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Summary 

This report describes the implementation and the application of Kalman Filter 
routines around the model REM3/CALGRID employed at the Free University of 
Berlin (FUB) in the framework of the FUB-project “Entwicklung eines 
Modellsystems für das Zusammenspiel von Messung und Rechnung für die 
bundeseinheitliche Umsetzung der EU-Rahmenrichtlinie Luftqualität”. 

The report is joint work of TNO and FUB. The implementation of the Kalman Fil-
ter with REM/CALGRID and preliminary testing has been carried out by TNO. 
FUB was responsible for the application and its evaluation. Chapter 4 (Modelling 
noise in REM/CALGRID RRSQRT – KF) and chapter 5 (Assimilation perform-
ance) have been prepared by FUB. 

A theoretical description of the Kalman Filter is given and the special version that 
is employed in this project is described, the so-called Reduced Rank Square Root 
algorithm (RRSQRT). Also the routines that have been developed are described. 

Results are presented for a number of simulations for July 2001: 
1. Assimilation of only O3 measurements 
2. Assimilation of only NO2 measurements 
3. Assimilation of both O3 and NO2 measurements 
In these three simulations noise was applied to a limited set of model input fields, 
namely the total NOx emissions, the total VOC emissions and the vertical turbulent 
exchange coefficient Kz. 

It is shown that in case O3 (NO2) measurements are assimilated the statistics for O3 
(NO2) improve. If only NO2 is assimilated for some stations the performance for O3 
decreases. For NO2 the performance increases in all three cases. 

Comparing the results covariances as computed by the Kalman Filter to empirical 
covariance modelling shows similar magnitudes, but with different spatial distribu-
tion. This is due to the very simple way the noise parameters are chosen in this 
study. In view of that it is very promising that the Kalman Filter results are already 
slightly better than results obtained with a computationally much cheaper method 
(Optimum Interpolation) using the empirical covariances. Hence it is concluded 
that the performance of the Kalman Filter may further increase with improving 
noise description. 

The noise parameters have been includes in the analysis process. They seem to 
have systematic daily patterns, which suggest that a more turbulent exchange dur-
ing the night and less during the day may improve the performance of the model.   
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1. Introduction 

1.1 Preliminaries 

Historically, one of the first large applications of data assimilation took place in a 
field related to air quality hind- and forecasting: weather prediction. In meteorol-
ogy, the aim was and still is to improve the initial conditions for the forecast. It is 
well known that the initial conditions for a weather forecast largely determine the 
prediction, in particular on the longer term (i.e. after the second day of the forecast 
period). For this reason, much effort is put into improving the description of the 
present (meteorological) state, which in turn improves the performance of the fore-
cast. During the mid 80s data assimilation procedures were introduced, aimed at 
improving the initial conditions for the forecast. In this field usually so-called 
variational data assimilation was used in which the initial conditions for the hind-
casting period (typically an interval of a few days before the start of the forecast in-
terval) were optimised using all available observations during this period. 
 
In more recent years also air quality forecasts have become operational. Some of 
these forecast systems apply a form of data assimilation as well for the same reason 
as in weather prediction: improving the initial state for the forecast period. Given 
the complex nature and the large amount of computing time required by the varia-
tional assimilation, simpler and computationally less demanding methods are often 
used, usually a form of Optimum Interpolation (OI). Another useful application of 
data assimilation in connection with simulating air quality is in the assessment of 
ambient air quality, for example in the framework of the EU directives. Each cal-
endar year, Member States have the obligation to report concentration levels and 
indicator values of regulatory compounds. This is where combining models and 
measurements through data assimilation may come into play. By applying data as-
similation for a calendar year using all available, relevant measurements, air qual-
ity models can be used to act as an ‘intelligent interpolator’ to describe the air qual-
ity throughout the area of interest and to examine compliance with AQ standards. 
 
Hence, data assimilation techniques aim to combine two sources of information: 
the observations and the (here: air quality) model. Both contain information: the 
measurements on the state of the atmosphere at certain times and locations, the AQ 
models on the processes that govern the time evolution of air pollutants throughout 
the model domain during the whole simulation period. Both information sources 
have weaknesses and strengths. 
 
Apart from instrumental errors (or: uncertainties), the obvious weakness of meas-
urements is that limited spatial information is obtained. Operational air quality 
networks are mainly designed to monitor high concentration levels in polluted ar-
eas. The spatial representativeness of these observations appears to be limited and 
is not well known. Therefore spatial information from Eulerian models is useful for 
interpolating and mapping of the observations (Flemming and Stern, 2002). The 
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assimilation of satellite observations in chemical transport models may help to in-
terpret the radiance information and to improve their vertical and temporal resolu-
tion (van Loon et al., 2002). 
 
The obvious weakness of models is their failure from time to time of reproducing 
observed concentrations at locations (and times) where they are supposed to show a 
reasonable agreement. The reasons for these failures are of various kind and in-
clude imperfectnesses in the model input (e.g. emissions, meteorological data, land 
use) and in modelled processes or parameters in these processes. 
 
The basic idea behind data assimilation is to quantify the uncertainty in both 
sources of information in statistical terms and then, to put it simply, make a 
weighted average of the model state (i.e. the concentrations) and the observed state. 
Ideally, by doing this the overall uncertainty is reduced. 
 
Another development that took place in the last six years was the introduction of 
Kalman Filtering in the field of air quality modelling (see e.g. van Loon et al. 1997, 
1999). Although this technique is computationally much more intensive than OI, it 
has some clear advantages over OI. In fact, OI can be seen as a special from of 
Kalman Filtering, the difference being that OI constructs the necessary covariance 
matrix in an (cheap) empirical way, whereas the Kalman Filter constructs this ma-
trix by a number of model evaluations, based on the statistical description of the 
model uncertainties. Since the number of model evaluations needed by the Kalman 
Filter is in the order of 50 (this number strongly depends on the model uncertain-
ties), application of the Kalman Filter is approximately in the order of 50 times 
more expensive than application of OI. The advantage of the Kalman Filter is that 
it takes into account model uncertainties, like uncertainties in the emissions, mete-
orological fields, parametrizations and so on, to be specified by the modeller. As a 
consequence, not only compounds that are observed are changed by the assimila-
tion procedure, but other compounds as well. For example, if the KF adapts the 
ozone field based on uncertainties in its precursor emissions, it will also adapt these 
precursors and even a number of other compounds, since these compounds are all 
interrelated through chemical processes. In addition, the Kalman Filter is able to 
quantify the adaptations it makes to input fields and parameters, so that by care-
fully examining the results insight will be obtained into further improvement of the 
model and its input. 

1.2 The current project 

Since at the Free University of Berlin (FUB) both air quality forecasts are produced 
and modelling studies are performed, a (sub)project has been initiated to build a 
data assimilation system around the Eulerian chemistry transport model 
REM/CALGRID used at the FUB, within the framework of a larger project entitled 
“Entwicklung eines Modellsystems für das Zusammenspiel von Messung und 
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Rechnung für die bundeseinheitliche Umsetzung der EU-Rahmenrichtlinie 
Luftqualität”. This (sub)project was carried out by TNO-MEP in close collabora-
tion with Dr. R. Stern and Dr. J. Flemming (both from the FUB). The aim of was to 
build and test this data assimilation system, using already developed routines based 
on a special implementation of the extended Kalman Filter. The following tasks 
were defined: 
 
Task 1 
Porting the sequential version of the REM3/CALGRID code to TNO, including all 
necessary input, meteorology, emissions etc, for the Berlin-area, for a period of two 
weeks. Check if results are equal when the code is run at TNO for the selected pe-
riod. 
 
Task 2 
Building a data assimilation shell around REM3/CALGRID in two stages: 
 
First stage: 
− rearrangement of the REM3/CALGRID code 
− adding noise to some selected processes in REM/CALGRID 
− test if the results are still equal to the original run 
 
Second stage: 
− adding the data assimilation shell 
− test if the results are still equal to the original run if run with noise input zero 
 
Task 3 
Testing the system with measurements provided by the Free University Berlin. 
1.  creating interface between measurement structure and data assimilation 
2.  run for the selected two-week period 
3.  check on the results: the concentrations as well as the estimated values for the 

noise parameters. 
4.  if necessary: define additional/different noise parameters and repeat step 2-3 
 
Task 4 
Creating a “stand alone” version that uses the outcome of the noise parameters 
from the data assimilation as input. Check if results are consistent with the full data 
assimilation run. This version is to be used for the scenario calculations by the Free 
University Berlin. 
 
Task 5 
Porting code back to the Free University Berlin. 
 
During the execution of the project Task 1 (Porting the REM3/CALGRID code to 
TNO) turned out to be very difficult, mainly because of the structure of the binary 
input files used by REM3/CALGRID and the different ways various operating sys-
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tems handle binary formats. A lot of effort has been put into porting the code the 
TNO, but after several failures it was finally decided not to port to code to TNO 
but instead perform the work at FUB. Through remote access most of work on the 
implementation was done and finalised during a one week visit to FUB by dr. M. 
van Loon in collaboration with dr. J. Flemming (FUB). Task 2, 3 and 4 were car-
ried out as described above, task 5 had of course become redundant. 

1.3 Structure of the report 

This report briefly describes the theory of the Kalman Filter and its special imple-
mentation, as well as the way the TNO routines are connected to the 
REM3/CALGRID model (in the remainder denoted as RCG). Technical details on 
the latter will be done in a technical Annex, appendix A. 

The performance of the system is evaluated for a selected period and a comparison 
is made between the results of the Kalman Filter and those of a much simpler tech-
nique, Optimum Interpolation (OI), that is currently applied within the air quality 
forecasting system at the Free University of Berlin. 

The simulations performed concern the month of July 2001, using hourly O3 and 
NO2 observations. The comparison comprises the structure of the obtained model 
error covariances the analysed concentration fields. In addition, an example of an 
assessment of model parameters such as turbulent exchange coefficients by means 
of the Kalman filter is given. 
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2. The Kalman Filter 

2.1 Introduction 

Both air quality models and the measurements of chemical constituents contain 
valuable “knowledge” on the chemical composition of the atmosphere. Data as-
similation tries to combine both sources of knowledge. That is, during a model 
simulation measurement information is processed. This processing of measure-
ments is done in a statistical way: in order to process the observations, one needs to 
know the statistics of both the observations and the model state. Although not 
strictly necessary, in Kalman Filtering it is assumed that both have Gaussian distri-
butions and can thus be represented by their means and standard deviations. For 
vector-valued quantities the latter should be interpreted as a covariance matrix. 

The main goal of this chapter is to describe the Kalman Filter and more in particu-
lar to provide a description of the special implementation of the so-called RRSQRT 
algorithm, that is used in this project. 

2.2 Statistical framework 

Since the statistics of both the model and the observations are needed, a stochastic 
rather than a deterministic formulation is needed. Such a formulation is given by 

xk+1 = fk(xk,wk) (1)  

yk = Ckxk + vk, (2) 

where the superscripts denote the time level. The model state vector is denoted by x 
and the measurements by y. The function f denotes the non-linear model operator 
which apart from on the state vector acts on a white noise vector w of dimension m 
with Gaussian distribution and diagonal covariance matrix Q. The measurement 
vector y is assumed be a linear combination of elements of the state vector and a 
random, uncorrelated Gaussian error v with (diagonal) covariance matrix R. 

2.3 The Kalman Filter 

The original Kalman Filter was formulated for linear system, i.e. instead of the 
function f in (1), a linear operators (matrices) are used: 

xk+1 = Akxk + Fkwk, (3) 
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The operator A denotes the model operator and F maps to noise input vector unto a 
state-vector. The optimal estimate x̂ of the state vector x is then given by 
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where the pair ( x̂,P) describe the probability of the state vector x completely if x 
has a Gaussian distribution. For non-linear problems, one can think of several pos-
sibilities to put them in the framework of (4). For example one could linearize f and 
in this way obtain the operators (matrices) A and F. Another approach is the use the 
operator f itself (i.e. the model!) 
to compute actual steps in (4). However, for large system, formulation (4) cannot 
be used since the covariance matrix P has a dimension that will not fit into the 
memory of even the most modern computers. Moreover, the computational burden 
will be unrealistically high because of the enormous amount of matrix operations in 
the second step op (4). Therefore, an approximation of (4) needs to be used. We 
will postpone the exact formulation we use for non-linear problems to the next sec-
tion on the Reduced Rank Square Root (RRSQRT) algorithm. 

2.4 The RRSQRT algorithm 

The basic idea behind the RRSQRT algorithm is not to work with the covariance 
matrix P but instead with its square root S (i..e. SST= P). A major advantage is that 
P then always is semi positive definite, no matter how S is chosen. Another impor-
tant advantage is that S need not have n columns, but can have q < n columns. This 
property is exploited by the RRSQRT algorithm, thus reducing the amount of com-
putational work considerably. From (4) it is possible to rewrite the Kalman Filter in 
terms of S. The algorithm consists of three steps: 

1.  Time step 
The time step performs the time propagation of the state vector xk to the next time 
level and of the matrix S. 
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where the notation [A1, A2] means that the matrix A1 is extended with the columns 
of A2. 

2.  Reduction step 
In case of a non-linear model, the model operator A is just a formal notation: in the 
first step of (5) the model itself is used and in the second step, the Jacobian matrix 
of the system (1) is inserted. This Jacobian is not really computed, but instead finite 
difference approximations are taken, using a model evaluation, to update the co-
variance matrix. Each column of AkSk (second step of (5)) is computed by 

( ) ( ) εε /)0,()0,(1 xfsxfS k
ii

k
f −+=+   (6) 
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1

xfwxfQF i
i

kk −=
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This implies that q+m model evaluations need to be done per time step to update 
the covariance matrix: q times because of the update of the old covariance matrix 
and m additional times for the introduction of the new noise. Hence, the dimension 
of S is growing at each time step. Therefore S is reduced to q columns at the end of 
each time step by means of a singular value decomposition. 

3. Measurement step 
The measurement update is the step in which the available measurements are taken 
into account by the assimilation algorithm. Instead of applying the last three equa-
tions in (4), in which all measurements are taken into account at the same time, a 
sequential procedure is followed. This procedure can be proven to be equivalent to 
the procedure in (4). In terms of S, the procedure reads 
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 (8) 

with S S f
k

0
1= +  and x x f

k
0

1= + .  

The index i is the iteration index, ranging from 1 to the number of measurements to 
be processed. The vector ci denotes the i-th row of the matrix Ck+1. 
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2.4.1 Initial conditions 

As initial condition for the covariance matrix P the zero matrix is taken. This is ar-
bitrary and probably not the best choice. On the other hand, atmospheric chemistry-
transport models are such that after one to two days of simulation the influence of 
the initial state of the system has disappeared. Also, in these first days of the simu-
lation, relatively few adaptations to the measurements will made, because the co-
variance structure has not been built up yet. After the “build-up phase”, the covari-
ances will be realistic and adaptations of the state vector due to these covariances 
and the measurements will be made. Hence, when examining for example concen-
trations plots of assimilated and measured concentrations, the first, say, two days 
should be considered as model initialisation. 

2.5 Optimum Interpolation 

Active data assimilation with Optimal Interpolation (OI) can be considered as a 
simplification of the KF-algorithm. It relies on the same assumption as KF, such as 
no bias between observations and the model, uncorrelated and unbiased observa-
tion errors and a Gaussian distribution of the errors. 
The difference between the described KF-algorithm and OI is the determination of 
the model error covariance matrix P. In the KF P is propagated like the state vector 
by an approximation of the tangential linearised operator M of the dynamical 
model M. The imperfectness of the dynamical model is expressed in a model fore-
cast error covariance matrix Q, which is added at every forecast of P. For OI the 
covariance of the model error is estimated by empirical covariance modelling of 
the observation increments.  
The empirical covariance modelling of the model error covariance is based on the 
differences between observations and the modelled values. The ensemble for the 
estimation is therefore limited to the station locations. In order to obtain a full co-
variance matrix an empirical covariance model has to be established.  
Inhomogeneous covariance modelling has been developed for passive data assimi-
lation with RCG assuming temporal stationarity of the errors (Flemming, 2003). 
However, in active assimilation the current model state and its error is influenced 
by the analysis of the previous model time step. That’s why a simple form of in-
stantaneous covariance modelling has been applied, namely the fitting of a homo-
geneous and isotropic covariance function in exponential form. It expresses the co-
variance of the model error between two points merely as a function of their dis-
tance. Such a covariance function of the O3 and the NO2 field was estimated for 
every analysis step in the OI run.  
Taking measurements into account for covariance modelling allows to determine 
and to correct the bias between model state and the observation. Here, the actual 
bias correction is based on the difference between the mean model state and the 
mean of the observations at the rural stations.  
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3. Implementation aspects of the RRSQRT algorithm 

3.1 Introduction 

In this Section we describe the implementation of the RRSQRT algorithm that is 
presented in the previous chapter. First this is done in general terms, followed by a 
description of the connection of the routines developed at TNO to the RCG model. 
For more detailed technical aspects on the implementation around RCG we refer to 
Appendix A. 

3.2 Schematic overview of the data assimilation system 

In Algorithm 1 a schematic overview of the complete structure of the data assimila-
tion system (i.e. both the assimilation shell and the model routines) is given. 
 

1. Initialisation 
a. Call model initialisation routine 
b. Pick up model dimensions, set-up of state vector and 

covariance matrix 
2. Prepare (next) time step 
3. Add new noise modes 
4. Perform time step for: 

a. The model state vector 
b. The existing modes 
c. The new noise modes 

5. Assimilate measurements 
6. Postprocess time step 
7. Repeat 2 - 6 until end of simulation 
8. Finish simulation 

Algorithm 1 Schematic overview of the data assimilation algorithm 

As mentioned earlier, a single time step needs to be repeated many times (in our 
implementation q+m+1 times to be precise) with different initial conditions and/or 
different values of the noise parameters. Therefore the amount of computations in 
step 4 of Algorithm 1 should be kept at a minimum. This may require that the 
source code of an air quality model needs to be rearranged in order to be efficiently 
connected to the data assimilation routines. 

3.2.1 General requirements to air quality models 

In order to facilitate the connection of the models to the data assimilation routines, 
the models should be arranged in a specific from, as explained above. Ideally, the 
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main program in original model system calls a subroutine that performs a time step 
with as main argument a model state. This subroutine should not change parame-
ters other than just the model state vector. For example, it should not update mete-
orological fields at the end of the time step, since they may be needed for the next 
call to this routine if used in connection with the data assimilation routines. In case 
the model state vector is part of a common block (Fortran 77), some extra copying 
may be necessary. This will lower the speed of the code to some extent, but keeps 
the changes to the original model to a minimum. Otherwise, new version of the 
model cannot be coupled to the data assimilation routines in a straightforward way. 

In order to easily connect the data assimilation routines, it should be possible to 
split the model into the following parts: 
 

1. Initialisation and set-up 
a. Perform everything that needs to be done only at model 

start, such as reading from a run control file. 
2. Preparation of a time step 

a. Process meteo 
b. Process emissions 
c. Etc. 

3. Execution of a time step 
4. Postprocessing of the time step 

a. Update model time 
b. Write some output 
c. Etc. 

5. Finish model simulation 
a. Closing files 
b. Etc. 

Algorithm 2 Model structure 

In principle step 3 should contain the minimum necessary, because this step is re-
peated many times. Everything that can be part of step 2 or 4 should be placed 
there and not in step 3. In air quality models this means for example that processing 
meteorological fields are performed in step 2 (see Algorithm 2), since these fields 
are the same for the model state and each mode. The only exception is when noise 
is added to one of the meteorological quantities. This should however rather be 
handled by the routines that set and re-set the noise parameters (see below). 

3.2.2 Setting and re-setting noise 

Since the data assimilation will act on some of the inputs, extra routines will be 
necessary to modify these inputs at the beginning of a time step with a specific 
mode and re-set the values at the end of this time step. Setting and resetting the 
noise are user defined routines. If one of the noise factors acts on e.g. the NOx 
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emissions, in the subroutine “set noise”, the emissions will be multiplied by the 
noise factor and the nominal values will be set back in subroutine “Reset noise”. In 
case the NOx emissions can be changed from outside (e.g. because they are in a 
common block or module), no changes to the original model subroutines need to 
take place. The subroutine then simply copies the NOx emission array and fills the 
original array with different values. After the time step the copy is put back into the 
original array. For more “complex” noise definitions, it is possible that some model 
subroutines need to be modified somewhat. For example, if one wants to let a noise 
parameter act on the NOx emissions from traffic, this needs to be done before the 
aggregation of the emissions into one emission field as is usually done within a 
models emission routine. 

3.2.3 The state vector 

A logical choice for the state vector is the concentration array within the model. 
For reasons of (memory) efficiency, a subset of the state vector could be chosen. 
For example, if only O3 measurements are assimilated, it can be expected that 
fields of some chemical compounds will hardly change, even when noise is added 
to some precursors. On the other hand, the state vector need not be restricted to (a 
part of) the concentration array. All parameters that are possibly changed by the 
data assimilation, are candidates. One could for example add correction factors on 
the emissions, deposition etc. on which the noise parameters act. By doing so, the 
filter algorithm will produces estimates for the correction factors as well. Also, 
when performing the measurement updating within the filter, it is possible to re-
strict the update when this would result into unrealistic correction factors. An ex-
ample would be a negative emission, that can be prevented by putting an a priori 
upper and lower bound on the correction factors that are part of the state vector. 

3.2.4 Measurements 

The routines that read in and provide the measurements to the data assimilation 
system are also to be written by the user. The system is set up such that each meas-
urement corresponds to an element of the state vector. Once this information is 
passed to the KF, it can do the assimilation of the measurements. 
In step 3 of algorithm 3, the measurements are assimilated. Assuming that users of 
the data assimilation system want to keep their own structure of the measurement 
files, special routines must be written that extract the desired measurements from 
that measurement files. The easiest way to connect the measurement files to the 
data assimilation system is by an interface routine that can be called with argu-
ments that specify which data from which station at which time is required. 
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3.2.5 Output 

The data assimilation system can of course produce a number of output variables. 
Assuming that users prefer their own output formats, also here dedicated routines 
must be written, preferably calling already existing output routines within the 
model itself. 

3.2.6 Preparation by the user 

In view of what is written above, the user (i.e. the owner of the model) could do a 
lot that will facilitate the connection of the Kalman Filter routines to the model: 

1. Bring the model in the form of Algorithm 2 
a. Provide info on where to catch the model dimensions etc. 
b. Provide info on the model state and its structure 

2. Facilitate the construction of the routines that set and reset the noise (see algo-
rithm 2) 
a. This should be very easy if you know the model 

3. Construct a routine that can be called for retrieving the measurements 

3.3 Structure of the system around REM3/CALGRID 

The original KF routines are all written in Fortran 90 (filenames have the extension 
.f90). For the implementation around REM3/CALGRID it was necessary to use 
Fortran 77 for one of the source files (kf_driver.f, extension .f instead of .f90), be-
cause in this file the actual connection with the model sources code is established. 
Recall that REM3/CALGRID is programmed in Fortran 77. The KF implementa-
tion consists of the following modules (all filenames associated with the KF start 
with kf_), as listed in Table 3.1. 
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Table 3.1 List of KF routine within the data assimilation system around 
REM3/CALGRID 

Source file name Short description 

kf_driver.f Performs the connection of the KF with the model. It contains 
parts of the original source of REM3/CALGRID in order to bring 
the model in the form of Algorithm 2. 

kf_state.f90 Describes the model state, in this case the concentration vector 
augmented by an array with output for a number of compounds 
at specific measurement locations and augmented with an array 
containing the noise parameters. 

kf_output.f90 Performs the output of assimilated concentrations as well as KF 
specific parameters, like the estimated values of the noise pa-
rameters. 

kf_reduce.f90 Performs the reduction of the covariance matrix (see theory), us-
ing a singular value decomposition (SVD). For the SVD routines 
from the publicly available numerical library LAPACK are used. 
This library is installed at FUB. 

kf_meas.f90 Performs the reading and proper passing of the observations to 
the KF routines. 

kf_noise.f90 Sets and resets the noise parameters. This routine needs to be 
edited for adding/removal of noise processes 

kf_main.f90 The main program. 

In Appendix A more details are given on the actual implementation of the KF rou-
tines and the necessary changes to the source code of REM3/CALGRID. 
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4. Modelling noise in REM/CALGRID RRSQRT – KF 

4.1 Introduction 

The influence of the observation in the assimilation process is determined by the 
statistical properties of the model error, which is given in terms of its covariance 
matrix P. In the case of the RRSQRT Kalman Filter P is built up by a specification 
of uncertainties in the CTM REM/CALGRID and its input data. It means that the 
user has to specify a range of variation of model parameters, which may be the 
cause of the misfit between model and the observations. This specification is in 
general a difficult task because of the many interaction between the different proc-
esses involved and the requirement for quantification. For instance the modelling 
community agrees that there are errors in the emissions inventories but there is dis-
cussion about the quantitative range of uncertainty (Van Aardenne, 2002). In the 
given application the model error covariance relies completely on the specification 
of the model noise factors since they are the only way to build up a covariance ma-
trix.  
The numerical realisation of the noise modelling is explained in section 4.2. The 
choice of the model noise parameters is the content of section 4.3. 
In contrast to the Kalman Filter, the model covariance error P is estimated by 
means of the observation increments, i.e. the difference between the model and the 
observations in the case of Optimum Interpolation (OI). Having the empirical co-
variance modelling available means that there is some reference whether magni-
tude of the covariance in Kalman Filter is of similar size as the empirical covari-
ance from Optimum Interpolation. This issue is discussed in section 4.4. 
The obvious advantage of the Kalman Filter is that its analysis step comprises the 
whole model state in which the model noise parameters are included. Thereby a 
linear regression type of relationship, given by the covariance matrix P, between 
the observation increments (difference between model and observation) and the 
noise parameters is used to obtain an optimal value for the noise factor. Systematic 
patterns in the analysed model noise parameters can be used to detect deficiencies 
in the original model parameters. An investigation of this problem is given in sec-
tion 4.5 

The statistical base of the Kalman Filter assumes no systematic errors, i.e. bias, of 
the model and the noise parameters. Systematic model deficits should be corrected 
in the first place before any attempts of data assimilation are carried out. From a 
theoretical point of view, the Kalman filter treats only the remaining part of the er-
rors with zero mean and a certain variance - covariance structure. However, this 
limitation does not mean that model with systematic errors must not be used in KF 
data assimilation. The fact of not fulfilling this assumption leads to a sub optimality 
of the scheme and not to a complete failure. It could be assumed that after a certain 
spin up time of the Kalman Filter the model state fulfils the required error charac-
teristics.  
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The numerical burden of the Kalman Filter requires a fast computation of the sev-
eral call of the routine perform_timestep (see Appendix A2).  
Besides attempts to run the Kalman filter in a parallel manner, the proper choice of 
the length of the sub time step can reduce the CPU time. The newly introduced cal-
culation of the CFL criteria in the routine windgrdc.f90 (Yamartino, 2003) allows 
the determination of the maximum time step length, which can in many cases de-
creases the CPU time by a factor of two to three. However, the practical experience 
showed that using a time step of maximum length lead in a few cases to artificial 
“hot spots” especially in costal areas with high gradients of in model grid heights. 
These “hot spots” my not be of concern for the long-term model result. However, 
they will be “interpreted” by the Kalman Filter as response of the model noise and 
may spoil the physical basis of the calculated covariance matrix. Therefore one has 
to ensure that no numerical artefacts occurred, either resulting from to large time 
stepping or unphysical changes of the model state and the modes by the analysis 
step or the rank reduction or by any other reason. 

4.2 Reminder of numerical realization of P modelling  

The most prominent feature of the Kalman Filter is the forecast of the covariance 
matrix P of the model error. According to the Kalman Filter equations (see Flem-
ming, 2003 a) the forecast of P is given by the following equation matrix equation.  

t+1 t T T
B AP = AP A + FQF  (1) 

M denotes the linearised operator of the Chemical transport model A and FQFT is a 
matrix of covariance of the model forecast error, which is added at every time step. 
It account for the noise caused by the deficiency of the model and its linearisation.  
In the RRSQRT (reduced rank square root) implementation matrix equation (1) is 
not solved directly (see Flemming, 2003 a for details). Instead the covariance ma-
trix is represented by its square S (P=SST) and each column of S can be treated as a 
realization of a model state vector. The columns are called modes. The part APAT 
in (1) is then approximated by n forecasts of the modes by the original CT-model 
code A at a given time step. The contribution of the model forecast error matrix 
FQFT is approximated by introducing new modes (noise modes) which are ob-
tained by a model forecast in which model parameters are altered to a certain ex-
tend. The steady increase of the number of modes in every time step is limited by 
means of a SVD of the covariance matrix: by means of a PCA n most important 
modes are constructed and be used for the next step of the P propagation. The al-
tered parameters are considered to be the cause of the model noise. The degree of 
the change is expressed by the model noise factors. The can be included into the 
model state vector. This means that they are also subject of the analysis step. 
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4.3 Choice of noise factors and their implementation 

While choosing the number of model noise parameters one should consider the 
whole range of important sources for the model uncertainty. However a high num-
ber of noise modes increases the number of necessary modes and with it the com-
putational burden. As a rule of thumb, the total number of modes should be 5 to 10 
times the number of noise modes (Velders, personal communication). Besides the 
computational aspects, a large variety of different model noise parameters can 
make the physical interpretation of the analysed model noise parameters difficult 
due to the many cross effects involved. For those reasons it was decided to apply 
not more than 3 to for noise modes in the current application. 
The emissions are considered as one of main sources of uncertainty in chemical 
transport modelling. Therefore it seems to be a natural choice to include them in 
the specification of model noise parameters. In previous application of the Kalman 
filter with the LOTOS and EUROS model the changes in the ozone deposition ve-
locity and NO2- and O3-photolysis rates have been used beside the emissions.  
Due the fact that REM/CALGRID has a ground layer of a fixed depth of 20m the 
processes of vertical turbulent diffusion, which is controlled by turbulent vertical 
exchange coefficient KZ(1), is of great important for the calculated ground layer 
concentrations. Moreover the mixing height plays a prominent role due the dy-
namical vertical resolution of the model.  
In the given application, the following model parameters have been selected to rep-
resent the model noise:  

− Total NOx-emissions 
− Total VOC – emissions 
− Vertical turbulent exchange coefficient KZ 

Having done this choice one has to decide to what extend a change of the model 
parameters should be introduced and if the changes should be applied only to a cer-
tain part of the model domain. The total emissions for different countries in Europe 
may have a different uncertainties or the KZ and mixing height may have different 
deficiencies over land and see or in cloud free and cloudy conditions. The applica-
tions of the Kalman Filter with LOTOS and EUROS discriminated different areas 
in Europe for the modelling of model noise due to emissions. Due to the premise of 
limited computer power in the given application no spatial differences in the noise 
parameters have been applied.  
The change of the 3/(4) model parameters was defined arbitrarily to be 25% per-
cent. Although current estimates of the emission error (who to quote) of up to 50-
100% a to large deviation from the original values could contradict the assumption 
about the zero mean error statistics in the Kalman Filter.  
The 3/(4) new noise modes where established by taking the propagating the ana-
lysed model state by increasing the respective model parameters field, i.e. emis-
sions, and Kz by 25%. Due the linear statistical assumption and “square” character 
of the covariances an increase or decrease of model parameters field would lead to 
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the same consequences in the calculation of P. In further studies there should be 
check if this is really the case since the original non-linear model does the ap-
proximation of the P forecast. It is questionable whether the change of the mod-
elled concentration due to an emission increase is of the same size but opposite 
sign in the case of an equivalent emission decrease. It might be necessary to intro-
duce both an increase and a decrease of the model parameters.  
The noise factor for the change in the model parameter, i.e. 1.25 for the new noise 
modes and 1.0 for the analysed state and the rest of the modes, is included in the 
model state vector and is therefore subject of the analysis step (see section). The 
analysis step supplies certain optimal values of the 3 (4) noise parameters. At the 
present status of the KF implementation the analysed values will not be used a fur-
ther in the temporal forecast of the modes or the model state. This means that tem-
poral white noise properties of the induced model noise are enforced. It might be 
fruitful to investigate in further studies the influence of a temporal “memory“ of 
the noise. In this case it could be necessary to introduce some form of dumping and 
correcting of the noise values because they could become negative, i.e. physical 
meaningless, or the could lead the analysed model state completely out of the track 
of the original model. 
The problem of obtaining negative analysed noise parameters can be avoided by 
using the logarithm of the noise factor in the whole analysis procedure. It would 
increase the Gaussianity of the noise factor since it could now vary in the range be-
tween -∞ and +∞. The current noise factor can vary theoretically in the range be-
tween 0 and +∞ and is highly skewed since the expectation value of it ought to be 
1. From a practical point of view noise factors >>1 are not sensible. 

4.4 Comparison with empirical modelling of observation errors 
(OI) 

The empirical covariance modelling of the model error covariance is based on the 
differences between observations and the modelled values. The ensemble for the 
estimation is therefore limited to the station locations. In order to obtain a full co-
variance matrix an empirical covariance model has to be established. For the sake 
of simplicity in this application a classical homogeneous and isotropic covariance 
model has been used. Inhomogeneous covariance modelling has been applied al-
ready for passive data assimilation with REM3/CALGRID, which relays on the as-
sumption of temporal stationarity of the error statistics (Flemming, 2003 c). Due 
the fact that in active data assimilation the previous analysis step influences the 
current model state the assumption of the temporal stationarity of the error statistics 
seems to be not valid. 
The KF produces much more comprehensive and temporal and spatial distin-
guished covariance matrix than the simple covariance function of OI. However, the 
covariance of the KF depends strongly on the choice and the scope of the variation 
of the perturbed model parameters.  
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The empirical covariance modelling in OI uses model errors directly obtained by 
comparison with the measurements. The measurement seems to be a direct indica-
tor what might be the real atmospheric state. However the difference between ob-
servation and a CTM with the resolution of REM/CALGRID does not mean in any 
case a model failure due the different scales of the model and the observations. 
The comparison is limited by the simpler results of the OI covariance modelling. It 
include the of the model error, and a measure of the spatial structure of the covari-
ance by means of a range which describes the decrease of covariance with increas-
ing spatial distance. Figure 4.1 shows box whiskers – plots of the square root of 
model error variance, i.e. the covariance for zero distance, for every hour of the 
day. In the homogeneous OI approach this is one value for the whole field at every 
time step. For KF the variance is heterogeneous and in Figure 4.2 all values at sta-
tion locations are depicted. The variances have a similar cycle with highest values 
in the morning and the afternoon. The magnitude of the KF and OI values are in 
the same range. The variation of the mixing layer height contributes most to mod-
elled variances. KF values are smaller indicating that more model “noise” should 
be added. The same conclusion can be made by looking at the variances NO2. 
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Figure 4.1 Daily cycle of the standard deviation of the model error variance of ground 

level O3 obtained by empirical covariance modelling for OI (left) and by the 
Kalman filter assimilating NO2 and O3 (right) 

Empirical estimated covariances decrease with increasing distance in a range of 
about 100 – 200 km. This feature cannot be found in the KF covariances (see 
Figure 4.2) as a consequence of the uniform variation of the model noise parame-
ters. Assuming that a decrease of covariance with increasing separation has to be a 
feature of any spatial covariance one could impose this by applying a dumping 
function. This would lead to a more realistic spatially limited influence of the ob-
servations in the analysis step. 
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Figure 4.2 Spatial structure of covariance with station BB001 of ground layer O3-field 

at 13.00 UTC for July 2001 obtained by empirical covariance modelling for 
OI (left) and by the Kalman filter assimilating NO2 and O3 (right) 

4.5 Systematic patterns of analysed model noise parameters 

The noise factors have been made part of the model state vector and are therefore 
analysed according to available concentration observations. This means that a re-
gression type of relationship between the model error at the observation location 
and the noise factor, given by the covariance matrix of Kalman Filter, is used to 
find optimum values for the noise factors.  
Analysed noise factor greater than 1 indicate that an increase of the model parame-
ter would yield a better agreement with the measurements and vice versa. However 
this relationship is of pure statistical character and assumes linear responses be-
tween noise parameter and changes in the concentration fields and does not account 
for different levels of the concentrations. Further, the time period might be too 
short for a significant inference. The scatter of the analyse noise factors is very 
high.  
Despite this limitation, it might fruitful to investigate systematic features of the 
analysed model noise parameters. It may help to explore the reasons for the weak-
nesses of the model and its input data and finally to correct them.  
Due to dynamical vertical resolution REM/CALGRID depends strongly on the 
daily variation of the PBL. Therefore it was examined whether the analysed noise 
parameters showed any systematic daily pattern. The median of all analysed noise 
factor (total NOX-emission, total VOC-emission, vertical turbulent exchange coef-
ficient KZ1) values for every hour of the day in the whole assimilation period (July 
2001) is given in Figure 4.3, Figure 4.4 and Figure 4.5 respectively. They show the 
analysed noise values for the 3 different Kalman Filter runs assimilating either NO2 

and O3, only O3 only NO2 (KF(NO2,O3), KF(O3) and KF(NO2)), see section 5.1). 
The most obvious daily pattern exhibits the vertical exchange coefficient in the run 
KF(NO2,O3). A strong decrease in the late morning (8-10 UTC) and the afternoon 
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(12-16 UTC) is suggested by the KF analysis. During the night the response is not 
very pronounced but indicates an increase in the vertical turbulent diffusion. The 
response in the noise parameters for the NOx-and VOC- emission leads to a pro-
posed increase of both emissions during the day and to a slight decrease during the 
night. This response point at the same direction as in the case of the vertical diffu-
sion because both corrections would enforce an increase of the concentration of the 
primary species during the day and a decrease during the night. This conclusion 
corresponds to the fact known from REM/CALGRIDs performance evaluation that 
the concentrations of mainly primary species are to high during the night and to 
low during the night. Given the stronger response in the vertical diffusion, there is 
evidence that vertical diffusion is the main reason for the overestimation of the 
daily cycle by the model, i.e. the underestimation of the concentration level during 
the day. Corrections of the daily emissions time factors in the model or the total 
NOx-emission seem to be less important. However, the overall sum of the analysed 
noise factors for the emissions is biased to values greater 1 which indicates that an 
increase in the total emissions would lead to a better model performance. 
The averaged analysed noise parameters depend on the choice of the assimilated 
species. This fact is a consequence of the non-linear nature of the problem and 
makes it more difficult to draw general conclusion from the analysed noise factors. 
Assimilating only ozone (KF(O3)) shows weaker and partly different response of 
the vertical exchange coefficient. The decrease during the day is limited to 12-14 
UTC. It is the time when the ozone concentration is overestimated. In the late af-
ternoon strong increase is proposed which corresponds to the time of the underes-
timation of the ozone concentration. Like in the case of KF(NO2, O3), the increase 
of diffusion is coupled with a decrease in the emissions and vice versa.  
In the case of KF(NO2 ) the relevant parts of the covariance matrix are not well de-
veloped and it is questionable whether the results are useful for any relevant con-
clusion. The analysed parameters do not show any strong signal. 
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Figure 4.3 Daily cycle of the mean of the noise parameters for the Knox-emission (left), 

the VOC-emission (right) and vertical turbulent exchange coefficient KZ1 
(right) for a KF run assimilating O3 and NO2-obervations 
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Figure 4.4 Daily cycle of the mean of the noise parameters for the NOx-emission (left), 

the VOC-emission (right) and vertical turbulent exchange coefficient KZ1 
(right) for a KF run assimilating O3-obervations 
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Figure 4.5 Daily cycle of the mean of the noise parameters for the NOx-emission (left), 

the VOC-emission (right) and vertical turbulent exchange coefficient KZ1 
(right) for a KF run assimilating NO2-obervations. 
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5. Assimilation performance  

5.1 Set-up of assimilation runs 

Three KF runs with REM/CALGRID for July 2001 have been carried out, assimi-
lating ozone, NO2 or both. The model domain covers the area between -10.0° – 
25.0° (Longitude) and 46.5°- 60.0° (Latitude). The horizontal resolution is based 
on a 0.5° x 0.25° grid. The dynamical 4-layer approach is used for the vertical reso-
lution. 

The simulation of the KF assimilation takes about 14 days by a 2000 Mhz- Athlon 
PC. Due to this high computational burden the number of test runs is very limited.  
The performances of 3 assimilation runs will be compared to an ordinary model 
run without assimilation of observations. In chapter 5.4 the Kalman Filter is com-
pared to data assimilation with Optimum Interpolation. 

The representation of covariance matrix was based on 27 modes. At every new 
time step 3 new noise modes were added, which were developed by an increase of 
25% of the total NOx-emission, the total VOC-emissions and the vertical turbulent 
exchange coefficient Kz between layer 1 (ground layer) and 2 (first half of mixing 
layer). The change was applied uniformly for in the whole model domain (see sec-
tion 4.3). Propagating the current analysed state vector by the model with the re-
spective changes in the model parameters developed the noise modes. The first 
analysis step, i.e. the adaptation to the measurement was executed after all 30 
modes had been built up, i.e. after 7 hours. The actual ground layer grid box 
concentration at the end of the model time step was considered to be the simulated 
equivalent of the observations in that grid box. After a spin up time of 24 hours, the 
results of the KF assimilation after 24 hours were subjected to the performance 
evaluation.  

Observations of rural, suburban and urban stations according to the classification of 
Flemming (2003 b) from the Germany operational air quality network have been 
assimilated at every hour of the run. This means that data of about 210 stations for 
Ozone and 190 for NO2 have been used in the simulations. The assimilation of NO2 
observations is a new development since previous assimilation runs with LOTOS 
used only ozone observations. 

For all assimilation runs, the individual climatological observation error variances 
for the German network according to Flemming (2003 b) have been used. The es-
timation of the observation error variance is based on the observational method 
(Hollingsworth and Lönnberg, 1986). Figure 5.1 shows the range of the estimated 
observation error standard deviation for NO2 and O3 for different air quality re-
gimes. The typical observation error SD for ozone is about 5 ppb for all regimes 
indicating a smaller relative error for the regimes with higher mean ozone concen-
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trations. For NO2 the observation error increases with the level of pollution from 
about 2 ppb for rural to about 8 ppb for the traffic sites. 
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Figure 5.1 Estimated Observation error standard deviation in ppb vs. air quality regime 

(TYP) for all stations in Germany (left NO2, right O3). B = mountain, R = ru-
ral, U1 = suburban, U2 = urban, U3 = urban, polluted, S = street, s2= 
Street extreme 

5.2 Methodology of performance evaluation 

There is no clear methodology for performance evaluation of data assimilation be-
cause the classical juxtaposition of model results and observations is not possible 
any more. In weather forecasting the quality of the assimilated initial fields is ex-
amined by the improvement of the forecast, which is the goal of the assimilation 
efforts. The forecast improvement is not such a distinct criteria for CTM data as-
similation, because initial conditions are not very important due to predominant 
sources (emissions) and sinks (deposition). 

Besides noise parameter analysis, obtaining realistic concentration fields maps for 
air quality assessment is a useful application for CTM data assimilation. In order to 
check the results of the noise parameter analysis (see section 4.5) one has to apply 
their systematic patterns to correct, i.e. tune, the current values in the model. An 
improvement of the tuned stand-alone model performance would prove whether 
there is a benefit from data assimilation. This task remains for further studies with 
REM/CALGRID. 

A proper assessment of the mapping performance can rely on a cross validation 
approach. This has been done for the Optimum Interpolation in Flemming (2003 c) 
and for the Kalman Filter in van Loon et al. (1999). In the cross validation ap-
proach the stations are divided in to 2 groups: one is assimilated and the other is 
used for the performance evaluation. This requires the choice which stations are 
used for each purpose. Hard core statisticians would argue that this choice has to be 
made completely randomly and that at least two assimilation runs have to be done 
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in which the assimilated stations are used for evaluation and vice versa. The 
performance would have to be of similar quality in both cross test. 

The positive outcome of the cross validation is in many cases not more specific 
than the general statement “It works!” One does not know how good it works and 
how great the potential for further developments is. Moreover, the assimilation per-
formance is obviously limited since only half of the observational information is 
used. The fact that the check of the performance is only possible at stations loca-
tions, e.g. not over the sea, is common to both data assimilation and classical model 
evaluation. 

The objective of this study is the direct comparison of the different assimilation 
runs, based on the same observation error variances. Hence, the differences be-
tween the assimilation results are completely due to the different response to the 
assimilation of observations and the complexity of the scheme. That is reason why 
all stations of rural, suburban and urban characteristics were used in the assimila-
tion and evaluation. The evaluation distinguishes between the different air quality 
regimes. 

The following assimilation performance focuses on Ozone and NO2. The influence 
of the assimilation on other species has not been checked. The performance evalua-
tion is based on:  
− RMSE 
− RMSE/OBSVAR 
− Bias/Mean 
− Maps 

RMSE is the most important quantity since the Kalman filters optimality fulfils a 
minimum variance criterion. The assumed observation error is the lower limit for 
this RMSE, which would be obtained by the “perfect” model or assimilation run. In 
order to get to know the potential of the assimilation effort is helpful to look at the 
ratio between RMSE and the observation error variance. 

Since air quality assessment is based in many cases on temporal averages the aver-
age values have to be considered. Maps of the assimilated concentration field are 
supplied to get an impression of the spatial patterns of the air quality fields.  
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5.3 Assimilation performance for Ozone and or NO2 in a run for 
July 2001 

In total four different runs for July 2001 are compared in this chapter: 
− Model run with REM/CALGRID BAS 
− KF assimilation of ozone and NO2 observations KF(O3NO2) 
− KF assimilation of ozone observations KF(O3) 
− KF assimilation of NO2 observations KF(NO2) 

The RMSE in respect to the ozone observations of the Kalman Filter assimilations 
runs KF(O3) and KF(O3NO2) is reduced by more than 50% compared to the model 
simulation as its shown in Figure 5.2. 
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Figure 5.2 RMSE of ozone observations for the base run (BAS), the KF assimilation of 

NO2-observations (KF(NO2)), the KF assimilation of O3- observations 
(KF(O3)) and the KF assimilation of O3 and NO2 – observations 
(KF(O3NO2)) at rural, suburban, urban and polluted urban stations 

The improvement can also be found for the stations of the air quality regime (“pol-
luted urban”), which were not used for the assimilation. However assimilating only 
NO2 does not yield an improvement and is even worse than the base run (BAS) at 
the rural stations. The observation error standard deviation SDOBS is about 5 ppb 
(see Figure 5.1) for all ozone regimes. In the runs KF(O3NO2) and KF(O3) the ratio 
RMSE/SDOBS is reduced from about 5 to 2 compared to the base run. There is no 
clear evidence that the assimilated ozone field benefit from the assimilation from 
NO2. The large overestimation of the model simulation (BAS) at the urban and 
suburban is significantly diminished by KF(O3) and KF(NO2O3), see Figure 5.3. 
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Figure 5.3 Bias (model – observation) of ozone observations for the base run (BAS), the 

KF assimilation of NO2-observations (KF(NO2)), the KF assimilation of O3- 
observations (KF(O3)) and the KF assimilation of O3- and NO2 – observa-
tions (KF(O3NO2)) at rural, suburban, urban and polluted urban Stations 

At rural station the assimilation lead to a small underestimation, which did not oc-
cur in the BAS run. The improvement of the RMSE in respect to the NO2 – obser-
vations is not very pronounced (see Figure 5.4). All three assimilation runs, i.e. 
even KF(O3), show some improvement for NO2. 
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Figure 5.4 RMSE of NO2- observations for the base run (BAS), the KF assimilation of 

NO2-observations (KF(NO2)), the KF assimilation of O3- observations 
(KF(O3)) and the KF assimilation of O3- and NO2 – observations 
(KF(O3NO2)) at rural, suburban, urban and polluted urban Stations 

At all regimes the ratio between the RMSE and the standard variation of the obser-
vation error is rather closed to 1 in case of the assimilation (see Figure 5.5). The ra-
tio is about 2 in case of the pure model simulation. This means that not much fur-
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ther improvement can achieved by better techniques since the observation seem to 
be to “noisy“, i.e. not representative enough. 
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Figure 5.5 Ratio between RMSE and observation error standard deviation SDOBS of 

ozone for the base run (BAS), the KF assimilation of NO2-observations 
(KF(NO2)), the KF assimilation of O3- observations (KF(O3)) and the KF as-
similation of O3 and NO2 – observations (KF(O3NO2)) at rural, suburban, 
urban and polluted urban Stations. 

For ozone the decrease of the values by the assimilation is apparent in the whole 
model domain, c.f. Figure 5.6 and Figure 5.7. This means that the observation, 
which are restricted to Germany, have influenced the whole model domain. The 
homogeneous decrease is probably more a consequence of the long ranging spatial 
covariance by the given KF implementation (see discussion chapter 4.4) as a con-
sequence of “transport” of the corrections in Germany by means of the model. Due 
to a lack of observations it is not possible to determine whether the decrease of the 
average ozone concentrations over the sea by data assimilation are realistic. 
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Figure 5.6 Average of O3- ground layer concentration for July 2001 from the base run, 

i.e. no assimilation 

 

Figure 5.7 Average of O3- ground layer concentration for July 2001 from the KF 
assimilation of O3- observations in Germany  

The areas of the highest NO2-pollution in the model domain are influenced by the 
assimilation, c.f. Figure 5.8 and Figure 5.9. The decease of the very high model 
values in UK, Paris and the Ruhr area seems to be realistic. 
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Figure 5.8 Average of NO2- ground layer concentration for July 2001 from the base run, 

i.e. no assimilation 

 

Figure 5.9 Average of NO2- ground layer concentration for July 2001 from the KF as-
similation of O3 and NO2- observations in Germany 

5.4 The Kalman Filter versus Optimum Interpolation 

In order to investigate the additional value of the KF relative to the OI scheme, in 
this Chapter the KF(O3NO2) simulation is compared to an OI(O3NO2) simulation, 
again for July 2001. A more detailed description of the differences between the 
schemes and their performance is given in Flemming and van Loon(2003) and in 
chapter 4.4. 
In terms of RMSE and Bias the assimilation by OI is of almost equal quality as the 
KF assimilation.  
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Figure 5.10 Mean daily cycles of the measured, modelled and assimilated (with OI and 

KF) ground level concentrations at rural (left) and urban (right) stations for 
Ozone.  
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Figure 5.11 Mean daily cycles of the measured, modelled and assimilated (with OI and 

KF) ground level concentrations at rural (left) and urban (right) stations for 
NO2 

Figure 5.10 and Figure 5.11 show the mean daily cycle of the measured, modelled 
and OI, respectively KF assimilated ground level concentrations at rural and urban 
stations for ozone (top) and NO2. 
The slightly better OI performance for the rural stations is mainly as a consequence 
of the bias correction based on the rural stations. KF performance for ozone is bet-
ter in the urban regimes due to the better description of the inhomogeneity. 
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6. Conclusions and recommendations 

In the beginning the project has severely suffered from the non-portability of the 
REM3/CALGRID code. This had mainly to do with binary input data in which 
various types of variables are mixed. It is therefore recommended to improve the 
I/O structure of the model. It should also be mentioned here that the model source 
is not very transparent, it is clearly a “research code” to which many people have 
contributed using different programming styles and using ad-hoc solutions etc. 
This caused that relatively much effort had to be put into connecting the 
REM3/CALGRID code to the KF routines. An overall revision of the model source 
code may be in place. 

With respect to the results of the Kalman Filter as presented in this study the fol-
lowing conclusions are drawn: 
− Application of Kalman Filtering to the REM3/CALGRID model using O3 

and/or NO2 observations generally leads to improved agreement between simu-
lated and observed concentrations. 

− Covariances modelled as modelled by the KF and empirical covariances quali-
tatively agree. Due to the simple way the noise parameters are chosen, the spa-
tial distributions are different. 

− Results obtained with the KF are generally slightly better than with Optimum 
Interpolation. Given the simple noise parametrisation further performance can 
be expected with improving noise description. 

− The Kalman Filter can help to detect typical deficiencies in the model parame-
ters. The analysis suggest that a more turbulent exchange during the night and 
less during the day may improve the performance of the model. 

Given the simple noise parametrisation, we consider the present results as very 
promising and further research is recommended into the following topics: 
− More refined noise parametrisation 
− Combination within the KF with empirical covariance modelling 
− Reducing the computational costs of the KF system. 
− Applying the systematic patterns of the analysed noise parameter of the vertical 

turbulent exchange coefficient to correct the current values in the model  
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Appendix A 

Appendix A Technical description of the KF code 

A.1 Description of the Kalman Filter routines as implemented 
around REM3/CALGRID 

The original routines are all written in Fortran 90 (filenames have the extension 
.f90). For the implementation around REM3/CALGRID it was necessary to use 
Fortran 77 for one of the source files (kf_driver.f, extension .f instead of .f90), be-
cause in this file the actual connection with the model sources code is established. 
Recall that REM3/CALGRID is programmed in Fortran 77. The KF implementa-
tion consists of the following modules (all filenames associated with the KF start 
with kf_): 
 
Source file name Short description 
kf_driver.f Performs the connection of the KF with the model. It con-

tains parts of the original source of REM3/CALGRID in 
order to bring the model in the form of Algorithm 2. 

kf_state.f90 Describes the model state, in this case the concentration 
vector augmented by an array with output for a number of 
compounds at specific measurement locations and aug-
mented with an array containing the noise parameters. 

kf_output.f90 Performs the output of assimilated concentrations as well 
as KF specific parameters, like the estimated values of the 
noise parameters. 

kf_reduce.f90 Performs the reduction of the covariance matrix (see the-
ory), using a singular value decomposition (SVD). For the 
SVD routines from the publicly available numerical library 
LAPACK are used. This library is installed at FUB. 

kf_meas.f90 Performs the reading and proper passing of the observa-
tions to the KF routines. 

kf_noise.f90 Sets and resets the noise parameters. This routine needs to 
be edited for adding/removal of noise processes 

kf_main.f90 The main program. 
 
Below the source of kf_main.f90 is listed. Some explanation for some of the lines 
is given after the source listing. 
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program kf_RCG_main 1 
 2 
! using module driver gives access to all common block 3 
! variables, since they are all included in the 4 
! module driver 5 
 6 
use driver 7 
use state 8 
use noise 9 
use reduce 10 
use measurements 11 
use output_kf 12 
 13 
! the number of the time step 14 
integer :: istep 15 
 16 
! first step or not 17 
logical :: lfirst 18 
 19 
! the actual number of modes 20 
integer :: nmodes 21 
 22 
real :: noisefactor(nnoise) 23 
 24 
! set noise factors  25 
do i=1,nnoise 26 
  noisefactor(i)=1.25 27 
  if(i == 4)noisefactor(i)=0.75 28 
enddo 29 
 30 
! flag for very first time step 31 
lfirst = .true. 32 
! 33 
! set number of modes 34 
nmodes = 0          35 
 36 
xmast=0.0 37 
! init the program 38 
print *, 'initializing the simulation..' 39 
call init_model 40 
 41 
! init the Kalman state vector 42 
call init_state(.true.) 43 
 44 
! init the measurements 45 
print *, 'initializing the measurements..' 46 
call init_meas(.true.) 47 
 48 
print *, 'initialized the model simulation..' 49 
print *,'#time steps to be done: ',irlg 50 
 51 
! read first day of measurements 52 
print *, 'reading first day of measurements. njul = ',njul 53 
call read_meas(njul,nyr) 54 
 55 
! open some output for fields of the modes and the covariances... 56 
call  open_output_kf(347,'kovar_grads'//trim(ver)//'.bin',nx*ny) 57 
call  open_output_kf(345,'modes_grads'//trim(ver)//'.bin',nx*ny) 58 
 59 
! the time integration loop 60 
do istep = 1, irlg 61 
 62 
! save old grid for recalling zjump (Rem3/CALGRID source) 63 
  call save_htface_density_old 64 
 65 
  ! prepare timestep 66 
  call prepare_timestep(istep,1.0) 67 
 68 
  ! put initial values in x and xb 69 
  if (lfirst) then 70 
    call save_htface_density_old 71 
    call fill_state(x) 72 
    call fill_state(xb) 73 
    x(is_noise:is_noise+nnoise-1) = 1.0 74 
    xb(is_noise:is_noise+nnoise-1) = 1.0 75 
  endif 76 
 77 
  do imodes = 1,nmodes 78 
    ! the modes are deviations from the mean, add the mean for processing 79 
    modes(:,imodes) = x(:) + modes(:,imodes) 80 
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  enddo 81 
 82 
  x(is_noise:is_noise+nnoise-1) = 1.0 83 
 84 
  ! now, do the time stepping for the state vectors 85 
  call fill_master2(xb(1:ilength1),xmast(ifulcon)) 86 
  print *, 'updating base state' 87 
  call put_htfaceold 88 
  call perform_timestep(istep) 89 
  call fill_state(xb) 90 
 91 
  print*,'updating state'  92 
  call fill_master2(x(1:ilength1) ,xmast(ifulcon)) 93 
  call put_htfaceold 94 
  call perform_timestep(istep) 95 
  call fill_state(x) 96 
 97 
  do imodes=1, nmodes 98 
    print *, 'updating mode ',imodes 99 
    call fill_master2(modes(1:ilength1,imodes),xmast(ifulcon)) 100 
    call put_htfaceold 101 
    call perform_timestep(istep) 102 
    call fill_state( modes(:,imodes) ) 103 
    ! put noise parameter to one !!!!! 104 
    modes(is_noise:is_noise+nnoise-1, imodes) = 1.0 105 
  enddo 106 
 107 
  do imodes=nmodes+1, nnoise+nmodes 108 
    call fill_master2(x(1:ilength1), xmast(ifulcon)) 109 
    print *, 'creating new noise mode ',imodes,imodes-nmodes 110 
    call setnoise(imodes-nmodes, noisefactor(imodes-nmodes)) 111 
 112 
    if(imodes-nmodes.eq.4) then 113 
      ! initial value is the present state vector 114 
      print *, 'creating new noise mode for mixing height',imodes 115 
      ihr_metfub=ihr_metfub-1 ! read the same time step again 116 
 117 
      call put_densityold 118 
      call put_htfaceold 119 
      call prepare_timestep(istep,noisefactor(imodes-nmodes)) 120 
      !no copying of xmast_save 121 
      xmast(ifulcon:ifulcon+ilength1-1)=x(1:ilength1) 122 
    endif 123 
 124 
    call put_htfaceold 125 
    call perform_timestep(istep) 126 
 127 
    ! result must be in modes 128 
    call fill_state( modes(:,imodes)) 129 
    ! reset the noise 130 
    call resetnoise(imodes-nmodes) 131 
    ! put noise to zero 132 
    ! fill the nonzero one 133 
    modes(is_noise:is_noise+nnoise-1, imodes) = 1.0 134 
    modes(is_noise+imodes-nmodes-1, imodes) = noisefactor(imodes-nmodes) 135 
 136 
  enddo 137 
 138 
 139 
  ! update the actual number of modes 140 
  nmodes = nmodes + nnoise 141 
 142 
  ! subtract the state vector from the modes  143 
  do imodes = 1,nmodes 144 
    modes(:,imodes) =  modes(:,imodes) - x(:) 145 
  enddo 146 
 147 
  ! reduce the number of modes, if necessary 148 
  if (nmodes > maxmodes) then 149 
    print *, 'reducing rank of covariance matrix' 150 
    call reduce_rank( nmodes ) 151 
  endif   152 
 153 
  ! finish the time step 154 
  ! this updates the time as well! 155 
  ! We need the present time, because its the end of the 1h averaging 156 
  ! interval, similar as in the measurement files 157 
  call finish_timestep 158 
  print *, 'finished time step',njul,nyr 159 
 160 
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  ! output of modes amd state  161 
 162 
  call  output_kf_feld_grads(345,modes(1:ilength1,1)) ! mode 1 163 
  call  output_kf_feld_grads(345,modes(1:ilength1,2)) !  164 
  call  output_kf_feld_grads(345,modes(1:ilength1,3)) !  165 
  call  output_kf_feld_grads(345,x(1:ilength1)) ! O3 state  166 
  call  output_kf_feld_grads(345,xb(1:ilength1)) ! bcground  167 
 168 
  lfirst = .false. 169 
 170 
  ! read new measurements if necessary 171 
  if (njul > njulold) then 172 
    print *, 'reading measurements for julian day ',njul 173 
    call read_meas(njul,nyr) 174 
  endif 175 
 176 
  !update the state vectors, x and xb, and the existing modes 177 
  if(nmodes == maxmodes) call measupdate( nmodes, nhr, njul) 178 
 179 
  call  output_kf_feld_grads(345,x(1:ilength1)) ! O3 state  180 
      181 
  ! cjoh put averaged and assimilated state vector in xmaster for output  182 
  call fill_master_conv(x) 183 
 184 
  !output  185 
  call output(xmast(iconavg),xmast(idryflx),xmast(itopflx), & 186 
      xmast(ivd),xmast(iemtot),istep) 187 
  188 
  lfirst = .false. 189 
 190 
enddo 191 
 192 
! close the model 193 
print *, 'closing the model' 194 
call close_model 195 
 196 
end program kf_RCG_main 197 
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Line Explanation 

7 The module driver contains all global variables from RCG 
26-29 Noise factor are the factors by which some parameters are disturbed. 

Should be done by the user/modeller and should match the noise proc-
esses defined in kf_noise.f90 

35 The number of modes is initialised at zero: no apriori information is 
taken into account. The system builds up its own covariance matrix 

40 Initialisation of the model, using the appropriate RCG routines 
43 The state vector of the Kalman Filter is initialised (allocated, based on 

RCG dimensions) 
47 The files with observational data are opened. Station characteristics are 

read etc. 
54 Measurements are read per day, for a given year and julian day 
61 The loop over the number of hours that need to be simulated (irlg). This 

follows from the input to RCG. 
64 The layer heights and the density need to be saved, since RCG over-

writes them. However, the old values are needed for the modes as well. 
67 Subroutine prepare_timestep does whatever is necessary for carrying out 

a time step with RCG. 
72,73 x is state vector of the KF into which the observations are assimilated. 

xb is an additional state vector to which no assimilation is applied. In 
this way the effect of the assimilation can be seen immediately. 

74,75 When propagating the state vector no noise should be taken into account 
(see theory), hence the noise values need to be 1. 

86, 93 
100, 
109 

The subroutine fill_master2 fills the master array of RCG with the 
proper concentration vectors. This is necessary, since this master array 
(xmast) is part of a common block and thus concentration arrays cannot 
be given to as an argument to the RCG time stepping routines without 
major changes in the source code of RCG. 

88, 94, 
101, 
110 

The time-stepping mechanism by RCG automatically update the layer 
heights (“htface”), so the old values may need to be put back. 

98-106 The existing modes are updated (see theory). No noise needs to be set 
here. 

108-137 New noise modes are created (see theory). Here noise needs to be set. 
113-123 Noise parameter 4 (the last one in this case) applies to the mixing layer 

height. Since this affects other meteorological parameters as well, the 
meteo fields need to be made again. This is achieved by calling pre-
pare_timestep. 

141 New modes have been created, so the actual number of modes need to 
be updated. 

144-147 The modes are defined as deviations from the mean (see theory) so the 
mean is subtracted. 
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Line Explanation 

149-152 If the number of modes exceeds the maximum number it is reduced to 
this maximum number by means of a singular value decomposition. 
Apart from a number of time steps in the beginning of the simulation, 
when the covariance matrix is building up, the rank reduction is per-
formed every time step. 

158 Everything is done with respect to the time propagation of the state vec-
tor and the modes, so the time step can be finished. This mainly consists 
of updating time variables. 

172-175 If we entered a new day, new measurements need to be read. 
178 The measurements for this specific date and hour are processed. This is 

only done if the covariance matrix has already been built up, i.e. when 
the number of modes is equal to maxmodes. 

A.2 REM3/CALGRID code preparation for connection to the 
Kalman Filter routines 

In order to be able to incorporate updates of the REM/CALGRID code in KF pro-
gram a description is given how the original code has to be changed for use in the 
KF code framework. The objective is to use as much of the original 
REM/CALGRID code as possible.  
Following the structure of Algorithm 2 (see section 3.2.1), the code of the model 
REM/CALGRID is split into four subroutines which are called by the main routine 
(kf_main.f90) of the KF program. The subroutines are put in to the module 
kf_driver.f. In the table below a specification is given of these routines and which 
parts of the original code they contain. 
 
Subroutine in kf_driver.f Contains which original source 
init_model main000.for (i.e. the call of routine setup) and the 

parts of comp_fub.for until the basic time integra-
tion loop 100 

prepare_timestep content of the basic time loop 100 in comp_fub.for 
until the sub time step loop 50. It includes meteo 
and emission processing 

perform_timestep complete time step loop 50 of comp_fub.f90, which 
calculates advection, diffusion and chemical con-
version 

finish_timestep rest of comp_fub.for after loop 50  
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Remarks 
− The basic time loop 100 over the hour of the run is integrated in the module 

kf_main. 
− The only change in the sequence of the original REM/CALGRID code is a call 

of the subroutine zjump2 just in front of the time loop 50, which is put into per-
fome_timestep. Zjump2 does the calculation of new grid height and the reap-
portion of the species mass according to the new grid, which has to be done for 
all modes. Due to the fact that zjump2 is already called in prepare_timestep the 
old grid height have to be stored and put back in the model master state vector 
xmast before every call of performe_timstep. This is done by the subroutines 
save_htfaceold and put htface_old. They are part of the module kf_state and 
are call in the KF_main.f90. The call of zjump2 in prepare_timestep cannot be 
omitted because the new grid is needed for the processing of the meteorologi-
cal fields. 

− The rest of comp_fub.for after loop 50 is put in the subroutine finish_timestep. 
The call of output has been removed to the kf_main.f90 in order to insure that 
the analysed state vector is written to the output file. 

− In order to split comp_fub.for in the 3 routines prepare_timestep, per-
form_timestep and finish_timestep one has to ensure that all implicit variables 
have been made explicit in the definition section of the module kf_driver.f. 
Next, one has to avoid that time variable tin does not accumulate by the several 
calls of perform_timestep. Time updates etc. have therefore been removed 
from perform_timestep and put into prepare_timestep and finish_timestep. 

A.3 Description of output options REM/CALGRID KF 

The general structure of the output file management in the KF version is the same 
as in the CTM stand-alone version. They species selected for output in the input 
control file (*.inp) are written to concentration output file (CONC). They are the 
averaged values from the analysed model state vector x. The output is done after 
the analysis step in kf_main.f90.  
For additional diagnosis of the KF performance several new out put data files have 
been introduced (xxx refers to a run label which is taken from the name of the con-
centration output file conc_xxx_*.*): 
 
− output of the analysed values of the noise parameters for every hour  

(filter_noisexxx.txt) 
− output of the following quantities for every assimilated species at every station 

and hour of the run (e.g. filter_NO2_xxx.txt): measured value, assimilated 
value, modeled value without assimilation, modelled value before assimilation, 
model error variance, model error covariance with station first station in station 
list)  
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− grads files (modes_grads.bin/ctl) with the following actual : 1st - level concen-
tration fields for every assimilated species and hour of the run: 3 most impor-
tant modes, base model run without assimilation, model run with assimilation 
before and after the analysis step. 

− grads files (kovar_grads.bin/ctl) with the following 1st - level covari-
ance/variance fields for every assimilated species and hour of the run: variance, 
covariance between actual and averaged values at very grid point, covariance 
with grid point of first station in station list  

− additional asci files to report the size of the eigenvalues of the covariance ma-
trix 

 




