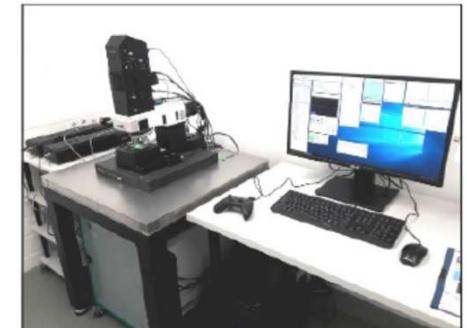
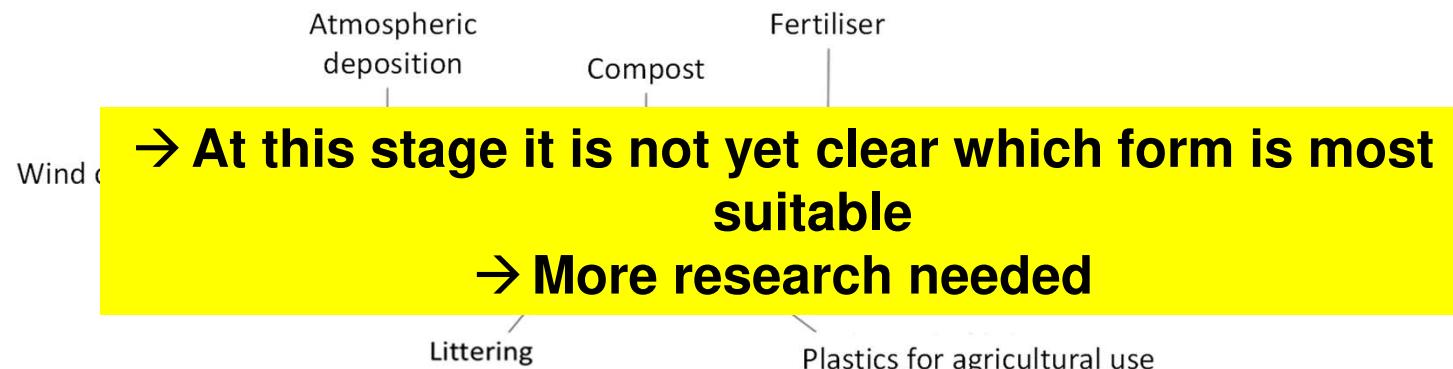

19.10 – 20.10.2022

Microplastic in Soils - Berlin


Current methods for the detection of microplastics in soils – An Overview

Carmen Wolf, Mike Wenzel, Jochen Tuerk

Emission



Microplastic in Soils

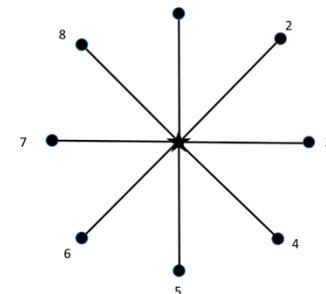
Sampling

- Avoidance of plastic equipment
- Avoidance of plastic clothing → Note in the protocol
- Note in protocol if plastic fragments are seen on the soil

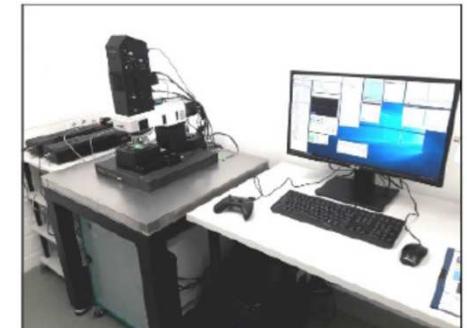
- Representative sampling
 - no homogeneous distribution → Hot spots
 - existing sampling methods suitable?
 - can different results be compared if different methods were used?

Sampling

Examples


- **Sampling iMulch Project**

- Pürkhauer Sampling, diagonal across the field
- Based on the sampling for the determination of soil parameters such as nutrient content



- **Sampling UBA Projekt FKZ: 3720 72 288 0**

- Split tube sampler (4-5 kg - 0-30 cm – field, 0-10 cm grassland)
- Satellite sampling
- Based on: Richtlinie zur Probenahme und Probenbearbeitung – Umweltdatenbank 2012

Microplastic in Soils

Sample preparation

- For thermo analytical methods like Pyrolysis or TED-GCMS the reduction of matrix is not necessary, but an enrichment step, to reach the limit of quantification
- For Spectroscopic Methods a reduction of the matrix is mandatory, but lower amounts of polymer particles can be detected
- Sample preparation must be as time saving and gentle as possible to avoid any effect on the Microplastic particles

Extraction Methods						
	Manual Extraction	Electrostatic Separation	Consecutive Matrix Removal, mineral Fraction			
			Oil extraction	Density separation	(Froth) Flotation	Magnetic Extraction
Size	2-500 µm	2-300	no restriction	no restriction tested for particles >40	no restriction	no restriction
further information	time intensive	tested for sand and sediment samples, adhesive forces to a metal drum, 3-4 h/150 g sample	lipophilic surface properties of most plastic particles	different devices available, different density of the solution dependend on the used salt	no chemicals, no effect on microplastics, small sample amount, hydrophobic adhesion on air bubbles	iron nanoparticle with hydrophobic hydrocarbon tails binding on MP surface; fragmentation of the MP
Recovery rates	high amount of false positives	90-100%	90-100%; ~ 74% real samples	95-100%; >13-40% aged plastic	~ 10-50% MP type dependent	~ 55%

Möller et al. 2020; Wenzel et al. in Prep.

Sample preparation

Extraction Methods

Consecutive Matrix Removal, organic Fraction

→ Most methods tested and validated for aquatic samples or sediments

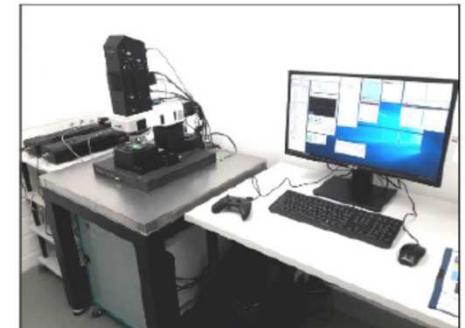
→ Combination of different methods suitable (e.g. Density separation, Fenton, enzymatic digestion)
→ Ideally, a method that requires little or no chemicals

Acidic and
Digestion

use of strong
alkaline solution
the MP shape
concentration

digestion

oped for
ples -->
uitable to
c materials


Leading to different results

Leading to different results

of terrestrial plants, long
reaction times

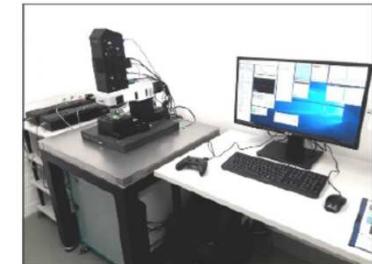
Al-Azzawi *et al.* 2019; Möller *et al.* 2020, Wenzel *et al.* in prep.

Microplastic in Soils

Detection of microplastic

- **Optical methods**
 - Identification by shape and colour → false positive & negative results
- **RAMAN or FTIR spectroscopy**
 - Single → Ideal is a combination of spectroscopy and mass spectrometry
 - Data etc. out the shape
 - Requirements to gain information about the size, shape, particle number and mass quantity of microplastics
- **Pyrolysis or Thermal Extraction Desorption (TED)-GC-MS**
 - Fast chemical identification and quantification
 - Samples were pyrolysed and pyrolysis products were identified and quantified
 - No size or shape information
 - less laborious sample preparation as no matrix reduction is necessary but enrichment step to reach the LOQ

Example – iMulch – Method development


Development of a method which allows the quantification, chemical identification, particle size distribution and shape identification of the particles

TED-GC-MS

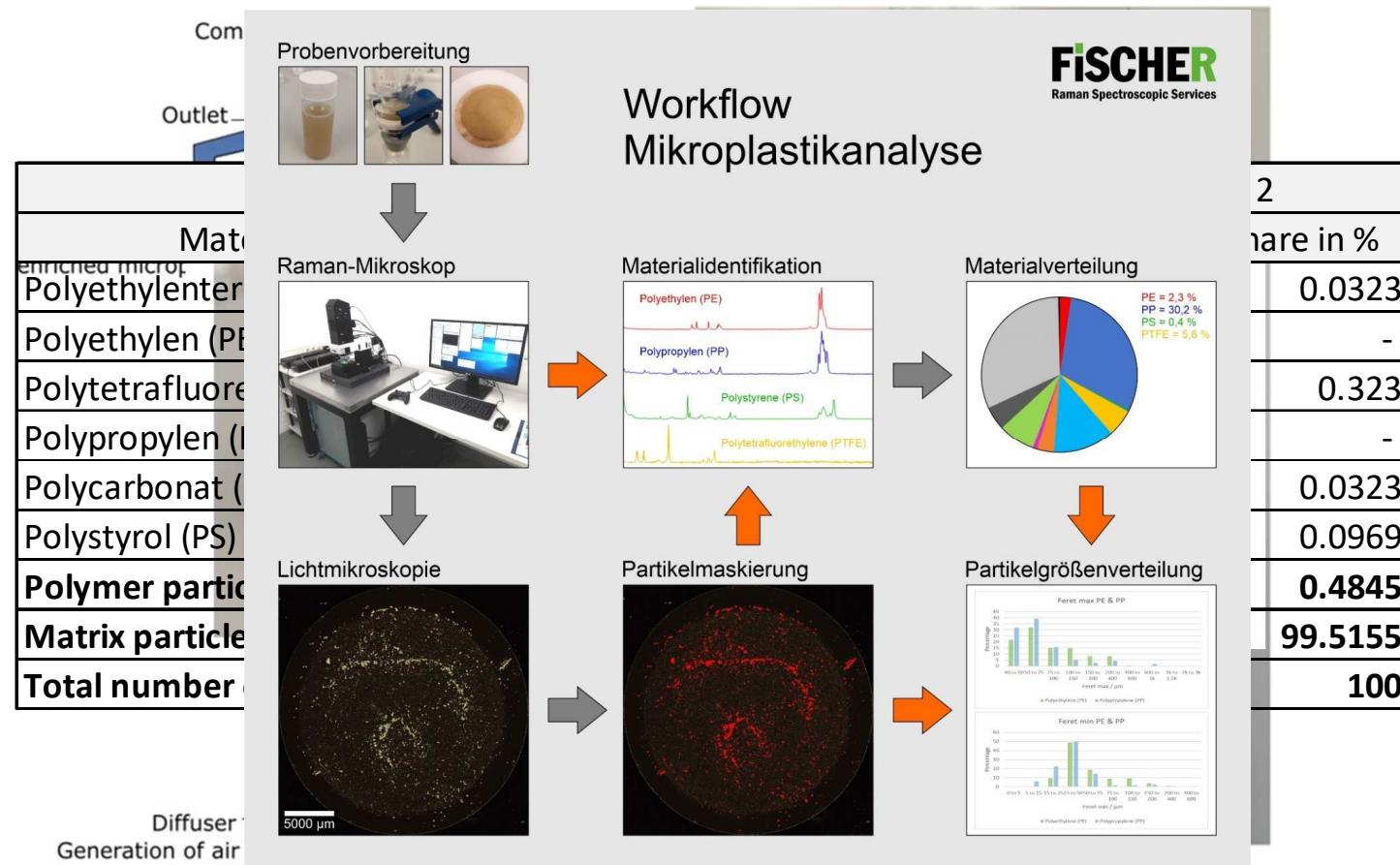
- Samples were pyrolysed and pyrolysis products were identified and quantified
- Up to 100 mg can be analysed
- Less laborious sample preparation

RAMAN Spectroscopy

- Automated single particle analysis
- Size and shape information
- $> 50 \mu\text{m}$ Particle detection limit
- Sample analysis within one working day
- Intensive sample preparation to reduce matrix particles

Example – iMulch – Sample preparation

Gradual time → Analysis


Field	TED-GC-MS	$\mu\text{g PE/g Soil}$	$\mu\text{g PLA/PBAT/g Soil}$
Field with Biodegradable film_A		0.2	0.3
Field with Biodegradable film_A2		4.4	Multiple filter
Field with Biodegradable film_B (200 g)	Soil sample	5.2	0.5
Field without film_A		0.8	<0.2
Field without film_A2		1.4	<3
Field without film_B	Density separation with NaI Density = 1.8 g/cm ³	<4 Flotation	0.5
Field with mulchfilm strawbeeries_A		μSep (optimised version)	<0.1
Field with NaI mulchfilm / strawbeeries_B	24h	<1	2.2
Field close to motorway service station_A		<1	<0.1
Field with Aspoga digestion_A		<1	0.2
addition of Hydrogen peroxide within the first 10 min → 10 min waiting		Filtration of the suspension on a gold-coated filter	
addition of Aspoga suspension			
addition of sulfuric acid		8.2	0.4
Field, type of farming unknown		<1	<0.1
Field, type of farming unknown		9.7	Analysis <0.1
Field, type of farming unknown		<1	<0.1
Field, type of farming unknown		<1	<0.1

A = sampling March 2021, B = Sampling June 2021, A2 = sampling shipped with plastic

Example – iMulch – RAMAN

Conclusion

1. Sampling:

- At this stage it is not yet clear which form is most suitable
- More research needed

2. Sample preparation:

- Methods tested and validated for aquatic samples or sediments
- Combination of different methods suitable (e.g. Density separation, Fenton, enzymatic digestion)
- Ideally, a method that requires little or no chemicals
- Standardization needed

3. Detection methods:

- Spectroscopic methods – primary particle analysis – intensive sample preparation – small sample amount
- Thermoanalytical methods – LOD – less laborious sample preparation
- Ideal is a combination of spectroscopy and mass spectrometry to gain information about the size, shape, particle number and mass quantity of microplastics

Thank you for your attention

EFRE.NRW
Investitionen in Wachstum
und Beschäftigung

EUROPÄISCHE UNION
Investition in unsere Zukunft
Europäischer Fonds
für regionale Entwicklung