observed con
cerning responses to soil structure. Most epigeic species exhibited higher occurrence probabili
ties at higher levels of porosity and lower bulk densities, suggesting a preference for looser soil. 
Contrarily, the predicted responses of some endogeic species and the anecic L.	terrestris where 
larger at lower levels of porosity and higher bulk densities, suggesting a preference for denser 
soils. 

In conclusion, this study is   to the best of our knowledge   the first comprehensive analysis mod
elling earthworm distribution at a national scale, including the most important species and dif
ferentiating among multiple environmental drivers and the predicted responses to each. The 
earthworm distribution models provided an effective approximation of earthworm distribution 
and its drivers in Germany. Such information is invaluable for future scientific field studies and a 
prerequisite for soil-biodiversity monitoring programs, which require standardized baseline and 
threshold values for result assessment. A tool is currently being developed to extract reference 
values from the model results based on specific site conditions, explicitly for use in soil-biodiver
sity monitoring programmes. While such programmes will help validate the model results, we 
call for wide-spread recording of environmental (especially soil) parameters concomitantly with 
biodiversity surveys, in order to improve the thematic association between species and environ
mental drivers and, thereby, model precision. Attention should be given particularly to species 
with restricted ranges, such as D.	attemsi, A.	eiseni, and L.	badensis. For species with clearly de
fined habitats, such as A.	limicola in wetlands and D.	octaedra in forests, the habitats in which 
they can be found should be monitored for possible habitat degradation. We further suggest de
tailed studies on the endemic L.	badensis, which would allow more precise SDMs and calculation 
of geographic range sizes, providing a better assessment of its realised distribution and assess
ment needs. 
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1 Einführung 

1.1 Hintergrund 
Einen großen Teil der Biodiversität terrestrischer Ökosysteme macht die bodenbewohnende 
Fauna aus (FAO 2020). Zum Beispiel kann ein Quadratmeter Waldboden bis zu 1000 Arten mit 
mehreren 100 000 Lebewesen Raum geben (Anderson, 1975). Laut Behan-Pelletier und Bisset 
(1992) kann ein Waldboden – nach den Korallenriffen – die größte phylogenetische Artendiver
sität aller Habitate der Erde aufweisen. André et	al. (1994) bezeichnete den Boden – zusammen 
mit den Korallenriffen und dem tropischen Regenwald – als das letzte unentdeckte Gebiet in der 
Biodiversitätsforschung. Die Bodenbiodiversität stellt folglich ein wichtiges kulturelles Gut dar, 
dessen Schutz und Erhalt nicht allein aus seinem Wert an sich oder allgemeinen ethischen Über
legungen erforderlich ist. Die Bodenbiodiversität ist auch unverzichtbar für die Erfüllung der Bo
denfunktionen, die das Funktionieren der terrestrischen Ökosysteme sicherstellen. Der Großteil 
der Ökosystemdienstleistungen (ecosystem	services) terrestrischer Habitate beruht auf Boden
funktionen (Adhikari & Hartemink, 2016), wobei praktisch wiederum alle Bodenfunktionen sich 
aus Prozessen ableiten, an denen Bodenorganismen maßgeblich beteiligt sind (Gardi & Jeffery, 
2009; Turbé et	al., 2010). Zum Beispiel spielt Bodenbiodiversität eine wichtige Rolle bei der Zer
setzung von organischem Material. 90 % der gesamten natürlichen terrestrischen Nettoprimär
produktion (NPP) werden im Boden recycelt und dort abgebaut (Bardgett, 2005), mit entspre
chenden Wirkungen auf den Nährstoffkreislauf, den Erhalt der Bodenstruktur, die Wasserinfilt
ration und -reinigung, die Schädlingsbekämpfung, den Abbau von toxischen Substanzen, usw. 
(Brussaard, 1998; Lavelle et	al. 2006; Briones, 2018; Delgado-Baquerizo et	al., 2020). Damit ist 
die Primärproduktion von Nahrung und Fasern eng verbunden mit Prozessen, die von Bodenor
ganismen gesteuert werden (z. B. Wardle, 2002; Brussaard et	al., 2007; Bakker et	al., 2019).  

Die ungeheure Größe der Bodenbiodiversität und ihre funktionale Wichtigkeit ist seit Jahrzehn
ten bekannt, und das Abkommen von Rio 1992 bestätigte zum ersten Mal die Notwendigkeit des 
Schutzes von Bodenlebewesen (André et	al. 1994; Giller 1996; Hagvar, 1998). Jedoch ist diese 
Tatsache erst seit kurzem von Politik und Verantwortlichen entsprechend wahrgenommen wor
den (Turbé et al, 2010; FAO et	al. 2020), wie die jetzt erfolgte Aufnahme der Biodiversität in die 
EU-Bodenschutzstrategie (Eur. Comm. 2021) zeigt. Dies gilt auch für die überarbeitete Gemein
same Agrarpolitik (EU(2001)2115, EU(2001)2117) sowie die Aufnahme eines Bodenmonito
ring-Zentrums in die Koalitionsvereinbarung1 der deutschen Bundesregierung.  

Bodenschutz erfordert koordinierte Schritte zur Bewertung und zum Erhalt der Bodenbiota 
(Dunbar et	al., 2013). Diese Schritte beinhalten ein immer wichtiger werdendes Verständnis der 
spezifischen Verbreitung von Bodenbiodiversität für ein effektives Bodenmanagement und des
sen Bewertung (Boumal & Montanarella, 2016; EASAC 2018). 

Eine wichtige Grundlage für den Bodenschutz stellen Monitoringprogramme dar, bei denen Bo
denparameter auf Bodendauerbeobachtungsflächen regelmäßig erfasst werden. Eine Vielzahl 
von europäischen Richtlinien fordern ausdrücklich ein Bodenmonitoring, so z. B. die Gemein
same Agrarpolitik (CAP, z. B. EU/2021/2116, Art. 25, 66, 67, 70 usw.); die Verordnung über In
dustrieemissionen (EU Com 2010/75/EU; Einleitung § 23, Art. 14, 16), die Klärschlammverord
nung (EU Com 86/278/EC; Einleitung, Anhang II), die Biodiversitätsstrategie (COM(2011)244; 
Art. 2.3), der Forstaktionsplan (COM(2006)302; Art. 3.2) usw. Die EU-Bodenstrategie für 2030 
widmet dem Bodenmonitoring ein gesamtes Kapitel und hebt darin besonders die Bodenbio

 

1 https://www.bundesregierung.de/resource/blob/974430/1990812/04221173eef9a6720059cc353d759a2b/2021-12-10-
koav2021-data.pdf?download=1  

https://www.bundesregierung.de/resource/blob/974430/1990812/04221173eef9a6720059cc353d759a2b/2021-12-10-koav2021-data.pdf?download=1
https://www.bundesregierung.de/resource/blob/974430/1990812/04221173eef9a6720059cc353d759a2b/2021-12-10-koav2021-data.pdf?download=1
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diversität hervor (COM(2021)699, Kap. 5). Innerhalb Deutschlands fordert das Bundesboden
schutzgesetz (BBodSchG 1998) ein Bodenmonitoring, besonders hinsichtlich Bodenschutzmaß
nahmen und Bodensanierung (z. B. §10(1)). Die Einrichtung von Bodendauerbeobachtungsflä
chen ist Aufgabe der Bundesländer (§21 Abs. 4). Das BBodSchG begründet nur die Notwendig
keit, „biologische Charakteristika“ von Böden zu schützen und zu bewahren (und spezifizierter: 
„das Habitat für Bodenorganismen“, §2(2)). Ein spezifischer Schutz der Bodenbiodiversität wird 
im Hinblick auf eine Revision dieses Gesetzes erwartet, wie in den Koalitionsvereinbarungen zur 
Bildung der deutschen Bundesregierung festgelegt. Ebenfalls wird ein permanentes Bodenmoni
toring in der das BBodSchG begleitenden Bundes-Bodenschutz- und Altlastenverordnung 
(BBodSchV, §5(3), §10(1), Anhang 3) gefordert, wobei hier hauptsächlich die Wiederaufberei
tung sowie Vorsorge- und Schutzmaßnahmen gegen Verschmutzungen und deren Folgen im 
Vordergrund stehen. Um dieses Ziel zu erreichen, sind in Deutschland zahlreiche Bodenmonito
ringprogramme etabliert worden. Das größte umfasst etwa 800 Bodendauerbeobachtungsflä
chen, die über ganz Deutschland verteilt sind (UBA 2002). Obwohl vorrangig physikalisch-che
mische Bodenparameter (und meist mikrobielle Charakteristika) auf diesen Flächen überwacht 
werden (vgl. Kaufmann-Boll et	al., 2011), beobachten zahlreiche Bundesländer auch Bodentiere, 
insbesondere Regenwürmer (z. B. Sachsen-Anhalt, Schleswig-Holstein, Brandenburg). Die deut
sche Bodenzustandserhebung überwacht die aktuelle Bodensituation von landwirtschaftlichen2 
und forstwirtschaftlichen Böden3. Obwohl hier im Allgemeinen die physikalisch-chemischen Ei
genschaften des Bodens untersucht werden, wird zurzeit die Aufnahme der Bodenbiodiversität 
diskutiert. Das Bundesministerium für Landwirtschaft und Ernährung (BMLE) hat vor kurzem 
ein nationales Monitoringprogramm zur Biodiversität von landwirtschaftlichen Flächen (Mon
ViA4) beschlossen, in dem auch die Aufnahme der Bodenfauna (Schwerpunkt Regenwürmer, 
aber auch andere Bodentiere) ausdrücklich geplant ist. U. a. haben diese Programme dazu beige
tragen, dass das kürzlich eröffnete deutsche Monitoringzentrum für Biodiversität5 seine erste 
Expertenkommission beauftragt hat, Empfehlungen für ein deutschlandweites Bodenbiodiversi
tätsmonitoring zu koordinieren.  

In den letzten Jahren wurden auch in der Wissenschaft die Notwendigkeit eines Bodenbiodiver
sitätsmonitorings beschrieben und Ansätze dazu geliefert (z. B. Gardi et	al., 2009, Cluzeau et	al., 
2012, Pulleman et	al., 2012, Griffiths et	al., 2016, Orgiazzi et	al., 2016, van Leeuwen et	al., 2017, 
Guerra et	al., 2021). Während diese Arbeiten die generellen Anforderungen, Ansätze und allge
meinen Konzepte zum Bodenbiodiversitätsmonitoring aufzeigen, sind in den letzten zwei Jahr
zehnten konkrete nationale Programme entwickelt worden, in denen detailliert Ansätze zur Be
wertung gemacht werden; so z. B. in England die „SoilPacs“ (Weeks, 1998), die deutsche Boden
biologische Standortklassifizierung (BBSK, Römbke et	al., 2000, 2002) oder der holländische In
dikator zur Bodenqualität Biological	Indicator	for	Soil	Quality (BISQ, Rutgers et	al., 2008, 2009), 
um nur einige zu nennen. Alle Programme basieren auf Auswertungen der Monitoringergebnisse 
und einem Vergleich mit Referenzwerten, wobei die Referenzwerte selbst aus Geländeuntersu
chungen ausgewählter Referenzstandorte stammen. Jedoch ist es ohne grundlegende verfügbare 
Daten zur Bestimmung von Referenzwerten für die Bodenbiodiversitätsbewertung sehr schwie
rig, wenn nicht gar unmöglich, wirksam solche Ziele auf nationaler Ebene zu erzielen (Glaesner 
et	al., 2014). Die Europäische Behörde für Lebensmittelsicherheit (EFSA) tritt für die getrennte 
Ermittlung von Hintergrundwerten für landwirtschaftlich genutzte und für natürliche Flächen 

 

2 https://www.thuenen.de/en/ak/projects/agricultural-soil-inventory-bze-lw/  
3 https://www.thuenen.de/en/wo/projects/soil-protection-and-forest-health/projekte-bodenzustandserhebung/national-forest-
soil-inventory/  
4 https://www.agrarmonitoring-monvia.de/monvia/  
5 https://www.monitoringzentrum.de/  

https://www.thuenen.de/en/ak/projects/agricultural-soil-inventory-bze-lw/
https://www.thuenen.de/en/wo/projects/soil-protection-and-forest-health/projekte-bodenzustandserhebung/national-forest-soil-inventory/
https://www.thuenen.de/en/wo/projects/soil-protection-and-forest-health/projekte-bodenzustandserhebung/national-forest-soil-inventory/
https://www.agrarmonitoring-monvia.de/monvia/
https://www.monitoringzentrum.de/
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ein (Ockleford et	al., 2017). Sachgemäßes und verfügbares Wissen über Bodenbiodiversität, mit 
dem die Folgen von Landnutzung, Pflanzenschutz und Bodenbewirtschaftung beurteilt werden 
können, ist entscheidend für die Bewertung und zum Erhalt der Bodenbiodiversität sowie einer 
angemessenen nationalen Bodenschutzpolitik. Jedoch gibt es weder EU- noch bundesweit adä
quate Richtwerte zur Bewertung der vorliegenden Biodiversitätsdaten. Während die Bodenbio
diversitätsbeobachtungen innerhalb des deutschen o. g. Monitoringprogramms natürlich diese 
Daten generieren könnten, würde es Jahre erfordern, Referenzwerte für alle Regionen, Habitate, 
die verschiedenen Landnutzungstypen, Klimazonen, Bodentypen usw. Deutschlands zu bekom
men. In der Tat ist der meist genannte Hinderungsgrund für das Arbeiten mit den Werten aus 
dem Bodenbiodiversitätsmonitoring in den aktuellen Programmen das Fehlen von Referenzwer
ten für den Vergleich der Ergebnisse (pers. comm. R. Baritz, EEA).  

Ein weiterer international gebräuchlicher Ansatz in den Biodiversitäts- und Artenschutzpro
grammen besteht darin, Zusammenhänge zwischen Arten bzw. Lebensgemeinschaften und Um
weltparametern statistisch zu modellieren, um diese wiederum dafür zu nutzen, potentielle Vor
kommen hochzurechnen, und zwar basierend auf der räumlichen Ausprägung der Umweltpara
meter (species	distribution	models – Artenverbreitungsmodelle, Guisan et	al., 2017). So ist es z. B. 
möglich, Vorkommen von Arten bzw. Lebensgemeinschaften auf regionaler bzw. landesweiter 
Ebene vorherzusagen. Derartige Kartiermethoden bieten einen grundsätzlichen Ansatz zur Ent
scheidungsunterstützung für politische Bemühungen zum Erhalt der Biodiversität und des Öko
systemdienstleistungen in der EU (Maes et	al., 2012). Die Notwendigkeit von verlässlichen Infor
mationen zur Verbreitung der Lebewesen, die Ökosystemdienstleistungen erbringen, ließ die 
EU-Arbeitsgruppe Mapping	and	Assessment	of	Ecosystems	and	their	Services (Kartierung und Be
wertung von Ökosystemen sowie ihrer Dienstleistungen, MAES6) entstehen. Zwar werden im 
Rahmen dieser Initiativen weder die tatsächliche Bodenbiodiversität untersucht, noch stellen sie 
Daten zur Bodenbiodiversität zusammen. Solche kleinmaßstäbigen Karten zur voraussichtlichen 
Verbreitung der Bodenbiodiversität stellen hingegen einen großen Schritt in der Formulierung 
von landesweiten bzw. standortspezifischen Referenzwerten für die Bewertung der Monitorin
gergebnisse dar. 

Bodenbiodiversität wird nicht nur, wie oben erwähnt, durch tausende von Arten und Millionen 
von Individuen charakterisiert, sondern diese gehören darüber hinaus zu dutzenden von taxo
nomischen Hauptgruppen. Ein Monitoring bzw. eine Modellierung von allen vorkommenden ta
xonomischen Gruppen durchzuführen ist weder vom Ressourcenaufwand zu rechtfertigen noch 
effizient. Daher gilt es, eine Auswahl zu treffen. Das ENVASSO-Projekt7 des 6. europäischen For
schungsrahmenprogramms hat Indikatoren für die Bodenbewertung, einschließlich der Boden
biodiversität, innerhalb der Monitoringprogramme ausgearbeitet. Dieses Konsortium hat insbe
sondere die Regenwürmer (Lumbricidae) und Springschwänze (Collembola) identifiziert, die den 
größten indikativen Wert für das Level-1-Monitoring hinsichtlich einer großen Anzahl von Habi
taten und Landnutzungstypen aufweisen (Huber et	al., 2008). In dem darauffolgenden 7. For
schungsrahmenprogramm hat das EU-Projekt EcoFinders8 die Biodiversität dieser Gruppen in
nerhalb einer weiten Skala von Bodentypen, Klimazonen und Landnutzungen europaweit cha
rakterisiert. Obwohl eine große Anzahl von Gruppen an Bodenorganismen bewertet wurden, 
stellten die Regenwürmer eine Schlüsselgruppe dar (z. B. Faber et	al., 2013). Innerhalb Deutsch
lands hat die landesweite Edaphobase-Bodendiversitätsstudie (sog. Länderstudien, Toschki et	
al., 2021) die Artengemeinschaften von ausgewählten Bodenfaunagruppen, hier auch die Regen
würmer, in zahlreichen Regionen Mittel- und Süddeutschlands untersucht. Alle Studien haben 
 

6 https://biodiversity.europa.eu/maes  
7 https://esdac.jrc.ec.europa.eu/projects/envasso  
8 https://projects.au.dk/ecofinders  
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eine große Anzahl von Daten zur Verbreitung von Regenwürmern generiert. Die o. g. deutschen 
Monitoringprogramme haben ebenfalls Daten über Regenwurmgemeinschaften in vielen Boden
dauerbeobachtungsflächen in Deutschland geliefert. In mehreren Studien ist der indikative Wert 
von Regenwürmern hinsichtlich der Bodenbewertung untersucht worden (z. B. Krück et	al., 
2006, Fründ et	al., 2011, Spurgeon et	al., 2013, Crittenden et	al., 2014, Kanianska, 2016). Dar
über hinaus ist im Gegensatz zu anderen Gruppen von Bodenlebewesen der Regenwurm einfach 
zu untersuchen. Das Vorhandensein von anwenderfreundlichen Artenbestimmungsbüchern 
(z. B. Krück, 2018) sowie von taxonomischen Experten in ganz Deutschlands machen zusammen 
mit den Konsortien und den o. g. Studien den Regenwurm einzigartig für die Formulierung von 
deutschlandweiten Referenzwerten für das Bodenbiodiversitätsmonitoring. Das Erstellen von 
Karten zur potenziellen Verbreitung ist ein erster Schritt in Richtung der benötigten Referenz
werte, der auf Grundlage der Regenwurmbeobachtungen in den laufenden Monitoringprogram
men ermöglicht werden kann. Die tragende Rolle des Regenwurms, z. B. für die Verbesserung 
der Bodenstruktur und der Bodenqualität, ist schon länger bekannt (z. B. Pérès et	al., 1998; 
Suthar, 2009; Hedde et	al., 2103; Amossé et	al., 2015; Blouin et	al., 2015). Jedoch gibt es noch 
keine vollständigen quantitativen und räumlichen Aussagen, wie sich diese Bodentiergruppe bei 
umweltbedingten Schwankungen bzw. im größeren Raum verhält und wodurch Änderungen 
ausgelöst werden.  

In den letzten Jahren ist die Entwicklung von Artenverbreitungsmodellen (SDMs – species	distri
bution	models) als mächtiges Werkzeug zum Verständnis der Biodiversität, ihrer Verbreitung 
und den möglichen Triebkräften, die zu dieser Verbreitung führen, immer wichtiger geworden. 
Drei Phasen in der Entwicklung der species	distribution	(SD) sind hier zu nennen: (i) nicht-räum
liche statistische Quantifizierung von Arten-Umwelt-Beziehungen basierend auf (normalerweise 
studienspezifischen) empirischen Daten; (ii) Experten-basierte (nicht statistische, nicht empiri
sche) räumliche Beschreibungen von Artenverbreitungen und (iii) räumlich explizite statistische 
und empirische Modellierungen von Artenverbreitungen (SDM) (Guisan and Thuiller 2005; Fer
rier et	al., 2007). Der letzte Punkt beinhaltet die Kombination von statistischen Modellierungen 
mit raumbezogenen Daten mit dem Ziel, aufzudecken, wie sich Umweltvariablen auf die Arten
verbreitung über Raum und Zeit auswirken (Elith et	al., 2006). Zu diesem Zeitpunkt bezog sich 
die Biodiversitätsmodellierung vorrangig auf größere Pflanzen und größere (Wirbel-)Tiere; es 
gab nur wenige Studien für wirbellose Tiere und nahezu keine für wirbellose Bodentiere.  

SDM ist auch bekannt als Habitateignungsmodellierung und wird in der Ökologie, den Umwelt
wissenschaften und der Biogeographie dafür genutzt, potentielle und tatsächliche Artenverbrei
tungen zu bewerten, sei es zum Zweck des Erhalts von bedrohten und gefährdeten Arten oder 
zur Kontrolle von invasiven Arten (Kumar und Stohlgren 2009; Urbani et	al., 2017; Wang et	al., 
2018). SDM ist ein wirksames Werkzeug zur Identifizierung von aussagekräftigen und wissen
schaftlich belastbaren Beziehungen zwischen dem Vorkommen von Arten und Umweltvariablen 
(meist bioklimatische Variablen), die potentielle Habitate einer Zielart zu identifizieren helfen. 
SDM beschränkt sich nicht auf die Vorhersage von momentanen Artenverbreitungen, sondern 
spiegelt auch die Muster der Artendiversität in Zeit und Raum wider. Die Sorge der Wissenschaft 
hinsichtlich der Auswirkungen des Klimawandels auf Umwelt und Natur auf lokaler, regionaler 
und globaler Ebene hat zur Anwendung von SDM als wirksames Werkzeug für das Verständnis 
der zukünftigen Entwicklung der Umweltvariablen und in ihrer Folge der Biodiversität auf die
sen Ebenen (Brambilla et	al., 2014; Hu et	al., 2015). 

Artendiversität ist eine Funktion der Zusammensetzung von Organismengemeinschaften (wel
che Arten vorkommen), des Artenreichtums (wie	viele Arten sympatrisch auftreten), der Ge
samtabundanz und der Abundanz der einzelnen Arten sowie der räumlichen Muster ihrer Vor
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kommen. Alle diese Aspekte müssen in die Abschätzung der Biodiversität einfließen. Nur ein
zelne dieser Parameter zu betrachten, reicht für eine Biodiversitätsbewertung innerhalb einer 
Gemeinschaft nicht aus, weil sich z. B. zwei Gemeinschaften in ihrem Artenreichtum gleich sein 
können, aber unterscheiden in Dichte und Artabundanzen (Groves, 2022). Die valide Prognose 
der potentiellen Verbreitung der Bodenbiodiversität verbunden mit der Zusammensetzung, der 
Abundanz und dem Artenreichtum der Organismengemeinschaft ist eine elementare Vorausset
zung für die Bewertung, den Erhalt und den Schutz der Biodiversität sowie der daraus resultie
renden Bodenfunktionen.  

Es existieren mehrere SDM-Modellierungsverfahren bzw. -Algorithmen, wie z. B. Generalised Li
near Models (GLM), Classification Tree Analysis (CTA), Multivariate Adaptive Regression Spline 
(MARS), Maximum Entropy (MAXENT), Random Forest (RF) und Generalised Boosted Regression 
Model (GBM), die alle Stärken und Schwächen haben (Li and Wang, 2013; Valavi et	al., 2021). Ei
nige davon sind sehr empfindlich gegenüber der Probengröße, was sich sehr auf ihre Fähigkeit 
zur Vorhersage der räumlichen Verbreitung der Arten und Gemeinschaften auswirkt (Kumar and 
Stohlgren, 2009). Modellvergleich ist eine von zwei Methoden, modellabhängige Unsicherheiten 
in SDM zu überwinden. Die andere besteht darin, Ensemblemethoden zu verwenden, bei denen 
mehrere Modellieransätze kombiniert werden (Marmion et	al., 2008). Guisan et	al. (2017) haben 
verschiedene Bewertungsparameter identifiziert, die eine Entscheidung für die beste Modellie
rung hinsichtlich der Voraussage der räumlichen Verbreitung ermöglichen. Diese gehen u. a. von 
konventionellen Anpassungsgüte-Statistiken wie R2 (Root-Mean-Square-Abweichung, RMSE) 
über die schwellenwertunabhängige Fläche unter der "Receiver Operating Characteristic"-Kurve 
(AUCROC) bis hin zu Kappa-Statistiken (beobachtete vs. erwartete Prädiktorübereinstimmung, 
korrigiert um Stochastizität) und anderen. Die Wahl der für die Bewertung der Modellleistung zu 
verwendenden Metriken sollte jedoch von der Art und den Zielen der Studie sowie der Art der 
verwendeten Daten bestimmt werden (Guisan et	al., 2017, Zurell et	al., 2020). 

In der Diskussion über Artendiversität in Ökologie und Biogeographie beziehen sich die eng
lischsprachigen Ausdrücke species	range	size (Gebietsgröße einer Art) und species	distribution	
range (Verbreitungsgebiet einer Art) beide auf das Areal einer Art und werden oft synonym ver
wendet, obwohl sie sich in Methodik und Zweck unterscheiden. Die species	distributional	range 
beschreibt das Vorkommen einer Art oder ihre Anordnung in einem geographischen Raum, ohne 
notwendigerweise seine Größe oder seine Ausdehnung zu bestimmen. Die species	range	size da
gegen beschreibt die Fläche, auf der eine Art angetroffen wird, normalerweise angegeben in km2, 
und wird als Indikator für den Bedrohungsstatus einer Art verwendet. Im Gegensatz zu Arten 
mit einem größeren Verbreitungsgebiet sind Arten mit einem eingeschränkteren Verbreitungs
gebiet vulnerabler und es besteht die hohe Wahrscheinlichkeit, dass die Art (örtlich) ausstirbt 
(Gaston & Fuller, 2009). Karten zur räumlichen Artenverbreitung können meist für die Bestim
mung der Größe des Artenverbreitungsgebiets genutzt werden (Gaston & Fuller, 2009), und das 
eine kann zur Begründung des anderen herangezogen werden (Pulliam, 2000). Die Klassifizie
rung von Arten in verschiedene Bedrohungskategorien geschieht meist unter Berücksichtigung 
von geographischen Gebietsgrößen (Sheth et	al., 2020) und ist anerkannter und gelebter Stan
dard bei der Erstellung der Roten Listen bedrohter Arten der IUCN, Punkt B1 and B2 (IUCN, 
2001, 2012 b und 2022).  

Zwei Parameter haben sich für die Bestimmung des geographischen Gebiets einer Art etabliert: 
die Ausdehnung des Vorkommens (EOO, extent	of	occurence) und der Lebensraum (AOO, area	of	
occupancy). Die von der IUCN definierte EOO ist „das Gebiet innerhalb der kleinsten durchgehen
den vorstellbaren Grenzlinie, die um tatsächliche, angenommene oder vorhergesagte aktuelle 
Vorkommen eines Taxons gezogen werden kann, ohne vorübergehende Zufallsansiedlungen“ 
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(IUCN 2001; 2012b). Die area	of	occupancy ist ein skalierter Parameter, der das Areal des geeig
neten Habitats angibt, das ein Taxon aktuell besetzt. Die AOO wird aus zwei Gründen in die 
IUCN-Kriterien aufgenommen: Zum einen ist AOO ein Maß für den "Absicherungseffekt" (Keith 
et	al. 2018), der sich so erklärt, dass Taxa, die an vielen Stellen in oder über große Flächen in ei
ner Landschaft vorkommen, gegen Risiken aus konkreter räumlicher Bedrohung "abgesichert" 
sind. Zum anderen korreliert AOO auch mit der Populationsgröße und kann so die Widerstands
fähigkeit einer Art hinsichtlich stochastischer (Aussterbens-)Ereignisse annähernd beschreiben 
(IUCN Standards and Petitions Committee, 2022).  

Auch wenn beide Maße (AOO und EOO) verwendet werden können, um den Bedrohungsstatus 
von Arten einzuschätzen, sind Ansatz und Prinzip nicht der- bzw. dasselbe (Gaston & Fuller, 
2009). Während die EOO grundsätzlich die gesamte geografische Ausdehnung des Vorkommens 
einer Art misst, einschließlich der Gebiete, die sich als ungeeignet für die Art erwiesen haben, 
um die Faktoren zu verstehen, die die Verbreitungsgrenzen einer Art bestimmen, und um den 
Grad der räumlichen Streuung der Risiken über die geografische Verbreitung einer Art zu be
werten (IUCN 2012), misst die AOO das tatsächliche geografische Gebiet, in dem eine Art vor
kommt, und ist in den meisten Fällen gleich groß oder kleiner als die EOO-Werte (Hurlbert & 
Jetz, 2007). 

Minimumkonvexpolygone (minimum	convex	polygons, MCP) bzw. konvexe Hüllen sind in der 
Fachwelt weitreichend anerkannt und wurden von der IUCN als geeignete Methode zur Berech
nung der EOO von Arten übernommen. Sie sind definiert als das kleinste Polygon, in dem keiner 
der inneren Winkel größer als 180 Grad ist und alle Vorkommen einer Art enthält. Die AOO kann 
dagegen entweder durch ein Artenverbreitungsmodell oder die Darstellung der Daten zum Vor
kommen auf einem 2 x 2 km-Raster bestimmt werden (Gaston & Fuller 2009; IUCN 2022). 

1.2 Stand der Forschung in Deutschland 
In einer Reihe von Studien wurde versucht, die Verbreitung von Regenwurmarten in Deutsch
land zu beschreiben und Umweltfaktoren für ihre Verbreitung zu identifizieren. Jänsch et	al. 
(2013) fassen den aktuellen Wissensstand über die wichtigsten in Deutschland vorkommenden 
Regenwurmarten, ihre bekannten Verbreitungsgebiete und die wichtigsten Lebensraum- und 
Bodenparameter, die ihr Vorkommen beeinflussen, zusammen. Diese Monographie basiert auf 
den in Edaphobase verfügbaren Daten und übertrug die Fundorte der Arten aus dieser Daten
bank in eine Karte. Außerdem wurden mit den Fundorten in der Datenbank verknüpfte Umwelt
daten verwendet, um die Häufigkeit des Vorkommens mit z. B. Habitattypen und einigen Boden
parametern in Beziehung zu setzen, aber es wurden keine externen Umweltdaten oder fortge
schrittene statistische Modellierung verwendet. Lehmitz et	al. (2016) führten eine umfangreiche 
deskriptive Studie über Regenwürmer durch und erstellten eine Artenliste und die geografische 
Verteilung der Regenwurmarten in Deutschland. Obwohl diese Arbeit sehr gute, aktuelle allge
meine und beschreibende Informationen darüber liefert, wo verschiedene Regenwurmarten bis
her gefunden wurden, eignet sie sich nicht zur Abschätzung der potentiellen Verbreitung der Ar
ten. Eine aktuelle Monographie über deutsche Regenwürmer (Krück, 2018) beschreibt zwar 
textlich die allgemeine Verbreitung und Habitatabhängigkeit einzelner Arten und ist hinsichtlich 
der vorgestellten Arten sehr ausführlich, beschränkt sich aber auf Nordostdeutschland und ba
siert primär auf Expertenwissen. Rutgers et	al. (2016) haben die Verteilung von Regenwurm-
Gemeinschaftsparametern auf kontinentaleuropäischer Ebene anhand ausgewählter nationaler 
Datensätze und eines verallgemeinerten linearen Modells (GLM) statistisch modelliert. Diese 
Studie war eher ein Proof-of-Concept für die Modellierung der Verteilung von Bodentieren und 
modellierte nicht die Verteilung einzelner Arten. Es gibt bisher noch keine Studie für Deutsch
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land, in der die Verbreitung bestimmter Regenwurmarten mit Hilfe mehrerer Modellalgorith
men modelliert und räumlich kartiert wurde. Die vorliegende Studie zielt daher auf die statisti
sche Modellierung der potenziellen standortbezogenen Regenwurmverbreitung in Deutschland 
ab, und zwar sowohl für allgemeine Gemeinschaftsparameter (Artenreichtum und Gesamta
bundanz) als auch für das Vorkommen einzelner Arten. Da die Datenerhebung für die Rote Liste 
der Regenwürmer in Deutschland (Lehmitz et	al., 2016) umfassend war und alle Daten in 
Edaphobase aufgenommen wurden, basiert die aktuelle Studie auf allen Regenwurmfunddaten, 
die im Edaphobase-Portal über einen langen Zeitraum und an vielen Standorten gesammelt wur
den, sowie auf Umweltdaten auf Standortebene, die gleichzeitig mit den Daten zum Regenwurm
vorkommen erhoben wurden. Fehlende und zusätzliche Umweltdaten wurden aus externen 
Quellen ergänzt. Die verwendeten Modellierungstechniken beruhen in erster Linie auf den (kor
relierten) Anpassungen der Arten an ihre lokale Umgebung (korrelative Artenverteilungsmo
delle, SDMs). 

1.3 Ziel 
Das allgemeine Ziel dieser Studie ist, eine Karte zur Verbreitung von Regenwurmgemeinschaften 
und –arten räumlich zu modellieren zum Zweck der visuellen Interpretation und schnellen Be
wertung des Verbreitungsstatus. Hierzu sollten:  

► Die Anwendung von korrelativen Modellierungstechniken zur Kartierung der räumlichen 
Verbreitung und der geographischen Ausdehnung von Regenwurmgemeinschaften sowie 
sorgfältig ausgewählten Regenwurmarten in Deutschland geprüft und 

► die Gewichtung von Umweltprädiktoren auf der Grundlage ihrer Signifikanz in den korrelati
ven Modellierungen zu identifizieren und bestimmen. 

Primär basieren die Modellierungstechniken auf den entsprechenden Artenanpassungen an die 
lokalen Umweltbedingungen (korrelative Artenverbreitungsmodelle, correlative	species	distribu
tion	models, SDM). 

Die Ergebnisse sollen Hintergrundwerte für einen Vergleich mit zukünftigen Monitoringergeb
nissen liefern. Dies ist ein erster Schritt zur Definition von standortspezifischen Referenzwerten. 
Referenzwerte wiederum können eine Grundlage für die Entwicklung von Bewertungsinstru
menten für eine angewandte Nutzung durch Politik, Bodenmanagement und Regulierungsbehör
den bilden. 

Ein weiteres Ziel dieser Studie ist, Muster der Artenverbreitung und Häufigkeitsbeziehungen 
aufzudecken, die zur Erhaltung der Regenwurmarten in Deutschland beitragen können. 
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2 Material und Methoden 

2.1 Räumlicher Umfang und Workflow 
Der räumliche Umfang der Studie umfasst den gesamten Bereich innerhalb der politischen Gren
zen Deutschlands. In den Modellen und für die Modellalgorithmen wurde der Breitengradbe
reich von 47,3209 – 54,9049° N und der Längengradbereich von 6,0470 – 14,8428° E festgelegt 
(s. Abbildung 2). 

Der Modellierungsworkflow des Projektes (Abbildung 1) besteht aus acht systematischen Schrit
ten: Zusammenstellung von (1A) biologischen und (1B) Umweltdaten, (2) Variablenauswahl und 
Modellkalibrierung,  (3) Multikollinearitätstest, (4) Vereinheitlichung der Eingangsdatenfor
mate, (5) Aufteilung des Datensatzes in Trainings- und Testdaten, (6) Modellkalibrierung der 
Regenwurmhabitateignung, (7) Vorhersage (Upscaling der Modellergebnisse zu Karten) und (8) 
Modellauswertung und Beurteilung. 

Abbildung 1: Übersicht über den Arbeitsablauf der Studie 

 
Quelle: Eigene Darstellung, BGR und Senckenberg Museum 

2.1.1 Zusammenstellung der Regenwurmdaten (Arbeitsschritt 1A) 

2.1.1.1 Datenabfrage bei den Staatlichen Geologischen Diensten 

Es wurde geprüft, ob es in den Dauerbeobachtungstellen der Bundesländer bodenbiologische 
Untersuchungen gibt, deren Ergebnisse noch nicht in den Edaphobase9-Datenbestand übernom-
men wurden. Rückmeldungen kamen aus sieben von 16 Bundesländern (Brandenburg, Baden-
 

9 https://portal.edaphobase.org 

https://portal.edaphobase.org/
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Württemberg, Bayern, Hessen, Schleswig-Holstein, Saarland und Sachsen-Anhalt). Die Daten aus 
Brandenburg, Baden-Württemberg, Sachsen-Anhalt und Schleswig-Holstein waren bereits voll
ständig in Edaphobase aufgenommen. Aus Bayern wurden einzelne Funddaten nachgetragen. In 
Hessen und dem Saarland stehen keine bodenbiologischen Daten zur Verfügung. 

2.1.1.2 Datenharmonisierung und -bereinigung 

Die Regenwurmrohdaten wurden am 22. Februar 2021 aus Edaphobase unter Verwendung der 
Filter „Lumbricidae“ & „Deutschland“ heruntergeladen (Abbildung 2). Das Ergebnis war ein Da
tensatz bestehend aus 22 134 Einzeldatenaufzeichnungen (Datensätze). Alle Metadaten bezüg
lich Boden, Habitattypen, Klima usw., die in Edaphobase zu Orten mit Regenwurmvorkommen 
verfügbar waren, wurden heruntergeladen und mit den Funddatensätzen verbunden. Zwei Ar
ten von Daten waren verfügbar: Daten zu Vorkommen (einfache Präsenz der Art, registriert bei 
Vorhandensein am jeweiligen Ort) und/oder Daten zur Abundanz (Anzahl der Regenwürmer je 
Art am jeweiligen Ort). Nur Abundanz-Daten harmonisiert auf Individuen pro Quadratmeter 
(Ind. m-²) wurden zur Berechnung der Gesamtabundanz verwendet (Gesamtabundanz der Re
genwurmgesellschaft oder Populationsgröße einer individuellen Art), da Anzahlen (counts), 
(d. h. die pure Anzahl von einzelnen Regenwürmern an einem Ort und/oder Datum) nicht zu 
vergleichen sind aufgrund möglicherweise verschiedener Probenflächengrößen.  

Der Edaphobase-Rohdatensatz war heterogen, da er aus verschiedenen Quellen und von ver
schiedenen Datenbereitstellern stammt. Die meisten Daten gab es auf der Gemeinschaftsebene 
(d. h. alle bei der Probennahme an einer Stelle präsenten Arten). Andere Daten betrafen nur Be
obachtungen zu einzelnen Arten. Während weiterhin einige Daten Durchschnittswerte für einen 
einzelnen Standort angaben, waren andere Daten differenziert hinsichtlich des Datums der Pro
bennahme an einem Ort (Werte zum Beobachtungsdatum); einige Daten bezogen sich sogar auf 
individuelle Proben. Zusätzlich waren einige Daten von verschiedenen Probengebieten in einem 
Geokoordinatensatz zusammengefasst, so dass verschiedene Probennahmenstellen (plots) 
fälschlicherweise von einer Stelle zu stammen schienen. Diese Heterogenität erforderte ein in
tensives Bearbeiten des Edaphobase-Rohdatensatzes, bevor er für das Modellierungsverfahren 
genutzt werden konnte. Der Rohdatensatz wurde daher zunächst harmonisiert und bereinigt, 
um alle Daten in eine vergleichbare Struktur und Formatierung zu bringen, so dass ein allge
meingültiger Einsatz für die Modelle möglich war. Um kohärente ortsspezifische Datensätze zu 
erhalten, wurden die Daten gefiltert nach: (1) Breitengrad, (2) Längengrad, (3) Datum der Be
obachtung und (4) gültigem Artnamen. Daten ohne Geokoordinaten wurden aus dem Datensatz 
gelöscht.  

Zuerst wurde der Rohdatensatz auf Gemeinschaftsebene bereinigt (Daten zu dem gesamten vor
kommenden Artenbestand an einem individuellen Ort, der während einer Studie bzw. Untersu
chung festgestellt wurde). Nur Daten mit gleichen Geokoordinaten und aus mindestens zwei Ar
ten bestehend wurden als Daten auf Gemeinschaftsebene gewertet und aufgenommen. Daten
aufzeichnungen von Beobachtungen nur einer Art wurden nur in den wenigen Fällen im Daten
satz behalten, wenn aus den Metadaten für Quelle, Habitattyp oder Bemerkungen plausibel her
vorging, dass es sich um Beobachtungen zur Gemeinschaftsebene handelte. Alle in dieser Hin
sicht zweifelhaften Datenaufzeichnungen von Beobachtungen einzelner Arten wurden aus dem 
Datensatz gelöscht. 
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Abbildung 2: Räumliche Verteilung der Regenwurmfunddaten 

 
Quelle: Eigene Darstellung, Edaphobase, BGR 

Daten aus Höhlen wurden gelöscht, ebenso Daten von urbanen Standorten, wie z. B. Pflanzcon
tainern in der Stadt oder auch Verkehrsinseln, da (1) solche Daten auf wenige Bereiche begrenzt 
sind und (2) die Modellierungsverfahren auf Regenwürmer in (natürlichen) Böden abzielen. 
Darüber hinaus wurden auch sehr alte Daten gelöscht, die artenarme Gemeinschaften betreffen 



TEXTE Erarbeitung von Referenzwerten für Bodenorganismen für die Böden in Deutschland  – Abschlussbericht 

35 

 

(ca. vor 1920, meist ältere Museums-Aufzeichnungen), da diese höchst wahrscheinlich nicht Da
ten auf Gemeinschaftsebene widerspiegeln.  

Insgesamt resultierte daraus ein Datensatz auf Gemeinschaftsebene aus 21 395 Einzeldatensät
zen (inklusive Einzel-Artenaufzeichnungen). Der Großteil der ursprünglich abgefragten 
Edaphobase-Daten (96,7 %) ist auf der Gemeinschaftsebene nutzbar. 

Im Anschluss daran wurden die Daten eines Ortes nach Datumsangaben aufgeteilt (sofern diese 
existierten). Einige Aufzeichnungen beinhalteten kein Beobachtungsdatum. Für den Fall, dass 
diese Daten nicht plausibel mit einer Regenwurmgemeinschaft kombiniert werden konnten (ei
nes Ortes und eines Beobachtungsdatums), wurden sie gelöscht. Somit wurde sichergestellt, 
dass nur korrekte Daten auf Gemeinschaftsebene für die Modellierung genutzt wurden. Für 
Standorte, die über einen längeren Zeitraum beobachtet wurden (z. B. Bodendauerbeobach
tungsflächen, Sukzessionsstudien o. ä.), wurden nur die jüngsten Beobachtungen (der letzten 10 
Jahre) berücksichtigt, da sie am wahrscheinlichsten die momentanen Regenwurmvorkommen 
repräsentieren. Ganz ähnlich wurden Daten sehr früher Sukzessionsstadien (z. B. in Berg
baufolgelandschaften) gelöscht und nur die jüngsten Sukzessionsstadien behalten. Wenn in dem 
verbleibenden Datensatz Daten desselben Standortes existierten, die zwei verschiedene Habi
tattypen aufgrund eines unterschiedlichen Datums der Probennahme aufwiesen (durch Ände
rungen in der Landnutzung oder Habitatsukzession), wurden diese wie zwei verschiedene 
Standorte behandelt (es handelte sich dabei meistens um Ackerland, das in Grünland umgewan
delt wurde bzw. umgekehrt). In den wenigen Fällen, in denen Daten für denselben Ort aus ver
schiedenen (fast immer zwei) Quellen vorlagen und diese extrem variierten (z. B. in der Arten
anzahl), wurde die plausiblere oder aus vertrauenswürdigerer Quelle stammende Angabe ver
wendet und die andere gelöscht. All diese Maßnahmen reduzierten den finalen Datensatz auf 
20 013 individuelle Datensätze, der somit 91,4 % der ursprünglichen Edaphobase-Rohdaten re
präsentiert.  

2.1.1.3 Parameter auf Gemeinschaftsebene (Gesamtabundanz und Artenreichtum) 

Der resultierende finale Rohdatensatz wurde dann zu einzelnen Gemeinschaftsebnen-Werten je 
Standort zusammengefasst für den Einsatz in den Modellen. Für das Modellieren von Gemein
schaften wurden alle artenspezifischen Daten eines Standortes zusammengefasst. So erhielt man 
die Parameter Regenwurm-Gesamtabundanz (harmonisiert auf die Anzahl der Regenwurm-Indi
viduen pro Quadratmeter) sowie Regenwurm-Artenreichtum (durchschnittliche Anzahl der Ar
ten, die an einem Standort gefunden wurden). Oft gibt es nur Daten zur Anzahl der einzelnen Re
genwürmer einer Art, die an einer Stelle und an einem Datum identifiziert wurden. Da solche 
Daten keinen räumlichen Bezug angeben, repräsentieren sie nicht die wirkliche Vielfalt (= Dich
ten) und sind nicht vergleichbar mit den anderen Daten zur Vielfalt (harmonisiert auf Ind. m-²). 
Sie flossen daher nicht in die Zusammenfassung zur Abundanz ein, wurden jedoch für die Aggre
gierung zu Artenreichtumswerten verwendet, da sie das Artenvorkommen an einer Stelle ange
ben. Hinsichtlich einiger sehr großer Datensätze aus bestimmten individuellen Quellen (z. B. 



TEXTE Erarbeitung von Referenzwerten für Bodenorganismen für die Böden in Deutschland  – Abschlussbericht 

36 

 

Burkhardt10, Luthard11, Neubert12 oder Walter13) wurden die Probengrößen durch persönliche 
Kontaktaufnahme oder Literatur bestimmt und die Zählungen dann übertragen auf Ind. m-² (A
bundanz). Einige Abundanzdaten wurden offensichtlich falsch in Edaphobase eingegeben und 
repräsentierten nur Anzahlen (z. B. bestanden die Angaben nur aus ganzen Zahlen, hatten sehr 
niedrige Werte und enthielten oftmals den Wert 1); diese Datensätze wurden nicht für die 
Abundanzberechnugen genutzt.  

Für die Berechnung der Gemeinschaftsgesamtabundanz (total	community	abundance) eines 
Standortes wurde die durchschnittliche Vielfalt jeder Art für jedes Datum der Probennahme 
summiert (oder für den Ort, falls Daten nur für ein oder kein Datum vorlagen). Wenn im Vorfeld 
Daten für eine spezielle Stelle verschiedene Aufzeichnungen von individuellen Arten enthielten 
(Daten für den Punkt Probennahme), wurde die Vielfalt jeder Art im Durchschnitt für jeden 
Standort und jedes Datum angenommen (wenn nur ein Datum, dann für den Ort). Wenn Daten 
für einen bestimmten Ort mit mehreren Datumsangaben vorlagen, wurde der Vielfaltsdurch
schnittswert berechnet; dieser wurde dann als der Gesamtwert für die Gemeinschaftsvielfalt (to
tal	community	abundance	value) des Standortes angenommen. Wenn kein Datum zur Proben
nahme („no	data“) in den Datenaufzeichnungen für einen bestimmten Ort angegeben wurde, 
wurde dies wie ein einziges Datum zur Probennahme behandelt und die durchschnittliche Viel
falt für jede Art berechnet. 

Für den Parameter Artenreichtum einer Gemeinschaft (community	species	richness) wurde die 
Anzahl der verschiedenen Arten, die an einem Ort zu einem Datum aufgefunden wurden, sum
miert. Daten, die nur für den Punkt Gattung vorlagen, wurden nur als separate Art gewertet, 
wenn keine andere Art der Gattung für den Ort und das Datum angegeben war (alle Daten im 
Feld Familie [Lumbricidae] flossen nicht in die Artenreichtumsberechnungen mit ein, aber die 
Vielfaltsdaten für den Punkt Familie wurden gespeichert für die Berechnungen der gesamten Ge
meinschaftsvielfalt, s. o.). Wenn Daten zu einem unterschiedlichen Datum an einem Ort vorlagen, 
wurde – wie bei den Vielfaltsdaten – der Durchschnittswert der Artenreichtumswerte eines je
den Datums genommen, um einen Wert für jeden Ort zu erhalten. Es wurde entschieden, die 
Durchschnittswerte der Anzahl der aufgezeichneten Arten eines jeden Datums zu nehmen, an
statt der Gesamtzahl der aufgezeichneten Arten an einem Ort, da sich die Daten zur Proben
nahme oft über einen Zeitraum von mehreren Jahren erstreckten und nicht sichergestellt wer
den konnte, dass vor vielen Jahren aufgezeichnete Arten immer noch an diesen Orten vorkamen.  

Um Daten zu entfernen, die möglicherweise außerhalb des geographischen Bereichs des Studi
engebietes lagen, wurde der Punkt-in-Polygon-Filter unter Einsatz der point.in.polygon Funk
tion des „sp“ package (Pebesma & Bivand, 2005) in R benutzt (R core team, 2020), wobei der 

 

10 Burkhardt, U. et	al. (2010). Unveröffentlichter Sammlungsbestand Lumbricida 1960 – 2008, SMN Görlitz [Datensatz]. 
11 Luthardt, V. at al. (2009). Lebensräume im Wandel: Ergebnisse der ökosystemaren Umweltbeobachtung im Biosphärenreservat 
Spreewald. Fachbeiträge des LUGV. 122, 1-158. 
Luthardt, V. & Haggenmüller, K. (2012). Projekt Ökosystemare Umweltbeobachtung ÖUB [Datensatz]. 
12 Neubert, E. (2012). Rohdaten Regenwürmer Landesamt für Umweltschutz Sachsen-Anhalt 2004 – 2010 [Datensatz]. 
Neubert, E. (2012). Lumbricidenuntersuchungen auf ausgewählten Boden-Dauerbeobachtungsflächen (BDF) in Sachsen-Anhalt. Er
gebnisbericht 2011. 
Neubert, E. (2014). Lumbriciden 2013. Regenwürmer auf ausgewählten Boden-Dauerbeobachtungsflächen (BDF) in Sachsen-Anhalt. 
13 Walter, R. (2013). Bayrische Bodendauerbeobachtungsflächen [Datensatz]. 
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punktuelle Datensatz zu einem Vorkommen ausgeschnitten und mit dem geographischen Be
reich des Studiengebietes abgeglichen wurde. Für diese Funktion wurde ein „boundary	shapefile“ 
von Deutschland aus de GisDataCollection (igismap.com) eingesetzt.  

Diese Verfahren zur Zusammenführung resultierten dann in einem finalen Artenreichtums-Da
tensatz auf Gemeinschaftsebene (species-richness, community-level) von 992 Standorten. Da Da
ten von vielen Standorten keine Informationen zur Vielfalt aufwiesen (nur die Präsenz), wurden 
diese nicht in den Datensatz zur Vielfalt aufgenommen (aber für den Datensatz Artenreichtum 
gespeichert). Dies reduzierte den Datensatz zum Punkt gesamte Vielfalt der Gemeinschaft „com
munity-level	total	abundance“ auf 653 Standorte in ganz Deutschland.  

2.1.2 Datensatz auf Artebene 

Um die potentielle Verbreitung von individuellen Arten zu modellieren – das o. g. Datenaufberei
tungsverfahren war extrem zeitaufwändig – wurde ein „Species-level-“Datensatz vom ursprüngli
chen aufbereiteten Gemeinschaft-Datensatz abgeleitet (von 21.395 Funddatensätze). Einige Ein
zelarten-Funde aus Edaphobase (z. B. jene, die beim o. g. Aufbereitungsverfahren gelöscht wur
den), sind daher nicht verwendet worden. Dies ist aus den folgenden Gründen zu rechtfertigen: 
(1) weniger als 2 % der gesamten Edaphobase-Lumbricidae-Daten wurden während der ersten 
routinemäßigen Datenaufbereitung gelöscht und (2) betrafen diese gelöschten Daten Arten, die 
in Deutschland wenig verbreitet sind und zu wenig Daten zu ihrer Verbreitung vorliegen, so dass 
eine Modellierung nicht möglich gewesen wäre.  

Bezüglich der artenspezifischen Daten (innerhalb einer Gemeinschaft) wurden die Daten für 
jede Art mit den Parametern Vorkommen (occurrence) (ja/nein [=1/0] für jede Art und jeden 
Ort) und Artenabundanz (wieder harmonisiert auf einzelne Funde m-²) für jeden Ort zusammen
geführt. Wir bearbeiteten also die Artenlisten hinsichtlich der Vielfalt sowie für Präsenz (1) und 
Absenz (0) s. Anlage. Die gleichen Verfahren wie oben wurden zum Zusammenführen der Daten 
von individuellen Arten genutzt: wenn Daten von verschiedenen Proben für einen Standort vor
lagen, wurde der Durchschnitt der Artenvielfalt für jedes Datum genommen. Die berechneten 
durchschnittlichen Werte dienten zur Bestimmung der durchschnittlichen örtlichen standorts
bezogenen Artenvielfalt. Wenn nur ein (oder kein) Datum zur Probennahme für einen Standort 
angegeben war, aber verschiedene Proben vorlagen, wurde die gesamte (durchschnittliche) 
Vielfalt für jede registrierte Art berechnet. Wenn nur eine Aufzeichnung für den Standort vorlag, 
wurde der vorliegende Wert für die Artenvielfalt des Ortes genutzt. Hinsichtlich der Artenvor
kommen wurden individuelle Arten als vorkommend [1] an einem Ort gelistet, wenn Daten für 
diese Art an einem beliebigen Datum an dieser Stelle vorlagen. Da Daten auf Artebene von den 
Rohdaten auf Gesellschaftsebene abgeleitet wurden und während des Aufbereitungsverfahrens 
als aussagekräftig für die Studien auf Gemeinschaftsebene eingestuft wurden, konnte angenom
men werden, dass jene Arten, die nicht in den Daten für diesen Ort aufgelistet waren, nicht oder 
nur bedingt an dieser Stelle vorkamen (jedenfalls nicht an dem Zeitpunkt der Probennahme(n). 
In solchen Fällen wurden diese Arten als nicht vorkommend an dieser Stelle aufgelistet (= 
Pseudo-Absenz [0]). Das Ergebnis war ein Datensatz auf Artebene von 45 Arten an insgesamt 
992 Orten.  

Einseitige Probennahme und Datenautokorrelation aufgrund von Datenclustern sind bei den 
meisten Datensätzen zum Vorkommen, die für SDM zusammengestellt wurden, zu finden. Dies 
kann zu einer umwelt- und vorhersagetechnischen Einseitigkeit bei der Biodiversitätsmodellie
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rung führen (Boria et	al., 2014; Aiello-Lammens et	al. 2015). Um diese Thematik bei der Model
lierung zur Vorhersage und Kartierung der Verbreitung und geographischen Ausbreitung der 
einzelnen Regenwurmarten in Deutschland zu verbessern, haben wir eine räumliche Ausdün
nung („spatial	thinning“) bei den Aufzeichnungen der Arten (Vorkommen) vorgenommen, und 
zwar unter Einsatz der „thin“ Funktion der R „Spthin“ package (Aiello-Lammens et	al. 2015). 
Räumliche Ausdünnung wurde ebenso zur Problemlösung von Datenautokorrelation bei der 
ökologischen Modellierung vorgeschlagen, da Autokorrelation dazu neigt, bei Distanzen, die grö
ßer als der gegebene Wert sind, geringer zu werden (Fortin & Dale, 2005). Wir haben eine Mini
mum-Schwellendistanz von 1 pro Zelle im Rasterfile (Fourcade et	al., 2014) angesetzt, um einen 
zu hohen Datenverlust bei hohen Artenvorkommen zu vermeiden.  

Der finale Datensatz enthielt somit 45 gültige Arten. Während alle Arten zur Modellierung der 
gesamten Gemeinschaftsvielfalt und des Artenreichtums genutzt wurden, haben wir für diese 
Studie – aufgrund der eingeschränkten Datenverfügbarkeit beim Großteil der Arten – nur 12 Ar
ten zur Modellierung und Kartierung ihrer räumlichen Verbreitung ausgewählt. Unsere Auswahl 
begründete sich auf (1) die am meisten verbreiteten Arten basierend auf der Menge der verfüg
baren Arten, auf Literatur und Expertenwissen; (2) Arten mit einer offensichtlich einzigartigen 
Habitatpräferenz; (3) Arten, die als selten angenommen wurden; und (4) Arten, von denen ange
nommen wurde, dass sie endemisch sind (Tabelle 1). 

 

Tabelle 1: Für die Modellierung der potentiellen Artenverbreitung ausgewählte Regenwurm
arten 

Art Anzahl 
Fundorte 

Ökologische Lebensfor
mengruppe 

Auswahlkriterien 

Aporrectodea caliginosa SAVIGNY, 1826 719 endogäisch gewöhnlich 

Aporrectodea rosea SAVIGNY, 1826 603 endogäisch gewöhnlich 

Lumbricus terrestris LINNAEUS, 1758 546 anözisch gewöhnlich 

Lumbricus rubellus HOFFMEISTER, 1843 595 epigäisch gewöhnlich 

Allolobophora chlorotica SAVIGNY, 1826 304 endogäisch gewöhnlich 

Lumbricus castaneus SAVIGNY, 1826 319 epigäisch gewöhnlich 

Aporrectodea longa UDE, 1885 143 anözisch selten? 

Dendrobaena octaedra SAVIGNY, 1826 309 epigäisch besonderes Habi
tat 

Dendrobaena attemsi MICHAELSEN, 1903 29 epigäisch selten? 

Allolobophoridella eiseni LEVINSEN, 1884 43 epigäisch selten? 

Aporrectodea limicola MICHAELSEN, 1890 67 endogäisch besonderes Habi
tat 
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2.1.3 Umweltdaten (Arbeitsschritt 1 B) 

2.1.3.1 Zusammenstellung von Umweltdaten 

Mit höchster Priorität wurden die in Edaphobase bei den individuellen Regenwurmfundpunkten 
abgelegten Umweltinformationen für die Kalibrierung der Modelle verwendet. Fehlende Umwel
tinformationen wurden aus den folgenden Quellen in der Datenbank oder im Zuge der Modellka
librierung aus den Rasterdatensätzen ergänzt.  

Klimavariablen wurden von Climatologies	at	High	resolution	for	the	Earth	Land	Surface	Areas 
(CHELSEA, s3_browsind, wsl.ch) bezogen. Dies waren im Besonderen: mittlere Jahrestemperatur 
(„Bio1“), die gesamten jährlichen Regenfälle („Bio12“), die durchschnittliche Vegetationsperiode 
(„growing	degree	days“) mit einer Temperatur über 10°C („NGD10“) und die durchschnittliche 
jährliche Anzahl von frostfreien Tagen mit einer Temperatur über 0°C („GDDO“). Diese Klimada
ten enthalten Durchschnittswerte der Jahre 1981 bis 2010 mit einer räumlichen Auflösung von 
30 Bogensekunden, was dem Rahmen der räumlichen Auflösung der biologischen Daten ent
spricht. 

Für die topographische Variablen (Meereshöhe) wurde der USGS-NASA-Earthexplorer-Daten
satz14 verwendet. 

Zur Ergänzung der Bodenvariablen (für 571 Fundpunkte) wurden folgende Datenquellen ge
prüft: 

► Geologische und bodenkundliche Daten mittleren Maßstabs der Staatlichen Geologischen 
Dienste der Länder 

► Daten des European Soil Data Centre (ESDAC):  

⚫ LUCAS TOPSOIL-Daten 2009 und 2015 

⚫ LUCAS land use/land cover 2015 

⚫ europaweite Karten der chemischen Bodeneigenschaften auf der Basis der LUCAS-
Oberbodendaten 2009/201215 (pH der Bodenlösung in Wasser sowie CaCl2, C/N-Verhält
nis, Kationenaustauschkapazität, Calciumcarbonat-, Stickstoff-, Phosphor- und Kalium
gehalt) (Ballabio et	al., 2016, 2019) 

► Bodenflächendaten der Bundesanstalt für Geowissenschaften und Rohstoffe im Maßstab 
1 : 1 Mio. bzw. 1 : 200 000 (Sandgehalt, Schluffgehalt, Tongehalt, Gründigkeit, effektive Lage
rungsdichte, Luftkapazität [Porosität] und Gehalt an organischer Substanz im Boden [SOM]). 
Als Rasterdatensätze mit einer räumlichen Auflösung von 250 m x 250 m wurden diese Da
ten auch in der Regionalisierung durch die SDM verwendet.  

► European Space Agency (ESA), Climate Change Initiative (CCI)16 (durchschnittliche jährliche 
Bodenfeuchte als Bodenwassergehalt in 2,5 cm Bodentiefe) 

 

14 https://earthexplorer.usgs.gov/dataset  
15 https://esdac.jrc.ec.europa.eu/content/chemical-properties-european-scale-based-lucas-topsoil-data  
16 https://www.esa-soilmoisture-cci.org/data  

https://earthexplorer.usgs.gov/dataset
https://esdac.jrc.ec.europa.eu/content/chemical-properties-european-scale-based-lucas-topsoil-data
https://www.esa-soilmoisture-cci.org/data
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Wegen der bundesweiten Einheitlichkeit der Daten und wegen ihrer geeigneten Auflösung im 
Vergleich zu den biologischen Daten sind letzten Endes vor allem die Bodendaten der BGR, ins
besondere der Bodenübersichtskarte 1 : 200 000 (BÜK 200), in die Modelle eingeflossen. Wei
tere Bodenvariablen sind bekanntermaßen von hoher Relevanz für das Vorkommen von Regen
würmern und Regenwurmpopulationsgrößen, wie der Stickstoffgehalt des Bodens und das C/N-
Verhältnis im Boden als Indikator für die Qualität der organischen Bodensubstanz. Diese lagen 
jedoch nicht bzw. nicht in ausreichender Auflösung vor und konnten daher nicht in den Model
lierungsverfahren verwendet werden. Auch mikrobielle Parameter dürften von hoher Relevanz 
sein, allerdings liegen auch hierzu keine deutschlandweiten Daten vor. 

Räumlich höher aufgelöste Daten der Staatlichen Geologischen Dienste der Länder wurden aus
führlich auf ihre Eignung geprüft. Letztlich sprachen die hohe Heterogenität der verfügbaren Da
ten und zum Teil nicht passfähigen Datenstrukturen gegen eine Verwendung in diesem Projekt.  

Die in Edaphobase vorliegenden Fundortnachweise der Gruppe der Regenwürmer (Lumbri
cidae) ohne ökologische Begleitparameter wurden anhand von Daten der BÜK 200 ergänzt. Un
ter anderem wurden Daten zur Habitatpräferenz bzw. die Einordnung in funktionelle Gruppen 
(epigäisch, endogäisch, anözisch), Bodenart nach Feinbodenartendiagramm (7646 von 11946), 
Humusgehaltklassen in Prozent-Spannen (10657 von 11946), Bodenausgangsgestein (11900 
von 11946), Durchlässigkeit (11855 von 11946) und die Verknüpfung mit den Legendeneinhei
ten der BÜK 200 (alle Datensätze) ergänzt. Über die Verknüpfung mit den Legendeneinheiten 
der BÜK 200 lassen sich Fundortdaten mit zusätzlichen Parametern wie Humusgehalt oder pH-
Werten verknüpfen. 

Landnutzungs-/Landbedeckungsdaten wurden aus der EUNIS-Klassifizierung europäischer Öko
systemtypen bezogen, basierend auf Details der Habitatklassifizierung, Stufe 1, Version 3.1, 
2019 mit einer räumlichen Auflösung von 100 m17. Die Habitat-Rasterdaten wurden in 11 Land
nutzungsklassen gruppiert (meeresbeeinflusst, Küstengewässer, Binnengewässer, Moore und 
Moore, Grünland, Heide, Wald, spärliche Vegetation, Acker, urbane und künstliche Habitate und 
nicht klassifizierte Habitatkomplexe; Tabelle 3). Jeder der Klassen wurde eine Proxy-Nummer 
von 1 – 10 zugeordnet, wobei 0 für nicht klassifizierte oder komplexe Lebensraumtypen steht. 

2.1.3.2 Auswahl der ökologischen Variablen 

Diejenigen Umweltdaten, die in den Regenwurmfunddaten begleitend aufgenommen wurden, 
wurden bei der Kalibrierung der Algorithmen als Schätzwert für Regenwurmvorkommen ge
nutzt. Die Auswahl geeigneter Schätzwertvariablen stellt einen wichtigen Schritt bei der SDM 
dar, da die Ausprägung der Umweltparameter als Beschränkung der Artenverbreitung wirkt und 
die ökophysiologischen Toleranzen und Bedürfnisse der Arten widerspiegeln. Daher müssen die 
ökologischen und physiologischen Variablen hinsichtlich ihrer Relevanz sorgfältig ausgewählt 
werden (Guisan & Zimmermann, 2000; Austin, 2002; Jarnevich et	al., 2015). Das Hauptkriterium 
zur Auswahl der Schätzwertvariablen war, dass sie einen physiologischen Einfluss auf die Ver
breitung der Regenwurmarten haben und eine ökologische Bedeutung tragen (Guisan & Zim
mermann, 2000; Rutgers et	al., 2016; Phillips et	al., 2019; Edwards und Arancon, 2022). Die im 
Vorfeld analysierten und ausgewählten Variablen wurden in vier breite Kategorien eingruppiert: 
Klima- (4 Variablen), topographische (1), Boden- (9) und Habitat-/Landnutzungs-Klassen. 

Von allen Umweltdaten haben wir anfänglich 15 externe Schätzwertvariablen ausgewählt, die 
auf relevanten umweltspezifischen Parametern basieren und im Zusammenhang mit Artenvor

 

17 https://www.eea.europa.eu/data -and-maps/data/ecosystem-types-of-europe-1  

https://www.eea.europa.eu/data%20-and-maps/data/ecosystem-types-of-europe-1
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kommen in Edaphobase, Literatursuche, Online-Recherchen und Experten-basierten Einschät
zungen in Verbindung stehen. Alle Umweltdaten, als solche bzw. abgeleitete Werte, wurden als 
räumlich explizite Rasterdatensätze für die räumlichen Modellierungen verwendet (Tabelle 2).  

Da die in Edaphobase enthaltenen Umweltdaten spezifisch und direkt mit den Regenwurmvor
kommen auf Fundpunktebene verknüpft sind und in der Regel gleichzeitig mit den Regenwurm
daten erhoben wurden, wird davon ausgegangen, dass die Umweltdaten in Edaphobase einen 
wesentlich genauer und damit für die Modellierung der Artansprüche geeigneter sind als die ex
ternen Bodendaten oder andere der oben aufgeführten Umweltdaten. Obwohl die Fundpunkte  

Tabelle 2: Liste vorausgewählter Umweltparameter, die als Prädiktorvariablen verwendet 
werden (Datenquellen sind im Text angegeben) 

Code Beschreibung Räumliche 
Auflösung 

Einheit 

Bio 1 Jahresmitteltemperatur 1 km °C (Beachte: im Da
tensatz °C*10) 

Bio 12 Mittlerer Jahresniederschlag 1 km mm 

Mod_clay Tongehalt des Bodens 250 m Prozent (%) 

Mod_silt Schluffgehalt des Bodens 250 m Prozent (%) 

Mod_sand Sandgehalt des Bodens 250 m Prozent (%) 

SoilAirC Luftkapazität des Bodens 250 m Volumen- Prozent 
(Vol.-%) 

SOM Gehalt an organischer Substanz des Bodens 250 m Prozent (%) 

ResMsk_SM/S_Moisture Bodenfeuchte 250 m 
% Bodenwasser
gehalt in 2 – 5 cm 
Tiefe 

Soil_compact Lagerungsdichte des Bodens 250 m Trockenrohdichte 
g cm-3 

Soil_depth Gründigkeit des Bodens 250 m Tiefe in cm 

Mod_pH pH (0,01 M CaCl2) 250 m dimensionslos 

EUNIS Hab Habitat-/Landnutzungstyp 100 m nominalskaliert  
(s. Tabelle 3) 

Alt_res Meereshöhe 90 m Meter 

NGDO_output Dauer der Vegetationsperiode (Tage mit 
mittlerer Lufttemperatur über 10 °C) 1 km 

Durchschnittliche 
Zahl von Tagen pro 
Jahr 

GDDO_output Zahl der Tage mit Lufttemperaturen über 
0 °C 1 km 

Durchschnittliche 
Zahl von Tagen pro 
Jahr 

aus Edaphobase eine relativ große Fläche abdecken, gibt es große nicht beprobte Gebiete, so 
dass in der Fläche insgesamt eine hohe Datendichte vorliegt, aber mit großen, nicht abgedeckten 
Gebieten. Deshalb wurden in den für die Modellkalibrierung verwendeten Rasterdateien die Zel
len mit Edaphobase-Daten mit den Umwelt-Daten aus Edaphobase belegt. Insbesondere für den 
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pH-Wert des Bodens wurden dabei die fehlenden Werte in den Punktdaten vorhergesagt aus 
den Rasterdaten, die mit den Bodentexturparametern (Ton-, Sand- und Schluffgehalt) als Kovari
aten kombiniert wurden. Die Auswahl der zu ersetzenden Zellen der Rasterdatei erfolgte auf der 
Grundlage der Geokoordinaten der Vorkommensorte. Nach der Modellkalibrierung basieren die 
Vorhersagen und Kartierungsalgorithmen auf den ursprünglichen (externen) Rasterdaten (ohne 
Ersetzung durch Edaphobase-Daten). 

In einigen Zellen der Rasterdaten waren keine Daten verfügbar (NA), z. B. für die Bodentrocken
rohdichte, Luftkapazität und Gründigkeit. Die fehlenden Daten in den Rasterdateien dieser Vari- 

Tabelle 3: Europäische EUNIS-Klassifikationsebenen für Habitat-/Landnutzungstypen auf 
Ebene 1, die als Modellierungskategorien der Habitattypvariablen verwendet wer
den (EUNIS Hab, Tabelle 2) 

Code Habitat-/Landnutzungstyp 

LULC_1 Meeresbeeinflusste Habitate (d. h. Meeresinseln) 

LULC_2 Küstenhabitate 

LULC_3 Binnenwasserkörper 

LULC_4 Hoch- und Niedermoore 

LULC_5 Grünland sowie kraut-, moos- oder flechtendominierte Habitate 

LULC_6 Heiden, Gebüsche und Tundra 

LULC_7 Wald, Forst 

LULC_8 Ödland 

LULC_9 Ackerland 

LULC_10 Siedlungen, Industrie- und Gewerbeflächen, künstliche Habitate 

0 nicht klassifiziert/komplex 

 

ablen erzeugen Lücken, die die endgültigen modellierten Vorhersagen und Karten verzerren 
könnten. Um dies zu beheben, wurden die Lücken mit dem „Gap Fill“-Tool des System for Auto
mated Geoscientific Analyses (SAGA) GIS geschlossen. Dies erfolgt durch Zuweisen von in den 
Eingabe-Rasterkarten verfügbaren Datenwerten zu den NA-Zellen in den Regionen mit Datenlü
cken. Die Werte für die NA-Datenregionen wurden aus den umgebenden Zellwerten mit inverser 
Distanzgewichtung berechnet. Nach dieser Interpolation wurden die Ergebnisse geglättet 
(GDAL-Software-Suite, 2013).  

Für den pH-Wert des Bodens enthielten die verfügbaren Rasterdateien für Deutschland große 
räumliche Bereiche mit fehlenden Daten. Um die Genauigkeit der pH-Daten als Umweltprä
diktorvariablen zu verbessern, wurde ein Modellierungsverfahren zum Füllen von Datenlücken 
verwendet (Hengl, 2007; Reuter et	al., 2008; Soil Security Lab 2017; Wieger Wamelink, 2019). 
Edaphobase enthielt viele pH-Punktdaten innerhalb dieser Bereiche mit Datenlücken. Da diese 
Felddaten relativ ausreichend waren, haben wir die Beziehung zwischen pH-Felddaten und ih
ren Kovariaten (d. h. Bodentexturdaten) an beprobten Standorten modelliert und den pH-Wert 
für nicht beprobte Gebiete basierend auf dieser Beziehung vorhergesagt, was zu einem modifi
zierten Umweltraster für den pH-Wert führte. 
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Da alle Umwelt-Rasterdaten aus externen Quellen mit unterschiedlichen Formaten, Auflösungen, 
Ausdehnungen, usw. bezogen wurden und die SDM-Modellierung erfordert, dass diese Variablen 
in geographischer/räumlicher Ausdehnung einheitlich sind, wurden zunächst alle vorausge
wählten Variablen auf das Weltweite Geographische Koordinatensystem WGS84 umreferenziert, 
in dem alle Edaphobase-Daten referenziert sind, beschnitten und in das GIS-Shapefile für 
Deutschland maskiert und auf eine einheitliche räumliche Auflösung von 250 m gesampled bzw. 
disaggregiert, um der Auflösung der Punktdaten der Arten zu entsprechen, wobei das 3. Quartil 
der räumlichen Auflösung 260 m betrug (Thuiller et	al., 2004; Guisan et	al., 2017). Diese prozes
sierten Umweltvariablen wurden für die Modellkalibrierung, Vorhersage und anschließende 
Kartierung der Gesamtabundanz und des Artenreichtums der Regenwurmgemeinschaften sowie 
der räumlichen Verteilung der Arten verwendet. 

2.1.4 Endgültige Variablenauswahl für die Modellkalibrierung (Arbeitsschritte 2 bis 4) 

Die Modellkalibrierung umfasst die Auswahl geeigneter Prädiktoren, die unabänderlich die Ge
nauigkeit der Modelle bestimmen, wobei Probleme der Variablen-Autokorrelation und -Multiko
llinearität die Modellleistung und -genauigkeit beeinflussen (Guisan & Zimmermann, 2000, Mod 
et	al., 2016; Salako, 2020). Die hier vorgenommene Modellkalibrierung umfasste drei Haupt
schritte: 1) Identifizierung von Autokorrelation und Multikollinearität zwischen den Prädiktor
variablen, 2) Entfernung der stark korrelierten Variablen und 3) Auswahl der besten Kandida
tenvariablen für die Modellierung. 

Um zunächst die numerischen Prädiktorvariablen auf Autokorrelation zu testen, wurden mit
hilfe einer Hauptkomponentenanalyse (PCA, mit der Funktion pca im R-Paket "FactoMineR"; Lê 
et	al., 2008) (visuell) autokorrelierte Variablen identifiziert, und die Pearson-Korrelationskoeffi
zienten zwischen Variablenpaaren mit der Funktion "ggpairs" im R-Paket Ggally berechnet. Zu
vor wurden alle numerischen Variablen auf gemeinsame Mittelwerte (Z-Score von 0) und Ein
heitsvarianz standardisiert. Um signifikante Korrelationen zu identifizieren, wurde der Korrela
tionsschwellenwert auf R² ≥ 0,7 gesetzt (Johnson et	al., 2002; Bobrowski et	al., 2021). Die Ergeb
nisse der PCA und der Korrelationsmatrix (Abbildung 3 bis Abbildung 5) identifizierten als auto
korrelierte Variablen: die mittlere Jahrestemperatur ("Bio 1"), die stark mit der durchschnittli
chen Anzahl der Tage pro Jahr über 0 °C und über 10 °C ("GDDO" bzw. "NGD1O") korreliert ist, 
und den Gesamtjahresniederschlag ("Bio 12") mit der Meereshöhe. Deshalb wurden die Meeres
höhe und die Anzahl der Tage pro Jahr über 0 °C und 10 °C (NGD10 und GDDO) aus den Model
len entfernt. Beibehalten wurden der mittlere Jahresniederschlag und die Jahresmitteltempera
tur der Luft (Bio1 und Bio12) aufgrund ihrer physiologischen und ökologischen Bedeutung für 
Regenwürmer (Dormann et	al., 2013). Dadurch wurde die Zahl der Umweltvariablen auf 13 re
duziert. Außerdem zeigte der Pearson-Korrelationskoeffizient, dass Sand- und Schluffgehalt des 
Bodens den gewählten Schwellenwert für die Autokorrelation von R² ≥ 0,7 verletzten. Um die 
Multikollinearität zu testen, wurden anschließend während der Modellkalibrierung die Varianz-
inflationsfaktoren (VIF) berechnet mit einem Schwellenwert von VIF > 5, um Multikollinearität 
zwischen Prädiktoren zu erkennen (Dorman et	al., 2013). Auf der Grundlage der VIF-Ergebnisse 
wurde der Sandgehalt entfernt (Schluff- und Tongehalt wurden jedoch beibehalten), so dass 11 
nicht korrelierte Umweltprädiktoren übrigblieben, die bei der endgültigen Anpassung der Mo
delle verwendet wurden (Tabelle 3).  
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Abbildung 3: Hauptkomponentenanalyse (PCA) der (standardisierten) quantitativen, d. h. nume
rischen vorausgewählten Prädiktorvariablen. Prozentwerte in den Achsenbeschrif
tungen geben den Anteil an Datenvariabilität an, die durch die Achse repräsentiert 
wird. „Cos²“ = Korrelationskoeffizienten im PCA-Raum 

 
Quelle: Eigene Darstellung, Senckenberg Museum 

Abbildung 4: Korrelations-Heatmap der 15 ursprünglich vorausgewählten standardisierten quan
titativen Prädiktorvariablen. Eine dunklere Farbe (in Richtung Rot) zeigt eine hö
here Korrelation zwischen Variablenpaaren. 

 
Quelle: Eigene Darstellung, Senckenberg Museum 



TEXTE Erarbeitung von Referenzwerten für Bodenorganismen für die Böden in Deutschland  – Abschlussbericht 

45 

 

Abbildung 5: Korrelationsmatrix der 13 standardisierten quantitativen Prädiktorvariablen nach 
Prädiktoreliminierung, basierend auf PCA- und Korrelationsanalyse 

 
Quelle: Eigene Darstellung, Senckenberg Museum 

Tabelle 4: Liste ausgewählter Umweltparameter, die nach Autokorrelations- und Multikolline
ritätstests als Prädiktorvariablen in die Modellalgorithmen eingehen 

Code Beschreibung Räumliche 
Auflösung 

Einheit 

Bio 1 Jahresmitteltemperatur 1 km °C (Beachte: im Da
tensatz °C*10) 

Bio 12 Mittlerer Jahresniederschlag 1 km mm 

Mod_clay Tongehalt des Bodens 250 m Prozent (%) 

Mod_silt Schluffgehalt des Bodens 250 m Prozent (%) 

SoilAirC Luftkapazität des Bodens 250 m Volumen- Prozent 
(Vol.-%) 

SOM Gehalt an organischer Substanz des Bodens 250 m Prozent (%) 

ResMsk_SM/S_Moisture Bodenfeuchte 250 m 
% Bodenwasser
gehalt in 2 – 5 cm 
Tiefe 

Soil_compact Lagerungsdichte des Bodens 250 m Trockenrohdichte 
g cm-3 

Soil_depth Gründigkeit des Bodens 250 m Tiefe in cm 

Mod_pH pH (0,01 M CaCl2) 250 m dimensionslos 

EUNIS Hab Habitat-/Landnutzungstyp 100 m nominalskaliert  
(s. Tabelle 3) 
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2.1.5 Modellkalibrierung und -anpassung (Arbeitsschritte 5 und 6) 

2.1.5.1 Beschreibung der Modellalgorithmen 

Alle Analysen wurden in der Programmiersprache R (R Core Team, 2020) durchgeführt. Vier Al
gorithmen wurden ausgewählt, um die Modelle anzupassen (Kalibrierung zwischen bekannten 
Regenwurmvorkommen und Prädiktorvariablen) und anschließend die endgültigen Verteilungs
vorhersagen des Modells zu erstellen. Bei den Algorithmen handelte es sich einerseits um tradi
tionelle Regressionsmodelle (verallgemeinerte lineare Regressionsmodelle [GLM], verallgemei
nerte additive Modelle [GAM]) und andererseits um Algorithmen des maschinellen Lernens (ge
neralized boosted regression-tree models [GBM] und Random Forest-Modelle [RF]). Diese Mo
dellalgorithmen sind in der Literatur mehrfach ausführlich beschrieben worden (z. B. Guisian 
und Zimmermann, 2000; Li & Wang 2013; Guisan et	al., 2017); Tabelle 4 enthält eine Zusam
menfassung ihrer grundlegenden Merkmale und Eigenschaften.  

2.1.5.2 Modellanpassungen für GLM, GAM, GBM und RF 

Generalized	linear	models (GLM) wurden in der Basisversion von R unter Verwendung einer Ver
knüpfungsfunktion der Gauß-Familie erstellt, Generalized	additive	models (GAM) in R mit dem 
Paket "themgcv". GLMs können sowohl für die Vorhersage von binären Daten (mit den Werten 1 
und 0, d. h. Vorhandensein oder Fehlen) als auch von numerischen Daten (1, 2, 3, ...; d. h. Gesamt
abundanzen oder Artenreichtum) verwendet werden (Fox, 2015; Bhatt et	al., 2017; Capinha et	
al., 2018; Li & Wang, 2013). Sowohl für die Anpassung des GLM als auch des GAM wurde zu
nächst das Histogramm der ausgewählten Prädiktorvariablen untersucht, um ihre Verteilung zu 
überprüfen, da für die lineare Regressionsmodellierung normalverteilte Werte erforderlich sind 
(Mangiafico, 2016, Liu et	al., 2018). Der mittlere Jahresniederschlag ("Bio 12") und die Luftkapa
zität des Bodens wiesen schiefe Verteilungen auf und wurden daher log10-transformiert. GLM-
Modelle wurden mit der Gesamtabundanz der Gemeinschaft und dem Artenreichtum sowie den 
Daten über die An- und Abwesenheit einzelner Arten (P/A; für die Artenverteilung) als Respon
sevariablen und mit den 11 oben genannten Umweltvariablen als Prädiktoren (erklärende Vari
ablen) angepasst. Die Modelle wurden unter Verwendung der folgenden R-Funktionsaufrufe for
muliert, wobei Polynome zweiter Ordnung ("poly"; zur Berücksichtigung nichtlinearer Bezie
hungen zwischen Regenwürmern und Prädiktoren) und eine Glättungsfunktion ("s") zur Glei
chung für polynomiale Regression in GLM und Glättung in GAM hinzugefügt wurden: 

Lineare Regression: Y = glm(a ~ x0 + x1 + x2 + x3 + x4 +…+ xn),  

Polynomiale Regression: Y1 = glm(a ~ poly(x0, 2) +poly(x1, 2)+ poly(x2, 2) + poly(x3, 2) 
poly(x4, 2) +…+ poly(xn, 2)) [Beachte: polynomiale Funktionsaufrufe schließen den linearen 
Term ein] 

Additive Modelle: Y2 = gam(a ~s(x) + s(x1)+ s(x2) + s(x3) + ………s(xn)) 

wobei Y, Y1, Y2 die vorhergesagten Responsevariablen (Gesamthäufigkeit, Artenreichtum, 
Wahrscheinlichkeit des Auftretens einzelner Arten), a die beobachtete Responsevariable, die bei 
der Kalibrierung des Modells verwendet wurde, x die Umwelt-/Prädiktorenvariablen und s die 
Glättungsfunktion darstellen. „glm“ ist die R-Funktion für ein generalized	linear	model und gam 
die Funktion für ein generalized	additives	model. Wir wählten die besten Modelle in einer schritt
weisen (Prädiktor-)Variablenauswahl aus, die auf der Grundlage des Akaike-Informationskrite
riums (AIC) jedes getesteten Modells (= Prädiktorenkombination) durchgeführt wurde. Es wur
den die Modelle mit dem niedrigsten AIC ausgewählt. 
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Tabelle 5: Zusammenfassung der vier getesteten Algorithmen zur Modellierung der räumli
chen Verbreitung von Regenwürmern in Deutschland 

Modell-
klasse 

Me-
thode 

Beschreibung Besondere Eigen
schaften und Funktio
nen 

Klassische 
Regression 

GLM Generalisierte lineare Regression (GLM) ist eine Verallge
meinerung allgemeiner linearer Modelle (McCullagh & 
Nelder, 1989). Sie ermöglichen die Anpassung eines linea
ren Modells zwischen erklärenden (Prädiktor-)Variablen 
und der Responsevariablen über eine Verknüpfungsfunk
tion (basierend auf dem Datenverteilungstyp) und liefert 
die Größe der Varianzen zwischen den Responsevariablen 
und die statistische Anpassung an die Prädiktorvariablen. 

Weniger komplex, 
häufig verwendet und 
kann mit allen Arten 
von Daten (binär, kon
tinuierlich, kategorial, 
Zählung) angepasst 
werden. Gut geeignet 
zur Modellextrapola
tion. 

Klassische 
Regression 
(Glättung) 

GAM Verallgemeinerte additive Modelle (GAMs) sind nicht-pa
rametrische Erweiterungen von GLMs und bieten somit 
das Potenzial für bessere Anpassungen an heterogene Da
ten als GLMs (Hastie & Tibshirani, 1986). GAMs verwenden 
datendefinierte Glättungsfunktionen, um nichtlineare Art-
Umwelt-Beziehungen anzupassen. Die Glättungsfunktio
nen werden für jede erklärende Variable unabhängig be
rechnet und dann hinzugefügt, um das endgültige Modell 
zu erstellen. 
Wird zum Anpassen nichtlinearer Funktionen verwendet. 
Baut auf dem verallgemeinerten linearen Modell auf, in
dem der lineare Prädiktor durch einen additiven Prädiktor 
ersetzt wird (Hastie & Tibshirani, 1986), der die Modellie
rung komplexerer ökologischer Reaktionen erlaubt (z. B. 
Elith et al., 2006). 

Kann in manchen Fäl
len besser abschnei
den als GLM, wenn 
komplexe Arten-Um
weltbeziehungen be
trachtet werden. 
Ebenso gut zur Mo
dellextrapolation ge
eignet. 

Maschinel
les Lernen 
(Boosting 
und Re
gression) 

GBM Generalized Boosting Models (GBM), auch unter der Be
zeichnung Boosted Regression Trees (BRT) bekannt, ver
wenden einen Boosting-Algorithmus, der den Regression-
Tree-Algorithmus iterativ verwendet, um eine Kombina
tion von Bäumen in einem schrittweisen Vorwärtsverfah
ren zu konstruieren. Es konzentriert sich auf die schwächs
ten Teile des bisher erstellten Modells, indem jeder neue 
Baum an das Residuum der zuvor angepassten Bäume an
gepasst wird (Elith et al., 2006). 

Gut zum Lösen von 
Klassifizierungs- und 
Regressionsproble
men mit kontinuierli
chen und kategorialen 
Daten (Elith et al., 
2006; Li & Wang, 
2013) 

Maschinel
les Lernen 
(Klassifika
tion und 
Regression 
with Bag
ging) 

RF Random Forest (RF) ist eine Ensemble-Methode, die viele 
verschiedene Klassifikations-(Entscheidungs-)-Bäume bein
haltet und Breimans Random-Forest-Algorithmus zur Aus
wahl der besten Regression und Klassifikation implemen
tiert (Breiman, 2001). 
Bagging ist ein charakteristisches Merkmal von RF 
(wodurch es sich von GBM unterscheidet): Es ist ein En
semble-Algorithmus, der mehrere Modelle mit verschiede
nen Teilmengen eines Trainingsdatensatzes anpasst und 
dann die Vorhersagen aller Modelle kombiniert. Das Prin
zip hinter dem Bagging in RF besteht darin, mehrere 
Bäume an verschiedene Resampling-Teilmengen der ur
sprünglichen Datensätze anzupassen und dann die Ergeb
nisse der verschiedenen Teilstichproben zu mitteln. 

Hohe Vorhersageleis
tungen (Guisan et al., 
2017) 
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Die Modellanpassung (Kalibrierung) für GBM wurde mit den Paketen DISMO (Version 1.3-5, 
Hijmans et	al., 2019) und BIOMOD 2 (Version 3.5.1, Thuiller, et	al., 2008, 2021) in R durchge
führt, um alle Einzelfunktionen, die mit jedem der Pakete verbunden sind, optimal zu nutzen. Be
stimmte Parameter sind bei der GBM-Modellanpassung wichtig, z. B. die Gesamtzahl der anzu
passenden Bäume, die Lernrate oder Schrumpfung, die Anzahl der Kreuzvalidierungen und die 
maximale Tiefe der Variableninteraktion (Elith et	al. 2008; Guisan et	al., 2017). Nach einer Reihe 
von Modellläufen, bei denen diese Parameter optimiert wurden, wurde das endgültige Modell 
für die Vorhersage der Regenwurm-Gemeinschaft/Artabundanz mit den 11 Prädiktoren mit 
1000 Bäumen (n.trees) angepasst, die nacheinander hinzugefügt wurden, um eine Überanpas
sung zu vermeiden. Die Lernrate (lr) wurde auf 0,001 gesetzt und ein bag.fraction (siehe Erläu
terung in Tabelle 5) von 0,5 mit einer maximalen Kreuzvalidierung von 10 Iterationszyklen 
(cv.folds =10) verwendet. Die endgültige Auswahl basierte auf dem Modell mit der geringsten 
Vorhersageabweichung. Die folgende Funktion wurde für die GBMs verwendet: 

Y = gbm.step(data=DF, gbm.x =, gbm.y =, family = "gaussian" or “Poisson”, tree.complexity = 2, 
learning.rate = 0.001, bag.fraction = 0.5, cv.folds=10) 

wobei DF die Trainings-/Testdaten (Datenrahmen, der sowohl die Antwort- als auch die Prä
diktorvariablen kombiniert), gbm.x die Prädiktorspalte(n), gbm.y die Responsespalte und 
tree.complexity die Anzahl der Bäume darstellt. 

Das Random-Forest-Modell wurde mit Hilfe des R-Pakets RandomForest (Liaw & Wiener, 2002) 
mit den 11 Umweltvariablen als Prädiktoren und den Reaktionsvariablen der Gemeinschaftsge
samtabundanz und des Artenreichtums sowie den artspezifischen Beobachtungsdaten (P/A) an
gepasst. Die Mindestanzahl der Bäume wurde auf 1000 und die Knotengröße auf 10 festgelegt, 
was die optimale Einstellung darstellt, die die besten Anpassungsstatistiken ergibt. Das RF-Mo
dell wurde mit der folgenden Funktion formuliert: 

Y = randomForest(x= n[,5:15], y= n[,3], ntree = 1000,nodesize = 10, importance = T)  

wobei x die Spalten des Datenrahmens mit den Prädiktoren, y die Spalte des Datenrahmens mit 
der Responsevariablen und ntree die Anzahl der Bäume darstellt. 

Die Anpassung des RF-Modells und die Vorhersagen wurden auf zwei Arten durchgeführt: (1) 
"Regression", bei der die Responsevariablen der Gesamtabundanz und des Artenreichtums oder 
die Vorkommensdatensätze von Anwesenheit (1) und Abwesenheit (0) für die Vorhersage als 
numerisch behandelt wurden, und (2) "Klassifizierung", bei der die Responsevariablen als Fak
toren oder kategoriale Variablen behandelt wurden, um eine binäre Vorhersage von Anwesen
heit (1) oder Abwesenheit (0) zu erstellen (Hijmans & Elith, 2019; Valavi et	al., 2021). Es wurden 
eine Modellplausibilitätsprüfung sowie eine Variablenbeitrags- oder –bedeutungsanalyse so
wohl für GBM als auch für RF durchgeführt, mithilfe einer Reaktionskurve (partieller Abhängig
keitsplot), die die Reaktionen der Regenwürmer auf die ausgewählten Umweltvariablen zeigt.  

Zur Modellierung und Kartierung des Regenwurm-Artenreichtums können sowohl makroökolo
gische Modelle (macro-ecological	models, MEM; Regressionsmodelle mit bekanntem Artenreich
tum als Responsevariable) als auch gestapelte Artenverteilungsmodelle (stacked	species	distribu
tion	models, SSDM; Kombination der Vorkommensvorhersagen einzelner Arten) verwendet wer
den. Die Entscheidung fiel auf ein MEM aufgrund seiner relativen Vorteile gegenüber SSDMs (Bi
ber et	al., 2020): in erster Linie aufgrund der Tatsache, dass SSDMs den Gesamtartenreichtum 
nicht angemessen darstellen, wenn nicht alle Arten modelliert werden können (d. h. aufgrund 
unzureichender Daten für seltene Arten, wie im vorliegenden Fall). Beide Methoden wurden ge
testet, und es zeigte sich, dass SSDM den Artenreichtum im Vergleich zu MEM stark unterschätzt. 
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2.1.6 Prognosen (GIS-Kartenerstellung aus den Modellergebnissen) (Arbeitsschritt 7) 

2.1.6.1 Visualisierung der Modellergebnisse 

Alle Modellvorhersageraster wurden in die GIS-Umgebung importiert. Um später Modellierungs-
ergebnisse genauer auf die Karten projizieren zu können, wurden die Rasterdateien anschlie-
ßend in das für Europa passende Projektionssystem "ETRS89 LAEA" (EPSG-Code: 3035) umge
wandelt und eine die Kartendarstellung verbessernde Symbolisierung vorgenommen. 

2.1.6.2 Diversitätsabschätzung 

Die Gesamtabundanz einer Gemeinschaft und der Artenreichtum sind zwei Maße, die eine mo
dellierte Regenwurmgemeinschaft beschreiben. Keiner der beiden Indikatoren beschreibt je
doch die Vielfalt einer beobachteten oder (modellierten) potenziellen Gemeinschaft adäquat. Üb
licherweise verwendete nichtparametrische Diversitätsindizes wie der Shannon-Wiener- oder 
Simpson-Index oder die verschiedenen Evenness-Indizes (Magurran 2004) erfordern Abundanz
daten für alle konstituierenden Arten einer (lokalen) Gemeinschaft, die nicht für alle bei der Mo
dellkalibrierung verwendeten Standorte verfügbar waren. Daher konnte die potenzielle räumli
che Verteilung solcher Diversitätsindizes nicht angemessen modelliert werden. Zur Überwin
dung dieser Schwierigkeit und als erste Annäherung an die potenzielle Vielfalt der Regenwür
mer wurde eine GIS-Überlagerung der Ergebnisse der Modellierung der Gesamtabundanz und 
des Artenreichtums der Regenwurmgemeinschaft erstellt. Dazu wurden die GIS-Rasterdateien 
für die Gesamtabundanz und den Artenreichtum auf eine Skala von 1 bis 5 standardisiert (um 
die beiden Messgrößen vergleichbar zu machen) und der Skalenwert jeder entsprechenden Zelle 
in den Dateien multipliziert. Die sich daraus ergebenden Werte wiederum wurden in eine fünf
stufige Skala der potenziellen Vielfalt ("sehr gering", "gering", "mittel", "hoch" und "sehr hoch") 
kategorisiert, die dann mit denselben GIS-Verfahren wie für die Gesamtabundanz und den Ar
tenreichtum kartiert wurde. Da dies nur eine sehr grobe Kombination aus Gesamtabundanz und 
Artenreichtum darstellt, können die Ergebnisse nur als eine erste Annäherung an die potenzielle 
Lebensraumeignung für die Regenwurmvielfalt betrachtet werden. 

2.1.6.3 Gefährdungsabschätzung 

Um die Größe des geografischen Verbreitungsgebiets der Arten für eine schnelle und rasche Be
wertung ihrer Erhaltungsbedürfnisse und ihres Status auf nationaler Ebene zu bestimmen, wur
den die Größe des Verbreitungsgebiets (AOO) der Arten mithilfe des Rangemap-Pakets in R 
(Version 0.1.19, 2021; Cobos et	al., 2021) geschätzt. Hierfür wurde ein Datenrahmen aus den 
(bereinigten) Vorkommensaufzeichnungen der 12 ausgewählten Arten in einem 2 x 2 km-Raster 
erstellt, wie von der IUCN für den räumlichen Maßstab empfohlen, der für die Bestimmung von 
AOO unter Aufrechterhaltung der Konsistenz erforderlich ist (IUCN 2022). Um EOO zu kartieren, 
wurde die Funktion „Range Map Plot“ des Rangemap-Pakets verwendet, mit der Pufferentfer
nung von 5000 m und einem konvexen Hüllenpolygon. Die Ergebnisse der Arten wurden anhand 
der in km2 gemessenen EOO- und AOO-Werte in die IUCN-Gefährdungsklassen eingeteilt (Abbil
dung 6). Die Schwellenwerte der IUCN für EOO sind 100 km2, 5000 km2 und 20 000 km2 für vom 
Aussterben bedrohte, sehr gefährdete und gefährdete Arten, während die entsprechenden 
Schwellenwerte für AOO 10 km2, 500 km2 und 2000 km2 betragen (Gaston & Fuller, 2009; IUCN, 
2022). Sowohl die vorhergesagten Verbreitungskarten als auch die geografischen Verbreitungs
größen erlaubten, Arten räumlichen Verbreitungsgebieten zuzuordnen: (1) großes Verbrei
tungsgebiet –Arten mit weiter Verbreitung und AOO > 2000 km2, (2) mittleres Verbreitungsge
biet – Arten mit AOO > 1000 km2 , (3) eingeschränktes oder kleines Verbreitungsgebiet – Arten 
mit AOO < 500 km2 und endemische Arten oder Arten mit besonderem Habitat mit AOO < 200 
km2. 
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Abbildung 6: Struktur und Entscheidungsfluss der IUCN-Kategorien zur Gefährdungsbeurteilung 
von Arten 

 
Quelle: IUCN, 2022 

2.1.7 Model assessment/evaluation (Arbeitsschritt 8) 

Zur Bewertung der Modellleistung wurden verschiedene Bewertungsmetriken und -methoden 
verwendet, um Fallstricke und mögliche Verzerrungen zu vermeiden, die mit der Verwendung 
einer einzelnen Methode wie der weit verbreiteten „area under the receiver operating charac
teristic curve“ (AUCROC) verbunden sein können. (Jiménez-Valverde 2011). 

Zunächst wurde die Methode der geteilten Stichprobe oder Kreuzvalidierung (CV) verwendet, 
bei der die Vorhersageleistung des Modells durch Aufteilung der Daten der Responsevariablen 
in einen Trainings- und einen Testsatz im Verhältnis 70:30 bewertet wird (Phillips et	al., 2008; 
Hijmans & Elith 2019; Guisan et	al., 2017). Diese Methode, bei der die Stichprobendaten nach 
dem Zufallsprinzip ausgewählt werden, hat sich auch als geeignet erwiesen, die Auswirkungen 
der räumlichen Autokorrelation in ökologischen Datensätzen zu verringern (Roberts et	al., 
2017; Valavi et	al., 2019; Neftalí & Márcia, 2020). Die Trainingsdatensätze werden zur Anpas
sung (Kalibrierung) des Modells verwendet, während die Testdaten zur Bewertung der Vorher
sageleistung des Modells genutzt werden. 

Quantitative (numerische) Daten, wie z. B. die Gesamtabundanz einer Gemeinschaft oder die 
Werte für den Artenreichtum, lassen sich am besten durch konventionelle Statistiken wie R2, den 
mittleren quadratischen Fehler, u. ä. bewerten (Guisan & Zimmerman, 2000; Guisan et	al., 2017). 
Die Beziehung zwischen der beobachteten Gesamtabundanz bzw. dem Artenreichtum und den 
für sie vorhergesagten Werten wurde mithilfe des Bestimmtheitsmaßes (R2) und dem Konkord
anzindex (Anteil der übereinstimmenden Paare geteilt durch die Gesamtzahl der möglichen Be
wertungspaare; ein Äquivalent zu AUCROC; Harell et	al., 1982; Schmid et	al., 2016) untersucht. 
Außerdem wurden Streudiagramme erstellt, um die Beziehungen zwischen den beobachteten 
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und vorhergesagten Werten zu visualisieren, und eine lineare Regression zwischen den beiden 
Datensätzen berechnet. 

Für die Modellierung der Verteilung der Vorkommenswahrscheinlichkeiten von Arten unter 
Verwendung von binären Präsenz-/Absenzdaten (PA) bewerteten wir die Vorhersagefähigkeit 
der Modelle mithilfe der schwellenunabhängigen Statistik AUCROC, die im R-Paket pROC (Version 
1.18, 2021, Robin et	al., 2011) implementiert ist. AUCROC wird häufig zur Bewertung der Modell
leistung in der Ökologie verwendet; sie bewertet die Fähigkeit eines Modells, zwischen Standor
ten mit Vorhandensein oder Nichtvorhandensein einer Art zu unterscheiden (Guisan et	al., 2017; 
Valavi et al, 2021) und reicht von 0 bis 1, wobei eine AUC von 0,5 (oder niedriger) eine nicht bes
ser als zufällige Vorhersage beschreibt, 0,7 bis 0,8 als akzeptabel, 0,8 bis 0,9 als ausgezeichnet 
und mehr als 0,9 als hervorragend gewertet wird (Manel	et	al., 2001, Guisan et	al., 2017). 

Außerdem wurden mit dem R-Paket "caret" (Version 6.0-91, Kuhn 2008, 2022) schwellenabhän
gige (Konfusionsmatrix-)Indizes berechnet, um die Vorhersagegenauigkeit der Modelle zu be
stimmen. Cohens Kappa-Koeffizient und andere Maße (Sensitivität, Spezifität, Gleichgewichts
genauigkeit) sowie die Kappa-Statistik wurden verwendet, um die Diskriminierung und die Leis
tungen der Modelle auf der Grundlage der Präsenz-/Absenzdaten zu bewerten. Cohens Kappa 
wurde mit der folgenden Formel berechnet:  

K=(Po-Pe)/(1-Pe) 

Dabei steht K für den Kappa-Koeffizienten, Po für die Gesamtgenauigkeit des Modells und Pe für 
die Übereinstimmung zwischen den Modellvorhersagen und den tatsächlichen Klassenwerten, 
als ob diese zufällig auftreten. Die Kappa-Werte reichen von -1 bis 1, mit 0 (keine Übereinstim
mung) und 1 (perfekte Übereinstimmung); in wenigen Fällen können die Kappa-Werte einen ne
gativen Wert (< 0) annehmen, was bedeutet, dass die Übereinstimmung geringer ist als zufällig 
zu erwarten wäre. 

Darüber hinaus wurde die Plausibilität der Modelle und ihre ökologische Relevanz überprüft, 
indem der quantitative Beitrag jeder Prädiktorvariablen zu den Modellergebnissen ermittelt 
wurde sowie durch visuelle Inspektion der Responsekurven der Responsevariablen (Gesamta
bundanz oder Artenreichtum der Regenwürmer, Vorkommenswahrscheinlichkeit der Arten) in 
Bezug auf jede numerische Umweltvariable und (Allouche et	al., 2006; Guisan et	al., 2017). 
Responsekurvendiagramme beschreiben das mechanistische Nischenverhalten einer Art (in Be
zug auf das Vorkommen oder die Populationsgröße) gegenüber ausgewählten Umweltgradien
ten und können die Gradientenbereiche aufzeigen, in denen eine Art ihre optimale Fitness ("Prä
ferenz") und/oder Schwellenwerte erreicht, bei denen sich das Reaktionsverhalten der Art än
dert. Dies ist wichtig, um zu beurteilen, wie ökologisch plausibel eine Vorhersage auf der Grund
lage des vorhandenen Wissens über das Verhalten der Art sein ist (Hijmans & Elith, 2019). Ran
dom Forest erzeugt insbesondere für jede Prädiktorvariable eine partielle Abhängigkeitsrespon
sekurve, die alle anderen Prädiktoren berücksichtigt. 

Da es sich bei den hier verwendeten Daten zur Gesamtabundanz und zum Artenreichtum um 
quantitative Responsevariablen handelt, wurde auch das Bestimmtheitsmaß der Regression (R2) 
zwischen den Beobachtungen (Funddaten) zur Abundanz und zum Artenreichtum und ihren 
vorhergesagten Werten bestimmt und die lineare Regressionsgleichung berechnet. Dieses Maß 
für die Anpassungsgüte ist einer der am häufigsten verwendeten Ansätze zur Bewertung der 
Vorhersagegüte eines Modells, insbesondere bei quantitativen ökologischen Daten. Außerdem 
wurde der mittlere quadratische Fehler (RMSE) anhand der Korrelationskoeffizienten berechnet 
(Guisan & Zimmerman, 2000; Guisan et	al., 2017). Zur visuellen Überprüfung wurden Streudia
gramme erstellt, in denen die vorhergesagten Werte und die ursprünglichen Beobachtungsdaten 
mit der ggplot-Funktion aus dem R-Paket "ggplot2" in (Wickham, 2016) verglichen wurden. 
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3 Ergebnisse 

3.1 Modellperformanz und endgültige Modellauswahl 
Die Bewertung der Leistung der getesteten Modelle zur Vorhersage des Artenreichtums und der 
Gesamtabundanz der Regenwurmgesellschaften zeigt, dass GLM die geringste Vorhersagegüte 
erreichen (Tabelle 6), sie zeigen sowohl die niedrigsten R2- als auch C-Indexwerte. Obwohl die 
räumliche Vorhersage des Artenreichtums und der Gesamtabundanz von GBM und RF sehr ähn
lich aussehen (Abbildung 7, Abbildung 8), unterscheiden sich ihre R2- und C-Indexwerte sehr. RF 
ergab den höchsten R2-Wert für die Gesamtabundanz (0,840) und Artenreichtum (0,574), wäh
rend die R²-Werte des GBM weit darunter liegen (0,155 bzw. 0,115). Die C-Indexwertesind 
ebenfalls höher für RF als für GBM sowohl für Gesamtabundanz (0,861 gegenüber 0,657) als 
auch Artenreichtum (0,819 gegenüber 0,658). 

Tabelle 6: Werte für Bestimmtheitsmaß und Übereinstimmungskoeffizient (C-Index) der un
terschiedlichen Modellalgorithmen zur Vorhersage der räumlichen Verbreitung des 
Artenreichtums und der Gesamtabundanz der Regenwurmgesellschaften 

Biodiversitätsmaß Modell R2 C-Index 

Gesamtabundanz GLM 0,089 0,603 

 GBM 0,155 0,657 

 RF 0,840 0,861 

Artenreichtum GLM 0,029 0,583 

 GBM 0,115 0,658 

 RF 0,574 0,819 

 

Abbildung 7: Initiale Gesamtabundanzvorhersage für Regenwurmgesellschaften durch drei un
terschiedliche Modellalgorithmen 

links: GLM – Mitte: GBM – rechts: RF 

 
Quelle: Eigene Darstellung, Senckenberg Museum 
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Abbildung 8: Initiale Artenzahlvorhersage für Regenwurmgesellschaften durch drei unterschied
liche Modellalgorithmen 

links: GLM – Mitte: GBM – rechts: RF 

 
Quelle: Eigene Darstellung, Senckenberg Museum 

Schließlich zeigen auch Streudiagramme und Regressionen der vorhergesagten und der beo
bachteten (d. h. originalen) Werte die hohe Vorhersagekraft der Random Forest-Modelle. Wäh
rend die Übereinstimmung der modellierten mit den bekannten Werten der Gesamtabundanz 
der Regenwürmer (Abbildung 9) sehr gut ist, unterschätzen die Modelle den Artenreichtum der 
Regenwurmgesellschaften leicht (Abbildung 10). 

Abbildung 9: Streudiagramm der vorhergesagten vs. beobachteten Gesamtabundanz von Regen
wurmgesellschaften (finales Random Forest-Modell) 

 

Quelle: Eigene Darstellung, Senckenberg Museum 
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Abbildung 10: Streudiagramm der vorhergesagten vs. beobachteten Artenzahl von Regenwurmge
sellschaften (finales Random Forest-Modell) 

 
Quelle: Eigene Darstellung, Senckenberg Museum 

Für die Vorhersagen der Vorkommenswahrscheinlichkeiten der ausgewählten Arten wurden die 
AUCROC- und Cohen-Kappa-Werte aller Modelle bestimmt und die Mittelwerte für alle Arten be
rechnet. Auf die GAMs wurde im Weiteren verzichtet, da sie keinen signifikanten Unterschied in 
ihrer Leistung im Vergleich zu den GLMs erkennen ließen. Die Ergebnisse der Modellvorhersage 
für die drei verbleibenden Algorithmen zeigen mittleren AUCROC- und Cohen-Kappa-Werte im 
Bereich von 0,65 – 0,97 bzw. 0,12 – 0,90 (Abbildung 11 und Abbildung 12). Beim Vergleich der 
kombinierten AUCROC- und Cohen-Kappa-Werte (Abbildung 13) führt RF zu den höchsten mittle
ren AUCROC- und Kappa-Werten mit geringerer Variation im Vergleich zu den anderen Modellen. 

Die Modellvorhersagen sind für alle Arten sehr gut (AUC-Bereich aller Modelle: 0,601 – 0,995; 
Kappa-Bereich: 0,096 – 0,982; Tabelle 7), was auf eine allgemein gute Übereinstimmung zwi
schen Modellvorhersage und wahren Beobachtungsdaten hinweist (Manel, Ceri Williams, & Or
merod, 2001; Salako, 2015). GLM hat die niedrigsten AUC-Werte mit einem Durchschnitt von 
0,601, wobei drei Arten (A.	eiseni,	A.	limicola,	L.	badensis) höhere GLM-AUC-Werte von 0,825, 
0,775 bzw. 0,796 aufweisen. Die an Cohens Kappa bemessene GLM-Leistung ist mit einem mitt
leren Wert von 0,210 sehr schlecht. Dies spiegelt sich besonders in der Modellleistung für A.	
longa	wider, die den schlechtesten Mittelwert (0,096) aller Arten zeigt. GBM schneidet zwischen 
allen Modellen mit einer mittleren Arten-AUC und einem Kappa von 0,807 bzw. 0,463 ab. Auch 
hier wurde der niedrigste GBM-Kappa-Wert für A.	longa gefunden (0,146). RF zeigt bei allen Ar
ten die höchsten mittleren AUC- und Kappa-Werte mit Mittelwerten von 0,940 bzw. 0,836. Wie
derum wurde der niedrigste RF-Kappa-Wert für A.	longa (0,357) ermittelt. Während alle Mo
dellalgorithmen die besten Kappa-Werte für epigäische Arten zeigen (mittleres Kappa für GLM, 
GBM, RF: 0,309, 0,560 bzw. 0,891), erzielte RF die beste mittlere AUC für endogäische Arten 
(Mittelwert: 0,959), während GMB zur besten mittleren AUC für epigäische Arten (0,826) führte. 
Die GLM-AUCs unterscheiden sich zwischen den ökologischen Gruppen nur geringfügig. 
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Abbildung 11: Boxplots der AUC-Performancewerte für die bewerteten Artenverbreitungsmodelle 
(Zusammenfassung für alle modellierten Arten) 

grün = GLM, rot = GBM, blau = RF; Kästchen umfassen das 25. bis 75. Quantil der Werte, Linien stellen das Mini
mum und Maximum dar, die horizontalen Linien den Mittelwert 

 
Quelle: Eigene Darstellung, Senckenberg Museum 

Abbildung 12: Boxplots der Cohen-Kappa-Performanzwerte für die evaluierten Artenverteilungs
modelle (Zusammenfassung für alle modellierten Arten) 

grün = GLM, rot = GBM, blau = RF; Kästchen umfassen das 25. bis 75. Quartil der Werte, Linien stellen das Mini
mum und Maximum dar, die horizontalen Linien den Mittelwert 

 
Quelle: Eigene Darstellung, Senckenberg Museum 
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Abbildung 13: Boxplots der kombinierten AUC- und Cohens Kappa-Werte für die bewerteten Ar
tenverteilungsmodelle (Zusammenfassung für alle modellierten Arten) 

grün = GLM, rot = GBM, blau = RF; Kästchen umfassen das 25. bis 75. Quartil der Werte, Linien stellen das Mini
mum und Maximum dar, die horizontalen Linien den Mittelwert 

 
Quelle: Eigene Darstellung, Senckenberg Museum 
 

Tabelle 7: Mittlere AUCROC- und Cohens Kappa-Werte der bewerteten Modelle aller ausge
wählten Arten 
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 AUC 

GLM 0,825 0,706 0,654 0,624 0,680 0,621 0,628 0,775 0,645 0,601 0,796 0,646 0,601 0,825 0,683 

GBM 0,908 0,890 0,807 0,762 0,763 0,772 0,734 0,884 0,752 0,742 0,896 0,771 0,734 0,908 0,807 

RF 0,938 0,941 0,919 0,925 0,920 0,922 0,924 0,995 0,994 0,880 0,982 0,936 0,880 0,995 0,940 

 Cohens Kappa 

GLM 0,761 0,367 0,108 0,163 0,145 0,143 0,128 0,148 0,138 0,096 0,132 0,187 0,096 0,761 0,210 

GBM 0,864 0,768 0,437 0,364 0,369 0,567 0,432 0,432 0,362 0,146 0,457 0,357 0,146 0,864 0,463 

RF 0,903 0,923 0,974 0,778 0,876 0,938 0,718 0,669 0,941 0,357 0,982 0,974 0,357 0,982 0,836 

Lebensformgruppen:  1 epigäisch 2 endogäisch 3 anözisch  

Die Leistung der Einzelarten-Modelle ist für alle Arten ähnlich gut, insbesondere was die AUC-
Werte betrifft (Abbildung 14). Sowohl hohe AUC- als auch Kappa-Werte werden insbesondere 
für A.	eiseni, D.	attemsi und L.	badensis erzielt, und die höchsten AUC-Werte für A.	limicola, was 
auf die höchste Modellgenauigkeit für diese Arten hinweist. Interessanterweise repräsentieren 
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diese Arten diejenigen mit der geringsten Anzahl an Beobachtungen (N). Die niedrigsten AUC- 
und Kappa-Werte und damit die niedrigste Modellpräzision werden für A.	longa beobachtet. 

Daher haben wir für die endgültigen Modelle den Random Forest (RF)-Algorithmus zur Vorher
sage der räumlichen Verteilung des Artenreichtums und der Gesamtabundanz von Regenwür
mern sowie der Vorkommensswahrscheinlichkeiten von Arten in ganz Deutschland ausgewählt, 
basierend auf deren hoher Vorhersageleistung, die sich aus den aufgeführten Bewertungsmetri
ken ergibt. 

3.2 Vorhergesagte räumliche Verteilung der Gesamtabundanz und des Ar
tenreichtums der Regenwurmgesellschaften 

Die vorhergesagte Gesamtabundanz der Regenwurmgesellschaften im Untersuchungsgebiet 
reicht von 10 bis maximal 800 Ind. m-2, wobei die Modelle einen Durchschnitt von 350 Ind. m-2 
pro Standort vorhersagen (Abbildung 15). Die Vorhersagen zum Artenreichtum reichen von 1 
bis 12 Arten, mit im Durchschnitt für ganz Deutschland durchschnittlich 3 Arten pro Standort 
(Abbildung 16). Höhere Gesamtabundanzen (> 400 Ind. m-2) werden für Grünland und Acker
land in Nordostdeutschland vorhergesagt (Abbildung 15). In diesen Regionen wird jedoch mit 
maximal 4 und durchschnittlich 2 Arten pro Standort ein relativ geringer Artenreichtum prog
nostiziert (Abbildung 16). Ein Vergleich mit prognostizierten Artenverteilungen (siehe unten) 
zeigt, dass in Nordostdeutschland vor allem epigäische Arten wie D.	octaedra (aber teilweise  

Abbildung 14: Kombinierte AUC- und Cohen-Kappa-Wert-Verteilung der einzelnen Arten aller Mo
delle zusammen (GBM, GLM, RF) 

Kästchen umfassen das 25. bis 75. Quartil der Werte, Linien stellen das Minimum und Maximum dar, die hori
zontalen Linien den Mittelwert. Farbe des Artnamens (und Kästchenumrisses): grün epigäisch, braun endogä
isch, rot anözisch lebende Art. 

 

Quelle: Eigene Darstellung, Senckenberg Museum 
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auch L.	rubellus und die endogäische A.	caliginosa) für die prognostizierten hohen Gesamta
bundanzen verantwortlich sind. 

Die Überlagerung der Vorhersagen zum Artenreichtum und zur Gesamtabundanz ergibt eine 
Karte der Eignung für Regenwurmdiversität (Abbildung 17). Die Ergebnisse zeigen, dass vor al
lem das Rheintal, große Gebiete in Thüringen und die bayerischen Alpen Regionen mit potenziell 
hoher Regenwurmdiversität sind. Für diese Gebiete werden sowohl eine hohe Regenwurmge
samtabundanz als auch ein hoher Artenreichtum vorhergesagt, wobei die durchschnittliche An
zahl der vorkommenden Arten pro Standort 10 und die Gesamtabundanz 300 Ind. m-2 erreicht. 
Die hohen Gesamtabundanzen in der Oberrheinebene werden zum Beispiel offenbar durch Ar
ten weiter Verbreitung, wie A.	caliginosa,	L.	rubellus und A.	rosea, aber auch die hydrophile Art L.	
limicola verursacht, während die hohen Abundanzen der bayerischen Grünlandflächen auf eine 
höhere Artenzahl zurückgeht. 
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Abbildung 15: Gesamtabundanz der Regenwurmgesellschaften (RF-Modellvorhersagen) 

Die Punkte stellen die ursprünglich beobachteten Daten dar, die zur Kalibrierung der Verbreitungsmodelle ver
wendet wurden (größere Punkte bedeuten eine höhere beobachtete Gesamtabundanz) 

 
Quelle: Eigene Darstellung, Senckenberg Museum 
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Abbildung 16: Artenreichtum von Regenwurmgemeinschaften (RF-Modellvorhersage) 

 
Quelle: Eigene Darstellung, Senckenberg Museum 
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Abbildung 17: Prognostizierte Erwartung zur Regenwurmdiversität 

Überlagerung der RF-Modellvorhersagen des Artenreichtums und der Gesamtabundanz der Regenwurmgesell
schaften. hellbraun = sehr niedrig, orange = niedrig, gelb = mittel, hellgrün = hoch, dunkelgrün = sehr hoch 

 

Quelle: Eigene Darstellung, Senckenberg Museum 
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3.3 Räumliche Verbreitung ausgewählter Arten 
Die modellierten Verbreitungsvorhersagen für einzelne Arten beruht auf Vorkommenswahr
scheinlichkeiten, die sich auf einer Skala von 0 (nicht zu erwarten) bis 1 (höchste Vorkommens
wahrscheinlichkeit) bewegen. Die aus den Modellergebnissen erzeugten Vorhersagekarten zei
gen eine geographische Varianz der Verbreitung der ausgewählten Arten in Deutschland. Es las
sen sich drei allgemeine Muster räumlicher Verbreitung in den Modellergebnissen unterschei
den: (1) Arten mit großer geographischer Verbreitung, (2) Arten mit mittlerer Verbreitung und 
(3) Arten mit geringer bis sehr geringer Verbreitung, einschließlich endemische Arten oder Ar
ten, die auf sehr spezielle Habitate beschränkt sind (Abbildung 18 bis Abbildung 20; die Verbrei
tungsgebietsgrößen wurden auch als Gruppierungskriterium verwendet). 

Die RF-Vorhersagen zeigen, dass die Arten großer geographischer Verbreitung in Deutschland 
(Abbildung 18) sich aus zwei endogäischen Arten (A.	caliginosa,	A.	rosea) und je einer epigäi
schen und anözischen Art (L.	rubellus bzw. L.	terrestris) zusammensetzen, und dass A.	caliginosa 
und A.	rosea in vielen ökologischen Räumen Deutschlands weit verbreitet sind. Sie sind in den 
drei Hauptnutzungsformen Wald, Grünland und Acker verbreitet. Interessant ist die Prognose, 
dass A.	caliginosa in Bergregionen im Südwesten bei Freiburg oder im Westen bei Siegen nur sel
ten vorkommt. A.	rosea ist nach den Vorhersagen auf Grünland in den Hochlagen der bayeri
schen Alpen weit verbreitet, aber in den nördlichen Bundesländern Niedersachsen, Branden
burg und Mecklenburg-Vorpommern nur schwach vertreten, mit Ausnahme einiger Häufungen 
von streifenförmigen Vorkommen im äußersten Osten Brandenburgs. Hingegen wird für L.	ru
bellus in Wäldern und Ackerlandschaften in Westdeutschland, den Bundesländern Thüringen 
und Bayern im Vergleich zu den östlichen Regionen eine weite Verbreitung prognostiziert. 
Schließlich ist anzunehmen, dass L.	terrestris am stärksten in zentralöstlichen und südlichen Re
gionen Deutschlands vorkommt, im Allgemeinen in den Gebieten, in denen für L.	rubellus eine 
geringere Verbreitung prognostiziert wird. 

Für die Arten mit mittlerer Verbreitung, dies sind die endogäische A.	cholorotica, zwei epigäische 
Arten (D.	octaedra,	L.	castaneus) und eine anözische Art (A.	longa), wird eine hauptsächlich regi
onal geclusterte Verbreitung prognostiziert, die insgesamt geringer ist als die der Arten mit gro
ßer Verbreitung (Abbildung 19). Für A.	cholorotica werden Vorkommenszentren in Sachsen-An
halt und Bayern vorhergesagt; L.	castaneus in den meisten Bundesländern außer im Nordosten; 
D.	octaedra vor allem in bergigen Waldgebieten aller Bundesländer sowie weiter verbreitet im 
nordöstlichen Tiefland. 

Unter den Arten, denen ein eingeschränktes Verbreitungsgebiet vorhergesagt wird, befinden 
sich zwei epigäische Arten (D.	attemsi und A.	eiseni). Für diese Arten wird eine mittlere Verbrei
tung in wenigen Clustern in einigen Gebieten vorhergesagt (Abbildung 20, oben). Ein besonde
res vorhergesagtes Verbreitungsmerkmal dieser Arten ist jedoch, dass sie im Allgemeinen nur 
eine geringe Wahrscheinlichkeit des Vorkommens aufweisen und in manchen Gebieten sogar 
fehlen. Beispielsweise wurde die Verbreitung von A.	eiseni im Norden und im mittleren Bayern 
als sehr spärlich vorhergesagt, aber im mittleren Deutschland sowie im Schwarzwald als recht 
weit verbreitet. D.	attemsi wird hauptsächlich in bewaldeten Gebieten der Mittelgebirgsgebiete, 
aber auch auf Äckern in Gebieten geringerer Meereshöhe prognostiziert. 

A.	limicola	und L.	badensis stellen zwei Arten dar, die bekanntermaßen in besonderen Habitatty
pen vorkommen bzw. in Deutschland endemisch sind. Die Verbreitungsprognose weist A.	limi
cola	hauptsächlich entlang des Rheintals aus mit fleckenhaften Vorkommen in Feuchtgebieten in 
ganz Deutschland (Abbildung 20, unten links). Die Verbreitungsprognose für L.	badensis 
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Abbildung 18: Vorkommenswahrscheinlichkeiten von Arten weiter geographischer Verbreitung 
(A. caliginosa, A. rosea, L. rubellus, L. terrestris) (RF-Modellprognosen) 

 
Quelle: Eigene Darstellung, Senckenberg Museum 
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Abbildung 19: Wahrscheinlichkeit des Vorkommens von Arten mittlerer geographischer Verbrei
tung (A. chlorotica, D. octaedra, L. castaneus, A. longa) (RF-Modellprognosen)  

 
Quelle: Eigene Darstellung, Senckenberg Museum 
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Abbildung 20: Wahrscheinlichkeit des Vorkommens von Arten mit eingeschränktem Verbreitungs
gebiet (D. attemsi, A. eiseni) und Beispiele für Arten mit besonderem Habitat oder 
endemische Arten (A. limicola bzw. L. badensis) (RF-Modellprognosen) 

 
Quelle: Eigene Darstellung, Senckenberg Museum 
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(der „Badische Riesenregenwurm“) orientiert sich deutlich an der bekannten endemischen Ver
breitung in der Schwarzwaldregion im Südwesten Deutschlands (Abbildung 20, unten rechts), 
aber die Modelle sagen auch eine mögliche Verbreitung in den bayerischen Alpen voraus . 

3.4 Größe des geografischen Verbreitungsgebiets der ausgewählten Regen
wurmarten 

Die Größe des geografischen Verbreitungsgebiets in km2 wurde unter Verwendung von EOO und 
AOO bestimmt, wie sie weithin verwendet und von der IUCN für die Einstufung von Arten in den 
Bedrohungsstatus empfohlen werden (IUCN 2022). Es gibt eine enge Übereinstimmung zwi
schen den modellierten Verbreitungskarten der Arten und der Größe ihrer geografischen Ver
breitungsgebiete, da Arten mit weiter geographischer Verbreitung entsprechend größere EOOs 
und AOOs im Vergleich zu Arten mit geringer geographischer Verbreitung aufweisen. Abbildung 
21  zeigt die EOO und die AOO von A.	caliginosa, einer Art mit großem Verbreitungsgebiet, und 
Abbildung 22 jene von D.	attemsi, einer Art mit eingeschränktem Verbreitungsgebiet. 

Abbildung 21: Geographisches Verbreitungsgebiet von A. caliginosa: AOO (blau) und EOO (violett) 
mit tatsächlichen Fundpunkten (gelb) - (Die tatsächlichen Fundpunkte geben in ers
ter Linie an, wo Aufzeichnungen verfügbar sind; in Gebieten ohne Fundpunkte sind 
ggf. tatsächliche Vorkommen nicht bekannt) 

 
Quelle: Eigene Darstellung, Senckenberg Museum 

 



TEXTE Erarbeitung von Referenzwerten für Bodenorganismen für die Böden in Deutschland  – Abschlussbericht 

67 

 

Abbildung 22: Geographisches Verbreitungsgebiet von D. attemsi: AOO (blau) und EOO (violett) 
mit tatsächlichen Fundpunkten (gelb) - (Die tatsächlichen Fundpunkte geben in ers
ter Linie an, wo Aufzeichnungen verfügbar sind; in Gebieten ohne Fundpunkte sind 
ggf. tatsächliche Vorkommen nicht bekannt) 

 
Quelle: Eigene Darstellung, Senckenberg Museum 

Basierend auf den IUCN-Bewertungskategorien und den festgelegten Schwellenwerten für die 
Gefährdungskategorien (siehe Methoden) kann keine der analysierten Arten nur nach der EOO-
Bewertung als bedroht angesehen werden, und fünf Arten sind weder nach der EOO-, noch nach 
der AOO-Bewertung bedroht (Tabelle 8). Basierend auf der Bewertung der AOO sind drei Arten 
als gefährdet und drei weitere Arten als sehr gefährdet einzustufen. Keine Art ist aufgrund von 
EOO und AOO als vom Aussterben bedroht einzustufen. Vier Arten mit ausgedehnten EOO 
> 360 000 km2 und AOO > 2000 km2 sind A.	caliginosa,	A.	rosea,	L.	terrestris	und L.	rubellus. Die 
Vorkommensdaten für L.	badensis (2 Präsenzpunkte) reichten nicht aus, um die Größe des geo
grafischen Verbreitungsgebiets zu berechnen, da mindestens vier Vorkommensdaten erforder
lich sind. 

Tabelle 8: Bewertung der Gefährdung der Arten basierend auf den IUCN-Kategorie-B-Kriterien 
1 und 2 (NA: Funddaten für die Berechnung der Bereichsgrößen nicht ausreichend) 

Art EOO (km2)1 AOO (km2)1 IUCN-Gefährdungskategorie 

A. caliginosa 364624,4 2420 nicht gefährdet (EOO und AOO) 

A. rosea 365299,4 2092 nicht gefährdet (EOO und AOO) 

L. terrestris 365187,7 2084 nicht gefährdet (EOO und AOO) 

L. rubellus 375796,7 2008 nicht gefährdet (EOO und AOO) 

A. chlorotica 350969,0 2004 nicht gefährdet (EOO und AOO) 

L. castaneus 355539,2 1040 nicht gefährdet (EOO); gefährdet (AOO) 

D. octaedra 365051,9 1020 nicht gefährdet (EOO); gefährdet (AOO) 
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Art EOO (km2)1 AOO (km2)1 IUCN-Gefährdungskategorie 

A. longa 354399,3 572 nicht gefährdet (EOO); gefährdet (AOO) 

D. attemsi 201500,8 108 nicht gefährdet (EOO); stark gefährdet (AOO) 

A. eiseni 192725,0 100 nicht gefährdet (EOO); stark gefährdet (AOO) 

A. limicola 262682,8 196 nicht gefährdet (EOO); stark gefährdet (AOO) 

L. badensis NA NA NA 
1 Schwellenwerte für EOO sind 100 km2, 5000 km2 und 20 000 km2 für vom Aussterben bedrohte (CR), stark gefährdete (EN) 
bzw. gefährdete (VU) Arten, für AOO entsprechend 10 km2, 500 km2 and 2000 km2. 

3.5 Relativer Beitrag der Umweltvariablen zu den Modellvorhersagen und 
Verhalten von Gesellschaften und Arten gegenüber den Prädiktoren 

Im Folgenden werden die relativen Beiträge der elf Umweltprädiktorvariablen zu den Verbrei
tungsmodellen sowie das Modellverhalten der Regenwurmgemeinschaften sowie jeder ausge
wählten Art hinsichtlich dieser Parameter untersucht. Sowohl die relativen Beiträge als auch die 
Reaktionskurven zu diesen Variablen variieren und weisen bestimmte Muster auf. 

3.5.1 Analysen auf Gemeinschaftsebene 

3.5.1.1 Beiträge von Umweltprädiktorvariablen zu Modellergebnissen 

Die Umweltvariablen, die am meisten zu den Vorhersagen der Gesamtabundanz von Regenwür
mern beitragen, sind der durchschnittliche jährliche Niederschlag, die Bodenfeuchte, der Lehm
gehalt und der Habitattyp, die zusammen über 40 % der Modellergebnisse ausmachen (Abbil
dung 23). Die verbleibenden Prädiktoren für die Gesamtabundanz tragen ziemlich gleichmäßig 
jeweils zwischen 5 und 10 % zu den Modellergebnissen bei, mit Ausnahme des Boden-pH-Werts, 
der interessanterweise nur zu weniger als 2 % zu den Vorhersagen beiträgt.  

Der Beitrag der Umwelt zum vorhergesagten Artenreichtum wird vom Habitattyp und dem Ton
gehalt dominiert, die jeweils 17 bzw. 19 % beitragen (Abbildung 23). Der durchschnittliche jähr
liche Niederschlag und die Temperatur tragen jeweils mehr als 10 % zu den Vorhersagen des 
Artenreichtums bei. Im Gegensatz zu den Gesamtabundanzvorhersagen beeinflusst der pH-Wert 
auch die Artenreichtumsvorhersagen zu fast 10 %, während die übrigen Variablen recht gleich
ermäßig zwischen 4 und 8 % beitrugen. Die Gründigkeit des Bodens spielt bei der Vorhersage 
des Artenreichtums die geringste Rolle. 

3.5.1.2 Modellierter Response der Gesellschaften auf die Umweltprädiktorvariablen 

Neben der Größe des Beitrags zu den Vorhersagen der Lebensgemeinschaften ist es von Bedeu
tung, wie und ab welchen Schwellenwerten Umweltparameter potenziell die Gesamtabundanz 
oder den Artenreichtum beeinflussen. Um dies abzuschätzen, wurden Responsekurven aus den 
Modellergebnissen abgeleitet.  

Durchschnittliche Jahresniederschlagswerte von unter 500 mm a-1 wirken sich erhöhend auf die 
Abundanzvorhersagen aus, über dieser Schwelle dagegen führen zu niedrigeren Abundanzprog
nosen (Abbildung 24). Die Jahresdurchschnittstemperatur hat keinen großen Einfluss auf die A
bundanzvorhersagen, allerdings zeigen sich höhere modellierte Abundanzen oberhalb einem 
Schwellenwert von 10 °C. Interessanterweise haben diese Klimaparameter einen in gewisser 
Hinsicht gegenläufigen Effekt auf den vorhergesagten Artenreichtum, der  
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Abbildung 23: Beitrag (in %) der Umweltprädiktorvariablen zu Vorhersagen zur Gesamtabundanz 
und zum Artenreichtum der Regenwurmgemeinschaften 

 
Quelle: Eigene Darstellung, Senckenberg Museum 
 

Tabelle 9: Beitrag (in %) der Umweltprädiktorvariablen zu Vorhersagen zur Gesamtabundanz und 
zum Artenreichtum der Regenwurmgemeinschaften 

 
Artenreich
tum 

Abundanz 

Jahresnieder
schlag 

11 12,9 

Habitat 17 17 

Org. Substanz 4,8 7,3 

Schluffanteil 5 5,6 

Feuchtigkeit 8,3 19 

Luftkapazität 6,3 8,1 

Lagerungsdichte 6,1 4,7 

Temperatur 10,6 3,9 

Tongehalt 18,9 8,1 

pH 9 1,5 

Mächtigkeit 2,4 4,1 
vgl. Abbildung 23 
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über dem Schwellenwert von 500 mm a-1 durchschnittlichem Jahresniederschlag zunimmt und 
bei Jahresdurchschnittstemperaturen unter 6 °C ab (aber über 10 °C wiederum ansteigt) (Abbil
dung 25). 

Hinsichtlich des Einflusses von Bodenparametern führt eine zunehmende durchschnittliche Bo
denfeuchte (ab ca. 7 %) zu niedrigeren Gesamtabundanzen, beeinflusst jedoch die Vorhersagen 
für den Artenreichtum kaum (trotz einer starken vorhergesagten Zunahme in sehr feuchten Bö
den über ca. 20 % durchschnittlichem Wassergehalt). Die Bodenreaktion weist eine ähnliche 
Schwelle sowohl für die Gesamtabundanz- als auch für die Artenreichtumsprognosen auf. Wäh
rend die Abundanzvorhersagen im gesamten pH-Bereich relativ konstant bleiben, nehmen sie 
bei etwa pH 4 deutlich ab, um oberhalb von pH 5 wieder zuzunehmen. Die Vorhersagen für den 
Artenreichtum bleiben dagegen unterhalb von pH 4 sehr niedrig und steigen oberhalb dieses 
Werts stark an. Obwohl die organische Substanz im Boden nur geringfügig zu den Modellergeb
nissen beiträgt, erhöht sie die Abundanzvorhersagen bei Gehalten über 6 %, während sie wenig 
Einfluss auf die Artenreichtumsvorhersagen zeitigt. Der Einfluss der Bodenart wird am Tongeh
alt am deutlichsten, wo die Vorhersagen sowohl für die Gesamtabundanz als auch für den Arten
reichtum oberhalb 20 – 30 % Ton ansteigen. Der Schluffgehalt hat anscheinend wenig Einfluss 
auf den Artenreichtum, aber die Abundanzvorhersagen gehen über 30 % Schluffanteil stark zu
rück. Die Bodenstruktur beeinflusst auch die prognostizierten Regenwurmgemeinschaften. Bei 
einer Luftkapazität von über 15 % nehmen die Abundanzprognosen stark zu, die Artenreich
tumsprognosen dagegen mit zunehmender Luftkapazität kontinuierlich ab. Bodenverdichtung 
wirkt sich offenbar negativ auf Regenwurmgemeinschaften aus, da sowohl die Gesamtabundanz- 
als auch die Artenreichtumsvorhersagen bei Lagerungsdichten über 1,5 g cm-³ abrupt und sehr 
deutlich abnehmen. 

Abbildung 24: Responsekurven (partielle Abhängigkeit) der vorhergesagten Gesamtabundanz von 
Regenwürmern auf die ausgewählten Umweltprädiktorvariablen 

 
Quelle: Eigene Darstellung, Senckenberg Museum 
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Abbildung 25: Responsekurven (partielle Abhängigkeit) des vorhergesagten Artenreichtums von 
Regenwurmgesellschaften auf die ausgewählten Umweltprädiktorvariablen 

 
Quelle: Eigene Darstellung, Senckenberg Museum 

3.5.2 Artspezifische Analysen 

3.5.2.1 Beiträge von Umweltprädiktorvariablen zu Modellergebnissen 

Für die artspezifischen Modelle der Vorkommenswahrscheinlichkeit wurden vier Variablen als 
Haupttreiber der Verbreitung von Regenwurmarten in Deutschland identifiziert: Mittlerer Jah
resniederschlag und die damit verbundene durchschnittliche Bodenfeuchte, Boden-pH-Wert 
und Habitattyp. Daneben sind für eine Reihe von Arten offenbar auch die Jahresdurchschnitts
temperatur und der Gehalt des Bodens an organischer Substanz bedeutsam (Abbildung 26 und 
Tabelle 10). 

Der mittlere Jahresniederschlag und die damit verbundene Bodenfeuchte machen bei vielen Ar
ten 20 % oder mehr der Vorhersagen aus und erwiesen sich für die Modellierung der räumli
chen Verbreitung von Arten wie A.	limicola,	A.	chlorotica und L.	terrestris als wesentliche Prä
diktorvariablen ( Abbildung 26 und Tabelle 10). 
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Abbildung 26: Relative Beiträge von Umweltprädiktorvariablen zu den modellierten Vorkom
menswahrscheinlichkeiten ausgewählter Arten 

 
Quelle: Eigene Darstellung, Senckenberg Museum 

Tabelle 10: Relative Beiträge von Umweltprädiktorvariablen zu den modellierten Vorkom
menswahrscheinlichkeiten von Arten 

Art NS T OS Ton U Was-
ser 

pH Grün
dig-
keit 

LK LD Habi-
tat-
typ 

A. caliginosa 6 9,7 12,5 5,2 3,9 9,2 22 2,4 9,4 4,3 15,1 

A. chlorotica 12 13 3,2 8,2 7 26 8 1,8 4,5 3 12 

A. eiseni 20 15 9 10 4 3 7 2,4 11,2 3,1 7 

A. limicola 12 5,2 15 3 2,3 29 2,6 4,2 7,7 2,2 17 

A. longa 8,6 6,3 4,1 4,8 15 12 23 2,3 5,1 6,3 12 

A. rosea 10 7,5 5,4 8,5 9,6 16 11 3 10 9,4 9,2 

D. attemsi 12 21 13,2 4 1,3 12 9 3,4 0,9 4,5 29 

D. octaedra 8 16 4,4 6,5 15 11 8 4,5 7,9 8 9,4 

L. badensis 20 0 1,2 0 2 15 0 0 3 21 9 

L. castaneus 17 5,2 7,2 9 6,6 10 6,4 4,5 11 6,5 15 

L. rubellus 20 10 8 5 4 9 6 2,2 7 17 12 

L. terrestris 10 9 5,7 5,1 11 21 13 2,5 5 6,5 9,2 
NS Mittlerer Jahresniederschlag, T Jahresdurchschnittstemperatur; Gehalt des Bodens an OS organischer Substanz, Ton 
Ton, U Schluff; Wasser mittlerer Bodenwassergehalt, pH Bodenreaktion, Gründigkeit des Bodens, LK Luftkapazität, LD effek
tive Lagerungsdichte 
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Der Habitattyp wurde als nächstwichtiger Umweltprädiktor für die Wahrscheinlichkeit des Vor
kommens von Arten identifiziert. Bei einem durchschnittlichen Beitrag von 13 % reichen die 
Beiträge zu einzelnen Arten von 9,2 bis 29 % (Tabelle 10). 

Der Beitrag der Bodenreaktion zu den Vorkommensvorhersagen ist bei allen Arten moderat und 
reicht von 0 bis 13 % mit einem Durchschnitt von 10 %. Ausnahmen sind A.	longa und A.	caligi
nosa, deren Verbreitung stark vom pH-Wert des Bodens abhängt und der einen außergewöhn
lich hohen Beitrag zur Auftretenswahrscheinlichkeit von > 20 % leistet (Tabelle 10).  

Für den Gehalt an organischer Substanz im Boden ist ein relativ höherer prozentualer Beitrag zu 
den Vorkommensvorhersagen für epigäische Arten wie D.	attemsi (13,2 %), A.	eiseni (9 %) und L.	
castaneus (7,2 %) festzustellen, im Vergleich zu viel niedrigeren Vorhersagebeiträgen von weni
ger als 6 % für endogäische und anözische Arten wie A.	rosea,	A.	chlorotica,	A.	longa und L.	ter
restris. Ausnahmen sind hier die beiden endogen lebenden Arten A.	caliginosa und A.	limicola, 
deren Auftretenswahrscheinlichkeiten stark vom Gehalt an organischer Substanz im Boden ab
hängt (12,5 bzw. 15 %).  

Die Bodenart (basierend auf den Ton- und Schluffgehalt als Proxies) hat vergleichsweise weni
ger Einfluss auf das Vorkommen der Arten, mit Ausnahme von A.	longa und D.	octaedra, wo der 
Schluffgehalt 15 % zu den Vorkommensvorhersagen beiträgt. Das Vorkommen der Arten D.	at
temsi,	A.	eiseni,	A.	chlorotica und L.	rubellus hängt auch stark vom Klima (mittlerer Jahresnieder
schlag und Jahresdurchschnittstemperatur) ab mit einem entsprechend großen Beitrag dieser 
Variablen (meist > 21 %) zu den Vorkommensvorhersagen. Auch die Auftretenswahrscheinlich
keit von L.	badensis hängt in hohem Maße (20 %) mit dem mittleren Jahresniederschlag zusam
men. Die Gründigkeit trägt am wenigsten zu den Modellergebnissen bei und beeinflusst die Vor
kommenswahrscheinlichkeiten der meisten Arten nur mit einem Beitrag von etwa 2–5 %. 

3.5.2.2 Modellierter Response der Arten auf Umweltprädiktorvariablen 

Der modellierte Response der Arten auf quantitative Umweltvariablen zeigt drei Muster: einen 
positiven Zusammenhang, einen negativen Zusammenhang oder unregelmäßige oder bimodale 
Responsemuster entlang eines Gradienten zunehmender Klima- oder Bodenparameterwerte. 

Die Klimaparameter (Jahresdurchschnittstemperatur und mittlerer Jahresniederschlag) und die 
damit verbundene durchschnittliche Bodenfeuchte zeigen ähnliche Einflussmuster auf die Vor
kommensvorhersagen. Sie unterscheiden sich aber zwischen epigäischen und endogäischen Ar
ten (Abbildung 27, Abbildung 31). Die Vorkommenswahrscheinlichkeiten epigäischer Arten neh
men im Allgemeinen mit steigender Temperatur ab (normalerweise bei Jahresmitteltemperatu
ren über 6 – 8 °C) und nehmen umgekehrt mit steigenden mittleren Jahresniederschlägen und 
Bodenfeuchten zu. Die Schwellenwerte, bei denen die Auftretenswahrscheinlichkeiten anstei
gen, sind artspezifisch: die Wahrscheinlichkeiten von z. B. D.	attemsi,	L.	castaneus	und	L.	rubellus 
steigen bei Niederschlagsmengen von über 500 mm a-1 und die von A.	eiseni und D.	octaedra von 
über ca. 1000 mm a-1 an (Abbildung 27). Erhöhte Vorkommenswahrscheinlichkeiten epigäischer 
Arten wurden für unterschiedliche durchschnittliche Bodenfeuchte festgestellt (Abbildung 31), 
mit Ausnahme der Art A.	eiseni, deren Vorkommensvorhersagen bei durchschnittlichen Wasser
gehalten im Boden oberhalb von ca. 6 % abnehmen. Im Gegensatz dazu nehmen Wahrscheinlich
keiten des Vorkommens endogäischer Arten mit höherer Jahresmitteltemperatur zu und umge
kehrt mit niedrigerer mittlerer Jahresniederschlagsmenge und Bodenfeuchte ab. Auch hier sind 
die Schwellenwerte, bei denen sich die Vorhersagen des Auftretens ändern, artspezifisch (Abbil
dung 27, Abbildung 31). Eine Ausnahme von diesem Muster stellt die endogäische A.	limicola 
dar, deren Vorkommenswahrscheinlichkeiten mit niedrigerer Jahresmitteltemperatur (unter ca. 
7 °C) und höherem Jahresniederschlag (ca. 800 mm a-1) und mittlerer Bodenfeuchte (> ca. 18 % 
H2O) zunimmt. Anözische Arten zeigten kein allgemeines Muster, wobei die Vorhersagen für L.	
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terrestris zunehmen und die Vorhersagen für L.	badensis abnehmen, wenn die mittlere Jahres
temperatur höher und die mittlere jährliche Niederschlagsmenge und Bodenfeuchte niedriger 
ausfallen. Die Vorkommenswahrscheinlichkeiten von A.	longa steigen sowohl mit zunehmender 
Temperatur als auch mit zunehmendem Niederschlag und zunehmender Bodenfeuchte. 

Abbildung 27: Responsekurven der prognostizierten Vorkommenswahrscheinlichkeiten der Arten 
auf die Variablen mittlerer Jahresniederschlag und Temperatur (= partielle Abhän
gigkeiten der Umweltprädiktoren von den prognostizierten Vorkommenswahr
scheinlichkeitsverteilungen). Grün markierte Artennamen gelten im Allgemeinen 
als epigäisch, braun als endogäisch und rot als anözisch 

 
Quelle: Eigene Darstellung, Senckenberg Museum 

Für den Habitattyp als kategoriale Variable (im Gegensatz zu den anderen, kontinuierlichen nu
merischen Variablen) konnten aus den Modellergebnissen keine Responsekurven für die einzel
nen Arten abgeleitet werden. Um die vorhergesagten Habitatpräferenzen der Arten zu bestim
men, wurden daher die modellierten Vorkommenswahrscheinlichkeiten in jedem Habitattyp 
verwendet. Die Wahrscheinlichkeiten des Vorkommens der Arten wurden für zehn Haupthabi
tattypen modelliert (siehe Kap. 3). Dabei zeigen sich die größten Vorkommenswahrscheinlich
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keiten (die auf Habitatpräferenzen hindeuten) hauptsächlich für die Habitattypen Wald (kombi
niert Laub- und Nadelwald), Grünland und Acker. Die Habitate der Nord- und Ostseeinseln, der 
Küsten sowie der Hoch- und Niedermoore und Gebüsche sind die am wenigsten bevorzugten 
(Abbildung 28 und Abbildung 29). Da die maximale vorhergesagte Wahrscheinlichkeit des Auf
tretens in einem Habitat für alle Arten 0,65 betrug, wurde eine vorhergesagte Wahrscheinlich
keit von 0,25 als Schwellenwert für die Angabe der Habitatpräferenz einer Art festgelegt (Abbil
dung 29). Die Vorkommensmodelle identifizierten einige Arten mit möglicherweise besonderen 
oder Haupthabitatpräferenzen, wie D.	octaedra (z. B. Abbildung 30), L.	badensis und A.	eiseni im 
Wald oder A.	chlorotica und D.	attemsi in landwirtschaftlich geprägten Habitaten (Acker und 
Grünland) (Abbildung 29, Tabelle 11). A.	limicola wird insbesondere für Feuchtgebiete wie Auen 
und Moore mit hoher Wahrscheinlichkeit prognostiziert. Interessant waren die prognostizierten 
hohen Vorkommenswahrscheinlichkeiten für eine Reihe von Arten in städtischen Gärten und 
Parks sowie in Bergbaufolgelandschaften (Abbildung 31). Für die meisten Arten wurde vorher
gesagt, dass sie in allen Lebensräumen zumindest mit einer Wahrscheinlichkeit von wenigen 
Prozent vorkommen. Nur für L.	castaneus wird für die Küstengebiete und für L.	badensis für Ge
büsche ein völliges Fehlen vorhergesagt. Abgesehen von Wäldern (50 % Vorkommenswahr
scheinlichkeit), Grünland (30 %) und Ackerland (20 %) soll L.	badensis in den meisten anderen 
Habitattypen selten vorkommen (weniger als 5 % Wahrscheinlichkeit). Für Arten wie A.	chloro
tica,	A.	longa oder D.	attemsi wurde vorhergesagt, dass sie in marinen, küstennahen oder Auen
habitaten generell nur selten vorkommen. 

Abbildung 28: Kumulative modellierte Vorkommenswahrscheinlichkeiten in den Habitattypen, für 
die am häufigsten ein hohes Vorkommen von Regenwurmarten vorhergesagt wird  

 
* Meereslebensräume sind hauptsächlich Inseln in der Ost- und Nordsee, die stark von maritimen Bedingungen beeinflusst 
werden 
Quelle: Eigene Darstellung, Senckenberg Museum 
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Abbildung 29: Prognostizierte Habitatvorkommenswahrscheinlichkeiten der Arten über alle Habi
tatklassen.  
Vertikale gepunktete Linie: Vorkommenswahrscheinlichkeit 0,25 als minimaler Vor
hersageschwellenwert, der die Habitatpräferenzen der Arten angibt.  

 
* Meereslebensräume sind hauptsächlich Inseln in der Ost- und Nordsee, die stark von maritimen Bedingungen beeinflusst   
   werden  
Quelle: Eigene Darstellung, Senckenberg Museum 

 



TEXTE Erarbeitung von Referenzwerten für Bodenorganismen für die Böden in Deutschland  – Abschlussbericht 

77 

 

Tabelle 11: Potenzielle Habitatpräferenzen der analysierten Arten (nach Prognose der Vorkom
menswahrscheinlichkeitsmodelle)  

Primärhabitate sind durch eine prognostizierte Auftrittswahrscheinlichkeit > 50 % bestimmt; Sekundärhabitate 
mit prognostizierten Wahrscheinlichkeiten zwischen 40 und 50 %. Habitate geordnet nach (abnehmender) Vor
kommenswahrscheinlichkeit. 

Art Primäres Habitat Weitere, sekundäre Habitate 

A. caliginosa Wald, Grünland, Acker fast alle Habitattypen, außer Meeresinseln und Küsten 

A. chlorotica Acker, Grünland   

A. eiseni Wald Grünland, Acker 

A. limicola Wald, Auen, Grünland Hoch- und Niedermoor 

A. longa Acker, Wald, Grünland urbane und Bergbaufolgehabitate 

A. rosea Wald, Acker, Grünland Auen, urbane und Bergbaufolgehabitate 

D. attemsi Acker Wald 

D. octaedra Wald schüttere Vegetation 

L. badensis Wald  

L. castaneus Wald, Auen Acker, urbane und Bergbaufolgehabitate 

L. rubellus Wald, Grünland Acker 

L. terrestris Wald, Grünland  

Abbildung 30: Übereinstimmung der prognostizierten Vorkommenswahrscheinlichkeit von D. 
octaedra (rechts) mit Habitattypen in Deutschland (links). Der Vergleich veran
schaulicht das potenzielle Vorkommen der Art, das stark mit zusammenhängenden 
Waldgebieten assoziiert ist. 

 
Quelle: Eigene Darstellung, Senckenberg Museum 



TEXTE Erarbeitung von Referenzwerten für Bodenorganismen für die Böden in Deutschland  – Abschlussbericht 

78 

 

 

Abbildung 31: Responsekurven der prognostizierten Vorkommenswahrscheinlichkeiten von Arten 
auf die Variablen Bodenfeuchte und pH-Wert (= partielle Abhängigkeiten der Um
weltprädiktoren von den prognostizierten Vorkommenswahrscheinlichkeitsvertei
lungen). Grün markierte Artennamen gelten im Allgemeinen als epigäisch, braun 
als endogäisch und rot als anözisch 

 
Quelle: Eigene Darstellung, Senckenberg Museum 

Die Arten reagieren im Allgemeinen positiv auf einen höheren pH-Wert des Bodens (Abbildung 
31), so dass die Wahrscheinlichkeit des Auftretens meist bei höheren pH-Werten zunimmt. Aus
nahmen sind die epigäischen Arten D.	attemsi,	D.	octaedra und L.	rubellus, deren prognostizierter 
Response bei höheren pH-Werten abrupt abnimmt. Interessanterweise liegt die Schwelle, bei 
der die Wahrscheinlichkeit des Auftretens entweder zu- oder abnahm, im Allgemeinen bei etwa 
pH 4,0, mit einem Optimum (für die Arten mit höheren Wahrscheinlichkeiten bei höheren pH-
Werten) bei etwa pH 6 – 7. Ausnahmen sind z. B. A.	chlorotica,	L.	rubellus und L.	terrestris, deren 
Schwellenwerte um pH 5 herum liegen, oder A.	longa mit steigenden Vorkommenswahrschein
lichkeiten oberhalb von Boden-pH-Werten von 6. 
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Der prognostizierte Response auf den Gehalt an organischer Bodensubstanz (SOM; Abbildung 
32) folgt oft keinem einheitlichen Muster und steht nicht im Zusammenhang mit dem Lebens
formtyp des Regenwurms. Während die Wahrscheinlichkeit des Vorkommens sowohl einiger 
epigäischer (d. h. L.	castaneus,	L.	rubellus) als auch endogäischer Arten (A	caliginosa,	A.	limicola) 
mit höherem SOM-Gehalt zunimmt, nimmt die anderer Arten dagegen ab (epigäisch: D.	attemsi; 
endogäisch: A.	chlorotica,	A.	rosea). Auch anözische Arten zeigen unterschiedlichen Response der 
Vorhersage bezüglich des Gehalts des Bodens an organischer Substanz, wobei A.	longa und L.	
terrestris niedrigere und L.	badensis	höhere Vorkommenswahrscheinlichkeiten mit zunehmen
dem SOM-Gehalt zeigen. Uneinheitlichen Vorhersageresponse zeigen viele andere Arten. Interes
santerweise liegen die Schwellenwerte, bei denen sich die Vorhersageantworten ändern – ob ne
gativ oder positiv – im Allgemeinen bei SOM-Niveaus um 6 – 8 %, wobei ein positiver Response 
oft bei einem Gehalt des Bodens von 12 % SOM ein Maximum erreicht. 

Abbildung 32: Responsekurven der prognostizierten Vorkommenswahrscheinlichkeiten von Arten 
auf die Variablen organische Bodensubstanz und Gründigkeit des Bodens (= parti
elle Abhängigkeiten der Umweltprädiktoren von den prognostizierten Vorkom
menswahrscheinlichkeitsverteilungen). Grün markierte Artennamen gelten im All
gemeinen als epigäisch, braun als endogäisch und rot als anözisch 

 
Quelle: Eigene Darstellung, Senckenberg Museum 
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Da die Gründigkeit des Bodens weniger als 5 % des variablen Beitrags zu den Vorkommensvor
hersagen ausmacht, ist der Response der meisten Arten auf diesen Parameter uneinheitlich (Ab
bildung 32). Dennoch werden für einige epigäische Arten (z. B. A.	eiseni,	D.	attemsi) negative Vor
hersagereaktionen auf zunehmende Gründigkeit beobachtet, während für andere, endogäische 
Arten (z. B. A. caliginosa,	A.	rosea) positive Reaktionen festgestellt wurden. Bei anözischen Arten 
wurden unregelmäßige Reaktionen auf eine Zunahme der Gründigkeit festgestellt. 

Bodentexturparameter (Ton- und Schluffgehalt) tragen nur bei wenigen Arten wesentlich zu den 
Vorkommensvorhersagen bei (siehe oben). Dementsprechend sind primär nur die Vorhersage
antworten dieser Arten auf diese Parameter auffällig (Abbildung 33). Beispielsweise steigen die 
vorhergesagten Vorkommenswahrscheinlichkeiten mit höheren Ton- und Schluffgehalten für A.	
eiseni,	A.	rosea und L.	terrestris, was darauf hindeutet, dass diese Arten Böden mit feinerer Tex
tur bevorzugen. Obwohl der Beitrag zu den Vorkommensvorhersagen für L.	badensis	gering war, 
zeigte diese Art ähnlich positive Vorhersagereaktionen auf Böden mit feiner Textur. Die Ergeb
nisse für D.	octaedra sind weniger eindeutig, dennoch ist der Vorhersageresponse bei höherem 
Tongehalt zunehmend, jedoch bei höherem Schluffgehalt abnehmend, was auch auf eine Bevor
zugung feiner texturierter Böden hindeutet. Im Gegensatz dazu nimmt die Vorkommenswahr
scheinlichkeit von A.	longa und L.	rubellus im Allgemeinen mit höheren Ton- und Schluffgehalten 
ab, und die von D.	attemsi nimmt mit höherem Tongehalt ab, mit höherem Schluffgehalt jedoch 
zu, was auf eine Präferenz für gröbere Böden hindeutet. 

Hinsichtlich der Bodenstruktur zeigten die meisten Arten mit zunehmender Lagerungsdichte 
(d. h. auch Verdichtung, Abbildung 34) eine negative Reaktion in ihren prognostizierten Vor
kommenswahrscheinlichkeiten. Interessant sind A.	limicola	und A.	longa, die in verdichteten Bö
den sogar höhere Vorkommenswahrscheinlichkeiten aufweisen. Auch für A.	caliginosa,	A.	rosea	
und L.	terrestris	existiert ein Optimum bei recht hoher Lagerungsdichte, dennoch nehmen die 
prognostizierten Vorkommen bei den am stärksten verdichteten Böden wieder ab. Die Reaktio
nen auf die Luftkapazität sind im Allgemeinen für alle Arten uneinheitlich. Interessant sind die 
U-förmigen Reaktionskurven einiger Arten (z. B. D.	attemsi,	D.	octaedra,	L.	castaneus,	A.	limicola,	
A.	longa), die auf geringere Vorkommenswahrscheinlichkeiten bei mittlerer Luftkapazität hin
deuten (zwischen ca. 5 und 15 % oder höher). 
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Abbildung 33: Responsekurven der prognostizierten Vorkommenswahrscheinlichkeiten von Arten 
(„Auftretenswahrscheinlichkeit“) auf den Ton- und Schluffgehalt des Bodens als 
Proxy für die Bodentextur (= partielle Abhängigkeiten der Umweltprädiktoren von 
den vorhergesagten Vorkommenswahrscheinlichkeitsverteilungen). Grün markierte 
Artennamen gelten im Allgemeinen als epigäisch, braun als endogäisch und rot als 
anözisch 

 
Quelle: Eigene Darstellung, Senckenberg Museum 

 



TEXTE Erarbeitung von Referenzwerten für Bodenorganismen für die Böden in Deutschland  – Abschlussbericht 

82 

 

Abbildung 34: Responsekurven der prognostizierten Vorkommenswahrscheinlichkeiten („Vor
kommenswahrscheinlichkeit“) von Arten auf die Bodenluftkapazität (Porosität) und 
die Lagerungsdichte des Bodens als Parameter der Bodenstruktur (= partielle Ab
hängigkeiten der Umweltprädiktoren von den prognostizierten Vorkommenswahr
scheinlichkeitsverteilungen). Grün markierte Arten gelten allgemein als epigäisch, 
braun als endogäisch und rot als anözisch 

 
Quelle: Eigene Darstellung, Senckenberg Museum 
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4 Diskussion 

4.1 Prognosen 
In dieser Studie wird die räumliche Verteilung von Regenwurmgemeinschaften (Gesamtdichte, 
Artenreichtum) sowie die Wahrscheinlichkeit des Vorkommens und die Größe des geografi
schen Verbreitungsgebiets von zwölf ausgewählten Arten in Deutschland unter Verwendung 
mehrerer Modellalgorithmen vorhergesagt, um auf Grundlage der jeweiligen Modellleistung das 
geeignetste Modell für die Projektion der Regenwurmverbreitung in ganz Deutschland auszu
wählen. Die Studie folgt den ODMAP-Standardprotokollen für die Implementierung von Arten
verbreitungsmodellen (SDMs) (Zurell et	al., 2020). Darüber hinaus wurden mehrere Methoden 
(Expertenurteil, statistische Verfahren, ökologische Relevanzanalyse) zur Auswahl von Umwelt
prädiktoren verwendet, um eine Verzerrung bei der Variablenauswahl zu vermeiden und so ein 
breites Spektrum relevanter Umweltvariablen für eine robuste Modellierung der Verbreitung 
von Regenwurmarten abzudecken.  

Algorithmen des maschinellen Lernens, wie Random Forests (RF), Generalized Boosted Regres
sion Models (GBM) oder die Maximum-Entropie-Methode (MAXENT)  haben in jüngster Zeit bes
sere Ergebnisse erzielt als traditionelle Regressionsmodelle, wie Generalized Linear Regression 
Models (GLM) oder Generalized Additive Regression Models (GAM) (Elith et	al., 2006; Li & Wang 
2013; Valavi, 2022). Obwohl RF bisher nur selten verwendet wurden und ihr Potenzial in SDMs 
nicht ausreichend genutzt wurde, hat ihre hohe Vorhersageleistung in letzter Zeit in angewand
ten ökologischen Studien Aufmerksamkeit erregt (z. B. Mi et	al., 2017). RF und GBM als Ensem
ble-Klassifikatoren bestehen aus mehreren alternativen Bäumen und verwenden diese bei der 
Entscheidungsfindung während der Erstellung von Modellvorhersagen (Li & Wang, 2013; 
Guisan et	al., 2017). Obwohl in dieser Studie die Leistung von GLM und GAM übertroffen wurde, 
sagte GBM nur innerhalb des dritten Quartils der Daten zur Gesamtabundanz und zum Arten
reichtum voraus. Der Vergleich der Anpassungsgüte-Statistiken (R², CI, AUC, Kappa), der beo
bachteten im Vergleich zu den vorhergesagten Datenanpassungen sowie der daraus resultieren
den Karten der vorhergesagten Abundanz und des Artenreichtums durch alle Modelle veran
schaulicht die gute Leistung von RF. So war dieser Algorithmus beispielsweise in der Lage, Vor
hersagen über den Bereich des dritten Quartils der Dichtefelddaten hinaus zu treffen, ein
schließlich maximaler Dichten von über 600 Ind m-2, und eine große Anzahl von Arten in den Da
ten zu erfassen. Frühere Studien bestätigen unsere Feststellung, dass Random-Forest-Algorith
men die beste Vorhersageleistung zeigen (z. B. Marmion et	al., 2008; Mi et	al., 2017; Valavi et	al., 
2022). Es wurde jedoch eine Verbesserung der Anpassungsgüte für Dichtevorhersagen in RF 
sichtbar, nachdem zusätzliche Daten (aus Bayern) einbezogen wurden, was bestätigt, dass RF 
datenabhängig sein kann (s. a. Valavi et	al., 2021; Yiu, 2021). Die resultierenden partiellen 
Responsekurven, die die Beziehungen zwischen Gemeinschaften (oder Arten) und der Umwelt 
offenlegen, sind ein weiteres Beispiel dafür, wie RF-Modelle ökologisch relevante Ergebnisse lie
fern (Cutler et	al., 2007, Mi et	al., 2017).  

Trotz der hohen Anpassungsgüte der RF-Modelle ist jedes Vorhersagemodell nur so gut wie die 
zugrunde liegenden Daten, die zur Kalibrierung verwendet werden. Mit über 20 000 Datensät
zen von fast 1000 Fundorten können die biologischen Hintergrunddaten als umfangreich und 
ausreichend angesehen werden. Nur gut 40 % der Regenwurmdatensätze enthielten auch Daten 
zu den Umweltprädiktoren, mit einer entsprechend hohen ökologischen Interpretierbarkeit der 
Funde. Die entsprechend großen Datenlücken mussten durch externe Daten ergänzt werden. 
Dies war durchaus kritisch für einige Bodenparameter, für die flächenhafte Daten weiträumig 
auf Interpolationen beruhen (was aufgrund der großen kleinräumigen Heterogenität der Böden 
ungeeignet ist). Für diese Studie wurden mit großem Aufwand Bodendaten aus kleinräumigen 
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Erhebungen für diese Studie zusammengetragen. Allerdings konnten nicht alle relevanten Para
meter erfasst werden. So halten Creamer et	al. (2019, in Baritz et	al., 2021) Indikatoren für die 
Qualität der organischen Bodensubstanz (z. B. C/N-, N/P-Verhältnis) auch für Bodenorganismen 
für sehr wichtig. Entsprechende Daten sind für Deutschland nicht flächendeckend verfügbar.  

Es muss auch auf die potenziellen Schwierigkeiten bei der Verwendung externer Habitatdaten 
hingewiesen werden, da eine zeitliche Trennung zwischen Regenwurmbeobachtungen und Ha
bitattypenübersichten eine auf Landnutzungsänderungen zurückgehende Fehlzuweisung ent
halten kann. Glücklicherweise war der Habitattyp die häufigste Umweltmetadatengruppe, die 
mit den Regenwurmdaten erfasst wurde, so dass eine insgesamt befriedigende Modellkalibrie
rung gewährleistet war. Schließlich wurden nur abiotische Variablen als Prädiktorvariablen be
rücksichtigt; etwaige Wechselwirkungen mit anderen Organismen (d. h. zwischen Regenwurm
arten, anderer Bodenfauna oder Mikroorganismen) wurden nicht berücksichtigt, da auch für an
dere Organismen(gruppen) keine entsprechenden Daten verfügbar sind (und Studien über meh
rere Bodenorganismengruppen an denselben Standorten äußerst selten sind). Obwohl nicht alle 
potenziellen Einflussfaktoren auf die Verbreitung von Regenwürmern berücksichtigt werden 
konnten, enthielten die Modelle eine große Anzahl der wichtigsten Umweltparameter, von de
nen bekannt ist, dass sie die Fitness von Regenwürmern beeinflussen (z. B. Lee, 1985; Edwards 
& Arancom, 2022). 

Obwohl die Modellvorhersagen noch nicht im Freiland validiert wurden (hier können die im 
Rahmen von Monitoringprogrammen des Bundes und der Länder vorgesehenen Erhebungen ein 
erster Schritt sein), bestätigen die veröffentlichten Zusammenstellungen der Autökologie der 
Regenwurmarten die Mehrzahl der Vorhersagen. Bemerkenswert ist der vorhergesagte 
Response der Arten auf den pH-Wert des Bodens, wobei viele acidophobe und einige acidophile 
oder -tolerante Arten mit einem Schwellenwert zwischen pH 4 und 5 ermittelt wurden. Graefe & 
Beylich (2003) berichten ebenfalls über eine solch starke artspezifische Differenzierung mit ei
nem gemeinsamen Schwellenwert von pH 4,2, mit Ausnahme z. B. der acidophoben A.	longa mit 
einem Schwellenwert von pH 5, der auch von unseren Modellen vorhergesagt wurde. Unsere 
Vorhersagen zu den Reaktionen der Arten auf den Säuregrad des Bodens werden auch weitge
hend bestätigt, z. B. von Sims & Gerard (1999), Jänsch et	al. (2013), Krück (2018) und Sherlock 
(2018). Diese Autoren sowie Römbke et	al. (2018) und Lehmitz et	al. (2016) beschreiben auch 
artspezifische Präferenzen für den Gehalt an organischer Bodensubstanz (SOM), die durch die 
Modellvorhersagen fast vollständig bestätigt werden. Einige dieser Autoren berücksichtigten 
auch Präferenzen für den Tongehalt, die im Allgemeinen, aber nicht immer, von den hier vorge
legten Modellvorhersagen bestätigt werden. So berichten Jänsch et	al. (2013) über die Vorliebe 
von D.	octaedra für Böden mit niedrigem Tongehalt und die leichte Vorliebe von A.	cholorotica 
für Tonböden, die beide durch unsere Ergebnisse widerlegt werden. Auch die von uns vorherge
sagte positive Reaktion von L.	terrestris auf Böden mit geringerem Ton- und Schluffgehalt steht 
im Widerspruch zu der Einschätzung von Sims & Gerard (1999) und Sherlock (2018), dass diese 
Art lehmreiche Böden bevorzugt (diese Autoren beziehen sich allerdings auf britische Populatio
nen). 

Die vorliegende Studie bestätigt die Aussagen früherer Arbeiten zu den Auswirkungen von Nie
derschlag und Bodenfeuchtigkeit; diese Variablen sind für die Zunahme der Population und die 
Verteilung erwachsener Regenwürmer nach Regenfällen verantwortlich, insbesondere in relativ 
trockenen Gebieten oder nach langen Dürreperioden (Lavelle, 1978; Lavelle & Spain, 2005; Kalu 
et	al., 2015; Rajwar et	al., 2022). Phillips et	al. (2019) ermitteln mit einfacheren statistischen Me
thoden das Klima (insbesondere den mittleren Jahresniederschlag und die Temperatur) als fast 
ausschließlichen Einflussfaktor auf die Regenwurmgemeinschaften (Gesamtdichte, Artenreich
tum) auf globaler Ebene. Unsere Studie bestätigt zwar die kombinierte Rolle von Temperatur, 
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Niederschlag und Bodenfeuchtigkeit, identifiziert aber auch den Lebensraumtyp, den pH-Wert 
des Bodens und die organische Bodensubstanz als wichtige Einflussfaktoren, die zusammen 
etwa 70 % zu den Vorhersagen beitrugen. Da das Klima auf globaler Ebene z. B. auch die natürli
che Vegetation (die zu Biomen und Lebensraumtypen führt) und teilweise auch die Bodenge
nese beeinflusst, ist es plausibel, dass statistische Methoden das Klima gegenüber anderen Um
weltparametern als treibende Kraft auf globaler Ebene identifizieren. Unsere Studie auf regiona
ler Ebene zeigt jedoch auch die Bedeutung von Lebensraum- und Bodenparametern als zusätzli
che Faktoren für die Verbreitung von Regenwürmern. Im Gegensatz dazu bezweifeln Hodson et	
al. (2021), dass Bodenfaktoren ein wichtiger Faktor für die Regenwurmdichte und -verteilung 
sind, insbesondere auf nationaler Ebene. Die maßgeblichen Faktoren für die biologische Vielfalt 
der Regenwürmer sind also offensichtlich skalenabhängig; Klimaparameter sind auf globaler 
und regionaler Ebene wichtig, während Lebensraum- und Bodenfaktoren auf kleineren räumli
chen Skalen an Bedeutung gewinnen. Auf lokaler Ebene (wo ähnliche klimatische Bedingungen 
herrschen) dürften die letztgenannten Faktoren am wichtigsten sein, und auch anthropogene 
Landnutzungsmaßnahmen werden die Artenvielfalt der Regenwürmer zunehmend beeinflussen. 

Die vorliegende Studie sagt Vorkommenswahrscheinlichkeiten jenseits der traditionellen Nut
zungstypen Wald, Grünland und Acker vorher, indem alle terrestrischen EUNIS-Level-1-Lebens
raumtypen, einschließlich mariner (d. h. Inseln), küstennaher und städtischer Standorte, einbe
zogen wurden. Diese Vorhersagen stimmten in hohem Maße mit den vorgeschlagenen Klassifi
zierungen der Verbreitungsgebiete auf der Grundlage der Verbreitungsvorhersagen überein. So 
wurde für die meisten Arten mit großem Verbreitungsgebiet eine weite Verbreitung in vielen 
Regionen Deutschlands und ein Vorkommen in vielen verschiedenen Lebensraumtypen prog
nostiziert, oft mit Wahrscheinlichkeiten von mehr als 50 – 60 %, was auf ihren ökologisch gene
ralistischen Charakter hinweist. In der Roten Liste Deutschlands werden alle diese Arten als 
sehr häufig aufgeführt (Lehmitz et	al., 2016), und in der Literatur werden sie als euryök bzw. 
wird ihr Vorkommen als ubiquitär beschrieben (z. B. Sims & Gerard, 1999; Jänsch et	al., 2013; 
Römbke et	al., 2018; Sherlock, 2018), was unsere Ergebnisse bestätigt. Obwohl L.	terrestris	im 
Allgemeinen als eurytop angesehen wird, wird gelegentlich auf eine leichte Präferenz für Grün
landstandorte hingewiesen (Sims & Gerard, 1999; Jänsch et	al., 2013; Sherlock, 2018), was durch 
unsere Vorhersagen bestätigt wird, die aber in sehr ähnlichem Maße auch Waldhabitate vorher
sagen. Die Art gilt als störungsintolerant (Lehmitz et	al., 2016; Römbke et	al., 2018), was ihre ge
ringe Wahrscheinlichkeit für natürliche Sonderstandorte (z. B. Auen, Moore) sowie anthropogen 
stark beeinflusste Lebensraumtypen erklären könnte. Vorsicht ist u. U. bei den Aussagen zu A.	
caliginosa geboten, die kryptische Arten enthalten kann (Lehmitz et	al., 2016; Römbke et	al., 
2018); dies ist jedoch eine Frage der Taxonomie und der Artbestimmung und nicht der Modellie
rungsverfahren.  

Den von uns als Arten mit mittlerem Verbreitungsgebiet eingestuften Arten wird ebenfalls ein 
weites Vorkommen in Deutschland vorhergesagt, wenn auch oft mit deutlich geringerer Wahr
scheinlichkeit. In der Roten Liste Deutschlands werden sie alle als häufig	geführt. Obwohl für sie 
ein Vorkommen in vielen verschiedenen Lebensraumtypen prognostiziert wird (euryöke Arten), 
scheinen sie stärker habitatabhängig zu sein und ein Optimum in bestimmten Lebensraumtypen 
zu haben. So wurde beispielsweise für A.	chlorotica ein stärkeres Vorkommen auf landwirt
schaftlich genutzten Flächen (Acker oder Grünland) vorhergesagt, was auch aus Beobachtungs
daten hervorgeht (z. B. Jänsch et	al., 2013; Römbke et	al., 2018). Andererseits wird D.	octaedra 
hauptsächlich in Waldhabitaten vorkommend vorhergesagt, was mit Erkenntnissen von z. B. 
Jänsch et	al. (2013), Römbke et	al. (2018) und Sherlock (2018) korrespondiert. In Anbetracht 
der acidophilen Natur der Art ist eine Präferenz für Nadelwälder wahrscheinlich (vgl. Sherlock, 
2018). Während A.	castaneus eher ein Generalist zu sein scheint, zeigen die vorliegenden Ergeb
nisse die höchsten Vorkommenswahrscheinlichkeiten in Wäldern und Auen, was u. a. Jänsch et	
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al. (2013), Römbke et	al. (2018) und Krück (2018) widerspricht, die eine Präferenz auch für 
Grasland sehen. Interessanterweise wurde A.	longa von unseren Modellen auch als Generalist 
vorhergesagt, der in verschiedenen Lebensraumtypen vorkommt, aber in feuchteren Lebensräu
men (z. B. Inseln, Küsten, Überschwemmungsgebieten, Mooren) fehlt. Dies wird von Krück 
(2018) bestätigt, der A.	longa	eine Vorliebe für trockenere Lebensräume bescheinigt, im Gegen
satz zu Sims & Gerard (1999), die ein Vorkommen der Art in Überschwemmungsgebieten Groß
britanniens feststellten. 

Die Arten mit eingeschränktem Verbreitungsgebiet weisen alle eine auf bestimmte Regionen 
und Lebensraumtypen beschränkte Vorkommenswahrscheinlichkeit auf. In der Roten Liste 
Deutschlands sind sie alle als selten oder sehr	selten aufgeführt. Zum Beispiel liegen die höchsten 
Verbreitungswahrscheinlichkeiten von D.	attemsi eher in den Hügelländern und Mittelgebirgen; 
die höchsten Wahrscheinlichkeiten wurden für die Nutzungsart Acker (und in zweiter Linie für 
Wälder) vorhergesagt. Dies steht im Widerspruch zu früheren Arbeiten, mit Ausnahme von 
Sherlock (2018), der Vorkommen von D.	attemsi in Wäldern Großbritanniens feststellte. A.	eiseni 
wird von den Modellen als am wahrscheinlichsten in Wäldern (in Mittel- und Süddeutschland) 
vorkommend vorhergesagt, wie auch Römbke et	al. (2018) und Lehmitz et	al. (2016) berichten. 
A.	limicola ist als hydrophil bekannt (Sims & Gerard 1999; Lehmitz et	al. 2016; Krück 2018; 
Römbke et	al., 2018; Sherlock, 2018). Dementsprechend sagen die Modelle voraus, dass die Art 
mit hoher Wahrscheinlichkeit in Überschwemmungsgebieten sowie im Grasland und in Wäldern 
vorkommt – die sich möglicherweise ebenfalls in Überschwemmungsgebieten u. ä. befinden, de
ren Funddaten aber möglicherweise fälschlich allgemeineren Lebensraumtypen zugeordnet 
wurden. Die Modelle sagen voraus, dass A.	limicola vor allem in Westdeutschland (und am 
stärksten im Rheintal) vorkommt, was zu den Befunden von Krück (2018) passt, dass die Art in 
Nordostdeutschland selten vorkommt. L.	badensis ist eine in Deutschland endemische Art, die in 
den Wäldern des Hochschwarzwalds (Südwestdeutschland) vorkommt (Lehmitz et	al., 2016), 
was sich auch in den Modellvorhersagen zeigt. 

Interessant sind die wenigen Arten, die nach den Modellierungen in Ausnahmehabitaten vor
kommen. So wurde für A.	limicola, L.	rubellus und L.	castaneus ein Vorkommen in marin beein
flussten Lebensräumen (d. h. auf Inseln) und für A.	caliginosa, A.	chlorotica und A.	limicola in 
Küstengebieten vorhergesagt; alle jedoch mit einer geringen (<35 %) Vorkommenswahrschein
lichkeit. Das weist auf ein lückenhaftes Vorkommen in diesen Lebensräumen hin. Auffallend ist 
die große Anzahl von Arten, die mit mäßiger Wahrscheinlichkeit in städtischen, industriellen 
und anderen anthropogenen Gebieten vorkommen. Diese neuen Ergebnisse können bei der Be
wertung von Erhebungen zur biologischen Vielfalt des Bodens in solchen Gebieten helfen. 

Auf der Ebene der Lebensgemeinschaften ist die geografische Variation und die inverse Bezie
hung zwischen Artenreichtum und Gesamtabundanz, wie sie in dieser Studie (hauptsächlich für 
Nordostdeutschland) festzustellen ist, ein häufiges Phänomen in der Ökologie. Gesamtabundanz 
und Artenreichtum verhalten sich oft gegenläufig, so dass ein Gebiet eine hohe Individuendichte, 
aber einen geringen Artenreichtum aufweist (Verberk et	al., 2011). Eine Region mit ungünstige
ren Umweltbedingungen ermöglicht ggf. nur das Vorkommen einiger weniger Arten, diese aber 
in durchaus großen Populationen (hohe Individuenzahlen), u. U. gerade aufgrund geringerer 
Konkurrenz durch andere Arten (Groves, 2022). Dies könnte möglicherweise die hohe Individu
endichte, aber den geringen Artenreichtum erklären, der für Nordostdeutschland (insbesondere 
Brandenburg) vorhergesagt wird, wo vergleichsweise trockenere, sandige Böden vorherrschen 
und wo vorwiegend Nadelbaumforste stocken. In diesem Zusammenhang sind die hohen Vor
kommenswahrscheinlichkeiten von D.	octaedra und L.	rubellus in diesen Gebieten auffällig, bei
des epigäische, acidophile (oder -tolerante) Arten mit einer vermuteten Affinität zu Wäldern. Ei
gene Erhebungen der biologischen Vielfalt im Boden haben oft hohe Populationsdichten von 
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sehr wenigen epigäischen Arten in Wäldern auf sandigen Böden gezeigt. Andererseits werden 
für die bayerischen Alpen und das Rheintal als einige der wenigen Regionen mit hoher Regen
wurm-Biodiversität (sowohl Gesamtabundanz als auch Artenreichtum) in Deutschland vorher
gesagt. Das Rheintal ist für reiche Böden und eine hohe allgemeine Biodiversität bekannt, und 
die Vorhersagen für die alpinen Regionen gehen konform mit der Alpenkonvention (2014), die 
die Alpen aufgrund ihres natürlichen Zustands und der geringe(re)n menschlichen Störungen als 
eine der reichsten Regionen Europas in Bezug auf die Vielfalt von Pflanzen und Tieren aner
kennt. 

Die Größe des Verbreitungsgebiets ist seit langem als guter Indikator für die Bewertung der Be
drohung einer Art anerkannt. Der Bedrohungsstatus der Regenwürmer in Deutschland ist in der 
entsprechenden Roten Liste dokumentiert (Lehmitz et	al., 2016). Die Kartierung der räumlichen 
Verbreitung der Regenwurmarten und die Bestimmung der Flächengröße erlauben, die Arten in 
Verbreitungsgruppen (Arten mit großem, mittlerem und kleinem Verbreitungsgebiet) einzutei
len und Aussagen zum Bedrohungsstatus und Schutzbedarf der Arten abzuleiten (IUCN 2012 a, 
b; 2022). 

Keine Art wurde nach den Kriterien des Verbreitungsgebiets als bedroht eingestuft (die Verbrei
tungsgebiete aller Arten überstiegen den Mindestschwellenwert von 20 000 km2), was darauf 
hindeutet, dass die untersuchten Regenwurmarten in Deutschland potenziell weit genug ver
breitet sind, als dass sie durch Einzelereignisse aussterben (IUCN 2012, a, b). Dennoch zeigt ein 
Vergleich der prognostizierten Verbreitungskarten und des berechneten Verbreitungsgebiets 
(Area of Occupancy, AOO), dass bestimmte Arten aufgrund ihres eingeschränkten Verbreitungs
gebiets zur Anlass zur Sorge geben, z. B. L.	castaneus, D.	octaedra und A.	longa (als gefährdete Ar
ten) sowie A.	eiseni, D.	attemsi und A.	limicola (als stark	gefährdete Arten nach den AOO-Krite
rien) oder weil sie in Deutschland endemisch sind, wie L.	badensis. Über den Status von A.	eiseni 
in Deutschland existieren unterschiedliche Meinungen; während Bouche (1972) und Graff 
(1953) die Art in Frankreich bzw. Deutschland als selten einstufen, stufen Römbke et	al. (2017) 
die die Art als häufig ein. Unsere Ergebnisse unterstützen teilweise die älteren Befunde von Graff 
(1953) und Bouche (1972) sowie die Zwischenposition von Lehmitz et	al. (2016), die die Art als 
mäßig häufig einstuften (die vorliegende Studie bevorzugt den Begriff des eingeschränkten Ver
breitungsgebiets).  

Dagegen müssen die hier gemachten Vorhersagen über ein begrenztes Vorkommen von A.	eiseni 
in hessischen Wäldern (Römbke et	al., 2017) und einigen anderen Gebieten zurückhaltend beur
teilt werden. Die Art wird ist wahrscheinlich arboral und kortikal, und die begrenzten Beobach
tungsdaten (auf denen die Modelle basieren) könnten methodisch verzerrt sein, da die üblichen 
Methoden zur Regenwurmextraktion die bevorzugten Mikrohabitate dieser Art möglicherweise 
nicht ausreichend erfassen (Lehmitz et	al., 2016; Römbke et	al., 2018). A.	limicola ist die einzige 
hier untersuchte Art, die in der deutschen Roten Liste der Regenwürmer als gefährdet aufge
führt ist. Sein prognostiziertes Vorkommen in Feuchtgebieten, das seinen Status als hydrophile 
Art bestätigt, sowie seine prognostizierte begrenzte Verbreitung in Deutschland spiegeln seinen 
Gefährdungsstatus wider. Die übrigen Arten sollten bei künftigen Erhebungen zur biologischen 
Vielfalt im Boden als Schwerpunktarten betrachtet werden. 

Besonders hervorzuheben ist L.	badensis, eine endemische Art, die in der Hochschwarzwaldre
gion vorkommt und wahrscheinlich gefährdet ist (Lehmitz et	al., 2016). Obwohl keine ausrei
chenden Funddaten für die Berechnung von EOO oder AOO zur Verfügung standen, wurde für 
diese Art ein sehr eingeschränktes und enges Verbreitungsgebiet vorhergesagt, was ihrer Ein
stufung als gefährdet untermauert. Diese Art verdeutlicht auch einen wichtigen Aspekt der Ver
breitungsmodellierung: Obwohl die Modelle ein potenzielles Vorkommen z. B. in den bayeri
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schen Alpen vorhersagen, wurde die Art dort noch nie nachgewiesen. Die Modellergebnisse zei
gen demnach nur eine hohe potenzielle Lebensraumeignung für die Art in den Alpen, sind aber 
kein Beleg für ihr dortiges Vorkommen. 

4.2 Daten 
Eine Erweiterung auf andere Bodentiergruppen als die Lumbriciden erscheint aufgrund fehlen
der Funddaten aus großen Regionen Deutschlands nicht möglich.  

Da die Auswertung von Bodentierfunddaten nur standortsbezogen und damit am Punkt möglich. 
Die Verknüpfung der Bodentierfundpunkte mit Standortinformation geschieht am besten mit am 
Fundpunkt. Eine Ergänzung fehlender Standortinformation aus Bodenflächendaten ist insofern 
grundsätzlich problematisch, weil letztere flächenrepräsentativ für die jeweilige Legendenein
heit sind, also am Punkt nur begrenzte Aussagekraft haben. Die Flächendaten sind für eine 
punkthafte Abfrage unter Umständen zu stark generalisiert. Dies führt zu Unschärfen bei der 
statistischen Berechnung und der Modellierung von Verbreitungskarten. Hinzu kommt, dass in 
den Flächen-Bodenprofilen häufig klassierte statt diskreter Werte verwendet werden. Die Kom
bination von nominal- und ordinalskalierten Daten mit kardinalskalierten Daten kann problema
tisch sein.  

Schlussfolgerungen 

Die vorliegende Studie ist die erste umfassende Analyse, die die Verteilung von Regenwürmern auf 
deutschlandweiter Ebene modelliert und hierfür die wichtigsten Arten und mehrere Umweltfakto
ren einbezieht. Frühere Regenwurm-SDM-Studien, die Biodiversitätsmaße, wie Gesamtdichte, Bio
masse und Artenreichtum verwenden, verwenden klassische oder traditionelle Regressionsmo
delle (GLM, GLMM und GAM). Angesichts des Potenzials der maschinellen Lernmodelle GBM und 
RF mit hoher Vorhersageleistung wurde in dieser Studie deren Vorhersageleistung mit der traditio
neller Regressionsmodelle verglichen, um das beste statistische Modell für die Vorhersage der Re
genwurm-Biodiversität in Deutschland zu ermitteln. Die Vorhersageleistung von RF war besonders 
hoch. 

Diese Vorhersagen, einschließlich der Einteilung der Arten nach der Größe ihres Verbreitungsge
biets sowie des gemeinschafts- und artspezifischen Responses auf ein breites Spektrum von Um
weltvariablen, bieten eine effektive Annäherung an die Regenwurmverteilung und deren Einfluss
faktoren in Deutschland. Diese Informationen sind sowohl wertvoll für zukünftige wissenschaftli
che Feldstudien, als auch eine Voraussetzung für Boden-Biodiversitäts-Monitoringprogramme, die 
standardisierte Vergleichswerte für die Ergebnisbewertung benötigen. Aus den Modellergebnissen 
sollen Referenzwerte extrahiert werden, die auf spezifischen Standortbedingungen basieren und 
für den Einsatz in Boden-Biodiversitäts-Monitoringprogrammen vorgesehen sind; ein Werkzeug 
hierzu ist in Entwicklung. 

Entsprechende Monitoringprogramme werden zur Validierung der Modellergebnisse beitragen. 
Wichtig ist, dass bei den Erhebungen zur Artenvielfalt die Umweltparameter (insbesondere des 
Bodens) mit erhoben werden, um die Daten zu den Art-Umweltfaktoren und damit die Modellge
nauigkeit zu verbessern. 

Die Modellierung und flächenhafte Darstellung der Regenwurmverbreitung ermöglicht außerdem, 
die Arten nach der Größe ihres geografischen Verbreitungsgebiets einzustufen. Das liefert wichtige 
Grundlagen für Entscheidungen für die Arterhaltung. Die Modellierung der Verbreitung der Arten 
wurde mithilfe der zehn EUNIS-Lebensraumtypen der Ebene 1 als Prognosekriterium vorgenom
men. Dies ist eine deutliche Verbesserung gegenüber der klassischen Einteilung nach den drei 
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Hauptnutzungen Acker, Grünland und Wald. Die Verbreitung von Regenwürmern innerhalb der 
Lebensraumtypen der Ebene 1 kann trotz der besseren Differenzierung sehr unterschiedlich sein. 
So kann beispielsweise Wald unter anderem in Laub-, Nadel- und Mischwälder unterteilt werden. 
Bewirtschaftungsmaßnahmen in landwirtschaftlich genutzten Lebensräumen haben einen starken 
Einfluss auf Regenwurmgemeinschaften. Die Verfügbarkeit von hochauflösenden Rasterdaten auf 
EUNIS-Ebene 2 oder feineren Hierarchien würde die Modellgenauigkeit bezüglich der Lebensraum
präferenzen der Arten erhöhen. Wichtig ist, dass die Erfassung von Lebensraumtypen auf einer dif
ferenzierteren Ebene während der Erhebungen zur biologischen Vielfalt des Bodens künftige Da
tensynthesen und die Kenntnis spezifischer Einflussfaktoren erheblich verbessern wird, so dass 
bessere Erhaltungsentscheidungen getroffen werden können. Obwohl das Random-Forest-Modell 
in der Lage war, die potenzielle Verbreitung einiger Arten in weitgehend unbeprobten Gebieten 
Norddeutschlands (insbesondere in Mecklenburg-Vorpommern, Niedersachsen und den nördli
chen Teilen Nordrhein-Westfalens) vorherzusagen, ohne dass Überanpassungen des Modells an 
die Trainingsdaten auftraten, kann es Feldbeobachtungen nicht ersetzen. Erhebungen in den bis
her nicht beprobten Gebieten wären außerordentlich hilfreich. 

Besonderes Augenmerk sollte auf Arten mit begrenztem Verbreitungsgebiet, wie D. attemsi, A. ei
seni und L. badensis, gelegt werden. Bei Arten mit klar definierten Habitatansprüchen, wie A. limi
cola in Feuchtgebieten und D. octaedra in Wäldern, sollten die Lebensräume, in denen sie vorkom
men, auf mögliche Lebensraumverschlechterungen überwacht werden. Detaillierte Studien über 
den endemischen L. badensis wären überdies hilfreich, um genauere SDMs und Berechnungen der 
geografischen Verbreitung zu ermöglichen und eine bessere Einschätzung der tatsächlichen Ver
breitung und des Schutzbedarfs zu erhalten. 
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A Anhang  

Tabelle 12: Datentabelle zu Abbildung 28: Vorkommenswahrscheinlichkeiten der Regenwurmarten 
in zehn Habitattypen. 

  
M

ee
r 

Kü
st

en
 

Au
en

 

M
oo

re
 

Gr
ün

la
nd

 

Ge
bü

sc
h 

W
äl

de
r 

Sp
är

l. 
Ve

g.
 

Ac
ke

r 

U
rb

an
/ 

Be
rg

ba
uf

ol
. 

M
itt

el
w

er
t 

A. caliginosa 0,05 0,20 0,51 0,15 0,55 0,50 0,55 0,34 0,52 0,56 0,39 
A. chlorotica 0,03 0,05 0,04 0,10 0,60 0,10 0,30 0,10 0,60 0,30 0,22 
A. eiseni 0,01 0,20 0,20 0,11 0,48 0,12 0,65 0,04 0,45 0,40 0,27 
A. limicola 0,34 0,20 0,55 0,46 0,50 0,20 0,58 0,30 0,52 0,10 0,38 
A. longa 0,05 0,12 0,07 0,15 0,51 0,38 0,52 0,30 0,56 0,41 0,31 
A. rosea 0,03 0,02 0,40 0,30 0,58 0,01 0,60 0,12 0,59 0,45 0,31 
D. attemsi 0,10 0,06 0,13 0,35 0,30 0,25 0,45 0,24 0,55 0,10 0,25 
D. octaedra 0,10 0,20 0,25 0,20 0,26 0,20 0,64 0,43 0,42 0,34 0,30 
L. badensis 0,02 0,02 0,05 0,02 0,30 0,00 0,50 0,10 0,20 0,02 0,12 
L. castaneus 0,20 0,00 0,50 0,01 0,35 0,01 0,59 0,11 0,48 0,44 0,27 
L. rubellus 0,30 0,02 0,35 0,01 0,56 0,10 0,60 0,04 0,48 0,34 0,28 
L. terrestris 0,01 0,04 0,35 0,12 0,59 0,03 0,62 0,11 0,20 0,25 0,23 
Summe 1,24 1,13 3,40 1,98 5,58 1,90 6,60 2,23 5,57 3,71  

 

Tabelle 13: Datentabelle zu Abbildung 29: Vorkommenswahrscheinlichkeiten der Regenwurmarten 
größer als der Schwellenwert 0,2 in zehn Habitattypen. 
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Meer    0,34      0,20 0,30  
Küsten 0,20  0,20 0,20         

Auen 0,51  0,20 0,55  0,40  0,25  0,50 0,35 0,35 
Moore    0,46  0,30 0,35      

Grünland 0,55 0,60 0,48 0,50 0,51 0,58 0,30 0,26 0,30 0,35 0,56 0,59 
Gebüsch 0,50   0,20 0,38  0,25      

Wälder 0,55 0,30 0,65 0,58 0,52 0,60 0,45 0,64 0,50 0,59 0,60 0,62 
Spärliche Vegetation 0,34   0,30 0,30  0,24 0,43     

Acker 0,52 0,60 0,45  0,56 0,59 0,55 0,34  0,48 0,48 0,20 
Urban/Bergbaufolge 0,56 0,30 0,40   0,41 0,45   0,34   0,44 0,34 0,25 

 3,73 1,80 2,38 3,13 2,68 2,92 2,14 2,26 0,80 2,56 2,63 2,01 
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