FE-Vorhaben 299 43 246

55 Entwicklung eines Beurteilungssystems für das Zusammenspiel von Messung und Modellrechnungen für die bundeseinheitliche Umsetzung der EU-Rahmenrichtlinie Luftqualität und ihrer Tochterrichtlinien"

Vorläufige Einschätzung der Luftqualität 1999 in Deutschland auf der Basis von Messungen und Modellrechnungen

Ergänzung der Ausgangsbeurteilung der Luftqualität 1999 nach Richtlinie 96/62/EG, Artikel 5

Rainer Stern und Johannes Flemming

Institut für Meteorologie Freie Universität Berlin Carl-Heinrich-Becker-Weg 6-10 12165 Berlin

Inhalt

AB	BILDUNG	SVERZEICHNIS	3
TA	BELLENV	/ERZEICHNIS	4
1.	EINLEI	ΓUNG	5
2.	BEURTI	EILUNG VON SCHWEFELDIOXID	8
3.	BEURTI	EILUNG DER STICKSTOFFOXIDE	13
4.	BEURTI	EILUNG VON PM10	17
5.	BEURTI	EILUNG VON OZON	21
6.	ZUSAMI	MENFASSUNG	28
7.	ANHAN	G 1: TABELLEN	30
	7.1.	Schwefeldioxid	30
	7.2.	Stickoxide	32
	7.3.	PM10	
	7.4.	Ozon	41
8. AU		G 2: VERKNÜPFUNG VON MESSUNGEN UND MODELLRECHNUNG SIS DER OPTIMALEN INTERPOLATION	
	8.1.	Formulierung der Gleichungen für die Optimale Interpolation	42
	8.2.	Bestimmung der Kovarianzen des Backgrounds und der Varianz der Beobacht	
	8.2.	1. Kovarianzmodell	44
	8.2.2	 Beobachtungsmethode zur Bestimmung der Kovarianzen des Background der Varianz des Beobachtungsfehlers 	
	8.3.	Implementierung der OI für Immissionsfelder	
	8.3.	1. OI mit einem homogenen und isotropen Korrelationsmodell aus den Date	en zum
		Termin	
	8.3.2	6	
		Weiterentwicklung der OI	
	8.4.	OI mit einem inhomogenen Kovarianzmodell unter Berücksichtigung verschiedener Emissionsregimes	
9.	ANHAN	G 3: ANWENDUNG DER OI ALTERNATIV MIT MODELLHINTERGR	UND
OD	ER MESS	HINTERGRUND	51
10	T TOTAL	D A TELED	<i></i>
10.	LIIEI	RATUR	57

Abbildungsverzeichnis

	Gebiete mit mehr als 3 Überschreitungen des SO ₂ -Tagesmittelwerts von 50 μg/m ³ ungsschwelle), 75 μg/m ³ (Obere Beurteilungsschwelle), 125 μg/m ³ (Grenzwert). 1999. Optimale Interpolation mit Modellhintergrund
Abbildung 2 Beurteilungssch	SO ₂ -Jahresmittelwerte in μg/m³. Untere Beurteilungsschwelle (UBS) 8 μg/m³, Obere welle, (OBS) 12 μg/m³, Grenzwert (GW) 20 μg/m³. Beurteilungsjahr 1999. Optimale Modellhintergrund
Abbildung 3 Beurteilungssch	SO ₂ -Wintermittelwerte in μg/m3. Untere Beurteilungsschwelle (UBS) 8 μg/m³, Obere welle, (OBS) 12 μg/m³, Grenzwert (GW) 20 μg/m³. Beurteilungsjahr 1999. Optimale Modellhintergrund.
Abbildung 4	Gebiete mit mehr als 18 Überschreitungen des NO ₂ -Stundenmittelwerts von 100 µg/m ³
(Untere Beurteil	ungsschwelle), 140 μg/m³ (Obere Beurteilungsschwelle), 200 μg/m³ (Grenzwert).
0 0	1999. Optimale Interpolation mit Modellhintergrund
Abbildung 5	
	welle, (OBS) 32 μg/m ³ , Grenzwert (GW) 40 μg/m ³ , Grenzwert+Toleranzmarge (GW+TM)
	eilungsjahr 1999. Optimale Interpolation mit Modellhintergrund
Abbildung 6	NO_x -Jahresmittelwerte (als NO_2) in $\mu g/m^3$. Untere Beurteilungsschwelle (UBS) 19,5
	eurteilungsschwelle, (OBS) 24 μg/m³, Grenzwert (GW) 30 μg/m³. Beurteilungsjahr 1999.
	plation mit Modellhintergrund
Abbildung 7	Gebiete mit mehr als 7 Überschreitungen eines PM10-Tagesmittelwerts von 20, 30, 50
	als 35 Überschreitungen von 50, 75 µg/m³. Beurteilungsjahr 1999. Optimale Interpolation grund
Abbildung 8	PM10-Jahresmittelwerte in µg/m ³ . Beurteilungsjahr 1999. Optimale Interpolation mit
	nd
Abbildung 9	••
	erts von 120 µg/m ³ Ozon. Beurteilungsjahr 1999. Optimale Interpolation mit
	nd
Abbildung 10	
	ilungsjahr 1999. Optimale Interpolation mit Modellhintergrund
Abbildung 11	Höchster 8-Stundenmittelwert im Kalenderjahr für Ozon berechnet aus den stündlich
gleitenden 8-Stu	ndenmittelwerten. Beurteilungsjahr 1999. Optimale Interpolation mit
Modellhintergru	nd
Abbildung 12	Ozon-Jahresmittelwerte in µg/m ³ . Beurteilungsjahr 1999. Optimale Interpolation mit
	nd
	Ozon-AOT40-Werte in µg/m³ h, berechnet aus den 1-Stundenwerten von April bis
	Uhr Beurteilungsjahr 1999. Optimale Interpolation mit Modellhintergrund
Abbildung 14	\mathcal{E}
	sse (10km), FIT: approximiertes Korrelationsmodell
Abbildung 15	Jahresmittelwert für NO ₂ in μg/m³ aus der bisherigen, für die Ausgangsbeurteilung
verwendeten OI	Implementierung
	len
Abbildung 17	NO ₂ -Tagesmittelwerte 1997 in Freiburg. OI mit gemessenem Hintergrund (OI-OBS),
	tem Hintergrund (OI-OBS-REM3), REM3-Modellergebnisse (REM3) und Beobachtungen
	NS). Die Messungen wurden in der OI verwendet. Weitere Erläuterungen im Text 54
Abbildung 18	NO ₂ -Tagesmittelwerte 1997 an der UBA-Station Waldhof .OI mit gemessenem
	OBS), OI mit berechnetem Hintergrund (OI-OBS-REM3), REM3-Modellergebnisse
	obachtungen (OBSERVATIONS). Die Messungen wurden nicht in der OI verwendet.
	ungen im Text
Abbildung 19	NO ₂ -Tagesmittelwerte 1997 an der UBA-Station Murnauer Moos. OI mit gemessenem
	OBS), OI mit berechnetem Hintergrund (OI-OBS-REM3), REM3-Modellergebnisse
	obachtungen (OBSERVATIONS). Die Messungen wurden nicht in der OI verwendet.
	ungen im Text

Tabellenverzeichnis

Tabelle 1	Grenzwerte, Toleranzmargen und Beurteilungsschwellen für Schwefeldioxid	3
Tabelle 2	Grenzwerte, Toleranzmargen und Beurteilungsschwellen für Stickstoffoxide	3
Tabelle 3	Grenzwerte, Toleranzmargen und Beurteilungsschwellen für PM10.	7
Tabelle 4	Zielwerte und Langfristziele für Ozon.	1
Tabelle 5	Stationen, an denen an mehr als an 3 Tagen Überschreitungen der Unteren	
Beurteilung	gsschwelle von 50 µg/m ³ SO ₂ registriert wurden (Keine Überschreitung der Oberen	
Beurteilung	gsschwelle oder des Grenzwerts). Beurteilungsjahr 1999)
Tabelle 6	Stationen in Deutschland, an denen im Jahresmittel 1999 mehr als 12 µg/m³ SO ₂ (Obere	
Beurteilung	gsschwelle) gemessen wurden)
Tabelle 7	Stationen in Deutschland, an denen im Wintermittel 1999 (Januar-März, Oktober-Dezember)	
mehr als 12	2 μg/m ³ SO ₂ (Obere Beurteilungsschwelle) gemessen wurden. Überschreitungen des Grenzwerts	3
$(20 \mu\mathrm{g/m}^3)$	sind fett markiert	1
Tabelle 8	Stationen, an denen an mehr als an 18 Stunden Überschreitungen der Oberen	
	gsschwelle von 140 µg/m³ NO ₂ registriert wurden. Beurteilungsjahr 1999	2
Tabelle 9	Stationen in Deutschland, an denen im Jahresmittel 1999 mehr als 40 µg/m³ NO ₂	
),bzw. mehr als 60 μg/m³ (Grenzwert+Toleranzmarge, fett) gemessen wurden	2
Tabelle 10	Stationen, an denen an mehr als an 35 Tagen Überschreitungen des	
_	lgrenzwerts+Toleranzmarge von 75 μg/m ³ PM10 (Stufe 1) registriert wurde. Beurteilungsjahr	
		5
Tabelle 11	Stationen, an denen an mehr als an 35 Tagen (Stufe 1, fett) bzw. mehr als 7 Tagen (Stufe 2)	
	tungen des Tagesmittelgrenzwerts von 50 μg/m³ PM10 registriert wurden. Beurteilungsjahr	
1999		-
Tabelle 12	Stationen in Deutschland, an denen im Jahresmittel 1999 mehr als 40 µg/m³ PM10 (Grenzwert	
	w. 48 μg/m ³ PM10 (Grenzwert+Toleranzmarge Stufe 1, fett) gemessen wurden)
Tabelle 13	Stationen in Deutschland, an denen im Jahresmittel 1999 mehr als 70 µg/m³ Ozon gemessen	
	41	l
Tabelle 14	NO ₂ -Jahresmittelwerte 1997 in μg/m ³ an ausgewählten UBA-Stationen. OI mit gemessenem	
_	d (OI-OBS), OI mit berechnetem Hintergrund (OI-OBS-REM3), REM3-Modellergebnisse	
	d Beobachtungen. Auswertung jeweils für die Perioden, in denen Messungen zur Verfügung	,
standen. W	eitere Erläuterungen im Text	5

1. Einleitung

Die neue EU-Rahmenrichtlinie 96/62/EG über die Beurteilung und die Kontrolle der Luftqualität (EU, Amtsblatt der Europäischen Gemeinschaften, 1996) verlangt die Erstellung einer Ausgangsbeurteilung zur Luftqualität, später eine regelmäßige Beurteilung und ggf. die Erstellung von Alarm- bzw. Maßnahmeplänen. Um angemessene Informationen über die Luftqualität zu erhalten, sind in der EU-Rahmenrichtlinie erstmalig nicht nur Messungen, sondern auch Ausbreitungsrechnungen vorgesehen. Demnach können Modelle eingesetzt werden

- Zur räumlichen Darstellung der Schadstoffverteilung in allen Skalenbereichen (National, Ballungsgebiet, Straße), insbesondere in Gebieten, wo die Schadstoffkonzentrationen unter der jeweiligen Oberen Beurteilungsschwelle liegen.
- Zur Prognose der Wirksamkeit von Maßnahmen.

Dafür müssen Ausbreitungsmodelle bereit gestellt werden, die die von den EU-Richtlinien vorgegebenen Anforderungen an die Ausbreitungsrechnung erfüllen. In dem vom Umweltbundesamt geförderten FE-Vorhaben 299 43 246

"Entwicklung eines Beurteilungssystems für das Zusammenspiel von Messung und Modellrechnungen für die bundeseinheitliche Umsetzung der EU-Rahmenrichtlinie Luftqualität und ihrer Tochterrichtlinien"

das an der Freien Universität Berlin durchgeführt wird, wird dazu ein Modellsystem entwickelt, das zur Umsetzung der EU-Rahmenrichtlinie 96/62/EG in Deutschland benutzt werden kann. Das Modellsystem soll die folgenden vier Raumskalen abdecken:

- europaweit,
- großräumig (national)
- regional (Ballungsraum)
- lokal/städtisch (Stadtquartier, Straßenschlucht).

Die in dem FE-Vorhaben 299 43 246 vorgesehene Modellentwicklung und Modellanwendung soll alle diese Raumskalen in einem gekoppeltem System von Ausbreitungsmodellen behandeln, wobei jedes Einzelmodell an die spezifischen Anforderungen der Raum- und Zeitskala angepasst ist, innerhalb der es angewandt wird. Das Modellsystem soll es ermöglichen, die in der EU-RRL definierten Luftqualitätswerte zu bestimmen, sowie deren Unter- bzw. Überschreitungen anzugeben. Betrachtet werden die Schadstoffe SO₂, NO_x, Benzol, Ozon, PM10 und CO.

Für das Modellsystem werden keine neuen Modelle entwickelt, sondern bereits erprobte Ausbreitungsmodelle verwendet, die lediglich hinsichtlich der spezifischen Anforderungen der Aufgabenstellung modifiziert bzw. ergänzt werden müssen.

Das Modellsystem enthält folgende Ausbreitungsmodelle:

• Das dreidimensionale photochemische Transportmodell REM3/CALGRID. Dieses Modell entsteht zur Zeit aus einer Verschmelzung des großräumigen Transportmodells REM3 (Regional Eulerian Model with 3 different chemical mechanisms), mit dem für die urbane Raumskala (Ballungsgebiet) entwickelten dreidimensionalen photochemischen Transportmodell CALGRID (California Grid model). Beide Modelle sind in vielen Anwendungen erprobt Stern 1994, Stern und Builtjes, 1998, Motz et al., 1997). In der Verschmelzung werden einerseits die spezifischen Vorteile beider Modelle in einer Modellschale vereint und andererseits die physikalisch/chemischen Module auf den neuesten Stand des Wissens gebracht. Zur Behandlung der PM10-Problematik wird das Modell weiterhin um ein Aerosolmodul ergänzt. Das neue Modell wird zur Bestimmung der Luftqualität in der europaweiten und der nationa-

len Raumskala in einer Auflösung von ca. 30x30 km² und in der urbanen Raumskala (Ballungsgebiet) in einer Auflösung von ca. 2x2 km² verwendet.

- Das im Auftrag des Umweltbundesamts für Straßenschluchten entwickelte CPB-Modell (Canyon-Plume-Box-Modell). Das CPB-Modell ist ein 2-dimensionales analytisch-empirisches Modell, mit dem die verkehrsbedingten Luftschadstoffimmissionen stündlich an beliebigen Aufpunkten (Rezeptoren) in einer Straßenschlucht auf der Basis leicht zugänglicher meteorologischer Größen berechnet werden können. Das CPB-Modell ist Bestandteil des CI-TAIR-Systems des Umweltbundesamts. Dieses Modell wird zur Bestimmung der Luftqualität in Straßenschluchten verwendet.
- AUSTAL2000, ein Lagrange'sches Partikelsimulationsmodell zur Beschreibung von Immissionsbelastungen ausgehend von industriellen Quellen.

In dem FE-Vorhaben 299 43 246 werden auch Methoden zur Verknüpfung von Messung und Rechnung im Sinne einer Datenassimilation entwickelt. Ein Ziel der Datenassimilation ist die Erstellung flächendeckender Immissionsverteilungen, d.h. kontinuierlicher Felddarstellungen, für Deutschland. Die dazu verwendete Methodik ist die sogenannte Optimale Interpolation (OI). Die Grundidee der im Vorhaben verwendeten Datenassimilation beruht darauf, Lücken im Beobachtungsnetz mit Modellergebnissen aufzufüllen und dadurch die folgenden Nachteile einer reinen Mess-Interpolation aufzuheben oder zu mindestens zu vermindern:

- Stationsdichte außerhalb der Stadtgebiete ist gering, insbesondere wenn man den in den EU-Richtlinien definierten Datenumfang von mindestens 90% ansetzt.
- Räumliche Repräsentativität der Stationen ist oft unklar.

Diese Punkte können zu Problemen führen bei der Konstruktion bundesweiter Konzentrationsfelder ausschließlich auf der Basis von Messungen. Bei Schadstoffen mit maximalen Konzentrationen in Stadtgebieten kann die reine Mess-Interpolation eine Überschätzung der Ausdehnung der Gebiete ergeben, in denen es zu Überschreitungen der Grenzwerte und der Beurteilungsschwellen der EU-RR kommt, bei Schadstoffen mit maximalen Konzentrationen außerhalb der Stadtgebiete dagegen eine Unterschätzung dieser Gebiete.

Die Methodik der Optimalen Interpolation bildet die Grundlage der hier vorgestellten Ausgangsbeurteilung 1999 für Deutschland, die auf einer Verknüpfung von stündlichen Messungen und stündlichen Modellergebnissen für das Jahr 1999 beruht. Die Messungen stammen aus den Messnetzen der Bundesländer und des Umweltbundesamts und wurden vom Umweltbundesamt zur Verfügung gestellt. Die großräumigen Modellergebnisse stammen aus einer Anwendung des photochemischen Transportmodells REM3 für West- und Zentraleuropa in einer zeitlichen Auflösung von 1 Stunde und einer räumlichen Auflösung von 0,5° Länge und 0,25° Breite. Die Optimale Interpolation benutzt die Modellergebnisse als Hintergrundfeld, in das die Messungen integriert werden. Dazu werden Repräsentativitätsgebiete der Messungen aus den statistisch abgeleiteten Strukturen (räumliche Autokorrelation) gewonnen. Rechenergebnisse werden dann vorrangig außerhalb dieser Gebiete benutzt. Zur Interpolation wird über das Gebiet ein Raster mit einer Auflösung von mehreren Kilometern gelegt. Wie bei nahezu jeder Interpolation kommt es dadurch zu einer Nivellierung singulärer Ereignisse im Raster, d. h. der Messwert wird dem Umgebungsniveau angepasst, sofern die Extremmessung nicht durch andere Messungen im Raster bestätigt wird. Tendenziell werden dadurch hohe (oder niedrige) Messwerte, die nur isoliert an einer Station auftreten (sog. "hot-spots"), in den flächenhaften Darstellungen für ganz Deutschland nicht ausgewiesen. In Ballungsgebieten dürfte es sich dabei hauptsächlich um verkehrsnahe Stationen handeln, deren Repräsentanzbereich gering ist. Im ländlichen Bereich können insbesondere Messungen von Bergstationen, aber auch Messungen im Einflussbereich stark befahrener Straßen, nicht in der OI-Darstellung wiedergefunden werden, da solche Messungen oft aus dem Immissionsniveau der umliegenden Stationen herausfallen. Aus diesem Grunde werden in diesem Bericht Stationen,

an denen die Grenzwerte überschritten wurden, zusätzlich im Anhang 1 tabellarisch ausgewiesen, falls sich diese Überschreitung nicht in den mit der OI erstellten Karten zeigt. Eine ausführliche Darstellung der Optimalen Interpolation ist im Anhang 2 zu finden.

Die hier vorgestellten Ergebnisse haben noch vorläufigen Charakter, da die Ausbreitungsrechnungen noch mit der Entwicklungsversion des Modells REM3/CALGRID durchgeführt wurden. Dies betrifft hauptsächlich die PM10-Ausbreitungsrechnungen, bei denen als sekundäres Aerosol lediglich Sulfat betrachtet wurde, d.h. eine mehr vollständige Betrachtung der Aerosole steht noch aus. Es sei weiterhin angemerkt, dass auch die verwendeten Emissionsdatenbasen, die zwar in der deutschlandweiten Summe der Emissionen auf 1999 fortgeschrieben wurden, in ihrer räumlichen Struktur noch dem Stand von 1990 entsprechen. Dadurch kann es insbesondere im Bereich der neuen Bundesländer, wo sich die Emissionsstruktur seit 1990 drastisch verändert hat, zu berechneten Immissionsverteilungen kommen, die nicht mehr dem Stand der Emissionen entsprechen. Neue Datenbasen mit dem Bezugsjahr 1995 stehen kurz vor der Fertigstellung.

Auch die verwendete Methodik der Optimalen Interpolation befindet sich noch in Entwicklung. Insbesondere die räumliche Repräsentativität von Messungen, die gegenwärtig aus den mittleren Eigenschaften des beobachteten Feldes für alle Stationen gleich behandelt wird, wird in zukünftigen OI-Anwendungen ortsspezifisch berechnet werden. Eine erste Anwendung einer verbesserten OI-Implementierung kann im Anhang 2 gefunden werden.

Die vorgestellten Auswertungen demonstrieren daher in erster Linie eine Methodik, die die Erstellung von flächenhaften Darstellungen der Immissionsverteilungen unter Verwendung der Informationen aus Messung und Rechnung ermöglicht, und sollen die im Rahmen der Ausgangsbeurteilung nach Artikel 5 der EU-RRL zu erbringenden Informationen ergänzen. Die Methodik ist darüber hinaus für die ab 2002 regelmäßig durchzuführende Beurteilung der Luftqualität nach Artikel 6 der EU-RRL geeignet.

Es werden kartographische Darstellungen für die deutschlandweiten Verteilungen der in den Tochterrichtlinien definierten Beurteilungsgrößen der Stoffe SO₂, NO₂, NO_x, PM10 und Ozon präsentiert.

CO wird nicht behandelt, da zum Einen die Auswertung der vorliegenden Messungen zeigte, dass in 1999 an keiner Station der Grenzwert von 10 mg/m³ (Höchster 8-Stundenmittelwert eines Tages) erreicht wurde. Auch die Obere Beurteilungsschwelle von 7 mg/m³ wurde nur an wenigen verkehrsnahen Stationen überschritten. Zum Anderen sind auch die zur Zeit noch verwendeten Emissionsdatenbasen für CO so unvollständig, dass deren Verwendung in Verbindung mit der OI zu einer Verfälschung der Ergebnisse führen könnten. Eine OI-Darstellung der CO-Verteilungen muss daher bis nach der Fertigstellung der neuen Emissionsdatenbasen verschoben werden.

Auch Benzol und Blei wurden nicht mit der OI behandelt, da für beide Stoffe weder Messungen noch Emissionsdaten zur Verfügung standen. Eine Betrachtung beider Stoffe ist jedoch prinzipiell möglich.

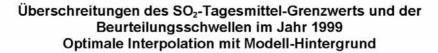
Die hier vorgestellte Anwendung der OI benutzt die Modellergebnisse als Hintergrundfeld, in das die Messungen integriert werden. Die OI kann natürlich auch zur Interpolation von Messungen ohne Modellhintergrund verwendet werden. Ein Vergleich von OI-Anwendungen mit und ohne Modellhintergrund ist im Anhang 3 zu finden.

2. Beurteilung von Schwefeldioxid

Für SO₂ sind in der Tochterrichtlinie 1999/30/EG folgende Grenzwerte, Toleranzmargen und Beurteilungsschwellen definiert:

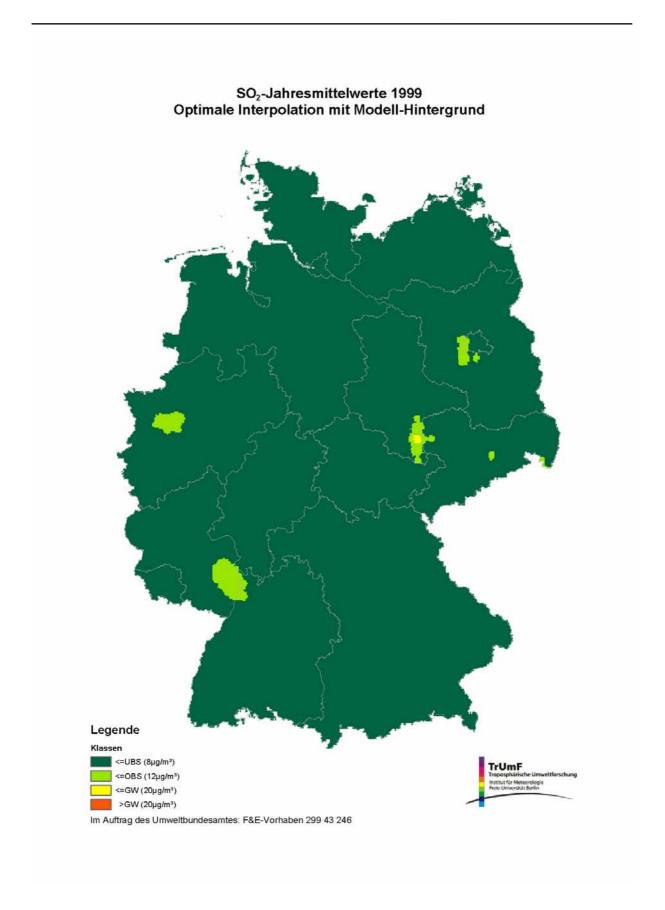
Tabelle 1	Grenzwerte, Toleranz	margen und Beurtei	ilungsschwellen	für Schwefeldioxid.
I abelle I	Grenz werte, referanz	margen and bearter		iai beliwererarezia.

Schutz	Mittelungs-	Grenzwert	Toleranz-	Zeitpunkt, bis zu	Obere	Untere
	zeitraum		marge	dem der	Beurteilungs-	Beurteilungs-
				Grenzwert	schwelle	schwelle
				einzuhalten ist		
Menschliche	1 Stunde	$350 \mu g/m^3$;	$150 \mu\mathrm{g/m}^3$	1. Januar 2005		
Gesundheit		zulässige Zahl der				
		Überschreitungen				
		im Kalenderjahr:				
		24				
Menschliche	24 Stunden	125 μ g/m ³ ;	keine	1. Januar 2005	75 μg/m ³ ;	50 μg/m ³ ;
Gesundheit		zulässige Zahl der			zulässige Über-	zulässige Über-
		Überschreitungen			schreitungen	schreitungen
		im Kalenderjahr: 3			3	3
Ökosysteme	Kalenderjahr	$20 \mu\mathrm{g/m}^3$	Keine	19. Juli 2001	$12 \mu\mathrm{g/m}^3$	$8 \mu g/m^3$
	und Winter					
	(1. Oktober					
	bis 31. März					


Für die Ausgangsbeurteilung standen die Messreihen von 445 Stationen zur Verfügung. 48 dieser Stationen hatten im Jahr 1999 mehr als 10% Datenausfall, so dass sie gemäß der EU-Richtlinie nicht für die Beurteilung verwendet werden können. Die OI wurde damit auf der Basis der stündlichen Messreihen von 397 Stationen durchgeführt.

Der 1-Stundengrenzwert von $350~\mu g/m^3$, gültig ab 1. Januar 2005, wurde im Jahre 1999 nur an einigen Stationen für wenige Stunden überschritten. Die zulässige Anzahl von Überschreitungen (24) wurde an keiner Station erreicht. Das gleiche gilt demzufolge auch für die Zahl der Überschreitungen des Grenzwerts +Toleranzmarge ($500~\mu g/m^3$); die Einhaltung dieses Prüfkriteriums ist unmittelbar gegeben, die Anzahl der einzelnen Überschreitungen dieses Wertes war 1999 noch deutlich geringer. In den Ausbreitungsrechnungen wird der 1-Stundengrenzwert in Deutschland gar nicht überschritten. Wegen der geringen Anzahl der Überschreitungen wurde für den 1-Stundengrenzwert auf eine Auswertung der OI verzichtet.

An keiner Station wurde im Jahre 1999 ein SO_2 -Tagesmittelwert von $125~\mu g/m^3$ (Grenzwert) oder $75~\mu g/m^3$ (Obere Beurteilungsschwelle) öfter als 3mal erreicht. Auch die höchsten berechneten Tagesmittelwerte liegen unter diesen Schwellen. Die Tabelle 5 (Anhang 1) zeigt die Anzahl der Tage für Stationen, an denen $50~\mu g/m^3$ (Untere Beurteilungsschwelle) an mehr als an drei Tagen überschritten wurde. Die Abbildung 1 zeigt die mit der Optimalen Interpolation ermittelten Gebiete, in denen in 1999 diese Untere Beurteilungsschwelle für die SO_2 -Tagesmittelwerte überschritten wurde. Danach kam es lediglich in Sachsen zu Überschreitungen. Der Tabelle 5 kann entnommen werden, dass Sachsen von allen Bundesländern die höchste Anzahl von Stationen (4) ausweist, an denen an mehr als 3 Tagen eine Überschreitung der Unteren Beurteilungsschwelle gemessen wurde. Die einzelnen Überschreitungen in anderen Bundesländern werden wegen der Mittelungseigenschaften der Interpolation, die singuläre Werte dem umgebenden Niveau annähert, nicht abgebildet.


Die Abbildung 2 zeigt die Gebiete in Deutschland, in denen es in 1999 zu Überschreitungen der Beurteilungsschwellen für die SO_2 -Jahresmittelwerte gekommen ist. Die OI weist lediglich in Sachsen-Anhalt eine Fläche mit einer Überschreitung der Oberen Beurteilungsschwelle aus (12 μ g/m³). Der Tabelle 6 (Anhang 1) kann entnommen werden, dass an einzelnen Stationen auch in anderen Bundesländern mehr als 12 μ g/m³ gemessen wurden. Wegen der Mittelungseigenschaften der Interpolation werden diese einzelnen Überschreitungen in der OI nicht ausgewiesen. Der Jahres-Grenzwert von 20 μ g/m³ wurde 1999 nirgendwo in Deutschland erreicht.

Die Gebiete mit Überschreitungen der SO₂-Beurteilungsschwellen für die Wintermittelwerte können der Abbildung 3 entnommen werden. Kleinere flächenhafte Überschreitungen der Oberen Beurteilungsschwelle werden von der OI in Sachsen-Anhalt und im Grenzbereich Berlin-Brandenburg ausgewiesen. In den anderen Bundesländern treten zwar an einzelnen Stationen auch Überschreitungen auf (Tabelle 7, Anhang 1), diese werden von der OI aber nicht abgebildet. Eine Überschreitung des Grenzwerts von 20 μg/m³ wurde in den Wintermonaten 1999 lediglich an einer Station festgestellt (Tabelle 7, Anhang 1).

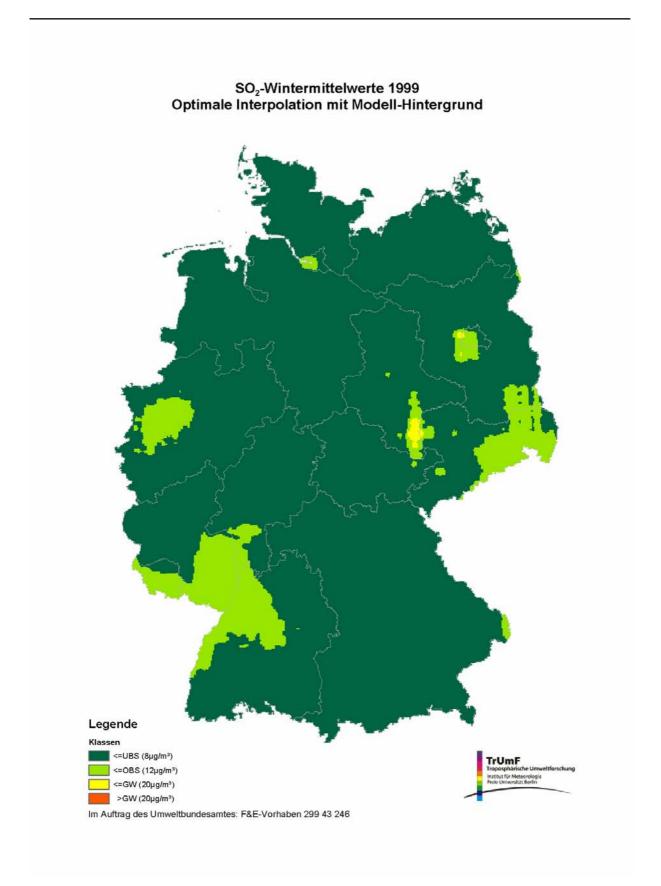


Abbildung 1 Gebiete mit mehr als 3 Überschreitungen des SO_2 -Tagesmittelwerts von $50~\mu g/m^3$ (Untere Beurteilungsschwelle), $75~\mu g/m^3$ (Obere Beurteilungsschwelle), $125~\mu g/m^3$ (Grenzwert). Beurteilungsjahr 1999. Optimale Interpolation mit Modellhintergrund.

Abbildung 2 SO₂-Jahresmittelwerte in $\mu g/m^3$. Untere Beurteilungsschwelle (UBS) 8 $\mu g/m^3$, Obere Beurteilungsschwelle, (OBS) 12 $\mu g/m^3$, Grenzwert (GW) 20 $\mu g/m^3$. Beurteilungsjahr 1999. Optimale Interpolation mit Modellhintergrund.

Abbildung 3 SO₂-Wintermittelwerte in μ g/m3. Untere Beurteilungsschwelle (UBS) 8 μ g/m³, Obere Beurteilungsschwelle, (OBS) 12 μ g/m³, Grenzwert (GW) 20 μ g/m³. Beurteilungsjahr 1999. Optimale Interpolation mit Modellhintergrund.

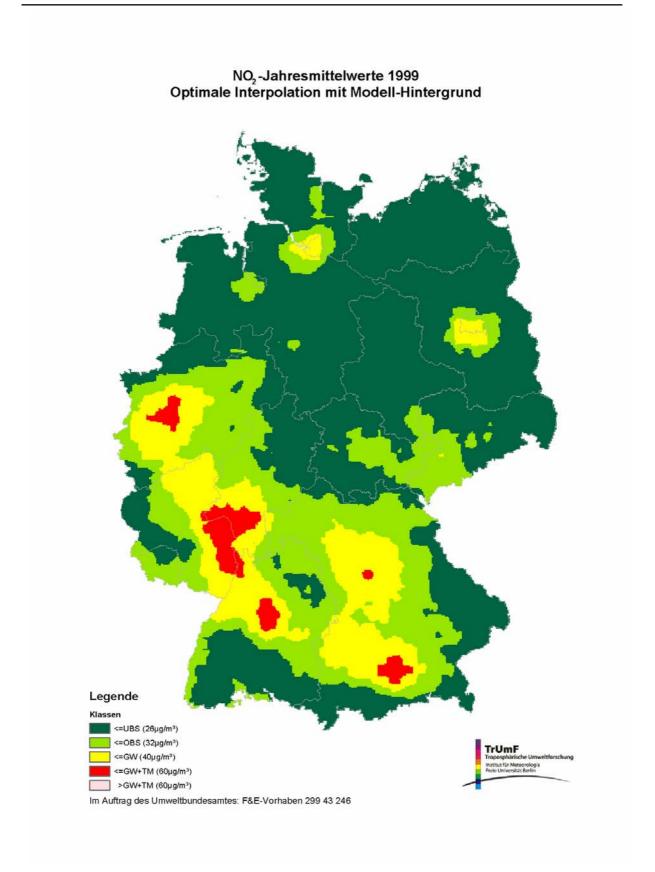
3. Beurteilung der Stickstoffoxide

Für die Stickstoffoxide sind in der Tochterrichtlinie 1999/30/EG folgende Grenzwerte, Toleranzmargen und Beurteilungsschwellen definiert:

Tabelle 2	Grenzwerte, Toleranzmarge	en und Beurteilungsschwell	en für Stickstoffoxide.


Schutz	Mittelungs-	Grenzwert	Toleranz-	Zeitpunkt, bis	Obere	Untere
	zeitraum		marge	zu dem der	Beurteilungs-	Beurteilungs-
				Grenzwert	schwelle	schwelle
				einzuhalten ist		
Menschliche	1 Stunde	$200 \mu \text{g/m}^3 \text{NO}_2;$	$100 \mu\mathrm{g/m}^3$	1. Januar 2010	140 μ g/m ³ NO ₂ ;	$100 \mu g/m^3$
Gesundheit		zulässige Zahl	NO_2		zulässige Zahl	NO ₂ ; zulässige
		der Über-			der Über-	Zahl der Über-
		schreitungen im			schreitungen im	schreitungen im
		Kalenderjahr: 18			Kalenderjahr:18	Kalenderjahr: 18
Menschliche	Kalenderjahr	$40 \mu\mathrm{g/m}^3 \mathrm{NO}_2$	$20 \mu \text{g/m}^3$	1. Januar 2010	$32 \mu\text{g/m}^3 \text{NO}_2$	$26 \mu\text{g/m}^3 \text{NO}_2$
Gesundheit			NO_2			
Vegetation	Kalenderjahr	30 μg/m ³ NOx	keine	19. Juli 2001	24 μg/m ³ NOx	19,5 μg/m ³ NOx

Für die NO₂-Ausgangsbeurteilung standen die Messreihen von 481 Stationen zur Verfügung. 88 dieser Stationen hatten im Jahr 1999 mehr als 10% Datenausfall, so dass sie gemäß der EU-Richtlinie nicht für die Beurteilung verwendet werden können. Die OI wurde damit auf der Basis der stündlichen NO₂-Messreihen von 393 Stationen durchgeführt. Für die NO_x-Ausgangsbeurteilung standen ebenfalls die Messreihen von 481 Stationen zur Verfügung. 156 dieser Stationen hatten im Jahr 1999 mehr als 10% Datenausfall bei NO und/oder NO₂, so dass die OI für NO_x auf der Basis der stündlichen Messreihen von 325 Stationen durchgeführt wurde.


Die Abbildung 4 zeigt die Gebiete in Deutschland, in denen die OI eine Überschreitung der Unteren Beurteilungsschwelle ($100~\mu g/m^3~NO_2$) in mehr als in 18 Stunden ermittelt. Die wenigen Stationen mit Überschreitungen der Oberen Beurteilungsschwelle von $140~\mu g/m^3~NO_2$ werden von der OI nicht aufgelöst. Diese Stationen sind in Tabelle 8 (Anhang 1) zusammengefasst. Eine Überschreitung des Grenzwerts von $200~\mu g/m^3~NO_2$ in mehr als 18 Stunden wurde nur an der Station TH043 in Erfurt registriert.

Die NO₂-Jahresmittelwertverteilung in Deutschland zeigt die Abbildung 5. Danach kam es 1999 zu großflächigen Überschreitungen des Grenzwerts von 40 μ g/m³ NO₂ in den Großräumen München und Stuttgart, in Nürnberg, sowie im Rhein-Main-Gebiet und in Teilen des Ruhrgebiets. Gebiete mit Überschreitungen von 60 μ g/m³ NO₂ (Grenzwert+Toleranzmarge) treten in der Skala der Optimalen Interpolation nicht auf, wurden aber an einigen verkehrsnahen Stadtstationen gemessen (Tabelle 9, Anhang 1).

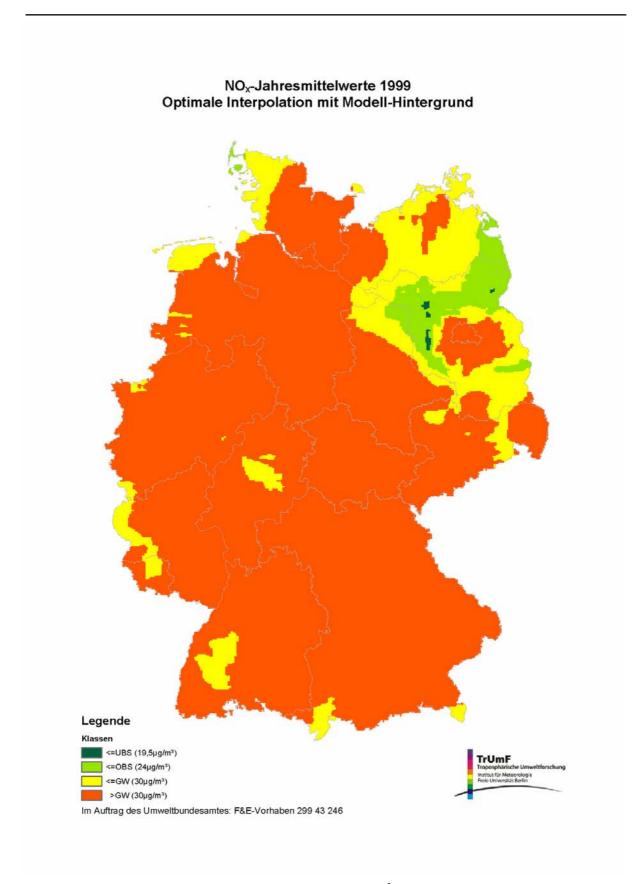

Der NO_x -Jahresmittelgrenzwert von 30 $\mu g/m^3$ zum Schutz der Vegetation wurde 1999 in Deutschland großflächig überschritten (Abbildung 6). Selbst in emissionsarmen Gebieten wie dem Schwarzwald liegen die Jahresmittelwerte noch über der Oberen Beurteilungsschwelle.

Abbildung 4 Gebiete mit mehr als 18 Überschreitungen des NO_2 -Stundenmittelwerts von $100 \,\mu g/m^3$ (Untere Beurteilungsschwelle), $140 \,\mu g/m^3$ (Obere Beurteilungsschwelle), $200 \,\mu g/m^3$ (Grenzwert). Beurteilungsjahr 1999. Optimale Interpolation mit Modellhintergrund.

Abbildung 5 NO₂-Jahresmittelwerte in μ g/m³. Untere Beurteilungsschwelle (UBS) 26 μ g/m³, Obere Beurteilungsschwelle, (OBS) 32 μ g/m³, Grenzwert (GW) 40 μ g/m³, Grenzwert+Toleranzmarge (GW+TM) 60 μ g/m³. Beurteilungsjahr 1999. Optimale Interpolation mit Modellhintergrund.

Abbildung 6 NO_x-Jahresmittelwerte (als NO₂) in $\mu g/m^3$. Untere Beurteilungsschwelle (UBS) 19,5 $\mu g/m^3$, Obere Beurteilungsschwelle, (OBS) 24 $\mu g/m^3$, Grenzwert (GW) 30 $\mu g/m^3$. Beurteilungsjahr 1999. Optimale Interpolation mit Modellhintergrund.

4. Beurteilung von PM10

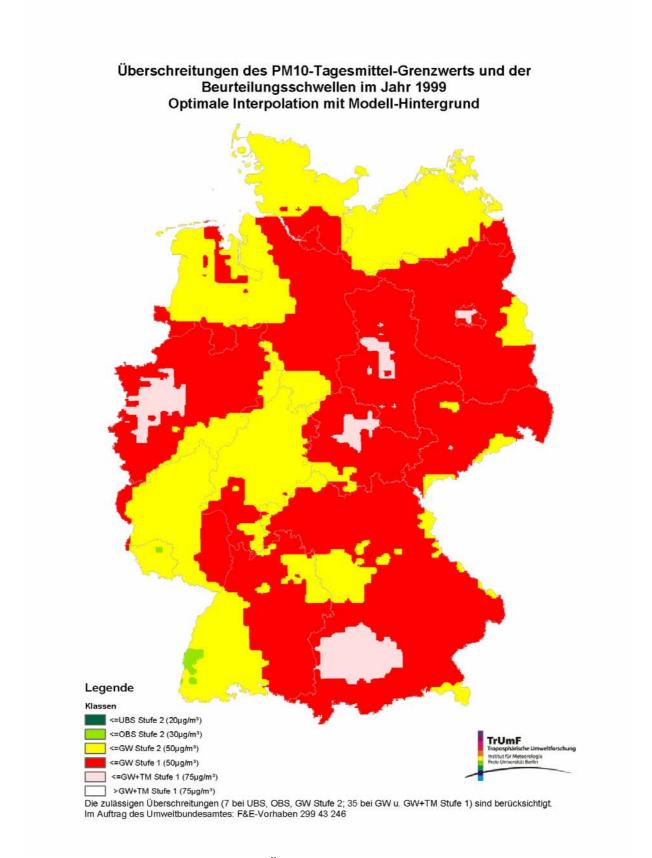
Für PM10 sind in der Tochterrichtlinie 1999/30/EG folgende Grenzwerte, Toleranzmargen und Beurteilungsschwellen definiert:

Tabelle 3 Grenzwerte, Toleranzmargen und Beurteilungsschwellen für PM10.

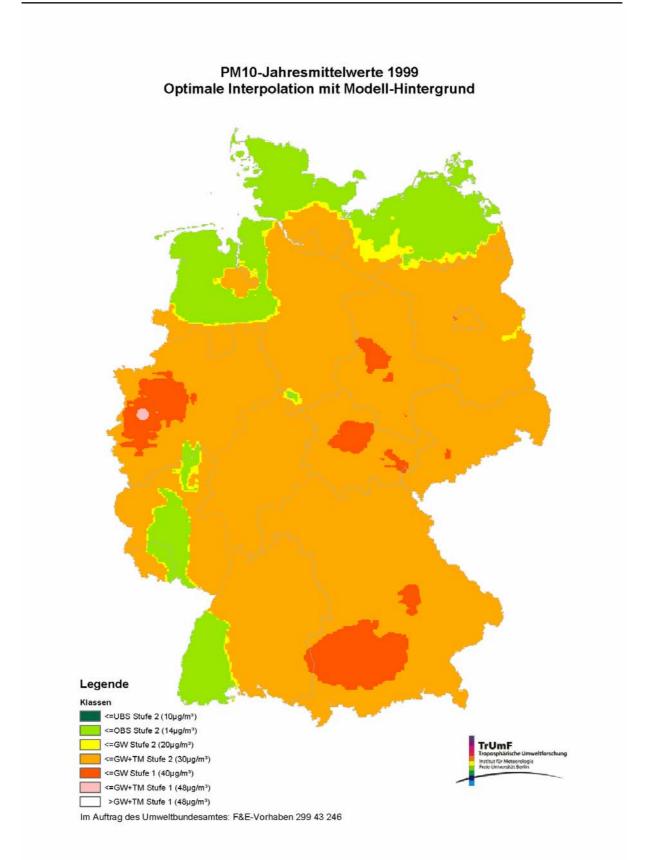
Stufe 1

Schutz	Mittelungs-	Grenzwert	Toleranz-	Zeitpunkt, bis	Obere	Untere
	zeitraum		marge	zu dem der	Beurteilungs-	Beurteilungs-
				Grenzwert	schwelle	schwelle
				einzuhalten ist		
Menschliche	24 Stunden	$50 \mu g/m^3$;	$25 \mu\mathrm{g/m}^3$	1. Januar 2005		
Gesundheit		zulässige Zahl				
		der Über-				
		schreitungen im				
		Kalenderjahr: 35				
Menschliche	Kalenderjahr	$40 \mu\mathrm{g/m}^3$	$8 \mu g/m^3$	1. Januar 2005		
Gesundheit						

Stufe 2


Schutz	Mittelungs-	Grenzwert	Toleranz-	Zeitpunkt, bis	Obere	Untere
	zeitraum		marge	zu dem der	Beurteilungs-	Beurteilungs-
				Grenzwert	schwelle	schwelle
				einzuhalten ist		
Menschliche	24 Stunden	$50 \mu\mathrm{g/m}^3$;		1. Januar 2010	$30 \mu\mathrm{g/m}^3$;	$20 \mu g/m^3$;
Gesundheit		zulässige Zahl			zulässige Zahl	zulässige Zahl
		der Über-			der Über-	der Über-
		schreitungen im			schreitungen im	schreitungen im
		Kalenderjahr: 7			Kalenderjahr: 7	Kalenderjahr: 7
Menschliche	Kalenderjahr	$20 \mu\mathrm{g/m}^3$	$10 \mu\mathrm{g/m}^3$	1. Januar 2010	$14 \mu g/m^3$	$10 \mu\mathrm{g/m}^3$
Gesundheit						

Für die PM10-Ausgangsbeurteilung standen die Messreihen von 319 Stationen für Gesamtstaub zur Verfügung. 43 dieser Stationen hatten im Jahr 1999 mehr als 10% Datenausfall, so dass sie gemäß der EU-Richtlinie nicht für die Beurteilung verwendet werden können. Die OI wurde damit auf der Basis der stündlichen Gesamtstaub-Messreihen von 276 Stationen durchgeführt. Es sei angemerkt, dass für Staub keine Messungen aus Baden-Württemberg zur Verfügung standen. Die Umwandlung von Gesamtstaub in PM10 erfolgte durch Multiplikation der Gesamtstaubkonzentration mit dem Faktor 0,83.


Die Abbildung 7 zeigt die Gebiete in Deutschland, in denen die OI eine Überschreitung der vorgegebenen Grenzen für die PM10-Tagesmittelwerte ausweist. Der Tagesmittelgrenzwert von $50~\mu g/m^3$, der in der Stufe 1 ab 1. Januar 2005 einzuhalten ist und nicht mehr als 35mal überschritten werden darf, wurde im Jahr 1999 in Teilen Bayerns, Nordrhein-Westfalens, Thüringens, Sachsen-Anhalts, Sachsens und Berlins an mehr als 35 Tagen überschritten. In Baden-Württemberg, wo außer der UBA-Station Schauinsland keine Messungen in die OI eingeflossen sind, werden die Immissionen durch die Modellergebnisse bestimmt. Hier kommt es nicht zu Überschreitungen. Es muss aber betont werden, dass das Modell gegenwärtig noch zur Unterschätzung der PM10-Immissionen neigt, da bisher nur ein Teil der se-

kundären Aerosole berücksichtigt wird und in der Emissionsdatenbasis ein Teil der primären Emissionen (z.B. Staubaufwirbelung) noch unberücksichtigt ist. Der Tagesmittelgrenzwert von 50 μ g/m³ darf ab 1. Januar 2010 (Stufe 2) nur noch 7mal überschritten werden. 1999 kam es noch in weiten Teilen Deutschlands zu mehr als 7 Überschreitungen. Die Stationen mit mehr als 7 Überschreitungen des Tagesmittelgrenzwerts sind in Tabelle 11 (Anhang 1) zusammengestellt. Grenzwert+Toleranzmarge der Stufe 1 (75 μ g/m³) wurden 1999 nur an wenigen Stationen überschritten (Tabelle 11, Anhang 1). Diese Stationen tauchen in der Skala der OI nicht auf.

Abbildung 8 zeigt die mit der OI bestimmte Verteilung der PM10-Jahresmittelwerte für 1999. Zu flächigen Überschreitungen des Grenzwerts der Stufe 1 von 40 $\mu g/m^3$ kam es 1999 nur in einem kleinem Gebiet in Nordrhein-Westfalen. Die in Bayern und Thüringen an einzelnen Stadtstationen gemessenen kleinräumigen Überschreitungen (Tabelle 12 , Anhang 1) werden in der Skala der OI nicht abgebildet. Auch Überschreitungen des Grenzwerts+Toleranzmarge (48 $\mu g/m^3$) wurden 1999 nur an sehr wenigen Stationen gemessen (Tabelle 12 , Anhang 1). Auch diese Stationen machen sich in der Skala der OI nicht bemerkbar. Der Jahresmittelgrenzwert der Stufe 2 , 20 $\mu g/m^3$, der ab 2010 einzuhalten ist, wurde 1999 in Deutschland noch großräumig überschritten.

Abbildung 7 Gebiete mit mehr als 7 Überschreitungen eines PM10-Tagesmittelwerts von 20, 30, 50 $\mu g/m^3$, mit mehr als 35 Überschreitungen von 50, 75 $\mu g/m^3$. Beurteilungsjahr 1999. Optimale Interpolation mit Modellhintergrund.

Abbildung 8 PM10-Jahresmittelwerte in $\mu g/m^3$. Beurteilungsjahr 1999. Optimale Interpolation mit Modellhintergrund.

5. Beurteilung von Ozon

Für Ozon sind im Entwurf der Tochterrichtlinie Ozon folgende Zielwerte und Langfristziele definiert:

 Tabelle 4
 Zielwerte und Langfristziele für Ozon.

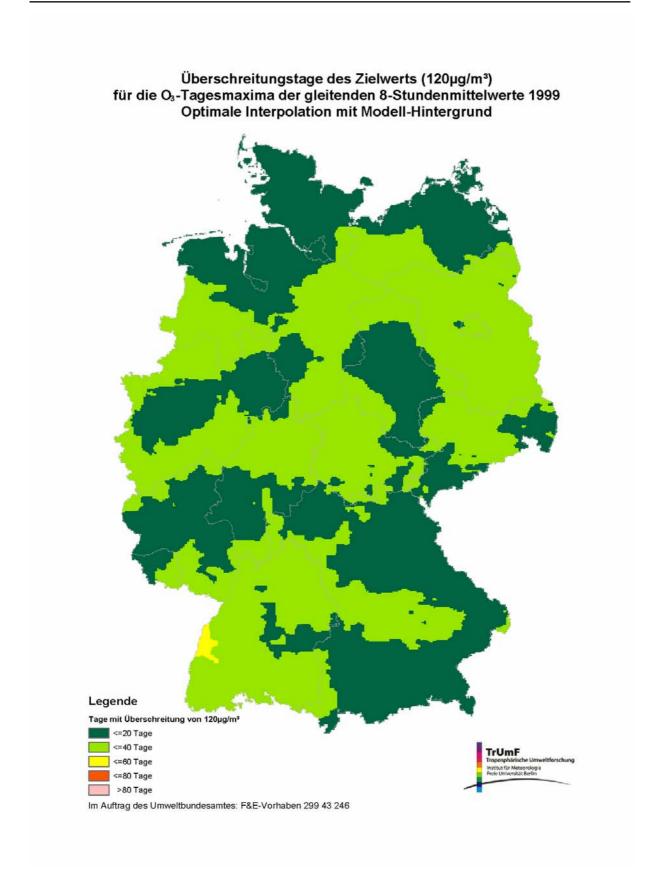
Zielwerte

Schutz	Parameter	Zielwert	Jahr, in dem der Ziel-
			wert einzuhalten ist
Menschliche	Höchster 8-Stundenmittelwert	120 μg/m ³ ; zulässige Zahl	2010
Gesundheit	eines Tages	der Überschreitungen im	
		Kalenderjahr: 20	
Schutz der	AOT40, berechnet aus den 1-	17000 μg/m ³ h	2010
Pflanzen	Stundenwerten von Mai bis		
	Juli, 8-20 Uhr		

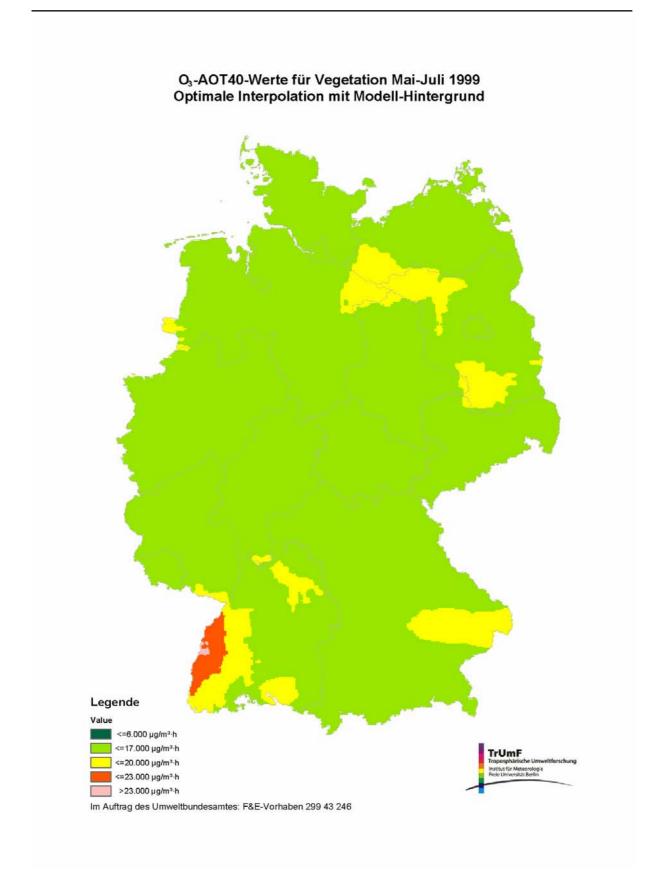
Langfristziele

Schutz	Parameter	Langfristziel
Menschliche	Höchster 8-Stundenmittelwert	$120 \mu \text{g/m}^3$
Gesundheit	während eines Kalenderjahres	
	berechnet aus den stündlich	
	gleitenden 8-StdMittelwerten	
Schutz der	AOT40, berechnet aus den 1-	$6000 \mu \text{g/m}^3 \text{h}$
Pflanzen	Stundenwerten von Mai bis	
	Juli, 8-20 Uhr	

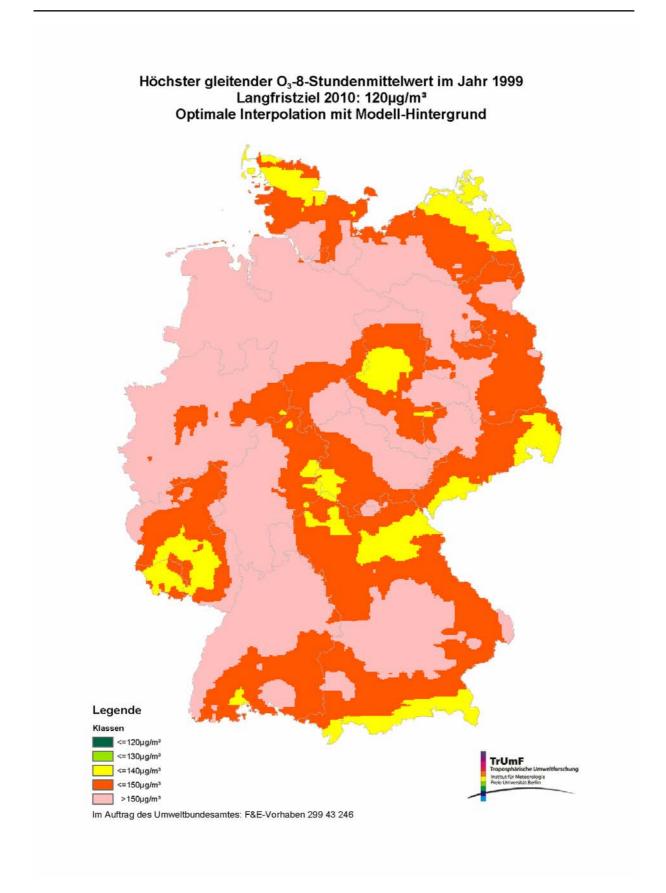
Für die Ozon-Ausgangsbeurteilung standen die Messreihen von 369 Stationen zur Verfügung. 35 dieser Stationen hatten im Jahr 1999 mehr als 10% Datenausfall, so dass sie gemäß der EU-Richtlinie nicht für die Beurteilung verwendet werden können. Die OI wurde damit auf der Basis der stündlichen Ozon-Messreihen von 334 Stationen durchgeführt

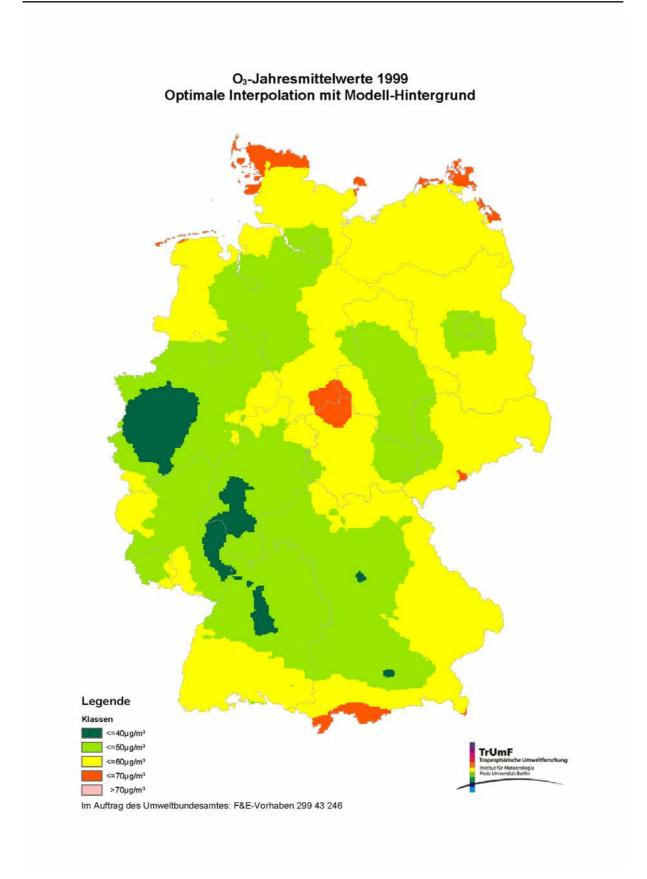

Im Jahre 1999 kam es in Deutschland noch weiträumig zu einer Überschreitung der zulässigen 20 Tage, an denen der maximale gleitende 8-Stundenmittelwert für Ozon über 120 $\mu g/m^3$ liegen darf (Abbildung 9). Am Oberrhein werden von der OI an mehr als 40 Tagen maximale 8-Stundenmittelwerte über 120 $\mu g/m^3$ ermittelt. Im Entwurf der Ozon-Tochterrichtlinie wird allerdings ein Mittelungszeitraum von 3 Jahren gefordert. Dieser kann in einer auf einem Jahr beruhende Ausgangsbeurteilung naturgemäß nicht gebildet werden.

Das Langfristziel zum Schutz der Pflanzen, definiert als ein AOT40-Wert von $6000~\mu g/m^3$ h, konnte 1999 in ganz Deutschland nicht eingehalten werden (Abbildung 10). Der Zielwert, $17000~\mu g/m^3$ h, der bis 2010 eingehalten werden sollte, wurde 1999 dagegen nur in einigen Teilen Deutschlands überschritten (Abbildung 10). Zu großflächigen Überschreitungen kam es 1999 insbesondere im Südwesten, im Bereich des Bayerischen Waldes, sowie in Brandenburg und den daran angrenzenden Bundesländern. Es muss allerdings auch hier betont werden, dass der im Entwurf der Ozon-Tochterrichtlinie definierte 5-jährige Mittelungszeitraum für den AOT40-Wert gegenwärtig noch nicht gebildet werden kann.


Das Langfristziel zum Schutz der menschlichen Gesundheit, der höchste gleitende 8-Stundenmittelwert im Kalenderjahr, der $120 \,\mu\text{g/m}^3$ nicht übersteigen sollte, konnte 1999 in ganz Deutschland nicht eingehalten werden (Abbildung 11).

Der Ozonjahresmittelwert bildet den Referenzwert zum Schutz von Materialien. Um Schäden an Materialien zu verhindern, sollte er unter 40 $\mu g/m^3$ liegen. Der Abbildung 12 kann entnommen werden, dass dieser Wert in 1999 in ganz Deutschland überschritten wurde. Großflächig wurden mit der OI Jahresmittelwerte bis zu 70 $\mu g/m^3$ bestimmt. An einzelnen Stationen, hauptsächlich Bergstationen, wurden in 1999 auch Mittelwerte über 70 $\mu g/m^3$ registriert (Tabelle 13, Anhang 1). Konzentrationen unter 40 $\mu g/m^3$ werden im wesentlichen nur in den emissionsstarken Gebieten Nordrhein-Westfalens, auf der Achse Rhein/Main-Gebiet-Großraum Stuttgart und in Großstädten wie München ermittelt. Dies bedeutet natürlich nicht, dass an allen Stationen in diesen Gebieten unter 40 $\mu g/m^3$ gemessen wurde. Die von der OI ausgewiesenen flächigen Über- oder Unterschreitungen von Schwellenwerten reflektieren vielmehr das Immissionsniveau, das von der Mehrzahl der Stationen vorgegeben wird.


Ein weiterer Referenzwert ist der AOT40-Wert für Ozon, gebildet aus den 1-Stundenwerten zwischen 8 und 20 Uhr von April bis September. Dieser Wert hat als Zielgröße die Waldschäden und sollte 20000 $\mu g/m^3$ h nicht überschreiten. Auch bei dieser Referenzgröße ist offensichtlich, dass 1999 der Wert von 20000 $\mu g/m^3$ h in weiten Teilen Deutschlands überschritten wurde (Abbildung 13). Spitzenwerte von über 30000 $\mu g/m^3$ h ergeben sich vor allem im Südwesten Deutschlands, aber auch in Teilen der Norddeutschen Tiefebene.


Abbildung 9 Gebiete mit Überschreitungen eines maximalen täglichen gleitenden 8-Stundenmittelwerts von 120 μ g/m³ Ozon. Beurteilungsjahr 1999. Optimale Interpolation mit Modellhintergrund.

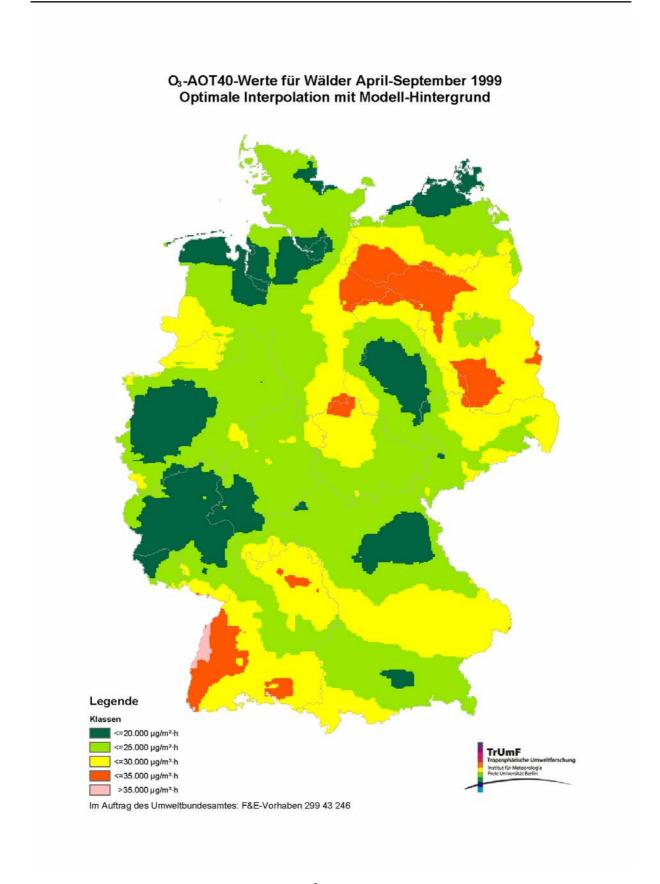

Abbildung 10Ozon-AOT40-Werte in μ g/m³ h, berechnet aus den 1-Stundenwerten von Mai bis Juli, 8-20 Uhr Beurteilungsjahr 1999. Optimale Interpolation mit Modellhintergrund.

Abbildung 11 Höchster 8-Stundenmittelwert im Kalenderjahr für Ozon berechnet aus den stündlich gleitenden 8-Stundenmittelwerten. Beurteilungsjahr 1999. Optimale Interpolation mit Modellhintergrund.

Abbildung 12 Ozon-Jahresmittelwerte in μ g/m³. Beurteilungsjahr 1999. Optimale Interpolation mit Modellhintergrund.

Abbildung 13Ozon-AOT40-Werte in $\mu g/m^3$ h, berechnet aus den 1-Stundenwerten von April bis September, 8-20 Uhr Beurteilungsjahr 1999. Optimale Interpolation mit Modellhintergrund.

6. Zusammenfassung

Es wurde eine Interpolations-Methodik vorgestellt, die Messungen mit den Ergebnissen von Ausbreitungsrechnungen kombiniert und die zur Erstellung deutschlandweiter Immissionsverteilungen für die in den Tochterrichtlinien der EU-Rahmenrichtlinie Luftqualität definierten Beurteilungsgrößen verwendet werden kann.

Diese Methodik, die noch im Entwicklungsstadium ist, wurde zur Bestimmung der Ausgangsbeurteilung im Sinne der EU-Rahmenrichtlinie eingesetzt.

Danach ergibt sich für die **vorläufige Einschätzung der Luftqualität** in Deutschland für das Jahr **1999** folgendes Bild:

SO_2 :

- Die 1-Stunden- und 24-Stundengrenzwerte wurden in ganz Deutschland eingehalten.
- Der Grenzwert für das Jahresmittel wurde in ganz Deutschland eingehalten.
- Der Grenzwert für das Wintermittel wurde an einer Station überschritten.

NO_2 :

- Der 1-Stundengrenzwert wurde an einer Station in mehr als 18 Stunden überschritten.
- Der Grenzwert für das Jahresmittel wurde in den Ballungsgebieten großflächig überschritten.
- Der Grenzwert+Toleranzmarge wurde an wenigen verkehrsnahen Stationen überschritten.

NO_{x}

• Der Grenzwert für das Jahresmittel wurde in Deutschland großflächig überschritten.

PM10:

- Der Grenzwert der Stufe 1 für das Tagesmittel wurde in mehreren Bundesländern großflächig an mehr als 35 Tagen überschritten.
- Der Grenzwert der Stufe 2 für das Tagesmittel wurde in ganz Deutschland großflächig an mehr als 7 Tagen überschritten.
- Der Grenzwert+Toleranzmarge der Stufe 1 für das Tagesmittel wurde an wenigen städtischen Stationen an mehr als 35 Tagen überschritten.
- Der Grenzwert der Stufe 1 für das Jahresmittel wurde in einem Bundesland flächig überschritten, sonst nur an wenigen Stadtstationen.
- Der Grenzwert+Toleranzmarge der Stufe 1 für das Jahresmittel wurde an wenigen städtischen Stationen überschritten.
- Der Grenzwert der Stufe 2 für das Jahresmittel wurde in Deutschland großflächig überschritten.

CO:

• Der Grenzwert, definiert als höchster 8-Stundenmittelwert eines Tages, wurde in ganz Deutschland eingehalten.

O_3 :

- Die Zielgröße des maximalen täglichen gleitenden 8-Stundenmittelwerts wurde in ganz Deutschland großräumig an mehr als 20 Tagen überschritten.
- Der AOT40-Zielwert zum Schutz der Pflanzen wurde in einigen Bundesländern großflächig überschritten.
- Das AOT40-Langfristziel zum Schutz der Pflanzen wurde in ganz Deutschland überschritten.
- Das Langfristziel zum Schutz der menschlichen Gesundheit, der höchste gleitende 8-Stundenmittelwert im Kalenderjahr, wurde in ganz Deutschland überschritten.
- Das Referenzziel zum Schutz von Materialien, definiert als Jahresmittelwert, wurde in allen ländlichen und auch Teilen der Ballungsgebiete überschritten.
- Das Referenzziel zum Schutz von Wäldern, definiert als AOT40-Wert, wurde in mehreren Bundesländern großflächig überschritten.

7. Anhang 1: Tabellen

7.1. Schwefeldioxid

Tabelle 5 Stationen, an denen an mehr als an 3 Tagen Überschreitungen der Unteren Beurteilungsschwelle von $50 \,\mu\text{g/m}^3 \, \text{SO}_2$ registriert wurden (Keine Überschreitung der Oberen Beurteilungsschwelle oder des Grenzwerts). Beurteilungsjahr 1999.

	Tagesmittel >50	Anzahl der Tage
BW022	Kehl-Hafen	5
HB005	Bremerhaven	4
NW021	Bottrop	11
NW034	Walsum	4
SL005	Ensdorf	4
SN020	Goerlitz	4
SN036	Pirna	5
SN053	Fichtelberg	5
	Schwartenberg	4
ST015	Greppin	8

Tabelle 6 Stationen in Deutschland, an denen im Jahresmittel 1999 mehr als $12 \mu g/m^3$ SO₂ (Obere Beurteilungsschwelle) gemessen wurden.

		Jahresmittel SO2 μg/m ³
BE061	Bln-Steglitz.	13.66
BW005	Mannheim-Nord	15.24
BW022	Kehl-Hafen	12.57
HH015	Veddel	12.43
HH048	Max-Brauer-Allee	13.22
NW021	Bottrop	19.89
NW034	Walsum	12.92
ST015	Greppin	12.03
ST025	Merseburg	14.71
ST078	Naumburg	12.78

Tabelle 7 Stationen in Deutschland, an denen im Wintermittel 1999 (Januar-März, Oktober-Dezember) mehr als 12 μg/m³ SO₂ (Obere Beurteilungsschwelle) gemessen wurden. Überschreitungen des Grenzwerts (20 μg/m³) sind **fett** markiert.

		Wintermittel SO2 μg/m ³
BE018	Bln-Schoeneberg	12.89
BE061	Bln-Steglitz	14.59
BW005	Mannheim-Nord	19.47
BW007	Mannheim-Sued	13.5
BW022	Kehl-Hafen	16.88
BW032	Pforzheim-Mitte	12.58
HB001	Bremen-Mitte	14.64
HH015	Veddel	13.83
HH048	Max-Brauer-Allee	13.48
HH051	Steinstrasse	13.95
NW002	Datteln	12.14
NW004	lckern	12.11
NW021	Bottrop	24.73
NW034	Walsum	15.09
NW040	Buchholz	13.71
RP002	LudwhMitte	13.95
RP023	Worms Hagenstrasse	15.76
SL005	Ensdorf	15.93
SL012	Saarbruecken-City	12.68
SL015	Voelklingen-Heidstock	16.76
SL017	Voelklingen-City Stadionstr	14.88
SN036	Pirna	12.38
SN061	Dresden-Nord	13.37
ST015	Greppin	12.26
ST025	Merseburg	15.56
ST078	Naumburg	13.33
ST081	Weissenfels/Verkehr	13.71
UB031	Lueckendorf	12.69

7.2. Stickoxide

Tabelle 8 Stationen, an denen an mehr als an 18 Stunden Überschreitungen der Oberen Beurteilungsschwelle von $140 \,\mu\text{g/m}^3\,\text{NO}_2$ registriert wurden. Beurteilungsjahr 1999.

		Anzahl der Stunden
BB046	Potsdam, Hans-Thoma-Str.	22
BE014	Bln-Charlottenburg-Lerschpfad	24
BE061	Bln-Steglitz Schildhornstr.	177
BE063	Bln-Silbersteinstrasse	571
BW080	Karlsruhe Strasse	78
BW097	Freiburg-Strasse	129
BW098	Mannheim-Strasse	36
BW099	Stuttgart-Mitte-Strasse	81
BW106	Leonberg-BAB	30
BY037	Muenchen/Stachus	25
BY043	Muenchen/Moosach	25
BY085	Muenchen/Luise-Kiesselbach-	75
HE035	Kassel-Sued	23
HE037	Wiesbaden-Ringkirche	101
HE040	Darmstadt-Huegelstrasse	136
HE041	Frankfurt-Friedb.Ldstr.	64
HH026	HH-Strasse3-Stresemannstr	34
RP008	Mainz-Goetheplatz	69
RP010	Mainz-Parcusstrasse	119
RP011	Mainz-Rheinallee	64
RP012	Mainz-Stadthausstrasse	29
SN006	Borna	28
TH043	Erfurt Bergstr.	595

Tabelle 9 Stationen in Deutschland, an denen im Jahresmittel 1999 mehr als $40 \,\mu\text{g/m}^3$ NO₂ (Grenzwert),bzw. mehr als $60 \,\mu\text{g/m}^3$ (Grenzwert+Toleranzmarge, fett) gemessen wurden.

		Jahresmittelwert NO2 μg/m ³
BE014	Charlottenburg-Lerschpfad	44.05
BE061	Bln-Steglitz Schildhornstr.	62.83
BE063	Bln-Silbersteinstrasse	76.98
BE064	Bln-Karl-Marx-Strasse	51.97
BE065	Bln-Frankfurter Allee	47.52
BW001	Karlsruhe-Mitte	49.35
BW002	Karlsruhe-West	40.04
BW006	Mannheim-Mitte	40.1
BW011	Stuttgart-Zuffenhausen	48.99
BW012	Stuttgart-Mitte	44.3
BW013	Stuttgart Bad Cannstatt	41.69
BW014	Stuttgart-Hafen	43.08

DW/025	Earlinger	45.10
BW025 BW026	Esslingen Plochingen	45.19 42.91
BW020		69.77
BW096	Karlsruhe Strasse Ulm-Strasse	
BW090	Freiburg-Strasse	48.39 58.51
	Mannheim-Strasse	
BW098		64.68
BW099	Stuttgart-Mitte-Strasse	72.07
BY003	Aschaffenburg/Krankenhaus	40.9
BY006	Augsburg/Koenigsplatz	59.96
BY037	Muenchen/Stachus	63.96
BY038	Muenchen/Effnerplatz	46.06
BY040	Muenchen/Pasing	42.2
BY043	Muenchen/Moosach	45.47
BY053	Nuernberg/Bahnhofstr.	47.25
BY055	Nuernberg/Olgastr.	40.99
BY059	Nuernberg/Langwasser	45.23
BY061	Passau	40.87
BY063	Regensburg/Rathaus	49.11
BY085	Muenchen/Luise-Kiesselbach-	66.87
HB007	Bremen Verkehr 2	45.44
HE005	Frankfurt-Hoechst	44.59
HE008	Frankfurt-Ost	42.97
HE010	Giessen	40.55
HE011	Hanau	43.6
HE017	Offenbach	42.32
HE035	Kassel-Sued	45.48
HE037	Wiesbaden-Ringkirche	61.41
HE040	Darmstadt-Huegelstrasse	58.38
HE041	Frankfurt-Friedb.Ldstr.	58.71
HH015	Veddel	40.74
HH026	Strasse3-Stresemannstr	55.39
HH048	Max-Brauer-Allee	54.55
HH051	Steinstrasse	52.48
NW043	Essen-Ost (Verkehr)	44.97
NW072	Moersenbroich	51.9
NW077	Hagen	42.87
RP002	LudwhMitte	47.04
RP003	LudwhMundenheim	40.9
RP006	LudwhPfalzgrafenpl.	47.42
RP008	Mainz-Goetheplatz	45.81
RP009	Mainz-Zitadelle	48.3
RP010	Mainz-Parcusstrasse	69.2
RP011	Mainz-Rheinallee	53.98
RP012	Mainz-Stadthausstrasse	50.89
RP018	Speyer-St. Guido Stifts	43.93
RP020	Trier Ostallee	51.05
RP021	Neuwied Hafenstrasse	42.59
RP024	Koblenz FEbert-Ring	43.75
RP026	Frankenthal-Europaring	44.21
RP027	Neustadt Strohmarkt	40.21
RP029	Koblenz Zentralplatz	53.22
RP031	Pirmasens Park-Brauerei	48.01

RP032	Neuwied Heddersdorfer Str.	52.22
SH010	Luebeck-Lindenplatz Verk.	44.21
SH019	Kiel-Westring Verk.	50.34
SL012	Saarbruecken-City	40.76
SN006	Borna	40.3
SN025	Leipzig-Mitte	46.25
SN061	Dresden-Nord	48.28
ST076	Magdeburg/Verkehr	43.05
TH043	Erfurt Bergstr.	71.59

Ende Tabelle 9

7.3. PM10

Tabelle 10 Stationen, an denen an mehr als an 35 Tagen Überschreitungen des Tagesmittelgrenzwerts+Toleranzmarge von 75 μ g/m³ PM10 (Stufe 1) registriert wurde. Beurteilungsjahr 1999.

		Tage mit Überschreitung
BY006	Augsburg/Koenigsplatz	79
TH008	Poessneck	125
TH043	Erfurt Bergstr.	60

Tabelle 11 Stationen, an denen an mehr als an 35 Tagen (**Stufe 1, fett**) bzw. mehr als 7 Tagen (Stufe 2) Überschreitungen des Tagesmittelgrenzwerts von $50 \,\mu\text{g/m}^3$ PM10 registriert wurden. Beurteilungsjahr 1999.

		Tage mit Überschreitung
BB001	Burg Bahnhofstr.	9
BB003	Brandenburg a.d. Havel	11
BB006	Cottbus-Sued	12
BB009	Forst	12
BB010	Guben	17
BB018	Oranienburg Bernauer Str.	19
BB021	Potsdam-Zentrum	14
BB024	Senftenberg	29
BB026	Spremberg-Sued	8
BB028	Wittenberge	12
BB029	Schwedt/Oder	12
BB030	Premnitz	9
BB031	Koenigs Wusterhausen	13
BB032	Eisenhuettenstadt	17
BB036	Luckenwalde	13
BB038	Prenzlau	19
BB041	Fuerstenwalde	50
BB043	Luckau Jahnstr.	31
BE005	Tegel-Buddestrasse	21
BE010	Wedding-Amrumer Strasse	44
BE011	Wedding/Prenzl.BBeh	51
BE015	Tiergarten-Bachstrasse	49
BE018	Schoeneberg-Belziger Strass	30
BE026	Lichterfelde-Wupperstr.	31
BE027	Marienfelde-Schichauweg	24
BE045	Pankow-Blankenfelder	69
BE056	Friedrichshagen	10
BE057	Karlshorst	34
BE062	Frohnau	19
BE066	Karlshorst II	18
BY001	Ansbach	38

BY002	Arzberg	35
BY005	Aschaffenburg/Bussardweg	16
BY006	Augsburg/Koenigsplatz	209
BY007	Augsburg/Bourges-Platz	45
BY009	Bamberg	29
BY010	Bayreuth	25
BY012	Burghausen	23
BY014	Coburg	42
BY020	Hof	13
BY021	Ingolstadt/Rechbergstr.	31
BY024	Ingolstadt/Oberhaunstadt	22
BY027	Kahl	14
BY028	Kelheim/Regensburger Str.	28
BY030	Kelheim/Saal	15
BY031	Kempten (Allgaeu)	27
BY032	Kulmbach	9
BY033	Landshut/Podewilsstr.	52
BY034	Lauf a.d.Pegnitz	12
BY035	Lindau (Bodensee)	69
BY037	Muenchen/Stachus	142
BY038	Muenchen/Effnerplatz	69
BY039	Muenchen/Lothstrasse	31
BY040	Muenchen/Pasing	79
BY045	Muenchen/Westendstr.	53
BY047	Naila	15
BY052	Neu-Ulm	46
BY054	Nuernberg/Ziegelsteinstr.	35
BY055	Nuernberg/Olgastr.	26
BY056	Fuerth/Theresienstr.	17
BY058	Nuernberg/Muggenhof	14
BY059	Nuernberg/Langwasser	15
BY061	Passau	51
BY062	Regen	9
BY063	Regensburg/Rathaus	105
BY064	Regensburg/Isarstrasse	28
BY067	Schwandorf	10
BY068	Schweinfurt	22
BY069	Selb	11
BY070	Sulzbach-Rosenberg/Dultplat	22
BY075	Weiden i.d.OPf.	17
BY078	Wuerzburg/Theodor-Heuss-Dam	28
BY085	Muenchen/Luise-Kiesselbach-	66
BY088	Trostberg	13
BY089	Muenchen/Johanneskirchen	22
BY093	Sulzbach-Rosenberg/Lohe	21
HB002	Bremen-Ost	18
HB004	Bremen-Nord	13
HE005	Frankfurt-Hoechst	10
HE008	Frankfurt-Ost	41
HE010	Giessen	13
HE011	Hanau	10
HE014	Kassel-Nord	16

HE017	Offenbach	44
HE020	Wetzlar	26
HE022	Wiesbaden-Sued	16
HE030	Marburg	10
HE031	Fulda	8
HE040	Darmstadt-Huegelstrasse	9
HE049	Kassel-Fuenffenster-Str.	17
HH002	Lokstedt	12
HH007	Bahrenfeld	23
HH008	Sternschanze	54
HH009	Luebecker Strasse	9
HH014	Steinwerder	22
HH015	Veddel	48
HH016	Billbrook	34
HH020	Kirchdorf	27
HH021	Tatenberg	17
HH033	Flughafen Nord	14
NI028	Duderstadt	9
NI031	Wilhelmshaven/Voslapp	13
NI041	Rinteln	9
NI059	Cuxhaven	14
NI060	Luechow	12
NW001	Werne	26
NW002	Datteln	29
NW004	Ickern	48
NW006	Niederaden	33
NW008	Dortmund2	81
NW010	Unna	32
NW011	Hoerde	46
NW012	Witten	46
NW013	Schwerte	37
NW015	Sickingmuehle	48
NW018	Herten	41
NW021	Bottrop	31
NW022	Gelsenkirchen	85
NW023	Herne	39
NW024	Vogelheim	72
NW028	LIS-Essen (Bredeney) LUA Es	21
NW030	Wesel	31
NW034	Walsum	47
NW036	Meerbeck	55
NW037	Meiderich	85
NW038	Styrum	44
NW039	Kaldenhausen	46
NW040	Buchholz	33
NW042	Krefeld	35
NW043	Essen-Ost (Verkehr)	78
NW047	Neuss	55
NW048	Reisholz	65
NW050	Dormagen	36
NW051	Langenfeld	21
NW053	Chorweiler	37

NW058	Huerth	20
NW059	Rodenkirchen	12
NW060	Wesseling	25
NW062	Bonn	29
NW066	Nettetal	33
NW067	Bielefeld	49
NW068	Soest	27
NW071	Loerick	54
NW072	Moersenbroich	74
NW077	Hagen	42
*NW079	Leverkusen 2	16
NW080	Solingen	15
NW081	Borken-Gemen	64
NW082	Duesseldorf Corneliusstr.	122
NW094	Aachen-Burtscheid	10
RP002	LudwhMitte	12
RP003	LudwhMundenheim	54
RP007	Mainz-Mombach	11
RP008	Mainz-Goetheplatz	13
RP009	Mainz-Zitadelle	67
RP018	Speyer-St. Guido Stifts	90
RP020	Trier Ostallee	69
RP021	Neuwied Hafenstrasse	11
RP023	Worms Hagenstrasse	77
RP024	Koblenz FEbert-Ring	19
SH001	Altendeich	8
SH010	Luebeck-Lindenplatz Verk.	10
SH016	Barsbuettel	8
SL003	Dillingen City	19
SL010	Saarbruecken-Burbach	38
SN001	Annaberg-Buchholz	27
SN002	Aue	31
SN004	Bautzen	39
SN005	Boehlen	17
SN006	Borna	46
SN011	Chemnitz-Mitte	46
SN014	Dresden-Mitte	39
SN017	Freiberg	25
SN019	Glauchau	41
SN020	Goerlitz	40
SN024	Klingenthal	21
SN025	Leipzig-Mitte	53
SN028	Leipzig-Sued	25
SN034	Olbernhau	54 20
SN036	Pirna Zittan Oct	30
SN045	Zittau-Ost Zwiekow	
SN047	Zwickau	77 24
SN048	Auerbach	9
SN050	Hoyerswerda	13
SN059	Leipzig-West Chemnitz-Nord	
SN060 SN061	Dresden-Nord	100 55
211001	Dresuen-Noru	33

SN075	Plauen-Sued	23
ST002	Burg	25
ST005	Magdeburg/Zentrum	62
ST011	Wernigerode	33
ST015	Greppin	30
ST022	Halle/Zentrum	48
ST025	Merseburg	31
ST028	Zeitz	24
ST030	Dessau	36
ST031	Bad Duerrenberg	42
ST032	Genthin	17
ST044	Halberstadt	43
ST050	Halle/Nord	27
ST052	Hettstedt	38
ST057	Magdeburg/Suedost	69
ST061	Schoenebeck	60
ST063	Stendal	73
ST066	Wittenberg	35
ST067	Wolfen	18
ST068	Pouch	15
ST069	Salzwedel	26
ST071	Sangerhausen	51
ST072	Halle/Ost	35
ST078	Naumburg	52
ST080	Schkopau	40
ST090	Leuna	29
TH002	Gera Berliner Str.	40
TH005	Saalfeld	12
TH007	Rudolstadt	29
TH008	Poessneck	213
TH009	Gera Friedericistr.	36
TH013	Eisenach	25
TH016	Arnstadt Alter Friedhof	19
TH017	Apolda Busbahnhof	30
TH018	Nordhausen	26
TH019	Erfurt Kartaeuserstr.	34
TH020	Erfurt Kraempferstr.	53
TH021	Muehlhausen Brunnenstr.	46
TH024	Ilmenau	10
TH031	Suhl	8
TH032	Gotha	77
TH036	Greiz Mollbergstr.	22
TH037	Jena Schillergaesschen	25
TH039	Weimar Sophienstiftsplatz	44
TH041	Jena Dammstr.	19
TH043	Erfurt Bergstr.	140
UB032	Leinefelde	9

Ende Tabelle 11

Tabelle 12 Stationen in Deutschland, an denen im Jahresmittel 1999 mehr als $40 \,\mu g/m^3$ PM10 (Grenzwert Stufe 1) bzw. $48 \,\mu g/m^3$ PM10 (Grenzwert+Toleranzmarge Stufe 1, **fett**) gemessen wurden.

BY006	Augsburg/Koenigsplatz	PM10- Jahresmittelwert µg/m³ 56.81
BY037	Muenchen/Stachus	48.28
BY063	Regensburg/Rathaus	42
NW022	Gelsenkirchen	41.72
NW037	Meiderich	40.93
NW043	Essen-Ost (Verkehr)	40.35
SN060	Chemnitz-Nord	41.6
TH008	Poessneck	68.1
TH043	Erfurt Bergstr.	50.59

7.4. Ozon

Tabelle 13 Stationen in Deutschland, an denen im Jahresmittel 1999 mehr als 70 μ g/m³ Ozon gemessen wurden.

Schwarzwald Sued 84.24	
Schwaebische Alb (Erpfingen	70.72
GarmPart./Wankgipfel	92.83
Wurmberg/Braunlage 74.13	
Pfaelzerwald-Hortenkopf	75.47
Carlsfeld	73.56
Zinnwald	72.94
Fichtelberg	84.01
Schwartenberg	71.61
Brocken	81.28
Grosser Eisenberg	73.21
Westerland 71.23	
Brotjacklriegel 81.65	
Schauinsland 85.35	
	Schwaebische Alb (Erpfingen GarmPart./Wankgipfel Wurmberg/Braunlage Pfaelzerwald-Hortenkopf Carlsfeld Zinnwald Fichtelberg Schwartenberg Brocken Grosser Eisenberg Westerland Brotjacklriegel

8. Anhang 2: Verknüpfung von Messungen und Modellrechnungen auf der Basis der Optimalen Interpolation

Die Optimale Interpolation (OI) ist ein geostatistisches Verfahren, um aus den Beobachtungen einer atmosphärischen Variablen zu einem Zeitpunkt eine räumliche Analyse zu gewinnen (Reimer und Scherer, 1992). Unter Analyse versteht man eine Felddarstellung mit einer vorgegebenen Auflösung bzw. räumlichen Skala, die meist mit Hilfe einer Gitterpunktsdarstellung wiedergegeben wird. Die Optimale Interpolation wurde 1963 von Gandin (1963) eingeführt und hat sich seitdem in meteorologischen und ozeanographischen Anwendungen, insbesondere in der numerischen Wettervorhersage, etabliert. Komplexere Verfahren der Datenassimilation (Kalman Filter und 4DVAR, Stern et al., 2000) beruhen auf dem selben theoretischen Gerüst wie die optimale Interpolation ("best linear unbiased estimate"), die bei diesen Verfahren noch um die zeitliche Komponente erweitert ist.

Die Optimale Interpolation zeichnet sich durch folgende allgemeine Eigenschaften aus:

- Die Interpolation erfolgt auf Basis der Beobachtungen unter Verwendung von weiteren Informationsquellen (Hintergrund, auch "first guess"). Der Hintergrund kann aus Modellergebnissen oder aber aus klimatischen Auswertungen von Messungen gebildet werden.
- Messung und Hintergrund werden in Abhängigkeit von ihrer Fehlerstatistik am Interpolationspunkt zusammengeführt.
- Der räumliche Einflussbereich der Messungen wird statistisch mit Hilfe von räumlichen Kovarianzen bestimmt.
- Der Einfluss einer inhomogenen Anordnung der Messstellen wird berücksichtigt bzw. kompensiert ("declustering").
- Die Interpolation beruht auf der Minimierung der Varianz der Analysefehler (optimal).
- Nicht alle Messpunkte, sondern eine zu treffende Auswahl der Messpunkte wird für die Interpolation des Gitterpunktes herangezogen.

Die gegenwärtige OI-Implementierung erstellt stündliche Immissionsfelder für das gesamte Jahr. Diese Felder werden dann nach den Kenngrößen der EU-Richtlinien ausgewertet. Ein alternatives Vorgehen wäre, die entsprechenden Kenngrößen an den Messstationen zu bestimmen und mit einer einzigen Interpolation mit dem entsprechenden Feld dieser Kenngrößen aus der Modellrechnung zu verbinden.

Aufgrund der starken Inhomogenität der Immissionsfelder und ihrer Messung bedarf die hier verwendete Implementierung der OI einer Anpassung an diese Besonderheiten. Diese Forschungsarbeit wurde zum Teil schon geleistet und wird hier vorgestellt.

8.1. Formulierung der Gleichungen für die Optimale Interpolation

Der Wert x_a an dem Interpolationspunkt I im Feld wird nach der **Gl 1** aus dem entsprechenden Wert des Hintergrunds x_{ab} ("Background") und dem gewichteten Mittelwert der Abweichungen der umliegenden Messwerte y von dem Hintergrund an den Orten der Messungen gebildet. Das Hintergrundfeld (z.B. eine Modellrechnung) ist als sog. "first guess" für die Analyse an allen Punkten vorhanden und sollte der Skala der Analyse entsprechen.

$$x_{Ia} = x_{Ib} + \sum_{i=1}^{N} \alpha_i (y_i - x_{ib})$$
 Gl 1

Die den Einfluss der Messwerte bestimmenden Gewichte α_i werden mit Hilfe des Gleichungssystems (Gl. 2) ermittelt:

$$\begin{pmatrix} b_{11} + r_{11} & b_{12} & b_{13} & \dots & b_{1N} \\ b_{21} & b_{22} + r_{22} & b_{23} & \dots & b_{2N} \\ b_{31} & b_{32} & b_{33} + r_{33} & \dots & b_{3N} \\ \dots & \dots & \dots & \dots & \dots \\ b_{N1} & b_{N2} & b_{N3} & \dots & b_{NN} + r_{NN} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \dots \\ \alpha_N \end{pmatrix} = \begin{pmatrix} b_{1I} \\ b_{2I} \\ b_{3I} \\ \dots \\ b_{NI} \end{pmatrix}$$

$$GI 2$$

Fehler des Backgrounds:
$$\varepsilon_b = x_b - x_{true}$$
 mit $\overline{\varepsilon_b} = 0$

Ko – /Varianz $b_{ij} = \overline{\varepsilon_{ib}} \overline{\varepsilon_{jb}}$

Fehler der Beobachtung: $\varepsilon_r = y - y_{true}$ mit $\overline{\varepsilon_r} = 0$

Varianz $r_{ii} = \overline{\varepsilon_{ir}^2}$

Dabei sind folgende Größen von Bedeutung:

- die räumliche Kovarianz bil der Fehler des Backgrounds hinsichtlich der Messorte i (i = 1 ... N) und des Interpolationspunkts I und die Kovarianz bij zwischen den Messorten i und i.
- die **Varianz r_{ii} des** unkorrelierten **Beobachtungsfehlers** der Beobachtung i (i =1 ... N)

Beide Größen hängen von der angestrebten Auflösung ab. Der Beobachtungsfehler charakterisiert den reinen Messgerätefehler und den sogenannten Repräsentativitätsfehler. Letzterer beschreibt statistisch die Streubreite der Abweichung der Beobachtungen von dem "wahren" Gitterboxmittelwert (die Gitterbox wird aufgespannt durch das gewählte Interpolationsraster) aufgrund der Tatsache, dass die Beobachtung nicht vollkommen repräsentativ für das gesamte Gebiet der Gitterbox ist. Dieser Beobachtungsfehler wird als unkorreliert zwischen den einzelnen Beobachtungen angenommen. Setzt man die Varianz des Beobachtungsfehlers null, so folgt aus dem Gleichungssystem 2, dass das interpolierte Feld am Messort der Beobachtung entspricht.

Die Kovarianzen des Backgrounds beschreiben die Struktur des zugrundeliegenden Feldes. Sie bestimmen die Größe des im klimatischen Sinne repräsentativen Gebietes im Bereich der umliegenden Gitterboxen. Je langsamer die Kovarianz bij mit zunehmender Entfernung vom

Beobachtungsort abnimmt, desto größer ist das repräsentative Gebiet der Messung unter Berücksichtigung des Beobachtungsfehlers. Die Repräsentativität hängt demzufolge nicht nur von der Beobachtung selbst, sondern auch von den typischen Gradienten des zu erfassenden Feldes am Messort ab. Die Nichtdiagonalelemente b_{ij} der Matrix bewirken die oben erwähnte Eigenschaft der "Declusterung". Im Rahmen der Theorie wird ein verschwindender Erwartungswert des Beobachtungsfehlers vorausgesetzt, d.h. Beobachtung und Background sind ohne Bias. Gleichzeitig müssen die Fehler einer Gaußverteilung gehorchen, um die Kovarianzen (Erwartungswerte) durch Mittelbildung gewinnen zu können.

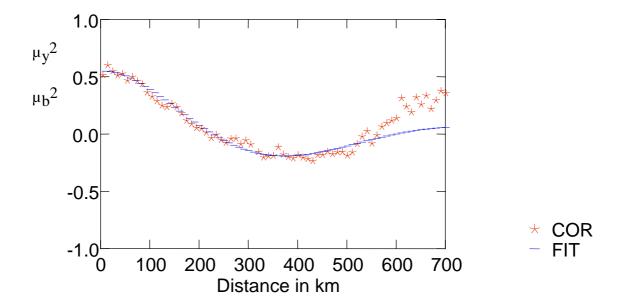
8.2. Bestimmung der Kovarianzen des Backgrounds und der Varianz der Beobachtungen

8.2.1. Kovarianzmodell

Die Gleichungssysteme 1 und 2 beschreiben die allgemeine Struktur der Optimalen Interpolation. Das Ergebnis der Interpolation, d.h. die Eigenschaften des interpolierten Feldes, hängt jedoch wesentlich von der Art der Bestimmung der Kovarianzen bzw. Korrelationen und der Auswahl des Backgroundfelds ab. Sie sind das eigentliche Hauptproblem bei der Optimalen Interpolation.

Die große Anzahl der für die Interpolation eines Feldes notwendigen Kovarianzen kann nicht explizit ermittelt werden und wird deshalb mit Hilfe eines **Kovarianzmodells** zusammengefasst. Die für die Interpolation auf das Gitter notwendigen Kovarianzen werden nun mit diesem Kovarianzmodell bestimmt.

Das Autokovarianzmodell ist meist eine analytische Darstellung einer im allgemeinen 2-dimensionalen und räumlich variablen räumlichen Kovarianzfunktion. Da die Kovarianz ein Ensemble von Daten charakterisiert und aus einem Ensemble bestimmt werden muss, ist die Gewinnung eines vollständigen Autokovarianzmodells nur schwer möglich. Es werden deswegen Annahmen notwendig, um Daten mit gleichen vermuteten statistischen Eigenschaften zusammenzufassen. Mit der Annahme von **Isotropie** und **Homogenität** wird definiert, dass die Kovarianz des Backgroundfehlers unabhängig von der Richtung des Abstandes zwischen zwei Feldpunkten ist und die Kovarianz und Varianz in allen Gebieten des Feldes gleich ist. Die Kovarianz des Backgroundfehlers hängt damit nur vom Abstand der Punkte im Feld ab und das Autokovarianzmodell ist eine rein abstandsabhängige Kovarianzfunktion. Dies bedeutet, das die Varianz des Fehlers des Backgrounds an allen Orten den selben Wert hat.


8.2.2. Beobachtungsmethode zur Bestimmung der Kovarianzen des Backgrounds und der Varianz des Beobachtungsfehlers

Die Beobachtungsmethode (Hollingtworth, 1986) zur Bestimmung des Kovarianzmodells geht von dem Ansatz aus, die räumlichen Kovarianzen des Backgrounds an den Orten der Messung zu bestimmen und sie auf die anderen Feldpunkte zu übertragen. Es werden dazu die **Beobachtungsinkremente**, d.h. die Abweichung zwischen Messwert und Background zu einem statistischen Ensemble zusammengefasst, um das Kovarianzmodell zu ermitteln. Ohne einen Beobachtungsfehler würden die Beobachtungsinkremente direkt dem Fehler des Backgrounds entsprechen. Der Beobachtungsfehler wird aber nicht vernachlässigt sondern es wird die plausible Annahme gemacht, dass die Fehler der Beobachtung nicht räumlich korreliert sind. Dies hat zur Folge, dass die Kovarianz der Beobachtungsinkremente für zwei verschiedene Orte keinen Anteil aus dem Beobachtungsfehler enthält und damit der gesuchten Kovarianz des Backgroundfehlers entspricht. Für den Abstand null – die Kovarianz wird damit zur Varianz – ist die Varianz der Beobachtungsinkremente gleich der Summe aus der Varianz des Backgroundfehlers und des Beobachtungsfehlers.

Dieser Sprung für den Abstand null hinsichtlich der Kovarianzfunktion kann nun ausgenutzt werden, um die Varianz des Beobachtungsfehlers zu bestimmen. Dazu wird das mit Hilfe der Kovarianzen der Beobachtungsinkremente approximierte ("gefittete") analytische Kovarianzmodell auf den Abstand null extrapoliert. Der gewonnene Wert entspricht dann dem Wert der Varianz des Beobachtungsfehlers, die Differenz zu der bestimmbaren Varianz der Beobachtungsinkremente der Varianz des Beobachtungsfehlers. Der Wert dieser Extrapolation ist in der praktischen Durchführung mit Unsicherheiten behaftet, denn er hängt von der Art der zu approximierenden Funktion ab. Darüber hinaus sind die Stützstellen für geringe Abstände nur aus relativ kleinen Ensembles gebildet und damit zum Teil relativ unsicher.

Das selbe Vorgehen ist möglich, wenn anstelle der Kovarianzen der Beobachtungsinkremente deren Korrelationen bestimmt werden. Dies entspricht einer Normierung des Gleichungssystems 2 mit der Varianz der Beobachtungsinkremente, für die bei Homogenität nur ein Wert für das gesamte Feld angenommen wird. Je näher in diesem Fall der extrapolierte Schnittpunkt dabei am Wert 1 liegt, desto geringer ist der relative unkorrelierte Beobachtungsfehler und um so höher ist der verwertbare Informationsgehalt der Messungen im Vergleich zum Background. Niedrige Korrelationen sind demzufolge ein Ausdruck für die Güte des Backgroundfeldes und nicht für einen hohen unkorrelierten Beobachtungsfehler.

Eine Korrelationsfunktion ist in Abbildung 14 dargestellt. Sie zeigt das typische Abklingen der Korrelation mit zunehmenden Abstand. Bei der Betrachtung der räumlichen Autokorrelationsfunktion ist zu beachten, dass es sich nicht um die Korrelation der Messwerte selbst, sondern um die der Beobachtungsinkremente handelt. Die Korrelation der Messungen würde für geringe Abstände wesentlich höhere Werte liefern.

Abbildung 14 Räumliche Korrelation für die Beobachtungsinkremente, COR: Berechnete Korrelation pro Abstandsklasse (10km), FIT: approximiertes Korrelationsmodell

8.3. Implementierung der OI für Immissionsfelder

Im folgenden wird die für diesen Bericht verwendete Implementierung der OI, d.h. das verwendete Kovarianzmodell und die Biaskorrektur des Modellfeldes, beschrieben. Sie entspricht dem Standart für die Optimale Interpolation in meteorologischen Anwendungen (Daley, 1991), in der das homogene und isotrope Korrelationsmodell und die Varianz des Beobachtungsfehlers mit der Beobachtungsmethode bestimmt werden. Weiter unten wird die Weiterentwicklung vorgestellt, die die Besonderheiten von Immissionsfeldern und ihrer Messung genauer berücksichtigt. Diese neue Art der Implementierung wird in zukünftigen Arbeiten des Projektes verwendet werden.

8.3.1. OI mit einem homogenen und isotropen Korrelationsmodell aus den Daten zum Termin

Die Theorie der OI erfordert, dass zwischen dem Background und den Messwerten kein Bias besteht oder anders ausgedrückt, der Erwartungswert der Beobachtungsinkremente verschwinden muss. Dazu muss ein möglicher auf die Fläche bezogener Bias zwischen der Modellrechnung und den Messungen beseitigt werden. Die Bestimmung dieses Bias ist jedoch problematisch, da die Messungen auf die städtischen und verkehrsbelasteten Gebiete konzentriert sind und somit ihr Mittelwert nicht für die gesamte Fläche Deutschlands repräsentativ ist. Aus diesem Grund wurden neben dem Bias hinsichtlich aller Stationen auch der hinsichtlich der mehr regelmäßig verteilten ländlichen Stationen berechnet. Die Bestimmung OI erfolgte dann mit dem vollständig korrigierten Modellfeld. Die Differenz zu dem Bias hinsichtlich der Landstationen wurde dann nachträglich von dem interpolierten Feld wieder abgezogen.

Das homogene und isotrope Korrelationsmodell wird für den Termin aus allen vorhandenen Beobachtungsinkrementen ermittelt. Dazu werden alle Paare von Messorten hinsichtlich ihres Abstandes in Klassen eingeteilt. Für jede Entfernungsklasse wird nun die Korrelation berechnet. Dies bedeutet, dass nicht für das gesamte Feld die selbe Varianz der Beobachtungsinkremente angenommen wird, sondern für jede Abstandsklasse. Die Annahme von Isotropie und Homogenität ist hinsichtlich der Korrelationen oft besser erfüllt als hinsichtlich der Kovarianzen. Die Weite der Entfernungsklassen bestimmt die Skala, für die das Korrelationsmodell gültig ist. Dies gilt insbesondere für die geringen Abstände, da hier ein stärkeres Anwachsen der Korrelation anzunehmen ist. Die Klassenbreite muss jedoch so gewählt werden, dass sie eine statistisch auswertbare Anzahl von Stationspaaren enthält. Für eine Klassenbreite von 10 km ergibt sich ein guter Kompromiss zwischen beiden Anforderungen.

Die für jede Abstandsklasse gewonnenen Korrelationen werden nun mit einer analytischen Funktion approximiert, die aus eine Kombination aus abfallender Exponentialfunktion und Sinus- und Kosinustermen besteht:

$$f(r) = C \left(\cos(\beta r) + \frac{\sin(\beta r)}{\beta R} \right) = \exp\left(-\frac{r}{R} \right)$$
 GI. 4

Die nichtlineare Approximation (Fit) für die drei Parameter C, ß und R wird mit dem Marquard-Verfahren (Numerical Recipies) durchgeführt.

Für die Korrelationen pro Abstandsklasse werden Vertrauensgrenzen bestimmt (Taubenheim S. 162), die als Gewichte für die nichtlineare Approximation fungieren. Um die Konvergenz der Korrelationsfunktion gegen null für große Abstände zu gewährleisten, sind ab der letzten belegten Klasse weitere Datenpunkte (30% mehr als die Anzahl der belegten Klassen) mit dem Wert null und anwachsendem Gewicht in die Approximation eingeflossen.

Für die Interpolation auf einen Gitterpunkt werden die 8 nächsten Stationen herangezogen. Diese Zahl ergab sich aus empirischen Untersuchungen, da bei einer kleineren Anzahl das Feld zu diskontinuierlich wird und bei einer größeren Anzahl keine merkliche Änderung des Interpolationsergebnisses auftritt. Aufgrund der relativ hohen Beobachtungsdichte liegen die 8 Stationen fast immer vor der ersten Nullstelle der Autokorrelationsfunktion. Da die meisten Antikorrelationen nicht statistisch abgesichert sind, wird die Autokorrelationskurve nach der ersten Nullstelle auf null gesetzt.

8.3.2. Einschränkungen der bisher verwendeten Methodik

Bei der in diesem Bericht für die Erstellung der deutschlandweiten Immissionsfelder verwendeten Implementierung der OI wird die starke Inhomogenität der Immissionsfelder nur über die Vorgaben der Modellrechnung, d.h. mit Hilfe des Backgrounds berücksichtigt. Das Modell repräsentiert jedoch eine großräumige Skala, in der räumlich kleine Belastungsgebiete nur unzureichend repräsentiert sind.

Die für die Optimale Interpolation notwendige räumliche Korrelationsfunktion wird bei der bisherigen Methode ohne eine Unterscheidung der verschiedenen Immissionsregimes ermittelt. Da nur ein einziges Autokorrelationsmodell aus einem Ensemble mit einem überproportionalem Anteil von städtischen und verkehrsbelasteten Stationen verwendet wird, entspricht die Kurve einer etwas zu hohen großräumigen Immissionsverteilung. Dadurch wird die Korrelation überschätzt und der Einfluss der Stadtstationen zu stark in die ländlichen Gebiete erweitert. Gleichzeitig können damit stadtnahe Landstationen die Spitzenwerte in den Belastungszentren verringern.

Die Verwendung nur eines Korrelationsmodells bedeutet auch, dass die Varianz des Backgroundfehlers (d.h. des Modellfehlers) an allen Feldpunkten und die Varianz des Beobachtungsfehlers für alle vorliegenden Beobachtungen als gleichartig angenommen werden. Die zeitliche Variabilität dieser Fehlermaße bzw. ihres Verhältnisses wird jedoch erfasst, da stündlich zu jedem Termin eine neues Korrelationsmodell bestimmt wird.

8.4. Weiterentwicklung der OI

Für die Weiterentwicklung des OI Verfahrens sind folgende Neuerungen notwendig:

- Bestimmen der Korrelation der Beobachtungsinkremente aus gefilterten Zeitreihen.
- Kenntnis über das Immissionsregime der Messungen .
- Kenntnis über das Immissionsregime des Backgrounds (Modellrechnung).

Um eine räumliche Differenzierung der Kovarianzfunktion und eine Unterscheidung von spezifischen Varianzen der Beobachtungsfehler zu ermöglichen, ist es notwendig, die Kovarianzen ortsbezogen, d.h. nach dem Konzept der Beobachtungsmethode zwischen zwei konkreten Messorten, zu bestimmen. Dies ist mit den Daten eines Termins nicht möglich, statt dessen muss auf gefilterte Zeitreihen der Beobachtungsinkremente zurückgegriffen werden. Eine Filterung ist notwendig, wenn aus den zeitlichen Kovarianzen eine räumliche gewonnen werden soll, um den Einfluss von Jahresgang oder Tagesgang auszuschalten.

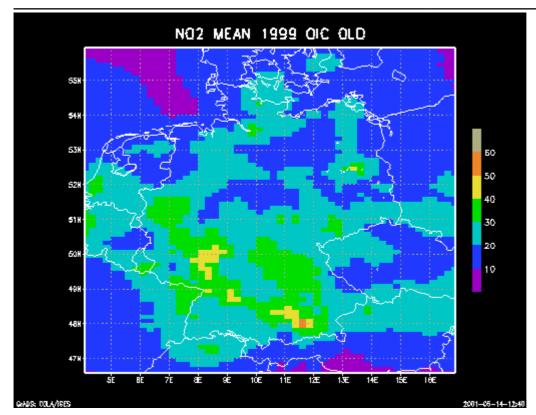
Da der Tagesgang für alle betrachteten Spezies ein wichtige Rolle spielt, die räumlichen Korrelationen aber nicht beeinflussen darf, werden jährliche Zeitreihen (Vollständigkeit größer 90 %) in stündlicher Auflösung verwendet. Diese werden mit einem Hochpass (Median-Filter) gefiltert, um den Jahresgang zu beseitigen. Für die weitere Auswertung steht damit für jede Tagesstunde ein Ensemble von Kovarianzen für alle Paare von Beobachtungsstellen zur Verfügung. Es ist geplant zu untersuchen, ob eine Unterteilung in verschiedene Jahreszeiten oder Wetterregimes weitere Informationen über die Kovarianzen liefern kann.

Im Rahmen des Projektes wurde ein hierarchisches Clusterverfahren entwickelt, um alle verwendeten Messstationen in verschiedene Immissionsregimes (Land, Vorstadt, Stadt, belastete Stadt und Verkehr) für O₃ (zusätzlich Berg), NO und NO₂ zu klassifizieren (Flemming, 2001). Um auch, wie für die Rahmenrichtlinie gefordert, SO₂ und PM10 bearbeiten zu können, muss grundsätzlich eine Klassifikation des Regimes auch für diese Spezies erfolgen.

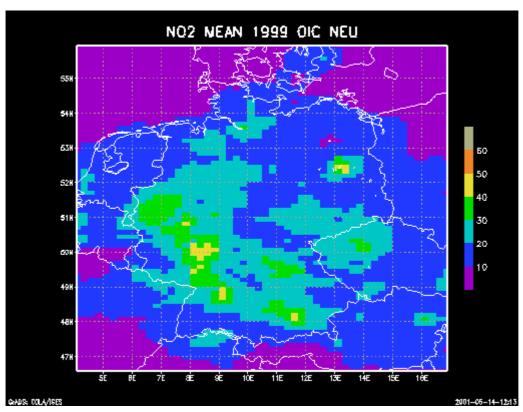
Mit den gewonnenen Klassenmerkmalen wird jedem Gitterpunkt des REM3-Modellgebiets aus den berechneten Zeitreihen eines der aus der Clusterung gewonnenen Immissionsregime zugeordnet. Diese Information ist von großer Wichtigkeit für die Interpolation, da damit die spezifische Immissionscharakteristik des Gitterpunktes bei der Interpolation berücksichtigt werden kann. Die Immissionsklassen aus der Rechnungen stellen ein komprimiertes Maß für den Vergleich mit den Messungen dar.

8.4.1. OI mit einem inhomogenen Kovarianzmodell unter Berücksichtigung verschiedener Emissionsregimes

Die Kovarianzen bij und bji in dem Gleichungssystem 2 beschreiben die Beziehung zwischen den beiden Punkten (Messort i zu Messort j bzw. Messort j zu Interpolationspunkt I). Die Grundidee der neuen OI-Implementierung ist es, jeweils ein Kovarianzmodell für alle Kombinationen von Immissionsklassen zu ermitteln. Innerhalb dieser Kombination wird dann eine reine Abstandsabhängigkeit der Kovarianz angenommen.


Die Ausgangsbasis für diese Vorgehen ist die Berechnung der Kovarianzen für alle Stationspaare aus den gefilterten Zeitreihen der Inkremente, d.h. der Abweichung zwischen Modellrechnung und Messung. Diese Kovarianzwerte werden nach den Paarungen der zugehörigen Immissionsklassen gebündelt und für die Approximation einer Kovarianzfunktion nach Gleichung 4 herangezogen. Da die Immissionsklasse der Messung und der zugehörigen Gitterbox aufgrund der unterschiedlichen Skalen nicht in jedem Fall übereinstimmen, ist der Kovarianzwert durch einen Abstand und 4 Immissionsklassen charakterisiert. Es sind dies die beiden Immissionsklassen der Messungen und die der zugehörigen Gitterpunkte des Backgrounds. Die dadurch möglichen Kombinationen würde jedoch die Anzahl der Wertepaare pro Kovarianzmodell sehr stark verringern. Aus diesem Grund erfolgt die Unterscheidung in dem hier vorgestellten Ansatz nur hinsichtlich der Klassifizierung der Messzeitreihen. Damit ergeben sich für 5 Immissionsklassen (bei NO₂) 15 verschiedene Kovarianzmodelle.

Die Kovarianzwerte b_i bzw. b_{ij} in Gleichung 2 werden nun mit Hilfe des Abstandes und dem entsprechenden Kovarianzmodell für i und I bzw. i und j ermittelt. Da die Wahl des Kovarianzsmodells von dem Immissionsregime des Interpolationspunktes I abhängt, wird die Inhomogenität der Immissionsfelder berücksichtigt. Die Varianz des Beobachtungsfehlers wird wie oben beschrieben aus den Kovarianzmodellen für die gleiche Immissionsklasse abge-


schätzt. Dadurch ergeben sich für jede Immissionsklasse der Messorte ein unterschiedlicher Wert für die Varianz des Beobachtungsfehlers.

Im folgenden wird die neu OI-Implementierung am Beispiel NO₂ näher diskutiert: Für das Kovarianz der Landstationen untereinander ergeben sich positive Kovarianzen auch für größere Abstände. Die Kovarianzen zwischen den der belasteten Stationen in Ballungsgebieten zeigen ein schnelles Abklingen auf den Wert null, sie weisen jedoch für kurze Abstände hohe Werte auf. Die Kovarianzen zwischen den belasteten Stationen und den Landstationen haben fast keine belastbaren Kovarianzen bzw. Korrelation. Demzufolge werden belastete Stationen für die Interpolation der Gitterpunkte mit ländlicher Charakteristik nur in sehr geringen Maße verwendet.

Abbildung 15 und Abbildung 16 zeigen die Jahresmittelwerte aus den stündlich interpolierten NO₂-Feldern nach der bisherigen und der neuen OI-Implementierung. Deutlich erkennbar ist, dass in der alten Fassung die Ausdehnung der Gebiete mit erhöhter Belastung größer ist, da der Einfluss der städtischen Messungen überbewertet wird. Die Gebiete mit hoher Belastung werden jedoch mit beiden Verfahren erfasst. Das neue Verfahren ermöglicht also insbesondere eine schärfere Trennung zwischen den verschiedenen Immissionsregimen und soll daher in Zukunft zur Erstellung der deutschlandweiten Immissionskarten verwendet werden.

Abbildung 15 Jahresmittelwert für NO_2 in $\mu g/m^3$ aus der bisherigen, für die Ausgangsbeurteilung verwendeten OI Implementierung.

Abbildung 16 Jahresmittelwert für NO_2 in $\mu g/m^3$ aus der OI-Implementierung mit regimeabhängigen Kovarianzmodellen.

9. Anhang 3: Anwendung der OI alternativ mit Modellhintergrund oder Messhintergrund

Es wurde bereits erwähnt, dass zur Anwendung der OI nicht notwendigerweise die Ergebnisse von Modellrechnungen als Hintergrund ("first guess") verwendet werden müssen. Vielmehr kann das Hintergrundfeld auch aus den Messungen selbst gebildet werden. Während der Entwicklung der in diesem Bericht für die Erstellung der Immissionsfelder verwendeten OI-Implementierung wurde die OI für das Testjahr 1997 mit zwei verschiedenen Hintergrundfeldern angewandt:

- Feld1:REM3-Modellergebnisse zum Termin
- Feld 2:Mittelwert der Messungen zum Termin

Ein Vergleich der Ergebnisse beider Anwendungen ermöglicht eine erste Einschätzung, welchen Einfluss die Modellergebnisse auf die Interpolation haben. Für die Verwendung eines berechneten Hintergrunds spricht die Tatsache, dass die Messstationen räumlich sehr inhomogen verteilt sind und dabei insbesondere der ländliche Raum unterrepräsentiert ist. Das Modell dagegen liefert eine konsistente Abdeckung des gesamten Untersuchungsgebiets.

Die OI wurde für das ganze Jahr 1997 für NO₂ unter Verwendung der Messungen der Bundesländer angewandt. Es wurden nur solche Stationen berücksichtigt, die eine Mindestdatenerfassung von 90% auswiesen. Der Vergleich der beiden Berechnungen mit unterschiedlichem Hintergrund erfolgte für die Stationen des Umweltbundesamts, die nicht in der OI verwendet wurden. Diese Stationen liegen sämtlich in ländlicher Umgebung, so dass der Vergleich insbesondere die Unterschiede in emissionsarmen Gebieten aufzeigt, die sich aus der Wahl eines gemessenen bzw. berechneten Hintergrunds ergeben.

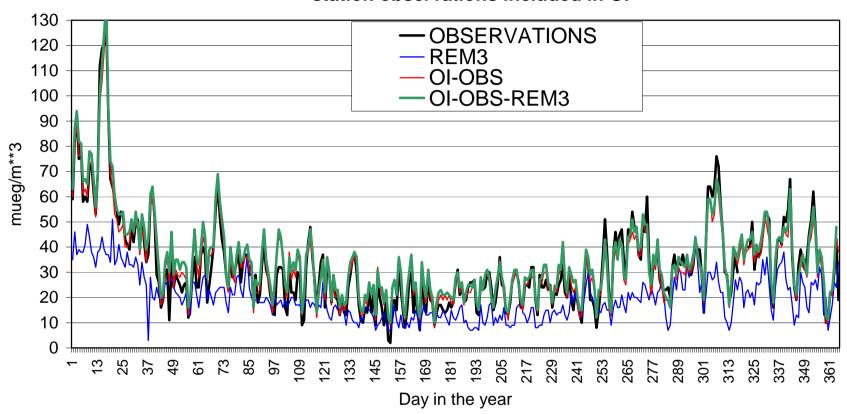
Die Abbildung 17 zeigt den zeitlichen Verlauf der NO₂-Tagesmittelwerte in Freiburg. Abgebildet sind

- die Beobachtungen (Mittel aus den Messungen der Stationen Freiburg Mitte und Freiburg Nord),
- die REM3-Berechnung,
- die OI mit Modellhintergrund,
- die OI mit Messhintergrund.

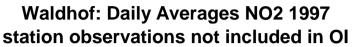
Die Messdaten dieser Station sind in die OI eingeflossen. Es zeigt sich deutlich, dass das Modell die gemessenen Konzentrationen unterschätzt, da die Emissionen von Freiburg in der Skala von ca. $30x30~\mathrm{km^2}$ nicht genügend aufgelöst werden können. Beide OI-Anwendungen folgen dem gemessenen Verlauf dagegen sehr gut, was auch nicht weiter verwunderlich ist, da die Messwerte der Freiburger Stationen in der OI verwendet wurden. Daher spielt die Wahl des Hintergrunds hier kaum eine Rolle. Die Abbildung 17 zeigt , dass die OI die Messungen an Gitterpunkten in der Nähe von Stationen gut abbildet.

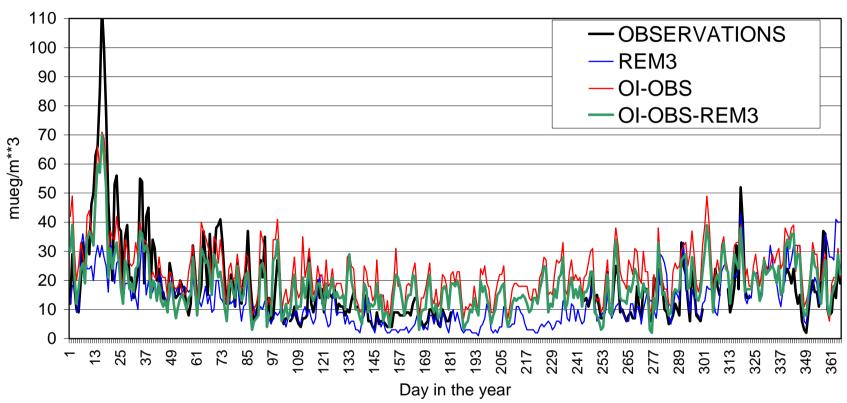
Die Abbildung 18 und Abbildung 19 zeigen für zwei Stationen des Umweltbundesamts die Ergebnisse der OI-Anwendung mit dem Mess-, bzw. dem Modellgrund. Die Messwerte dieser beiden Stationen wurden in der OI nicht berücksichtigt. Die OI, die nur auf Messungen beruht, führt hier sehr oft zu einer deutlichen Überschätzung der beobachteten NO₂-Konzentrationen. Da am Ort der Stationen Waldhof und Murnauer Moos keine Information für die Interpolation zur Verfügung steht, bildet die OI den Konzentrationswert aus den Messungen der umliegenden Stationen, die eher eine nicht-ländliche Charakteristik aufweisen und deren Konzentrationsniveau daher im Mittel höher liegt. Nimmt man als Hintergrund die Ergebnisse

der Modellrechnung, erhält man zwar immer noch eine Überschätzung, diese fällt aber meistens deutlich geringer aus als für die OI mit gemessenem Hintergrund, da jetzt in den Gebieten, wo keine Messungen vorliegen, die Modellinformation benutzt wird. Ist das in der Umgebung der nicht-berücksichtigten Station gemessene Konzentrationsniveau aber sehr viel höher als das an der betrachteten Station, dann überwiegt in der gegenwärtigen Implementierung der OI der Einfluss der Messungen und die zusätzliche Modellinformation kommt nur schwach zum Tragen. Dies zeigt sich deutlich an der Station Murnauer Moos, an der die gemessenen NO₂-Tagesmittelwerte um die Tage 136 und 313 sehr gering sind. Die Modellrechnung bringt hier das richtige Konzentrationsniveau, beide Varianten der OI zeigen aber kräftige Überschätzungen, da an den Stationen in der weiteren Umgebung sehr hohe Werte gemessen wurden. Die OI mit Modellhintergrund liegt im Vergleich zur OI mit Messhintergrund in solchen extremen Fällen nur geringfügig näher an den Messungen.


Die Tabelle 14 zeigt für einige UBA-Stationen einen Vergleich der gemessenen NO₂-Jahresmittelwerte mit den nach den verschiedenen Methoden berechneten Jahresmittelwerten. Alle diese Stationen wurden nicht in der OI verwendet. Es wird deutlich, dass die OI unter Verwendung gemessener Hintergründe die größten Abweichungen von der Messung zeigt, da zur Bestimmung der Konzentrationen nur Informationen aus dem entfernteren Umfeld benutzen werden können. Dies wird besonders deutlich an der Bergstation Schauinsland, wo die mit der OI ermittelten Konzentration aus den umliegenden, sehr viel höher belasteten Stationen im Rheintal bestimmt wird. Verwendet man als Hintergrund die Modellinformation, so kommt es generell zu einer geringeren Überschätzung der Messung, da das Modell das ländliche Konzentrationsniveau am Stationsort in den meisten Fällen gut reproduziert und diese Information in die OI einfließt. Dies zeigt auch der Vergleich der reinen REM3-Modellrechnung mit den Messungen.

Die Verwendung von Modellinformationen bringt also überwiegend dort eine Verbesserung der OI im Vergleich zu einer reinen Messinterpolation, wo das vorherrschende Konzentrationsniveau von der Skala des verwendeten Modells reproduzierbar ist. Dies ist im Falle eines mit einem großräumigen Modell erstellten Hintergrunds im wesentlichen der Fall in ländlichen Regionen. Dort bringt das Modell oft sogar bessere Ergebnisse als eine Interpolation, die auf Messungen basiert, die nicht das Konzentrationsniveau haben, das dem Immissionsregime am Interpolationsort entspricht. Die Verbindung von Messungen mit berechnetem Hintergrund hat damit den Vorteil, dass Messinformation dort benutzt wird, wo sie vorhanden ist. In Gebieten, in denen keine Messungen vorliegen, wird dagegen die Modellinformation verwendet während in der reinen Messinterpolation solchen Regionen einfach das Konzentrationsniveau der weiteren Umgebung zugeordnet wird.


 $\begin{tabular}{ll} \textbf{Tabelle 14} & NO_2\mbox{-}Jahresmittelwerte 1997 in $\mu g/m^3$ an ausgewählten UBA-Stationen. OI mit gemessenem Hintergrund (OI-OBS), OI mit berechnetem Hintergrund (OI-OBS-REM3), REM3-Modellergebnisse (REM3) und Beobachtungen. Auswertung jeweils für die Perioden, in denen Messungen zur Verfügung standen. Weitere Erläuterungen im Text. \\ \end{tabular}$


Station	Beobachtung	OI-OBS	OI-OBS-REM3	REM3
Murnauer Moos	11,0	21,3	15,7	7,5
Lehnmühle	11,8	30,5	30,7	20,6
Lückendorf	9,6	22,0	21,0	19,1
Angermünde	13,0	15,0	9,4	10,6
Regnitzlosau	11,6	24,7	24,0	15,6
Rottenburg	21,1	30,1	29,0	17,7
Waldhof	18,0	23,9	18,8	14,0
Schauinsland	6,3	30,1	24,2	5,5
Brotjacklriegel	7,8	17,4	11,0	7,2
Westerland	12,5	17,2	13,1	5,8

Freiburg: Daily Averages NO2 1997 station observations included in OI

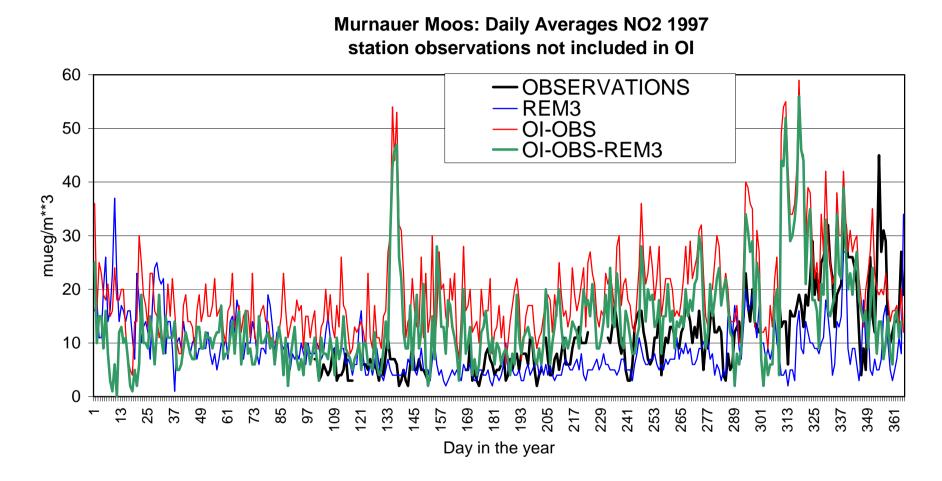


Abbildung 17 NO₂-Tagesmittelwerte 1997 in Freiburg. OI mit gemessenem Hintergrund (OI-OBS), OI mit berechnetem Hintergrund (OI-OBS-REM3), REM3-Modellergebnisse (REM3) und Beobachtungen (OBSERVATIONS).Die Messungen wurden in der OI verwendet. Weitere Erläuterungen im Text.

Abbildung 18 NO₂-Tagesmittelwerte 1997 an der UBA-Station Waldhof .OI mit gemessenem Hintergrund (OI-OBS), OI mit berechnetem Hintergrund (OI-OBS-REM3), REM3-Modellergebnisse (REM3) und Beobachtungen (OBSERVATIONS).Die Messungen wurden **nicht** in der OI verwendet. Weitere Erläuterungen im Text.

Abbildung 19 NO₂-Tagesmittelwerte 1997 an der UBA-Station Murnauer Moos. OI mit gemessenem Hintergrund (OI-OBS), OI mit berechnetem Hintergrund (OI-OBS-REM3), REM3-Modellergebnisse (REM3) und Beobachtungen (OBSERVATIONS).Die Messungen wurden **nicht** in der OI verwendet. Weitere Erläuterungen im Text.

10. Literatur

Daley, R. (1991)

Atmosferic Data Analysis, Cambridge University Press, Cambridge.

Flemming (2001)

Charakterisierung der Messstationen nach dem Immissionsregime Institut für Meteorologie, Freie Universität Berlin.

Gandin, J. L. (1963)

The objective analysis of meteorological fields. Israel Program for Scientific Translations, Jerusalem.

Hollingsworth, A. und Lönnberg, P. (1986)

The statistical structure of short-range forecast errors as determined from radiosonde data, Part I: The wind field, Tellus, 38 A, 111-136.

Motz, G., Hartmann, A., Plinke, E., Stern, R., Scherer, B., Fath, J., Reimer, E., Memmesheimer, M., Tippke, J., Ebel, A., 1997. Aktionsprogramm und Maßnahmenplan Ozon: Ermittlung und Bewertung der Effekte von lokalen, regionalen und überregionalen Emissionsminderungs-Strategien auf bodennahe Ozonkonzentrationen in hochsommerlichen Episoden mit Hilfe modellgestützter emissions- und immissionsseitiger Wirkungsanalysen. Kurzfassung. Im Auftrag des Umweltbundesamts. www.umweltbundesamt.de/ozon

Reimer, E. and Scherer, B., 1992. An operational meteorological diagnostic system for regional air pollution analysis and long-term modelling. Air Poll.Modelling and its Applications IX. Plenum Press

Stern, R., Flemming, J., Builtjes, P., Oestreich, A., Reimer, E., Fath, J. (2000) Modellierung und Prüfung von Strategien zur Verminderung der Belastung von Ozon. Zwischenbericht zum FE-Vorhaben 298 41 252. Institut für Meteorologie, Freie Universität Berlin.

Stern, R., 1994. Entwicklung und Anwendung eines dreidimensionalen photochemischen Ausbreitungsmodells mit verschiedenen chemischen Mechanismen. Meteorologische Abhandlungen Serie A Band 8, Heft 1. Verlag von Dietrich Reimer Berlin

Stern, R. und Builtjes, P., 1998. Anwendung des photochemischen Ausbreitungsmodells REM3 zur Bestimmung von Jahresmittelwerten und AOT40-Werten von Ozon. Freie Universität Berlin, Institut für Meteorologie. Abschlußbericht zum FE-Vorhaben Nr. 20402846 "Bewertung der Effekte von (kurz- und langfristigen) Immissionsminderungsstrategien auf das Ozonkonzentrationsniveau (Modellgestützte emissions- und immissionsseitige Wirkungsanalysen). Im Auftrag des Umweltbundesamts

Taubenheim, J. (1969)

Statistische Auswertung meteorologischer und geophysikalischer Daten, Akademische Verlagsanstalt Geest und Portig, Leipzig.