# Determination of limestone balance from statistical data of the German Federal Institute for Geosciences and Natural Resources

Emissions reporting in accordance with the Framework Convention on Climate Change and the Kyoto Protocol (Category CRF 2.A.3)



Bundesanstalt für Geowissenschaften und Rohstoffe



## Determination of limestone balance from statistical data of the German Federal Institute for Geosciences and Natural Resources

Emissions reporting in accordance with the Framework Convention on Climate Change and the Kyoto Protocol (Category CRF 2.A.3)

by

**Dr. Simone Röhling** German Federal Institute for Geosciences and Natural Resources

Robert Kludt German Federal Environment Agency

### UMWELTBUNDESAMT

This publication is only available online. It can be downloaded from <u>http://www.uba.de/uba-info-medien-e/4034.html</u> along with a German version.

Publisher:

Federal Environment Agency (Umweltbundesamt) P.O.B. 14 06 06813 Dessau-Roβlau Germany Phone: +49-340-2103-0 Fax: +49-340-2103 2285 Email: info@umweltbundesamt.de Internet: http://www.umweltbundesamt.de http://fuer-mensch-und-umwelt.de/

Dessau-Roßlau, November 2010





#### CONTENTS

| Update of limestone balance for Germany based on statistical data from BGR     | 2  |
|--------------------------------------------------------------------------------|----|
| Background                                                                     | 2  |
| Relevance to completeness of greenhouse gas inventories                        | 2  |
| Assessment by UBA in the light of various data sources                         | 3  |
| Basis of BGR data                                                              | 5  |
| Discussion of statistical balance items                                        | 6  |
| Discussion of indicator-based balance items                                    | 7  |
| Special evaluation of various allocations (IPCC 1996 and IPCC 2006)            | 8  |
| Appendix 1: Limestone and burnt-lime balances for 2006-2008 UBA data analysis) | 10 |

| Appendix 2 Production figures for raw materials containing carbonate    |    |
|-------------------------------------------------------------------------|----|
| (limestone, marlstone and dolomite) in Germany in the years 2006 – 2008 |    |
| (BGR data analysis)                                                     | 14 |

| ography |
|---------|
|---------|





## Update of limestone balance for Germany based on statistical data from BGR

#### Background

Germany, as a party to the Framework Convention on Climate Change, has an obligation to prepare emissions inventories and publish them at regular intervals. To meet these reporting requirements, Germany operates the Central System for Emissions (*Zentrale System Emissionen – ZSE*), a comprehensive database that is used both to calculate and to manage and document relevant emission data. In the light of ongoing advances, the inventory database is constantly updated to take account of the latest research findings and internal and external analyses.

The research project "Limestone Balance"<sup>1</sup> made a substantial contribution to improving the national emissions inventory. Particularly in the field of process emissions, gaps were identified in the data on thermal use of raw materials containing carbonate (especially limestone). It proved possible to provide a complete model picture of limestone use and related CO<sub>2</sub> emissions.

The scope of the project was confined to processing the data up to 2004, and the Federal Environment Agency (*Umweltbundesamt – UBA*) therefore took on the task of updating the data from 2005 onwards. The period studied by this research project now dates back nearly six years. There is an urgent need to check the validity of the results obtained at that time and any other optimisation potential, because the emissions inventories are reviewed annually by international experts.

#### Relevance to completeness of greenhouse gas inventories

A complete and consistent limestone and lime balance for Germany permits emission calculations – without gaps and without double counting. By analogy with the energy balance, it distinguishes quantity calculations, conversion balance and final consumption (differentiated by sectors).

The IPCC Guidelines currently in force (IPCC 1996) do not describe this approach, but proceed on the basis of known source groups which are to be reported in full. Even the revised IPCC Guidelines (IPCC 2006) have weaknesses, with the result that reporting for carbonates cannot be as consistent as for fuels.<sup>2</sup>

In this respect the methodological approach developed jointly by the UBA and the Federal Institute for Geosciences and Natural Resources (Bundesanstalt für Geowissenschaften und Rohstoffe – BGR) represents a counter-proposal to the method suggested in the international Guidelines (IPCC 1996 and 2006), with the aim of showing factually correct calculations in the German greenhouse gas inventories. The National Inventory Report (NIR) regularly serves to document the calculations in the greenhouse gas inventories, and the methods and data used are set out there in compact form. The NIR does not have room for in-depth analyses. Its

<sup>&</sup>lt;sup>1</sup> FKZ: 205 41 217/02, available from UBA publication database #3102 <u>http://www.umweltbundesamt.de/ubainfo-medien/search-public.php</u> or direct from <u>http://www.umweltdaten.de/publikationen/fpdf-l/3102.pdf</u>

<sup>&</sup>lt;sup>2</sup> The requirement is literally: "Only emissions from limestone and dolomite used in the mineral industry should be reported in the Mineral Industry Chapter. ... may impact, in particular, emission estimates for the Mineral Industry, the Chemical Industry, and Metal Production," but not a summary overview. Even the 2006 Guidelines do not require an overview showing the relationship of production quantities to use.





purpose is to describe inventory practice, and it is not the appropriate place for scientific discussions. The present report also serves to meet this extended purpose.

The proposal ensures transparency regarding the use of limestone by preparing a balance of the quantities used (activity data) and making recommendations for emission calculations in the source categories used. It makes it possible to ensure improved transparency and greater accuracy without sacrificing clarity.

#### Assessment by UBA in the light of various data sources

The following basic findings are substantiated in detail below:

- A limestone balance guarantees seamless evidence of all relevant limestone uses.
- Model calculations for balance terms can be replaced by statistical data and can thus be updated on a long-term basis.
- Despite the transparency it creates with regard to activity data (raw material input), a balance is less suitable for accurate greenhouse gas calculations than calculation in source categories.

Without a balance approach, declarations about the completeness of an inventory are only reliable to the extent that the reporting formats are complete. Especially in the case of the IPCC Guidelines 1996, the relevant reporting categories are only mentioned as examples. The explicit mention under CRF 2.A.3 of limestone uses not covered elsewhere does not make it easier to compare different inventories. The IPCC Guidelines 2006, by contrast, call for all limestone uses to be included in the source category in which the use takes place. Although this allocation is appropriate and more comparable, it still does not guarantee completeness<sup>3</sup>. It is also possible in a balance to show consistency between limestone production and use.

Balance terms for balances can basically be derived by means of model calculations ("from indicators") or from statistical data. As a rule, statistical data are available on a long-term basis and thus permit updating of balances. Slight discrepancies from models do not disprove the suitability of the statistical data or of the balance calculation itself. They do however point to differences in accuracy.

<sup>&</sup>lt;sup>3</sup> The mention of relevant limestone uses in the 2006 Guidelines ensures completeness for the sources known in Germany. See IPCC 2006, Volume 3, Chapter 2, Table 2.7.

#### Umwelt Bundes Amt (i)



## Table 1: Comparison of limestone balances for 2008 from model calculations of specific indicators ("from indicators") and from statistical data ("statistical"); calculations by UBA

| Figures in million tonnes in 2008                                                        |                    |             |  |  |
|------------------------------------------------------------------------------------------|--------------------|-------------|--|--|
|                                                                                          | statis             | stical      |  |  |
| Production in Germany                                                                    | 91,659             |             |  |  |
| Imports                                                                                  | 5,2                | 214         |  |  |
| Exports                                                                                  | 1,3                | 367         |  |  |
| Total quantity                                                                           | 95,                | 506         |  |  |
| Conversion/<br>final use                                                                 | from<br>indicators | statistical |  |  |
| Cement industry                                                                          | 29.601             | 42.605      |  |  |
| Lime industry                                                                            | 12.319             | 12.624      |  |  |
| Soda manufacture                                                                         | 1.745              | IE          |  |  |
| Glass                                                                                    | 0.902              | 0.356       |  |  |
| Sinter                                                                                   | 4.541              | 3.437       |  |  |
| Pig iron                                                                                 | 0.790              | IE          |  |  |
| Sugar                                                                                    | 0.655              | 0.314       |  |  |
| Flue-gas desulphurisation in power plants                                                | 2.303              | 1.745       |  |  |
| Agriculture                                                                              | 3.410              | 1.915       |  |  |
| Water and sludge treatment                                                               | 0.226              | 0.226       |  |  |
| Other sectors (e.g. construction, other building material industries and chemicals etc.) | 39.014             | 32.284      |  |  |
| Use                                                                                      | 95.506             | 95.506      |  |  |

It is not possible to decide here whether either of the two calculations provides a better picture of reality. The individual balance items are discussed under *Discussion of statistical balance items* and *Discussion of indicator-based balance items*. The calculation of limestone use with the aid of specific indicators originates to some extent from the calculations of individual categories in the greenhouse gas inventory.

The call for greater and constantly improved accuracy in the greenhouse gas calculations inevitably leads to very detailed calculations of all emission causes. These comprehensive calculations can only be reflected to a limited extent in a balance for limestone, i.e. a specific raw material. Over-estimates or under-estimates may occur in parts of the balance. Since the emission relevance of the balance terms varies (no emissions, partial emissions, totally emission relevant), these inaccuracies lead to variations in emission levels.

Here there is a need for a transition from balance items to reporting categories, because this brings out the emission relevance. The category "2A7 Ceramics manufacture" is added here, because it is not part of the balance. The references from the balance items to the reporting categories can be found in Appendix 1: Limestone and burnt-lime balances for 2006-2008 UBA data analysis)

#### Umwelt Bundes Amt (i)



Table 2: Comparison of all emission-relevant balance items (reporting categories) for 2008 from model calculations of specific indicators ("from indicators") and from statistical data ("statistical"); calculations by UBA

| Figures in million tonnes in 2008                                                      |                         |                         |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------|-------------------------|-------------------------|--|--|--|--|--|--|
| Balance items (limestone use with CO <sub>2</sub> emissions)                           | from<br>indicators      | statistical             |  |  |  |  |  |  |
| 1A1 Flue-gas desulphurisation in large combustion systems                              | 2.303                   | 1.745                   |  |  |  |  |  |  |
| 2A1 Cement manufacture: cement clinker firing                                          | 29.601                  | 42.605                  |  |  |  |  |  |  |
| 2A2 Lime production: calcination of limestone                                          | 12.319                  | 12.624                  |  |  |  |  |  |  |
| 2A7 Glass manufacture (total)                                                          | 0.902                   | 0.356                   |  |  |  |  |  |  |
| 2A7 Ceramics manufacture (external "supplementary balance")                            | 0.751                   | 0.000                   |  |  |  |  |  |  |
| 2C1 Iron and steel manufacture                                                         | 5.331                   | 3.437                   |  |  |  |  |  |  |
| 5D Soil liming in agriculture and forestry                                             | 3.410                   | 1.915                   |  |  |  |  |  |  |
| <b>CO<sub>2</sub> emissions from limestone</b><br>(including dolomite, for simplicity) | 24.0 (CO <sub>2</sub> ) | 27.6 (CO <sub>2</sub> ) |  |  |  |  |  |  |

The individual balance items are discussed in the chapters Discussion of statistical balance items and Discussion of indicator-based balance items. The fact that higher emissions can be calculated using statistical data is due solely to the great input of raw material in the cement industry, which cannot be differentiated here for clinker firing. This is not reflected in the calculations for the cement industry in the greenhouse gas inventory (CRF 2.A.1), but is an expression of the differences in accuracy of the balance models.

#### Basis of BGR data

In the interest of inter-departmental cooperation, the BGR has compiled statistical data to underpin the model-based UBA balance with empirical data. This results in the best available overall picture that can be achieved with reasonable cost and effort.

The individual data are based on official statistics from the Federal Statistical Office and on statistics from the Federal Association of the German Lime Industry and the Federal Association of the German Cement Industry. It should however be noted that production figures may differ from the actual production quantities. In most cases this is due to the fact that not all companies which produce raw materials belong to the federal associations, and that the production surveys by the Federal Statistical Office only include establishments with 10 or 20 employees (see Appendix 2 Production figures for raw materials containing carbonate (limestone, marlstone and dolomite) in Germany in the years 2006 – 2008 (BGR data analysis).





#### **Discussion of statistical balance items**

Apart from the basic question of statistical representation, there are several balance items that need to be discussed in terms of primary data and absolute amounts; here reference is made to Table 1.

#### For total quantity of limestone

- Production in Germany: only statistically recordable, but not complete (see above)
- Imports/exports: only statistically recordable, covers various types of limestone, more complete than association statistics (BVK 2007, 2009)

#### For use of limestone

- Cement industry: input of raw material cannot be differentiated and cannot therefore be shown precisely as a percentage of cement clinker production
- Lime industry: as a calculation based on lime production this involves uncertainties relating to the types of lime covered
- Soda manufacture: no differentiated data possible
- Glass: less than real requirements of glass industry
- Sinter/pig iron: only recordable jointly, and therefore involves uncertainties
- Sugar: less than real requirements of sugar industry
- Flue-gas desulphurisation in power generation: less than real requirements
- Agriculture: less than Federal Statistical Office figures used by farmers
- Water and sludge treatment: no assessment possible or necessary, since not emission relevant
- Other sectors (e.g. construction, other building material industries and chemicals etc.): calculated residual amount, but not emission relevant. This item makes it clear that significant amounts are missing from the official statistics for total quantity of limestone, as they are not covered by the statistics (see above)<sup>4</sup>.

<sup>&</sup>lt;sup>4</sup> To illustrate the plausibility of this finding, it should be noted that every year Germany produces approx. 50 million tonnes of mixed asphalt products consisting of at least 95% mineral raw materials (aggregates) that contain considerable amounts of limestone.





#### Discussion of indicator-based balance items

In addition to the fundamental possibility of showing balance items based on statistics, more accurate calculations are possible with the aid of industry-specific/technology-based indicators: here reference is made to Table 1.

#### For total quantity of limestone

Domestic production and imports/exports: see Discussion of statistical balance • items

#### For use of limestone

- Cement industry: plausible technology-based calculation of limestone input required for clinker manufacture; this is more accurate than using the very heterogeneous raw material mixes for clinker firing, but disregards the non emission-relevant admixtures of limestone for cement
- Lime industry: almost identical to statistical data •
- Soda manufacture: plausible technology-based calculation of necessary limestone • input, though in this category it is not emission relevant
- Glass: plausible technology-based calculation of necessary limestone input; this is higher than the statistical figure
- Sinter/pig iron: plausible technology-based calculation of necessary limestone input; • this can be differentiated for the two manufacturing processes and in total exceeds the statistical figures
- Sugar: plausible technology-based calculation of necessary limestone input, though • in this category it is not emission relevant
- Flue-gas desulphurisation in power generation: plausible technology-based calculation of necessary limestone input; this is higher in total than the statistical figure
- Agriculture: Federal Statistical Office figures used by farmers; the limestone input is calculated from nutrient input, which involves similar uncertainties to the association statistics (BVK 2009)
- Water and sludge treatment: statistical data used, as differences are marginal
- Other sectors (e.g. construction, other building material industries and chemicals • etc.): calculated residual amount, but not emission relevant. Regarding the absolute size of this item, the same applies as to exclusive use of statistics (see Discussion of statistical balance items), even though the absolute quantity is greater here.



#### Special evaluation of various allocations (IPCC 1996 and IPCC 2006)

The preceding two chapters served to describe the feasibility of preparing limestone balances on the basis of statistical data and using technology-specific indicators derived largely from the research project (BUTTERMANN & NANNING, 2006).

It was shown in Table 2 that the two basically balance approaches which are basically possible result in substantial differences in the calculation of carbon dioxide emissions. This is remarkable, because it is merely a matter of shifts in the size of the balance items<sup>5</sup>.

This becomes particularly clear if the rules of the 1996 Guidelines are strictly followed in CRF Category 2.A.3<sup>6</sup> and all explicitly required limestone used are shown and their emissions calculated and totalled.

Table 3: Comparison in accordance with 1996 Guidelines of all emission-relevant balance items (reporting category 2.A.3) for 2008 from model calculations of specific indicators ("from indicators") and from statistical data ("statistical"); calculations by UBA

| Figures in million tonnes in 2008                                                      |                 |                           |                        |                        |  |  |  |  |
|----------------------------------------------------------------------------------------|-----------------|---------------------------|------------------------|------------------------|--|--|--|--|
| Balance items (limestone use with CO <sub>2</sub> emissions)                           | CO <sub>2</sub> | <b>2.A.3</b> <sup>6</sup> | from<br>indicators     | statistical            |  |  |  |  |
| 1A1 Flue-gas desulphurisation in large combustion systems                              | x               | x                         | 2.303                  | 1.745                  |  |  |  |  |
| 2A7 Glass manufacture (total)                                                          | x               | x                         | 0.902                  | 0.356                  |  |  |  |  |
| 2A7 Ceramics manufacture (external "supplementary balance")                            | x               | x                         | 0.751                  | 0.000                  |  |  |  |  |
| 2C1 Iron and steel manufacture                                                         | X               | x                         | 5.331                  | 3.437                  |  |  |  |  |
| <b>CO<sub>2</sub> emissions from limestone</b><br>(including dolomite, for simplicity) | x               | x                         | 4.1 (CO <sub>2</sub> ) | 2.4 (CO <sub>2</sub> ) |  |  |  |  |

The statistical data for limestone input into the applications addressed in Category 2.A.3 result in lower carbon dioxide emissions than the balance items determined using indicators.

If one looks separately at all emission-relevant limestone applications on the lines of the 2006 Guidelines, the emission calculations still show discrepancies between the two balance models.

<sup>&</sup>lt;sup>5</sup> It is indeed merely a matter of shifts in limestone percentages between the balance items, because the overall framework is determined by the statistical total quantity.

<sup>&</sup>lt;sup>6</sup> IPCC 1996

#### Umwelt Bundes Amt 😡 r Environment



Table 4: Comparison of all emission-relevant balance items (in accordance with 2006 Guidelines, reporting categories based on 1996 Guidelines) for 2008 from model calculations of specific indicators ("from indicators") and from statistical data ("statistical"); calculations by UBA Figures in million tennes in 2008

| Figures in million tonnes in 2008                                                |                 |                         |                         |
|----------------------------------------------------------------------------------|-----------------|-------------------------|-------------------------|
| Balance items (limestone use with CO <sub>2</sub> emissions)                     | CO <sub>2</sub> | from<br>indicators      | statistical             |
| 1A1 Flue-gas desulphurisation in large combustion systems                        | x               | 2.303                   | 1.745                   |
| 2A1 Cement manufacture: cement clinker firing                                    | x               | 29.601                  | 42.605                  |
| 2A2 Lime production: calcination of limestone                                    | x               | 12.319                  | 12.624                  |
| 2A2 Lime production: calcination of dolomite                                     | x               | IE                      | IE                      |
| 2A7 Glass manufacture (total)                                                    | x               | 0.902                   | 0.356                   |
| 2A7 Ceramics manufacture (external "supplementary balance")                      | x               | 0.751                   | 0.000                   |
| 2C1 Iron and steel manufacture                                                   | x               | 5.331                   | 3.437                   |
| 5D Soil liming in agriculture and forestry                                       | x               | 3.410                   | 1.915                   |
| CO <sub>2</sub> emissions from limestone<br>(including dolomite, for simplicity) | x               | 24.0 (CO <sub>2</sub> ) | 27.6 (CO <sub>2</sub> ) |

In the case of the overall picture based on the 2006 Guidelines, the higher emissions are based on statistical data. The generally higher emissions result from the aggregation of all emissionrelevant balance items. A separate entry for limestone use other than the category-specific calculations is no longer required here, which means that it is difficult to compare the two calculations<sup>7</sup>. This does not affect the actual emission calculations of the emission-relevant components of limestone use, but merely their allocation.

#### Conclusion:

Balances are possible on the basis of statistical data or on the basis of indicators. The indicatorbased approach in combination with the irreplaceable statistical balance items would seem to be more appropriate from a technical point of view.

The balance calculations should however only be used to provide an overview of limestone use, i.e. they should only be used to verify the activity data<sup>8</sup>. The emission calculations should always be made in the source groups in which limestone is used. This also makes it possible to take account of all emission relevant carbonates in the source groups, which results in much more accurate calculations<sup>9</sup>.

<sup>&</sup>lt;sup>7</sup> There is still a separate item "2A4 Other Process Uses of Carbonates", but this would not be used from the point of view of the German emission inventories.

<sup>&</sup>lt;sup>8</sup> In the stricter sense, activity data in emissions inventories are only those data that are used for the emission calculations. Thus in the present proposal it is only a question of limestone input balance items.

<sup>&</sup>lt;sup>9</sup> Although the inclusion of all carbonates used is not described until the 2006 Guidelines, it represents long-standing practice in the German inventories, for example in the glass industry.



# Appendix 1: Limestone and burnt-lime balances for 2006-2008 UBA data analysis)

The following tables originate from calculations by the UBA which present the balances as time series (without evaluations). Specifically for the year 2008 they are evaluated in the main body of this paper.

Table 1-1: Limestone balance 2006 to 2008 on the basis of statistical data, compiled by the BGR, sources in Appendix 2, figures in million tonnes, references to inventory categories according to 1996 Guidelines by UBA<sup>10</sup>

| 2006   | 2007                                                                                                                                         | 2008                                                                                                                                                                                                                          | Category - link                                                                                                                                                                                                                                                                                                               |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 84.785 | 87.139                                                                                                                                       | 91 .659                                                                                                                                                                                                                       | 2.A.3                                                                                                                                                                                                                                                                                                                         |
| 5.882  | 6.156                                                                                                                                        | 5.214                                                                                                                                                                                                                         | 2.A.3                                                                                                                                                                                                                                                                                                                         |
| 1.380  | 1.447                                                                                                                                        | 1.367                                                                                                                                                                                                                         | 2.A.3                                                                                                                                                                                                                                                                                                                         |
| 89.287 | 91.848                                                                                                                                       | 95.506                                                                                                                                                                                                                        | 2.A.3                                                                                                                                                                                                                                                                                                                         |
|        |                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                               |
| 38.606 | 40.207                                                                                                                                       | 42.605                                                                                                                                                                                                                        | 2.A.1                                                                                                                                                                                                                                                                                                                         |
| 12.123 | 12.445                                                                                                                                       | 12.624                                                                                                                                                                                                                        | 2.A.2                                                                                                                                                                                                                                                                                                                         |
| IE     | IE                                                                                                                                           | IE                                                                                                                                                                                                                            | 2.A.4, but<br>without EM                                                                                                                                                                                                                                                                                                      |
| 0.344  | 0.351                                                                                                                                        | 0.356                                                                                                                                                                                                                         | 2.A.7                                                                                                                                                                                                                                                                                                                         |
| 3.323  | 3.578                                                                                                                                        | 3.437                                                                                                                                                                                                                         | 2.C.1                                                                                                                                                                                                                                                                                                                         |
| IE     | IE                                                                                                                                           | IE                                                                                                                                                                                                                            | 2.C.1                                                                                                                                                                                                                                                                                                                         |
| 0.302  | 0.328                                                                                                                                        | 0.314                                                                                                                                                                                                                         | 2.D.2                                                                                                                                                                                                                                                                                                                         |
| 1.896  | 1.839                                                                                                                                        | 1.745                                                                                                                                                                                                                         | 1.A.1                                                                                                                                                                                                                                                                                                                         |
| 1.771  | 1.771                                                                                                                                        | 1.915                                                                                                                                                                                                                         | 5.G                                                                                                                                                                                                                                                                                                                           |
| 0.082  | 0.188                                                                                                                                        | 0.226                                                                                                                                                                                                                         | NE, but<br>without EM                                                                                                                                                                                                                                                                                                         |
| 30.840 | 31.141                                                                                                                                       | 32.284                                                                                                                                                                                                                        | NE, but<br>without EM                                                                                                                                                                                                                                                                                                         |
| 89.287 | 91 .848                                                                                                                                      | 95.506                                                                                                                                                                                                                        | 2.A.3                                                                                                                                                                                                                                                                                                                         |
|        |                                                                                                                                              |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                               |
| NE     | NE                                                                                                                                           | NE                                                                                                                                                                                                                            | 2.A.7                                                                                                                                                                                                                                                                                                                         |
|        | 5.882<br>1.380<br>89.287<br>38.606<br>12.123<br>IE<br>0.344<br>3.323<br>IE<br>0.302<br>1.896<br>1.771<br>0.082<br>30.840<br>89.287<br>89.287 | 84.785 87.139   5.882 6.156   1.380 1.447   89.287 91.848   38.606 40.207   12.123 12.445   IE IE   0.344 0.351   3.323 3.578   IE IE   0.302 0.328   1.896 1.839   1.771 1.771   0.082 0.188   30.840 31.141   89.287 91.848 | 84.785 87.139 91.659   5.882 6.156 5.214   1.380 1.447 1.367   89.287 91.848 95.506   38.606 40.207 42.605   12.123 12.445 12.624   IE IE IE   0.344 0.351 0.356   3.323 3.578 3.437   IE IE IE   0.302 0.328 0.314   1.896 1.839 1.745   1.771 1.771 1.915   0.082 0.188 0.226   30.840 31.141 32.284   89.287 91.848 95.506 |

<sup>&</sup>lt;sup>10</sup> Legends mean: EM = emissions, NE = not estimated, i.e. no data available, IE = included elsewhere

#### Umwelt Bundes Amt () For our Environment



Table 1-2: Limestone balance 2006 to 2008 on basis of production-specific/technology-based indicators, calculations by UBA, figures in million tonnes, references to inventory categories according to 1996 Guidelines by UBA<sup>11</sup>

| Figures in million t                                                                           | 2006   | 2007    | 2008    | Category                 |
|------------------------------------------------------------------------------------------------|--------|---------|---------|--------------------------|
| Domestic production                                                                            | 84.785 | 87.139  | 91 .659 | 2.A.3                    |
| Imports                                                                                        | 5.882  | 6.156   | 5.214   | 2.A.3                    |
| Exports                                                                                        | 1.380  | 1.447   | 1.367   | 2.A.3                    |
| Total quantity                                                                                 | 89.287 | 91 .848 | 95.506  | 2.A.3                    |
| Conversion/<br>final use                                                                       |        |         |         |                          |
| Cement industry                                                                                | 29.081 | 31 .498 | 29.601  | 2.A.1                    |
| Lime industry                                                                                  | 11.996 | 12.318  | 12.319  | 2.A.2                    |
| Soda manufacture                                                                               | 1.727  | 1.695   | 1.745   | 2.A.4, but<br>without EM |
| Glass                                                                                          | 0.874  | 0.904   | 0.902   | 2.A.7                    |
| Sinter                                                                                         | 4.410  | 4.608   | 4.541   | 2.C.1                    |
| Pig iron                                                                                       | 0.823  | 0.841   | 0.790   | 2.C.1                    |
| Sugar                                                                                          | 0.697  | 0.702   | 0.655   | 2.D.2                    |
| Flue-gas desulphurisation in power plants                                                      | 2.446  | 2.310   | 2.303   | 1.A.1                    |
| Agriculture                                                                                    | 2.994  | 3.403   | 3.410   | 5.G                      |
| Water and sludge treatment                                                                     | 0.082  | 0.188   | 0.226   | NE, but<br>without EM    |
| Other sectors (e.g. construction,<br>other building material industries<br>and chemicals etc.) | 34.155 | 33.381  | 39.014  | NE, but<br>without EM    |
| Use                                                                                            | 89.287 | 91 .848 | 95.506  | 2.A.3                    |
| Supplementary balance<br>(limestone in raw material)                                           |        |         |         |                          |
| Ceramics manufacture                                                                           |        |         |         |                          |
| Bricks/tiles                                                                                   | 0.880  | 0.878   | 0.751   | 2.A.7                    |
| of which: roof tiles                                                                           | IE     | IE      | IE      |                          |
| of which: bricks                                                                               | IE     | IE      | IE      |                          |

<sup>&</sup>lt;sup>11</sup> Legends mean: EM = emissions, NE = not estimated, i.e. no data available, IE = included elsewhere

#### Umwelt Bundes Amt (i) For our Environment



Table 1-3: Burnt-lime balance 2006 to 2008 on basis of production-specific/technology-based indicators and statistical data from BGR, calculations by UBA, figures in million tonnes, legends to missing data by UBA<sup>12</sup>

|                                                                                                                                       | 2006  | 2007  | 2008  |
|---------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|
| Domestic production                                                                                                                   | 6.784 | 6.967 | 6.968 |
| Imports                                                                                                                               | 0.721 | 0.760 | 0.751 |
| Exports                                                                                                                               | 0.694 | 0.819 | 0.944 |
| Total quantity                                                                                                                        | 6.811 | 6.908 | 6.775 |
| Limestone                                                                                                                             | IE    | IE    | IE    |
| Aerated concrete                                                                                                                      | IE    | IE    | IE    |
| Calcium carbide                                                                                                                       | IE    | IE    | IE    |
| Oxygen steel                                                                                                                          | IE    | IE    | IE    |
| Electro-steel                                                                                                                         | IE    | IE    | IE    |
| Iron and steel                                                                                                                        | 2.444 | 2.511 | 2.426 |
| Other industrial uses (aluminium, paper industry)                                                                                     | IE    | IE    | IE    |
| Flue-gas desulphurisation in power plants                                                                                             | 1.069 | 1.074 | 1.078 |
| Agriculture                                                                                                                           | 0.097 | 0.124 | 0.103 |
| Water and sludge treatment                                                                                                            | 0.329 | 0.292 | 0.246 |
| Other sectors (such as construction,<br>other buildings material industries, industrial flue-gas<br>desulphurisation, chemicals etc.) | 2.872 | 2.907 | 2.923 |
| Final consumption                                                                                                                     | 6.811 | 6.908 | 6.776 |

<sup>&</sup>lt;sup>12</sup> Legends mean: IE = included elsewhere





Table 1-4: Comparison of all emission-relevant balance items (mostly as reporting categories) for 2008 on the basis of model calculations with specific indicators ("from indicators") and on the basis of statistical data ("statistical") with categorisation "CO<sub>2</sub>" and "2.A.3 (GL 1996)", compiled by UBA

| Figures in million tonnes in 2008                                                                |                                |                                     |   |                 |                                           |                 |                                        |             |  |
|--------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------|---|-----------------|-------------------------------------------|-----------------|----------------------------------------|-------------|--|
| Balance items (limestone use with CO <sub>2</sub> emissions)                                     |                                | CO <sub>2</sub> 2.A.3 <sup>13</sup> |   | from indicators |                                           | from indicators |                                        | statistical |  |
| 1A1 Flue-gas desulphurisation in large combustion systems                                        |                                | х                                   | х | 2.303           | Flue-gas desulphurisation model           | 1.745           | less than real requirements            |             |  |
| 2A1 Cement manufacture: cement clinker firing                                                    |                                | х                                   |   | 29.601          | recalculated from clinker (UBA 2010)      | 42.605          | admixture cannot be shown separately   |             |  |
| 2A1 Cement manufacture: admixture of limestone                                                   |                                |                                     |   | IE              | included in Other Sectors                 | IE              | included in clinker                    |             |  |
| 2A2 Lime production: calcination of limestone                                                    |                                | х                                   |   | 12.319          | recalculated from burnt lime (UBA 2010)   | 12.624          | recalculated from burnt lime (BVK)     |             |  |
| 2A2 Lime production: calcination of dolomite                                                     |                                | х                                   |   | IE              | included in burnt lime                    | IE              | included in burnt lime                 |             |  |
| 2A4 Soda manufacture                                                                             |                                |                                     |   | IE              | included in Other Sectors                 | IE              | included in Other Sectors              |             |  |
| 2A7 Glass manufacture                                                                            | nses                           | х                                   | x | 0.902           | recalculated from glass (UBA 2010)        | 0.356           | less than real needs of glass industry |             |  |
| 2A7 Ceramics manufacture (external "supplementary balance")                                      | ne n                           | х                                   | x | 0.751           | calculated via emission factor (UBA 2010) | 0.000           | cannot be shown statistically          |             |  |
| 2C1 Iron and steel manufacture, total                                                            | Limestone                      | х                                   | x | 5.331           | Total                                     | 3.437           | Iron and steel total                   |             |  |
| Sinter                                                                                           | Lim                            | х                                   |   | 4.541           | Iron and steel model                      | IE              | under Total                            |             |  |
| Pig iron                                                                                         |                                | х                                   |   | 0.790           | Iron and steel model                      | IE              | under Total                            |             |  |
| 2D2 Sugar manufacture                                                                            |                                |                                     |   | 0.655           | recalculated from sugar (UBA 2010)        | 0.314           | less than real needs of sugar industry |             |  |
| 5D Soil liming in agriculture and forestry                                                       |                                | х                                   |   | 3.410           | Trade statistics, recalculated from CaO   | 1.915           | recalculations not plausible           |             |  |
| 6B Water and sludge treatment                                                                    |                                |                                     |   | 0.226           | marginal, therefore statistics retained   | 0.226           | tend to be incomplete                  |             |  |
| Other sectors (e.g. construction industry, other building materials industry and chemicals etc.) |                                |                                     |   | 39.014          | calculated remainder                      | 32.284          | calculated remainder                   |             |  |
| Production in Germany                                                                            | l<br>ty                        |                                     |   | 91.659          |                                           | 91.659          |                                        |             |  |
| Imports                                                                                          | Total<br>limestone<br>quantity |                                     |   | 5.214           |                                           | 5.214           |                                        |             |  |
| Exports                                                                                          | lin_,                          |                                     |   | 1.367           |                                           | 1.367           |                                        |             |  |

<sup>13</sup> IPCC 1996





# Appendix 2 Production figures for raw materials containing carbonate (limestone, marlstone and dolomite) in Germany in the years 2006 – 2008 (BGR data analysis)

Data on domestic production of raw materials containing carbonate (limestone, marlstone and dolomite) are fundamentally based on the official quarterly production statistics of the Federal Statistical Office and on statistics provided by the Federal Association of the German Lime Industry and the German Cement Industry.

The Federal Statistical Office covers:

- Limestone for the manufacture of cement, burnt lime and limestone for industry and environmental engineering (reporting number 1412 10 530)
- Limestone, ground (reporting number 1412 10 550)
- Dolomite, neither burnt nor sintered (reporting number 1412 20 530)
- Broken limestone for concrete construction or as stone material for road and railway construction (reporting number 1421 20 301).

For the years 2006 to 2008 the relevant data can be seen in Table 2-1. However, these figures are likely to differ considerably from actual domestic production, since the official production statistics only cover establishments with more than 10 (reporting numbers 1421) or more than 20 employees (reporting numbers 1412). No data are available for establishments with fewer employees. Moreover, Germany imports more than 5 million tonnes of raw materials containing carbonate and exports more than 1 million tonnes (see Table 2-2).

Table 2-1: Domestic production 2006-2008 of raw materials containing carbonate (source: Federal Statistical Office 2009), figures in thousand tonnes.

|                                                                                                                          | 2006              | 2007   | 2008    |
|--------------------------------------------------------------------------------------------------------------------------|-------------------|--------|---------|
| Limestone and marlstone for manufacture of cement,<br>burnt lime and for industrial and environmental<br>purposes, total | 59,298            | 60,906 | 60,200  |
| Limestone and marlstone, broken                                                                                          | 50,783<br>8 5 1 5 | 52,765 | 51,445  |
| Limestone and marlstone, ground                                                                                          | 8,515             | 8,141  | 8,755   |
| Broken limestone and dolomite for concrete, road and railway construction                                                | 12,372            | 12,347 | 14,726  |
| Aggregates, chippings and ground marble                                                                                  | 727               | 541    | 619     |
| Dolomite, neither burnt nor sintered                                                                                     | no data           | 0.88   | no data |





Table 2-2: Imports and exports in 2006-2008 of raw materials containing carbonate (source: Federal Statistical Office 2009), figures in thousand tonnes

| · •                                     | 2006                                  | 2007  | 2008  |
|-----------------------------------------|---------------------------------------|-------|-------|
| Imports                                 |                                       |       |       |
| Limestone for cement manufacture        | 2,926                                 | 2,396 | 2,095 |
| Limestone and dolomite, comminuted      | 7                                     | 34    | 22    |
| Dolomite, neither burnt nor sintered    | 477                                   | 538   | 461   |
| Aggregates, chippings and ground marble | 2,052                                 | 2,309 | 2,377 |
| Chalk                                   | 421                                   | 879   | 260   |
| Total                                   | 5,882                                 | 6,156 | 5,214 |
|                                         | i i i i i i i i i i i i i i i i i i i | ·     |       |
| Exports                                 |                                       |       |       |
| Limestone for cement manufacture        | 217                                   | 280   | 220   |
| Limestone and dolomite, comminuted      | 197                                   | 217   | 218   |
| Dolomite, neither burnt nor sintered    | 675                                   | 669   | 645   |
| Aggregates, chippings and ground marble | 92                                    | 79    | 79    |
| Chalk                                   | 199                                   | 202   | 205   |
| Total                                   | 1,380                                 | 1,447 | 1,367 |

It is clear from Table 2-1 that the data situation for production and use of raw materials containing carbonate differentiated by fields of use in Germany is very limited. The Federal Association of the German Lime Industry (BVK) provides a more differentiated picture than the Federal Statistical Office, but the figures only relate to companies that are members of the association (see Table 2-3). The actual limestone quantities are considerably larger. Neither do the figures take account of the limestone and dolomite produced by the BVK members for the manufacture of burnt lime.

#### Umwelt Bundes Amt () For our Environment



Table 2-3: Sales of unburned limestone and dolomite products of the German lime industry in the whole of Germany 2006-2008 (source: Federal Association of the German Lime Industry – BVK), figures in thousand tonnes

|                                     | 2006    | 2007    | 2008    |
|-------------------------------------|---------|---------|---------|
| Unburned products                   |         |         |         |
| - Construction industry, total      | 13,300  | 13,318  | 11,955  |
| Lime-sand industry                  | 6       | 6       | 4       |
| Aerated concrete industry           | no data | 13      | 10      |
| Cement industry                     | 910     | 906     | 770     |
| Aggregates for concrete             | 582     | 552     | 409     |
| Mortar works                        | 930     | 945     | 907     |
| Miscellaneous construction industry | 294     | 206     | 163     |
| - Agriculture, total                | 1,771   | 1,771   | 1,915   |
| for fertiliser                      | 1,419   | 1,442   | 1,534   |
| for feed                            | 318     | 305     | 352     |
| - Environmental protection, total   | 1,979   | 2,026   | 2,969   |
| Water treatment                     | 22      | 35      | 26      |
| Wastewater treatment                | 59      | 152     | 199     |
| Sludge treatment                    | 1       | 1       | 1       |
| Air quality control                 | 1,896   | 1,839   | 1,745   |
| - Industry, total                   | 4,634   | 5,024   | 4,865   |
| Iron and steel industry             | 3,323   | 3,578   | 3,437   |
| Chemical industry                   | 92      | 69      | 138     |
| Oil and coal mining                 | no data | no data | no data |
| Sugar industry                      | 302     | 328     | 314     |
| Glass industry                      | 344     | 351     | 356     |
| Other                               | 573     | 699     | 620     |
| - Exports                           | 702     | 625     | 630     |
| Total                               | 22,409  | 22,763  | 21,334  |





According to the BVK, its member companies produced about 7 million tonnes each of limestone and dolomite in the years 2006-2008 which were sold to the various industries (Table 2-4). This does not include the input of lime for cement production by the member companies.

Table 2-4: Sales of burned limestone and dolomite products by the German lime industry in the whole of Germany 2006-2008 (source: Federal Association of the German Lime Industry – BVK), figures in thousand tonnes

|                            | 2006  | 2007  | 2008  |
|----------------------------|-------|-------|-------|
| Burned products            |       |       |       |
| - Iron and steel           | 2,444 | 2,511 | 2,426 |
| - Construction industry    | 1,303 | 1,284 | 1,274 |
| - Environmental protection | 1,398 | 1,366 | 1,324 |
| - Chemicals                | 729   | 729   | 776   |
| - Agriculture              | 97    | 124   | 103   |
| - Other industrial uses    | 119   | 134   | 122   |
| - Exports                  | 694   | 819   | 944   |
| Total <sup>1)</sup>        | 6,785 | 6,967 | 6,968 |

1) Excluding limestone input for cement production by member companies

According to BGR calculations, the sales of burnt products quoted by BVK (some 7 million t/a) correspond to a primary limestone and dolomite input of approximately 12.5 million t/a (see Table 2-5).

Table 2-5: Primary limestone and dolomite input for production of burnt products sold by BVK, figures in thousand tonnes (own calculations).

|                          | 2006   | 2007   | 2008   |
|--------------------------|--------|--------|--------|
| Production of burnt lime | 12,123 | 12,445 | 12,624 |

The BVK assumes that the non-association quantities of limestone account for about 70% of German limestone production and that this is used almost entirely in the road construction sector. It may be assumed that uses in this field are not emission relevant.

The BVK figures do not include those quantities of limestone and marlstone which are produced by the cement industry for the manufacture of cement clinker, since generally speaking the companies in the cement industry are not members of the BVK, but of the Federal Association of the German Cement Industry. For the year 2008, the Association of German Cement Factories (*Verein Deutscher Zementwerke – VDZ*) quotes an input of 42.07 million tonnes of limestone, marlstone and chalk (see Table 2-6). This input is mainly as a raw material component in the clinker firing process; a small quantity of limestone is also used as a constituent of cement. Since this latter quantity is only added to the cement in ground form, it is not  $CO_2$  relevant.





Table 2-6: Raw materials input in cement industry 2006-2008, figures in thousand tonnes (source: VDZ)

|                             | 2006   | 2007   | 2008   |
|-----------------------------|--------|--------|--------|
| Limestone, marlstone, chalk | 38,606 | 40,207 | 42,605 |

Table 2-7 sets out the relevant data on the production and consumption of carbonate raw materials in Germany. The figures for limestone quantities used in road construction are based on surveys by the Federal Statistical Office. They are mentioned for the sake of completeness, but must be regarded as far too low. In any case these figures do not play any role in the assessment of  $CO_2$  relevance, since limestone and dolomite used in the road construction sector takes the form of ballast and chippings.

Table 2-7: Production and sales of carbonate raw materials in Germany 2006-2008, figures in thousand tonnes (sources: BGR database, BVK (2007, 2009), VDZ (2007, 2008, 2009), own calculations, LECHTENBÖHMER & NANNING 2006)

|                                                              | 2006     | 2007     | 2008     |
|--------------------------------------------------------------|----------|----------|----------|
| Raw material sales                                           |          |          |          |
| Cement industry (VDZ)                                        | 38,606   | 40,207   | 42,605   |
| Iron and steel industry (BVK)                                | 3,323    | 3,578    | 3,437    |
| Lime industry (burnt-lime production) (BVK, BGR)             | 12,123   | 12,445   | 12,624   |
| Glass industry (BVK)                                         | 344      | 351      | 356      |
| Construction industry (BVK) <sup>1)</sup>                    | 13,300   | 13,318   | 11,955   |
| Agriculture (BVK)                                            | 1,771    | 1,771    | 1,915    |
| Environmental protection (BVK)                               | 1,979    | 2,026    | 2,969    |
| Sugar industry (BVK)                                         | 302      | 328      | 314      |
| Chemical industry (BVK)                                      | 92       | 69       | 138      |
| Other industries (BVK)                                       | 573      | 699      | 620      |
| Road construction (Federal Statistical Office) <sup>1)</sup> | > 12,372 | > 12,347 | > 14,726 |
| Raw material production                                      | > 84,785 | > 87,139 | > 91,659 |
| Imports                                                      | 5,882    | 6,156    | 5,214    |
| Exports                                                      | 1,380    | 1,447    | 1,367    |
| Consumption <sup>2)</sup>                                    | > 89,287 | > 91,848 | > 95,506 |

1) There may be some overlap between these two figures, though the potential duplication can be assumed to be less than the under-represented components (non-members or below reporting threshold, see *Basis of BGR data*).

2) In the UBA limestone use balances this item is referred to as total quantity, the use described there is obtained by summation of balance items. In numerical terms, total quantity and use (balance consistency) and the consumption stated here are identical.





#### Bibliography

- BUTTERMANN, S. & NANNING, S. (2006): Bilanzierung der Gewinnung und Verwendung von Kalkstein und Ausweisung der CO2-Emissionen.- Forschungsbericht 205 41 217/02 UBAFB 000949: 65 p.; Dessau. (<u>http://www.umweltbundesamt.de</u>)
- BVK (2007): Statistisches Jahresheft 2007.- 53 p.; Köln, Bundesverband der Deutschen Kalkindustrie.
- BVK (2009): Statistisches Jahresheft 2009.- 55 p.; Köln, Bundesverband der Deutschen Kalkindustrie.
- IPCC (1996): Intergovernmental Panel on Climate Change: Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 3: Reference Manual.
- IPCC (2006): Intergovernmental Panel on Climate Change: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Reference Manual.
- Statistisches Bundesamt (2009): Produktion im Produzierenden Gewerbe 2008 .- Fachserie 4, Reihe 3.1: 320 p.; Wiesbaden.
- VDZ (2007): Umweltdaten der deutschen Zementindustrie 2006.- 50 p.; Düsseldorf, Verein Deutscher Zementwerke.
- VDZ (2008): Umweltdaten der deutschen Zementindustrie 2007.- 51 p.; Düsseldorf, Verein Deutscher Zementwerke.
- VDZ (2009): Umweltdaten der deutschen Zementindustrie 2008.- 52 p.; Düsseldorf, Verein Deutscher Zementwerke.