Umweltforschungsplan des Bundesministers für Umwelt, Naturschutz und Reaktorsicherheit

Forschungsbericht 202 41 356

Emissionen und Emissionsprognose von H-FKW, FKW und SF₆ in Deutschland - Aktueller Stand und Entwicklung eines Systems zur jährlichen Ermittlung

Emissionsdaten bis zum Jahr 2003 und Emissionsprognosen für die Jahre 2010 und 2020

von

Dr. Winfried Schwarz

Öko-Recherche Büro für Umweltforschung und -beratung GmbH Frankfurt/Main

unter Mitarbeit von

Sina Wartmann Ecofys GmbH Nürnberg

Im Auftrag des Umweltbundesamtes

31. Juli 2005

Berichts - Kennblatt

Berichtsnummer UBA-FB	2.	3.					
Titel des Berichts	<u> </u>						
Emissionen und Emissionsprogno Entwicklung eines Systems zur jä Emissionsprognosen für die Jahre	hrlichen Ermittlung. Emissionsda	Deutschland - Aktueller Stand und ten bis zum Jahr 2003 und					
5. Autoren, Namen, Vornamen		8. Abschlussdatum 31.07.2005					
Dr. Winfried Schwarz, Sina Wartmann		Veröffentlichungsdatum Oktober 2005					
6. Durchführende Institution (Nam	e, Anschrift)	10. UFOPLAN - Nr. 202 41 356					
Öko-Recherche, Büro für Umw GmbH, Münchener Str. 23, 603		11. Seitenzahl V + 107					
7. Fördernde Institution (Name, A	nschrift)	12. Literaturangaben					
Umweltbundesamt, Wörlitzer P Fachbegleitung: Katja Schwaak	,	13. Tabellen 18					
		14. Abbildungen					
15. Zusätzliche Angaben: Die Studie ist auch auf Englisch vorhanden.							

Die Klimarahmenkonvention (UNFCCC) und ihre Folgeregelungen enthalten konkrete Verpflichtungen zur Übermittlung klimawirksamer Emissionen, einschließlich der zu ihrer Ermittlung verwendeten Basisdaten (Aktivitätsdaten) und Erhebungs- und Berechnungsmethoden. In Bezug auf die fluorierten Klimagase HFKW, FKW und SF₆ sind für die nationale Emissionsberichterstattung zu ermitteln:

- Emissionen von HFKW, FKW (ca. 20 Einzelstoffe) und SF₆ in Tonnen und CO₂-Äquivalenten aus industriellen Prozessen, aufgegliedert nach Sektoren.
- Emissionsprognosen für HFKW, FKW und SF₆.
- Umgesetzte und geplante Maßnahmen zur Emissionsreduktion und sich daraus ergebende Effekte.

Dieser Forschungsbericht entstand in diesem Zusammenhang. Er besteht aus drei Teilen.

Teil I präsentiert einen Vorschlag für das künftige nationale F-Gas-Monitoring-System, der gleiche Datenqualität (Aktivitätsdaten und Emissionsfaktoren) mit weniger Aufwand erzielen soll. Seine Grundzüge – Straffung, Institutionalisierung, Hebung der Datenqualität – sind erstens durch abgestufte Präzisionsanforderungen bei Emissionsquellen innerhalb von "Hauptquellgruppen" und zweitens durch Nutzung des neuen Umweltstatistikgesetzes und neuer Datenbanksysteme für Kältemittel gegeben. Das neue Monitoringsystem wird Sektor für Sektor erläutert.

Teil II zeigt die für die Emissionsberichterstattung erforderlichen jährlichen Emissionen fluorierter Treibhausgase für die Jahre 1999 bis 2003. Er enthält außerdem Emissionsprognosen für die Jahre 2010 und 2020 nach vier verschiedenen Szenarien, von denen dasjenige sicher das wichtigste ist, das die Wirkung der geplanten EU-Verordnung über bestimmte fluorierte Treibhausgase und der EU-Richtlinie zum HFKW-134a-Ausstieg bei Kfz-Klimaanlagen enthält.

Teil III enthält historische Emissionsdaten des Jahres 1990. Deren rückwirkende Abschätzung und Dokumentation ist für die Konsistenz der Emissionsberichterstattung nach UNFCCC erforderlich. Aufgrund des extrem hohen GWP der emittierenden F-Gase SF₆, HFKW-23 und CF₄ lag das Emissionsniveau damals nur wenig unter dem des Jahres 2003, das durch neue HFKW geprägt ist.

17. Schlagwörter

16. Kurzfassung

Fluorierte Treibhausgase; Monitoring, Emissionsprognose, Emissionen, F-Gase; Berichterstattung; CRF, ZSE; Aktivitätsdaten; Emissionsfaktoren; HFKW, FKW; SF₆; UNFCCC

18. Preis	19.	20.

Report Cover Sheet

1. Report No. UBA-FB	2.	3.
4. Report Title		
Emissions and Emission Project		
Development of a Monitoring Sy and 2020	stem. Emissions 1990, 1999-20	03 and Emissions Forecasts for 2010
5. Authors, Family Names, First N	lames	8. Report Date 31.07.2005
Dr. Winfried Schwarz, Sina Wa	rtmann	Publication Date October 2005
6. Performing Organization (Name	e, Address)	10. UFOPLAN - Ref. No. 202 41 356
Öko-Recherche, Büro für Umw GmbH, Münchener Str. 23, D-6		11. No. of Pages V + 107
7. Sponsoring Agency (Name, Ad	dress)	12. No. of References
Umweltbundesamt (German Fe Wörlitzer Platz 1, D-06844 Des	· · · · · · · · · · · · · · · · · · ·	13. No. of Tables 18
		14. No. of Figures
15. Supplementary Notes		
A full-length German version of	of this report is available at the s	ponsoring agency.

16. Abstract

The Framework Convention on Climate Change and its follow-up regulations include special commitments on the transmission of emission data as well as the data basis (activity data) and the applied methodologies. National emission reporting on the fluorinated greenhouse gases HFCs, PFCs, and SF_6 requires establishing

- Emissions of HFCs, PFCs (about 20 individual fluids), and SF₆ in metric tonnes and CO₂ equivalents from industrial processes, by individual sectors,
- Emission Projections of HFCs, PFCs and SF₆ in Germany,
- Rating of the effects of implemented and intended emission reduction measures.

In this context the following report was prepared. It consists of three parts.

Part I presents a proposal for a future national F-gas monitoring system designed to provide equal quality of activity data and emission factors with less expenditure. Its main features are tightening, institutionalisation, and increase in data quality. This can be achieved by making gradual precision demands on emission sources within "key emission sources" and, additionally, by using the new Environmental Statistics Law as well as database systems on refrigerants being developed now. The new monitoring system is explained sector by sector.

Part II contains both emission data for the years 1999 to 2003 as required for Germany's emission reporting on F-gases, and emissions forecasts for 2010 and 2020. The latter are each based on four different scenarios one of which considers the emission reduction effect of the forthcoming EU Regulation on Certain Fluorinated Greenhouse Gases and EU Directive on HFC-134a Phase-out from Passenger Car Air Conditioners.

Part III provides historic emission data for the year 1990. Their retroactive estimation and documentation is necessary to meet the completeness criterion set out by UNFCCC for national emission reporting. Due to the extremely high GWP of the then emitting F-gases SF_6 , HFC-23, and CF_4 , the 1990 emission level was not very far below that of the year 2003 which is characterised by the new and specifically produced HFCs.

17. Keywords

Fluorinated Greenhouse Gases; Emissions; Emissions Forecast, Reporting; CRF, ZSE; Activity data; Emission factors; Hydrofluorocarbons (HFCs); Perfluorocarbons (PFCs); Sulphur Hexafluoride (SF₆)

Price	19.	20.		

Inhaltsverzeichnis

Zusammenfassung	V
Teil I Das neue F-Gas-Monitoring-System	1
Aufgabenstellung: Gleiche Datenqualität mit weniger Aufwand	2
Erstes Kapitel Die Grundzüge des neuen Monitoring-Systems I. Straffung durch abgestufte Präzisionsanforderungen 1. Drei Hauptquellgruppen und ihre Unterteilung	4 4 4
 Die Zwei-Drittel-Abschneidegrenze Unterquellgruppen für hohe Datenpräzision Anforderungen auf der Ebene der Einzelquellen Weniger Erhebungsaufwand durch abgestufte Präzisionsanforderungen 	5 7 7 8
II. Institutionalisierung durch vereinbarte EmissionsmeldungIII. Nutzung neuer Instrumente zur Hebung der Datenqualität	10 11
Das Umweltstatistikgesetz Neue Datenbanksysteme zur Kältemittel-Verwaltung Zusitze Kanifel Altzeug Angere Manifesting Ging ünztliche E. Gan Filme Lauftung Angere der State der	11 17
 Zweites Kapitel. Altes und neues Monitoring für sämtliche F-Gas-Einzelquellen I. FKW und SF₆ bei der Metall-Produktion (2.C) 1. SF6 in Magnesium-Gießereien 2. HFKW-134a in Magnesium Gießereien 3. SF6 in Aluminium-Gießereien 4. FKW aus der Aluminium-Produktion II. Produktion halogenierter Kohlenwasserstoffe und SF₆ (2.E) 1. Nebenprodukt-Emissionen von HFKW-23 aus R-22 (2.E.1) 2. Flüchtige Emissionen (2.E.2) III. Verbrauch von HFKW, FKW und SF₆ (2.F) 1. Kälte- und Klimaanlagen (2.F.1) 2. Hartschaum (2.F.2) 3. Feuerlöschmittel (2.F.3) 4. Aerosole und Medizinische Dosiersprays (2.F.4) 5. Lösemittel (2.F.5) 6. Halbleiterherstellung (2.F.6) 7. Betriebsmittel zur Übertragung und Verteilung von Elektrizität (2.F.7) 8. Sonstige SF6-Anwendungen (2.F.8) 	20 20 20 20 21 21 22 22 22 23 33 33 36 36 38 40 40
Teil II Emissionsdaten 1999 bis 2003 und Emissionsprognosen für 2010 und 2020	45
Aufgabenstellung: Aktuelle Emissionen und Emissionsprognosen Erstes Kapitel. Emissionsdaten bis zum Jahr 2003 I. Die Emissionen von 1999 bis 2003 (Kurzfassung) 1. HFKW 1995-2003 2. FKW 1995-2003 3. SF6 1995-2003 II. Die Datenquellen für die Emissionen 2002 und 2003	46 47 48 48 49 50 51
 Zweites Kapitel. Emissionsprognosen für die Jahre 2010 und 2020 I. Emissionsprognosen 2010 und 2020 nach vier Szenarien II. Prognosen nach Stoffgruppen und sektoralen Annahmen 1. HFKW-Emissionen 2010 und 2020 2. FKW-Emissionen 2010 und 2020 3. SF6-Emissionen 2010 und 2020 III. Tabellen-Anhang 	61 61 66 66 77 80 85
Teil III Historische Emissionsdaten für 1990	99
Einleitung	100
Erstes Kapitel. Die Quellgruppen 2.C und 2.E im Jahr 1990	101
Zweites Kapitel. Die Quellgruppe 2.F im Jahr 1990	104
Drittes Kapitel. Ökologische Bewertung der Emissionen von 1990	106
Anhang: Die verwendeten GWP-Werte	107

Zusammenfassung

Die Klimarahmenkonvention (UNFCCC) und ihre Folgeregelungen enthalten auch für Deutschland konkrete Verpflichtungen zur Übermittlung von klimawirksamen Emissionen, einschließlich der zu ihrer Ermittlung verwendeten Basisdaten (Aktivitätsdaten) und Erhebungs- und Berechnungsmethoden. Im Zusammenhang mit den internationalen Vereinbarungen zum Klimaschutz sind gleichfalls Emissionsdaten an die Europäische Kommission zu melden.

In Bezug auf die fluorierten Klimagase HFKW, FKW und SF₆ sind folgende Daten für die nationale Emissionsberichterstattung zu ermitteln:

- Emissionen von HFKW, FKW (ca. 20 Einzelstoffe) und SF₆ in Tonnen und CO₂-Äquivalenten aus industriellen Prozessen, aufgegliedert nach Sektoren.
- Emissionsprognosen für HFKW, FKW und SF₆.
- Umgesetzte und geplante Politiken und Maßnahmen zur Emissionsreduktion und die sich daraus ergebenden Effekte.

Dieser Forschungsbericht entstand in diesem Zusammenhang. Er besteht aus drei Teilen.

Teil I präsentiert einen Vorschlag für das künftige nationale F-Gas-Monitoring-System, der gleiche Datenqualität (Aktivitätsdaten und Emissionsfaktoren) mit weniger Aufwand erzielen soll. Seine Grundzüge – Straffung, Institutionalisierung, Hebung der Datenqualität – sind erstens durch abgestufte Präzisionsanforderungen bei Emissionsquellen innerhalb von "Hauptquellgruppen" und zweitens durch Nutzung des neuen Umweltstatistikgesetzes und neuer Datenbanksysteme für Kältemittel gegeben. Das neue Monitoring-System wird Sektor für Sektor erläutert.

Teil II zeigt die für die Emissionsberichterstattung erforderlichen jährlichen Emissionen fluorierter Treibhausgase für die Jahre 1999 bis 2003, die mittlerweile an die internationalen Instanzen weitergeleitet worden sind. Er enthält außerdem Emissionsprognosen für die Jahre 2010 und 2020 nach vier verschiedenen Szenarien, von denen dasjenige sicher das wichtigste ist, das die Wirkung der geplanten EU-Verordnung über bestimmte fluorierte Treibhausgase und der EU-Richtlinie zum HFKW-134a-Ausstieg bei Kfz-Klimaanlagen enthält.

Teil III enthält quasi als Nachlieferung historische Emissionsdaten des Jahres 1990. Deren rückwirkende Abschätzung und Dokumentation ist für die Konsistenz der Emissionsberichterstattung nach UNFCCC erforderlich.

Verfasser der Studie ist Winfried Schwarz. An Teil I hat Sina Wartmann mitgearbeitet..

Frankfurt, 30. Juli 2005

Teil I Das neue F-Gas-Monitoring-System

Aufgabenstellung: Gleiche Datenqualität mit weniger Aufwand

Das jährliche Emissionsinventar fluorierter Treibhausgase im Sinne der CRF-Berichtstabellen gemäß Klimarahmenkonvention wird bisher von Öko-Recherche erstellt, das alle Daten sammelt und bis zur Eingabefähigkeit in das Zentrale System Emissionen (ZSE) aufbereitet. Ausgangspunkte sind zwei grundlegende Studien:

- Schwarz, W./Leisewitz, A.: Aktuelle und künftige Emissionen treibhauswirksamer fluorierter Verbindungen in Deutschland, im Auftrag des UBA, Berlin, Dez. 1996.
- Schwarz, W./Leisewitz, A.: Emissionen und Minderungspotential von HFKW, FKW und SF₆ in Deutschland, im Auftrag des Umweltbundesamtes, Berlin, Oktober 1999.

Seitdem werden emissionsrelevante Daten für vierzig Sektoren vor allem durch eigene Erhebungen, Befragungen von Herstellern, Anwendern, Händlern, Verbänden und anderen Branchenexperten gesammelt. Vereinzelt greift das Forschungsbüro auf freiwillige Mitteilungen im Rahmen von Branchen-Selbstverpflichtungen zurück. Das System ist ausführlich beschrieben im UBA-Text 14/05¹.

Diesem Vorhaben wurde u. a die Aufgabe gestellt, das F-Gas-Monitoring-System unabhängiger von den zahlreichen personengebundenen Direktbefragungen durch das Öko-Recherche zu machen. Dafür sollten u. a. Möglichkeiten der Direktmeldung an das Umweltbundesamt durch Untenehmen und Verbände auf freiwilliger, aber verbindlicher Basis erkundet werden. In der Hauptsache sollten jedoch Vorschläge für ein System der Erhebung emissionsrelevanter Daten zur Erfüllung der jährlichen nationalen Berichtspflichten erarbeitet werden, das künftig mit weniger Aufwand auskommt und dennoch gleich oder sogar stärker belastbare Emissionsdaten gewinnt.

Das ZSE ist seit kurzem die nationale Datenbank zur Emissionsberechnung und – Berichterstattung, die zahlreiche Arbeitsschritte der Berichterstattung automatisiert, sobald es die Aktivitätsdaten früherer Berichtsjahre als Zeitreihen sowie die zugehörigen Emissionsfaktoren enthält. Es reduziert deutlich den Aufwand für den Gesamtprozess der Emissionsberichterstattung. Der jährliche Teilprozess der Gewinnung derjenigen Daten, die in das ZSE neu einzugeben sind, ist dadurch jedoch noch nicht weniger aufwendig geworden.

Die Vorschläge für ein zeitgemäßes und weniger aufwendiges Monitoring sollen sich an den Rahmenbedingungen orientieren, die durch die UNFCCC reporting guidelines als Anforderungen an die Berichterstattung auf der einen und durch national bereits vorhandene oder realisierbare "Werkzeuge" auf der anderen Seite gegeben sind. In diesem Zusammenhang sollte vor allem untersucht werden, in wie weit die jährlichen Erhebungen nach dem Umweltstatistikgesetz (UStatG) genutzt oder durch Mitarbeit an seiner Novellierung nutzbar gemacht werden könnten.

Die in Teil I vorgestellten Reformen sind mit drei Schlüsselbegriffen charakterisierbar:

- 1. Straffung.
- 2. Institutionalisierung,
- 3. Erhöhung der Datenqualität.

¹ Winfried Schwarz: Emissionen, Aktivitätsraten und Emissionsfaktoren von fluorierten Treibhausgasen (F-Gasen) in Deutschland für die Jahre 1995-2002. Anpassung an die Anforderungen der internationalen Berichterstattung und Implementierung der Daten in das zentrale System Emissionen (ZSE), für das Umweltbundesamt, Dessau, Juni 2005, http://www.umweltbundesamt.org/fpdf-l/2902.pdf

Zu 1. Straffung

Eine wesentliche Vereinfachung der Datenerhebung ist dadurch möglich, dass erstmals die Präzisionsanforderungen für die einzelnen Emissionsquellen (Sektoren) bestimmt sind. Bislang wurde versucht, höchstmöglichen Detaillierungsgrad überall anzuwenden. Als Standpunkt des UBA steht mittlerweile fest, dass in "Hauptquellgruppen", zu denen alle F-Gas-Sektoren gehören, nicht mehr als zwei Drittel der Emissionen so hoher Präzision genügen müssen (mindestens "Tier 2" nach IPCC Good Practice Guidance 2000). Das eröffnet die Möglichkeit, sich in kleineren Sektoren, deren Vollerhebung keineswegs weniger Aufwand verursacht als große, mit Schätzungen zu begnügen. Nach fast zehn Jahren kompletter Direkterhebungen ist in vielen Fällen Ersatz durch trendbasierte Schätzungen und Fortschreibungen möglich. Zwischen Direkterhebungen können die Abstände auf mehrere Jahre ausgedehnt werden, vereinzelt können sie ganz wegfallen.

Zu 2. Institutionalisierung

Bis heute gibt es von drei Branchenverbänden Selbstverpflichtungen (SV), die außer einem Reduktionsziel für Emissionen auch deren jährliche Meldung an das Umweltbundesamt beinhalten. So verfahren Aluminiumhersteller (FKW), Hersteller und Betreiber von Betriebsmitteln zur Elektrizitätsübertragung (SF₆) und die Halbleiterindustrie (FKW, SF₆, HFKW). SV machen die Datengewinnung von persönlichen Kontakten unabhängig und damit langfristig sicherer und verbindlicher. Weitere SV mit Reduktionszielen stehen kurzfristig nicht bevor. Allerdings sind fast alle befragten Verbände und führenden Unternehmen bereit, mit dem UBA schriftliche Vereinbarungen, die auf jährliche Direktmeldungen von Emissionen (oder deren Berechnung erlaubender Aktivitätsdaten) begrenzt sind, abzuschließen.

Zu 3. Erhöhung der Datengualität

Das Umweltstatistikgesetz mit seinen jährlichen Erhebungen der inländischen Verwendung von HFKW und FKW seit 1997 wurde bisher für die Datengewinnung nicht genutzt, obwohl sich die Totalerhebungen an 8000 auskunftspflichtige Unternehmen richten. Dies lag vor allem daran, dass die UStatG-Erhebung nach Wirtschaftszweigen mit dem Monitoring nach CRF nicht kompatibel war. Im Zuge der Vorbereitung des neuen UStatG konnten wichtige Anpassungen vorgenommen werden (u. a. bei Treibmitteln für Aerosole und Schäume), und die Aufnahme von SF₆ in die Erhebungen wurde durchgesetzt. Damit ist das neue UStatG in mehreren Bereichen in der Lage, Verbrauchsmengen und zum Teil sogar Emissionen CRF-konform zu erheben. Bisher anderweitig erhobene Daten werden somit entweder durch zuverlässigere ersetzt oder können mit ihnen kontrolliert werden.

Gegenwärtig werden zur Verwaltung von Kälte-Klimaanlagen zwei Datenbankbasierte Systeme entwickelt, die künftig für die Emissionsinventare bei Kältemitteln verwendet werden können: Ecoklima und VDKF-LEC. Grundsätzlich, wenn eine genügend große Zahl von Kälte- und Klimaanlagen nach Typ und Kältemittel-Erst- und Nachbefüllung erfasst ist, kann mit den Daten die Emissionssituation ganzer Einsatzgebiete wie Gewerbe-, Industrie-, Transportkälte oder Gebäudeklima abgebildet werden. In diesen großen F-Gas-Sektoren ist die Datensicherheit gegenwärtig mit am niedrigsten. Daher ist mittelfristig ein Qualitätsschub für die Daten zu erwarten, zunächst wahrscheinlich für die derzeit im nationalen F-Gas-Emissionsinventar (ZSE) verwendeten Kältemittel-Emissionsfaktoren.

Erstes Kapitel Die Grundzüge des neuen Monitoring-Systems

Nachfolgend werden zunächst die drei genannten Grundzüge des neuen Monitoring-Systems für sich betracht, und zwar in dieser Reihenfolge:

- (I) Straffung durch abgestufte sektorale Anforderungen an die Datenpräzision,
- (II) Institutionalisierung durch vereinbarte Direktmeldungen an das UBA,
- (III) Erhöhung der Datenqualität durch Nutzung von neuem Umweltstatistikgesetz und neuen Datenbanksystemen zur Kältemittel-Verwaltung.

Anschließend stellt das zweite Kapitel das künftige Monitoring für sämtliche F-Gas-Emissionsquellen im Einzelnen vor.

I. Straffung durch abgestufte Präzisionsanforderungen

Vor der Datenerhebung sind grundsätzlich die Methoden und damit der Grad der Detaillierung der Emissions-Modellierung und -Berechnung festzulegen, der sich aus der Einordnung von Quellgruppen als "Hauptquellgruppen" oder nicht ableitet. Der Begriff "Daten" umfasst (nach QSE-Handbuch) sowohl Daten im Sinne von Zahlenwerten (Aktivitätsdaten, Emissionsraten, statistische Unsicherheiten) als auch z. B. Dokumentationen, die in den nationalen Inventarbericht einfließen sollen.

1. Drei Hauptquellgruppen und ihre Unterteilung

Nach der Klassifikation des Common Reporting Format (CRF) gibt es im Bereich der F-Gase drei Quellgruppen: 1. Metallproduktion (Quellgruppe 2.C), 2. Produktion halogenierter Kohlenwasserstoffe (2.E) und 3. Verbrauch von F-Gasen (2.F). Eine Hauptquellgruppe ist nicht nur durch ihre Größe bestimmt. Sie ist eine im nationalen Inventar herausgehobene Quellgruppe, deren Emissionen einen signifikanten Einfluss auf die Gesamtemissionen der Treibhausgase haben – entweder in der absoluten Höhe oder im Beitrag zum zeitlichen Emissionstrend. Das letztere Bestimmungskriterium meint rasche Veränderung (Anstieg oder Rückgang) der Emissionen. Dieses Merkmal trifft It. Tab. 1 auf alle drei F-Gas-Quellgruppen zu.

Tabelle 1: F-Gas-Quellgruppen nach Beitrag zum Treibhauseffekt 2003 und						
nach Emissionstrend seit 1995						
Quellgruppen nach CRF	Emissionen in Tsd. t	Veränderung gegen				
Queligruppen nach Cixi	CO₂-Äqu. 2003	1995 in %				
2. C Metal production	2007	+ 15%				
2. E Production of halocarbons 772 - 82%						
2. F Consumption of halocarbons	10911	+ 17%				
- davon SF ₆	2607	- 62%				
- davon FKW	381	+ 93%				
- davon HFKW 7893 +						
Alle Quellgruppen 13690 - 12%						

Quelle: Tabellenanhang zu Teil II dieser Studie.

Tabelle 1 veranschaulicht das rasche Auf- und Ab der Emissionen in den drei F-Gas-Quellgruppen. So stiegen innerhalb von acht Jahren die Emissionen der Quellgruppe 2.C und der großen Quellgruppe 2.F um 15% bzw. 17%, während die Emissionen der Quellgruppe 2.E (dank Emissionsreduktion von HFKW-23 bei der R-22-Produktion) um 82% sanken. Der 17%-ige Anstieg des Emissionsbeitrags der Quellgruppe 2.F (Consumption) setzt sich seinerseits aus gegenläufigen Trends zusammen: plus 248% bei HFKW, plus 93% bei FKW und minus 62% bei SF₆.

Aus der Begriffsbestimmung, die das UBA teilt, folgt, dass alle F-Gas-Quellgruppen als Hauptquellgruppen gelten. Dies ist hier wichtig. Denn auf sie ist grundsätzlich die jeweils höchste Anforderungsstufe ("tier") an die Daten-Genauigkeit anzuwenden, die die zurzeit gültigen IPCC Guidelines von 2000 (IPCC GL 2000) vorgeben.

2. <u>Die Zwei-Drittel-Abschneidegrenze</u>

Der "grundsätzliche" Anspruch ist allerdings zu relativieren. Nach der aktuellen UBA-Auslegung der internationalen Vorgaben ist "in allen Hierarchiestufen bei Hauptquellgruppen für die Unterquellgruppen, die zwei Drittel der zugehörigen Emissionen verursachen, mindestens das vorgegebene Tier-2-Verfahren oder ein vergleichbarer nationaler dokumentierter Ansatz zu verwenden" (Schreiben von Michael Strogies, 29.6.2005). Anders ausgedrückt: Innerhalb jeder der drei CRF-Quellgruppen 2.C, 2.E, 2.F wird hoher Detaillierungsgrad (i.d.R. Tier 2) für mindestens zwei Drittel der für 2003 (letztes Berichtsjahr) ermittelten Emissionen verlangt. Das heißt umgekehrt, dass dies für ein Drittel nicht gefordert ist. Daher genügen dort gröbere Ansätze wie etwa Schätzungen oder Trendfortschreibungen.

Aus Tabelle 2 auf der nächsten Seite, die alle seit 1995 erfassten Emissionsquellen nach CRF-Hierarchieebenen zusammenstellt, leiten sich Aussagen über den erforderlichen Präzisionsgrad der Datengewinnung nach Sektoren (Quellen) ab.

Die Tabelle enthält in der ersten Spalte alle Emissionsquellen, d.h. die drei Hauptquellgruppen, deren (nummerierte) Unterquellgruppen, und schließlich die Einzelquellen der untersten Ebene, die entweder im CRF vorgegeben sind (grau unterlegt, auch Teilquellgruppen genannt) oder ohne CRF-Vorgabe in der Vergangenheit erhoben wurden (weiß und kursiv).

In der zweiten Spalte sind ihnen jeweils die 2003er Emissionen in Tsd. t CO₂-Äquivalente zugeordnet.

Die dritte Spalte gibt die prozentualen Emissionsbeiträge der Quellen zu ihrer jeweils als 100% gesetzten Hauptquellgruppe an.

In der vierten Spalte werden die drei größten Untergruppen der Hauptquellgruppe 2.F (Verbrauch) erneut untergliedert, und zwar "Refrigeration and Air Conditioning Equipment", "Foam Blowing" und "Other SF₆ Applications", um auch hier die prozentualen Emissionsbeiträge nach Quellen ersehen zu können. (Daher sind die Prozentsätze in der vierten Spalte höher als in der dritten, in der sie sich auf die Summe sämtlicher F-Gas-Emissionen aus dem Verbrauch beziehen.)

Tab. 2: Haupt-, Unter-, Teilquellgruppen und Einzelquellen der deutschen F-Gas-Emissionen 2003, in Tsd. t CO₂-Äquivalenten – nach CRF						
Key- and Sub Sources, Single Sources	Tsd. t CO ₂ eq.	% of key source	% of sub source			
2.C PFCs and SF ₆ from Metal prod.	2007	=100%				
SF ₆ (and HFC-134a)	1532	76%				
Magnesium Foundries SF ₆	457	23%				
Magnesium Foundries HFC-134a	0,3	0,01%				
Aluminium Foundries SF ₆	1075	54%				
PFCs from Aluminium Production	475	24%				
2.E Production of Halocarbons and SF ₆	772	=100%				
1. By-product Emissions HFC-23	Confidential	Confidential				
2. Fugitive Emissions	Confidential	Confidential				
HFC-134a	Confidential	Confidential				
HFC-227ea	Confidential	Confidential				
SF ₆	Confidential	Confidential				
2.F Consumption of Halocarbons and SF ₆	10911	=100%				
Refrigeration and Air Conditioning	5886	53,9%	=100%			
Domestic Refrigeration	2	0,02%	0,03%			
Commercial Refrigeration	2391	21,9%	40,6%			
Transport Refrigeration	208	1,9%	3,5%			
Refrigerated vehicles	167	1,5%	2,8%			
Refrigerated containers	40	0,4%	0,7%			
Industrial Refrigeration	705	6,5%	12,0%			
Stationary Air-Conditioning +	219		3,7%			
Centralized AC systems		2,0%	·			
Room Air Conditioners	186	1,7%	3,2%			
	28	0,3%	0,5%			
Heat pumps	5	0,04%	0,1%			
Mobile Air-Conditioning	2362	21,6%	40,1%			
Passenger Cars Trucks	2101 91	19,3% 0,8%	35,7% 1,6%			
Buses	91	0,8%	1,5%			
Agricultural machines	45	0,4%	0,8%			
Ships	2	0,02%	0,03%			
Railcars	32	0,3%	0,5%			
2. Foam Blowing (Hard foam)	1442	13%	=100%			
XPS	698	6,4%	48,4%			
OCF	587	5,4%	40,7%			
Integral skin	113	1,0%	7,8%			
Other PU hard foam 3. Fire Extinguishers	45	0,4%	3,1%			
4. Aerosols/Metered Dose Inhalers	6 655	0,05% 6%				
MDI	318	2,9%				
Techn. Aerosols	213	1,9%				
Novelties	124	1,1%				
5. Solvents	1,9	0,02%				
6. Semiconductor Manufacture	351	3,2%				
7. Electrical Equipment	629	5,8%				
8. Other SF ₆ applications	1940	17,8%	=100%			
Car tires	143	1,3%	7,4%			
Soundproof glazing	1155	10,6%	59,6%			
Military Radar+Shoe soles	273	2,5%	14,1%			
Glass fibres	96	0,9%	4,9%			
Particle accelerators	117	1,1%	6,0%			
Capacitors	143,4	1,3%	7,4%			
Tracer gas	13	0,1%	0,6%			

Erläuterung: Buchstaben (C,E,F) bedeuten Hauptquellgruppen. Zahlen (1.-8.), grau unterlegt, sind deren Unterquellgruppen nach CRF. Nicht nummeriert, weiß unterlegt, in Normalschrift sind Teilquellgruppen einer CRF-Untergruppe. Eingerückt, kursiv und nicht nummeriert sind Einzelquellen der untersten Hierarchiestufe.

3. Unterquellgruppen für hohe Datenpräzision

- 1. In der Metallproduktion (2.C) machen die Emissionen vom Magnesiumguss (SF₆ und HFKW-134a zusammen) nur 23% aus. Hier könnte auf maximale Datenexaktheit verzichtet werden. Da gegenwärtig jedoch HFC-134a das SF₆ in dieser Anwendung ablöst, ist mit einem starken HFKW-Wachstum zu rechnen. Darum wird empfohlen, diese Quellen wie die anderen zu behandeln, zumal der eigenständige Erhebungsaufwand in Zukunft u. a. dank Umweltstatistikgesetz sinkt.
- 2. In der Produktion von F-Gasen (2.E) könnte formal auf die detaillierte Ermittlung zweier hier aus Vertraulichkeitsgründen nicht genannter Emissionsquellen verzichtet werden. Da alle Daten ohnehin gemeinsam und freiwillig gemeldet werden, wäre damit keine Verringerung des eigenen Aufwands verbunden.
- 3. In der Hauptquellgruppe 2.F (Verbrauch von F-Gasen) kann dagegen der Erhebungsaufwand deutlich reduziert werden. Betrachtet man die Ebene der acht Unterquellgruppen nach Emissionsbeiträgen, so rangiert an der Spitze "1. Kälte- und Klimaanlagen" (53,9%) vor "8. Sonstige SF₆-Anwendungen" (17,8%) und "3. Hartschaum" (13%). Streng genommen ist hohe Datenpräzision nur für die ersten beiden erforderlich, da sie alleine bereits über zwei Drittel der Emissionen bilden. Wegen des künftigen Emissionsrückgangs aus "Sonstigen SF₆-Anwendungen" und des erwarteten Wachstums bei "Hartschaum" schlagen wir allerdings vor, hohe Präzision auf die drei Unterquellgruppen anzuwenden, auf die in 2003 zusammen 84,7% der Hauptquellgruppen-Emissionen entfielen.

Weniger strenge Erhebungsnormen gelten demnach für 3. Feuerlöschmittel, 4. Aerosole, 5. Lösemittel, 6. Halbleiterindustrie und 7. Betriebsmittel zur Elektrizitätsübertragung, die für nur wenig mehr als 15% der 2.F-Emissionen verantwortlich sind.

4. Anforderungen auf der Ebene der Einzelquellen

Die UBA-Interpretation der Zwei-Drittel-Abschneidegrenze betrifft "alle Hierarchiestufen". Das heißt, dass auch in den drei größten Unterquellgruppen wiederum nur zwei Drittel der Emissionen hohe Datenpräzision verlangen. Diesem Prinzip folgend sind aus Spalte 4 diejenigen Einzelquellen der drei Untergruppen zu ermitteln, die jeweils zwei Drittel ihrer Emissionen verursachen. Es zeigt sich:

Für hohe Datenpräzision bleiben in der Untergruppe "Kälte- und Klimaanlagen" zwei Einzelquellen übrig: Gewerbekälte mit 40,6% und Pkw-Klimaanlagen mit 35,7%. In der Untergruppe "Sonstige SF₆-Anwendungen" sind dies Schallschutzscheiben (59,6%) und Autoreifen (7,4%). (Die quantitativ größere Quelle "Military Radar+Shoe soles" ist eine Sammelgruppe und wegen Vertraulichkeit ungeeignet.) Von der Untergruppe "Hartschaum" bleiben nur XPS-Schaum (48,4%) und Montageschaum (40,7%). (Die Prozentzahlen beziehen sich jeweils nur auf die Untergruppen – nach Tab. 2, Spalte 4.)

Werden mit hoher Präzision nur die sechs Quellen untersucht, die sich aus dieser – zweistufigen - Auslegung der Zwei-Drittel-Abschneidegrenze ergeben, dann bleiben von Hauptquellgruppe 2.F nur sechs Einzelquellen übrig, die zusammen 64% ihrer Emissionen bewirken.

5. Weniger Erhebungsaufwand durch abgestufte Präzisionsanforderungen

Generell sollte schematischer Umgang mit der Zwei-Drittel-Abschneidegrenze vermieden werden. In Sektoren, wo die emissionsrelevanten Daten in höherer Präzision als gefordert entweder mit vertretbarem Aufwand erhältlich sind oder aufgrund politischer oder sonstiger Interessenlagen besondere Aufmerksamkeit verdienen, sollte hohes Präzisionsniveau immer beibehalten werden.

Jene sechs Quellen, die zusammen 64% der Emissionen der 2.F-Hauptquellgruppe bewirken, halten wir für zu wenige, zumal ihr prozentualer Anteil in kommenden Jahren noch sinken kann. Daher befürworten wir eine Erweiterung des Kreises von Einzelquellen, auf die hohe Präzision der Datengewinnung anzuwenden ist.

So sollten die Unterquellgruppen "6. Halbleiterindustrie" und "7. Elektrische Betriebsmittel", die zusammen für 9% der 2.F-Emissionen verantwortlich sind, nicht unter die Datengenauigkeit früherer Jahre gesenkt werden. Der zusätzliche Aufwand für das UBA ist gering. Die emissionsrelevanten Daten werden im Rahmen bestehender Sebstverpflichtungen ohnehin gemeldet. Darüber hinaus sollten innerhalb der Unterquellgruppe "Kälte- und Klimaanlagen" zusätzlich zu – mobilen - Pkw-Klimaanlagen und - stationärer – Gewerbekälte wegen des inneren Zusammenhangs mit diesen auch die mittelgroßen Teilquellgruppen "Industriekälte", "Transportkälte (Kühlfahrzeuge)" und "Zentralanlagen zur Gebäudeklimatisierung" hoher Datenpräzision unterliegen. Damit sind es in der Hauptquellgruppe 2.F elf Einzelquellen für höchste Datenpräzision. Ihr Anteil an den Emissionen dieser Hauptquellgruppe lag 2003 bei 83% (siehe Tabelle 2).

Von den insgesamt 33 Einzelquellen der Hauptquellgruppe 2.F gilt folglich für 22 eine niedrigere Anforderungsstufe der Datengewinnung. Diese Einzelquellen sind:

- 1. Haushaltskühlgeräte, Kühlcontainer, Raumklimageräte, Wärmepumpen,
- 2. Klimaanlagen für Lkw, Busse, Landmaschinen, Schiffe, Schienenfahrzeuge,
- 3. Integralschaum, Sonstige PU-Schaumanwendungen,
- 4. Feuerlöschmittel, MDI, Allgemeine Aerosole, Novelties, Lösemittel,
- 5. Flugzeugradar, Opt. Glasfasern, Teilchenbeschleuniger, Kondensatoren, Sportschuhsohlen, Spurengas.

Das bedeutet keineswegs, dass dort künftig Daten-Willkür herrscht. Wie im zweiten Kapitel bei der Einzeldarstellung des künftigen Monitoring-Systems gezeigt wird, sind die vorgesehen Änderungen für das UBA zeitsparend und dabei kaum mit Verlust an Datenqualität verbunden. Denn das Konzept der abgestuften Datenpräzision erlaubt es, in den kleineren Emissionsquellen angepasste Lösungen zu etablieren.

- In der Hälfte der 22 kleineren Sektoren besteht die Änderung darin, die bisherigen detaillierten Direkterhebungen bzw. Expertenschätzungen nicht mehr alljährlich durchzuführen, sondern in größeren Abständen. In den Zwischenjahren sollen trendbasierte Fortschreibungen nahezu ebenbürtige Datenqualität liefern. Dieses Verfahren ist für alle kleineren Kälte- und Klimasektoren (sub 1. und 2) vorgesehen, sowie für Teilchenbeschleuniger (sub 5).
- In weiteren sechs Fällen, nämlich Integral- und sonstiger PU-Schaum (sub 3), Feuerlöschmittel (sub. 4), Flugzeugradar, Glasfasern, Kondensatoren (sub 5), wird

zwar der Eigenaufwand, aber nicht die Datenpräzision gesenkt. Dies ist dadurch möglich, dass dort die Daten künftig über andere Instrumente, vorwiegend das neue Umweltstatistikgesetz, erfasst werden.

- In vier der sechs restlichen Sektoren wird keine Änderung vorgeschlagen. Bei Allgemeinen Aerosolen, Novelties (sub 4), Sportschuhsohlen und Spurengas (sub 5) basieren die Emissionsdaten schon bisher auf relativ groben Expertenschätzungen und Trendfortschreibungen (in Einklang mit den IPCC Guidelines!).
- Lediglich für zwei Einzelquellen schlagen wir, die bisherigen detaillierten Direkterhebungen bei inländischen Vertreibern zugunsten von Expertenschätzungen aufzugeben. Das betrifft MDIs und Lösemittel (beide sub 4).

Aus Erfahrung lässt sich sagen, dass der Aufwand zur Datengewinnung nicht so sehr von der absoluten Höhe der Emissionen einer Quelle abhängt, sondern weit mehr von deren innerer Komplexität. Das Konzept der abgestuften Datenpräzision (Zwei-Drittel-Abschneidegrenze) gestattet daher für die Datenerhebung in der Hauptquellgruppe 2.F eine Senkung des Eigenaufwands, die deutlich über den Emissionsbeitrag der betroffenen Einzelquellen von zusammen 17% hinausgeht.

II. Institutionalisierung durch vereinbarte Emissionsmeldung

Häufig sind sektorspezifische Daten zu inländischen Emissionen auf Daten zum Inlandsmarkt angewiesen, d.h. auf an inländische Verbraucher verkaufte Mengen von F-Gasen in fertigen Produkten. Aktivitätsdaten wie "Im Inland verkaufte Einheiten in Stück" sind bei der Datengewinnung oft unverzichtbarer Ausgangspunkt zur Abschätzung nationaler Emissionen, die dann in die ZSE-Datenbank einzugeben sind.

Solches Spezialwissen über den Markt ist auf der Ebene von Branchenverbänden oder einzelner Unternehmen mit bevorzugter Marktposition entweder vorhanden oder kurzfristig aktivierbar, wird aber aus Gründen des Wettbewerbs nicht publiziert. Im Rahmen von Selbstverpflichtungen werden Daten einzelner Unternehmen meist auf Verbandsebene zusammengefasst, anonymisiert und an das Umweltbundesamt gemeldet. Wo keine SV vorliegt, nutzt das Forschungsbüro Öko-Recherche Kontakte zu Experten in führenden Branchen-Unternehmen oder in Branchenverbänden, um die Daten in Erfahrung zu bringen. Nur in einem Fall geschieht dies auf Basis einer schriftlichen Vereinbarung mit dem Informationsgeber.

Eine vertragliche Regelung zwischen Unternehmen oder Verband einerseits und dem UBA andererseits über regelmäßige Datenbereitstellung ist auch unabhängig von Selbstverpflichtungen möglich. Denkbar sind schriftliche Vereinbarungen über jährliche direkte Lieferung der gewünschten Daten an das Umweltbundesamt.

Im Rahmen dieses Projekts wurde bei sechs Unternehmen mit gutem Marktüberblick und sechs Branchenverbänden nach der Bereitschaft gefragt, schriftliche Melde-Vereinbarungen mit dem UBA abzuschließen. Die Reaktion war durchweg positiv von je einem führenden Unternehmen und einem Branchenverband abgesehen. Damit liegen zehn Bereitschaftserklärungen, noch nicht die Vereinbarungen selbst, vor. Sie beziehen sich auf:

- Raumklimageräte
- Montageschaum
- XPS-Dämmschäume
- PU-Integralschaum
- Feuerlöschmittel
- Allgemeine Aerosole
- Novelties
- Lösemittel
- Schutzgas für Magnesiumguss (HFKW-134a)
- Nebenprodukt-Emission von HFKW-23
- Flüchtige Emissionen von der HFKW- und SF₆-Herstellung

Diese Art der Institutionalisierung sichert erstens die langfristige Verfügbarkeit der Daten über die Dauer persönlicher Beziehungen hinaus. (Jeder Wechsel in den Datenquellen bringt das Risiko von Inkonsistenzen in den Datensätzen mit sich.) Zweitens erhöht sie die Verbindlichkeit der Datenbereitstellung, so dass diese nicht immer wieder angefordert werden muss.

III. Nutzung neuer Instrumente zur Hebung der Datenqualität

1. Das Umweltstatistikgesetz

Das Umweltstatistikgesetz (UStatG) ist bisher kaum für das nationale Emissionsinventar für fluorierte Treibhausgase genutzt worden, obwohl auf seiner Basis seit 1997 auch Daten zur Verwendung von HFKW und FKW erhoben werden. Da in den Projektzeitraum die Novellierung des Gesetzes vom 21. September 1994 fiel, gingen die Autoren dieser Studie zusammen mit dem Umweltbundesamt (Katja Schwaab) und dem Statistischem Bundesamt verstärkt der Frage nach, welchen Beitrag das UStatG künftig im Rahmen der nationalen Emissionsberichterstattung leisten könnte.

1.1. Begrenzte Eignung durch Erhebung der "Verwendung zur Herstellung"

In seinem § 11 "Erhebung bestimmter ozonschichtschädigender und klimawirksamer Stoffe" nennt der Abs. 2 ausdrücklich "Fluorderivate der aliphatischen Kohlenwasserstoffe" als der Erhebung unterliegende klimawirksame Stoffe, mithin HFKW und FKW. Der Wortlaut ist wie folgt.

Gesetz über Umweltstatistiken (UStatG 1994) § 11 Erhebung bestimmter ozonschichtschädigender und klimawirksamer Stoffe

(2) Die Erhebung erfasst bei Unternehmen, die Fluorderivate der aliphatischen Kohlenwasserstoffe mit bis zu sieben Kohlenstoffatomen in Mengen von mehr als 50 kg pro Stoff und Jahr zur Herstellung, Instandhaltung oder Reinigung von Erzeugnissen verwenden, jährlich, beginnend 1997, jeweils für das Vorjahr, die Erhebungsmerkmale Art und Menge der Stoffe als solche oder in Zubereitungen.

Motiv für ihre Erhebung war ursprünglich, nicht nur den FCKW-Ausstieg, sondern auch den komplementären Anstieg der Ersatzstoffe statistisch zu dokumentieren. Die jährlichen Erhebungen zu beiden Stoffgruppen richteten sich an Unternehmen, die solche Stoffe in Mengen von jeweils über 50 kg zur Herstellung und Instandhaltung von Erzeugnissen im Inland verwenden. (Bei ozonschichtschädigenden Stoffen - hier abgek. ODS - wurden zudem inl. Produktion sowie Im- und Export erfragt.)

Die praktische Durchführung ist eine Totalerhebung durch die Statistischen Landesämter. Sie erfolgt durch Versand von Erhebungsbogen an über 8000 Unternehmen in 50 Wirtschaftszweigen (WZ), die in einer Vorerhebung über 50 kg jährliche Verwendung angegeben hatten. (Die Adressen werden laufend aktualisiert.) Im Fragebogen selbst wird außer nach ODS nach der Verwendung von HFKW/FKW gefragt, und zwar (1) als Kältemittel (für Erstfüllung oder Instandhaltung/Umrüstung), (2) als Treibmittel zur Herstellung von Aerosolen, (3) als Treibmittel zur Herstellung von Kunst- und Schaumstoffen und (4) als sonstiges Mittel. Den Verwendungsarten ist jeweils eine Stoffliste zugeordnet, die neben ODS auch alle wichtigen HFKW und FKW als Einzelstoffe bzw. Mischungen enthält.

Außer einem allgemeinen Fragebogen Nr. 11 (Zahl entspricht dem § im UStatG) werden zwei zielgruppenspezifische Fragebögen verschickt: 11-45 und 11-50. Die Zahlen hinter 11 bedeuten die Wirtschaftszweige 45 und 50 nach der Klassifikation des Statistischen Bundesamtes. WZ 45 enthält die Kälte-Klima-Fachbetriebe, WZ 50 Handel und Reparatur von Kfz. Diese Fragebögen sind bewusst kürzer. Um die Unternehmen zu entlasten, fragen sie nur nach der Verwendung von Kältemitteln.

Die Erhebung zielt ausdrücklich auf Verwendung der Stoffe, und zwar auf Verwendung zur Herstellung von Erzeugnissen im Inland. (Bei Kältemitteln auch auf Verwendung zur Instandhaltung). Sie fragt nicht danach, was davon auf den inländischen Markt gelangt, um bei Anwendung zu emittieren. So wird etwa bei Aerosolen die im Inland abgefüllte Treibmittelmenge erfragt, nicht aber die im Inland abgesetzte und versprühte Menge. Sie fragt auch nicht nach Bestand in geschlossenen Systemen oder nach Entsorgung. Solche für das nationale F-Gas-Emissionsinventar, das sich an der Klassifikation nach CRF orientiert, zentralen Aktivitätsdaten werden durch das UStatG nicht erfasst. Damit ist das UStatG für umfassende Emissionsinventare grundsätzlich nur begrenzt nutzbar.

1.2. Der Nutzen im Bereich Treibmittel für Aerosole und Schaum

Andererseits deckt sich die "Verwendung zur inländischen Herstellung" (UStatG) begrifflich mit "amount of fluid filled in new manufactured products". Dies ist im CRF die erste von drei Aktivitätsdaten-Gruppen, aus denen "manufacturing emissions" errechnet werden, die erste der drei Emissions-Gruppen (neben Bestands- und Entsorgungsemissionen). Dafür kann das UStatG sehr wohl herangezogen werden.

Das ist unmittelbar einsichtig bei der Verwendung als Treibmittel für Aerosole und Schaum. Die sektorspezifischen Emissionsraten bei Herstellung sind unterschiedlich, aber bekannt. Sie reichen von 1 bis 2% bei der Herstellung (Abfüllung) von MDI, Allgemeinen Aerosolen, PU-Montageschaum über 25% bei XPS-Schaum (134a) bis 100% bei PU-Integralschaum und XPS-Schaum (152a). Die Berechnung der herstellungsbedingten Emissionen setzt nur voraus, dass das UStatG die zur Herstellung verwendeten Mengen in den einzelnen Anwendungssektoren bereitstellt.

Erhebungsbogen 11 ist in seiner bisherigen Fassung aber noch zu grob dafür. Denn er unterteilt die Treibmittelverwendung nur nach Aerosolen und Schaumstoffen. Das führt nicht nur zu Zuordnungsunsicherheit beim Montageschaum, der teils Aerosolund teils Schaumstoffeigenschaften aufweist. Sondern die beiden erhobenen Mengendaten lassen keinen Schluss mehr auf die unterschiedlich emissionswirksamen Anwendungen zu und können letztlich nur zum Abgleich der auf anderen Wegen gewonnenen Daten dienen, was zwar nützlich, aber nicht ausreichend ist.

Aus der Diskussion zwischen Statischem Bundesamt, Umweltbundesamt und den Autoren dieser Studie resultiert daher der Vorschlag, künftig Aerosole und Schäume tiefer zu untergliedern. Teil C von Fragebogen 11 (jetzt 10)² wäre dann wie folgt:

² Die Nummer des Fragebogens entspricht dem entsprechenden Paragraphen im UStatG. Der bisherige §10 Luftverunreinigungen ist im nov. UStatG weggefallen, so dass der frühere §11 zu §10 wurde; damit tragen jetzt die Fragebögen zu "bestimmten klimawirksamen Stoffen" die Ziffer 10 anstatt 11.

Neuvorschlag Fragebogen 10 (früher 11)

C Verwendung als Treibmittel, Lösemittel u. ä.

Stoffe	Verwendete Stoffe									
		s Treibgas Herstellung Aerosol	yvon	bei der	als Treibmittel bei der Herstellung von Schaum- und Dämmstoffen			als sonstiges Mittel		
	insg.	dav. medizin. Aerosole	dav. sonstige Aerosole	insg.	dav. Montage- schaum (PU)	dav. Integral- schaum (PU)	dav. Sonstiger PU- Schaum	dav. Extrudiert. Polystyrol (XPS)	insg.	darunter Löse- mittel
	1	2	3	4	5	6	7	8	9	10
134a										
152a										
227ea										
236fa										
245fa										
365mfc										
43-10mee										
Sonstige										

1.3. Geringe Kompatibilität von UStatG und CRF bei Kälte- und Klima

Bei Kältemitteln ist die Situation schwieriger. Werden zunächst die für Instandhaltung/Umrüstung separat angegebenen Verwendungsmengen subtrahiert, erhält man in sämtlichen Wirtschaftszweigen die zur Herstellung von Erzeugnissen verwendete Menge von HFKW/FKW-Kältemitteln, als Einzelstoff (R-134a usw.) oder in Blends (R-404A usw.). Von hier ab zeigt das UStatG allerdings immanente Grenzen. Bei Kältemitteln ist seine Klassifikation nach Wirtschaftszweigen nämlich weitgehend nicht kompatibel mit der Einteilung nach CRF, die für das Monitoring im Rahmen der Emissionsberichterstattung an das UNFCCC-Sekretariat vorgegeben ist.

CRF teilt die Unterquellgruppe Kälte- und Klimaanlagen in Teilquellgruppen nach ihren <u>Einsatzgebieten</u> ein: Kälteanlagen in Haushalt, Gewerbe, Industrie, Transport; Klimaanlagen in Fahrzeugen und Gebäuden. Von diesen sechs Teilquellgruppen decken sich nur zwei mit entsprechenden WZ. Haushaltskühlgeräte stimmen mit WZ 2971 "Herstellung von elektrischen Haushaltsgeräten" überein. Mengenmäßig bedeutender ist die Deckung der Teilquelle "Mobilklimaanlagen" mit WZ 3410 "Herstellung von Kraftwagen". Dies bedeutet, dass über das UStatG das Quantum Kältemittel (hier kommt nur 134a infrage) direkt erhoben werden kann, das jährlich in Deutschland in neue Klimaanlagen von Pkw, Lkw, Bussen, Traktoren gefüllt wird.

Für die restlichen, mengenmäßig sehr wichtigen, vier CRF-Teilquellen "Gewerbekälte", "Industriekälte", "Transportkälte" und "Stationäre Klimaanlagen" kann das UStatG keine spezifischen Angaben zur Kältemittelverwendung liefern. Die über die Fragebögen 11, 11-45 und 11-50 außerhalb der Kraftwagenproduktion erhobenen Kältemittel entfallen zu zwei Drittel auf den WZ 2923 "Herstellung von kälte- und lufttechnischen Erzeugnissen, nicht für den Haushalt", eine Branche des Maschinenbaus; ein weiteres Viertel auf WZ 4533, zu dem die Kälte- und Klimafachbetriebe gehören. Anders gesagt, das UStatG erhebt die Kältemittelverwendung für Kälte- und Klimaanlagen nach den Wirtschaftszweigen, in denen diese erstbefüllt und instand gehalten werden. Ein Bezug zu den im CRF geforderten Einsatzgebieten ist hier nicht möglich.

1.4. Datenabgleich bei Kältemitteln

Der Nutzen des UStatG für das F-Gas-Emissionsinventar ist bei Kältemitteln zwar geringer als bei Treibmitteln. Aber er besteht durchaus, wenn es darum geht, anderweitig gewonnene Daten über inländischen Verbrauch zur Herstellung (= Erstbefüllung) neuer Kälte- und Klimaanlagen zu kontrollieren. Denn streng genommen ist der aus allen Teilquellen addierte Neuverbrauch nach CRF gleich der in allen WZ zur Herstellung verwendeten Menge nach UStatG. Eine derartige Datenkontrolle ist bei Mobilklimaanlagen sogar sektorspezifisch möglich, wenn auch nur dort. Da die Übereinstimmung nach UStatG und nach CRF in der Summe für jedes einzelne Kältemittel gilt, kann der Nutzen für den Abgleich anderer Datenquellen in Einzelfällen beträchtlich sein. Dies trifft besonders auf die Kleinmengen-Kältemittel zu wie R-23, R-116, R-218, R-227ea, R-410A, R-508A/B u. dgl., zumal einige davon nur in einer oder zwei Teilquellen vorkommen.

Die Rolle als Instrument zur Kontrolle und Verbesserung anderer Kältemittel-Datenquellen braucht nicht auf die Verwendung zur Herstellung begrenzt zu bleiben, sie kann auch auf Bestandsemissionen angewandt werden. Alle Erhebungsbögen stellen nämlich auch die Frage nach der Verwendung zur Instandhaltung (= Nachfüllung in bestehende Anlagen). Da es international gängige Praxis ist, Nachfüllmengen zum Emissionsausgleich zumindest mittelfristig den Emissionen selbst gleichzusetzen, erlaubt das UStatG grundsätzlich auch den summarischen Datenabgleich in Bezug auf Emissionen nach einzelnen Kältemitteln. Im Falle der Mobilklimaanlagen ist er sogar sektorspezifisch möglich. Fragebogen 11 (10) -50 ist dafür speziell konzipiert.

1.5. Chancen durch neue Fragebögen und neues Umweltstatistikgesetz 2005

Zwei Hindernisse für diese Art der indirekten und summarischen Emissionserhebung wurden in den Diskussionen zwischen Statistischem Bundesamt, Umweltbundesamt und den Autoren dieser Studie ausgemacht. Erstens darf in den Fragebögen die Nachfüllung in bestehende Anlagen nicht mehr mit Umrüstung von Altanlagen gleichgesetzt werden. Letztere ist ihrer Natur nach Erstfüllung und zählt begrifflich zur Herstellung. Zweitens, und dieser Punkt ist viel wichtiger, die gesetzliche Mengenschwelle von 50 kg pro Kältemittel ist zu hoch, um die Nachfüllungen der im Service tätigen zahlreichen kleinen Unternehmen überhaupt zu erfassen.

Dem Gliederungsvorschlag der Kältemittelverwendung in (1) Erstfüllung von Neuanlagen, (2) Erstfüllung umgerüsteter Altanlagen, und (3) Instandhaltung bestehender Anlagen tragen erstmals 2005 die Erhebungsbogen für 2004 Rechnung.

Der direkt das Gesetz, nicht seine Ausführung, betreffende Vorschlag nach einer Absenkung der Mengengrenze ist ebenfalls zu großem Teil befolgt worden. Absatz 1 des § 10 des neuen "Gesetzes zur Straffung der Umweltstatistik", das im Juli 2005 das alte Umweltstatistikgesetz abgelöst hat, enthält nicht nur die seit langen geforderte Erhebung von Herstellung, Ein- und Ausfuhr von HFKW/FKW, sondern auch generell eine neue Mindestgrenze pro Stoff und Jahr von 20 kg.

Der Wortlaut des neuen § 10 kann dem folgenden Kasten entnommen werden. Die Umnummerierung kommt durch den Wegfall der Erhebung der Luftverunreinigungen (bisher § 10) zustande. Anzumerken ist, dass die Erhebung von Stoffen, die zum

Abbau der Ozonschicht beitragen, generell nicht mehr vorgesehen ist. Andererseits beseitigt die Aufnahme von Schwefelhexafluorid (Abs. 2) einen großen Mangel des alten UStatG.

Gesetz zur Straffung der Umweltstatistik (2005) § 10 Erhebung bestimmter klimawirksamer Stoffe

- (1) Die Erhebung erfasst bei Unternehmen, die Fluorderivate der aliphatischen und cyclischen Kohlenwasserstoffe mit bis zu sechs Kohlenstoffatomen
 - 1. herstellen, einführen oder ausführen oder
- 2. in Mengen von mehr als 20 Kilogramm pro Stoff und Jahr zur Herstellung, Instandhaltung, Wartung oder Reinigung von Erzeugnissen verwenden, jährlich, beginnend mit dem Berichtsjahr 2006, die Erhebungsmerkmale Art und Menge der Stoffe als solche oder in Zubereitungen.
- (2) Die Erhebung erfasst bei Unternehmen, die Schwefelhexafluorid
 - 1. herstellen, einführen oder ausführen oder
- 2. in Mengen von mehr als 200 Kilogramm pro Jahr im Inland abgeben, jährlich, beginnend mit dem Berichtsjahr 2006, das Erhebungsmerkmal Menge des Stoffes und im Falle der Nummer 2 auch den vorgesehenen Verwendungszweck. Die Erhebung erstreckt sich nicht auf Unternehmen, die Produkte und Einrichtungen herstellen, die Schwefelhexafluorid zu deren Funktionieren benötigen.

1.6. Die Erhebung von Schwefelhexafluorid

Schwefelhexafluorid (SF_6) ist kein FCKW-Ersatzstoff und darum nicht im alten UStatG enthalten. Der extrem klimawirksame Stoff (GWP: 23.900) wurde 1997 in das Kyoto Protokoll der zu reduzierenden Treibhausgase aufgenommen; über seine Verbrauchs- und Emissionsmengen wird jährlich nach CRF berichterstattet. In der Diskussion um die Novellierung des UStatG wurden daher Möglichkeiten gesucht, SF_6 in die Erhebung aufzunehmen - bei vertretbarem zusätzlichem Verwaltungsaufwand.

SF₆ bildet immerhin 76% der Emissionen der Hauptquellgruppe 2.C "Metallproduktion" (nur F-Gase) durch seine Anwendung in Magnesium- und Aluminiumgießereien. In der Hauptquellgruppe 2.F "Verbrauch von F-Gasen" stammen 24% der Emissionen aus SF₆-Anwendungen wie Schallschutzscheiben, Betriebsmitteln zur Energie- übertragung und –Verteilung, Autoreifen, Flugzeugradar, Spurengas u. a.

Dazu kommt, dass die Anlage des UStatG, nämlich die Erhebung der inländischen Stoff-Verwendung, im Falle von SF $_6$ kaum zu solchen Einschränkungen führt wie bei HFKW-Kältemitteln. Von den zehn SF $_6$ -Einsatzgebieten (nach nov. UStatG "Verwendungszwecken") sind fünf grundsätzlich offene Anwendungen. Hier ist inländischer Verbrauch entweder direkt oder zeitverzögert der inländischen Emission größengleich. In diesen Fällen sind außer dem UStatG keine weiteren Datenquellen mehr erforderlich. In den restlichen Anwendungen kann das UStatG nützliche Informationen zur Kontrolle von anderweitig erhobenen oder geschätzten Daten liefern.

Sämtliches SF₆ wird in Deutschland entweder direkt vom Hersteller oder indirekt von rund zwanzig Gas-Händlern an die inländischen Verwender geliefert. Da die SF₆-

Daten für das nationale F-Gas-Inventar in den vergangenen Jahren bereits auf Dokumentation und Schätzung des Spezial-Gasehandels über die SF₆-Vertriebskanäle beruhten, wurde zwischen Statistischem Bundesamt, Umweltbundesamt, den Autoren dieser Studie und Vertretern führender Spezial-Gashändler die gesetzliche Verankerung dieser Vorgehensweise erörtert. Diese sollte es erlauben, eine aufwendige Befragung der zahlreichen Einzelanwender zu umgehen, und das gleiche Ergebnis durch Befragung der überschaubaren Zahl der Gasehändler zu erreichen.

Alle Seiten stimmten zu, dass im Falle von SF₆ nur die Unternehmen angeschrieben werden, die jährlich eine Mindestmenge von SF₆ "abgeben", d.h. verkaufen. Diese werden um anonyme Aufstellung des SF₆-Absatzes nach zehn verschiedenen Verwendungszwecken gebeten. Dafür wird ein eigener Fragebogen (10-51) erarbeitet, der im Entwurf vorliegt. Er kann verwendet werden, sobald das neue UStatG die Erhebung von SF₆ vorsieht. Dies ist nun der Fall. Der Fragebogen besteht im Kern aus der Zuordnung des SF₆-Absatzes (kg) in die verschiedenen Anwendungszweige.

Vorschlag Fragebogen 10-51 B Abgabe / Verkauf von Schwefelhexafluorid

Haben Sie Schwefelhexafluorid in der Größenordnung von mehr als 200 kg pro Stoff						
im Jahr 200X abgegeben? Bitte ankreuzen						
Wenn ja, bitte tragen Sie die Insgesamt-Mengen für Schwefelhexafluorid in						
nachfolgende Tabelle ein, die Befragung Ihres Unternehmens ist abgeschlossen.						
Industriezweig - kg im Jahr 200X -						
Magnesium-Gießereien (Schutzgas)						
Aluminium-Gießereien (Reinigungsgas)						
Fensterhersteller, Ausbaugewerbe (Isoliergas)						
Energieversorger (Isoliergas)						
Elektroindustrie, Apparatebau (Isoliergas)						
Kfz-Werkstätten, Reifenhandel						
Militär, Streitkräfte (militärische Zwecke)						
Halbleiterindustrie (Ätzgas)						
Chemikalienhandel						
Sonstige						
Insgesamt						

1.7. **Fazit**

Mit dem (a) neuen Fragebogen (10-51) für SF₆, dem (b) überarbeiteten Treibmittel-Teil im Fragebogen 10, der (c) veränderten Gliederung der Kältemittelverwendung in allen bisherigen Fragebögen (10, 10-45, 10-50), mit (d) einer aktualisierten Stoffliste der eingesetzten Einzelsubstanzen und Mischungen und mit (e) der Senkung der Schwellenwerts von 50 auf 20 kg (HFKW/FKW) ist das nov. Umweltstatistikgesetz in der Lage, zur jährlichen Erstellung des Emissionsinventars für fluorierte Klimagase nach CRF einen wichtigen Beitrag zu leisten. Dies bezieht sich in erster Linie auf die zur Herstellung neuer Produkte im Inland verwendeten Mengen. In einigen Fällen können aber direkt oder über im ZSE hinterlegte Zwischenschritte auch Emissionen erfasst werden.

2. Neue Datenbanksysteme zur Kältemittel-Verwaltung

In den letzten Jahren sind zwei Datenbank-basierte Systeme zur Verwaltung von Kälte-Klimaanlagen entwickelt worden, die bisher noch nicht für die Datengewinnung genutzt werden: Ecoklima und VDKF-LEC. Innerhalb Deutschlands stehen Daten aus beiden Projekten potenziell für das nationale F-Gas-Emissionsinventar zur Verfügung. Die Systeme werden im Folgenden kurz vorgestellt, und es wird Ihre Anwendbarkeit für die zukünftige Emissionserfassung im Bereich Kälte-Klimaanlagen diskutiert.

2.1. EcoKlima

Die folgenden Informationen stammen überwiegend von Günter Lanz vom Hess. Ministerium für Umwelt, ländlichen Raum und Verbraucherschutz (Gespräch am 19.07.2005) und von www.ecoklima.de.

Im Rahmen der "Umweltallianz Hessen" wurde von der Bundesfachschule Kälte-Klima-Technik in Maintal die Anwendung Ecoklima entwickelt. Die Bundesfachschule ist auch in Zukunft für die Pflege des Programms (z.B. in Bezug auf neue rechtliche und fachliche Entwicklungen) sowie die Datenauswertung zuständig. EcoKlima ist eine internetbasierte Anwendung zur Verwaltung, Dokumentation und Wartung von stationären Kälteanlagen. Die Anwendung richtet sich an Kälte-Klima-Fachbetriebe sowie an Unternehmen, die ihre Anlagen eigenständig warten. Sie beinhaltet eine Datenbank mit allen technischen und umweltbezogenen Informationen zu den verfügbaren Kältemitteln, insbesondere auch Daten zum Ozonabbau- und Klimaschädigungspotenzial bei Freisetzung sowie weitere Hilfsmittel wie Merkblätter, Vertragsmuster, Standardwartungspläne etc. Unternehmen können die Anwendung gegen eine Jahresgebühr von ca. € 100 nutzen.

Ziel von EcoKlima ist, dass sowohl Inhaber als auch Wartungsunternehmen von Kälte- und Klimaanlagen die Daten der Anlagen und darin eingesetzten Kältemitteln sowie die vorgenommenen Reparaturen revisionssicher erfassen, verwalten und an die zuständigen Behörden online übertragen zu können.

Ecoklima bietet für das nationale Emissionsinventar folgende relevanten Funktionalitäten:

- Erfassung und Pflege von Kälteanlagendaten,
- Erfassung und Pflege von Wartungs- und Reparaturdaten sowie Entsorgungsund Auffülldaten von Kältemitteln,
- Informationen zu Kältemitteln, Verordnungen und Vorschriften zu deren Verwendung sowie zur Dichtheitsprüfung,
- Auswertungen zu Mengenbilanzen (u. a. entsorgte, verbrauchte, substituierte und freigesetzte Kältemittelmengen).

Da Füll-, Auffüll- und Entsorgungsmengen der Kältemittel erfasst werden, enthält Ecoklima die emissionsrelevanten Daten der in dieser Datenbank geführten Kälteanlagen. Eine Datenauswertung über die Bundesfachschule Kälte-Klimatechnik ist vorgesehen. Für die nationale Berichterstattung notwendige Auswertungen, z.B.

jährliche Emissionen tief gestaffelt nach Anlagentypen und Kältemittelarten, können vorab mit der Bundesfachschule abgesprochen werden. Die Auswertungen können auf Wunsch durch das Umweltbundesamt direkt vorgenommen werden.

2.2. VDKF-LEC

Nachfolgende Informationen stammen vorwiegend von Yorick Lowin, der beim VDKF das System betreut (Gespräch am 26.07.2005) und von www.vdkf-lec.de.

Das Leckage- und Energie-Kontrollsystem (Leakage & Energy Control - LEC) des Verbands Deutscher Kälte-Klima-Fachbetriebe (VDKF) wird ab 01.01.2006 für alle Verbandsmitglieder – derzeit ca. 1.000 Betriebe, d.h. ca. 50% der Kälte-Klima-Fachbetriebe in Deutschland - verbindlich. Anders als bei EcoKlima ist die anvisierte Zielgruppe grundsätzlich der Kältefachbetrieb, der seinerseits eine Vielzahl von stationären Kälte-Klima-Anlagen (ev. auch von Transportkälteaggregaten) in unterschiedlichen Einsatzgebieten betreut.

Die Anwendung wurde durch den VDKF zusammen mit dem Zentrum für integrierten Umweltschutz (ZiU) in Kassel entwickelt und beansprucht, eine Gesamtlösung für die rechtlichen Aufzeichnungs- und Meldepflichten für Kälteanlagen aller Art zu sein. Ähnlich Ecoklima fällt eine Jahresgebühr von €120 für die Nutzung an.

Die Anwendung bietet folgende für die nationale Berichterstattung relevanten Funktionalitäten:

- Erfassung und Verwaltung von Anlagendaten,
- Erkennung und Vermeidung von Verstößen gegen geltende Rechtsnormen,
- Auswertungen von Mengenbilanzen und Erstellen von Klimabilanzen (ODP, GWP, CO₂),
- Unterstützung der Service- und Wartungsplanung,
- Dokumentation der Kältemittelverwendung: Erstbefüllung, Nachfüllen, Entsorgung nach Kältemittelarten und -mengen.

Im Gegensatz zu Ecoklima handelt es sich nicht um eine internetbasierte Anwendung. VDKF-LEC wird bei den Kälte-Klima-Fachbetrieben selbst installiert. Um ein branchenweites Monitoring von Seiten des Verbandes zu ermöglichen, können über eine Exportfunktion von VDKF-LEC anonyme Daten bereitgestellt und an den VDKF weitergeleitet werden. Diese können dort branchenübergreifend statistisch neutral (anonymisiert) ausgewertet werden.

Wie Ecoklima soll auch VDKF-LEC über die registrierten Kältemittelnachfüllungen Daten über die Anlagenemissionen enthalten. Eine Auswertung mit dem Ziel der Emissionserhebung für die nationale Berichterstattung wurde bei der Entwicklung des Systems mit eingeplant.

Der VDKF ist bereit, entsprechende Daten an das Umweltbundesamt zu übermitteln und hierfür auch spezielle Auswertungsläufe (z.B. jährliche Emissionen nach Anlagentypen und Kältemittelarten) durchzuführen. Ein erster allgemeiner Auswertungslauf zur Probe ist bereits 2005 geplant, danach soll jährlich eine Auswertungsrunde stattfinden.

2.3. Verwendbarkeit für die nationale Berichterstattung

Sowohl für Ecoklima als auch für VDKF-LEC gilt, dass erst dann, wenn eine genügend große Zahl von Betreibern bzw. Wartungsbetrieben teilnimmt, die erhobenen und ausgewerteten Daten für Hochrechnungen auf die Emissionssituation ganzer oder zumindest partieller Einsatzgebiete, die nach CRF vor allem Gewerbe-, Industrie-, Transportkälte und Stationäre Klimaanlagen sind, verwendet werden können. Hierzu sind Informationen über die Repräsentativität der Anlagentypen in dem jeweiligen datenbankbasierten System notwendig.

Denkbar ist bei beiden Systemen zunächst eine Verwendung der Daten für die nationale Berichterstattung in Teilbereichen der Gewerbe- und Industriekälte, bei VDKF-LEC auch ev. für Kühlfahrzeuge und Wärmepumpen. Betreuer solcher Anlagen sind ebenfalls Mitglieder des VDKF, Betreiber solcher Anlagen können mit EcoKlima arbeiten. Allerdings ist hier noch weniger als bei Gewerbe und Industrie oder Gebäudeklima zu erwarten, dass der komplette bundesweite Anlagenbestand in kurzer Frist erfasst wird.

Für die Gewinnung der Aktivitätsdaten sowie von Hochrechungen jeder Art ist die Frage nach dem Anteil der effektiv erfassten Anlagen am realen bundesweiten Gesamtbestand entscheidend. Sie muss auch im Zusammenhang damit gesehen werden, dass selbständige Kälte-Klimafachbetriebe nicht die einzigen Akteure in der Wartung von Kälte- und Klimaanlagen sind, in manchen Einsatzbereichen nicht einmal die wichtigsten im Vergleich mit betriebseigenem Wartungspersonal oder dem Kundendienst industrieller Kälte-Klima-Unternehmen.

Derzeit ist bei beiden Systemen die Anzahl der Teilnehmer noch begrenzt. Auch ist in beiden Fällen klärungsbedürftig, wie kurz- und mittelfristig Hochrechnungen der Daten nach Anlagentypen auf relevante Gesamt- oder Teilbestände hin aussehen könnten. Allerdings bietet sich auch ohne flächendeckende Beteiligung die Verwendung der Daten zur Kalkulation von Emissionsfaktoren für die unterschiedlichen Anlagentypen an.

Hierdurch kann schon ein sehr wichtiger Beitrag zur Überprüfung und Weiterentwicklung der derzeit im nationalen F-Gas-Emissionsinventar verwendeten Emissionsfaktoren geleistet werden.

Zweites Kapitel. Altes und neues Monitoring für sämtliche F-Gas-Einzelquellen

Nachfolgend wird in allen drei Hauptquellgruppen - 2.C Metallproduktion, 2.E Produktion halogenierter Kohlenwasserstoffe und 2.F Verbrauch von F-Gasen - für jede Einzelquelle das bisherige Monitoringsystem kurz skizziert und ein Vorschlag für die künftige Datenerhebung gemacht. Dabei werden erstens die abgestuften Präzisionsanforderungen für die Einzelquellen berücksichtigt. Zweitens wird der Einsatz neuer Erhebungsinstrumente berücksichtigt: (1) freiwillige Vereinbarungen zur direkten Datenmeldung an das UBA, (2) das neue Umweltstatistikgesetz (UStatG), und (3) Datenbanksysteme zur Kältemittel-Verwaltung.

I. FKW und SF₆ bei der Metall-Produktion (2.C)

1. SF₆ in Magnesium-Gießereien

Anwendung: SF₆ dient als Schutzgas, um eine Entzündung der heißen Schmelze zu verhindern. Bisher wird Verbrauch und Emission des Gases gleichgesetzt. Etwa fünfzehn Gießereien setzen zurzeit SF₆ in Mengen von 40 bis 10000 kg/a ein. Nach der bevorstehenden EU-Verordnung wird dieses Gas ab 2008 über einer Einsatzmenge von 850 kg/a verboten. In den betroffenen Betrieben wird an der Umstellung gearbeitet, die meistens auf den HFKW-134a hinausläuft.

Bisherige Erfassung: Öko-Recherche fragt bei jeder einzelnen Gießerei die jährlich eingekauften Mengen von SF₆ - seit 2002 auch von 134a - direkt ab. Die zuvor vom Gasehandel erhaltenen Liefermengen in die Anwendung "Gießereien" hatten bei Gegenkontrollen Zweifel ausgelöst, die nur auf betrieblicher Ebene zu bereinigen waren. So beruhte die Verdreifachung der Lieferung an eine Großgießerei auf deren Weiterexport. Zum anderen zeigte sich, dass mehrere Gießereien von kleinen Gasehändlern beliefert wurden, die nicht abgefragt worden waren.

Künftige Erfassung: Die Erhebung des Verbrauchs erfolgt nach neuem UstatG (vorgeschlagener Fragebogen 10-51, Industriezweig Magnesium-Gießereien - Schutzgas) durch amtliche Befragung des Gasehandels. Da im Gegensatz zur bisherigen Praxis nicht nur die großen, sondern alle ca. 20 Gasehändler befragt werden, ist mit der Vollständigkeit der verwendeten Mengen zu rechnen.

2. HFKW-134a in Magnesium Gießereien

Anwendung und bisherige Erfassung: Der HFKW-134a wird seit 2002 als Ersatz für SF₆ getestet und mittlerweile bereits vereinzelt eingesetzt. Bisher wurden die Einsatzmengen im Zuge der SF₆-Direktbefragung aller Betriebe mit erhoben.

Künftige Erfassung: Die zeitaufwendige Direktbefragung der Betriebe kann auch im Falle von HFKW-134a vermieden werden. Als Alternative kommt zwar nicht der Gasehandel infrage, weil der Handel mit HFKW-134a (Kältemittel!) viel zu zersplittert ist. Seine Nutzung als Magnesium-Schutzgas ist jedoch patentiert, so dass (nach bisherigem Rechtsstand) die Käufer eine mengenabhängige Lizenzgebühr an den

Patentinhaber AMT- Advanced Magnesium Technologies zu zahlen haben. Der deutsche AMT-Vertreter (Christian Kettler) erklärte sich zu einer schriftlichen Vereinbarung mit dem Umweltbundesamt bereit, diesem jährlich die ihm auf diese Weise bekannt gewordenen Einsatzmengen von HFKW-134a aggregiert mitzuteilen. Dieses Verfahren schätzen wir als ausreichend datensicher ein.

Anmerkung zum Emissionsfaktor. Wie bei SF₆, so gibt es auch bei 134a Debatten darüber, inwieweit das Schutzgas bei Nutzung zersetzt wird. Bisher wird Verbrauch und Emission noch gleichgesetzt. Sobald das IPCC andere Emissionsfaktoren als 100% empfiehlt, ist dem bei der Datengewinnung Rechnung zu tragen.

3. SF₆ in Aluminium-Gießereien

Anwendung: Als Additiv zu Inertgasen zum Reinigen der Schmelze kommt SF₆ seit einigen Jahren nicht mehr zum Einsatz. Dagegen hat in wenigen Gießereien seit Ende der neunziger Jahre reines SF₆ Anwendung gefunden. Die Mengen sind sehr groß und bilden über die Hälfte der F-Gas-Emissionen der Quellgruppe 2.C (2003). Solange keine sicheren Erkenntnisse über den Zersetzungsgrad des Gases in der Schmelze vorliegen, wird Verbrauch gleich Emission gesetzt.

Bisherige Erfassung: Obwohl es sich nur um wenige Anwender handelt, wird die eingesetzte SF₆-Menge bisher vom zuliefernden Gasehandel erfragt.

Künftige Erfassung: Die bisherige Praxis erleichtert die Befragung nach neuem UStatG. Erhebungsbogen 10-51 (Vorschlag) fragt alle Händler von Industriegasen (siehe vorigen Abschnitt) gezielt nach ihrem aggregierten Absatz an Aluminium-Gießereien (Reinigungsgas).

4. FKW aus der Aluminium-Produktion

Entstehung: Die Emissionen der FKW CF₄ und C₂F₆ sind keine Folge gezielter Anwendung der Gase, sondern entstehen als Nebeneffekt der elektrolytischen Reduktion von Aluminiumoxid zu Aluminium. Neue Ofentypen in Verbindung mit computergestützten Dosiertechnologien haben die Emissionen deutlich reduziert.

Bisherige Erfassung: Aufgrund einer SV der Aluminiumindustrie vom Juni 1997 berichtet der Fachverband Primäraluminium im Gesamtverband der Deutschen Aluminiumindustrie e.V. (GDA) jährlich für das Vorjahr über die Emissionen der fünf inländischen Hütten (2003). Die Daten basieren auf zwei Messkampagnen, die 1996 und 2001 durchgeführt wurden (Tier 3b Methode nach IPCC-GL 2000). Der Monitoringbericht mit detaillierten Angaben zu den einzelnen Hütten wird nicht veröffentlicht, aber dem Bundesministerium für Umwelt vorgelegt.

Künftige Erfassung: Die bestehende Selbstverpflichtung läuft im Jahr 2005 aus. Aus den guten Erfahrungen mit dem Monitoring ergibt sich die Empfehlung, sich für eine Verlängerung der bisherigen Praxis einzusetzen.

II. Produktion halogenierter Kohlenwasserstoffe und SF₆ (2.E)

1. Nebenprodukt-Emissionen von HFKW-23 aus R-22 (2.E.1)

Entstehung. Bei der Synthese des HFCKW-22 fallen prozessbedingt bis zu 3% HFKW-23 als Nebenprodukt an. Der HFCKW-22 seinerseits dient entweder direkt als Kältemittel (mit abnehmender Tendenz) oder als Ausgangsmaterial für den Kunststoff PTFE (stabile Nachfrage). In beiden deutschen Anlagen (Frankfurt und Bad Wimpfen) wird nach der Abtrennung vom Reaktionsgemisch der HFKW-23 aufgefangen und der Zerstörung zugeführt oder - in gewissem Umfang - als Fertigprodukt vermarktet. Ein Teil gelangt allerdings ungewollt in die Atmosphäre.

Die Frankfurter Anlage ist direkt mit der benachbarten Spaltanlage für FCKW und HFKW verbunden, so dass bei ihr nennenswerte Emissionen von HFKW-23 nicht auftreten können. An der Anlage in Bad Wimpfen entstehen trotz Auffangens und Eisenbahn-Transports zur Frankfurter Spaltanlage noch Emissionen, wenn auch mittlerweile nur noch in signifikant geringerem Umfang der früheren Höhe.

Bisherige Erfassung: Die Emissionen werden vom Betreiber der Anlage, der Solvay Fluor und Derivate GmbH, messtechnisch erfasst und jährlich an Öko-Recherche gemeldet. Bedingung war die schriftliche Verpflichtung, die Daten "streng vertraulich zu behandeln und nur an die direkt involvierten Mitarbeiter des Umweltbundesamtes im Rahmen von Abstimmungsfragen zur Datenaggregation weiterzuleiten".

Künftige Erfassung: Das neue UStatG kann keine Angaben zu Emissionen einfordern. Für die absehbare Zukunft wird vorgeschlagen, das bisher bewährte bilaterale Abkommen zwischen Öko-Recherche und Solvay Fluor und Derivate GmbH in ein bilaterales Abkommen zwischen Umweltbundesamt und dem Chemieunternehmen umzuwandeln. Die Bereitschaft dazu ist auf Seiten der Solvay Fluor und Derivate GmbH vorhanden.

2. Flüchtige Emissionen (2.E.2)

- 2.1 HFKW-134a
- 2.2 HFKW-227ea
- 2.3 SF₆

Entstehung: Bei der inländischen Produktion der drei F-Gase kommt es zu flüchtigen Emissionen. Die Mengen bestimmt der Betreiber über eine Massenbilanz. Diese kann als Differenz zwischen der durch den Rohstoffeinsatz bedingten und der wirklich in Tanks abgefüllten und gewogenen Produktionsmenge bezeichnet werden.

Bisherige Erfassung: Die Emissionen werden vom Betreiber, wiederum der Solvay Fluor und Derivate GmbH, aufgrund der gleichen oben genannten Vereinbarung jährlich an Öko-Recherche gemeldet.

Künftige Erfassung: Auch in diesem Falle wird für die Zukunft ein direktes Melde-Abkommen zwischen dem Betreiber und dem Umweltbundesamt befürwortet. Nach dem neuen UStatG muss Solvay nur die Produktion der beiden HFKW und von SF₆ an das zuständige Statistische Landesamt melden, nicht Emissionen.

III. Verbrauch von HFKW, FKW und SF₆ (2.F)

1. Kälte- und Klimaanlagen (2.F.1)

1.1. Haushaltskühlgeräte

Anwendung: Der Beitrag der Haushaltskühlgeräte zu den Emissionen der großen Unterquellgruppe "Kälte- und Klimaanlagen" ist mit 0,03% marginal. In inländische Kühlgeräte werden nur noch natürliche Kältemittel eingefüllt. Bestandsemissionen von HFKW-134a (EF = 0,3%) gehen auf den einzigen vollen Jahrgang 1994 zurück sowie auf seitdem importierte Geräte im Umfang von 1% des jährlichen Zugangs.

Bisherige Erfassung: Der jährliche Neuzugang im Umfang von 1% der Neugeräte ist eine Schätzung führender Kühlgerätehersteller. Die jährlich neue HFKW-Menge erhöht den im ZSE als Zeitreihe hinterlegten, seit 1994 kumulierten HFKW-Bestand. Mit dem EF = 0,3% werden die Bestandsemissionen automatisch generiert.

Künftige Erfassung: Wegen Geringfügigkeit der Teilquelle werden keine höheren Anforderungen an die Datenpräzision verlangt. Der 1%-Anteil HFKW-haltiger Geräte wird fortgeschrieben und sollte in drei- bis fünfjährigen Intervallen überprüft werden. Ab 2009 wird das ZSE, in dem eine Lebensdauer von 15 Jahren hinterlegt ist, die um 15 Jahre zurückliegenden HFKW-Zugänge als Entsorgungsmengen ausweisen. Für sie ist eine (länderspezifische) Emissionsrate der Entsorgung von 30% vorgesehen.

1.2. Gewerbekälte

Anwendung: Diese Teilquellgruppe ist mit 22% Emissionsbeitrag zur Hauptquellgruppe 2.F und 41% zur Untergruppe "1. Kälte- und Klimaanlagen" die größte HFKW-Einzelquelle und verlangt einen Tier-2 Ansatz zur Datenerhebung. Das ist nicht einfach. Denn der Sektor ist zugleich der heterogenste, was Bauart, Größe und Emissionsdichtheit seiner Kälteanlagen betrifft; er umfasst außer Supermärkten den weiten Bereich der Kühleinrichtungen in Metzgereien, Gastronomie, Landwirtschaft usw. usw. Anders als etwa bei Haushaltsgeräten oder Pkw-Klimaanlagen sind Serienmodelle selten gegenüber betreiberspezifischen Einzellösungen. Da auch Anlagenbauer und -Betreuer, die die Systeme vor Ort errichten und Kältemittel neu- und nachfüllen, sehr heterogen sind (u. a. Kältefachbetriebe, industrielle Kälteunternehmen, betreibereigenes Personal), ist direkte Erfassung des jährlichen Kältemittelneuzugangs bisher nicht möglich. Wichtigster HFKW ist heute das Gemisch R-404A, das HFKW-134a überholt hat. Auch R-407C spielt eine Rolle sowie – in der Tiefsttemperatur – HFKW-23 und FKW-116. Zurzeit sind noch große Mengen des H-FCKW-22 im Bestand.

Bisherige Erfassung: Der besondere Ansatz, der nur in der Gewerbe- und Industriekälte praktiziert wird, besteht darin, den inl. Kältemittelbestand nicht über die jährlichen Neuzugänge zu ermitteln, sondern quasi umgekehrt: Auf Basis tief gestaffelter empirischer "bottom-up" Expertenschätzungen, die in UBA-Text 14/05 dokumentiert sind, wurde 2002-2004 der detaillierte inl. Kältemittelbestand für einen Zielzustand abgeschätzt, in dem sämtliche Kälteanlagen keine chlorhaltigen

Kältemittel mehr enthalten. Dieser modellierte "Zielbestand" wird vom Umfang her als mittelfristig stabil angenommen, was im Unterschied zu stark wachsenden Anwendungen wie Raumklimageräten oder Mobilklimaanlagen durchaus realistisch ist. Im Zielzustand können, da die innere Anlagenstruktur des Bestands nach Bauart, Größe, Kältemitteln und spezifischen Emissionsraten modelliert ist, die laufenden Emissionen unmittelbar errechnet werden.

Der Aufbau des Zielbestands verläuft, sofern vom Gesetzgeber nicht vorzeitige Maßnahmen verordnet werden (wie im Falle von R-12), jahrgangsweise durch Neuanlagen mit HFKW-Kältemitteln, die Altanlagen mit chlorhaltigen Kältemitteln ersetzen, die am Ende ihrer Lebensdauer ausscheiden,. Somit kann auch der jährliche Neuzugang pro Kältemittel grob bestimmt werden, und zwar als Zielbestand dividiert durch die mittlere Lebensdauer der Anlagen (hier: 10 Jahre).

Allgemein gilt 1997 als Beginn des vollen jahrgangsweisen Einsatzes von HFKW in Neuanlagen. Vorher enthielten Neuanlagen häufig auch noch H-FCKW-Kältemittel. Der Zielbestand ist daher im Allgemeinen erst 2007 erreicht. Vorher entsprechen die jährlichen Entsorgungsmengen von HFKW noch nicht dem HFKW-Neuzugang des gleichen Jahres, sondern dem (niedrigeren) Zugang vor 10 Jahren (Lebensdauer).

Künftige Erfassung: Auch künftig basiert die Emissionsberechung auf dem Modell des Bestands, das im ZSE hinterlegt ist. Allerdings soll es Schritt für Schritt in seinen Bestandteilen verfeinert und realitätsgerechter werden. Dies soll auch mit Hilfe des UStatG, aber vor allem über datenbankbasierte Monitoring-Systeme geschehen.

Wichtigstes Kontrollinstrument der so gewonnenen Daten ist bisher die jährliche Abfrage der Summe der inl. Verkäufe der vier Hersteller Solvay, DuPont, Ineos und Arkema (früher Atochem) nach Kältemitteln in alle Sektoren der stationären Kälte. Da sich aus dem Bestandsmodell der Gewerbekälte sowie der Industriekälte jährliche Gleichgewichtsmengen des Verbrauchs für Neuanlagen und Emissionsausgleich ableiten lassen, können diese mit den Herstellerangaben verglichen werden. Hier kann auch das UStatG genutzt werden, das die insgesamt im Inland neu verwendeten Kältemittel nach Typen erhebt und vom Verbrauch der Mobilklimaanlagen getrennt ausweisen kann. Mehr als eine Plausibilitätskontrolle, die ev. Korrekturen der Bestandsmodelle auslösen kann, ist dies jedoch nicht. Hersteller und UStatG trennen nicht nach Gewerbekälte und Industriekälte; die Hersteller wiederum unterscheiden nicht nach Neufüllung und Nachfüllung, erst recht nicht nach Anlagen mit niedriger oder hoher Emissionsrate.

Tiefere Einsichten in die innere Anlagenstruktur der Gewerbekälte nach Emissionsdichtheit bei Aufstellung, Betrieb und Außerbetriebnahme sowie nach Bauart, Lebensdauer und verwendeten Kältemitteln erwarten wir von den derzeit im Aufbau befindlichen Datenbanksystemen zur Kältemittel-Verwaltung. Nach Angaben der Entwickler werden die Daten über die einzelnen Kälteanlagen so detailliert sein, dass gezielte Auswertungen auch zur Erfüllung der Anforderungen der nationalen Emissionsberichterstattung denkbar sind. (Siehe Kap. 1, III, 2).

Auf absehbare Zeit ist jedoch Expertenhilfe weiterhin notwendig, auch zur Überprüfung der Leistungsfähigkeit der Datenbanksysteme.

1.3. Transportkälte

Der Beitrag dieser Teilquelle zu den Unterquellgruppen-Emissionen ist mit 3,5% recht gering. Er stammt zu über drei Viertel aus Kühlfahrzeugen.

1.3.1. Kühlfahrzeuge

Anwendung: Auf dem Dach oder an der Stirnwand der gedämmten Fahrzeuge sind Kälteaggregate montiert, deren Größe und Kältemittelfüllung mit dem Volumen des Frachtraums variiert. Von nur vorübergehenden Servicekältemitteln abgesehen, werden drei verschiedene HFKW-Typen eingesetzt: R-134a, R-404A und R-410A.

Bisherige Erfassung: Die für das ZSE notwendige Eingabe von Aktivitätsdaten erfolgt in zwei Stufen. Vom KBA (Reihe 3) liegen im Dezember des folgenden Jahres die jährlichen Neuzulassungen von Lkw und Anhängern nach der Aufbauart "Geschlossener Kasten mit Isolieraufbau und Kühlung" in 23 Gewichtsklassen vor. Diese 23 Klassen werden zunächst auf vier Hauptgruppen reduziert. Dann wird das mithilfe von Branchenexperten entwickelte – zuletzt 2004 aktualisierte - Kältemittel-Modell herangezogen. Es weist für jede der vier Gewichtsklassen die mittlere Kältemittelfüllung in kg und die HFKW-Verteilung in Prozent aus. Durch Kombination von Neuzulassungszahlen und Kältemittel-Modell errechnet sich für jedes der drei HFKW-Kältemittel der jährliche Neuzugang zum - als Zeitreihe im ZSE hinterlegten - Bestand. Der im ZSE enthaltende EF = 15% generiert die aktuellen Bestandsemissionen. (Vergleichbares gilt für inl. Fertigungsemissionen bei der Befüllung). Aufgrund der zehnjährigen Lebensdauer (ZSE-Wert) werden automatisch die um diesen Zeitraum zurückliegenden Zugänge als Entsorgungsmenge errechnet und mit einem Emissionsfaktor der Entsorgung (EF im ZSE = 30%) multipliziert.

Künftige Erfassung: Es liegt nahe, weiterhin sowohl die amtlichen KBA-Daten als auch ein robustes Kältemittelmodell zu verwenden. Letzteres ist der kritische Punkt in der Aktivitätsdatenermittlung. Gewichtsklassenspezifische Kältemittelfüllungen und HFKW-Anteile unterliegen der Veränderung und müssen in regelmäßigen Intervallen (etwa alle drei Jahre) aktualisiert werden, um Datenfehler einzuschränken.

Sowohl für die Aktualisierung des Kältemittelmodells als auch die Überprüfung der Emissionsfaktoren (Befüllung, Bestand, Entsorgung) könnten die in Entstehung befindlichen Systeme der datenbankbasierten Kältemittel-Verwaltung einen Beitrag leisten und somit die Datengenauigkeit steigern. Von Seiten der Entwickler dieser Systeme sind Stichproben auf Aktivitätsdaten und Emissionen auch in der Transportkälte ins Auge gefasst. Voraussetzung ist eine ausreichende Einbeziehung von Kühlfahrzeugen in diese Monitoring-Systeme.

Das UStatG kann mit Einschränkungen der Datenkontrolle dienen. Fragebogen 10-50 fragt nach verwendeten Kältemitteln bei Reparatur und Instandhaltung von Kraftfahrzeugen (WZ 5010, 5020), trennt aber nicht die Nachfüllungen in Kälteaggregate von denen in Klimaanlagen. Für beide wird als Kältemittel HFKW-134a verwendet. Nur so weit die nur Kühlfahrzeug-spezifischen Kältemittel R-404A und R-410A erhoben werden, sind sie eindeutig der Transportkälte zuzurechnen.

Die Hilfe von Branchenexperten bleibt notwendig, auch wenn ihre Befragung nicht alljährlich erfolgen muss.

1.3.2. Kühlcontainer

Anwendung: Die Aggregate mit den HFKW-Kältemitteln R-134a und R-404A sind an den Kühlboxen angebracht, die auf Schiffen transportiert werden. Die Zuordnung dieser Emissionsquelle ist methodisch nicht unstrittig. Emissionen erfolgen vor allem in internationalen Gewässern, für die Nationalstaaten nicht direkt zuständig sind. Wir zählen die von der weltweiten Containerflotte verursachten Kältemittelemissionen zu 10% zu Deutschland, entsprechend dem 10%-igen Anteil am Welthandel.

Bisherige Erfassung: Die Neuproduktion von Kühlcontainern (Stückzahl) wird jährlich vom World Container Census erhoben und im Internet veröffentlicht (www.worldcargonews.com). Um die weltweit in neue Kälteaggregate gefüllte HFKW-Menge zu errechnen, wird ein im ZSE hinterlegtes Kältemittel-Modell genutzt. Es enthält die mittlere Kältemittelfüllung pro Container, je für R-134a und R-404A, sowie die Anteile beider HFKW-Typen in Prozent. Aus den Stückzahlen und dem Kältemittelmodell resultiert die HFKW-Menge, die durch 10 dividiert und ins ZSE eingegeben wird. Da dort der bisherige Bestand als Zeitreihe enthalten ist, werden automatisch Bestandsemissionen und – nach Ende der Lebensdauer – Entsorgungsemissionen errechnet.

Künftige Erfassung: Sofern es dabei bleiben sollte, die Emissionen aus Kühlcontainern national zuzurechnen, sehen wir keinen einfacheren Weg für die Zukunft als bisher. Das bezüglich Füllmengen und HFKW-Typen variable Kältemittel-Modell sollte alle drei bis fünf Jahre durch Branchenexperten aktualisiert werden.

1.4. Industriekälte

Anwendung: Diese Teilquellgruppe zählt mit 6,5% Emissionsbeitrag zur Hauptquellgruppe 2.F und 12% zur Untergruppe "1. Kälte- und Klimaanlagen" zu den größeren. Wie in der Gewerbekälte kommt eine Vielzahl von Kältemitteln zur Anwendung - mit R-404A an der Spitze vor R-134a. Kälteanlagen in der Industrie sind noch stärker als in der Gewerbekälte für den jeweiligen Produktionsprozess (überwiegend Nahrungsmittelindustrie) konzipiert. Betreut werden sie von eigenem Fachpersonal aber auch von Fremdfirmen aus der Kältebranche. Wie in der Gewerbekälte ist bisher aufgrund der Heterogenität des Sektors eine direkte Erfassung des jährlichen Kältemittelneuzugangs nicht möglich.

Bisherige Erfassung: Analog zur Gewerbekälte wurde ein empirisch-basiertes Modell für den HFKW-Zielbestand aufgestellt (siehe UBA-Texte 14/05), das mittelfristig den gegenwärtigen Kühl- und Gefrierbedarf, der durch chlorhaltige und chlorfreie fluorierte Kältemittel gedeckt wird, als stabil annimmt. Davon ausgehend können die jährlichen Verbräuche pro Kältemittel grundsätzlich über Division von Zielbestand durch Anlagen-Lebensdauer in Jahren errechnet werden. Abschläge für teilweisen Einsatz von R-22 in Neuanlagen bis 1997 werden berücksichtigt. Entsorgungsmengen sind mit dem um die Lebensdauer zurückliegenden HFKW-Verbrauch für Neuanlagen identisch. Emissionsfaktoren stammen aus Expertenschätzungen und sind, wie das Kältemittel-Modell als ganzes, im ZSE hinterlegt.

Künftige Erfassung: Auch zukünftig soll die Emissionsberechung auf dem Modell des Bestands basieren. Allerdings soll es Schritt für Schritt in seinen Bestandteilen

verfeinert und realitätsgerechter werden. Dies soll vor allem durch Informationen erfolgen, die über datenbankbasierte Monitoring-Systeme (z.B. EcoKlima, VDKF-LEC) gewonnen werden. Für die Nutzung des UStatG gelten die gleichen Möglichkeiten und Grenzen, die bei der Gewerbekälte (siehe dort) beschrieben werden. Hilfe von Branchenexperten bleibt bis auf Weiteres erforderlich.

1.5. Stationäre Klimaanlagen, Raumgeräte, Wärmepumpen

Stationäre Klimaanlagen tragen 3,7% zu den Emissionen der Unterquelle "Kälte- und Klimaanlagen" bei, wenn Raumklimageräte (0,5%) und Wärmepumpen (0,1%) mitgerechnet werden. Sie sind daher eine geringfügige Emissionsquelle. Für die Erhebung werden dennoch weiterhin Tier 2-Ansätze (bottom up) vorgeschlagen.

1.5.1. Zentrale Klimaanlagen

Anwendung: Klimaanlagen über 20 kW Kälteleistung werden zur Temperierung ganzer Gebäude oder großer Räume eingesetzt. Überwiegend kommen zentrale Systeme mit Kältemittel im Primär- und Wasser im Sekundärkreislauf zur Anwendung, aber im unteren Leistungsbereich finden auch direkt verdampfende Systeme Verbreitung. HFKW-Kältemittel sind bislang R-407C und R-134a. Emissionen entstehen bei Befüllung, aus dem Bestand und bei der Entsorgung.

Bisherige Erfassung: Der Emissionsberechnung liegt ein Kältemittelmodell im ZSE (Stand: Anfang 2003) zu Grunde, das die Klimaanlagen nach drei Leistungsstufen kategorisiert, denen drei Verdichtertypen zugeordnet sind, und zwar Turboverdichter im oberen, Schraubenverdichter im mittleren, Kolben- und Scrollverdichter im unteren Kälteleistungsbereich. Allen drei Kategorien entsprechen typische HFKW-Sorten und –Füllmengen. Wie das Kältemittel-Modell, das zudem die Lebensdauern der Anlagen enthält, mit Branchenexperten entwickelt wurde, so stammt von diesen auch die zahlenmäßige Schätzung neu installierter Anlagen. Diese werden jährlich einmal erfragt. Nach Eingabe ihrer Zahl ins ZSE, wo der bisherige Bestand als Zeitreihe vorliegt, werden aufgrund der gleichfalls enthaltenen Emissionsfaktoren für Befüllung, Nutzung und Entsorgung die aktuellen Emissionen automatisch generiert.

Künftige Erfassung: Die Emissionsberechnung soll weiterhin einerseits auf Expertenschätzung der jährlichen Neuinstallationen und andererseits auf dem ZSE-Kältemittel-Modell basieren, das allerdings bald durch Experten aktualisiert werden muss (2005/2006). Mittelfristig kann mit Hilfe datenbankbasierter Monitoring-Systeme (EcoKlima, VDKF-LEC) die Bestandsstruktur sicherlich weiter verfeinert werden. Das gilt ebenso für die auf reinen Expertenschätzungen beruhenden Emissionsraten. Das UStatG ist für spezifische Daten zu Klimaanlagen-Emissionen ungeeignet.

1.5.2. Raumklimageräte

Anwendung: Raumklimageräte in mobiler, Split- und Multisplit-Ausführung kühlen die Innenraumluft einzelner Wohn- und Arbeitsräume bzw. ganzer Stockwerke. Die Geräte im Leistungsbereich unterhalb und knapp oberhalb 20 kW erleben ein starkes Absatzwachstum. Seit 1998 werden in den durchweg importierten Systemen statt R-22 die HFKW-Kältemittel 407C und zunehmend 410A eingesetzt.

Bisherige Erfassung: Wie für Klima-Zentralanlagen ist auch für dezentrale Raumgeräte ein im ZSE hinterlegtes Kältemittel-Modell Grundlage der Emissionsberechnung. Es enthält für die Bauarten "mobil", "Split" und "Multi-Split" die Anteile von 407C gegenüber 410A und die mittleren HFKW-Füllmengen, dazu Lebensdauern und Emissionsfaktoren. Die im Inland neu abgesetzten Geräte nach Bauart und Stückzahl werden jährlich von Branchenexperten erfragt, die diese Daten abschätzen, und ins ZSE zur Emissionsberechnung eingegeben.

Künftige Erfassung: Gerade in diesem Bereich sind datenbankbasierte Monitoring-Systeme auf längere Sicht bestenfalls zu (mehr oder weniger repräsentativen) Teilerhebungen in der Lage, nicht aber zu Vollerhebungen. Darum halten wir sie nicht für überlegen gegenüber Expertenschätzungen der Aktivitätsdaten für die Emissionsberechnung. Jährlich legen alle ca. dreißig Importeure ihre eigenen Verkaufszahlen bei der Fachzeitschrift CCI.Print nieder, die ihnen (nur ihnen!) daraufhin die Gesamtdaten mitteilt. Aus diesem Grunde kennen die Importeure den Gesamtmarkt genau. Sie sollten daher weiterhin um Schätzungen gebeten werden. Mit ihrer Hilfe kann auch das Kältemittel-Modell periodisch aktualisiert werden.

1.5.3. Wärmepumpen

Anwendung: Mittels eines Kältemittelkreislaufs wird aus Umgebungswärme in Luft, Erdreich oder Grundwasser Nutzwärme zur Heizung von Innenräumen sowie für Warmwasser erzeugt. Die bezüglich ihres Emissionsbeitrags fast vernachlässigbaren Wärmepumpen (WP) werden hier unter Klimaanlagen geführt, mit denen sie die Temperierung von Innenräumen gemeinsam haben. Ohnehin können sie grundsätzlich auch auf Klimaanlagenbetrieb umgeschaltet werden.

Bisherige Erfassung: Ein mit Expertenhilfe für das ZSE entwickeltes Kältemittel-Modell ordnet allen vier WP-Kategorien mittlere HFKW-Füllmengen und prozentuale Anteile der HFKW-Typen zueinander zu, und enthält zudem Lebensdauern und alle Emissionsraten. Die Zahl der inländischen Neuinstallationen wird jährlich vom Verband (BWP) veröffentlicht - für alle vier WP-Kategorien: Luft, Grundwasser, Erdreich und Warmwasser. Nach Eingabe der BWP-Daten ins ZSE werden die Emissionen automatisch berechnet.

Künftige Erfassung: Das bisherige System ist sehr viel detaillierter, als es aufgrund des geringen Emissionsbeitrags (0,1%) von Wärmepumpen sein müsste. Dennoch sollte es beibehalten werden, zumal die jährlichen Neuinstallationen nach WP-Kategorien ohnehin erhoben werden. Das Kältemittelmodell sollte allerdings im Abstand von drei bis fünf Jahren mit Hilfe von Branchenexperten aktualisiert werden. Ob dabei datenbankbasierte Monitoring-Systeme helfen können, bleibt abzuwarten.

1.6. Fahrzeug-Klimaanlagen

1.6.1. Pkw-Klimaanlagen

Anwendung: Pkw-Klimaanlagen tragen zu den Emissionen der Hauptquellgruppe 2.F über 19% bei. Sie sind damit deren zweitgrößte Einzelquelle. Die folglich hohen Ansprüche an Datenpräzision werden eingehalten. Aufgrund der rapide wachsenden Ausrüstung mit Klimaanlagen ist für neu zugelassene Pkw eine Sättigung absehbar.

Emissionen fallen bei Befüllung, Nutzung und Entsorgung an. Nach der bevorstehenden EU-Richtinie zu Kfz-Klimaanlagen ist von 2011 bis 2017 das Kältemittel R-134a zu ersetzen.

Bisherige Erfassung: Die Ermittlung des jährlichen HFKW-Neuzugangs zum – im ZSE als Zeitreihe hinterlegten Bestand – erfolgt in drei Schritten. Bereits im Januar des Folgejahres liegen vom KBA die inl. Pkw-Neuzulassungen nach allen Herstellern und deren Modellen vor; außerdem vom VDA die jährliche Neuproduktion der Hersteller nach Modellen. Dann wird für die Neuzulassungen wie Neuproduktionen die durchschnittliche Klimaanlagen-Ausrüstung (Klimaquote in %) sowie die mittlere Kältemittelfüllung pro Anlage erhoben. Da im ZSE die mittlere Pkw-Lebensdauer ebenso hinterlegt ist wie die Emissionsraten, werden Emissionen bei Befüllung, Betrieb und Entsorgung nach Eingabe der aktuellen Daten automatisch generiert.

Es ist eine Besonderheit der Pkw-Klimaanlagen, dass Klimaquoten und Füllmengen nicht auf einem durch Expertenschätzung gewonnenen Kältemittel-Modell gründen. Seit 1995 werden vielmehr jährlich rund 30 Automobilunternehmen für ihre jeweils 5 bis 15 Modelle nach Klimaquote und Füllmenge direkt befragt. Somit werden 100% der Neuzulassungen inländischer Hersteller und 90-95% der Neuzulassungen ausländischer Hersteller vollständig erhoben. Da auch die Emissionsrate während der Nutzungsphase (EF = 10%) auf neuen empirischen Studien basiert, ist die Datenpräzision überdurchschnittlich hoch.

Künftige Erfassung: Mittlerweile fast zehn Jahre detaillierter Direkterhebung der Aktivitätsdaten Klimaquote und Füllmenge bieten angesichts der Sättigung der Klimatisierung die Möglichkeit, die Trends fortzuschreiben und sie nur noch alle drei bis vier Jahre durch Vollerhebungen zu überprüfen. Darum schlagen wir vor, ab Berichtsjahr 2005 die Vollerhebung auszusetzen und auf die amtlichen KBA- sowie die VDA-Daten extrapolierte Klimaquoten und Füllmengen anzuwenden. Ab 2011 sollte jedoch eine Erhebungsform gefunden werden, die den jährlichen Fortgang des Ausstiegs der Pkw-Klimatisierung aus HFKW-134a dokumentieren kann.

1.6.2. Lkw-Klimaanlagen

Anwendung: Bei Lastkraftwagen wird zunehmend die Fahrerkabine klimatisiert, wenngleich noch auf deutlich niedrigerem Niveau als bei Pkw. Dies gilt vor allem für die Masse der Fahrzeuge, die leichten Nutzfahrzeuge bzw. Lieferwagen. Lediglich bei schweren Lkw (Nutzlastklasse über 7,5 t) wird die hohe Klimaquote der Pkw erreicht. Die EU-Richtlinie zu Kfz-Klimaanlagen sieht für Lkw eine Überprüfung der Notwendigkeit des Kältemittels HFKW-134a vor, aber vorerst noch keinen Ausstieg.

Bisherige Erfassung: Aktivitätsdaten werden über eine Kombination aus amtlicher Statistik, gezielter Herstellerbefragung und Hochrechnung ermittelt. Das KBA veröffentlicht die jährlichen Zulassungen von Lkw und Sattelzugmaschinen in zehn Nutzlastklassen, die in einem ersten Bearbeitungsschritt zu drei Segmenten zusammengefasst werden. Für jedes der drei Segmente sind "typische" Fahrzeugmodelle ausgewählt, deren Klimaquoten und Füllmengen beim Hersteller direkt erhoben und auf die Gesamtheit jährlicher Neuzulassungen übertragen werden. Im ZSE sind der bisherige Bestand als Zeitreihe hinterlegt, zudem die

mittlere Lkw-Lebensdauer und Nutzlast-spezifische Emissionsraten, so dass nach Eingabe der neuen Daten die aktuellen Emissionen automatisch errechnet werden.

Künftige Erfassung: Der aufwendigste Teil der Erfassung, die Herstellerbefragung zu Klimaquoten und Füllmengen (VW: Transporter, LT, Caddy; DaimlerChrysler: Vito, Sprinter, Atego, Axor, Actros; Renault: Kangoo, Master) könnte künftig in größeren Intervallen erfolgen, zur Überprüfung der Fortschreibung der bis 2004 ermittelten Trends. Nach wie vor bleiben die KBA-Daten zur Zulassung und die VDA-Daten zur Neuproduktion als verlässliches Ausgangsmaterial erhalten. Da der Emissionsbeitrag zur Hauptquellgruppe 2.F nur 0,8% und zur Untergruppe "Kälte- und Klimaanlagen" 1,5% beträgt, ist die damit verbundene Verringerung der Datensicherheit tragbar.

1.6.3. Bus-Klimaanlagen

Anwendung: Busse werden ebenfalls zunehmend klimatisiert. Dabei sind von den drei Kategorien (Reisebus, Überlandbus, Linienbus) Reisebusse schon seit 1999 zu 100% mit Klimaanlage ausgestattet. Überlandbusse sind auf dem Weg dahin. Linienbusse werden allerdings zur Hälfte ohne Klimaanlage in Betrieb genommen. Die EU-Richtlinie zu Kfz-Klimaanlagen sieht auch für Busse eine Überprüfung der Notwendigkeit des Kältemittels HFKW-134a vor, aber vorerst noch keinen Ausstieg.

Bisherige Erfassung: Ausgangspunkt der jährlichen Aktivitätsdatenabschätzung ist die amtliche KBA-Statistik über neu zugelassene Kraftomnibusse, die allerdings nicht nach Reise-, Überland- und Linienbussen unterscheidet. Die prozentuale Aufteilung in die drei Buskategorien ist in dem Kältemittel-Modell enthalten, das mit Experten der beiden führenden inl. Bushersteller Evobus (DaimlerChrysler) und MAN (Marktanteil zusammen 80-90%) entwickelt wurde. Es enthält außerdem die mittleren Kältemittelfüllungen sowie Abschätzungen von Emissionsrate und Lebensdauer. Da das Kältemittelmodell samt Bestands-Zeitreihe im ZSE enthalten ist, müssen jährlich lediglich die Experten der beiden deutschen Hersteller nach den Klimaquoten bei Überland- und Linienbusse befragt werden, um auf Basis der öffentlichen Zulassungs- und Produktionszahlen (letztere vom VDA) diejenigen ZSE-Eingaben machen zu können, aus denen die aktuellen Emissionen errechnet werden.

Künftige Erfassung: Angesichts des geringen Emissionsbeitrags von 0,8% zur Hauptquellgruppe und 1,5% zur Untergruppe "Kälte- und Klimaanlagen" kann auch hier in Zukunft die Direktbefragung zeitlich gestreckt werden. Der Trend der Klimaquoten, der sich bis 2004 abzeichnet, kann danach weitere drei Jahre fortgeschrieben werden. Dann sollte allerdings nicht nur eine erneute Direkterhebung der Klimaquoten erfolgen, sondern auch das zu Grunde liegende Kältemittel-Modell aus dem Jahre 2002 sollte gründlich mit Expertenhilfe überarbeitet werden.

1.6.4. Landmaschinen-Klimaanlagen

Anwendung: Maschinen in der Landwirtschaft werden seit den 90er Jahren zunehmend mit Klimaanlagen ausgerüstet. Zahlenmäßig bedeutsam sind vor allem Ackerschlepper mit jährlichen Neuzulassungen von etwa 25.000 Stück. Dazu kommen Mähdrescher und Feldhäcksler, beides Erntemaschinen für den Sommer. Der Beitrag zu den Emissionen der Hauptquellgruppe 2.F ist mit 0,4% sehr gering.

Bisherige Erfassung: Das KBA veröffentlicht jährlich nur die Zulassungen von Ackerschleppern. Die Zulassungen von Mähdreschern und Feldhäckslern stammen von Branchenexperten und Unternehmensquellen. Mit Branchenexperten wurde auch das Kältemittel-Modell fürs ZSE aufgestellt, das mittlere Kältemittelfüllmengen der drei Landmaschinentypen und spezifische Emissionsraten enthält. Jährlich wird bei Branchenexperten eine Schätzung der Klimaquoten der neu zugelassenen Landmaschinen (alle drei Typen) eingeholt, so dass der jährliche HFKW-Zugang und mit ihm via ZSE die aktuellen Emissionen berechnet werden können.

Künftige Erfassung: Es wird vorgeschlagen, ab 2004 (Berichtsjahr) fünf Jahre lang von externen jährlichen Daten nur die öffentliche Statistik über Ackerschlepper (Zulassungen, Stückzahl der Produktion) zu benutzen. Ansonsten sollten die mittleren Füllmengen der Klimaanlagen ebenso wie die Klimaquoten selbst und die Zulassungen von Mähdreschern und Feldhäckslern dem Trend der letzten fünf Jahre folgend fortgeschrieben werden. Auch die Emissionsraten können unverändert bleiben. Alle fünf Jahre sollte eine Überprüfung des Trends der Aktivitätsdaten und der verwendeten Emissionsraten mit Hilfe von Branchenexperten erfolgen.

1.6.5. Schiffs-Klimaanlagen

Anwendung: Die seit 1998 neu gebauten Fahrgastschiffe (nicht Güterschiffe!) der dt. Binnenflotte sowie die seitdem neu gebauten Seeschiffe (Passagier- und Güterschiffe) sind alle klimatisiert - mit HFKW-134a. (Dies gilt auch für die entsprechenden Neubauten auf inl. Werften.) Aufgrund ihrer 25-jährigen Lebensdauer nutzen die weitaus meisten Schiffe im Bestand noch ODS-Kältemittel.

Bisherige Erfassung: Angesichts des Beitrags dieser Einzelquelle von nur 0,02% zu den Emissionen der Hauptquellgruppe 2.F ist der Erhebungsaufwand zu hoch. Zwar müssen für die jährlichen Schiffs-Neuzugänge keine Klimaquoten ermittelt werden (da alle klimatisiert sind), sondern es reicht ein Modell der mittleren Kältemittelfüllmengen nach (sechs) Schiffstypen, das mit Experten erstellt wurde. Aber die Erfassung der Neuzugänge zur dt. Flotte nach Schiffstypen sowie der Neubauten auf inl. Werften ist sehr aufwendig. Die leicht zugänglichen Statistiken des Schiffsbestands (Binnen- und Seeflotte) können nicht genutzt werden, da die Bestände, wie eingangs bemerkt, noch auf Jahre vor allem mit R-22 klimatisiert sind.

Die Zahlen der Neuzugänge zur Binnenflotte werden von der Wasser- und Schifffahrts-Direktion Südwest erfragt, Neuzugänge zur Seeflotte werden jährlich auf Bitte von Öko-Recherche vom Verband Deutscher Reeder zusammengestellt, zu neuen Marine-Schiffen wird die Bundeswehr befragt, und zu Kreuzfahrtschiffen eine Reederei. Inl. Neubauten stammen wiederum aus dem Jahresbericht des Verbandes für Schiffbau und Meerestechnik sowie der Meyer-Werft in Papenburg.

Nach Eingabe der jährlich ermittelten neuen Menge von HFKW-134a errechnet das ZSE mit seinen Emissionsfaktoren Bestands- sowie Herstellungsemissionen aus.

Künftige Erfassung: Unsere Prognose sagt bis 2020 einen Anstieg der Emissionen von heute knapp 2 auf 6 t/a voraus. Das werden weniger als 0,1% der Haupt- und sogar der Unterguellgruppen-Emissionen sein. Wir schlagen daher vor, die direkte

Datenerhebung bis auf weiteres einzustellen und stattdessen die Emissionen durch Fortschreibung des zwischen 1998 und 2004 erhobenen Trends abzuschätzen.

1.6.6. Schienenfahrzeug-Klimaanlagen

Anwendung: Seit 1996 werden neue Schienenfahrzeuge der Dt. Bahn sowie von privaten Betreibern praktisch nur noch mit Klimaanlage angeschafft. Dies gilt auch für den Nahverkehr und S-Bahnen. Etwa 3500 Schienenfahrzeuge stellte die Dt. Bahn außerdem bis 1998 von R-12 auf den HFKW-134a um. Neue U-Bahnen- und Straßenbahnen werden ebenfalls fast nur noch klimatisiert in Betrieb genommen. Dennoch handelt es sich insgesamt um keine große Emissionsquelle, trotz des relativ hohen EF = 15%. Das Fahrzeugpotenzial ist bundesweit auf etwa 25.000 Stück (ohne Lokomotiven) begrenzt, von denen zurzeit schon ein Drittel klimatisiert ist, mit 10-18 kg pro Anlage. Der Emissionsbeitrag des Schienenverkehrs zur Hauptquellgruppe 2.F lag 2003 bei 0,3%, er dürfte 2020 unwesentlich größer sein.

Bisherige Erfassung: Mit Experten der Schienfahrzeug-Klimatisierung wurden mittlere Kältemittelfüllmengen für Reisezugwagen, Loks, S-, U-, und Straßenbahnen ermittelt. Der jährliche HFKW-Neuzugang, der ins ZSE eingegeben wird, ergibt sich aus der Zahl neu angeschaffter minus außer Dienst gestellter Fahrzeuge, multipliziert mit den spezifischen Füllmengen. Amtliche Statistiken über die jährlich neuen und ausgemusterten Schienenfahrzeuge gibt es nicht. Aufgrund der Vielfalt öffentlicher und privater Schienenverkehrsbetriebe sowie häufiger Umstrukturierungen innerhalb der Dt. Bahn ist ihre exakte Erfassung sehr aufwendig und unsicher.

Künftige Erfassung: Angesichts der Geringfügigkeit des Emissionsbeitrags durch Schienenfahrzeug-Klimaanlagen schlagen wir vor, von der jährlichen Totalerhebung Abstand zu nehmen. Es genügt, für die Bestandsentwicklung von HFKW-134a den Trend der jährlichen Neuzugänge aus den vergangenen fünf Jahren (2000-2004) fortzuschreiben. Zur Kontrolle kann alle fünf Jahre eine Überprüfung in Form der bisher angewandten Erhebung durchgeführt werden.

2. **Hartschaum (2.F.2)**

Diese Unterquellgruppe befindet sich gegenwärtig im Umbruch. Ihre vor 2001 bei weitem größte Emissions-Einzelquelle, Montageschaum, wird durch die neue EU-F-Gase-Verordnung, die HFKW nur noch in Ausnahmen zulässt, künftig nahezu bedeutungslos werden. Im Vorgriff darauf war schon im Jahr 2003 ein kräftiger Rückgang festzustellen, der sich 2004 voraussichtlich fortsetzte. Andererseits liefern andere Einzelquellen wachsende Emissionsbeiträge. So kommen etwa bei "Sonstigem Polyurethan-Hartschaum" überhaupt erst seit 2004, dem Verbotsjahr des Treibmittels HFCKW-141b, HFKW in großem Maßstab zum Einsatz. Der für 2003 festgestellte 13%-ige Emissionsbeitrag von "Foam blowing" zur Hauptquellgruppe 2.F, der diese Unterquellgruppe nur zur drittgrößten macht, ist daher eher eine Momentaufnahme als ein langfristiger Mengentrend. Da dieser schwer zu prognostizieren ist, werden wir die geforderte Datenpräzision nicht von der aktuellen Geringfügigkeit ableiten, sondern empfehlen, um sicher zu gehen, bis auf weiteres in

dieser Unterquellgruppe höchstmögliche Monitoring-Exaktheit für die Masse der Emissionen walten zu lassen.

2.1. Montageschaum (OCF)

Anwendung: Montageschaum ist Polyurethanschaum in Dosen mit einem Gasgemisch, das HFKW-134a und HFKW-152a enthält, als Treibmittel zum Austreiben des Schaums. Die Anwendung gilt als offen (EF = 100%), da ca. drei Viertel der HFKW-Treibmittel sofort emittieren und sich die im Schaum verbleibende Menge spätestens nach einem Jahr verflüchtigt hat. Sofern Montageschaum im Inland abgefüllt wird, kommen auch Herstellungsemissionen vor.

Bisherige Erfassung: Amtliche Statistiken über Montageschaum (Aktivitätsdaten) gibt es nicht. Da die Abfüller, die in Deutschland tätig sind oder aus dem Ausland liefern, zahlenmäßig auf etwa zehn begrenzt sind, ist nicht nur die Kenntnis der Rezepturen untereinander sehr hoch, sondern auch die Marktverhältnisse in Deutschland, dem weltgrößten Einzelmarkt, sind den Unternehmen gut bekannt. Darum wurden bisher größere Einzelunternehmen oder der Branchenarbeitskreis AKPU um die für die Emissionsberichterstattung notwendigen Daten gebeten: Dosenabsatz und Dosenproduktion in Deutschland, Import, Export, HFKW-Menge pro mittlere Schaumdose, Relation HFKW-134a zu -152a, HFKW-Verluste beim Befüllen. Die Methode ist ihrem Charakter nach eine Expertenschätzung nach Tier 2.

Künftige Erfassung: Die EU F-Gas-Verordnung sieht ein HFKW-Verbot für Montageschaum ab 2008 vor - "außer wenn durch nationale Sicherheitsvorschriften erforderlich". Das heißt, HFKW dürfen bei Anwendungen, die schwer entzündliche Treibmittel verlangen, weiterhin genutzt werden, so dass ihre Erhebung, auf niedrigerem Mengenniveau, erforderlich bleibt. Wir schlagen vor, die bisherige Schätzung der Aktivitätsdaten durch Branchenexperten beizubehalten. Direkte Meldung durch den Arbeitskreis AKPU an das UBA wäre wünschenswert, allerdings ist der Arbeitskreis derzeit dazu nicht bereit. Dieser Weg sollte in Zukunft dennoch weiter verfolgt werden. Das UStatG sollte die Verwendung zur inl. Herstellung von Montageschaum (siehe Vorschlag für Fragebogen 10) gezielt abfragen. Diese Daten könnten als Primärquelle oder zur Datenkontrolle (Inlandsabfüllung, Relation zwischen beiden HFKW) genutzt werden.

2.2. XPS-Schaum

Anwendung: Von den vier inländischen XPS-Dämmplatten-Produzenten setzen drei HFKW ein. Einer nutzt HFKW-134a, einer HFKW-152a, der dritte nutzt beide. Da es von jedem HFKW-Typ nur je zwei Anwender gibt, muss der Geheimhaltungspflicht Rechnung getragen werden. Dies geschah bisher dadurch, dass der nationale oder Europäische Branchenverband die betriebsspezifischen Daten sammelte und anonymisiert an Öko-Recherche für die Inventarisierung weitergab.

Während HFKW-152a bei der Produktion fast vollständig emittiert (EF = 100%), emittieren vom HFKW-134a in der Herstellung nur etwa 25%, während der größere Teil langfristig im Schaum verbleibt. Es kommt daher beim HFKW-134a auch zu

Emissionen aus dem Bestand (EF = 0,66%). Dieser baut sich seit 2001 auf, und zwar jährlich um den nicht exportierten Teil der fertigen 134a-geschäumten Dämmplatten.

Bisherige Erfassung: Zu erheben und ins ZSE einzugeben ist erstens der Gesamtverbrauch von HFKW-152a, der gleich Emission gesetzt wird. Zweitens müssen von den Anwendern von HFKW-134a in Erfahrung gebracht werden (1) jährlicher Neuverbrauch, (2) Verlustrate bei der Produktion, (3) Außenhandelssaldo für HFKW-134a-haltige Dammplatten. Nach Eingabe ins ZSE, das die konstanten Emissionsfaktoren und die Zeitreihe des Bestands enthält, ergeben sich automatisch die aktuellen 134a-Bestandsemissionen. Der Ansatz entspricht Tier 2.

Bis 2002 (Berichtsjahr) wurden die für die Emissionsberechnung erforderlichen Daten vom Deutschen Fachverband FPX gemeldet, die Daten für 2003 stammen vom Europäischen Dachverband EXIBA.

Künftige Erfassung: Der europäische Verband EXIBA, dessen deutsche Sektion FPX darstellt, ist bereit, die erforderlichen Daten zukünftig direkt an das UBA zu melden und darüber ein schriftliches Abkommen zu schließen.

Das UStatG kann über die Erfassung der Verbrauchsmengen (siehe Vorschlag für Fragebogen 10) für HFKW-152a die gesamten Emissionen erheben. Für HFKW-134a kann es zur Gegenkontrolle der EXIBA-Verbrauchsangabe dienen. Hierfür muss allerdings die Frage der statistischen Geheimhaltung beachtet werden, da es pro HFKW-Typ weniger als drei Anwender sind. Mitteilungen an das UBA zum Dienstgebrauch dürfte allerdings nichts im Wege stehen.

2.3. PU-Integralschaum

Anwendung: Bei der Produktion von Teilen aus PU-Integralschaum (Schuhsohlen, Fahrradsättel, usw.) werden mitunter HFKW als Hilfstreibmittel (1-2%) zugesetzt. Verwendet werden HFKW-134a und seit kurzem auch HFKW-365mfc (versetzt mit HFKW-227ea) und HFKW-245fa. Der Schaum ist offenzellig. Darum emittiert das Treibmittel bis auf unbedeutende Reste im Jahr der Anwendung (EF = 100%).

Bisherige Erfassung: Das meiste Wissen über die inl. Produktionsbedingungen in diesem kleinen Sektor liegt bei sog. Systemhäusern. Das sind Unternehmen, die für die Integralschäumer die Komponenten und Additive zur Erzeugung eines bestimmten Schaumtyps fertig formulieren. Das größte Systemhaus, die zur BASF gehörende Elastogran GmbH, gibt gegenüber Öko-Recherche seit 1997 jährlich eine Expertenschätzung des inländischen HFKW-Verbrauchs ab.

Künftige Erfassung: Die Elastogran GmbH ist auch in Zukunft zu einer Verbrauchsabschätzung der für Integralschäumung eingesetzten HFKW-Typen und HFKW-Mengen bereit. Die Bereitschaft, mit dem UBA darüber eine schriftliche Vereinbarung zu treffen, ist allerdings gering. Es wurde stattdessen auf Branchenverbände verwiesen. Von denen gibt es zwar im PU-Bereich mehrere. Sie verfügen aber nach unserer Erfahrung (noch) nicht über einschlägige Kompetenz.

Wir schlagen daher vor, in den Fragebogen 10 nach UStatG (Verwendung als Treibmittel usw.) unter der Rubrik "Verwendete Stoffe als Treibmittel bei der

Herstellung von Schaumstoffen" außer Montageschaum, XPS-Schaum und Sonstigen Polyurethanschäumen als weitere Spalte "Integralschaum" einzufügen. Damit würde es möglich, unmittelbar die jährlichen Daten zu Verbrauch und Emissionen nach HFKW-Typen zu gewinnen. Bis zur ersten derartigen Erhebung sollte weiterhin die Expertenschätzung von Elastogran herangezogen werden.

2.4. Sonstiger PU-Hartschaum

Anwendung: HFKW-Treibmittel sollen im Schaum bleiben, um seine Dämmung zu erhöhen. Ihre Ausgasung aus dem fertigen Produkt (Bestandsemission) dauert Jahrzehnte. Allerdings entstehen zwischen 5 und 30% Herstellungsemissionen - je nach Anwendungsform. In den großen PU-Hartschaum-Einsatzgebieten (Hausgeräte, flexibel sowie starr beschichte Dämmplatten) werden praktisch nur natürliche Treibgase genutzt. Bis 2003 kam jedoch noch HFCKW-141b zum Einsatz: erstens bei Kleinserienprodukten von hoher Isolierfähigkeit und Brandsicherheit (Blockschaum), zweitens bei offenen Anwendungen vor Ort (vor allem bei Spritzschaum). Erst seit dem HFCKW-Verbot ab 2004 werden hier HFKW in großem Maßstab genutzt: HFKW-365mfc (versetzt mit -227ea) und HFKW-245fa.

Bisherige Erfassung: In 2002 und 2003 wurden die neuen HFKW (365mfc, 245fa) nur in Testmengen verbraucht. Sie wurden vom einzigen europäischen Hersteller von HFKW-365mfc direkt erfragt. Zur Emissionsabschätzung dienten globale Schätzwerte für Herstellung (EF = 15%) und inl. Bestand von Testprodukten (EF = 0,5%). Die meisten HFKW-Treibmittel-Emissionen kamen 1998 - 2003 vom Einsatz von HFKW-134a für Sandwichelemente bei einem einzigen Anwender, dessen Verbrauchs- und Emissionsdaten direkt erfragt wurden. Dieser stellte die Produktion 2003 auf Pentan um, so dass HFKW-134a nur noch vom in fünf Jahren aufgebauten inländischen Bestand entweicht, was künftig über das ZSE errechnet werden kann.

Künftige Erfassung: 2004 war das erste Jahr des massenhaften Einsatzes der neuen HFKW (365mfc, 245fa), die HFKCW-141b ablösen. Zur Erfassung des inländischen Verbrauchs halten wir das nov. UStatG für ein wichtiges Mittel. Im vorgeschlagenen Fragebogen 10 (Verwendung als Treibmittel usw.) sollte unter der Rubrik "Verwendete Stoffe als Treibmittel bei der Herstellung von Schaumstoffen" außer nach Montageschaum, XPS-Schaum und Integralschaum auch nach "Sonstigem Polyurethanschaum" gefragt werden. Die Emissionsfaktoren für seine Herstellung (und seinen Bestand) müssen anders ermittelt werden. Ihre Höhe variiert stark nach Unteranwendung, so dass erst ein klares Bild der inländischen Verwendungskanäle vorhanden sein muss. Dies ist bisher noch nicht der Fall.

Zu diesem Zweck schlagen wir dem UBA eine Expertenrunde mit den Hauptakteuren der inländischen HFKW-Nutzung für "sonstige PU-Hartschäume" vor, bei dem, basierend auf der Kenntnis der Anwendungen Spritzschaum, Blockschaum usw., die Faktoren der Herstellungs- und Bestandsemissionen ermittelt werden. Hierbei sind auch die relativ tief gestaffelten anwendungsspezifischen Emissionsfaktoren in den alten und neuen IPCC-Guidelines heranzuziehen.

Für den Übergang empfehlen wir, für den Verbrauch der beiden HFKW-Typen wie für die darauf anzuwendenden Emissionsfaktoren die bisher von Öko-Recherche befragten Experten aus Unternehmen und Verbänden um Schätzungen zu bitten.

3. Feuerlöschmittel (2.F.3)

Anwendung: Zur Beflutung feuergefährdeter Innenräume wird zum Teil der HFKW-227ea eingesetzt. Emissionen entstehen bei der inl. Anlagenbefüllung und aus dem Bestand, v. a. bei Feueralarm. Für militärische Anwendungen wird auch der HFKW-236fa genutzt, und zwar ebenfalls in Anlagen, darüber hinaus aber auch in offener Anwendung. Der zugelassene HFKW-23 wird bisher noch nicht eingesetzt. Emissionen aus der Untergruppe 2.F.3 machen nur 0,05% der Hauptquellgruppe 2.F aus, brauchen daher nur grob geschätzt zu werden. Dennoch sollte das bisherige Meldesystem beibehalten werden, das im Prinzip ein "bottom-up Tier 2"-Ansatz ist.

Bisherige Erfassung: Für den HFKW-236fa werden dem UBA von der Amtlichen Zulassungsstelle in Freiberg aufgrund einer Vereinbarung alle erforderlichen Daten für die ZSE-Eingabe übermittelt. Für HFKW-227ea werden jährlich ausführliche Daten zu Verbrauch und Emissionen aus der Industrie an das UBA gemeldet, und zwar von der Firma Kidde-Deugra, die 95% der inländischen Menge absetzt. Für die Eingabe ins ZSE werden die restlichen 5% ergänzt.

Künftige Erfassung: Das bisherige präzise und bewährte Meldesystem sollte beibehalten werden. Von der Firma Kidde Deugra liegt die Bereitschaft vor, die Datenlieferung an das UBA schriftlich zu fixieren. Eine Aufnahme in den Fragebogen 10 nach UStatG halten wir für Feuerlöschmittel nicht für erforderlich.

4. Aerosole und Medizinische Dosiersprays (2.F.4)

Diese Unterquellgruppe von 2.F machte 2003 etwa 6% von deren Emissionen aus. Die geforderte Datenpräzision ist niedriger als Tier 2, der aber grundsätzlich beibehalten werden sollte - für MDI und Allg. Aerosole Tier 2a, für Novelties Tier 2b.

4.1. Asthmasprays (MDI)

Anwendung: In Dosieraerosolen wird HFKW-134a und in einigen Formulierungen auch HFKW-227ea als Treibmittel eingesetzt. Neben geringen Emissionen bei inländischer Abfüllung sind die Emissionen aus der offenen Anwendung (EF =100%) auf dem Inlandsmarkt entscheidend, die vollständig dem Kalenderjahr der MDI-Verkäufe zugerechnet werden (länderspezifischer Ansatz).

Bisherige Erhebung: Inländische Absatzmengen nach Präparaten, Dosengrößen, HFKW-Typen werden über eine Expertenbefragung der führenden Pharmaunternehmen erhoben. Inländische Abfüllung sowie die Befüllungsverluste werden vom inländischen Hersteller abgefragt.

Künftige Erhebung: Wenn die inländischen Hersteller weiterhin bereit sind, ihre Abfüllmengen und dabei auftretende Emissionen zu melden, sollte dies beibehalten werden. Das neue UStatG (siehe Vorschlag für Fragebogen 10) kann in Ergänzung oder alternativ dazu genutzt werden (Geheimhaltung!).

Für Emissionen aus inl. Anwendung stehen zwei Möglichkeiten zur Verfügung.

Das auf die Pharmaindustrie spezialisierte Marktforschungsunternehmen IMS Health bietet an, entsprechende Daten an das UBA zu liefern. Hierbei fielen für eine reine Mengenanalyse nach Wirkstärke und Angabe der Packungsgröße EUR 1000 zzgl. MwSt an, für eine weitere Aufschlüsselung nach Produkten, die erst die Berechnung der Aktivitätsdaten "HFKW-Mengen" erlaubt, EUR 2500 zzgl. MwSt.

Alternativ wird hier vorgeschlagen, die Marktdaten weiterhin über eine Expertenbefragung bei führenden Pharmaunternehmen durchzuführen.

4.2. Allgemeine Aerosole

Anwendung: Als allgemeine Aerosole werden Sprays bezeichnet, die keine Dosieraerosole oder Novelty-Sprays sind: Druckluftsprays, Kältesprays, Abflussreiniger-Sprays, Schmiermittelsprays, Insektizide und Abwehrsprays. Treibmittel-Emissionen entstehen bei der Befüllung und bei der Anwendung. Die Anwendung ist offen, weil das Gas beim Gebrauch der Sprays vollständig emittiert.

Bisherige Erfassung: Experten der inländischen Abfüllbetriebe, die alle der Industriegemeinschaft Aerosole (IGA) im VCI angehören, geben jährliche Schätzungen ab, und zwar sowohl zur inländischen HFKW-Abfüllmenge als auch zum inländischen Markt (Inlandsabfüllung plus Import minus Export). Außerdem machen Sie Angaben zu den inländischen Abfüllverlusten. Was die Anwendungsemissionen der auf den Markt gelangten Dosen betrifft, so wird nach IPCC-GPG (2000) angenommen, dass die eine Hälfte im gleichen, die andere im folgenden Kalenderjahr benutzt wird und somit emittiert.

Künftige Erfassung: Die Industriegemeinschaft Aerosole (IGA) hat sich zu schriftlicher Vereinbarung bereit erklärt, jährlich die oben genannten Abfüll- und Marktdaten von seinen Mitgliedsbetrieben schätzen zu lassen und direkt an das Umweltbundesamt zu liefern.

Das neue UStatG kann über die verwendete Menge zur Befüllung (siehe Vorschlag für Fragebogen 10) zum Abgleich oder als Primärquelle herangezogen werden.

4.3. Novelties

Anwendung: Bei Novelties handelt es sich um Aerosole für Dekorationsfarben bzw. um reine "Spaß-Produkte" wie Luftschlangensprays u. dgl. Als schwer entzündliches Treibmittel kommt HFKW-134a zur Anwendung. Emissionen fallen in Deutschland nur beim Gebrauch an, da es sich durchweg um Importware handelt.

Bisherige Erfassung: Die im Inland insgesamt abgesetzte HFKW-Menge stammt aus einer Erhebung des Europäischen Aerosolverbands (FEA) für die EU-15 (2002). Der deutsche Anteil daran wurde von Öko-Recherche zusammen mit dem deutschen Aerosolverband IGA abgeschätzt und zusätzlich von einem größeren deutschen Importeur auf Plausibilität geprüft. Nach IPCC-GPG (2000) wird angenommen, dass die eine Hälfte im gleichen, die andere im folgenden Kalenderjahr benutzt wird und somit spätestens ein Jahr nach Import völlig emittiert.

Künftige Erfassung: Nach der bevorstehenden EU-F-Gase-Verordnung (Art. 8) dürfen HFKW in Novelty-Aerosolen zwei Jahre nach Inkrafttreten nicht mehr in Verkehr gebracht werden. Das ist voraussichtlich ab 2008. Bis dahin sollten die Daten wie bisher mit Hilfe der IGA, die dazu ihre Bereitschaft erklärt hat, grob abgeschätzt werden. Ev. neue FEA-Daten würden auf diese Weise berücksichtigt. Da es sich zu 100% um Importware handelt, kann das UStatG keinen Beitrag zur Erfassung leisten.

5. Lösemittel (2.F.5)

Es handelt sich um die bei weitem kleinste 2.F-Unterquellgruppe. Bei deutlich unter 3 t pro Jahr oder bei unter 0,02% Emissionsbeitrag zur Hauptquellgruppe reichen für das Emissionsinventar grobe Schätzwerte. Der bisherige Tier 2b-Ansatz sollte weiter praktiziert werden.

Anwendung: Als Nachfolger für HFCKW-141b zur Feinreinigung empfindlicher Oberflächen kommen die flüssigen HFKW-43-10mee und HFKW-365mfc in Frage. Letzterer wurde bis 2005 in Deutschland nur in wenigen Kilogramm eingesetzt. Auch das Marktpotenzial des im Ausland produzierten HFKW-43-10mee ist in Deutschland aufgrund gesetzlicher Begrenzungen (nur als Ausnahme zulässig) gering.

Bisherige Erfassung: Abfrage der HFKW 43-10mee Verbrauchsmengen beim einzigen Importeur und Anbieter in Deutschland unter Vorbehalt der Vertraulichkeit. Die Emissionen werden nach IPCC GPG (2000) identisch mit der Anwendung betrachtet, verteilt über zwei Jahre seit Verkauf mit je 50% (default) Emissionsfaktor.

Künftige Erfassung: Der einzige Vertreiber von HFKW-43-10mee in Deutschland hat sich bereit erklärt, direkt schriftlich an das UBA zu berichten. Um ihn zu entlasten, sollten die Berichtsintervalle auf drei Jahre ausgedehnt und die Jahre dazwischen geschätzt werden, solange größere Veränderungen auf dem Markt nicht stattfinden. Solange die Mengen so unbedeutend sind, brauchen in den Fragebogen 10 nach neuem UStatG die Lösemittel nicht aufgenommen zu werden.

6. Halbleiterherstellung (2.F.6)

Emissionen aus der Halbleiterindustrie belaufen sich auf 3,2% der Emissionen der Hauptquellgruppe 2.F. Daher sind die Anforderungen an die Präzision der Berichterstattung nicht sehr hoch. Dennoch wird bisher nach Tier 2c gemäß IPCC GPG (2000) berichtet. Es wird vorgeschlagen, dieses Niveau beizubehalten.

Anwendung: In der Halbleiterindustrie werden gegenwärtig FKW (CF₄, C₂F₆, C₃F₈, c-C₄F₈), HFKW (CHF₃), Stickstoff-Trifluorid (NF₃) und SF₆ zum Strukturätzen dünner Schichten und zum Reinigen der Reaktionskammern nach dem sog. CVD-Prozess eingesetzt. (NF₃ fällte noch nicht unter die Berichtspflicht nach UNFCCC).

Bisherige Erfassung: Die F-Gas-Emissionen der Halbleiterindustrie können nicht direkt anhand der eingesetzten Mengen ermittelt werden, die ev. vom Spezialgashandel in Erfahrung zu bringen wären oder über das UStatG berichtspflichtig gemacht werden könnten. Zwischen Verbrauch und Emission

entstehen große Differenzen erstens aus der partiellen chemischen Umsetzung jener Gase im Plasmareaktor und zweitens durch nachgeschaltete Abgasreinigung. Die Ausrüstung der Betriebe mit Abgasanlagen ist sehr unterschiedlich, ebenso deren Wirkungsgrad. Sinnvollerweise können die Emissionen daher nur auf der Ebene einzelner Betriebe ausreichend realitätsnah ermittelt werden.

Emissionsermittlung durch laufende Messungen gilt generell als nicht durchführbar. Die einzelnen Hersteller werden zu ihren Produktionskapazitäten, eingesetzten F-Gas-Typen und -mengen und Abgasbehandlungstechniken befragt. Mittels einer standardisierten Berechnungsformel werden daraus die Emissionen für jeden F-Gas-Typ pro Produktionsstätte ermittelt (Tier 2) und zu Gesamtgrößen aggregiert. Bis zum Berichtsjahr 2000 wurde dies von der EECA-ESIA (European Electronic Component Manufacturers Association – European Semiconductor Industry Association) durchgeführt. Seit 2001 werden aufgrund einer freiwilligen Zusage der deutschen Halbleiterindustrie die Daten vom ZVEI, Fachverband Bauelemente der Elektronik, erhoben, ausgewertet und an das Umweltbundesamt gemeldet. Dies sieht auch die neue Freiwillige Selbstverpflichtung zunächst bis 2010 vor, die Mitte 2005 in Kraft getreten ist.

Künftige Erfassung: An der direkten Emissionsmeldung des deutschen Herstellerverbands an das Umweltbundesamt soll festgehalten werden. Die Basisdaten (F-Gas-Verbrauch, Ausstattung mit Anlagen zur Abgasbehandlung) für die Berechnung sind zwar ebenso wenig wie die Emissionsdaten öffentlich, werden dem Umweltbundesamt auch nicht mitgeteilt; sie können aber zur Überprüfung eingesehen werden. Da nur die Emissionen, nicht der zu Grunde liegende Verbrauch gemeldet wird, ist Außenstehenden keine Beurteilung der Anstrengungen der Halbleiterindustrie zur Emissionsrückhaltung möglich.

Nach UStatG ist zwar die Erhebung des Verbrauchs möglich, wird hier aber nicht empfohlen, da der Verbrauch erstens für das UBA einsehbar ist und da zweitens aus ihm ohnehin keine Schlüsse auf die Emissionen möglich sind.

Nachtrag zu CF₄ in der Leiterplattenfertigung

In der Leiterplattenfertigung wird eine kleine Menge CF₄ als Plasmaätzgas eingesetzt, um Bohrlöcher in mehrschichtigen Leiterplatten zu reinigen. Der Verbrauch stagniert seit vielen Jahren bei 2-2,5 t/a (metrisch). Als Emissionsfaktor gilt 85% des CF₄-Verbrauchs. Die Emissionen (1,3 Tsd. t CO₂-Äquiv.) werden zum CF₄ aus der Halbleiterindustrie hinzuaddiert.

Bisher wurde diese Menge regelmäßig von sowohl Branchenexperten als auch von Gaslieferanten geschätzt. Aufgrund der geringen Bedeutung für die Hauptquellgruppen-Emissionen (0,01%) sollten künftig Schätzungen des Gaselieferanten genügen. Vorgeschlagen wird, die Verbrauchs- und Emissionsmengen der vergangenen Jahre (2000-2005) auch für die nächsten Jahre fortzuschreiben. Mindestens alle drei Jahre sollten die Branchenexperten (s. UBATexte 14/05, 265) nach möglichen Änderungen in dieser Anwendung befragt werden.

7. Betriebsmittel zur Übertragung und Verteilung von Elektrizität (2.F.7)

Diese Untergruppe trägt gegenwärtig knapp 6% zu den Emissionen der Hauptquellgruppe 2.F. bei. Obwohl daher streng genommen nicht sehr hohe Präzisionsanforderungen an die Datenerhebung gestellt werden, handelt es sich um den Bereich mit der möglicherweise höchsten Datengenauigkeit in der Hauptquellgruppe überhaupt (Tier 3b mit Elementen von Tier 2a, nach IPCC-GPG 2000). Dieses Niveau kann und sollte auch künftig beibehalten werden.

Anwendung: SF₆ wird als Isoliergas in Betriebsmitteln zur Übertragung und Verteilung elektrischen Stroms in der Hoch- und Mittelspannung verwendet. Emissionen entstehen bei der Herstellung und Inbetriebnahme der Anlagen, aus dem Bestand (inkl. Wartung) und bei der Außerbetriebnahme.

Bisherige Erfassung: Seit 1997 ermittelt der Verband ZVEI im Rahmen einer Selbstverpflichtung Daten zum SF₆-Verbrauch sowie zu SF₆-Emissionen in der Herstellung, und zwar für den größten Teil der Emissionen nach dem Massenbilanzverfahren. Der ZVEI modelliert auch im Bereich der Mittelspannung den SF₆-Bestand in Betriebsmitteln (über den Saldo aus jährlichen Zu- und Abgängen) und errechnet die entsprechenden Emissionen über einen konstanten EF. In der Hochspannung werden sowohl SF₆-Bestand als auch SF₆-Emissionen bei den Netzbetreibern jährlich durch ihren Verband (VDN) erhoben. Im Zuge von Außerbetriebnahmen kommt es zu Entsorgungsemissionen, die ebenfalls über konstante EF errechnet werden. ZVEI und VDN übergeben die Daten jährlich dem Umweltbundesamt und dessen Beauftragten (Öko-Recherche).

Künftige Erfassung: Jährliche Berichterstattung an das UBA im Rahmen der im Juni 2005 erneuerten und erweiterten Selbstverpflichtung durch ZVEI, VDN und VIK (Verband Industrielle Kraftwirtschaft = Industrielle Stromerzeuger) sowie Solvay. Die neue SV umfasst im Gegensatz zur alten auch formell nicht nur Schaltanlagen und geräte, sondern auch Bauelemente wie Durchführungen und Wandler.

Das UStatG kann über die Befragung des Gasehandels zur Erfassung von Verbrauchsmengen zur Erstbefüllung (siehe Vorschlag für Fragebogen 10-51, Elektroindustrie, Apparatebau - Isoliergas) sowie zur Nachfüllung (Fragebogen 10-51, Energieversorger - Isoliergas) partiell als Kontrollinstrument dienen.

8. Sonstige SF₆-Anwendungen (2.F.8)

Diese Unterquellgruppe ist nicht nur sehr heterogen zusammengesetzt, sondern auch künftig starken Änderungen unterworfen. Einige ihrer Teilquellgruppen unterliegen Verboten durch die EU-F-Gase-Verordnung (Neuverbrauch für Autoreifen, Sportschuhsohlen und Schallschutzscheiben). Eine Anwendung, SF₆ für Starkstromkondensatoren, wird eingestellt. Stagnation ist bei Teilchenbeschleunigern und der Spurengasanwendung zu erwarten, ebenso bei Flugzeugradar. Dennoch ist die Untergruppe als ganze nicht nur gegenwärtig, sondern auch künftig sehr treibhauswirksam. Von den Emissionen der Hauptquellgruppe 2.F (10,9 Mio. t CO₂-Äquivalente) gingen im Jahre 2003 rund 18% auf ihr Konto, die damit nach "Kälte-und Klimaanlagen" (54%) zweitgrößte Untergruppe war.

Für die Datenpräzision hat dies wenig Folgen. IPCC-GPG (2000) sieht innerhalb dieser Restgruppe immer nur eine einzige Berechnungsstufe (Tier) vor, die – zumindest in Deutschland - unschwer einzuhalten ist. Nach den Daten von 2003 trägt allein die Teilquellgruppe "Schallschutzscheiben" fast 60% zu den Emissionen der Unterquellgruppe bei, und dieser Anteil wird, trotz EU-Verordnung, mittelfristig noch steigen. Denn selbst bei Einstellung des Neuverbrauchs entsteht die Masse der Emissionen erst bei der Entsorgung nach 25 Jahren Nutzungsdauer. Bis 2020 werden Entsorgungsemissionen aus Schallschutzscheiben zu einer Verdreifachung der absoluten Emissionen aus dieser Teilquellgruppe führen und zu einer Erhöhung des Emissionsanteils an der ganzen Untergruppe auf über 90%. Schallschutzscheiben-Emissionen haben daher innerhalb der Untergruppe Priorität.

8.1. Schallschutzscheiben

Anwendung: SF₆ wird zur Schalldämmung in den Scheibenzwischenraum von Isolierglasscheiben eingefüllt. Emissionen fallen bei der Herstellung, aus dem Bestand sowie bei der Entsorgung an. Durch die EU-F-Gas-Verordnung fallen künftig (ab 2006 und 2007) Neuverbrauch und damit verbundene Herstellungsemissionen weg, während die anderen beiden Kategorien noch Jahrzehnte bestehen werden.

Bisherige Erfassung: Jährlich wird vom Gasehandel der Neuverbrauch zur Befüllung abgefragt. Dieser Wert wird, vermindert um 33% Herstellungs-Emissionen, in das ZSE eingegeben. Dort ist die Zeitreihe des seit 1975 kumulierten Bestands hinterlegt, so dass automatisch neuer Bestand und neue Bestandsemissionen (EF = 1%) errechnet werden. Zugleich werden die um 25 Jahre (Lebensdauer) zurückliegenden Neuverbräuche (vermindert um damalige Herstellungs-Emissionen und mittlerweile erfolgte Bestandsemissionen) in aktuelle Entsorgungs-Emissionen umgerechnet. Der EF ist hier 100%, da keine Rückgewinnung erfolgt.

Künftige Erfassung: Da, sobald die ZSE-Datenbank erstellt ist, jährlich nur noch der Neuverbrauch erhoben und eingegeben werden muss, ändert sich zunächst nicht viel. Allerdings kann nun die Erhebung des Verbrauchs nach UstatG (vorgeschlagener Fragebogen 10-51, Fensterhersteller, Ausbaugewerbe – Isoliergas) im Rahmen der amtlichen Befragung des Gasehandels erfolgen. Spätestens nach 2010 kann auch diese unterbleiben bzw. sie braucht nur noch zur Kontrolle der Verbotswirkung eingesetzt zu werden. Die nach einem wirksamen Verbot des Neuverbrauchs noch weiter bestehenden Bestands- und Entsorgungsemissionen werden automatisch durch das ZSE generiert.

8.2. Autoreifen

Anwendung: Aufgrund der Größe der Moleküle bietet SF₆ in Autoreifen größere Druckstabilität als Luft, solange kein mechanischer Schaden vorliegt. Emissionen entstehen bei der Entsorgung im Rahmen des Reifenwechsels, im Mittel drei Jahre nach Befüllung. Das Gas entweicht dabei ganz (EF = 100%) in die Umgebung.

Bisherige Erfassung: Die jährlich neu verbrauchte Gasmenge wird durch Befragung der Gase-Lieferanten (Verkäufe an Reifenhandel usw.) ermittelt. Die Entsorgungs-Emissionen des Berichtsjahres sind gleich dem Neuverbrauch drei Jahre zuvor.

Künftige Erfassung: Erhebung der Befüllmengen nach nov. UstatG (Gasehändler an Reifenhandel, gleicher Fragebogen wie oben). Die EU-F-Gase-Verordnung verbietet die Befüllung ab 2006 (oder 2007). Durch die Zeit von drei Jahren zwischen Befüllung und Emission fallen Entsorgungsemissionen noch bis 2009 (oder 2010) an, die das ZSE automatisch errechnet. Es wird angeraten, das Monitoring noch bis 2010 weiter zu führen, um die Wirksamkeit des Verbots zu überprüfen.

8.3. Flugzeugradar

Aus Gründen der Geheimhaltung werden die Emissionen zusammen mit denen einer anderen Einzelquelle berichtet.

Anwendung: In den Radarsystemen der AWACS-Flugzeuge der NATO Airborne Early Warning Force (NAEWF) wird SF_6 als Isolationsmedium zur Vermeidung elektrischer Überschläge verwendet. Zum Druckausgleich wird bei steigender Flughöhe SF_6 in die Atmosphäre abgelassen und bei erneutem Absinken aus einem an Bord befindlichen SF_6 —Behälter nachgefüllt.

Bisherige Erfassung: Erhebung des Verbrauchs durch Befragung des Gasehandels und Abgleich der Daten mit den Anwendern. Die Emissionsberechnung (EF = 100%) erfolgt auf Basis dieser Angaben nach einem Prozentsatz (vertraulich) für die Deutschland zuzurechnenden Emissionen. Der Prozentsatz ist im ZSE hinterlegt.

Künftige Erfassung: Erhebung des Verbrauchs nach UStatG durch Befragung des Gasehandels (Vorschlag für Fragebogen 10-51, Kategorie Militärische Streitkräfte – Militärische Zwecke). Auf Basis der Verbrauchseingabe erfolgt die Emissions-Berechnung weiterhin durch das ZSE. Die neuen IPCC-Guidelines sehen erstmals Richtlinien für diese Anwendung vor. Sie decken sich mit der deutschen Praxis.

8.4. Optische Glasfasern

Diese Anwendung von SF₆ wurde erst im Jahr 2004 der Berichterstattung bekannt. Es gibt keine Richtlinien für die Emissionsberechnung. Hilfsweise wird der in der Halbleiterindustrie übliche Standard-EF = 85% auf den Verbrauch angelegt.

Bisherige Erfassung: Der jährliche Verbrauch wurde vom Gasehandel abgefragt.

Künftige Erfassung: Der jährliche Verbrauch wird weiterhin vom Gasehandel abgefragt, mit Hilfe des Fragebogens 10-51 (Sonstiges) nach UStatG.

8.5. Teilchenbeschleuniger

Anwendung: SF₆ dient als Isolatorgas in Teilchenbeschleunigern. Emissionen entstehen bei der Fertigung, aus dem Bestand sowie bei der Entsorgung. Gegenwärtig werden Richtlinien für die Emissionsabschätzung im Rahmen der neuen IPCC-Guidelines erstellt, die sich an dem deutschen Verfahren orientieren.

Bisherige Erfassung: In einer 2004 von Öko-Recherche durchgeführten Sonderbefragung zur Aktualisierung der 1999er Daten wurden Anwender und Hersteller nach Füllmengen, Gasverbrauch, Neuzugängen und Stilllegungen befragt. Hierbei wurden fünf Anwendungsbereiche für Teilchenbeschleuniger unterschieden. Emissionsraten für die Erstbefüllung sowie die Entsorgung sind an typische Werte aus dem Bereich der Betriebsmittel zur Energieübertragung angelehnt, Die weitaus wichtigeren Bestandsemissionen wurden über nachgefüllte SF₆-Mengen ermittelt.

Künftige Erfassung: Eine verlässliche Verbrauchserfassung für Erst- und Nachfüllungen ist über das UStatG nicht möglich, allein schon, weil der Gasehandel für diese Verwendung keine eindeutige Zuordnung innerhalb der relevanten Kundengruppe Forschungseinrichtungen bzw. Elektroindustrie, Apparatebau (siehe Vorschlag für Fragebogen 10-51) vornehmen kann. Zudem ist im Falle von SF₆ nach UStatG keine Unterscheidung in Neuverbrauch und Nachfüllung vorgesehen, was Bedingung der Emissionsermittlung wäre. Vorgeschlagen wird eine Fortschreibung der Verbrauchs- und Emissionsmengen auf Grund der Öko-Recherche-Sondererhebung von 2004 (UBA Text 14/05, S. 254), die Bestandteil des ZSE geworden ist. Zudem sollte eine Überprüfung der Anwendung durch entsprechende Erhebungen alle fünf Jahre stattfinden. Das Verfahren wird für ausreichend gehalten, zumal die Anwendung vom Emissionsumfang her (1,1% von 2.F; 6,0% von Untergruppe 2.F.8) zu den kleineren zählt, für die Schätzungen genügen.

8.6. Starkstromkondensatoren

Anwendung: SF_6 dient der Gas-Imprägnierung von Komponenten von Starkstrom-Kondensatoren. Hierbei handelt es sich um einen offenen Prozess. Aller Verbrauch emittiert bei Fertigung (EF = 100%).

Bisherige Erfassung: Die jährlichen Verbrauchsdaten werden seit 2003 vom ZVEI an Öko-Recherche übermittelt. Eine Rückrechnung bis 1995 hat stattgefunden.

Künftige Erfassung: Der ZVEI hat seine Bereitschaft geäußert, auch in Zukunft die Datenerhebung vorzunehmen und die Daten direkt an das Umweltbundesamt zu melden. In dieser Anwendung wird aller Voraussicht nach nur noch bis 2006 standardmäßig SF₆ eingesetzt. Da Emissionen nur bei der Produktion entstehen und kein Bestand aufgebaut wird, fallen ab 2007 nur noch Emissionen im Rahmen der Ersatzteileproduktion an. Eine Einbeziehung des UStatG zur Datenerhebung wird aufgrund der Meldung durch den ZVEI nicht für nötig gehalten. Zudem könnte der Gasehandel nur schwer eine Trennung dieser speziellen Anwendung von Anlagen zur Elektrizitätsübertragung und -verteilung innerhalb der Gesamtmenge der Isoliergasanwendungen (vorgeschlagener Fragebogen 10-51) vornehmen.

8.7. Sportschuhsohlen

Aus Gründen der kommerziellen Vertraulichkeit werden die Emissionen aus Sportschuhsohlen zusammen mit einer anderen Anwendung berichtet.

Anwendung: SF₆ in Sportschuhsohlen soll zur Schockdämpfung beim Auftreten beitragen. Sportschuhe mit SF₆ werden ausschließlich importiert. Das eingefüllte Gas

emittiert vollständig bei Entsorgung (EF = 100%) im Inland. Als Zeitraum zwischen Verkauf und Entsorgung in Deutschland werden drei Jahre angenommen.

Bisherige Erfassung: Der jährliche SF₆-Zugang nach Deutschland in Schuhsohlen stammt aus Angaben des einzigen Herstellers NIKE zum EU-weiten Verbrauch. Davon werden 25% Deutschland zugerechnet. Da die Zeitreihe im ZSE enthalten ist, werden die Zugänge automatisch nach drei Jahren als Emissionen generiert.

Künftige Erfassung: Die EU-F-Gase-Verordnung sieht ein Absatzverbot von SF₆-befüllten Sportschuhsohlen ab 1.7.2006 vor. Seit 2003 setzt der Sportartikelhersteller aufgrund einer SV allerdings SF₆ nicht mehr ein, sondern in einer gewissen Restmenge von Schuhsohlen stattdessen den FKW-218. Die noch bis 2006 (wegen der Zeitverzögerung zwischen Verkauf und Entsorgung) anfallenden SF₆-Emissionen müssen nicht mehr erhoben, sondern können dem ZSE entnommen werden.

Was die bevorstehenden vorübergehenden FKW-Emissionen betrifft, wird folgendes vorgeschlagen: Zwischen 2003 und 2006 füllt NIKE in eine bestimmte Menge der Sportschuhsohlen statt SF₆ den FKW-218 ein, um danach ganz auf treibhauswirksame Gase zu verzichten. Emissionsrelevant werden diese Mengen in Deutschland in den Jahren 2007 bis 2009. Sie werden allerdings sowohl in der Hauptquellgruppe 2.F als auch der Untergruppe 2.F.8 vernachlässigbar sein. Ihr Umfang braucht daher lediglich grob geschätzt zu werden.

8.8. Spurengas

Anwendung: SF₆ eignet sich aufgrund seiner Stabilität und Nachweisbarkeit auch in kleinsten Konzentrationen als Spurengas zur Untersuchen bodennaher und atmosphärischer Luftströmungen und Gasausbreitungen. Es handelt sich um eine offene Anwendung, bei der die Verbrauchsmenge zu 100% emittiert.

Bisherige Erfassung: Die Verbrauchsangaben stammen von Experten der sechs wichtigsten deutschen Forschungsinstitute, die mit SF₆ umgehen. Sie werden im Abstand von drei bis vier Jahren direkt befragt, da die Menge seit 1996 konstant ist.

Künftige Erfassung: Diese Anwendung fällt unter das Kriterium der Geringfügigkeit. Eine Erfassung der Verbrauchsmengen über UStatG ist nicht möglich, da der Gasehandel für diese Verwendung keine eindeutige Zuordnung vornehmen kann (Vermischung mit Teilchenbeschleunigern). Es wird daher vorgeschlagen, die im ZSE enthaltene Zeitreihe fortzuschreiben. Alle fünf Jahre genügt eine Kontrolle in Form von Schätzungen durch Branchenexperten.

Teil II

Emissionsdaten 1999 bis 2003 und Emissionsprognosen für 2010 und 2020

Aufgabenstellung: Aktuelle Emissionen und Emissionsprognosen

Teil II dieses Forschungsberichts ist im Großen und Ganzen unabhängig von Teil I. Es geht hier nicht um neue Vorschläge für die Emissionsermittlung (Monitoring-System), das erst in Zukunft genutzt werden soll. Teil II stützt sich noch ganz auf die bisherigen Methoden der Datengewinnung.

Im ersten Kapitel werden die historischen Emissionsdaten der Jahre 1999 bis 2003 dargestellt. Dies erfolgt in Abschnitt I in einer Kurzfassung, weil diese Daten erstens bereits in das ZSE und in internationale Berichterstattung der Bundesrepublik Deutschland eingegangen sind, und zweitens, weil ihr Zustandekommen in einer zeitgleichen Studie für das Umweltbundesamt schon ausführlich dokumentiert ist.³ Lediglich die für 2003 neu genutzten Datenquellen werden detailliert nachgewiesen - in Abschnitt II.

Das zweite Kapitel stellt Emissionsprognosen für die Jahre 2010 und 2020 vor, deren Aufstellung gleichfalls zu den internationalen Berichtspflichten der Bundesrepublik Deutschland gehört. Die Prognosen haben ihre empirische Basis ebenfalls in den historischen Emissionen der Jahre 1995 bis 2003, die nach dem alten Monitoring-System erhoben wurden. Sie unterschieden sich in den beiden Referenzjahren 2010 und 2020 allerdings stark nach den Annahmen, die in vier verschiedenen zugrunde liegenden Szenarien zusammengefasst sind. Die gängige Unterscheidung in zwei Szenarien, in ein "Business-as-usual"- und ein "Minderungs"-Szenario, ist somit erweitert worden.

Am Ende von Teil II befindet sich ein umfangreicher Tabellenteil, der sowohl die historischen F-Gas-Emissionen für 1995, 1998-2003 detailliert darstellt als auch die Emissionsprognosen für 2010 und 2020 nach den vier Szenarien tief untergliedert.

Methodische Anmerkung zur Einteilung nach Stoffgruppen

Anders als in Teil I dieses Forschungsberichts werden im Teil II die F-Gas-Emissionen nicht nach den drei Quellgruppen 2.C, 2.E, 2.F (Metallproduktion, Produktion halogenierter Kohlenwasserstoffe, Verbrauch von F-Gasen) und ihren Untergruppen zusammengestellt, sondern nach den drei Stoffgruppen HFKW, FKW und SF₆. Das ist nicht nur die in der Bundesrepublik Deutschland seit 1996 herkömmliche Methode, die unseres Erachtens für die Emissionsübersichten den Vorzug größerer Klarheit bietet. Sondern diese Gliederung wird auch in den CRF-Berichtstabellen angewandt: als ausschließliche in Table10s4 und in Kombination mit der Quellgruppen-Aufteilung in Table2(II)s1 und Table 2(II)s2.

³ Die Studie heißt "Emissionen, Aktivitätsraten und Emissionsfaktoren von fluorierten Treibhausgasen (F-Gasen) in Deutschland für die Jahre 1995-2002. Anpassung an die Anforderungen der internationalen Berichterstattung und Implementierung der Daten in das zentrale System Emissionen (ZSE)". Sie erschien im Juni 2005 als UBA-Text 14/05 (http://www.umweltbundesamt.org/fpdf-l/2902.pdf) und wird in diesem Bericht darum kurz "UBA-Text 14/05" genannt.

Erstes Kapitel. Emissionsdaten bis zum Jahr 2003

Eine Aufgabenstellung des von Oktober 2002 bis September 2005 laufenden Forschungsvorhabens war es, die jährlichen Emissionen fluorierter Gase für 1999 bis 2003 zu erheben. Im März 2003 wurden die ermittelten Werte 1999 bis 2001 dem Umweltbundesamt übergeben (1. Zwischenbericht). Ein weiterer Zwischenbericht vom August 2003 enthielt die Werte für 2002. Schließlich lieferte der 4. Zwischenbericht vom Februar 2005 alle geforderten Werte von 1999 bis einschließlich 2003.

Dieser Bericht enthält die - gründlich überprüften und zum Teil korrigierten - Ergebnisse der vorausgehenden Zwischenberichte und ist somit die aktuellste Fassung.

Bekanntlich müssen zum Ende jeden Jahres für das Vorjahr die Emissionsdaten für klimarelevante Stoffe in vorgeschriebener Sektoraufteilung an die EU geliefert werden. Zum 15. April des Folgejahres sind diese dann auch an das UNFCCC-Sekretariat zu übermitteln. Dabei sind für beide Lieferungen die CRF-Berichtstabellen entsprechend der UNFCCC reporting guidelines (FCCC/CP/1999/7) maßgeblich.

In Abschnitt I dieses Kapitels des Schlussberichts werden die realen F-Gas-Emissionsdaten für 1995, 1998, 2000, 2002 und 2003 in einer Kurzfassung – quasi als Zahlenwerk - erneut gezeigt und knapp kommentiert. Alle präsentierten Zahlenwerte sind bereits in das Zentrale System Emissionen (ZSE) eingegeben. Alle sind mittlerweile (Juli 2005) auch für die internationalen Berichtspflichten verwendet worden. Zur Klarstellung: Das Emissionsjahr 2004 ist nicht mehr Teil dieses Berichts, sondern wird in einer separaten Studie erhoben und berichtet.

Eine ausführliche Dokumentation nachfolgender Emissionsdaten kann auch deshalb unterbleiben, weil die Art und Weise der Datenermittlung in insgesamt vierzig F-Gas-Sektoren in der auf der vorhergehenden Seite erwähnten zeitgleichen Studie für das Umweltbundesamt für die Jahre 1995 bis 2002 detailliert beschrieben worden ist (UBA-Text 14/05). Sie kann für den Nachvollzug der Ermittlung der Emissionen der Jahre 1999 bis 2002 vom interessierten Leser herangezogen werden.

Während die Anlage der Datenermittlung für die Emissionen des Jahres 2003 im Vergleich zur jener bis 2002 reichenden Dokumentation gleich geblieben ist und die Emissionsfaktoren weitgehend unverändert sind⁴, mussten für das Berichtsjahr 2003 die meisten Aktivitätsdaten aktualisiert werden.

Abschnitt II dieses ersten Kapitels liefert den ausstehenden Nachweis für die im Jahre 2004 durchgeführte Emissionserhebung des Berichtsjahres 2003 nach. Aus praktischen Gründen sind dort auch alle neu genutzten Datenquellen des Erhebungsjahrs 2003 für das Berichtsjahr 2002 erneut mitdokumentiert.

⁴ Eine sehr wichtige Ausnahme ist der geänderte Entsorgungs-Emissionsfaktor für außer Betrieb gehende Anlagen in Kälte- und Klimatechnik. Er wurde von 25% auf 30% erhöht und entspricht damit dem Standard-Wert in den IPCC Guidelines von 1999. Die vorher angewandten "länderspezifischen" 25% wurden damit begründet, dass die Rückgewinnung am Lebensende in Deutschland höher als im internationalen Durchschnitt liegt. Das mag so sein oder auch nicht. Der Punkt ist, dass es bisher keine empirische Erhebung der deutschen Praxis der Kältemittel-Rückgewinnung am Lebensende gibt, die eine höhere Rückgewinnung belegt. Methodologisch scheint daher ein nationaler Entsorgungs-Emissionsfaktor unter dem internationalen Niveau vorerst nicht gerechtfertigt.

I. Die Emissionen von 1999 bis 2003 (Kurzfassung)

Die Gesamtemissionen der Gase HFKW, FKW und SF₆ sind von 1995 bis 2003 von 3237 t auf 6837 t gestiegen. Anders als nach der metrischen Tonnage ist die Klimawirkung dieser Emissionen allerdings zurückgegangen, und zwar von 15,64 auf 13,69 Mio. t CO₂-Äquivalente. Dahinter verbergen sich sehr unterschiedliche Tendenzen, die den Blick auf die einzelnen Gasegruppen notwendig machen.

1. HFKW 1995-2003

Die Emissionen fluorierter Gase haben sich seit 1990/1995⁵ in den drei Stoffgruppen unterschiedlich entwickelt. Zunächst zu den HFKW.

Tab. 3 Entwicklung der HFKW-Emissionen [t] 1995-2003									
	1995	1998	2000	2002	2003				
Stationäre Kälte/Klima	73	516	854	1155	1339				
Mobile Kälte/Klima	170	677	1168	1653	1908				
- davon nur Pkw	133	563	988	1405	1616				
PU-Montageschaum	1823	1844	1475	897	894				
PU-Schäume	0	92	94	118	126				
XPS-Schäume	0	0	0	1971	1709				
Dosieraerosole	0	27	84	201	205				
Andere Aerosole/Lösemittel	254	262	269	274	274				
Feuerlöschmittel u. sonstiges	1,1	1,01	2,0	2,5	3,0				
Insgesamt (Verwendung)	2319	3419	3946	6273	6459				
Sonstiges (Produktion, usw.)	360	259	128	132	74				
Insgesamt	2679	3678	4073	6404	6532				

Tab. 4 Entwicklung der HFKW-Emissionen [Mio. t CO ₂ -Äquivalente] 1995-2003									
	1995	1998	2000	2002	2003				
Stationäre Kälte/Klima	0,169	1,170	1,994	2,758	3,205				
Mobile Kälte/Klima	0,234	0,915	1,571	2,218	2,567				
- davon nur Pkw	0,172	0,732	1,284	1,826	2,101				
PU-Montageschaum	1,534	1,553	1,084	0,662	0,587				
PU-Schäume	0	0,120	0,123	0,148	0,158				
XPS-Schäume	0	0	0	0,906	0,698				
Dosieraerosole	0	0,035	0,168	0,326	0,318				
Andere Aerosole/Lösemittel	0,318	0,329	0,336	0,339	0,339				
Feuerlöschmittel u. sonstiges	0,012	0,012	0,019	0,017	0,022				
Insgesamt (Verwendung)	2,267	4,133	5,294	7,374	7,894				
Sonstiges (Produktion, usw.)	4,212	2,833	1,207	1,212	0,533				
Insgesamt	6,479	6,966	6,501	8,586	8,425				

Der Masse nach sind die HFKW-Gesamtemissionen von 1995 bis 2003 von 2679 t auf 6532 t gestiegen. Ihre Klimawirkung (ausgedrückt in CO₂-Äquivalenten) hat

⁵ Im Jahr 1990 gab es noch keine gezielte Herstellung/keinen gezielten Einsatz von HFKW. Dem Jahr 1990 zuzuordnende Emissionen resultierten einzig aus dem HFCKW-22-Herstellungsprozess, wo HFKW-23 als Nebenprodukt entsteht. Die F-Gas-Emissionen sind in diesem Bericht daher erst ab dem Jahr 1995 angegeben. Zu den Emissionen von 1990 siehe Teil III dieses Berichts.

jedoch seit 1995 viel moderater zugenommen - von 6,5 auf 8,4 Mio. t CO₂-Äquivalente. Zwar stiegen die HFKW Emissionen aus bewusster Verwendung seit 1995 sehr stark an, von 2,3 auf 7,9 Mio. t CO₂-Äquivalente; dieser Trend setzt sich weiterhin fort. Er betrifft, wie Tabelle 3 und 4 zeigen, vor allem die Sektoren mit Kältemittel-Anwendung, nämlich stationäre und mobile Kälte- und Klimatechnik. Merklich, wenn auch auf niedrigerem Niveau, haben auch die klimawirksamen Emissionen aus XPS-Schäumung und aus Dosieraerosolen zugenommen.

Stark vermindert wurden dagegen im Bereich der gezielten HFKW-Verwendung seit 2000 die Emissionen durch PU-Montageschaum. Diese Anwendung war unter starke öffentliche Kritik geraten. Weit größer war allerdings zwischen 1995 und 2003 der Rückgang unbeabsichtigter Emissionen aus der Produktion. Vor allem gelang es den Herstellern fluorierter Gase, die Nebenproduktemissionen des sehr starken Treibhausgases HFKW-23 aus der Synthese von HFCKW-22 vom sehr hohen Ausgangsniveau von fast 4 Mio. t CO₂-Äquivalente auf unter 0,5 Mio. t zu senken. Das ist eine Reduktion um fast 90%.

2. FKW 1995-2003

Die Emissionen von FKW nehmen seit 1995 dank der Anstrengungen der Industrie kontinuierlich ab – in der metrischen Tonnage wie in der Klimawirkung. Zunächst die beiden Tabellen 5 und 6 zu den FKW.

Tab. 5 Entwicklung der FKW-Emissionen [t] 1995-2003								
	1995	1998	2000	2002	2003			
Aluminiumproduktion	230	173	53	64	70			
Halbleiterherstellung	23	29	43	33	34			
Leiterplattenfertigung	2	2	2	2	2			
Kältemittel	1,2	7,8	11,6	13,7	14,7			
Insgesamt	256	212	110	112	121			

Tab. 6 Entwicklung der FKW-Emissionen [Mio. t CO ₂ -Äquivalente] 1995-2003								
	1995	1998	2000	2002	2003			
Aluminiumproduktion	1,552	1,165	0,356	0,431	0,475			
Halbleiterherstellung	0,177	0,238	0,333	0,250	0,260			
Leiterplattenfertigung	0,013	0,013	0,013	0,013	0,013			
Kältetechnik	0,008	0,056	0,084	0,101	0,108			
Insgesamt	1,750	1,473	0,786	0,795	0,856			

Sowohl die Hersteller von Primäraluminium als auch die Halbleiterhersteller haben Selbstverpflichtungen abgeschlossen, die nicht nur ein jährliches Monitoring der Emissionen, sondern auch deren Senkung unter das Ausgangsjahr vorsehen. Während die Aluminiumindustrie ihre Emissionen absolut senken konnte, sind bei der Halbleiterherstellung die befürchteten kräftigen Emissionsanstiege ausgeblieben.

Insgesamt waren die FKW-Emissionen 2003 noch halb so hoch wie 1995. Sie sind von 256 auf 121 t gesunken, bzw. von 1,75 auf 0,86 Mio. t CO₂-Äquivalente.

3. SF₆ 1995-2003

SF₆-Emissionen sind im Zeitraum 1995-2003 von 303 auf 184 t gesunken, was in CO₂-Äquivalenten einen Rückgang von 7,2 auf 4,4 Mio. t ausmacht. Das zeigt Tabelle 7 und 8.

Tab. 7 Entwicklung der SF ₆ -Emissionen [t] 1995-2003									
	1995	1998	2000	2002	2003				
El. Energieübertragung	43,4	38,7	30,4	30,7	26,3				
Sonst. El. Anwendungen	5,2	17,0	18,4	13,8	10,9				
Magnesiumguss	7,7	9,2	13,2	16,0	19,1				
Schallschutzscheiben	107,9	56,5	51,7	46,4	48,3				
Autoreifen	110,0	125	50	9	6				
Sohlen/NAEWF/Glasfasern	18,5	22,3	23,3	16,6	15,4				
Spurengas/Alu-Reinigung	1,0	1,0	14,5	35,5	45,5				
Sonstiges	9	11,4	11,4	12,4	12,6				
Insgesamt	303	281	213	180	184				

Tab. 8 Entwicklung der SF ₆ -Emissionen [Mio. t CO ₂ -Äquivalente] 1995-2003								
	1995	1998	2000	2002	2003			
El. Energieübertragung	1,036	0,924	0,727	0,733	0,629			
Sonst. El. Anwendungen	0,125	0,405	0,441	0,329	0,260			
Magnesiumguss	0,185	0,220	0,316	0,383	0,457			
Schallschutzscheiben	2,578	1,350	1,236	1,108	1,155			
Autoreifen	2,629	2,988	1,195	0,215	0,143			
Sohlen/NAEWF/Glasfaser	0,442	0,532	0,557	0,396	0,369			
Spurengas/Alu-Reinigung	0,024	0,024	0,347	0,848	1,087			
Sonstiges	0,216	0,273	0,271	0,295	0,301			
Insgesamt	7,235	6,718	5,090	4,308	4,402			

Der Rückgang geht in erster Linie auf die schon Mitte der 90er Jahre im Ausland auf allgemeines Erstaunen treffende Anwendung in Autoreifen zurück. Hier hat eine erfolgreiche Umweltaufklärung eine Emissionssenkung um über 100 t bewirkt und den Treibhausbeitrag um 2,5 Mio. t CO_2 –Äquivalente gesenkt. Vergleichbares gilt für Schallschutzscheiben, in denen SF_6 beim Neuverbrauch gegenüber 1995 auf ein Zehntel reduziert wurde. Die heutigen und künftigen Emissionen stammen vorwiegend aus der offenen Entsorgung alter Scheiben. Auch bei Anlagen zur Elektrizitätsübertragung sanken die Emissionen um 40%. Hier gibt es auch eine Selbstverpflichtung der Branche.

Es gibt aber auch Gegentendenzen. So werden zur Reinigung von Sekundär-Aluminium seit 1998 wieder große SF_6 –Mengen eingesetzt, obwohl SF_6 aus dieser Anwendung bereits verschwunden war. Hier sind fast 1 Mio. t CO_2 -äquivalente Emissionen neu dazugekommen. Zugenommen hat auch die Verwendung von SF_6 als Schutzgas bei Magnesiumguss. Während die bevorstehende EU-Gesetzgebung den SF_6 -Ausstieg bei Magnesium vorsieht, ist für Aluminium-Guss keine rechtliche Lösung in Sicht.

II. Die Datenquellen für die Emissionen 2002 und 2003

Die Gliederung der Datenquellen erfolgt nach den Stoffgruppen HFKW, SF₆ und FKW. Die Reihenfolge folgt derjenigen in der Studie "Emissionen, Aktivitätsraten und Emissionsfaktoren von fluorierten Treibhausgasen (F-Gasen) in Deutschland für die Jahre 1995-2002. Anpassung an die Anforderungen der internationalen Berichterstattung und Implementierung der Daten in das zentrale System Emissionen (ZSE)". Dort werden vierzig Anwendungsgebiete als "F-Gas-Blätter" beschrieben.

Die Gliederung ist mit derjenigen nach CRF-Quellgruppen kompatibel. Deren Bezeichnungen sind in Klammern hinter den Überschriften der einzelnen Sektoren angegeben.

Kälte- und Klimaanlagen (2.F.1)

Kühlfahrzeuge (zu 2.F.1)

Kraftfahrt-Bundesamt, Statistische Mitteilungen, Reihe 3: Kraftfahrzeuge, Neuzulassungen – Besitzumschreibungen - Löschungen von Kraftfahrzeugen und Kraftfahrzeuganhängern, Jahresband 2002 und 2003, Übersichten 19 und 32. Erscheint erst zum Jahresende des Folgejahres. Vorveröffentlichung im September: VDA (Verband der Automobilindustrie), Tatsachen und Zahlen, Frankfurt am Main.

Harnisch, J., u. a.: Risiken und Nutzen von fluorierten Treibhausgasen in Techniken und Produkten – Bewertung technischer Fallbeispiele unter besonderer Berücksichtigung der stoffintrinsischen Eigenschaften, FKZ 201 64 315, UBA-FB 000673, Climate Change 02/04, im Auftrag des Umweltbundesamtes, Berlin, Juni 2004.

Kühlcontainer (zu 2.F.1)

Yves Wild, Kühlcontainer und CA-Technik, in: Gesamtverband der Deutschen Versicherungswirtschaft (GDV), Berlin 2003: www.containerhandbuch.de/chb/wild/index.html.

Global reefer output soars, Issue: January 2004, www.worldcargonews.com/htm/nf20040115.971192.htm

Wärmepumpen (zu 2.F.1)

Bundesverband WärmePumpe (BWP) e. V., München, Entwicklung des deutschen Wärmepumpen-Marktes, Stand 03/2003, Wärmepumpen-Absatz 2002. http://www.waermepumpe-bwp.de/nonflash/frames/aktu/dokk.htm

Bundesverband WärmePumpe (BWP) e. V., Wärmepumpen erfreuen sich steigender Beliebtheit, 14.11.2004, Wärmepumpen-Absatz 2003. http://www.waermepumpe-bwp.de/content/statistik-h.jpg

Haushaltskühlgeräte (zu 2.F.1)

Liebherr Machines Bulle S.A, Bulle (Schweiz), 0041-26-913-0. Jürgen Melzer, pers. Mitt. an ÖR, 05.03.04. Greenpeace Deutschland, Hamburg, 040-30618-0. Wolfgang Lohbeck (Leiter Atmosphärenschutz), pers. Mitt. lfd.

Zentrale Klimaanlagen (zu 2.F.1)

Solvay Fluor & Derivate GmbH, Hannover, 0511-857-0.

Christoph Meurer (Leiter Anwendungstechnik – Kältemittel): HFC chillers sold to the German market and key figures for the estimation of their lifetime, average capacities in kW and charge in kg/kW. Intern. Aufstellung, 27.03.03.

Öko-Recherche/Solvay Fluor: Fachgespräch über Basisdaten und Verkaufsmengen für HFKW in stationären kälte- und klimatechnischen Anwendungen, Teilnehmer: Winfried Schwarz (ÖR), Christoph Meurer (Solvay) und Felix Flohr (Solvay), Hannover 26.03.03.

IKK 2003, Hannover, 10.10.2003, Fachgespräche mit Herstellern und Importeuren über die Marktentwicklung 2002 und 2003.

Raumklimageräte (zu 2.F.1)

Polenz Klimageräte GmbH, Norderstedt, 040-52140-0.

Jörn Kressner (Vertrieb Investitionsgüter/Technische Leitung), 10.10.03 (IKK-Hannover).

Daikin Airconditioning Germany GmbH, Unterhaching, 089-74427-270.

Achim Zeller (Manager Productmanagement), 16.10.03.

Daikin Europe Brussels Office, 0032-2-529-6106.

Achim Zeller (Senior Executive - New Business Section), 23.09.2004.

De'Longhi S.p.A., Treviso (Italia), 0039-0-422 4131.

Stefania Velo (Air Conditioning Dept.), 21. u. 23.01.04.

Industriekälte und Gewerbekälte (zu 2.F.1)

Öko-Recherche/Solvay Fluor: Fachgespräch über Basisdaten und Verkaufsmengen für HFKW in stationären kälte- und klimatechnischen Anwendungen, Teilnehmer: Winfried Schwarz (ÖR), Christoph Meurer (Solvay) und Felix Flohr (Solvay), Hannover 26.03.03.

DuPont Deutschland GmbH, Bad Homburg, 06172-87-0.

Joachim Gerstel (Verkaufsleiter Kältemittel), Mitt. über den Absatz von HFKW-236fa als Kältemittel, auf der IKK 2003, Hannover 10.10.03.

Hr. Weisshaar, Weisshaar GmbH & Co. KG, Bad Salzuflen, 05222-9273-0. Information über Kältemittel bei Kranklimaanlagen, 14.10.03.

Kältemittel-Hersteller. Befragung zu Verkaufsmengen in der stationären Kälte- und

Klimatechnik, auf der IKK 2003 am 10.10.2003 in Hannover:
Karsten Schwennesen (Ineos Fluor International Ltd., Frankfurt), Joachim Gerstel (Du Pont

Deutschland GmbH, Bad Homburg), Klaus Pesler (ATOFINA Deutschland GmbH, Düsseldorf), Hans-Jürgen Kemler (Westfalen AG, Münster), Christoph Meurer (Solvay Fluor und Derivate GmbH, Hannover).

ILK Dresden/FKW Hannover, Aktuelle TEWI-Betrachtung von Kälteanlagen mit HFKW- und PFKW-Kältemitteln unter Berücksichtigung der unterschiedlichen Rahmenbedingungen für verschiedene Anwendungsgebiete, im Auftrag des Forschungsrats Kältetechnik e.V., FKT 96/03, Frankfurt, November 2003.

André Siegel, Axima Refrigeration GmbH, Lindau, 08382-706-1 pers. Mitt. auf der DKV-Tagung 2003 in Bonn, 21.11.03.

Haaf, Siegfried u. Pauls, Gerlef, Linde AG, Geschäftsbereich Linde Kältetechnik, Köln, 02236-601-0. Fachgespräch im Umweltbundesamt, Berlin, 25.06.03.

Pkw-Klimaanlagen (zu 2.F.1)

Volvo Car Germany GmbH. Ab 2002 Befragung nicht mehr nötig mehr nötig, da alle Modelle mit AC in Serie.

- Toyota Deutschland, Köln, 02234-102-0. Für 2002 + 2003: Michael Nordmann, 01.09.03 + 08.06.04
- Suzuki International Europe GmbH, Bensheim, 06251-5700-0 (Suzuki Auto GmbH, Oberschleißheim, 089-31563-0). Für 2002 + 2003: Michael Rist 10.09.03 + 01.06.04.
- Subaru Deutschland, Friedberg, 06031-606-0. Für 2002 + 2003: Simone Vrba (Fahrzeugdisposition), 05.09.03 + 20.07.04.
- Skoda Deutschland, Weiterstadt, 06150-133-0. Für 2002 +2003: Eric Lehmann (Absatzplanung), 29.08.03 + 01.06.04.
- SEAT Deutschland GmbH, Mörfelden, 06105-208-0. Für 2002 + 2003: Burkhard Kolb (Neuwagen-Disposition), 29.08.03 + 27.05.04.
- Saab Deutschland, Bad Homburg, 06172-900-0. Für 2002 + 2003: Olaf H. Meidt (Presseund Öffentlichkeitsarbeit), 29.08.03 + 08.06.04.
- Deutsche Renault AG, Brühl, 02232-73-0. Für 2002 + 2003: Angela Lehmann (Produktkommunikation), 23.10.03 + 08.06.04.
- Peugeot Deutschland GmbH, Saarbrücken, 0681-879-0. Für 2002 + 2003: Christine Clavier (Neuwagenlogistik), 26.08.03 + 29.06.04.
- Renault Nissan Deutschland AG, Brühl, 02232-57-0. Für 2002 + 2003: Hr. Schweitzer (Neuwagenvertrieb), 01.09.03 + 16.06.04.
- Mitsubishi Motors Deutschland GmbH, Trebur, 06147-207-01. Für 2002+ 2003: Valeska Haaf (Produktmanagement), 02.09.03 + 08.06.04.
- Mazda Motors Deutschland, Leverkusen, 02173-943-0. Für 2002 + 2003: Matthias Brieden (Produktmarketing), 25.09.03 + 01.07.04.
- Land Rover Deutschland, Schwalbach Ts., 06196-9521-0. Für 2002+ 2003: Herr Buchhardt, 10.09.04.
- Kia Motors GmbH, Bremen, 0421-4181-0. Für 2002: Dörte Steffens (Presse-Öffentlichkeitsarbeit), 01.09.03. Für 2004: Hr. Döller, 31.08.04.
- Honda Deutschland GmbH, Offenbach, 069-8309-0. Für 2002 + 2003: Peter Treutel (Produktplanung), 26.09.03 +.16.06.04.
- Fiat-Automobil AG, Frankfurt, 069-66988-0. Für 2002+ 2003: Rosa Salvia, 28.08.03 + 15.06.04.
- Hyundai Motor Deutschland GmbH, Neckarsulm, 07132-487-0. Für 2002+ 2003: Uwe Wazal, (Kundendienstförderung), 18.09.03 + 14.06.04.
- Daihatsu Deutschland GmbH, Tönisvorst, 02151-705-0. Für 2002 + 2003: R. Piotraschke e (Produktplanung/Homologation), 26.09.03 + 07.09.04.
- Citroen Deutschland AG, Köln, 02203-44-0. Für 2002 + 2003: Heike Schäfer (Produktionsadministration), 12.09.03 + 10.08.04.
- Chrysler (DaimlerChrysler AG) Product Management Chrysler & Jeep, Berlin, 030-2694-0. Für 2002 + 2003: Julia Weber, 20.09.03 + 10.09.04.
- Volkswagen AG, Wolfsburg, 05361-9-0. Für 2002 + 2003: Dr. Michael Mrowietz (Umweltplanung Produktion/Standorte), 08.09.03 + 07.06.04.
- Smart GmbH, Böblingen, 07031-90-0. Für 2002 + 2003: Markus Mainka, 29.08.03 + 16.06.04.
- Dr. Ing. h.c. F. Porsche AG, Zuffenhausen, 0711-911-0. Für 2002 + 2003: Stefan Marschall (Öffentlichkeitsarbeit), 29.08.03 + 23.06.04.
- Adam Opel AG, Rüsselsheim, 06142-77-0. Für 2002: Susanne Hartmann (Produkt-Kommunikation Deutschland), 05.09.03. Für 2003: Sven Markurt (Presseabteilung), 09.07.04.
- DaimlerChrysler AG, Stuttgart, 0711-17-0. Für 2002: Claudia Vogel (Environment Strategy PC & Region 3 Japan), 01.10.03. Für 2003: Marko Borgwardt (Team Auftragsprognose GOP), 11.06.04.
- Ford Werke AG, Köln, 0221-90-0. Für 2002 + 2003: Hanns-Peter Bietenbeck (Senior Engineer Environmental Regulations), 22.09.03 + 15.06.04.
- BMW AG, München, 089-382-0. Für 2002 + 2003: Albrecht Jungk (Verkehr und Umwelt), 29.08.03 + 26.06.04.
- AUDI AG, Ingolstadt, 0841-89-0. Für 2002 + 2003: Günther Beham (Absatzplanung), 02.09.03 + 01.06.04.

Winfried Schwarz/Jochen Harnisch: Establishing the Leakage Rates of Mobile Air Conditioners. Report on the EU Commission (DG Environment). Frankfurt/Nürnberg 2003. http://www.oekorecherche.de/english/berichte/volltext/leakage_rates.pdf.

AGRAMKOW Fluid Systems A/S, Sonderborg (Dänemark), +45 74123636. Bjarne Lund (Divisionsleiter), pers. Mitt. beim VDA-Wintermeeting in Saalfelden 2003, 14.02.03.

Lkw-Klimaanlagen (zu 2.F.1)

Kraftfahrt-Bundesamt, Statistische Mitteilungen, Reihe 3: Kraftfahrzeuge, Neuzulassungen – Besitzumschreibungen - Löschungen von Kraftfahrzeugen und Kraftfahrzeuganhängern, Jahresband 2002 und 2003.

VDA (Verband der Automobilindustrie), Frankfurt, Analysen zur Automobilkonjunktur 2003, Jahrespressekonferenz am 29. Januar 2004 (Tabellenteil).

DaimlerChrysler AG (Werk Wörth), 07271-71-0. Für 2002: Frank Renz, 01.10.03. Für 2003: Mattias Matejov, 14.09.04 (Modelle Actros und Atego).

DaimlerChrysler AG, Stuttgart, 0711-17-0. Für 2002: Oliver Krenz (Produktmanagement MB-Van), 19.09.03. Für 2003: Christopher Khanna, 21.07.04 (Modelle Vito und Sprinter).

Volkswagen AG, Werk Hannover, 0511-798-0. Für 2002 + 2003: Stefan Schmitz (Zentrale Absatzplanung Nutzfahrzeuge), 01.09.03 + 15.06.04 (Modelle Transporter/Caravelle, LT, Caddy).

Deutsche Renault AG, Brühl, 02232-73-0. Für 2002 + 2003: Angela Lehmann (Produktkommunikation), 23.10.03 + 08.06.04 (Modelle Master und Kangoo).

Busklimaanlagen (zu 2.F.1)

Kraftfahrt-Bundesamt, Statistische Mitteilungen, Reihe 3: Kraftfahrzeuge, Neuzulassungen – Besitzumschreibungen - Löschungen von Kraftfahrzeugen und Kraftfahrzeuganhängern, Jahresband 2002 und 2003.

VDA (Verband der Automobilindustrie), Frankfurt, Analysen zur Automobilkonjunktur 2003, Jahrespressekonferenz am 29. Januar 2004 (Tabellenteil).

EvoBus GmbH, Ulm, 0731-181-0.

Für 2002: Sonja Waldenspul, (Vertrieb), 24.09.03.

NEOPLAN Bus GmbH, Stuttgart, 0711-7835-0. Für 2002 + 2003: Dr. Jörg Kirsamer (Leiter Kompetenzcenter HLK NEOMAN), 23.09.03 + 17.09.04.

Landmaschinen-Klimaanlagen (zu 2.F.1)

Kraftfahrt-Bundesamt, Statistische Mitteilungen, Reihe 3: Kraftfahrzeuge, Neuzulassungen – Besitzumschreibungen - Löschungen von Kraftfahrzeugen und Kraftfahrzeuganhängern, Jahresband 2002 und 2003.

CLAAS KGaA mbH, Harsewinkel, 05247-12-0.

Für 2002 (Mähdrescher und Feldhäcksler): Heinrich Sternberg (Technischer Kundendienst), 23./24.09.03.

John Deere, Werke Mannheim, 0621-829-02.

Für 2002 + 2003 (Ackerschlepper, Mähdrescher und Feldhäcksler): Dr. Neumann (Pressesprecher), 24.09.03 + 17.09.04.

AGCO GmbH & Co. OHG, Marktoberdorf, 08342-77-0

Für 2002 + 2003 (Ackerschlepper): Hr. Schmid (Kundendienst), 23.09.03+ 17.09.04.

SAME Deutz-Fahr Deutschland GmbH, Lauingen, 09072-997-0.

Für 2002 (Ackerschlepper und Mähdrescher): Hr. Graf (Konstruktion), 06.11.03. Für 2004: Hr. Leopold, 20.09.04.

VDMA, Fachverband Landtechnik, Frankfurt, 069-6603-1298. Gerd Wiesendorfer, 06.11.03.

Franz Hensen: http://home.t-online.de/home/hensen/#markt

VDMA, Fachverband Landtechnik, Frankfurt. Wirtschaftsbericht 2003.

http://www.vdma.org/vdma_root/www_lav_vdma_de/

Schiffsklimaanlagen (zu 2.F.1)

Wasser- und Schifffahrts-Direktion (WSD) Südwest, Mainz, 06131-979-0.

Für 2002+2003: Andrea Hauf (Zentrale Binnenschiffsbestandsdatei), 18.11.03 + 15.09.04.

Statistisches Bundesamt, Wiesbaden, 0611-75-1: Für 2002: Hr. Kober, 07.10.03.

Verband Deutscher Reeder e.V. (VDR), Hamburg www.reederverband.de 040-35097-0.

Für 2002+2003: Bernd Titel (Statistik), 06.10.03 + 07.09.04.

Reederei Peter Deilmann, Neustadt in Holstein <u>www.deilmann-kreuzfahrten.de</u> 04561-396-0. Für 2002+2003: Frau Polanski, 07.10.03.

http://www.deutschemarine.de/80256B100061BA9B/vwContentFrame/N256DM2T116MMISDE

http://www.blohmvoss.com/d/prod/frigate f124.html

Noske-Kaeser GmbH, Hamburg, 040-8544-0.

Für 2002+2003: Volker Behrens, 23.09.03.

York Industriekälte GmbH & Co. KG, Marine, Hamburg, 040-670511-0.

Hr. Höft, 29.09.03.

Verband für Schiffbau und Meerestechnik e.V. (VSM) <u>www.vsm.de</u> Hamburg, 040-280152-0. VSM-Jahresberichte 2002 + 2003. Sie sind von <u>www.vsm.de</u> herunter zu laden.

Jos. L. Meyer GmbH www.meyerwerft.de, Papenburg, 04961-81-0.

Peter Hackmann (Leiter Öffentlichkeitsarbeit), 28.11.03. Einzelheiten zu großen

Passagierschiffen von dieser Werft auf der Homepage.

Schienenfahrzeugklimaanlagen (zu 2.F.1)

Deutsche Bahn AG, Hauptverwaltung Frankfurt, 069-265-0.

Für 2002: Klaus Reum (UB Personenverkehr – Zentrale Halteraufgaben, Betriebssicherheit Regio-Wagenzüge), 26.09.03. Für 2003: Geschäftsberichte DB Fernverkehr AG, DB Regio AG, Broschüre Daten & Fakten 2003.

Connex Verkehr GmbH, Berlin, Für 2002+2003: Hr. Schulze, 08.09.04.

Dr. Ulrich Adolph (Entwicklungsberater Kälte- und Klimatechnik) Leipzig, pers. Mitt. Bonn (DKV-Tagung) 21.11.03.

Konvekta AG, Schwalmstadt,06691-76- 0. Michael Sonnekalb, pers. Mitt. bei der DKV-Tg. 2003 in Bonn, 21.11.03.

Hartschaum (2.F.2)

Sonstiger PU-Hartschaum (zu 2.F.2)

Thyssen Bausysteme GmbH, Werk Hof, 09281-7283-0.

Für 2002+2003: Peter Schaffiner, 22.9.03 + 14.09.04.

Solvay Fluor GmbH, Hannover, 0511-857-0.

Für 2002: Dr. Lothar Zipfel (Manager Foam Blowing Agents), 24.09.03. Für 2003: Dr. Ewald Preisegger, 03.09.04.

Integralschaum (zu 2.F.2)

Elastogran GmbH, Lemförde, 05443-12-0.

Für 2002+2003: Karl-Wilhelm-Kroesen (Ökologie und Produktsicherheit), 23.09.03 + 14.09.04.

Für 2002: Dr. Lothar Zipfel (Manager Foam Blowing Agents), 24.09.03. Für 2003: Dr. Ewald Preisegger, 03.09.04.

Montageschaum (zu 2.F.2)

Für 2002+2003: Ad. K. van der Rhee, Autra Den Braven Aerosol GmbH + Co KG, Reichenberg-Albertshausen, 09366-9071-0, und Peter Geboes (Soudal NV, Turnhout, 0032-12-42 42 31), Schreiben 22.09.03.

Polypag AG, Appenzell, Achim Niemeyer (Managing Director) +41-71 757 6411, 21.09.04.

XPS-Dämmschaum (zu 2.F.2)

FPX: Fachvereinigung Polystyrol-Extruderschaumstoff e.V. (deutsche Sektion der europäischen EXIBA (European Extruded Polystyrene Insulation Board Association) info@fpx-daemmstoffe.de, Frankfurt, 069-424901, Für 2002: Otmar Jochum, 23.09.03.

GEFINEX-JACKON GmbH, Mechau, 039036-960-0. Dr. Mark Plate, 19.02.03.

GDI: Gesamtverband Dämmstoffindustrie, GDI-Baumarktstatistik (Angaben in 1.000 m³, Frankfurt am Main, 01.04.2003.

Cefic European Chemical Industry Council, APME Association of Plastics Manufacturers in Europe. Carol Banner, 20.09.04.

Feuerlöschmittel (2.F.3)

Kidde Deugra Brandschutzsysteme GmbH, Ratingen, 02102-405-0. Für 2002+2003: Peter Clauss, 23.09.03 + 27.10.04.

Amtliche Prüfstelle für Feuerlöschmittel und – gerät bei der Materialprüfungsanstalt für das Bauwesen Dresden, Außenstelle Freiberg, 03731-34850, Für 2002 + 2003: Mitt. an das Umweltbundesamt, 02.07.03 + 21.01.04.

Aerosole/MDI (2.F.4)

Dosieraerosole (MDI) (zu 2.F.4)

Arbeitskreis Pulverinhalation (API), Für 2002 + 2003: pers. Mitt. der darin vertretenen Pharmaunternehmen (GlaxoSmithKline, AstraZeneca u.a.) an ÖR, 16.09.03 + 20.04.04. Boehringer-Ingelheim Pharma KG, Ingelheim, 06132-77-0. Dr. Michael Köhler, Mitt. an ÖR, 30.09.03 + 01.10.04.

Allgemeine Aerosole (zu 2.F.4)

Industriegemeinschaft Aerosole e.V. im VCI, Frankfurt am Main, Matthias Ibel, Schreiben an ÖR, 04.03.03, 01.07.03. Mitt. 10.06.05.

IG-Sprühtechnik, Wehr, Klaus Broecker, Mitt. an ÖR, 02.07.03 + 14.09.04.

Tunap Deutschland, Wolfratshausen, Lothar Stockert, Mitt. und Schreiben an ÖR 01.07.03

Novelties (zu 2.F.4)

Industriegemeinschaft Aerosole e.V. im VCI, Frankfurt am Main, Matthias Ibel, Schreiben an ÖR, 04.03.03, 01.07.03. Mitt. 10.06.05.

WECO Pyrotechnische Fabrik GmbH, Eitorf/Sieg, 02243-833-0, www.weco-pyro.de, Erwin Lohmann, Mitt. an ÖR, 15.07.03.

Lösemittel (2.F.5)

Biesterfeld Chemiedistribution GmbH & Co. KG, Hamburg, 040-32208-0.

Für 2002+2003: K. Burmester (Marketing und Beschaffung), 04.12.03 + 29.04.04.

DuPont de Nemours International S.A., Geneva, Switzerland.

Alexandre Petit-Pierre (Manager Europe/MEA Fluorochemicals Specialties), Mitteilung an das Umweltbundesamt Berlin. 30.09.03.

Produktion von HFKW 134a, 227ea, SF₆ (2.E.2) Nebenproduktemissionen von HFKW-23 (2.E.2)

Solvay Fluor und Derivate GmbH, Hannover, Dr. Ewald Preisegger, Vertrauliche Mitteilung an ÖR über "Produktion in Deutschland, produktionsbedingte Emissionen und Exportmengen für HFKW und SF₆ von Solvay Fluor und Derivate GmbH (in t)", 16.10.03. Mitteilung "Produktion in Deutschland und produktionsbedingte Emissionen für HFKW und SF₆ (in t)", 28.10.04.

Betriebsmittel zur Elektrizitätsübertragung (2.F.7)

Jährliche Meldung der Monitoring-Daten an BMU und UBA durch den Fachverband Schaltgeräte, Schaltanlagen und Industriesteuerungen im ZVEI - aufgrund der 1997 abgeschlossenen Selbstverpflichtungs-Erklärung zu SF₆ in elektrischen Schaltgeräten und –anlagen durch die Vereinigung Deutscher Elektrizitätswerke e.V. und den Zentralverband Elektrotechnik- und Elektronikindustrie e.V., Frankfurt 2003 und 2004.

Schallschutzscheiben (zu 2.F.8)

Messer Griesheim GmbH (jetzt Air Liquide Deutschland GmbH), Krefeld, 02151-379-0.

Für 2002: Lutz Thiedecke (Vertriebskanäle/Marketing Deutschland), Mitt. an ÖR 22.09.03.

Für 2003: Lutz Thiedecke (Business Manager Helium, Fluorine and Rare Gases), Mitt. an ÖR, 26.08.04.

Air Products GmbH, Hattingen, 02324-689-0.

Für 2002: Kai Schwarz, Mitt. an ÖR, 22.09.03 + 08.09.04.

Linde AG, Höllriegelskreuth, 089-7446-0.

Für 2002: Dr. Hans-Jürgen Diehl (Zentraler Vertrieb Spezialgase), Mitt. an ÖR, 17.09.03 + 13.09.04.

Air Liquide GmbH, Düsseldorf, 0211-6699-0.

Für 2002: Stefan König, Mitt. an ÖR, 16.07.03.

Autoreifen (zu 2.F.8)

Messer Griesheim GmbH (jetzt Air Liquide Deutschland GmbH). Krefeld. 02151-379-0.

Für 2002: Lutz Thiedecke (Vertriebskanäle/Marketing Deutschland), Mitt. an ÖR 22.09.03.

Für 2003: Lutz Thiedecke (Business Manager Helium, Fluorine and Rare Gases), Mitt. an ÖR, 26.08.04.

Air Products GmbH, Hattingen, 02324-689-0.

Für 2002: Kai Schwarz, Mitt. an ÖR, 22.09.03 + 08.09.04.

Linde AG, Höllriegelskreuth, 089-7446-0.

Für 2002: Dr. Hans-Jürgen Diehl (Zentraler Vertrieb Spezialgase), Mitt. an ÖR, 17.09.03 + 13.09.04.

Magnesium-Guss (zu 2.C)

Schweizer & Weichand GmbH, Murrhardt, 07192-212-0.

Für 2002 + 2003: Klaus Horny, 10.09.03 + 20.09.04.

Honsel-Alumetall GmbH, Nürnberg, 0911-4150-0.

Für 2002 + 2003: Hr. Dötsch (Einkauf), 08.09.03 + 13.09.04.

Dietz-Metall GmbH & Co. KG, Unterensingen, 07022-6098-0.

Für 2002 + 2003: Rudolf Schmidt (Instandhaltung) 10.09.03 + 22.09.04

AMZ-Weißensee Präzisionsguss, Berlin, 030-92092138.

Für 2002: Hr. Dokter, 10.09.03. Für 2003: Hr. Rossbacher, 01.09.04.

Metallgießerei Wilhelm Funke, Alfeld (Leine), 05181-8459-0.

Für 2002 + 2003: Hr. Dreier (GF), 10.09.03 + 01.09.04.

Metallwerke Kloß Maulbronn GmbH, Maulbronn, 07043-13-0.

Für 2002 + 2003: Winfried Reiling (UWS), 09.09.03 + 23.09.04.

Kolbenschmidt-Pierburg AG, Nettetal, 02153-124-1.

Für 2002 + 2003: Wilhelm Extra (Leiter Vorfertigung), 09.09.03 + 14.09.04.

Takata-Petri AG, Aschaffenburg, 06021-65-0.

Für 2002: Ullrich Geis (Mg.Gießerei), 16.09.03. Für 2003: Hakan Ueccesmeler (Safety & Environment), 06.09.04.

Volkswagen AG, Werk Kassel, Baunatal, 0561-490-0.

Für 2002 + 2003: Helmar Pflock (UWS), 16.09.03 + 20.09.04.

TRW Automotive GmbH, Aschaffenburg, 06021-314-0.

Für 2002 + 2003: Reinhold Köhler (AS/UWS), 09.09.03 13.09.04.

Dynacast Deutschland GmbH, Bräunlingen, 0771-9208-0.

Für 2002 + 2003: Sigmund Holzer (Einkauf), 11.09.03 + 01.09.04.

Druckguss Heidenau GmbH, Dohna, 03529-588-0.

Für 2002 + 2003: Niehoff (Einkauf), 09.09.03 + 01.09.04.

HDO-Druckguss- und Oberflächentechnik GmbH, Paderborn, 05251-704-0.

Für 2002 + 2003: Ferdinand Brakhane (Sicherheit/Umwelt), 12.09.03 + 14.09.04.

Spurengas (zu 2.F.8)

FZ Jülich, Abteilung Sicherheit und Strahlenschutz, 02461-61-0.

Für 2002 + 2003: Hr. Möllmann, 24.09.03.

Aluminium-Reinigung (zu 2.C)

Linde AG, Höllriegelskreuth, 089-7446-0.

Für 2002: Dr. Hans-Jürgen Diehl (Zentraler Vertrieb Spezialgase), Mitt. an ÖR, 17.09.03 + 13.09.04.

Westfalen AG, Münster, 0251-695-0.

Für 2003: Hr. Kohnert (Sondergase), 22.09.03.

Aluminium Rheinfelden GmbH, Rheinfelden (Baden) 07623 93-0.

Für 2003: Hr. W. Glück (Umweltbeauftragter), 14.10.03.

Flugzeug-Radar (zu 2.F.8)

NATO Fliegerhorst AWACS, Geilenkirchen, 02451-63-0.

Für 2003: Hr. Drieling (Radar Shop), 24.09.03; 08.01.04.

EADS (European Aeronautic Defence and Space) Deutschland GmbH, Manching, 08459-81-01. Für 2003: Dietmar Berszik, 23.09.03.

Linde AG, Höllriegelskreuth, 089-7446-0.

Für 2002: Dr. Hans-Jürgen Diehl (Zentraler Vertrieb Spezialgase), Mitt. an ÖR, 17.09.03 + 13.09.04.

Sportschuhsohlen (zu 2.F.8)

SF₆ in sport shoes, Ch. 4.3, in: Costs and the impact on emissions of potential regulatory framework for reducing emissions of hydrofluorocarbons, perfluorocarbons and sulphur hexafluoride (final report). Prepared on behalf of the European Commission (DG ENV), by J. Harnisch (Ecofys) & W. Schwarz (Öko-Recherche), February 4, 2003, p. 22-23. http://www.oekorecherche.de/english/berichte/volltext/ecofys_oekorecherchestudy.pdf. BMU (Rolf Engelhardt), Vertrauliche Mitteilung über den Einsatz von SF₆ und PFC-218 in Sportschuhsohlen, 29.09.2004.

Teilchenbeschleuniger (zu 2.F.8)

Öko-Recherche-Vollerhebung zu Teilchenbeschleunigern Anfang 2004, in: Winfried Schwarz: Emissionen, Aktivitätsraten und Emissionsfaktoren von fluorierten Treibhausgasen (F-Gasen) in Deutschland für die Jahre 1995-2002. Anpassung an die Anforderungen der internationalen Berichterstattung und Implementierung der Daten in das zentrale System Emissionen (ZSE), im Auftrag des Umweltbundesamtes, Berlin, Juni 2005, UBA-Texte 14/05, S. 254-261. http://www.umweltbundesamt.org/fpdf-l/2902.pdf

Starkstromkondensatoren (zu 2.F.8)

Mitteilung des ZVEI, Fachbereich Schaltgeräte, Schaltanlagen, Industriesteuerungen, an ÖR, Frankfurt am Main, 25.05.04.

Optische Glasfasern (zu 2.F.8)

Messer Griesheim GmbH (jetzt Air Liquide Deutschland GmbH), Krefeld, 02151-379-0. Für 2002: Lutz Thiedecke (Vertriebskanäle/Marketing Deutschland), Mitt. an ÖR 22.09.03.

Für 2003: Lutz Thiedecke (Business Manager Helium, Fluorine and Rare Gases), Mitt. an ÖR, 26.08.04.

Air Products GmbH, Hattingen, 02324-689-0.

Für 2002: Kai Schwarz, Mitt. an ÖR, 22.09.03 + 08.09.04.

Linde AG, Höllriegelskreuth, 089-7446-0.

Für 2002: Dr. Hans-Jürgen Diehl (Zentraler Vertrieb Spezialgase), Mitt. an ÖR, 17.09.03 + 13.09.04.

Air Liquide GmbH, Düsseldorf, 0211-6699-0.

Für 2002: Hr. König, Mitt. an ÖR, 16.07.03.

Leiterplattenfertigung (zu 2.F.6)

plasonic Oberflächen GmbH, Gerlingen, 07156-9439-0. Hr. Marek (Geschäftsführer), 25.09.03. Linde AG, Werksgruppe Technische Gase, Unterschleißheim, 089-31001-0. Ralf Hollenbach (Anwendungstechnik Elektronikgase), 22.09.03.

Halbleiterindustrie (2.F.6)

ZVEI, Fachverband Bauelemente der Elektronik: Freiwillige Meldung der PFC-Emissionen der Deutschen Halbleiterindustrie für 1995 – 2002, bzw. 1995 - 2003 an BMU und UBA, 22.05.2003 + 28.05.04.

Aluminiumproduktion (zu 2.C)

Fachverband Primäraluminium: Monitoringberichte über die Fortschritte bei der Reduktion der CF₄/C₂F₆ Emissionen der deutschen Primäraluminiumindustrie für das Jahr 2002 bzw. das Jahr 2003, Berlin, 18.08.03 + 07.09.04.

Zweites Kapitel. Emissionsprognosen für die Jahre 2010 und 2020

Nachfolgend werden Emissionsprognosen für 2010 und 2020 nach vier Szenarien aufgestellt. Abschnitt I charakterisiert die Szenarien selbst und kommentiert kurz die entsprechenden Emissionen. Im Anschluss daran (Abschnitt II) werden in drei Unterabschnitten (1.-3.) für jede der drei Stoffgruppen HFKW, FKW und SF₆ sowohl die detaillierten Emissionswerte nach den vier Szenarien für 2010 und 2020 in den Tabellen 10-15 präsentiert (in metrischer Masse und in t CO₂-Äquivalente) als auch Sektor für Sektor die Annahmen, die ihnen zugrunde liegen, beschrieben.

Wie im Abschnitt I in den Tabellen 3-9, sind im Abschnitt II in den Tabellen 10-15 aus Gründen der Übersichtlichkeit die Emissionen der drei Stoffgruppen nur nach ausreichend großen Sektoren bzw. Quellgruppen gegliedert. Darum folgt danach in Abschnitt III ein Datenanhang mit tiefer Staffelung der historischen und der vorhergesagten Emissionen. Da sich darunter auch vertrauliche Angaben befinden, ist in wenigen Fällen keine vollständige Wiedergabe aller Einzelemissionen möglich.

I. Emissionsprognosen 2010 und 2020 nach vier Szenarien

In Tabelle 9 sind die Emissionsprognosen für 2010 und 2020 nach ihren vier zugrunde liegende Szenarien zusammengefasst dargestellt.

Tab. 9 Emissionsprognosen HFKW, FKW und SF ₆ (in Mio. t CO ₂ -Äquivalente)									
	Aus-	I. Ohne		II. Mit		III.		IV. Mit	
	gangs-	Maßnah	nmen ab	Maßnahmen bis		EU Gesetze		weiteren	
	Werte	19	99	2003		2007		Maßnahmen	
	1995	2010	2020	2010	2020	2010	2020	2010	2020
HFKW	6,479	18,513	20,480	13,908	15,437	10,992	9,626	9,419	5,869
FKW	1,750	1,720	2,786	0,652	0,631	0,634	0,610	0,551	0,519
SF ₆	7,235	7,875	10,556	5,438	7,514	4,418	6,045	3,169	4,579
Gesamt	15,464	28,108	33,822	19,998	23,582	16,045	16,281	13,139	10,967

Quellen: Sektorspezifische Daten in Abschnitt II dieses Kapitels.

1. Szenario I "Ohne Maßnahmen ab 1999"

Das erste Szenario ist eine "without measures projection", das die zwischen 1995 und 1998 sich abzeichnenden Trends ungebrochen in die Jahre 2010 und 2020 fortschreibt. "Ohne Maßnahmen" bedeutet in Wirklichkeit "Ohne neue Maßnahmen nach 1998". Das Szenario enthält auch Maßnahmen, die zwischen 1995 und 1998 in Gang gesetzt wurden. Dennoch ist es ein "Business-as-Usual"-Szenario.

Für geschlossene Anwendungen werden die historischen Emissionsraten von 1995-1998 unverändert gelassen, danach stattgefundene Verbesserungen der Anlagendichtheit werden nicht berücksichtigt. Jedoch wird versucht, aus damaliger Sicht wahrscheinliche Zu- oder Abnahmen bei den Einsatzmengen in den einzelnen Sektoren zu antizipieren. Dieses Szenario bildet gewissermaßen den "worst case" aus der Sicht des Jahres 1998 und damit den Maßstab ("baseline" oder "reference" projection) für die drei folgenden Szenarien. Je weiter deren prognostizierte

Emissionen jenes "Ohne Maßnahmen"-Niveau unterschreiten, umso mehr Fortschritte im Klimaschutz drücken sie aus.

In diesem Szenario steigen die treibhauswirksamen F-Gas-Emissionen auf 28,1 Mio. t CO₂-Äquivalente, und anschließend bis 2020 weiter auf 33,8 Mio. t (vgl. Tab. 9). Das ist eine Verdoppelung der Ausgangs-Emissionen von 1995 (15,46 Mio. t CO₂-Äquivalente). Zwei Drittel aller Emissionen sind dann HFKW, welche die historischen FCKW und HFCKW größtenteils ersetzt haben.

Gemäß Tabelle 11 (im nächsten Abschnitt), sind im Jahr 2020 die größten HFKW-Sektoren nach ihrem Beitrag zum Treibhauseffekt wie folgt (in Klammer dahinter jeweils die entsprechenden Emissionen in Mio. t CO₂-Äquivalente):

- 1. Stationäre Kälte- und Klimatechnik (6,1).
- 2. Mobile Klimaanlagen (5,6).
- 3. Schaumprodukte aus XPS und PU sowie Montageschaum (4,5).
- 4. Produktion halogenierter Kohlenwasserstoffe (2,8).
- 5. Aerosole (Med. Dosieraerosole, andere Aerosole) (1,3).

Tabelle 13 (im nächsten Abschnitt) gibt die FKW-Emissionen wieder, die nach dem ersten Szenario für 2010 und 2020 eintreten würden, wenn die Nutzungstrends von 1995-1998 angehalten hätten. Hier werden nur die prognostizierten Emissionen des Jahres 2020 für die zwei größten Sektoren gezeigt.

- 6. Halbleiter-Industrie (1,8; zusammen mit SF₆ und HFKW-23 als Ätzgas: 2,3).
- 7. Aluminium-Herstellung (0,95).

Schließlich sind nach Tabelle 15 (nächster Abschnitt) die größten Emissions-Sektoren von SF₆ im Jahr 2020 die folgenden:

- 8. Schallschutzscheiben (4,7).
- 9. Magnesium-Gießen (1,7).
- 10. Anlagen zur Elektrizitätsübertragung und –Verteilung (1,1).
- 11. Aluminium-Reinigung (0,95).
- 12. Autoreifen (0,7).

Im ersten Szenario gehen auf jene 12 Sektoren über 96% aller treibhauswirksamen F-Gas-Emissionen zurück, die für 2020 zu befürchten wären, wenn die Nutzungstrends von 1995-1998 ungebrochen angehalten hätten und nicht an der einen oder anderen Stelle gebremst oder gar umgekehrt worden wären.

Das Szenario I "Ohne Maßnahmen ab 1999" ist dem Business-as-Usual-Szenario (BaU) aus der UBA-Studie von 1999 (Schwarz/Leisewitz 1999) vergleichbar. Diese - dort allerdings nur bis 2010 reichende - BaU-Prognose liegt mit 27,4 Mio. t CO_2 -Äquivalenten durchaus im Bereich der jetzigen Prognose für 2010, die sechs Jahre danach abgegeben wird und 28,1 Mio. t voraussagt. Die Übereinstimmung im Gesamtwert täuscht jedoch über starke Unterschiede der Unter-Segmente hinweg. HFKW wurden damals um 1,5 Mio. t und FKW um 0,7 Mio. t höher prognostiziert, SF_6 dagegen um 2,8 Mio. t niedriger. Die Ursache für die Abweichungen liegt erstens darin, dass das alte BaU-Szenario nur Trends von 1995 bis 1997 extrapoliert, während jetzt mit 1998 ein weiteres empirisches Basisjahr dazugekommen ist. Zweitens, und entscheidender, liegt es an umfangreichen Neuberechnungen der vor

1998 tatsächlich vorhandenen Emissionen und Verbräuche, die im Rahmen der erwähnten Studie für das Umweltbundesamt 2003 und 2004 durchgeführt wurden (UBA-Text 14/05). Dabei wurden vor allem im Bereich der Nutzung von SF₆ bislang unterzeichnete Einsatzmengen (Aluminium- und Magnesiumindustrie, Herstellung elektrischer Bauelemente, Flugzeugradar, Schallschutzscheiben) rückwirkend nach oben korrigiert, während PFC-Emissionen infolge der 1998 einsetzenden Emissionsminderung der Halbleiterindustrie niedriger bewertet wurden. im HFKW-Sektor mussten aufgrund neuer Erkenntnisse die stark treibhauswirksamen HFKW-23-Nebenprodukt-Emissionen rückwirkend höher angesetzt werden.

Szenario II "Mit Maßnahmen bis 2003"

Das zweite Szenario "Mit Maßnahmen bis 2003" ("with measures projection") basiert auf den vor dem Jahr 2004 bereits umgesetzten Maßnahmen. Es sieht bis 2010 bzw. 2020 von jeder Politik und Maßnahme ab, die erst nach 2003 durchgeführt wurde oder wird, trägt aber Anstrengungen zur Emissionsminderung seit 1999 Rechnung. Es besteht im Kern darin, die heute, d.h. 2003, vorhandenen, gegenüber Szenario I in manchen Fällen (etwa im Bereich der Polyurethan- und XPS-Schaumherstellung) deutlich reduzierten Verbrauchs- und Emissionstrends in die Zukunft fortzuschreiben.

In der Tat wurden in den fünf Jahren nach dem für das erste Szenario maßgeblichen Zeitraum 1995-1998 mehrere Maßnahmen durchgesetzt, die ein weit langsameres Wachstum der klimawirksamen Gesamtemissionen als nach Szenario I erwarten lassen. Hauptgrund für Reduktionsmaßnahmen war sicher die Hereinnahme der drei F-Gas-Gruppen in das Kyoto-Protokoll im Dezember 1997, und damit die erhöhte öffentliche Aufmerksamkeit. Allenthalben wurden die Risiken und Vorteile der F-Gase und ihrer möglichen Alternativen diskutiert, besonders dort, wo F-Gase in stark emissiven Anwendungen eingesetzt wurden wie Autoreifen, Schallschutzscheiben, Magnesium-Gießereien, PU-Schaumherstellung einschl. Montageschaum, Aerosole, Halbleiterindustrie, sowie Herstellung elektrischer Schaltanlagen. Zu diesen Sektoren kamen diejenigen hinzu, in denen F-Gase als unbeabsichtigte Nebenprodukte emittieren: Aluminium-Produktion und Produktion des HFCKW-22.

Das Emissionsbild des zweiten Szenarios zeigt, dass in jüngerer Vergangenheit erhebliche umweltpolitische Anstrengungen gemacht wurden. Gegenüber keinen weiteren Maßnahmen (Szenario I), fallen die Emissionen in 2010 um etwa 8 Mio. t CO₂-Äquivalente, in 2020 sogar um 10 Mio. t niedriger aus (23,6 gegenüber 33,8 Mio. t.), was einer Reduktion um 30% gegenüber jenem "worst-case" bedeutet.

Die wichtigsten Emissionsrückgänge für 2020 im Vergleich zu den entsprechenden Werten des ersten Szenarios finden in den Sektoren statt, die nachfolgend aufgelistet werden. In Klammern und mit negativem Vorzeichen jeweils der relative Emissionsrückgang gegenüber dem ersten Szenario in Mio. t CO₂-Äquivalente – alles wiederum nach den Tabellen 11, 13 und 15 im nächsten Abschnitt:

- 1. HFKW-23 als Nebenprodukt-Emissionen (- 2,3).
- 2. Halbleiter-Industrie mit sämtlichen verwendeten F-Gasen (- 2,1).
- 3. Schäume (XPS, PU-Hartschaum, Montageschaum) mit HFKW-Treibmitteln (- 1,9).
- 4. Schallschutzscheiben (- 0,9).
- 5. Autoreifen (- 0,65).
- 6. Aluminium-Produktion (-0,55).

- 7. Anlagen zur Elektrizitätsübertragung und –Verteilung (- 0,42).
- 8. Industriekälte (- 0,4).
- 9. Magnesium-Gießen (- 0,4).
- 10. Dosieraerosole (- 0,35).

An dem deutlich verringerten Emissionsanstieg sind alle Stoffgruppen beteiligt. Die zehn Sektoren machen in 2020 zusammen einen Emissionsrückgang um 10 Mio. t CO₂-Äquivalente aus. Trotzdem werden die 1995er Ausgangswerte infolge des starken Emissionsanstiegs bei den HFKW noch deutlich übertroffen. Triebkräfte des HFKW-Anstiegs sind vor allem die stationären Kälte- und die mobilen Klimaanlagen. Nach metrischer Tonnage findet in der stationären Kälte fast eine 1-zu-1 Substitution bisheriger FCKW-/HFCKW-Kältemittel statt, bei mobilen Klimaanlagen geht die Umstellung quantitativ sogar um ein Mehrfaches über das alte FCKW-Niveau hinaus.

Szenario III "EU-Gesetzgebung 2007"

Das dritte Szenario "EU-Gesetzgebung 2007" gründet auf der Umsetzung der zur Zeit (Oktober 2005) im abschließenden politischen Prozess befindlichen EU-Verordnung über Emissionsbegrenzung und Einsatzverbot bestimmter fluorierter Treibhausgase sowie der EU-Richtlinie über den Ausstieg aus HFKW-134a aus Kfz-Klimaanlagen. Diese Prognose ("with measures projection") dient dazu, die Auswirkungen jener für fluorierte Treibhausgase zweifellos wichtigsten politischen Maßnahme dieses Jahrzehnts auf die Emissionsentwicklung abzuschätzen.

Tabelle 9 zeigt, dass dank der EU-Gesetze in 2010 fast 4 Mio. t CO₂-Äquivalente weniger emittieren, als wenn nur die bis 2003 umgesetzten Maßnahmen nach Szenario II bestehen blieben. Im Jahr 2020 beträgt die Minderung schon über 7 Mio. t CO₂-Äquivalente oder 30%: statt 23,6 Mio. CO₂-Äquivalente nur 16,3 Mio. t.

Die Reduktionswirkung der EU-Gesetzgebung zeigt sich kaum bei FKW und ist nicht sehr groß bei SF₆. Die einzige Ausnahme ist der Magnesium-Guss, wo das Verbot von SF₆ als Schutzgas in großen Gießereien die Emissionen um 1 Mio. t CO₂-Äquivalente absenken wird. Es sind vor allem die HFKW, die gegenüber dem Szenario "Mit Maßnahmen bis 2003" bis 2020 einen Rückgang um fast 6 Mio. t CO₂-Äquivalente (etwa 37%) aufweisen mit 9,6 statt 15,4 Mio. t. Die wichtigsten Sektoren im Sinne ihres Reduktionspotentials im Jahr 2020 sind in der nachstehenden Reihenfolge (in Klammern wieder die mögliche Emissionsersparnis in Mio. t CO₂-Äquivalente nach den Tabellen 11, 13 und 15 im nächsten Abschnitt).

- 1. Mobile Klimaanlagen, bei denen vor allem CO₂ den verbotenen HFKW-134a als Kältemittel ersetzt (- 2,8).
- 2. Stationäre Kälte- und Klimaanlagen, wo regelmäßige Wartungspflicht und Leckage-Kontrolle die Emissionen während der Nutzphase deutlich senken (- 2,0).
- 3. Montageschaum in Dosen, wo natürliche Treibmittel die HFKW ersetzen (- 0,6).

Szenario IV "Mit weiteren Maßnahmen"

Das vierte Szenario heißt "Mit weiteren Maßnahmen". Denn es stellt ein neues Minderungsszenario dar auf Basis von über die bisher geplante EU-Gesetzgebung hinausgehenden zusätzlichen Maßnahmen, die für mittel- bis langfristig umsetzbar

gelten können. Tabelle 9 zeigt für das Jahr 2020 eine dadurch zusätzlich mögliche Reduktionswirkung treibhauswirksamer Emissionen von über 5 Mio. t CO₂-Äquivalente auf. Die wichtigsten Sektoren im Sinne weitergehenden Reduktionspotentials, gemessen am dritten Szenario der bevorstehenden EU-Gesetzgebung, sind die nachfolgenden. (In Klammern wieder die mögliche Emissionsersparnis in Mio. t CO₂-Äquivalente gemäß den Tabellen 11, 13 und 15 im nächsten Abschnitt.)

- 1. XPS Schaumherstellung nur mit natürlichen Treibmittelns statt HFKW (- 1,0).
- 2. Sekundär-Aluminium-Gießereien, die ganz auf SF₆ verzichten (- 1,0).
- 3. Stationäre Kälte- und Klimaanlagen, in denen natürliche Kältemittel eine wesentliche Rolle neben HFKW spielen (- 0,9).
- 4. PU-Hartschaum, wo nur noch HFKW-freie Treibmittel eingesetzt werden (- 0.6).
- 5. Dosieraerosole, deren Einsatz durch Pulverinhalatoren reduziert wird (- 0,3).
- 6. Technische Aerosole, die keine HFKW-Treibmittel mehr nutzen (- 0,2).

Anstatt 33,8 Mio. t im ersten Szenario, 23,6 Mio. t im zweiten und 16,3 Mio. t im dritten betragen nach dem letzten Szenario die treibhauswirksamen F-Gas-Emissionen nur noch knapp 11,0 Mio. t CO₂-Äquivalente.

Während infolge der EU-Gesetzgebung die Emissionen des Jahres 1995 im Jahr 2020 noch knapp überschritten werden, lägen dank weiterer Maßnahmen die Emissionen des Jahres 2020 deutlich, nämlich fast um fast 30%, unter jenen Ausgangswerten.

II. Prognosen nach Stoffgruppen und sektoralen Annahmen

Nachfolgend werden für HFKW, FKW und SF₆ jeweils die Emissionswerte (in metrischen Tonnen und Mio. t CO₂-Äquivalente) in zwei Tabellen dargestellt und die allen vier Szenarien zugrunde liegenden Annahmen Sektor für Sektor beschrieben.

1. HFKW-Emissionen 2010 und 2020

1.1 Stationäre Kälte- und Klimaanlagen

Vorbemerkung. Bei stationären wie bei mobilen Kälte- und Klimaanlagen gibt es zwischen den beiden ersten Szenarien "Ohne Maßnahmen ab 1999" und "Mit Maßnahmen bis 2003" keine Unterschiede – von der Industriekälte abgesehen. Der Grund dafür ist, dass es von 1995 bis 2003 praktisch keine Maßnahmen gab, welche den laufenden Umstieg von chlorhaltigen Kältemitteln auf HFKW beeinträchtigten. Vielmehr wurden (und werden) die alten Bestände von FCKW/HFCKW zügig durch HFKW-Kältemittel ersetzt – bei Kälteanwendungen auf gleichem und bei Klimaanwendungen auf höherem Niveau. Natürliche Kältemittel spielen trotz spektakulärer Einzelfälle erst eine untergeordnete Rolle. Der wichtige Ersatz von FCKW durch Kohlenwasserstoffe anstatt durch HFKW bei Haushaltskühlgeräten fand vor 1995 statt und geht nicht mehr in das "Ohne Maßnahmen-Szenario" ein, welches die Entwicklungen der Jahre 1995-1998 in die Zukunft verlängert.

Sektor für Sektor werden nachfolgend die Annahmen, die den Emissionsprognosen 2010/2020 zugrunde liegen, skizziert. Da die Emissionsabschätzung für Kälte- und Klimaanlagen sehr komplex ist, sei der Leser auf weitere Angaben in der Studie "Emissionen, Aktivitätsraten und Emissionsfaktoren von fluorierten Treibhausgasen (F-Gasen) in Deutschland für die Jahre 1995-2002" (UBA-Text 14/05) verwiesen.

1.1.1 Industriekälte

Sowohl in den Szenarien "Ohne Maßnahmen" als auch "Mit Maßnahmen bis 2003" ist bei der Industriekälte eine Emissionsrate (ER) auf den mittleren Jahresbestand von 7% zugrunde gelegt, und bei der Entsorgung gilt eine Verlustrate von 30%. Befüllemissionen betragen 0,15% des inl. Neuverbrauchs. Die Zahlen orientieren sich am Aufbau eines Kältemittel-Zielbestands, der kein Wachstum gegenüber heute vorsieht, sondern maximal bis auf die alten FCKW/H-FCKW-Mengen ansteigt. Im, noch nicht erreichten, vollen oder finalen Stadium enthält der Bestand nur HFKW.

Nach dieser Methode erfolgt die Bestimmung des künftigen Kältemittel-Bestands auch in der Gewerbekälte (1.1.2).

Die Emissionen sind im ersten Szenario höher als im zweiten, weil es um etwa 25% höhere Anteile von HFKW-Kältemitteln im Verhältnis zu Ammoniak und CO₂ annimmt. Das zweite Szenario greift dagegen zwischen 1999 und 2003 feststellbare Trends auf, die auf stärkeren Ersatz von R-22 durch Ammoniak schließen lassen.

Tab. 10 Entwicklung der HFKW-Emissionen (in t)

Sektoren	Ausgangs- Werte		ßnahmen 1999	Mit Maßna 200		EU Gese	•	_	eiteren ahmen
	1995	2010	2020	2010	2020	2010	2020	2010	2020
Stationär Kälte/Klima	73	2255	2496	2128	2368	1511	1567	1501	1194
Mobil Kälte/Klima	170	3810	4219	3810	4219	3498	2376	3475	1785
- davon nur Pkw	133	3306	3577	3306	3577	3013	1777	2990	1391
PU-Montageschaum	1823	1844	1844	1048	1048	52	52	0	0
PU-Schäume	0	749	1072	446	598	446	598	186	65
XPS-Schäume	0	3666	4503	2283	2810	991	829	480	23
Dosieraerosole	0	443	595	286	384	286	384	235	179
Andere Aerosole	254	275	275	275	275	172	172	2	2
Feuerlöschmittel/Sonstiges	1,1	10,3	21,0	7,9	12,7	18,6	29,8	19,7	37,5
Insgesamt (Verw. inkl. Mg)	2319	13051	15024	10283	11715	6974	6008	5899	3258
Sonstiges (Produktion)	360	272	272	74	74	74	68	52	46
Insgesamt	2679	13323	15296	10357	11789	7048	6076	5950	3303

Tab. 11 Entwicklung der HFKW-Emissionen (in Mio. t CO₂- Äquivalente)

Sektoren	Ausgangs- Werte	Ohne Maß ab 19		Mit Maßna 20		EU Geset 200	-		eiteren ahmen
	1995	2010	2020	2010	2020	2010	2020	2010	2020
Stationär Kälte/Klima	0,169	5,684	6,062	5,288	5,666	3,704	3,683	3,681	2,748
Mobil Kälte/Klima	0,234	5,065	5,595	5,065	5,595	4,642	2,779	4,638	2,416
- davon nur Pkw	0,172	4,297	4,650	4,297	4,850	3,890	1,862	3,887	1,808
PU-Montageschaum	1,534	1,553	1,553	0,688	0,688	0,034	0,034	0	0
PU-Schäume	0	0,797	1,133	0,477	0,634	0,477	0,634	0,181	0,064
XPS-Schäume	0	1,438	1,798	1,028	1,287	0,900	1,077	0,236	0,030
Dosieraerosole	0	0,717	0,963	0,451	0,607	0,451	0,607	0,370	0,283
Andere Aerosole	0,318	0,339	0,339	0,339	0,339	0,212	0,212	0,003	0,003
Feuerlöschmittel/Sonstiges	0,012	0,069	0,164	0,037	0,065	0,051	0,087	0,049	0,069
Insgesamt (Verw. inkl. Mg)	2,267	15,662	17,629	13,374	14,903	10,458	9,100	9,143	5,602
Sonstiges (Produktion)	4,212	2,851	2,851	0,535	0,535	0,535	0,527	0,276	0,268
Insgesamt	6,479	18,513	20,480	13,908	15,437	10,992	9,626	9,419	5,869

Im dritten Szenario "EU-Gesetzgebung 2007" wird gegenüber den beiden ersten Szenarien die geplante allgemeine Wartungspflicht (ab dem Jahr 2007) in Rechnung gestellt. Dabei sinkt die lfd. ER innerhalb von fünf Jahren von 7 auf 6% (in 2011). Die Entsorgungsverluste am Lebensende betragen ab 2007 statt 30% nur 20%. Die Befüllemissionen bleiben 0,15% des Neuverbrauchs im Inland.

Das vierte Szenario "Mit weiteren Maßnahmen" legt das vorherige zugrunde. Zusätzlich werden Neuanlagen, die heute mit HFKW befüllt würden, ab dem Jahr 2010 in diesem Szenario zunächst mit 25%, steigend bis zum Jahr 2020 auf 50%, nur noch mit natürlichen Kältemitteln ausgestattet. Alle Emissionsfaktoren (Ifd. ER, Entsorgungs-ER, Befüll-ER) bleiben wie im dritten Szenario.

1.1.2 Gewerbekälte

Die Annahmen für die ersten beiden Szenarien "Ohne Maßnahmen ab 1999" und "Mit Maßnahmen bis 2003" sind ähnlich wie bei der Industriekälte: kein Mengenwachstum und zunächst konstante ER auf den Bestand (vor Ort verlegte neue Systeme 10%, Altanlagen 15%, Verflüssigungssätze 5% und hermetische Anlagen 1,5%) und 30% Entsorgungsverlust. Als Befüllemissionen werden auch hier 0,15% des Neuverbrauchs im Inland angenommen⁶.

Im Szenario "EU-Gesetzgebung 2007" (Wartungspflicht für Anlagen über 3 kg) sinkt gegenüber den vorherigen Szenarien die lfd. ER bei vor Ort installierten Systemen von 10% in fünf Jahren bis auf 5% (in 2011), die von Einzelsätzen von 5% auf 3,5%. Die lfd. ER hermetischer Anlagen bleibt gleich. Der Entsorgungsverlust beträgt ab dem Jahr 2007 nur 20%. Als Befüllungsemissionen werden wiederum 0,15% des Neuverbrauchs im Inland angenommen.

Das Szenario "Mit weiteren Maßnahmen" setzt ab dem Jahr 2010 zusätzlich auf natürliche Kältemittel in Neuanlagen. Neuanlagen, die heute mit HFKW befüllt würden, werden ab dem Jahr 2010 in diesem Szenario zunächst mit 10%, steigend bis zum Jahr 2020 auf 50%, mit natürlichen Kältemitteln ausgestattet. Ansonsten werden die Annahmen des "EU-Gesetzgebung"-Szenarios zugrunde gelegt.

1.1.3 Stationäre Klimaanlagen und Wärmepumpen

Stationäre Klimaanlagen bestehen erstens aus großen, vor Ort montierten Einheiten mit einer Kälteleistung über 1000 kW (i. d. R. Turboanlagen), aus mittelgroßen, meist Schraubenverdichteranlagen, und aus Systemen im Leistungsbereich unter 200 kW (Scroll- und Kolbenanlagen), die vorwiegend als Kaltwassersätze ausgelegt sind, und zweitens aus industriell gefertigten Raumklimageräten (Multi-Split-, Split-, Kompakt-Version), die direkt verdampfen. Anders als bei Industrie- und Gewerbekälte findet bei Klimaanlagen ein starkes Wachstum des Anlagenbestands statt. Daher nehmen alle Szenarien bei Kaltwassersätzen eine Verdopplung in den nächsten zehn Jahren und bei Raumklimageräten eine Erhöhung des Bestands um 40% bis 2010 an. Bei Wärmepumpen wird sogar eine Verdreifachung des Bestands bis 2010 unterstellt.

⁶ Es sei hier angemerkt, dass die für die internationale Berichterstattung geforderten Befüllemissionen die Gesamtemissionen eines Sektors nur unwesentlich beeinflussen. Sie könnten auch weggelassen werden, ohne die Resultate zu verfälschen.

Aufgrund ihrer geringen spezifischen Kältemittelfüllung spielen Wärmepumpen beim HFKW-Bestand allerdings nur eine untergeordnete Rolle (ein Zehntel des HFKW-Bestands in Raumklimageräten, ein Zwanzigstel des HFKW-Bestands in stationären Flüssigkühlsätzen).

In den Szenarien "Ohne Maßnahmen ab 99" und "Mit Maßnahmen bis 2003" beträgt die ER auf den Bestand 6% bei größeren Klimaanlagen und 2,5% bei industriell gefertigten Raumklimageräten. 2,5% ist auch die lfd. ER bei Wärmepumpen. Entsorgungsverluste werden mit 30% angesetzt. Befüllungsemissionen betragen je nach Anlagengröße zwischen 0,015% und 0,15% des Neuverbrauchs im Inland.

Im dritten Szenario "EU-Gesetzgebung 2007" greift die Wartungspflicht ab 2007 und resultiert bis 2011 in einer Senkung der lfd. ER von 6% auf 5% bei größeren Klimaanlagen. Bei Raumklimageräten und Wärmepumpen bleibt die ohnehin niedrige Rate gleich. Entsorgungsverluste sinken im Zuge erhöhter Sorgfalt generell auf 20% ab 2007, auch bei Raumklimageräten und Wärmepumpen.

Das Szenario "Mit weiteren Maßnahmen" setzt wie in der Industrie- und Gewerbekälte (1.1.1 und 1.1.2) zusätzlich auf natürliche Kältemittel ab dem Jahr 2010. Der Anteil HFKW-freier Systeme steigt bis 2020 von 25% bis auf 50%.

1.2 Mobile Kälte- und Klimaanlagen

1.2.1 Pkw-Klimaanlagen

Die HFKW-Emissionen von mobilen Systemen stammen zu über 80% von Pkw. Der EU-Richtlinie über den Ausstieg aus HFKW-134a in Pkw-Klimaanlagen kommt daher eine Schlüsselrolle bei der Emissionsprognose zu. Folgende Grundannahmen liegen allen Szenarien zugrunde: Das Wachstum der Klimatisierung hält an, bis die gesamte Pkw-Flotte eine Durchdringung von 95% hat, was gegen 2017 der Fall sein dürfte. Die Kältemittel in Pkw-Klimaanlagen werden in der spezifischen Füllmenge sinken, aber im Flotten-Bestand noch mindestens zehn Jahre lang zunehmen.

In den Szenarien "Ohne Maßnahmen ab 1999" und "Mit Maßnahmen bis 2003" beträgt der Entsorgungsverlust (seit 2003 relevant) 30%, und die spezifischen Füllmengen setzen den Trend zur Verkleinerung um etwa 1% jährlich fort. Befüllemissionen werden mit 2 g pro Anlage angesetzt, was auch im dritten Szenario gilt. Die Ifd. Emissionsrate auf den HFKW-Bestand beträgt 10%. Auch diese Rate bleibt in den folgenden Szenarien für HFKW-Anlagen gleich.

Das Szenario "EU-Gesetzgebung 2007" nimmt einen schrittweisen Ausstieg aus HFKW-134a in neuen Anlagen ab 2008 an, der sich bis Ende 2016 hinzieht. Die Einführungsdauer ist so lange, da ein Plattformwechsel nötig ist, nicht bloß ein Modellwechsel. Gesetzlich ist zwar erst 2011 das erste Jahr, von dem an Anlagen ohne HFKW-134a bei neuen Pkw-Plattformen zwingend sind. Jedoch wird hier damit gerechnet, dass die Automobilhersteller zugunsten eines flüssigeren Übergangs, wie angekündigt, auch schon vorher umstellen. Als Kältemittel enthalten neue Anlagen, dies ist die Unterstellung, zu 80% CO₂ und zu 20% den HFKW-152a – in fixem Verhältnis. Die Entsorgungsverluste betragen nicht mehr 30%, sondern nur 20%.

Das Szenario "Mit weiteren Maßnahmen" unterscheidet sich vom vorherigen nur dadurch, dass neue Anlagen als Alternative zu HFKW-134a ausschließlich CO₂ nutzen und der HFKW-152a nicht zum Einsatz kommt.

1.2.2 Andere mobile Klimaanlagen

Die Einführung von CO₂ in Klimaanlagen anderer landgebundener Fahrzeuge wie Lkw, Busse, Landmaschinen, Schienenfahrzeuge, ist im Prinzip an die Entwicklung bei den Pkw gekoppelt. Für ihre Klimaanlagen sieht die in der Verabschiedung befindliche EU Richtlinie aber noch keinen verbindlichen Ausstieg aus HFKW-134a vor. Darum unterscheiden sich die drei Szenarien "Ohne Maßnahmen ab 99", "Mit Maßnahmen bis 2003" und "EU-Gesetzgebung 2007" grundsätzlich nicht voneinander. Nur bei der Entsorgung wird angenommen, dass sich ab 2007 der Verlust auf 20% reduziert – gegenüber 30% in den ersten zwei Szenarien. Die Ifd. ER aus dem Kältemittelbestand beträgt jeweils 15% bei mittelschweren und schweren Lkw, bei Bussen, bei Schienenfahrzeugen und bei Ackerschleppern. Mähdrescher und Feldhäcksler weisen höhere Raten von 25% auf, leichte Nutzfahrzeuge (Straße) dagegen, wie Pkw, eine niedrigere von 10%.

Befüllemissionen werden bei Bussen und Landmaschinen mit 5 Gramm pro Anlage angenommen, bei Lkw 2 Gramm pro Anlage. Bei Schienenfahrzeugen wird mit einem Anteil von 0,2% an der Füllmenge gerechnet.

Für die vier genannten Fahrzeugarten gibt es jeweils noch ein viertes Szenario "Mit weiteren Maßnahmen". Dieses nimmt an, dass beginnend mit 2013 bei neuen Anlagen bis 2017 statt HFKW-134a ausschließlich natürliche Kältemittel eingesetzt werden (CO₂, Luft). Die rechtliche Möglichkeit dafür ist in der kommenden EU-Gesetzgebung selbst angelegt, die eine Überprüfung (review) der Ausweitung des HFKW-134a-Ausstiegs auf andere mobile Klimaanlagen vorsieht. Die zeitliche Verzögerung gegenüber Pkw-Klimaanlagen wiederum ergibt sich daraus, dass der HFKW-134a-Ausstieg vorerst noch nicht für sonstige mobile Klimaanlagen gilt.

Bei Schiffen gibt es, da aufgrund der geringen Kältemittelmengen eventuelle Unterschiede im Fehlerbereich untergehen würden, keine differenzierte Betrachtung in den vier Emissionsszenarien. Die Ifd. ER beträgt 5%, die Befüllungs-ER 1%.

1.2.3 Kühlfahrzeuge

Folgende Grundannahme liegt den Szenarien zugrunde: Bei Kühlfahrzeugen wird ein weiteres Wachstum der Kältemittelbestände angenommen, aber (mit 1,25 v. H. jährlich) nicht mehr so dynamisch wie in den Jahren bis 2003.

"Ohne Maßnahmen ab 99" und "Mit Maßnahmen bis 2003": Die Ifd. ER auf die Kältemittelbestände in den Kühlaggregaten beträgt 15%, der Entsorgungsverlust ist einmalig 30%. Befüllverluste betragen 5 Gramm pro inländisch befüllter Anlage.

Szenario "EU-Gesetzgebung 2007": Keine Änderungen gegenüber vorherigen Szenarien. Lediglich der Entsorgungsverlust sinkt ab 2007 von 30% auf 20%.

Das Szenario "Mit weiteren Maßnahmen" nimmt darüber hinaus an, dass die in der kommenden EU-Gesetzgebung vorgesehene Überprüfung (review) der möglichen Einbeziehung der Transportkälte in die Wartungspflicht verwirklicht wird, und zwar schrittweise von 2013 bis 2017. Damit sinken die Ifd. Emissionen im gleichen Zeitraum von 15% auf 10%. Die Entsorgungsverluste bleiben 20%.

1.2.4 Kühlcontainer

Folgende Grundannahme liegt den Szenarien zugrunde: Die weltweiten Emissionen werden zu 10% Deutschland zugerechnet.

"Ohne Maßnahmen ab 1999" und "Mit Maßnahmen bis 2003": Die Ifd. ER wird mit 10% und der Entsorgungsverlust mit 30% angenommen.

"EU-Gesetzgebung 2007": Keine Änderungen gegenüber den vorherigen Szenarien. Lediglich der Entsorgungsverlust sinkt ab 2007 von 30% auf 20%.

Szenario "Mit weiteren Maßnahmen" wie bei Kühlfahrzeugen (Wartungspflicht ab 2013). Die lfd. ER sinkt infolgedessen um 5% bis 2017: von 10% auf 5%.

1.3 Sonstige HFKW-Anwendungen

1.3.1 Asthmasprays

Folgende Grundannahmen liegen den Szenarien zugrunde: Das Marktwachstum beträgt dauerhaft 3% jährlich. Die Emissionen hängen davon ab, wie hoch jeweils der Anteil der Pulverinhalatoren ist.

Im Szenario "Ohne Maßnahmen ab 99" bleibt es bei der 1998er Aufteilung des Marktes in 75% Sprays (FCKW/HFKW) und 25% Pulverinhalatoren.

Dagegen schreibt das Szenario "Mit Maßnahmen bis 2003" den mittlerweile auf 45% gestiegenen Pulveranteil fest, so dass auf Sprays nur 55% des Marktes kommen.

Die "EU-Gesetzgebung 2007" berührt die medizinischen Aerosole nicht. Darum besteht kein Unterschied zum zweiten Szenario.

Das Szenario "Mit weiteren Maßnahmen" sieht vor, dass der Pulveranteil bis zum Jahr 2010 auf 55% und bis zum Jahr 2020 auf 75% ansteigt.

1.3.2 Allgemeine Sprays und Lösemittel

"Allgemeine Sprays" umfassen technische Sprays (v. a. Druckluft- und Kältesprays), Haushalts-Sprays (v. a. Abflussreiniger) und "Novelties" (z. B. Party- und Luftschlangen-Sprays). In sehr geringem Umfang kommt in technischen Sprays auch der HFKW-43-10mee als Lösemittel vor, der sonst in – ebenfalls begrenzter Menge (2.BImSchV!) – zur industriellen Feinreinigung empfindlicher Oberflächen genutzt

wird. Wegen ihrer geringen Marktbedeutung und aus Gründen der Vertraulichkeit werden HFKW-Lösemittel unter "Allgemeinen Sprays" mitgeführt.

Sowohl im Szenario "Ohne Maßnahmen ab 99" als auch im Szenario "Mit Maßnahmen bis 2003" bleibt es dauerhaft bei den Mengen, die sich zwischen 1995 bis 2003 als recht stabil erwiesen haben: Es wurden in diesem Zeitraum jährlich etwas über 160 t HFKW (hauptsächlich 134a) in Technik- und Haushalts-Sprays (einschl. geringer Mengen Lösemittel) und weitere 100 t in "Novelties" eingesetzt. Im Szenario "EU-Gesetzgebung 2007" gibt es ab 2009 (zwei Jahre nach Inkrafttreten der Verordnung) keine HFKW mehr für "Novelties".

Nach "Mit weiteren Maßnahmen" werden spätestens ab dem Jahr 2010 auch keine HFKW mehr in allgemeinen Aerosolen eingesetzt – bis auf winzige Restbestände.

1.3.3 Feuerlöschmittel

In den beiden ersten Szenarien "Ohne Maßnahmen ab 99" und "Mit Maßnahmen bis 2003" wird außer HFKW-227ea auch HFKW-23 und HFKW-236fa eingesetzt (ER 1%, 2% und 5%). Das Wachstum im Bestand beträgt bis 2018 etwa 8% jährlich, um die bestehenden Halone zu ersetzen – durch 50 t jährlichen Neuzugang von HFKW-227ea und zu geringerem, aber steigendem Teil von HFKW-23 mit 5 t (2010) bzw. 10 t jährlich (2020). Das Löschmittel HFKW-236fa ist auf militärische Nutzung beschränkt. Entsorgungsverluste betragen 2% bei HFKW-227ea und 5% bei HFKW-23 und HFKW-236fa. Befüllemissonen liegen bei 0,1%.

"EU-Gesetzgebung 2007": keine Änderung gegenüber Szenario I und II.

Das vierte Szenario "Mit weiteren Maßnahmen" unterscheidet sich von den vorherigen dadurch, dass es zu keiner Nutzung der Zulassung von HFKW-23 kommt.

1.3.4 Halbleiter

Von den HFKW wird hier nur der HFKW-23 (CHF₃) eingesetzt. Im Szenario "Ohne Maßnahmen ab 99" wird auf die durchschnittlichen Emissionen der Jahre 1995-1998 die damalige jährliche Wachstumsrate der Emissionen von 10% bis 2010 bzw. 2020 angelegt.

Die drei Szenarien "Mit Maßnahmen bis 2003", "EU-Gesetzgebung 2007" und "Mit weiteren Maßnahmen" nehmen an, dass bis zum Jahr 2010 die Emissionen auf 10% unter das Niveau von 1995 fallen. Dies entspricht der weltweit eingegangenen Selbstverpflichtung aus dem Jahr 1999, der sich mittlerweile auch die deutsche Halbleiterindustrie angeschlossen hat. Auch unabhängig von einer formalen Vereinbarung haben die Hersteller aber bereits seit 1999 technische Maßnahmen zur Prozessoptimierung und Abgasbehandlung eingeleitet und umgesetzt. Bis 2020 bleiben die Emissionen dann konstant.

1.4 Schaumstoffe

1.4.1 XPS-Schaum

Generell wird bis zum Jahr 2010 und weiter bis 2020 ein Wachstum von inländischer Produktion und inländischem Verbrauch von XPS um 2% jährlich angenommen. Bei Nutzung von HFKW-152a emittiert das Treibmittel vollständig im Produktionsjahr (Erstjahr-ER: 100%). Es bleibt kein HFKW im Dämmstoff, so dass keine HFKW-Bank entsteht, aus der Ifd. Emissionen (Nutzphase) entweichen könnten (Lfd. ER = 0%). Bei Nutzung des HFKW-134a emittieren nur 25% (ab 2004) im Produktionsjahr (Erstjahr-ER: 25%), während 75% im XPS-Produkt verbleiben. Die Ifd. ER aus der Nutzung beträgt dann 0,66% jährlich. Zu beachten ist jedoch, dass nur ein Teil der 134a-haltigen Jahresproduktion den Inlandsbestand erhöht, da 75% der produzierten Menge exportiert werden. (Die in den exportierten XPS-Dämmstoffen enthaltenen HFKW müssen der Bank der jeweils importierenden Länder zugerechnet werden.)

"Ohne Maßnahmen ab 1999": Es wird ein 1:1-Umstieg von den in 1998 eingesetzten H-FCKW-Mengen auf HFKW unterstellt. Diese sind zur Hälfte HFKW-134a und HFKW-152a.

"Mit Maßnahmen bis 2003": Beim effektiven HFCKW-Ausstieg in 2001 wurde ein beträchtlicher Teil der XPS-Platten schon ohne halogenierte Treibmittel produziert. Die jährlichen HFKW-Einsatzmengen sind daher niedriger als im ersten Szenario und teilen sich unter Fortschreibung der 2001er Relation bis 2010 in 2343 t HFKW-134a und 1673 t HFKW-152a auf. Die Mengen steigen bis 2020 auf 2856 t (HFKW-134a) bzw. 2040 t (HFKW-152a).

Obwohl die "EU-Gesetzgebung 2007" keine Maßnahmen für XPS-Schaum vorsieht, so dass die gleichnamige Bezeichnung für das dritte Szenario nur mit Einschränkungen passt, reflektiert das dritte Szenario gegenüber dem zweiten einige Änderungen, die in der Diskussion der XPS-Produzenten um eine mögliche SV entstanden: HFKW-134a wird auf bestehenden Anlagen wie im zweiten Szenario weitergenutzt. Dagegen wird der Einsatz von HFKW-152a bis 2020 schrittweise auf Null gebracht. Die Alternative zu 152a ist CO₂, zumindest zu 90%. Zehn Prozent der XPS-Produkte, für die im zweiten Szenario HFKW-152a genutzt wurde, werden mit HFKW-134a geschäumt. Diese zusätzlichen HFKW-134a-haltigen Platten werden zu 75% exportiert.

Szenario "Mit weiteren Maßnahmen": In diesem Szenario wird zugrunde gelegt, dass auch die Anwendung des HFKW-134a bis zum Jahr 2010 schrittweise auf 20% (harte Fälle) reduziert wird und bis zum Jahr 2020 ganz eingestellt ist. Damit bleiben nur noch die Emissionen aus der Nutzphase bestehen.

1.4.2. PU-Schaum

Generell wird ab 2004 bis zum Jahr 2010 bei PU-Hartschaum ein Wachstum des Verbrauchs von 3% jährlich angenommen, aber ab 2011 wird konstanter Verbrauch unterstellt. Das neue Treibmittel ist der HFKW-365mfc, genauer eine Mischung aus 93% HFKW-365 und 7% HFKW-227ea. Das konkurrierende Treibmittel HFKW-245fa wird hier nicht gesondert betrachtet, sondern gilt als mit erfasst. Der HFKW-134a kam bis 2003 bei Hartschaum in Sandwichplatten zum Einsatz. Im kleinen Bereich

der Integral-Schäumung wird er auch nach 2004 weiter genutzt. Hier teilt er sich den kleinen Markt zunächst mit HFKW-365mfc im Verhältnis 3 zu 1.

"Ohne Maßnahmen ab 1999": Die großen PU-Sektoren der Kühlgeräte, Sandwich-Elemente (bis auf ein Produktionswerk) und Baudämmplatten haben bis 1998 auf Kohlenwasserstoffe (Pentane) als Treibmittel umgestellt. Angenommen wird, dass die noch verbliebenen H-FCKW-Mengen (für 1998 auf 3000 t/a geschätzt) gänzlich durch neue HFKW (365mfc mit 227ea-Zusatz, alternativ: 245fa) ersetzt werden. HFKW-134a bleibt bei Sandwichelementen im Einsatz. Zudem werden HFKW dauerhaft für Integralschaum genutzt mit konstanten 80 t/a – 60 t HFKW-134a und 20 t HFKW-365mfc.

"Mit Maßnahmen bis 2003": Zwischen 1998 und 2003 gingen weitere H-FCKW-Anwendungen auf Kohlenwasserstoffe über. Ende 2003 wurde gegenüber 1998 nur noch die Hälfte an HFCKW-141b (1500 t/a) verbraucht. Angenommen wird bei PU-Hartschaum ab 2004 ein 1-zu-1-Umstieg dieser Menge auf HFKW-365mfc, die bis 2010 jährlich um 3% zunimmt. (Der Einsatz von HFKW-134a beim Hartschaum für Sandwichelemente wurde Ende 2003 eingestellt.) Einsatzgebiete für HFKW-365mfc sind diskontinuierlich hergestellte Dämmplatten (Kleinserien), Blockschaum, Rohrisolierung (Fernwärme + Gießschaum) und vor allem Spritzschaum. Der HFKW-Einsatz für Integralschaum bleibt wie im Szenario "Ohne Maßnahmen".

Die durchschnittlichen Erstjahremissionen beim PU-Hartschaum sind aufgrund des großen Anteils von offen appliziertem Spritzschaum in der Produktpalette relativ hoch, nämlich 15%. Sie liegen damit höher als im ersten Szenario (12,5%), wo der Spritzschaum ein relativ geringeres Gewicht hat. Die Ifd. ER für die Nutzphase (Bank) beträgt generell 1%. Beim Integralschaum emittiert das eingesetzte Treibmittel vollständig in der Produktion.

Da die "EU-Gesetzgebung 2007" keine Maßnahmen für PU-Schaum vorsieht, unterscheidet sich das dritte Szenario nicht vom zweiten.

"Mit weiteren Maßnahmen": Es findet kein 1-zu-1-Umstieg von HFCKW-141b auf neue, flüssige HFKW statt, sondern nur ein Teilumstieg. So werden keine HFKW bei der Rohrisolierung eingesetzt. Bei Spritz- und Blockschaum erfolgt der HFKW-Einstieg gegenüber dem "Mit Maßnahmen bis 2003"-Szenario nur zu 50%. Ab 2008 gibt es kein HFKW-Wachstum mehr und ab 2015 eine Halbierung des HFKW-Verbrauchs. Bei diskontinuierlichen Platten (Kleinserie) werden HFKW nur zu 20% gegenüber den beiden vorigen Szenarien genutzt. Ab 2008 gibt es kein HFKW-Wachstum mehr, und ab 2015 werden keine HFKW mehr eingesetzt. Beim Integralschaum wird ab 2008 bis abschließend zum Jahr 2014 auf HFKW verzichtet.

1.4.3 Montageschaum (einkomponentig)

Im Szenario "Ohne Maßnahmen ab 99" werden die Bedingungen des Jahres 1998 langfristig beibehalten: Der Inlandsmarkt beträgt dauerhaft die 26 Mio. Dosen des Jahres 1998, der HFKW-Gehalt pro Dose 70 Gramm, die Relation zwischen 134a und 152a ist 60 zu 40. Die inländische Abfüllung beträgt 16 Mio. Dosen, wobei 1,5 Gramm Treibgas (nur 134a) pro Dose bei der Befüllung entweichen.

Das Szenario "Mit Maßnahmen bis 2003" nimmt dagegen an, dass der Markt 22 Mio. Dosen umfasst (Durchschnitt der Jahre 1995-2003). Der HFKW-Gehalt pro Dose (750 ml) bleibt auf dem Status quo des Jahres 2003 mit nur noch 47 Gramm, ebenso wie die inzwischen auf 44,5 zu 55,5% veränderte HFKW-Zusammensetzung zwischen 134a und 152a. (Inlandsabfüllung: 26 Mio. Dosen – wie 2003).

Das Szenario "EU-Gesetzgebung 2007" nimmt die Bestimmung der EU-Verordnung ab 2008 als geltend an, dass HFKW-haltiger Montageschaum nur noch in Verkehr gebracht werden darf, wenn zur Einhaltung nationaler Sicherheitsnormen erforderlich. Zur Vereinfachung wird für das Szenario angenommen, dass HFKW weiterhin dort eingesetzt werden, wo gemäß Herstellerangaben das Treibmittel aus Sicherheitsgründen schwer entflammbar sein muss. Diese Menge haben Hersteller auf 5% des inländischen Verbrauchs (z. B. untertage) beziffert. Der Angabe folgend wird eine Reduktion HFKW-haltiger Schaumdosen bei Absatz und Produktion um 95% gegenüber dem zweiten Szenario angenommen. Markt und Produktion werden durch brennbare Treibmittel bestimmt. Die Brandschutzklasse B2 wird mittels veränderter Formulierungen dennoch eingehalten. HFKW-Gehalt und HFKW-Zusammensetzung bei den verbleibenden Dosen bleiben wie im zweiten Szenario.

Szenario "Mit weiteren Maßnahmen": Absatz- und Produktionszahlen von Dosen wie vorher. Auch die 5% HFKW-haltigen Dosen mit einkomponentigem Montageschaum erweisen sich als nicht notwenig und werden durch brennbare Treibmittel (Propan, Butan, Dimethylether) ersetzt. Für Zweifelsfälle bleibt die Möglichkeit, zweikomponentigen Schaum (ohne HFKW) zu verwenden. Ab 2010 werden keine HFKW mehr eingesetzt, weder bei Produktion noch bei Anwendung.

1.5 Nebenprodukt-Emissionen von HFKW-23

Wegen Vertraulichkeitszusage werden keine absoluten Zahlen genannt.

Das Szenario I nimmt die Emissionen des Jahres 1998 (die unter denen von 1995 liegen) als konstant bis 2020 an. HFCKW-22 darf als Ausgangsstoff für Fluorkunststoff (PTFE) ohne zeitliche Begrenzung produziert werden.

Im zweiten und dritten Szenario sind die Emissionen deutlich niedriger, nämlich jeweils auf dem Stand von 2003, und zwar sowohl 2010 als auch 2020. Der Wert beträgt nur noch 17,5% des 1998er Ausgangswerts in Szenario I.

Das letzte Szenario unterstellt, dass es bis 2010 gelingt, die Emissionen noch einmal zu halbieren. Dieser abgesenkte Wert wird bis 2020 gleich gelassen.

2. FKW-Emissionen 2010 und 2020

2.1 Aluminiumindustrie

"Ohne Maßnahmen ab 1999": Hier wird die Selbstverpflichtung (SV) der Aluminium-Industrie von 1997 angenommen, die bis zum Jahr 2005 die spezifischen CF₄-Emissionen pro Tonne Al auf 0,22 kg halbieren wollte. Dieser Wert wird danach konstant gehalten und mit einer jährlichen Metallproduktion von 583.872 t multipliziert, dem durchschnittlichen Hüttenausstoß der Jahre 1995-1998.

Die folgenden drei Szenarien rechnen mit höheren Produktionsmengen, nämlich 653.000 t/a. Dies ist der Durchschnitt der Jahre 2000-2003. Ev. Kapazitätsabbau durch immer wieder diskutierte Hüttenstilllegungen wird nicht berücksichtigt.

Sowohl das Szenario "Mit Maßnahmen bis 2003" als auch das "Szenario "EU-Gesetzgebung 2007" (letztere berührt die Aluminiumindustrie nicht) schreiben die spezifischen CF₄-Werte pro Tonne Aluminium, die im Durchschnitt der Jahre 2000 bis 2003 bestanden, fort. Dieser Koeffizient betrug nach Angaben des Verbands im Mittel aller Hütten nur 0,084 kg/t Al.

Aufgrund der erfolgreichen Emissionsminderung durch die Alu-Industrie nimmt das "Mit weiteren Maßnahmen"-Szenario an, dass der Prozess noch weitergeht. Unterstellt wird, dass alle inl. Hütten ab 2009 die emisssionsärmere Pointfeeder-Technologie eingeführt haben, so dass der spezifische Wert CF₄ pro Tonne Aluminium sowohl 2010 als auch 2020 nur noch 0,067 kg beträgt.

2.2 Kältemittel

In allen Szenarien wird angenommen, dass der – geringe - Bestand von R-218 als Servicekältemittel in Altanlagen ab 2013 entfernt ist. In 2010 sind daher noch Emissionen aus Betrieb (15% ER) und Entsorgung (30% ER) zu erwarten.

Der zweite FKW, R-116, ist Bestandteil des Tieftemperatur-Kältemittels R-508B. Er wird in Neuanlagen der Industrie- und Gewerbekälte genutzt. Die Szenarien sind in ihren Einsatzmengen, spezifischen Emissionsraten und Anteilen natürlicher Kältemittel mit denen identisch, die bei den HFKW-Kältemitteln beschrieben wurden.

2.3 Leiterplattenfertigung

Es wurden keine getrennten Szenarien gerechnet, sondern überall eine gleich bleibende Einsatzmenge von 2,4 t /a angenommen, von der 2 t/a emittieren.

Tab. 12 Entwicklung der FKW-Emissionen (in t)

Sektoren	Ausgangs- Werte		Ohne Maßnahmen ab 99		nahmen 2003	EU Gese 20	tzgebung 07	Mit weiteren Maßnahmen	
	1995	2010			2010 2020		2010 2020		2020
Aluminiumproduktion	230	141	141	60	60	60	60	48	48
Halbleiterherstellung	23	85	221	20	20	20	20	20	20
Leiterplattenfertigung	2	2	2	2	2	2	2	2	2
Kältemittel	1,2	8,5	8,5 5,6		5,6	6,6	3,3	6,6	2,4
Insgesamt	256	237	237 370		91 88		86	77	73

Tab. 13 Entwicklung der FKW-Emissionen (in Mio. t CO₂- Äquivalente)

Sektoren	Ausgangs-	Ohne Maßnahmen		Mit Maß	nahmen	EU Gese	tzgebung	Mit weiteren	
	Werte	ab 9	99	bis 2	2003	20	07	Maßn	ahmen
	1995	2010	2020	2010	2020	2010	2020	2010	2020
Aluminiumproduktion	1,552	0,953	0,953	0,408	0,408	0,408	0,408	0,325	0,325
Halbleiterherstellung	0,177	0,682	1,769	0,159	0,159	0,159	0,159	0,159	0,159
Leiterplattenfertigung	0,013	0,013	0,013	0,013	0,013	0,013	0,013	0,013	0,013
Kältemittel	0,008	0,072	0,072 0,051		0,051	0,054	0,030	0,054	0,022
Insgesamt	1,750	1,720	2,786	0,652	0,631	0,634	0,610	0,551	0,519

2.4 Halbleiterindustrie

Vorbemerkung: Seit dem Jahr 2000 hat sich der Emissionsanstieg aus der Halbleiterindustrie deutlich verlangsamt. Während Emissionen neuerer PFCs wie C_3F_8 und $c-C_4F_8$ zunehmen, nehmen Emissionen der klassischen Gase C_2F_6 und CF_4 sogar tendenziell ab.

Im Szenario "Ohne Maßnahmen ab 99" werden die Bedingungen der Jahre 1995 bis 1998 in die Zukunft fortgeschrieben. Für jeden PFC-Typ wird auf seinen Durchschnittswert aus den Jahren 1995 bis 1998 eine jährliche Wachstumsrate der Emissionen von 10% bis 2010 bzw. 2020 angelegt, da dies die Größenordnung in den Jahren 1995 bis 1998 war.

Die Szenarien "Mit Maßnahmen bis 2003", "EU-Gesetzgebung 2007" und "Mit weiteren Maßnahmen" nehmen an, dass bis zum Jahr 2010 die Emissionen auf 10% unter das Niveau von 1995 fallen. Dies entspricht der weltweit eingegangenen Selbstverpflichtung aus dem Jahr 1999. Diese Ziele hat mittlerweile (2005) die deutsche Halbleiterindustrie in einer eigenen Selbstverpflichtung für sich übernommen. Auch hat die deutsche Halbleiterindustrie unabhängig von einer Selbstverpflichtung bereits seit 1999 emissionsmindernde technische Maßnahmen eingeleitet und umgesetzt. Bis 2020 bleiben die Emissionen dann konstant.

3. SF₆-Emissionen 2010 und 2020

3.1 Elektrische Energieübertragung

Bei elektrischen Betriebsmitteln zur Energieübertragung werden Schaltanlagen der Hoch- und Mittelspannung sowie dazugehörige Bauelemente (Wandler, Durchführungen) auf Basis der von ZVEI und VDN/VIK erhobenen Daten berücksichtigt. Alle Szenarien nehmen beim SF₆-Inlandsverbrauch (hoher Exportanteil) einen jährlichen Anstieg von 2,5% an, der vor allem durch MS-Anlagen bestimmt ist. Der Inlandsbestand steigt von 2003 bis 2010 von 1500 auf 1900 t an. Dann beginnt in größerem Maße die Entsorgung, so dass der Gesamtbestand bis 2020 noch auf 2100 t wächst, die je zur Hälfte in HS- bzw. MS-Anlagen enthalten sind.

Das Szenario "Ohne Maßnahmen ab 99" setzt die Emissionsraten des Jahres 1998 konstant. Werks- und Montageverluste bei Schaltanlagen der Hoch- und Mittelspannung bleiben bei 6,1 bzw. 2,0% - bezogen auf den inl. Verbrauch. Bei Bauelementen (tw. offene Anwendungen) bleiben die 14 t/a (absolut) bzw. 28% (relativ zum Verbrauch) bestehen. Die Verluste aus dem Bestand betragen 0,872% (HS) bzw. 0,1% (MS). Verluste am Lebensende werden mit 2% kalkuliert, weil schon seit Mitte der 90er Jahre hohe Sorgfalt bei Außerbetriebnahmen und die Funktionstüchtigkeit des SF₆-Entsorgungskonzepts ("ReUse") unterstellt werden konnte.

"Mit Maßnahmen bis 2003": Die bis 2003 abgesenkten Emissionsraten bleiben für die Zukunft konstant. Werks- und Montageverluste betragen in HS und MS nur je 1,5%, bei Bauelementen 25% (12,4 t/a absolut). Die Verluste aus dem installierten Bestand sind 0,82% (HS). Die laufenden Emissionen in MS-Anlagen und die Verluste am Lebensende sind die gleichen wie im ersten Szenario.

Die EU-Gesetzgebung hat auf in Deutschland installierte elektrische Betriebsmittel keinen Einfluss. Darum sind die Emissionswerte des dritten Szenarios mit denen des zweiten identisch.

Das Szenario "Mit weiteren Maßnahmen" sieht die Ziele der im Jahr 2005 auf erweiterter Grundlage erneuerten Selbstverpflichtung der deutschen Industrie, der Betreiber und des SF₆-Herstellers als durchführbar an. Die Bestandsemissionen gehen in der HS allmählich bis auf 0,6% zurück und halten ihren niedrigen Wert von 0,1% in der MS. Werks- und Montageverluste bleiben bei Schaltanlagen bei 1,5%. Durch weitgehende Beendigung offener Anwendungen bei Bauelementen sinken dort die Werksverluste von 25% auf 3% ab. Die inländischen Gesamtemissionen unterschreiten 17 t in 2020 (nach 43,4 t in 1995).

3.2 Sonstige elektrische Anwendungen

Hier werden im Wesentlichen die Emissionen von Teilchenbeschleunigern (in Forschung, Industrie und Medizin) und Starkstromkondensatoren erfasst. Für Teilchenbeschleuniger werden in allen Szenarien unveränderter Bestand und konstante Rate der Betriebsemissionen (6%) angenommen.

Tab. 14 Entwicklung der SF₆-Emissionen (in t)

Sektoren	Ausgangs-		Ohne Maßnahmen (Weiter wie 1995-1998)		ahmen	EU Geset		Mit weiteren Maßnahmen	
	Werte	`		bis 20		200			
	1995	2010	2020	2010	2020	2010	2020	2010	2020
El. Energieübertragung	43,4	47,5	47,7	29,7	30,0	29,7	30,0	22,5	16,6
Sonst. El. Anwendungen	5,2	17,0	17,0	6,0	6,0	6,0	6,0	5,0	5,0
Magnesiumguss	7,7	40,9	70,8	33,1	53,1	4,0	7,0	0	0
Schallschutzscheiben	107,9	127,0	198,5	95,3	162,0	84,3	149,1	84,3	149,1
Autoreifen	110,0	30	30	2,5	2,5	0	0	0	0
Sportsch./NAEWF/Glasfaser	18,5	10	10	10	10	10	10	10	10
Spureng./Aluminiumreinigung	1,0	40,5	40,5	40,5	40,5	40,5	40,5	0,5	0,5
Sonstiges	9,0	16,6	27,2	10,4	10,4	10,4	10,4	10,4	10,4
Insgesamt	303	329	442	228	314	185	253	133	192

Tab. 15 Entwicklung der SF₆-Emissionen (in Mio. t CO₂- Äquivalente)

Sektoren	Ausgangs- Werte	Ohne Maßnahmen (Weiter wie 1995-1998)		Mit Maßr bis 20		EU Gesetzgebung 2007		Mit weiteren Maßnahmen	
	1995	2010	2020	2010	2020	2010	2020	2010	2020
El. Energieübertragung	1,036	1,135	1,140	0,711	0,716	0,711	0,716	0,537	0,398
Sonst. El. Anwendungen	0,125	0,405	0,405	0,142	0,142	0,142	0,142	0,118	0,118
Magnesiumguss	0,185	0,977	1,692	0,791	1,269	0,096	0,167	0	0
Schallschutzscheiben	2,578	3,036	4,745	2,279	3,872	2,015	3,564	2,015	3,564
Autoreifen	2,629	0,717	0,717	0,060	0,060	0	0	0	0
Sportsch./NAEWF/Glasfaser	0,442	0,239	0,239	0,239	0,239	0,239	0,239	0,239	0,239
Spureng./Aluminiumreinigung	0,024	0,968	0,968	0,968	0,968	0,968	0,968	0,012	0,012
Sonstiges	0,216	0,397	0,650	0,248	0,248	0,248	0,248	0,248	0,248
Insgesamt	7,235	7,875	10,556	5,438	7,514	4,418	6,045	3,169	4,579

Für die stark emissive Herstellung von Starkstromkondensatoren schreibt das Szenario "Ohne Maßnahmen ab 1999" die Emissionen des Jahres 1998 in die Zukunft fort. Im Jahre 2002 wurde It. Herstellerangaben der Plan zur Produktionseinstellung (bis 2010) gefasst; rückläufige Emissionen sind seit jenem Jahr feststellbar. Davon ausgehend, nehmen das Szenario "Mit Maßnahmen bis 2003" und das Szenario "EU-Gesetzgebung 2007" für 2010 und 2020 lediglich noch 1 t/a Emissionen für Servicezwecke an. Auch diese Menge entfällt im letzten Szenario ("Mit weiteren Maßnahmen").

3.3 Magnesiumguss

Dem Trend der Jahre 1995-2003 folgend wird in allen Szenarien eine konstante Steigerung der Metallproduktion um jährlich 3000 t unterstellt, was zu 41.000 t in 2010 bzw. 71.000 t in 2020 führt.

Im Szenario "Ohne Maßnahmen ab 1999" bleibt der Koeffizient "kg SF₆ pro Tonne Magnesiumguss" konstant auf dem historischen Wert von 1998, nämlich genau 1.

Das Szenario "Mit Maßnahmen bis 2003" verlängert die Zunahme des SF $_6$ -Verbrauchs der Jahre 2000 bis 2003 unverändert in die Zukunft. Die Zunahme zwischen 2000 und 2003 betrug 2000 kg pro Jahr. Der SF $_6$ -Koeffizient pro t Mg beträgt 0,79 in 2010 und 0,72 in 2020. (2003: 0,83).

Im Szenario "EU-Gesetzgebung 2007" sinken die SF_6 -Emissionen deutlich, da vorgesehen ist, ab 1.1.2008 die Anwendung dieses Schutzgases nur noch in Betrieben mit weniger als 850 kg jährlichem SF_6 -Verbrauch zuzulassen.

Das Szenario "Mit weiteren Maßnahmen" geht darüber hinaus und unterstellt, dass spätestens ab 2010 kein SF₆ mehr zum Einsatz kommt, auch nicht in Kleinbetrieben. Die Anwender von über 850 kg SF₆ verwenden ab 2008 andere Schutzgase, und zwar zu 75% HFKW-134a und zu 25% SO₂ oder Hydrofluorether. Dementsprechend muss das HFKW-Szenario "EU-Gesetzgebung 2007" einen Anstieg bei den Emissionen des HFKW-134a (von 0 auf 11 bzw. 17 t/a) berücksichtigen. Im Szenario "Mit weiteren Maßnahmen" sind die Werte 12 und 20 t/a. (Zu beachten ist, das sich die spez. Einsatzmenge von 134a gegenüber SF₆ halbiert.)

3.4 Schallschutz

In allen vier Szenarien für 2010 und 2020 sind die Entsorgungsverluste aus dem Rückbau von Schallschutzscheiben nicht nur unverändert hoch (67 bzw. 143 t/a), sondern sie machen in 2020 überall mehr als die Hälfte aller inländischen SF₆-Emissionen aus. Bis 2020 ist daher die Wirksamkeit von Maßnahmen zur Emissionsdämpfung von SF₆ begrenzt, da Rückgewinnung aus alten Schallschutzscheiben aus Kostengründen als undurchführbar gilt. Vor 2020 können Maßnahmen, welche die neue Nutzung von SF₆ unterbinden (wie die EU-Gesetzgebung) immerhin die Herstellungsemissionen stoppen und die Bestandsemissionen reduzieren.

Das Szenario "Ohne Maßnahmen ab 99" setzt den 1998er jährlichen Neuverbrauch von 111 t langfristig konstant. Er entspricht einem Verhältnis zwischen SF₆ und Argon im Scheibenzwischenraum von 30% zu 70%.

Das Szenario "Mit Maßnahmen bis 2003" nimmt an, dass es künftig bei den auf 10 t verringerten Emissionen des Jahres 2003 aus dem Neuverbrauch von 30 t/a bleibt.

Diese 10 t Befüllemissionen entfallen in den beiden folgenden Szenarien "EU-Gesetzgebung 2007" und "Mit weiteren Maßnahmen", in denen ein Ende des Neuverbrauchs ab 2007 angenommen wird.

3.5 Autoreifen

Bei Autoreifen-Füllgas, einst die größte Einzelemissionsquelle von SF₆, hat sich das Konsumverhalten deutlich geändert. Das Szenario "Ohne Maßnahmen ab 99", das den Neuverbrauch von 1998 unverändert fortschreibt, gelangt zu 30 t Emissionen jährlich. Das Szenario "Mit Maßnahmen bis 2003" schreibt den Neuverbrauch des Jahres 2003 fort, der nur noch 2,5 t/a beträgt. Im Szenario "EU-Gesetzgebung 2007" gibt es 2010 aufgrund des Einsatzverbots ab 2007 keine (Entsorgungs-) Emissionen mehr. Das Szenario "MWM" braucht darüber nicht hinauszugehen.

3.6 Sportschuhe/NAEWF/Glasfasern

Aus Vertraulichkeitsgründen wird hier nicht nach Herstellungs- Bestands- und Entsorgungsemissionen unterschieden. Außerdem werden alle Emissionen aus Sportschuhsohlen, dem Radarbetrieb der NATO-AWACS-Aufklärungsflugzeuge (NAEWF), soweit deutschem Territorium zurechenbar, sowie aus der Fluordotierung von Glasfaserkabeln zusammengefasst. Dies ist insofern nur hypothetisch, als nämlich Emissionen für 2010/2020 aus Sportschuhsohlen in keinem Szenario mehr vorkommen, auch nicht im Szenario "Ohne Maßnahmen ab 99". Denn der Hersteller NIKE hatte bereits 1998 weltweit mit der Umsetzung der Maßnahme begonnen, in Schuhsohlen SF $_6$ durch Stickstoff zu ersetzen. Der momentane Verlauf des NIKE Ausstiegprogramms lässt es als sehr wahrscheinlich erscheinen, dass es im Jahre 2010 keine SF $_6$ -Emissionen aus dieser Quelle mehr gibt.

Für die prognostizierten Emissionen sind somit militärisches Flugzeugradar und die Glasfaserproduktion verantwortlich. Letztere, die Fluordotierung von Glasfasern für Netzwerkkabel u. dgl., ist stark emissiv und in Deutschland seit 2002 relevant. Mangels besserer Prognosemöglichkeiten nehmen alle vier Szenarien die bei der Herstellung bislang jährlich anfallenden Emissionen als konstant an.

Ebenfalls Konstanz wurde für Emissionen durch das AWACS-Radar in allen vier Szenarien unterstellt.

3.7 Spurengas und Aluminium-Reinigung

Die Emissionen aus der Anwendung von SF₆ als Spurengas bleiben in allen Szenarien gleich, nämlich auf dem niedrigen Niveau der Jahre 1995 bis 2003.

Zur Reinigung von Aluminium in Gießereien (Schmelzen) wurden Mitte der neunziger Jahre jährlich nicht mehr als 0,5 t SF₆ (SF₆ als Zusatz zu einem Inertgasgemisch) eingesetzt. Seit 1998 jedoch wurde die Anwendung von purem SF₆ drastisch ausgeweitet auf die unerwartet hohe Menge von 45 t im Jahr 2003. Mangels anderer Erkenntnisse wird bislang Neuverbrauch mit Emission gleichgesetzt. In den ersten drei Zukunftsszenarien werden vorläufig 40 t/a Emissionen aus dieser Anwendung unterstellt (Durchschnitt der Jahre 2002/2003), solange keine Herstellerpläne für eine Änderung bekannt sind. Das Szenario "Mit weiteren Maßnahmen" nimmt allerdings an, dass bis 2010 eine klimaneutrale Lösung in der Alu-Reinigung gefunden ist.

3.8 Halbleiterindustrie

Es wird das gleiche Schema wie bei HFKW-23 und FKW zu Grunde gelegt.

3.9 Sonstiges

Außer Produktionsverlusten bei der Herstellung sind hier einige kleinere Anwendungen enthalten, die für sich genommen sehr gering sind. Es wird mit konstanten 10 t/a Emissionen in allen Szenarien gerechnet.

III. Tabellen-Anhang

Auf den nachfolgenden zwölf Seiten werden sämtliche historischen F-Gas-Emissionen von 1995 und von 1998 bis 2003 als auch die für 2010 und 2020 vorhergesagten Emissionen, jeweils in vier Szenarien, im Detail wiedergegeben.

Es erfolgt nicht nur eine Unterteilung in die einzelnen Sektoren, sondern innerhalb der Sektoren wird auch noch nach Emissionsarten unterschieden, meist nach Herstellungs-, Bestands- und Entsorgungs-Emissionen.

Links, auf den mit geraden Zahlen nummerierten Seiten, befinden sich die bis einschließlich 2003 stattgefundenen Emissionen. Rechts, auf den ungeraden Seiten schließen sich die prognostizierten Werte für 2010 und 2020 an.

Es sei darauf hingewiesen, dass aus Vertraulichkeitsgründen einige wenige Werte nicht im Detail, sondern nur aggregiert ausgewiesen werden können.

Der Einfachheit halber sind die Tabellen in ihrer englischen Bearbeitung belassen worden.

	A	В	С	Е	F	G	Н	1	J	L
1								-		
2		Ta	able In	dividua	al F-Ga	s Emis	sions			
3										
	HFCs		1995	1998	1999	2000	2001	2002	2003	
	Stationary Refrig./AC									
6 7	Industrial Refrigeration	₩								
	Operating Emiss. [t] HFC-134a	H	4	34	47	57	68	78	88	
	R-404A	H	3	38	59	80	102	123	144	
	R-407C	H	1	4	5	8	10	12	14	
	HFC-23		0.7	2.1	2.7	3.4	4.0	5	5	
	HFC-227	Ħ	0.1	1.3	1.8	2.3	2.8	3.4	3.9	
	PFC-116			0.1	0.2	0.2	0.3	0.4	0.4	
	Disposal Emiss. [t]									
	HFC-134a								2.40	
	R-404A								1.50	
	R-407C								0.90	
	HFC-23 HFC-227	+	+						0.90	
	PFC-116	+	+						0.00	
	Manuf. Emiss. [t]	+	+						0.00	
	HFC-134a	$\dagger \dagger$	0.1	0.3	0.2	0.2	0.2	0.2	0.2	
	R-404A		0.1	0.4	0.5	0.5	0.5	0.5	0.5	
	R-407C	╽	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	HFC-23	П	0.0	0.0	0.0	0.01	0.0	0.0	0.0	
	Subtotal Emiss. w/o PFC	Ц	9	80	117	152	187	222	262	
	Kilotonnes CO2 equiv.	ш	26	203	300	396	492	588	701	
	Commercial Refriger.	4	1995	1998	1999	2000	2001	2002	2003	
	Operating Emiss. [t] HFC-134a	H	10	150	200	222	250	202	202	
	R-404A		19 18	153 167	200 234	233 298	258 361	283 424	303 486	
	R-407C	H	0	107	234	4	7	11	15	
	HFC-23		0.1	0.4	0.9	1.6	2.3	3.0	3.7	
	PFC-116	Н	0	0.4	0.7	1.0	1.4	1.7	2.1	
	PFC-218	П	1.2	7.2	9.2	10.1	10.8	11.4	11.6	
36	HFC-152a		0.5	10.7	13.7	15.0	15.4	15.4	14.9	
	HFC-125		15	52	59	62	62.7	62.9	62.5	
	Disposal Emiss. [t]									
	HFC-134a	<u> </u>							24.3	
	R-404A	H							5.0	
	R-407C HFC-23	+	+						0.3	
	PFC-116	+	+						0.3	
	PFC-218	+							0.3	
	HFC-152a	\dagger	+						2.0	
46	HFC-125	\prod							1.8	
	Manuf. Emiss. [t]	П		-						
	HFC-134a	Щ	0.4	1.0	0.8	0.6	0.6	0.6	0.6	
	R-404A	\sqcup	0.5	1.4	1.4	1.3	1.3	1.3	1.3	
	R-407C	+	0.0	0.0	0.0	0.1	0.1	0.1	0.1	
	HFC-23 PFC-116	+	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Subotal Emiss. w/o PFCs	Н	54	386	0.0 512	615	0.0 708	801	921	
	Kilotonnes CO2 equiv.	Н	130	901	1,209	1,480	1,732	1,985	2,283	
	Stat. AC + Heat Pumps		1995	1998	1999	2000	2001	2002	2003	
	Operating Emiss. [t]	Ħ								
57	HFC-134a		8.7	46.50	57.05	64.44	71.59	78.15	84.76	
	R-407C	П	0.02	2.27	8.74	20.36	35.26	50.77	66.46	
	R-410A	\coprod		0.01	0.05	0.17	0.77	1.79		
	R-404A	\sqcup	0.01	0.10	0.14	0.19	0.25	0.33	0.43	
	Disposal Emiss. [t]	+								
	HFC-134a R-407C	+								
	R-407C R-410A	+	+							
	R-404A	+	+							
55	10 // 1									

	М	N (Р	Q R	S	T l	V	W
1	141		1 '	ς			1	
2								
3								
4	2010	2020	2010	2020	2010	2020	2010	2020
5								
6								
7		res from 99		ires until 2003	EU Legisla			r Measures
8	114	114	108	108	92	89	91	55
9	297 21	297 21	215 21	215 21	190 19	184 18	188 18	115 11
11	7	6.7	7	6.7	5.9	6	5.8	4
12	5.1	5.1	5.1	5.1	4.5	4.4	4.4	2.7
13	0.7	0.7	0.7	0.7	0.6	0.6	0.6	0.4
14	-	-	-					_
15	49	49	44	44	30	30	30	22.2
16	127	127	92	92	61	61	61	46.0
17	9	9	9	9	6	6	6	4.5
18	2.9	2.9	2.9	2.9	1.9	1.9	1.9	1.4
19	2.2	2.2	2.2	2.2	1.5	1.5	1.5	1.1
20	0.3	0.3	0.3	0.3	0.2	0.2	0.2	0.2
21	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1
23	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
26	635	635	507	507	412	402	408	263
27	1,774	1,774	1,378	1,378	1,125	1,097	1,114	720
28	2010	2020	2010	2020	2010	2020	2010	2020
29		res from 99		res until 2003	EU Legisla	ation 2007		r Measures
30	252	252	252	252	155	131	154	92
31	613	613	613	613	373	313	371	217
32	46 7.2	49	46	49	28	25	28	17
33	7.7							
		7.2	7.2	7.2	5.4	5.0	5.4	3.5
34	4	7.2	4	7.2	2.1	5.0 1.8	2.1	3.5 1.2
34 35								
34 35 36	1.5		1.5		2.1 1.5		2.1 1.5	
34 35 36 37	4		4		2.1		2.1	
34 35 36 37 38 39	1.5		1.5		2.1 1.5	1.8	2.1 1.5 0.7	1.2
34 35 36 37 38	4 1.5 0.7 89 201	4	1.5 0.7	4	2.1 1.5 0.7 60 134	1.8	2.1 1.5 0.7	1.2
34 35 36 37 38 39 40 41	4 1.5 0.7 89 201 8	89 201 15	0.7 89 201	89 201 15	2.1 1.5 0.7 60 134	60 134 10	2.1 1.5 0.7 60 134 5.0	1.2 54 121 9
34 35 36 37 38 39 40 41 42	4 1.5 0.7 89 201 8 4.3	89 201 15 4.3	4 1.5 0.7 89 201 8 4.3	89 201 15 4.3	2.1 1.5 0.7 60 134 5	60 134 10 2.9	2.1 1.5 0.7 60 134 5.0 2.9	1.2 54 121 9 2.6
34 35 36 37 38 39 40 41 42 43	4 1.5 0.7 89 201 8 4.3 1.1	89 201 15	4 1.5 0.7 89 201 8 4.3 1.1	89 201 15	2.1 1.5 0.7 60 134 5 2.9 0.7	60 134 10	2.1 1.5 0.7 60 134 5.0 2.9 0.7	1.2 54 121 9
34 35 36 37 38 39 40 41 42 43	4 1.5 0.7 89 201 8 4.3	89 201 15 4.3	4 1.5 0.7 89 201 8 4.3	89 201 15 4.3	2.1 1.5 0.7 60 134 5	60 134 10 2.9	2.1 1.5 0.7 60 134 5.0 2.9	1.2 54 121 9 2.6
34 35 36 37 38 39 40 41 42 43 44 45	4 1.5 0.7 89 201 8 4.3 1.1 1.4	89 201 15 4.3	4 1.5 0.7 89 201 8 4.3 1.1	89 201 15 4.3	2.1 1.5 0.7 60 134 5 2.9 0.7 1.4	60 134 10 2.9	2.1 1.5 0.7 60 134 5.0 2.9 0.7 1.4	1.2 54 121 9 2.6
34 35 36 37 38 39 40 41 42 43 44 45 46	4 1.5 0.7 89 201 8 4.3 1.1	89 201 15 4.3	4 1.5 0.7 89 201 8 4.3 1.1	89 201 15 4.3	2.1 1.5 0.7 60 134 5 2.9 0.7	60 134 10 2.9	2.1 1.5 0.7 60 134 5.0 2.9 0.7	1.2 54 121 9 2.6
34 35 36 37 38 39 40 41 42 43 44 45 46 47	4 1.5 0.7 89 201 8 4.3 1.1 1.4	89 201 15 4.3 1.1	4 1.5 0.7 89 201 8 4.3 1.1 1.4	89 201 15 4.3 1.1	2.1 1.5 0.7 60 134 5 2.9 0.7 1.4	1.8 60 134 10 2.9 0.7	2.1 1.5 0.7 60 134 5.0 2.9 0.7 1.4	1.2 54 121 9 2.6 0.6
34 35 36 37 38 39 40 41 42 43 44 45 46	4 1.5 0.7 89 201 8 4.3 1.1 1.4	89 201 15 4.3	4 1.5 0.7 89 201 8 4.3 1.1	89 201 15 4.3	2.1 1.5 0.7 60 134 5 2.9 0.7 1.4	60 134 10 2.9	2.1 1.5 0.7 60 134 5.0 2.9 0.7 1.4	54 121 9 2.6
34 35 36 37 38 39 40 41 42 43 44 45 46 47	4 1.5 0.7 89 201 8 4.3 1.1 1.4	89 201 15 4.3 1.1	89 201 8 4.3 1.1 1.4	89 201 15 4.3 1.1	2.1 1.5 0.7 60 134 5 2.9 0.7 1.4	1.8 60 134 10 2.9 0.7	2.1 1.5 0.7 60 134 5.0 2.9 0.7 1.4 1.8	1.2 54 121 9 2.6 0.6
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	4 1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1	89 201 15 4.3 1.1 0.6 1.3 0.1	4 1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1	89 201 15 4.3 1.1 0.6 1.3 0.1	2.1 1.5 0.7 60 134 5 2.9 0.7 1.4 1.8 0.6 1.3 0.1	1.8 60 134 10 2.9 0.7 0.6 1.3 0.1	2.1 1.5 0.7 60 134 5.0 2.9 0.7 1.4 1.8 0.54 1.09 0.09	1.2 54 121 9 2.6 0.6 0.67 0.05 0.01
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 0.0	1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 0.0	2.1 1.5 0.7 60 134 5 2.9 0.7 1.4 1.8 0.6 1.3 0.1 0.0	1.8 60 134 10 2.9 0.7 0.6 1.3 0.1 0.0 0.0	2.1 1.5 0.7 60 134 5.0 2.9 0.7 1.4 1.8 0.54 1.09 0.09 0.03	1.2 54 121 9 2.6 0.6 0.67 0.05 0.01 0.00
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 0.0 1,226	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 0.0 1,234	1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 0.0	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 0.0 1,234	2.1 1.5 0.7 60 134 5 2.9 0.7 1.4 1.8 0.6 1.3 0.1 0.0 0.0 767	1.8 60 134 10 2.9 0.7 0.6 1.3 0.1 0.0 0.0 682	2.1 1.5 0.7 60 134 5.0 2.9 0.7 1.4 1.8 0.54 1.09 0.09 0.03 0.01 764	1.2 54 121 9 2.6 0.6 0.67 0.05 0.01 0.00 516
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	4 1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 0.0 1,226 3,329	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 0.0 1,234 3,338	1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 0.0 1,226 3,329	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 0.0 1,234 3,338	2.1 1.5 0.7 60 134 5 2.9 0.7 1.4 1.8 0.6 1.3 0.1 0.0 0.0 767 2,091	1.8 60 134 10 2.9 0.7 0.6 1.3 0.1 0.0 0.0 682 1,856	2.1 1.5 0.7 60 134 5.0 2.9 0.7 1.4 1.8 0.54 1.09 0.09 0.03 0.01 764 2,082	1.2 54 121 9 2.6 0.6 0.30 0.67 0.05 0.01 0.00 516 1,403
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	4 1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 0.0 1,226 3,329 2010	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 0.0 1,234 3,338 2020	1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 0.0 1,226 3,329 2010	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 0.0 1,234 3,338 2020	2.1 1.5 0.7 60 134 5 2.9 0.7 1.4 1.8 0.6 1.3 0.1 0.0 0.0 767 2,091	1.8 60 134 10 2.9 0.7 0.6 1.3 0.1 0.0 0.0 682 1,856 2020	2.1 1.5 0.7 60 134 5.0 2.9 0.7 1.4 1.8 0.54 1.09 0.09 0.03 0.01 764 2,082 2010	1.2 54 121 9 2.6 0.6 0.8 0.30 0.67 0.05 0.01 0.00 516 1,403 2020
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	4 1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 0.0 1,226 3,329 2010 w/o Measu	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 1,234 3,338 2020 res from 99	4 1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 0.0 1,226 3,329 2010 With Measu	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 1,234 3,338 2020 ures until 2003	2.1 1.5 0.7 60 134 5 2.9 0.7 1.4 1.8 0.6 1.3 0.1 0.0 0.0 767 2,091 2010 EU Legisla	1.8 60 134 10 2.9 0.7 0.6 1.3 0.1 0.0 0.0 682 1,856 2020 ation 2007	2.1 1.5 0.7 60 134 5.0 2.9 0.7 1.4 1.8 0.54 1.09 0.09 0.03 0.01 764 2,082 2010 With furthe	1.2 54 121 9 2.6 0.30 0.67 0.05 0.01 0.00 516 1,403 2020 or Measures
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	4 1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 0.0 1,226 3,329 2010 w/o Measu 120.6	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 1,234 3,338 2020 res from 99 142.4	0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 1,226 3,329 2010 With Measu 120.6	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 0.0 1,234 3,338 2020 ures until 2003	2.1 1.5 0.7 60 134 5 2.9 0.7 1.4 1.8 0.6 1.3 0.1 0.0 0.0 767 2,091 2010 EU Legisla 104.7	1.8 60 134 10 2.9 0.7 0.6 1.3 0.1 0.0 0.0 682 1,856 2020 ation 2007 118.8	2.1 1.5 0.7 60 134 5.0 2.9 0.7 1.4 1.8 0.54 1.09 0.03 0.01 764 2,082 2010 With furthe	1.2 54 121 9 2.6 0.6 0.8 0.9 0.01 0.00 516 1,403 2020 T Measures 106.9
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	4 1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 0.0 1,226 3,329 2010 w/o Measu 120.6 171.3	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 0.0 1,234 3,338 2020 res from 99 142.4 214.9	4 1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 0.0 1,226 3,329 2010 With Measu 120.6 171.3	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 0.0 1,234 3,338 2020 ures until 2003	2.1 1.5 0.7 60 134 5 2.9 0.7 1.4 1.8 0.6 1.3 0.1 0.0 767 2,091 2010 EU Legisla 104.7 152.7	1.8 60 134 10 2.9 0.7 0.6 1.3 0.1 0.0 0.0 682 1,856 2020 ation 2007 118.8 180.9	2.1 1.5 0.7 60 134 5.0 2.9 0.7 1.4 1.8 0.54 1.09 0.03 0.01 764 2,082 2010 With furthe 104.3 151.2	1.2 54 121 9 0.30 0.67 0.05 0.01 0.00 516 1,403 2020 r Measures 106.9 134.5
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	4 1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 0.0 1,226 3,329 2010 w/o Measu 120.6 171.3 28.6	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 1,234 3,338 2020 res from 99 142.4 214.9 68.0	4 1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 0.0 1,226 3,329 2010 With Measu 120.6 171.3 28.6	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 0.0 1,234 3,338 2020 ures until 2003 142.4 214.9 68.0	2.1 1.5 0.7 60 134 5 2.9 0.7 1.4 1.8 0.6 1.3 0.1 0.0 767 2,091 2010 EU Legisla 104.7 152.7 24.4	1.8 60 134 10 2.9 0.7 0.6 1.3 0.1 0.0 0.0 682 1,856 2020 ation 2007 118.8 180.9 57.8	2.1 1.5 0.7 60 134 5.0 2.9 0.7 1.4 1.8 0.54 1.09 0.03 0.01 764 2,082 2010 With furthe 104.3 151.2 24.3	1.2 54 121 9 2.6 0.30 0.67 0.05 0.01 0.00 516 1,403 2020 r Measures 106.9 134.5 52.1
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	4 1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 0.0 1,226 3,329 2010 w/o Measu 120.6 171.3	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 0.0 1,234 3,338 2020 res from 99 142.4 214.9	4 1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 0.0 1,226 3,329 2010 With Measu 120.6 171.3	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 0.0 1,234 3,338 2020 ures until 2003	2.1 1.5 0.7 60 134 5 2.9 0.7 1.4 1.8 0.6 1.3 0.1 0.0 767 2,091 2010 EU Legisla 104.7 152.7	1.8 60 134 10 2.9 0.7 0.6 1.3 0.1 0.0 0.0 682 1,856 2020 ation 2007 118.8 180.9	2.1 1.5 0.7 60 134 5.0 2.9 0.7 1.4 1.8 0.54 1.09 0.03 0.01 764 2,082 2010 With furthe 104.3 151.2	1.2 54 121 9 0.30 0.67 0.05 0.01 0.00 516 1,403 2020 r Measures 106.9 134.5
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	4 1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 0.0 1,226 3,329 2010 w/o Measu 120.6 171.3 28.6	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 1,234 3,338 2020 res from 99 142.4 214.9 68.0	4 1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 0.0 1,226 3,329 2010 With Measu 120.6 171.3 28.6	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 0.0 1,234 3,338 2020 ures until 2003 142.4 214.9 68.0	2.1 1.5 0.7 60 134 5 2.9 0.7 1.4 1.8 0.6 1.3 0.1 0.0 767 2,091 2010 EU Legisla 104.7 152.7 24.4	1.8 60 134 10 2.9 0.7 0.6 1.3 0.1 0.0 0.0 682 1,856 2020 ation 2007 118.8 180.9 57.8	2.1 1.5 0.7 60 134 5.0 2.9 0.7 1.4 1.8 0.54 1.09 0.03 0.01 764 2,082 2010 With furthe 104.3 151.2 24.3	1.2 54 121 9 2.6 0.30 0.67 0.05 0.01 0.00 516 1,403 2020 r Measures 106.9 134.5 52.1
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61	4 1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 0.0 1,226 3,329 2010 w/o Measu 120.6 171.3 28.6 1.5	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 1,234 3,338 2020 res from 99 142.4 214.9 68.0 2.9 39.7 89.9	4 1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 0.0 1,226 3,329 2010 With Measu 120.6 171.3 28.6 1.5	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 1,234 3,338 2020 ures until 2003 142.4 214.9 68.0 2.9 39.7 89.9	2.1 1.5 0.7 60 134 5 2.9 0.7 1.4 1.8 0.6 1.3 0.1 0.0 0.0 767 2,091 2010 EU Legisla 104.7 152.7 24.4 1.3	1.8 60 134 10 2.9 0.7 0.6 1.3 0.1 0.0 0.0 682 1,856 2020 ation 2007 118.8 180.9 57.8 2.3 26.5 57.1	2.1 1.5 0.7 60 134 5.0 2.9 0.7 1.4 1.8 0.54 1.09 0.09 0.03 0.01 764 2,082 2010 With furthee 104.3 151.2 24.3 1.3 7.8	1.2 54 121 9 2.6 0.6 0.67 0.05 0.01 0.00 516 1,403 2020 or Measures 106.9 134.5 52.1 1.7
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62	4 1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 0.0 1,226 3,329 2010 w/o Measu 120.6 171.3 28.6 1.5	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 1,234 3,338 2020 res from 99 142.4 214.9 68.0 2.9	4 1.5 0.7 89 201 8 4.3 1.1 1.4 1.8 0.6 1.3 0.1 0.0 0.0 1,226 3,329 2010 With Measu 120.6 171.3 28.6 1.5	89 201 15 4.3 1.1 0.6 1.3 0.1 0.0 1,234 3,338 2020 ares until 2003 142.4 214.9 68.0 2.9	2.1 1.5 0.7 60 134 5 2.9 0.7 1.4 1.8 0.6 1.3 0.1 0.0 0.0 767 2,091 2010 EU Legisla 104.7 152.7 24.4 1.3	1.8 60 134 10 2.9 0.7 0.6 1.3 0.1 0.0 0.0 682 1,856 2020 ation 2007 118.8 180.9 57.8 2.3	2.1 1.5 0.7 60 134 5.0 2.9 0.7 1.4 1.8 0.54 1.09 0.09 0.03 0.01 764 2,082 2010 With furthee 104.3 151.2 24.3 1.3	1.2 54 121 9 2.6 0.6 0.6 0.05 0.01 0.00 516 1,403 2020 or Measures 106.9 134.5 52.1 1.7

	A	В	С	Е	F	G	Н	l	J	L
	Manuf. Emiss. [t]	Ш								
	HFC-134a		0.02	0.02	0.02	0.02	0.02	0.02	0.02	
	407C	Ш		0.03	0.05	0.08	0.09	0.09	0.09	
	Subtotal Emiss. w/o PFCs		9	49	66	85	108	131	155	
	Kilotonnes CO2 equiv.		11	64	88	116	149	183	219	
	Househ. Refr. HFC-134a t		1.2	1.2	1.3	1.3	1.3	1.3	1.3	
	Househ. Ref. kt CO2 eq		1.6	1.6	1.6	1.7	1.7	1.7	1.7	
73										
74	Subt. HFC Stationary		1995	1998	1999	2000	2001	2002	2003	
	Emiss. w/o PFCs [t]	П	73	516	696	854	1,004	1,155	1,339	
76	Kilotonnes CO2 equiv.		169	1,170	1,599	1,994	2,375	2,758	3,205	
77										
78	Mobile AC/Refriger.									
79	Passenger Car AC		1995	1998	1999	2000	2001	2002	2003	
	Operating Emiss. [t]									
	HFC-134a		129	555	765	979	1,185	1,385	1,576	
	HFC-152a						,	,	,	
	Disposal Emiss. [t]	Ħ								
	HFC-134a	$\dagger \dagger$						10	30	
	HFC-152a	$\dagger \dagger$								
	Manuf. Emiss. [t]	$\dagger \dagger$								
	HFC-134a	\forall	3	8	9	9	10	10	10	
	HFC-152a	$\dagger \dagger$			3					
	Subtotal Emiss. [t]	Н	133	563	774	988	1,195	1,405	1,616	
	Kilotonnes CO2 equiv.	Н	172	732	1,007	1,284	1,193	1,826	2,101	
	Truck Air Conditioners	Н	1995	1998	1999	2000	2001	2002	2003	
	Operating Emiss. [t]	╂	1990	1990	1999	2000	2001	2002	2003	
	HFC-134a	+	4	19	28	38	49	59	70	
	Disposal Emiss. [t]	+	4	19	20	30	49	59	70	
	HFC-134a									
	Manuf. Emiss. [t]	+	0.00	0.40	0.04	0.04	0.07	0.07	0.20	
	HFC-134a	Ц	0.08	0.19	0.21	0.24	0.27	0.27	0.30	
	Subtotal Emiss. [t]	Н	4_	19	28	39	49	59	70	
	Kilotonnes CO2 equiv. Bus Air Conditioners	Н	5	25	37	50	64	77	91	
		4	1995	1998	1999	2000	2001	2002	2003	
	Operating Emiss. [t]									
		\top	40	20	20	40	50	00		
	HFC-134a		12	32	39	46	53	60	66	
4 ~ 4	Disposal Emiss. [t]		12	32	39	46	53	60	66	
	Disposal Emiss. [t] HFC-134a		12	32	39	46	53	60		
105	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t]								66 3.3	
105 106	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a		0.02	0.04	0.04	0.04	0.04	0.03	3.3 0.04	
105 106 107	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t]		0.02	0.04	0.04	0.04	0.04	0.03	3.3 0.04 70	
105 106 107 108	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv.		0.02 12 16	0.04 32 42	0.04 39 50	0.04 46 <i>60</i>	0.04 53 69	0.03 60 78	66 3.3 0.04 70 91	
105 106 107 108 109	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Agricult. Machines AC		0.02	0.04	0.04	0.04	0.04	0.03	3.3 0.04 70	
105 106 107 108 109 110	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Agricult. Machines AC Operating Emiss. [t]		0.02 12 16 1995	0.04 32 42 1998	0.04 39 50 1999	0.04 46 60 2000	0.04 53 69 2001	0.03 60 78 2002	66 3.3 0.04 70 91 2003	
105 106 107 108 109 110 111	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Agricult. Machines AC Operating Emiss. [t] HFC-134a		0.02 12 16	0.04 32 42	0.04 39 50	0.04 46 <i>60</i>	0.04 53 69	0.03 60 78	66 3.3 0.04 70 91	
105 106 107 108 109 110 111 112	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Agricult. Machines AC Operating Emiss. [t] HFC-134a Disposal Emiss. [t]		0.02 12 16 1995	0.04 32 42 1998	0.04 39 50 1999	0.04 46 60 2000	0.04 53 69 2001	0.03 60 78 2002	66 3.3 0.04 70 91 2003	
105 106 107 108 109 110 111 112	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Agricult. Machines AC Operating Emiss. [t] HFC-134a Disposal Emiss. [t] HFC-134a		0.02 12 16 1995	0.04 32 42 1998	0.04 39 50 1999	0.04 46 60 2000	0.04 53 69 2001	0.03 60 78 2002	66 3.3 0.04 70 91 2003	
105 106 107 108 109 110 111 112 113 114	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Agricult. Machines AC Operating Emiss. [t] HFC-134a Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t]		0.02 12 16 1995	0.04 32 42 1998	0.04 39 50 1999	0.04 46 60 2000	0.04 53 69 2001	0.03 60 78 2002	66 3.3 0.04 70 91 2003	
105 106 107 108 109 110 111 112 113 114 115	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Agricult. Machines AC Operating Emiss. [t] HFC-134a Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a		0.02 12 16 1995 3	0.04 32 42 1998 12	0.04 39 50 1999 16	0.04 46 60 2000 20	0.04 53 69 2001 24	0.03 60 78 2002 29	66 3.3 0.04 70 91 2003 34	
105 106 107 108 109 110 111 112 113 114 115	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Agricult. Machines AC Operating Emiss. [t] HFC-134a Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t]		0.02 12 16 1995 3 0.1	0.04 32 42 1998 12 0.1	0.04 39 50 1999 16	0.04 46 60 2000 20 0.1 20	0.04 53 69 2001 24 0.2 25	0.03 60 78 2002 29 0.2 29	66 3.3 0.04 70 91 2003 34 0.2 34	
105 106 107 108 109 110 111 112 113 114 115 116 117	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Agricult. Machines AC Operating Emiss. [t] HFC-134a Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv.		0.02 12 16 1995 3	0.04 32 42 1998 12	0.04 39 50 1999 16	0.04 46 60 2000 20	0.04 53 69 2001 24	0.03 60 78 2002 29	66 3.3 0.04 70 91 2003 34	
105 106 107 108 109 110 111 112 113 114 115 116 117	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Agricult. Machines AC Operating Emiss. [t] HFC-134a Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Railcar AC		0.02 12 16 1995 3 0.1	0.04 32 42 1998 12 0.1	0.04 39 50 1999 16	0.04 46 60 2000 20 0.1 20	0.04 53 69 2001 24 0.2 25	0.03 60 78 2002 29 0.2 29	66 3.3 0.04 70 91 2003 34 0.2 34	
105 106 107 108 109 110 111 112 113 114 115 116 117	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Agricult. Machines AC Operating Emiss. [t] HFC-134a Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv.		0.02 12 16 1995 3 0.1 3 4 1995	0.04 32 42 1998 12 0.1 13	0.04 39 50 1999 16 0.1 16 21	0.04 46 60 2000 20 0.1 20 26	0.04 53 69 2001 24 0.2 25 32	0.03 60 78 2002 29 0.2 29 38	3.3 0.04 70 91 2003 34 0.2 34 45	
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Agricult. Machines AC Operating Emiss. [t] HFC-134a Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Railcar AC Operating Emiss. [t] HFC-134a		0.02 12 16 1995 3 0.1	0.04 32 42 1998 12 0.1 13	0.04 39 50 1999 16 0.1 16 21	0.04 46 60 2000 20 0.1 20 26	0.04 53 69 2001 24 0.2 25 32	0.03 60 78 2002 29 0.2 29 38	3.3 0.04 70 91 2003 34 0.2 34 45	
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Agricult. Machines AC Operating Emiss. [t] HFC-134a Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Railcar AC Operating Emiss. [t]		0.02 12 16 1995 3 0.1 3 4 1995	0.04 32 42 1998 12 0.1 13 16 1998	0.04 39 50 1999 16 0.1 16 21	0.04 46 60 2000 20 0.1 20 26 2000	0.04 53 69 2001 24 0.2 25 32 2001	0.03 60 78 2002 29 0.2 29 38 2002	3.3 0.04 70 91 2003 34 0.2 34 45 2003	
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Agricult. Machines AC Operating Emiss. [t] HFC-134a Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Railcar AC Operating Emiss. [t] HFC-134a		0.02 12 16 1995 3 0.1 3 4 1995	0.04 32 42 1998 12 0.1 13 16 1998	0.04 39 50 1999 16 0.1 16 21	0.04 46 60 2000 20 0.1 20 26 2000	0.04 53 69 2001 24 0.2 25 32 2001	0.03 60 78 2002 29 0.2 29 38 2002	3.3 0.04 70 91 2003 34 0.2 34 45 2003	
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Agricult. Machines AC Operating Emiss. [t] HFC-134a Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Railcar AC Operating Emiss. [t] HFC-134a Disposal Emiss. [t]		0.02 12 16 1995 3 0.1 3 4 1995	0.04 32 42 1998 12 0.1 13 16 1998	0.04 39 50 1999 16 0.1 16 21 1999	0.04 46 60 2000 20 0.1 20 26 2000	0.04 53 69 2001 24 0.2 25 32 2001	0.03 60 78 2002 29 0.2 29 38 2002	3.3 0.04 70 91 2003 34 0.2 34 45 2003	
105 106 107 108 109 110 111 112 113 114 115 116 117 120 121 122 123	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Agricult. Machines AC Operating Emiss. [t] HFC-134a Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Railcar AC Operating Emiss. [t] HFC-134a Disposal Emiss. [t] Kilotonnes CO2 equiv. Railcar AC Operating Emiss. [t] HFC-134a Disposal Emiss. [t]		0.02 12 16 1995 3 0.1 3 4 1995	0.04 32 42 1998 12 0.1 13 16 1998	0.04 39 50 1999 16 0.1 16 21 1999	0.04 46 60 2000 20 0.1 20 26 2000	0.04 53 69 2001 24 0.2 25 32 2001	0.03 60 78 2002 29 0.2 29 38 2002	3.3 0.04 70 91 2003 34 0.2 34 45 2003	
105 106 107 108 109 110 111 112 113 114 115 116 117 120 121 122 123 124	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Agricult. Machines AC Operating Emiss. [t] HFC-134a Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Railcar AC Operating Emiss. [t] HFC-134a Disposal Emiss. [t] HFC-134a Disposal Emiss. [t] HFC-134a Disposal Emiss. [t] HFC-134a Disposal Emiss. [t]		0.02 12 16 1995 3 0.1 3 4 1995 5.2	0.04 32 42 1998 12 0.1 13 16 1998	0.04 39 50 1999 16 0.1 16 21 1999	0.04 46 60 2000 20 0.1 20 26 2000	0.04 53 69 2001 24 0.2 25 32 2001	0.03 60 78 2002 29 0.2 29 38 2002	0.04 70 91 2003 34 0.2 34 45 2003	
105 106 107 108 109 110 111 112 113 114 115 116 117 120 121 122 123 124 125	Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Agricult. Machines AC Operating Emiss. [t] HFC-134a Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t] HFC-134a Subtotal Emiss. [t] Kilotonnes CO2 equiv. Railcar AC Operating Emiss. [t] HFC-134a Disposal Emiss. [t] HFC-134a Disposal Emiss. [t] HFC-134a Disposal Emiss. [t] HFC-134a Disposal Emiss. [t] HFC-134a Manuf. Emiss. [t]		0.02 12 16 1995 3 0.1 3 4 1995 5.2	0.04 32 42 1998 12 0.1 13 16 1998 12	0.04 39 50 1999 16 0.1 16 21 1999 15	0.04 46 60 2000 20 0.1 20 26 2000 17	0.04 53 69 2001 24 0.2 25 32 2001 20	0.03 60 78 2002 29 0.2 29 38 2002 23	0.04 70 91 2003 34 0.2 34 45 2003	

Feb		М	N (d P	Q F	s	T II	V	W
For	66	101	.,	٠ '	<u> </u>			ı v	•
Section Sect		0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.01
To To To To To To To To	68	0.09	0.09	0.09	0.09	0.09	0.09	0.07	0.05
1	69	393	626	393	626	331	482	328	413
10	70	579	948	579	948	487	727	484	623
Taylor T		1.38	1.38	1.38	1.38	1.38	1.38	1.38	1.38
Text		1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
To To To To To To To To									
To To To To To To To To									
T78									
Record R		5,684	6,062	5,288	5,666	3,704	3,683	3,681	2,748
Page									
Bit		2010	2020	2010	2020	2010	2020	2010	2020
81									
Record R									
84		2,032	2,012	2,032	2,012			2,300	330
Section Sect						22	3,3		
B6		604	755	604	755	403	453	403	453
B6			. 33		. 33	.50		1.50	.50
B7									
89	87	10	10	10	10	7	0	7	0
90						1	2		
91					_		1,777		1,391
92 w/o Measures from 99 With Measures until 2003 EU Legislation 2007 With further Measures 93 155 223 155 223 155 211 155 13 136 136 136 136 136 137 19 37 13 25 13 25 13 296 19 37 19 37 13 25 13 25 13 296 175 261 175 261 168 237 168 15 168 15 168 237 168 15 168 15 168 15 168 15 168 15 168 15 168 1									1,808
93									2020
94									
95		155	223	155	223	155	211	155	134
96		10	27	10	27	12	25	12	25
97		19	31	19	31	13	25	13	25
98		0.42	0.51	0.42	0.51	0.42	0.51	0.42	0
99									159
101							308		207
102	100	2010	2020	2010	2020	2010	2020	2010	2020
103				With Measu		EU Legisla		With furthe	r Measures
104		92	104	92	104	92	104	92	65
105 106									
106		13	17	13	17	8	11	8	11
107 105 120 105 120 100 115 100 7 108 136 157 136 157 130 149 130 9 109 2010 2020 2010 2020 2010 2020 2010 2020 110 w/o Measures from 99 With Measures until 2003 EU Legislation 2007 With further Measures 111 57 64 57 64 57 64 57 3 112 7 12 7 12 5 8 5 114 3 3 0.3 0.3 0.3 0.3 0.3 115 0.3 0.3 0.3 0.3 0.3 0.3 0.3 116 64 76 64 76 62 72 62 4 117 83 98 83 98 80 93 80 5 118 2010 2020		0.05	0.05	0.05	0.05	0.05	0.05	2.05	
108									0 76
109 2010 2020 2010 2020 2010 2020 2010 2020 110 w/o Measures from 99 With Measures until 2003 EU Legislation 2007 With further Measures 111 57 64 57 64 57 64 57 3 112 113 7 12 7 12 5 8 5 114 115 0.3 0.3 0.3 0.3 0.3 0.3 0.3 116 64 76 64 72 62 4 117 83 98 83 98 80 93 80 5 118 2010 2020 2010 2020 2010 2020 2010 202 119 w/o Measures from 99 With Measures until 2003 EU Legislation 2007 With further Measures 120 25 29 25 29 25 29 25 2 121 2									99
110 w/o Measures from 99 With Measures until 2003 EU Legislation 2007 With further Measures 111 57 64 57 64 57 64 57 3 112 113 7 12 7 12 5 8 5 114 115 0.3 0.3 0.3 0.3 0.3 0.3 0.3 116 64 76 64 76 62 72 62 4 117 83 98 83 98 80 93 80 5 118 2010 2020 2010 2020 2010 2020 2010 2020 119 w/o Measures from 99 With Measures until 2003 EU Legislation 2007 With further Measures 120 25 29 25 29 25 29 121 2 2 1.6 1. 123 2 2 1.6 1. 124									2020
1111 57 64 57 64 57 64 57 3 112 113 7 12 7 12 5 8 5 114 115 0.3 0.3 0.3 0.3 0.3 0.3 0.3 116 64 76 64 76 62 72 62 4 117 83 98 83 98 80 93 80 5 118 2010 2020 2010 2020 2010 2020 2010 2020 119 w/o Measures from 99 With Measures until 2003 EU Legislation 2007 With further Measures 120 25 29 25 29 25 29 25 2 121 2 2 1.6 1.6 1. 1. 123 124 0.02 0.02 0.02 0.02 0.02 0.02 0.02 125 25 31									
1112 113 7 12 7 12 5 8 5 114 115 0.3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>35</td></td<>									35
114 0.3 0.2 0.0 0.0 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00									
115 0.3 0.6 4 62 42 4 1. 62 4 4 62 4 62 4 4 62 4 62 4 4 62 20 2010 2020 2010 2020 2010 2020 2010 2020 2010 2020 2010 2020 2010 2020 2010 2020 2010 2020 2020 2020 2020		7	12	7	12	5	8	5	8
116 64 76 64 76 62 72 62 44 117 83 98 83 98 80 93 80 5 118 2010 2020 2010 2020 2010 2020 2010 202 119 w/o Measures from 99 With Measures until 2003 EU Legislation 2007 With further Measures 120 25 29 25 29 25 2 2 1									
117 83 98 83 98 80 93 80 5 118 2010 2020 2010 2020 2010 2020 2010 202 119 w/o Measures from 99 With Measures until 2003 EU Legislation 2007 With further Measures 120 25 29 25 29 25 29 121 2 2 1.6 1. 123 3 2 0.02 <									0
118 2010 2020 2010 2020 2010 2020 2010 2020 119 w/o Measures from 99 With Measures until 2003 EU Legislation 2007 With further Measures 120 25 29 25 29 25 29 121 2 2 1.6 1. 123 3 2 0.02 <									43
119 w/o Measures from 99 With Measures until 2003 EU Legislation 2007 With further Measures 120 25 29 25 29 25 2 121 2 2 1.6 1. 1. 122 2 2 1.6 1. 1. 123 3 3 3 3 3 3 3 25 3 2 2 2 3 3 2 3 2 3 2 3									<u>56</u>
120 25 29 25 29 25 29 25 2 121 122 2 1.6 1. 123 124 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 125 25 31 25 31 25 30 25 2									
121 2 2 1.6 1. 123 3 3 1.6 1.6 1.6 124 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 125 25 31 25 31 25 30 25 2									r Measures 20
122 2 1.6 1. 123 0.02 </td <td></td> <td>20</td> <td>29</td> <td>23</td> <td>23</td> <td>25</td> <td>29</td> <td>25</td> <td>20</td>		20	29	23	23	25	29	25	20
123 0.02			2		2		1.6		1.6
124 0.02			_		_				
125 25 31 25 31 25 2		0.02	0.02	0.02	0.02	0.02	0.02	0.02	0
126 32 41 32 41 32 40 32 20	125	25		25	31	25	30	25	22
	126	32	41	32	41	32	40	32	28

	l A	ы		E	F	G	Н	1 1	T	
107	Ship Air Conditioning	В	C D	1998	1999	2000		2002	J 2003	L
	Operating Emiss. [t]	+	1995	1990	1999	2000	2001	2002	2003	
	HFC-134a	+	0	0.2	0.4	0.7	0.9	1.1	1.3	
	Disposal Emiss. [t]	+	-	0.2	0.4	0.7	0.9	1.1	1.3	
	HFC-134a	+								
	Manuf. Emiss. [t]	+								
	HFC-134a	+	0	0.1	0.1	0.1	0.1	0.1	0.1	
	Subtotal Emiss. [t]	Ш	0.0	0.1	0.1	0.7	1.0	1.2	1.4	
	Kilotonnes CO2 equiv.	Н	0.0	0.3	0.3	1.0	1.3	1.6	1.4	
	Refrigerated Vehicles	П	1995	1998	1999	2000	2001	2002	2003	
	Operating Emiss. [t]	11	1333	1000	1000	2000	2001	2002	2000	
	HFC-134a	+	2	7	10	12	13	15	16	
	404A		7	17	21	25	29	33	35	
	410A		0.2	2	2	3	3	4	5	
	152a v. 401B	+		0.2	0.2	0.25	0.25	0.25	0.22	
	218 v. 413A	H		0.1	0.2	0.23	0.23	0.23	0.20	
	Disposal Emiss. [t]	П			_					
	HFC-134a	$\dagger \dagger$	+						2.7	
	404A	$\dagger \dagger$	+						5.6	
	410A	$\dagger \dagger$								
	152a v. 401B	$\dagger \dagger$							0.1	
	218 v. 413A								0.1	
	Manuf. Emiss. [t]	П								
150	HFC-134a		0.01	0.03	0.03	0.02	0.02	0.02	0.02	
	404A	\parallel	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
152	410A		0.00	0.00	0.00	0.00	0.00	0.00	0.00	
153	Subotal Emiss. w/o PFC	П	9	26	34	40	46	52	64	
154	Kilotonnes CO2 equiv.		25.49	68.222	86.196	102.53	117.535	132.873	165.32	
155	Reefer Container		1995	1998	1999	2000	2001	2002	2003	
156	Operating Emiss. [t]									
157	HFC-134a		3	11.21	13.9	16.6	19.2	22.1	25.4	
157 158	HFC-134a 404A		3	11.21 0.3	13.9 0.6	16.6 0.9	19.2 1.3	22.1 1.7	25.4 2.3	
157 158 159	HFC-134a 404A Disposal Emiss. [t]		3							
157 158 159 160	HFC-134a 404A Disposal Emiss. [t] HFC-134a		3							
157 158 159 160 161	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A			0.3	0.6	0.9	1.3	1.7	2.3	
157 158 159 160 161 162	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t]		3.2	0.3	14.5	0.9 17.5	20.5	23.8	2.3	
157 158 159 160 161 162 163	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv.			0.3	0.6	0.9	1.3	1.7	2.3	
157 158 159 160 161 162 163 164	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile		3.2	11.5 16	14.5 20	17.5 24	20.5	23.8 34	27.6 40	
157 158 159 160 161 162 163 164 165	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t]		3.2 4 170	0.3 11.5 16 677	0.6 14.5 20 921	17.5 24 1,168	20.5 29 1,409	23.8 34 1,653	27.6 40 1,908	
157 158 159 160 161 162 163 164 165	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t] Kilotonnes CO2 equiv.		3.2	11.5 16	14.5 20	17.5 24	20.5	23.8 34	27.6 40	
157 158 159 160 161 162 163 164 165 166	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t] Kilotonnes CO2 equiv. Other HFC Use		3.2 4 170 234	0.3 11.5 16 677 915	0.6 14.5 20 921 1,241	17.5 24 1,168 1,571	20.5 29 1,409 1,892	23.8 34 1,653 2,218	27.6 40 1,908 2,567	
157 158 159 160 161 162 163 164 165 166 167	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t] Kilotonnes CO2 equiv. Other HFC Use One-Component Foam		3.2 4 170	0.3 11.5 16 677	0.6 14.5 20 921	17.5 24 1,168	20.5 29 1,409	23.8 34 1,653	27.6 40 1,908	
157 158 159 160 161 162 163 164 165 166 167 168	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t] Kilotonnes CO2 equiv. Other HFC Use One-Component Foam First Year Emiss. [t]		3.2 4 170 234 1995	0.3 11.5 16 677 915	0.6 14.5 20 921 1,241 1999	17.5 24 1,168 1,571 2000	20.5 29 1,409 1,892 2001	23.8 34 1,653 2,218	27.6 40 1,908 2,567	
157 158 159 160 161 162 163 164 165 166 167 168 169 170	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t] Kilotonnes CO2 equiv. Other HFC Use One-Component Foam First Year Emiss. [t] HFC-134a		3.2 4 170 234 1995	0.3 11.5 16 677 915 1998	0.6 14.5 20 921 1,241 1999 780	17.5 24 1,168 1,571 2000	20.5 29 1,409 1,892 2001	23.8 34 1,653 2,218 2002	27.6 40 1,908 2,567 2003	
157 158 159 160 161 162 163 164 165 166 167 168 169 170	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t] Kilotonnes CO2 equiv. Other HFC Use One-Component Foam First Year Emiss. [t] HFC-134a HFC-152a		3.2 4 170 234 1995	0.3 11.5 16 677 915	0.6 14.5 20 921 1,241 1999	17.5 24 1,168 1,571 2000	20.5 29 1,409 1,892 2001	23.8 34 1,653 2,218	27.6 40 1,908 2,567	
1577 1588 1599 1600 1611 1622 1633 1644 1655 1666 1677 1688 1699 1770 1771 1772	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t] Kilotonnes CO2 equiv. Other HFC Use One-Component Foam First Year Emiss. [t] HFC-134a HFC-152a Filling-Emiss. [t]		3.2 4 170 234 1995 1080 720	0.3 11.5 16 677 915 1998 1092 728	0.6 14.5 20 921 1,241 1999 780 780	17.5 24 1,168 1,571 2000 719 719	20.5 29 1,409 1,892 2001 660	23.8 34 1,653 2,218 2002 425 425	27.6 40 1,908 2,567 2003 381 475	
1577 1588 1599 1600 1611 1622 1633 1644 1655 1666 1677 1688 1790 1710 1711 1712 173	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t] Kilotonnes CO2 equiv. Other HFC Use One-Component Foam First Year Emiss. [t] HFC-134a HFC-152a Filling-Emiss. [t] HFC-134a		3.2 4 170 234 1995	0.3 11.5 16 677 915 1998	0.6 14.5 20 921 1,241 1999 780	17.5 24 1,168 1,571 2000	20.5 29 1,409 1,892 2001	23.8 34 1,653 2,218 2002 425 425 37.2	27.6 40 1,908 2,567 2003 381 475	
1577 1588 1599 1600 1611 1622 1633 1644 1655 1666 1677 1688 1699 1770 1771 1772 1773 1774	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t] Kilotonnes CO2 equiv. Other HFC Use One-Component Foam First Year Emiss. [t] HFC-134a HFC-152a Filling-Emiss. [t] HFC-134a HFC-152a		3.2 4 170 234 1995 1080 720 22.5	0.3 11.5 16 677 915 1998 1092 728	0.6 14.5 20 921 1,241 1999 780 780 31.5	17.5 24 1,168 1,571 2000 719 719 37.5	20.5 29 1,409 1,892 2001 660 660	23.8 34 1,653 2,218 2002 425 425 37.2 9.30	27.6 40 1,908 2,567 2003 381 475 17.4 21.6	
1577 1588 1599 1600 1611 1622 1633 1644 1655 1666 1677 1710 1711 1722 1733 1744 1755	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t] Kilotonnes CO2 equiv. Other HFC Use One-Component Foam First Year Emiss. [t] HFC-134a HFC-152a Filling-Emiss. [t] HFC-134a HFC-152a Subtotal Emiss. [t]		3.2 4 170 234 1995 1080 720 22.5	0.3 11.5 16 677 915 1998 1092 728 24 1844	0.6 14.5 20 921 1,241 1999 780 780 31.5	17.5 24 1,168 1,571 2000 719 719 37.5	1.3 20.5 29 1,409 1,892 2001 660 660 42	23.8 34 1,653 2,218 2002 425 425 37.2 9.30 897	27.6 40 1,908 2,567 2003 381 475 17.4 21.6 894	
1577 1588 1599 1600 1611 1622 1633 1644 1655 1666 1677 1688 1699 1770 1771 1772 1773 1774 1775 1776	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t] Kilotonnes CO2 equiv. Other HFC Use One-Component Foam First Year Emiss. [t] HFC-134a HFC-152a Filling-Emiss. [t] HFC-134a HFC-152a Subtotal Emiss. [t] Kilotonnes CO2 equiv.		3.2 4 170 234 1995 1080 720 22.5 1823 1,534	0.3 11.5 16 677 915 1998 1092 728 24 1844 1,553	0.6 14.5 20 921 1,241 1999 780 780 31.5 1592 1,164	17.5 24 1,168 1,571 2000 719 719 37.5 1475 1,084	20.5 29 1,409 1,892 2001 660 660 42 1362 1,005	23.8 34 1,653 2,218 2002 425 425 37.2 9.30 897 662	27.6 40 1,908 2,567 2003 381 475 17.4 21.6 894 587	
1577 1588 1599 1600 1611 1622 1633 1644 1655 1666 1677 1711 1722 1733 1744 1755 1766 1777	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t] Kilotonnes CO2 equiv. Other HFC Use One-Component Foam First Year Emiss. [t] HFC-134a HFC-152a Filling-Emiss. [t] HFC-134a HFC-152a Subtotal Emiss. [t] Kilotonnes CO2 equiv. PU Hard+Integr. Foam		3.2 4 170 234 1995 1080 720 22.5	0.3 11.5 16 677 915 1998 1092 728 24 1844	0.6 14.5 20 921 1,241 1999 780 780 31.5	17.5 24 1,168 1,571 2000 719 719 37.5	1.3 20.5 29 1,409 1,892 2001 660 660 42	23.8 34 1,653 2,218 2002 425 425 37.2 9.30 897	27.6 40 1,908 2,567 2003 381 475 17.4 21.6 894	
1577 1588 1599 1600 1611 1622 1633 1644 1655 1666 1677 1711 1722 1733 1744 1755 1766 1777 178	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t] Kilotonnes CO2 equiv. Other HFC Use One-Component Foam First Year Emiss. [t] HFC-134a HFC-152a Filling-Emiss. [t] HFC-134a HFC-152a Subtotal Emiss. [t] Kilotonnes CO2 equiv. PU Hard+Integr. Foam First Year Emiss. [t]		3.2 4 170 234 1995 1080 720 22.5 1823 1,534	11.5 16 677 915 1998 1092 728 24 1844 1,553 1998	0.6 14.5 20 921 1,241 1999 780 780 31.5 1592 1,164 1999	17.5 24 1,168 1,571 2000 719 37.5 1475 1,084 2000	1.3 20.5 29 1,409 1,892 2001 660 660 42 1362 1,005 2001	23.8 34 1,653 2,218 2002 425 425 37.2 9.30 897 662 2002	27.6 40 1,908 2,567 2003 381 475 17.4 21.6 894 587 2003	
1577 1588 1599 1600 1611 1622 1633 1644 1655 1666 1677 1710 1711 1722 1733 1744 1756 1777 1788 1799	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t] Kilotonnes CO2 equiv. Other HFC Use One-Component Foam First Year Emiss. [t] HFC-134a HFC-152a Filling-Emiss. [t] HFC-134a HFC-152a Subtotal Emiss. [t] Kilotonnes CO2 equiv. PU Hard+Integr. Foam First Year Emiss. [t]		3.2 4 170 234 1995 1080 720 22.5 1823 1,534	0.3 11.5 16 677 915 1998 1092 728 24 1844 1,553	0.6 14.5 20 921 1,241 1999 780 780 31.5 1592 1,164	17.5 24 1,168 1,571 2000 719 719 37.5 1475 1,084	20.5 29 1,409 1,892 2001 660 660 42 1362 1,005	23.8 34 1,653 2,218 2002 425 425 9.30 897 662 2002	27.6 40 1,908 2,567 2003 381 475 17.4 21.6 894 587 2003	
1577 1588 1599 1600 1611 1622 1633 1644 1655 1666 1677 1710 1711 1722 1733 1744 1755 1766 1777 1778 1799 1800	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t] Kilotonnes CO2 equiv. Other HFC Use One-Component Foam First Year Emiss. [t] HFC-134a HFC-152a Filling-Emiss. [t] HFC-134a HFC-152a Subtotal Emiss. [t] Kilotonnes CO2 equiv. PU Hard+Integr. Foam First Year Emiss. [t] HFC-134a HFC-134a HFC-365mfc/245fa		3.2 4 170 234 1995 1080 720 22.5 1823 1,534	11.5 16 677 915 1998 1092 728 24 1844 1,553 1998	0.6 14.5 20 921 1,241 1999 780 780 31.5 1592 1,164 1999	17.5 24 1,168 1,571 2000 719 37.5 1475 1,084 2000	1.3 20.5 29 1,409 1,892 2001 660 660 42 1362 1,005 2001	23.8 34 1,653 2,218 2002 425 425 9.30 897 662 2002 92 20	27.6 40 1,908 2,567 2003 381 475 17.4 21.6 894 587 2003	
1577 1588 1599 1600 1611 1622 1633 1644 1655 1666 1677 1710 1711 1722 1733 1744 1755 1766 1777 1788 1799 1800 1811	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t] Kilotonnes CO2 equiv. Other HFC Use One-Component Foam First Year Emiss. [t] HFC-134a HFC-152a Filling-Emiss. [t] HFC-134a HFC-152a Subtotal Emiss. [t] Kilotonnes CO2 equiv. PU Hard+Integr. Foam First Year Emiss. [t] HFC-134a HFC-134a HFC-365mfc/245fa HFC-227ea		3.2 4 170 234 1995 1080 720 22.5 1823 1,534	11.5 16 677 915 1998 1092 728 24 1844 1,553 1998	0.6 14.5 20 921 1,241 1999 780 780 31.5 1592 1,164 1999	17.5 24 1,168 1,571 2000 719 37.5 1475 1,084 2000	1.3 20.5 29 1,409 1,892 2001 660 660 42 1362 1,005 2001	23.8 34 1,653 2,218 2002 425 425 9.30 897 662 2002	27.6 40 1,908 2,567 2003 381 475 17.4 21.6 894 587 2003	
1577 1588 1599 1600 1611 1622 1633 1644 1655 1666 1677 1688 1790 1711 1722 1733 1744 1755 1766 1777 1788 1799 1810 1811 1821	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t] Kilotonnes CO2 equiv. Other HFC Use One-Component Foam First Year Emiss. [t] HFC-134a HFC-152a Filling-Emiss. [t] HFC-134a HFC-152a Subtotal Emiss. [t] Kilotonnes CO2 equiv. PU Hard+Integr. Foam First Year Emiss. [t] HFC-134a HFC-134a HFC-227ea Operating Emiss. [t]		3.2 4 170 234 1995 1080 720 22.5 1823 1,534	0.3 11.5 16 677 915 1998 1092 728 24 1844 1,553 1998	0.6 14.5 20 921 1,241 1999 780 780 31.5 1592 1,164 1999 92	17.5 24 1,168 1,571 2000 719 719 37.5 1475 1,084 2000	1.3 20.5 29 1,409 1,892 2001 660 660 42 1362 1,005 2001	23.8 34 1,653 2,218 2002 425 425 9.30 897 662 2002 92 20 2	2.3 27.6 40 1,908 2,567 2003 381 475 17.4 21.6 894 587 2003 97 21 2	
1577 1588 1599 1600 1611 1622 1633 1644 1655 1666 1677 1710 1711 1722 1733 1744 1755 1766 1777 1788 1799 1810 1811 1822 1833	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t] Kilotonnes CO2 equiv. Other HFC Use One-Component Foam First Year Emiss. [t] HFC-134a HFC-152a Filling-Emiss. [t] HFC-134a HFC-152a Subtotal Emiss. [t] Kilotonnes CO2 equiv. PU Hard+Integr. Foam First Year Emiss. [t] HFC-134a HFC-365mfc/245fa HFC-227ea Operating Emiss. [t] HFC-134a		3.2 4 170 234 1995 1080 720 22.5 1823 1,534	11.5 16 677 915 1998 1092 728 24 1844 1,553 1998	0.6 14.5 20 921 1,241 1999 780 780 31.5 1592 1,164 1999	17.5 24 1,168 1,571 2000 719 37.5 1475 1,084 2000	1.3 20.5 29 1,409 1,892 2001 660 660 42 1362 1,005 2001	23.8 34 1,653 2,218 2002 425 425 9.30 897 662 2002 92 20 2 4.45	2.3 27.6 40 1,908 2,567 2003 381 475 17.4 21.6 894 587 2003 97 21 2 5.43	
1577 1588 1599 1600 1611 1622 1633 1644 1655 1666 1677 1781 1792 1793 1794 1795 1896 1897 1897 1897 1897 1897 1897 1897 1897	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t] Kilotonnes CO2 equiv. Other HFC Use One-Component Foam First Year Emiss. [t] HFC-134a HFC-152a Filling-Emiss. [t] HFC-134a HFC-152a Subtotal Emiss. [t] Kilotonnes CO2 equiv. PU Hard+Integr. Foam First Year Emiss. [t] HFC-134a HFC-365mfc/245fa HFC-227ea Operating Emiss. [t] HFC-134a HFC-365mfc/245fa		3.2 4 170 234 1995 1080 720 22.5 1823 1,534	0.3 11.5 16 677 915 1998 1092 728 24 1844 1,553 1998	0.6 14.5 20 921 1,241 1999 780 780 31.5 1592 1,164 1999 92	17.5 24 1,168 1,571 2000 719 719 37.5 1475 1,084 2000	1.3 20.5 29 1,409 1,892 2001 660 660 42 1362 1,005 2001	1.7 23.8 34 1,653 2,218 2002 425 425 9.30 897 662 2002 92 20 2 4.45 0.28	2.3 27.6 40 1,908 2,567 2003 381 475 17.4 21.6 894 587 2003 97 21 2 5.43 0.89	
1577 1588 1599 1600 1611 1622 1633 1644 1655 1666 1677 1781 1792 1773 1774 1775 1776 1777 1788 1799 1800 1811 1821 1831 1844 1855	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t] Kilotonnes CO2 equiv. Other HFC Use One-Component Foam First Year Emiss. [t] HFC-134a HFC-152a Filling-Emiss. [t] HFC-134a HFC-152a Subtotal Emiss. [t] Kilotonnes CO2 equiv. PU Hard+Integr. Foam First Year Emiss. [t] HFC-134a HFC-365mfc/245fa HFC-227ea Operating Emiss. [t] HFC-134a HFC-365mfc/245fa HFC-227ea		3.2 4 170 234 1995 1080 720 22.5 1823 1,534 1995	11.5 16 677 915 1998 1092 728 24 1844 1,553 1998 92	0.6 14.5 20 921 1,241 1999 780 780 31.5 1592 1,164 1999 92	0.9 17.5 24 1,168 1,571 2000 719 719 37.5 1475 1,084 2000 92	1.3 20.5 29 1,409 1,892 2001 660 660 42 1362 1,005 2001 92	1.7 23.8 34 1,653 2,218 2002 425 425 37.2 9.30 897 662 2002 20 2 4.45 0.28 0.02	2.3 27.6 40 1,908 2,567 2003 381 475 17.4 21.6 894 587 2003 97 21 2 5.43 0.89 0.07	
1577 1588 1599 1600 1611 1622 1633 1644 1655 1666 1677 1781 1791 1791 1791 1791 1801 1811 1822 1833 1844 1855 1866	HFC-134a 404A Disposal Emiss. [t] HFC-134a 404A Subtotal Emiss. [t] Kilotonnes CO2 equiv. Subt. HFCs mobile Emiss. w/o PFC [t] Kilotonnes CO2 equiv. Other HFC Use One-Component Foam First Year Emiss. [t] HFC-134a HFC-152a Filling-Emiss. [t] HFC-134a HFC-152a Subtotal Emiss. [t] Kilotonnes CO2 equiv. PU Hard+Integr. Foam First Year Emiss. [t] HFC-134a HFC-365mfc/245fa HFC-227ea Operating Emiss. [t] HFC-134a HFC-365mfc/245fa		3.2 4 170 234 1995 1080 720 22.5 1823 1,534	0.3 11.5 16 677 915 1998 1092 728 24 1844 1,553 1998	0.6 14.5 20 921 1,241 1999 780 780 31.5 1592 1,164 1999 92	17.5 24 1,168 1,571 2000 719 719 37.5 1475 1,084 2000	1.3 20.5 29 1,409 1,892 2001 660 660 42 1362 1,005 2001	1.7 23.8 34 1,653 2,218 2002 425 425 9.30 897 662 2002 92 20 2 4.45 0.28	2.3 27.6 40 1,908 2,567 2003 381 475 17.4 21.6 894 587 2003 97 21 2 5.43 0.89	

	М	N C	Р	Q F	S	Т	V	W
127	2010	2020	2010	2020	2010	2020	2010	2020
128	w/o Measure			ires until 2003		ation 2007	With furthe	
129	2,6	4,4	2,6	4,4	2,6	4,4	2,6	4,4
130								
131								
132								
133	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
134	2,7	4,5	2,7	4,5	2,7	4,5	2,7	4,5
135	3,5	5,8	3,5	5,8	3,5	5,8	3,5	5,8
136 137	w/o Measure	2020	2010	2020 res until 2003	2010	2020 ation 2007	2010 With furthe	2020
138	W/O Measure	15	15	15	15	15	15	10
139	42	47	42	47	42	47	42	31
140	6	7	6	7	6	7	6	5
141		•				,	J	- J
142								
143								
144	3	3	3	3	2	2	2	2
145	7	9	7	9	5	6	5	6
146	1,0	1,3	1,0	1,3	0,7	0,9	0,7	0,9
147								
148								
149								
150	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
151	0,01	0,01	0,01	0,01	0,01	0,0113	0,01	0,01
152	0,00	0,00	0,00	0,00	0,00	0,00		0,00
153	75	81	75	81	71	77	71	54
154	197,3	218,1	197,3	218,1	187,3	206,3	187,3	145
155	2010	2020	2010	2020	2010	2020	2010	2020
156 157	w/o Measure			ures until 2003 48	EU Legisia 44	ation 2007 48	With furthe	
158	6	48 8	6	8	6	8	6	24 4
159	0	0	0	0	U	0	0	4
160	8	10	8	10	5	6,8	5	7
161	<u> </u>	1,7		1,7		1,1		1,1
162	58,4	67,6	58,4	67,6	55,8	63,6	55,8	35,8
163	88	107	88	107	85	101	85	57
164	w/o Measure			res until 2003		ation 2007		
165	3.810	4.219	3.810	4.219	3.498	2.376	3.475	1.785
166	5.065	5.616	5.065	5.616	4.627	2.765	4.624	2.405
167	2212	2222	2010	2000	2212	2222	2212	0000
168	2010 w/o Measure	2020	2010	2020	2010	2020	2010	2020
169				ires until 2003		ation 2007	With furthe	
170 171	1092 728	1092 728	449 560	449 560	22 28	22 28	0	0
171	120	120	500	560	20	20		0
173	24	24	17,4	17,4	1	1	0	0
174	27	24	21,6	21,6	1	1	0	0
175	1844	1844	1048	1048	52	52	0	0
176	1.553	1.553	688	688	34	34	0	0
177	2010	2020	2010	2020	2010	2020	2010	2020
178	w/o Measure	es from 99	With Measu	res until 2003	EU Legisla	ation 2007	With furthe	r Measures
179	82	82	60	60	60	60		
180	435	435	268	268	268	268	157	28
181	33	33	20	20	20	20	6	1
182								
183	12	22	5,9	5,9	5,9	5,9	5,9	5,9
184	174	465	85	227	85	227	16	29
185	13	35	6	17	6	17	1 1	1
186	749	1072	446	598	446	598	186	65
187	797	1133	477	634	477	634	181	64

			0 1	_							
100	A	В	C 1005	4	E	F	G	Н	1	J	L
	XPS Insulating Foam	\blacksquare	1995		1998	1999	2000	2001	2002	2003	
	First Year Emiss. [t] HFC-134a	H						405	E 40	200	
	HFC-154a	Н						495 1150	540 1428	390 1313	
	Operating Emiss. [t]	H						1150	1420	1313	
	HFC-134a	H						1.0	3.1	5.6	
	HFC-152a							1.0	3.1	5.0	
	Subtotal Emiss. [t]	Ц	0		0	0	0	1646	1971	1709	
	Kilotonnes CO2 equiv.	Н	U		U	U	U	806	906	698	
	Asthma MDIs	П	1995		1998	1999	2000	2001	2002	2003	
	Operating Emiss. [t]	H	1000		1000	1000	2000	2001	2002	2000	
	HFC-134a	П	0	+	27	36	47	106	160	171	
	HFC-227	Ħ	0		0	8	37	36	40	32	
	Filling-Emiss. [t]	Ħ								-	
	HFC-134a	П						2	2	2	
	HFC-227	П									
	Subtotal Emiss. [t]	П	0		27	44	84	143	201	205	
	Kilotonnes CO2 equiv.	П			35	70	168	243	326	318	
	Oth Aerosols/Solvents		1995		1998	1999	2000	2001	2002	2003	
207	Operating Emiss. [t]	\prod									
	HFC-134a (+43-10mee)		242		249	252	255	257	257	256	
	HFC-152a	Ш	10		10	10	11	15	15	15	
	Filling-Emiss. [t]	Ц									
	HFC-134a	Ш	2.4		2.4	2.4	2.4	2.4	2.4	2.4	
	HFC-152a	Ц	0.15		0.15	0.15	0.15	0.15	0.15	0.15	
	Subtotal Emiss. [t]	Ц	254		262	264	269	274	274	274	
	Kilotonnes CO2 equiv.	Ш	318		329	331	336	339	339	339	
	Fire Extinguishers	Ц	1995	-	1998	1999	2000	2001	2002	2003	
	Operating Emiss. [t]	H		-	0.04	0.47	0.54	0.70	4.00	4.04	
	HFC-227	Н			0.01	0.17	0.51	0.78	1.00	1.04	
	HFC-236fa HFC-23	$^{+}$		+				0.00227	0.01453	0.031	
		H									
	Filling-Emiss. [t] HFC-227	Н		+	0.002	0.004	0.080	0.067	0.033	0.020	
	HFC-236fa	H		-	0.002	0.004	0.060	0.067	0.033	0.020	
	HFC-23	H						0.201	0.549	0.363	
	Disposal Emiss. [t]	H		+							
	HFC-227	Н									
	HFC-236fa	H									
	HFC-23	Ħ									
	Subtotal Emiss. [t]	Н			0.01	0.18	0.6	1.11	1.6	1.5	
	Kilotonnes CO2 equiv.	П			0.04	0.5	1.7	4.1	6.5	5.7	
	Semiconduct. HFC-23 [t]	П	1995		1998	1999	2000	2001	2002	2003	
	Emiss. [t]		1.06		1.00	1.05	1.44	1.22	0.94	1.33	
	Kilotonnes CO2 equiv.		12.4		11.7	12.3	16.9	14.3	11.0	15.6	
233	Magnesium Casting	\prod	1995	Ι	1998	1999	2000	2001	2002	2003	
	HFC-134a [t]	\prod								0.2	
	Kilotonnes CO2 equiv.	Ц								0.291	
236		Ш									
	Subtot. HFC other use	Ц									
	Emiss. [t]	Ц	2,077		2,226	1,994	1,924	3,523	3,464	3,211	
	Kilotonnes CO2 equiv.	Н	1,865		2,048	1,700	1,729	2,535	2,398	2,121	
	I	Ц	4005	+	1998	4000	0000	0007	0000	0000	
244		1 1		- 1	Tuux	1999	2000	2001	2002	2003	
245	Total HFC-Use	Ц	1995	+	1330	1000			ı		
245 246	Total HFC-Use Total HFC-Use Emiss [t]							1.004	4 455	1 220	
245 246 247	Total HFC-Use Total HFC-Use Emiss [t] Subtotal I stat [t]		73		516	696	854	1,004	1,155	1,339	
245 246 247 248	Total HFC-Use Total HFC-Use Emiss [t] Subtotal I stat [t] Subtotal II mobil [t]		73 170		516 677	696 921	854 1,168	1,409	1,653	1,908	
245 246 247 248 249	Total HFC-Use Total HFC-Use Emiss [t] Subtotal I stat [t] Subtotal II mobil [t] Subtotal III other [t]		73 170 2,077		516 677 2,226	696 921 1,994	854 1,168 1,924	1,409 3,523	1,653 3,464	1,908 3,211	
245 246 247 248 249	Total HFC-Use Total HFC-Use Emiss [t] Subtotal I stat [t] Subtotal II mobil [t] Subtotal III other [t] Subtotal HFC Use Ems. [t]		73 170		516 677	696 921	854 1,168	1,409	1,653	1,908	

	M	N	d P	Q	Ы	S	Т	I v	W
188	2010	2020	2010	2020	η	2010	2020	2010	2020
				ures until 2003	+				
189		res from 99			Н		ation 2007		r Measures
190	765		586	714	Н	630	769	126	0
191	2868	3496	1673	2040	H	335	0	335	0
192					Ц				
193	32.5	74.3	24.5	56.6	Ш	25.6	60.2	20	23
194					Ц				
195	3666	4503	2283	2810		991	829	480	23
196	1,438	1,798	1,028	1,287		900	1,077	236	30
197	2010	2020	2010	2020		2010	2020	2010	2020
198		res from 99		res until 2003		EU Legisla	ation 2007		r Measures
199	352	474	234	314		234	314	192	146
200	88	118	49	66		49	66	40	31
201									
202	3	3	3	3		3	3	2	2
203			1	1		1	1	1	0
204	443	595	286	384		286	384	235	179
205	717	963	451	607	_	451	607	370	283
206	2010		2010	2020	П	2010	2020	2010	2020
207		res from 99		ures until 2003	ΙŤ		ation 2007		r Measures
208	257	257	257	257	Ħ	162	162	2	2
209	15	15	15	15	Ħ	10	10	0	0
210					Ħ				
211	2.4	2.4	2.4	2.4	H	0.00	0.00	0	0
212	0.15		0.15	0.15	H	0.00	0.00	0	0
213	275	275	275	275	Ц	172	172	2	2
214	339	339	339	339	Н	212	212	3	3
215	2010		2010	2020		2010	2020	2010	2020
216		res from 99		ures until 2003	H		ation 2007		r Measures
217	5.3		5.3	7.5	H	5.3	7.5	5.3	7.5
			0.6		H	0.6		0.6	0.6
218	0.6			0.6	H		0.6	0.6	0.6
219	0.35	1.84	0.35	1.84	Н	0.35	1.84		
220	0.050	0.050	0.050	0.050	Н	0.050	0.050	0.050	0.050
221	0.050	0.050	0.050	0.050	Н	0.050	0.050	0.050	0.050
222	0.384		0.384	0.386	H	0.384	0.386	0.384	0.386
223	0.01	0.01	0.01	0.01	Н	0.01	0.01		
224					Н				
225		1.0		1.0			1.0		1.0
226		0.075		0.075			0.075		0.075
227		0.050	_	0.050			0.050		
228	6.7	11.5	6.7	11.5		6.7	11.5	6.3	9.6
229	25.9	53.7	25.9	53.7	Щ	25.9	53.7	21.7	31
230		res from 99		res until 2003	_		ation 2007		r Measures
231	3.6		1.0	1.0	_	1.0	1.0	1.0	1.0
232	42.6	110.5	11.1	11.1		11.1	11.1	11.1	11.1
233		res from 99		res until 2003	Ц		ation 2007		r Measures
234	0		0.2	0.2	Ц	10.9	17.3	12.4	19.9
235	0.0	0.0	0.3	0.3		14.2	22.5	16.1	25.9
236					Ц				
241		res from 99		res until 2003	_		ation 2007		r Measures
242	6,986	8,310	4,346	5,128	_	1,966	2,065	922	279
243	4,913	5,951	3,021	3,621		2,126	2,652	838	449
244									
245	2010	2020	2010	2020		2010	2020	2010	2020
246		res from 99		res until 2003			ation 2007	With furthe	r Measures
247	2,255		2,128	2,368	_	1,511	1,567	1,501	1,194
248	3,810		3,810	4,219		3,498	2,376	3,475	1,785
249	6,986					1,966	2,065		279
250	13,051	15,024	10,283	11,715		6,974	6,008	5,899	3,258
251	,		,	,	П	,		,	,
		1	1						

	A	В	С	Е	F	G	Н	1		1
252	Total HFC Use Ems.	Р			Г	G	П	1	J	L
	Subtotal Stat Use		169	1,170	1,599	1,994	2,375	2,758	3,205	
	Subtotal Mobile Use	+	234	915	1,241	1,571	1,892	2,738	2,567	
	Subtotal Other use		1,865	2,048	1,700	1,729	2,535	2,398	2,121	
	Kilotonnes CO2 equiv.	Н	2,267	4,133	4,540	5,294	6,802	7,374	7,894	
257	Kilotoffies CO2 equiv.		2,207	4,133	4,540	5,294	0,002	7,374	7,094	
	HFC Production etc.	+	1995	1998	1999	2000	2001	2002	2003	
	Total HFC Prod. Ems. [t]	+	360	259	248	128	119	132	74	
	Kilotonnes CO2 equiv.	Н	4,212	2,833	2,673	1,207	1,091	1,212	533	
265			7,212	2,000	2,070	1,201	1,001	1,212	000	
	Total HFC Emiss. [t]		2,679	3,678	3,858	4,073	6,054	6,404	6,532	
	Kilotonnes CO2 equiv.	П	6,479	6,966	7,213	6,501	7,893	8,586	8,427	
268							,	-,	- /	
	PFC		1995	1998	1999	2000	2001	2002	2003	
270	Aluminium Production	Ħ								
	Manuf. Emiss. [t]									
	CF4	\parallel	209	157	116	48	50	58	64	
	C2F6	$\parallel \parallel$	21	15.7	12	5	5	5.8	6.6	
	Emiss PFC [t]	П	230	173	128	53	55	64	70	
275	Kilotonnes CO2 equiv.		1,552	1,166	864	356	372	431	475	
	Refrigerants	\prod	1995	1998	1999	2000	2001	2002	2003	
	Oper. + Disp. Emiss. [t]									
	C2F6 (R-116)	П		0.5	0.8	1.2	1.7	2.1	2.5	
279	C3F8 (R-218)		1.2	7.3	9.4	10.3	11.1	11.7	12.1	
280	Emiss PFC [t]		1.2	7.8	10.2	11.6	12.7	13.7	14.7	
	Kilotonnes CO2 equiv.		8.1	55.7	73.2	83.8	92.7	101	108	
	PCB Manufacture		1995	1998	1999	2000	2001	2002	2003	
	Manuf. Emiss. [t]									
	CF4	Ш	2	2	2	2	2	2	2	
	Emiss PFC [t]	Ц	2	2	2	2	2	2	2	
	Kilotonnes CO2 equiv.	Ц	13	13	13	13	13	13	13	
	Semiconductors		1995	1998	1999	2000	2001	2002	2003	
	Manuf. Emiss. [t]		44.0	47.0	40.0	40.5	40.7	40.0	44.4	
	C2F6	+	11.3	17.3	18.8	18.5	12.7	12.8	14.4	
	CF4		11.2	11.7	17.1	20.5	15.8	15.5	14.3	
	C3F8		0	0.2	0.8	4.1	3.7	4.3	4.8	
	c-C4F8 Emiss PFC [t]	Ц	0	0.1	0.2 37	0.1	0.1 32	0.1 33	0.2 34	
		Н	23_	29		43				
294 295	Kilotonnes CO2 equiv.		177	238	292	333	246	250	260	
	Total PFCs	+	1995	1998	1999	2000	2001	2002	2003	
	PFC Emiss [t]	Ц	256	212	177	110	102	112	121	
	Kilotonnes CO2 equiv.	Н	1,750	1,473	1,243	786	723	795	856	
299			1,750	1,473	1,243	700	123	190	000	
	SF6	+	1995	1998	1999	2000	2001	2002	2003	
	El. Egipment T&D	1	.000	1000	1000	2000	2001	2002	2000	
	Manufact. Switchgear t	$\dagger \dagger$	20.0	16.6	10.8	9.5	7.3	8.0	5.44	
	Manufact. Components t	$\dagger \dagger$	16.0	14.0	14.0	13.2	14.5	14.4	12.40	
	Bank Emissions t	$\dagger \dagger$	7.3	8.1	8.5	7.7	8.0	8.2	8.42	
	Disposal Emissions t	$\dagger \dagger$		0.06	0.06	0.06	0.06	0.06	0.06	
	Subtotal Emiss. [t]	Н	43.4	38.7	33.4	30.4	29.8	30.7	26.3	
	Kilotonnes CO2 equiv.	П	1,036	924	798	727	713	733	629	
308										
	Other Electr. Applic.		1995	1998	1999	2000	2001	2002	2003	
	Manuf. Emissions t		0.7	12.0	11.6	13.5	12.6	8.9	6.0	
311	Bank Emissions t		4.4	4.9	4.8	5.0	4.8	4.9	4.9	
	Disposal Emissions t		0.07	0.04	0.09	0	0	0	0	
	Subtotal Emiss. [t]	П	5.2	17.0	16.6	18.4	17.4	13.8	10.9	
314	Kilotonnes CO2 equiv.		125	405	396	441	416	329	260	
										· · · · · · · · · · · · · · · · · · ·

	М	N C	Р	Q F	S	T I	J v	W
252	w/o Measure	es from 99	With Measu	res until 2003	EU Legisl	ation 2007	With furthe	r Measures
253	5,684	6,062	5,288	5,666	3,704	3,683	3,681	2,748
254	5,065	5,616	5,065	5,616	4,627	2,765	4,624	2,405
255	4,913	5,951	3,021	3,621	2,126	2,652	838	449
256	15,662	17,629	13,374	14,903	10,458	9,100	9,143	5,602
257	w/o Measure			res until 2003		ation 2007		er Measures
258	2010	2020	2010	2020	2010	2020	2010	2020
263	272	272	74	74	74	68	52	46
264	2,851	2,851	535	535	535	527	276	268
265		ĺ						
266	13,323	15,296	10,357	11,789	7,048	6,076	5,950	3,303
267	18,513	20,480	13,908	15,437	10,992	9,626	9,419	5,869
268								
269	2010	2020	2010	2020	2010	2020	2010	2020
270	w/o Measure	es from 99	With Measu	res until 2003	EU Legisl	ation 2007	With furthe	r Measures
271								
272	128.5	128.5	55	55	55	55	44	44
273	12.8	12.8	5	5	5	5	4	4
274	141.3	141	60	60	60	60	48	48
275	953	953	408	408	408	408	325	325
276	2010	2020	2010	2020	2010		2010	2020
277	w/o Measure			res until 2003		ation 2007		r Measures
278	5.6	5.6	5.6	5.6	3.6	3.3	3.6	2.4
279	3.0		3.0		3.0		3.0	
280	8.5	5.6	8.5	5.6	6.6	3.3	6.6	2.4
281	71.9	51.1	71.9	51.1	54.2	29.9	54.0	21.9
282	2010	2020	2010	2020	2010		2010	2020
283	w/o Measure			ires until 2003		ation 2007		r Measures
284	2	2	2	2	2	2	2	2
285	2	2	2	2	2	2	2	2
286	13	13	13	13	13	13	13	13
287	2010	2020	2010	2020	2010		2010	
288	w/o Measure		10.2	ires until 2003		ation 2007		er Measures
289 290	47.0 38.0	122.0 98.7	10.2	10.2 10.1	10.2 10.1	10.2 10.1	10.2 10.1	10.2 10.1
291	0.2	0.5		0.0	0.0	0.0	0.0	
291	0.2	0.5	0.0	0.0	0.0	0.0		0.0
293	85	221	20	20	20	20 20	0.0	20
294	682	1769	159	159	159	159		159
295	w/o Measure			ires until 2003		ation 2007		er Measures
296	2010	2020	2010	2020	2010		2010	
297	237	370	91	88	89	86	77	73
298	1,720	2,786	652	631	634	610	551	519
299	1,720	2,700	002	007	304	0.0	307	
300	2010	2020	2010	2020	2010	2020	2010	2020
301	w/o Measure			ires until 2003		ation 2007		er Measures
302	22.5	22.7	6.9	7.0	6.9	7.0	6.8	
303	14.0	14.0	12.4	12.4	12.4		6.5	1.5
304	10.5	10.1	9.9	9.6	9.9		8.7	7.3
305	0.5	0.9	0.5	0.9	0.5		0.50	0.9
306	47.5	47.7	29.7	30.0	29.7	30.0	22.5	16.6
307	1,135	1,140	711	716	711	716	537	398
308								
309	w/o Measure	es from 99	With Measu	res until 2003	EU Legislation	on 2007	With further	Measures
310	12.02	12.02	1.02	1.02	1.02	1.02	0.02	0.02
311	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9
312	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
313	17.0	17.0	6.0	6.0	6.0	6.0	5.0	5.0
314	405	405	142	142	142	142	118	118
31 4 1								

	Α	В	С	1	E	F	G	Н	ı	J	L
315	Α	Н	<u> </u>	1	_	'	0	11		J	L
	Magnesium Casting		1995	٠.	1998	1999	2000	2001	2002	2003	
	Manufacturing Emiss t		7.7		9.2	8.6	13.2	17.3	16.0		
	Subtotal Emiss. [t]	Н	7.7		9.2	8.6	13.2	17.3	16.0	19.1	
	Kilotonnes CO2 equiv.	П	185		220	206	316	413	383	457	
320											
	Soundproof Glazing	Ħ	1995		1998	1999	2000	2001	2002	2003	
	Mauf. Emissions t		92		37	32	28.6	25	14	10	
	Bank Emissions t		16		20	20	20.4	21	21	21	
	Disposal Emissions t						2.7	6	11	18	
	Subtotal Emiss. [t]	П	107.9		56.5	52	51.7	51	46.4	48.3	
	Kilotonnes CO2 equiv.	П	2,578	1,	,350	1,244	1,236	1,227	1,108	1,155	
327											
328	Car Tires		1995		1998	1999	2000	2001	2002	2003	
329	Disposal Emissions t		110		125	67	50	30	9	6	
	Subtotal Emiss. [t]		110.0		25.0	67	50	30	9	6	
	Kilotonnes CO2 equiv.		2,629	2,	,988	1,601	1,195	717	215	143	
332											
	Soles/Radar/GI. Fibre		1995		1998	1999	2000	2001	2002	2003	
	Subtotal Emiss. [t]		18.5		22.3	24	23.3	15	16.6	15.4	
	Kilotonnes CO2 equiv.		442		532	574	557	365	396	369	
336											
	Tracergas/Al-Cleaning		1995		1998	1999	2000	2001	2002	2003	
	Manufacturing Emiss t	Ш	1.0		1.0	11.0	14.5	32.5	35.5	45.5	
	Subtotal Emiss. [t]		1.0		1.0	11.0	14.5	32.5	35.5	45.5	
	Kilotonnes CO2 equiv.		23.9		23.9	263	347	777	848	1,087	
341											
	Semiconductors	Ц	1995		1998	1999	2000	2001	2002	2003	
	Manufacturing Emiss t	Ш	2.0		2.4	2.2	2.4	1.8	2.4	2.6	
	Subtotal Emiss. [t]	Ш	2		2	2	2	2	2	2.6	
	Kilotonnes CO2 equiv.		49		58	52	56	44	56	62	
	23900	Н	1005		1000	4000	0000	0004	0000	0000	
	Other SF6		1995	'	1998	1999	2000	2001	2002	2003	
	SF6	Ш	7		9	8	9	10	10	10	
	Subtotal Emiss. [t]		7		9	8	9	10	10	10	
351	Kilotonnes CO2 equiv.		167		215	191	215	239	239	239	
352		H	1995	+	1998	1999	2000	2001	2002	2003	
	Total SF6	H	1990		0561	1333	2000	2001	2002	2003	
	Total Emiss. [t]	Н	303		281	223	213	205	180	184	
	Kilotonnes CO2 equiv.	Н	7,235	6	716	5,325	5,090	4,910	4,308	4,402	
356			7,200	0,	, , , ,	0,020	0,000	7,010	7,000	7,702	
357		H									
	Total F-Gas-Emissions	H	1995	٠.	1998	1999	2000	2001	2002	2003	
359		4									
	Total HFC [t]	Н	2,679	.3	,678	3,858	4,073	6,054	6,404	6,532	
	Total PFC [t]	Н	256		212	177	110	102	112		
	Total SF6 [t]	H	303		281	223	213	205	180	184	
	Total F-Gas Emiss. [t]	Н	3,237	4	,171	4,258	4,396	6,362	6,697	6,837	
364		П	- ,	 	,	,_55	.,200	-,552	-,501	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	HFC ktonnes CO2 eqiv.	H	6,479	6	,966	7,213	6,501	7,893	8,586	8,427	
	PFC ktonnes CO2 eqiv.	П	1,750		,473	1,243	786	723	795	856	
	SF6 ktonnes CO2 eqiv.	П	7,235	_	,716	5,325	5,090	4,910	4,308		
	Kilotonnes CO2 equiv.	П	15,464	_	,156	13,781	12,376	13,526	13,689		
									, -		

	М	N C	1 P	Q	R S	T I	V	W
315			•	ς	., 0			
316	w/o Measul	res from 99	With Measu	res until 2003	EU Legislati	on 2007	With further	Measures
317	41	71	33,1	53,1	4,0	7,0	0,0	0,0
318	40,9	70,8	33,1	53,1	4,0	7,0	0,0	0,0
319	977	1692	791	1269	96	167	0,0	0,0
320								
321	w/o Measu			res until 2003		ation 2007		r Measures
322	37	37	10	10	0	0	0	0
323	23	19	18	9	17	6,6	17	6,6
324	67	143	67	143	67	143	67	143
325	127,0	198,5	95,3	162,0	84,3	149,1	84,3	149,1
326 327	3.036	4.745	2.279	3.872	2.015	3.564	2.015	3.564
328	w/o Measui	roc from 00	Mith Moory	res until 2003	EU Legislati	on 2007	With further	Magauraa
329	30	30	2,5	2,5	0,0			0,0
330	30,0	30,0	2,5	2,5	0,0	0,0	0,0	0,0
331	717	717	60	60	0,0	0,0	0,0	0,0
332	,,,	, , ,	30		0,0	5,0	3,0	5,0
333	w/o Measui	res from 99	With Measu	res until 2003	EU Legisla	ation 2007	With furthe	r Measures
334	10	10	10	10	10	10	10	10
335	239	239	239	239	239	239	239	239
336								
337	w/o Measu	res from 99	With Measu	res until 2003	EU Legisla	ation 2007	With furthe	r Measures
338	40,5	40,5	40,5	40,5	40,5	40,5		0,5
339	40,5	40,5	40,5	40,5	40,5	40,5	0,5	0,5
340	968	968	968	968	968	968	12	12
341								
342		res as of 99		res until 2003	EU Legislati		With further	
343 344	6,6 7	17,2	0,4	0,4	0,4	0,4		0,4
344	158	17 411	0,4	0,4 9	0,4	0,4 9	0,4	0,4 9
346	130	411	9	9	9	9	9	9
347	w/o Measu	res from 99	With Measi	res until 2003	FILL egist:	ation 2007	With furthe	r Measures
348	10	10	10	10	10	10		10
349	10	10	10	10	10	10	10	10
350	239	239	239	239	239	239	239	239
351								
352	2010	2020	2010	2020	2010	2020	2010	2020
353		res from 99		ures until 2003		ation 2007		r Measures
354	329	442	228	314	185	253	133	192
355	7.875	10.556	<i>5.438</i>	7.514	4.418	6.045	3.169	4.579
356								
357	2212	2222	2212	2222	2010		2212	2222
358	2010	2020	2010	2020	2010	2020	2010	2020
359	w/o Measu			ures until 2003		ation 2007		r Measures
360	13.323	15.296	10.357	11.789	7.048	6.076	5.950	3.303
361	237	370	91	88	89	86	77	73
362	329	442	228	314	185	253	133	192
363 364	13.890	16.108	10.676	12.192	7.322	6.415	6.160	3.568
365	18.513	20.480	13.908	15.437	10.992	9.626	9.419	5.869
366	1.720	2.786	652	631	634	610	551	5.669
367	7.875	10.556	5.438	7.514	4.418	6.045	3.169	4.579
368	28.108	33.822	19.998	23.582	16.045	16.281	13.139	10.967

Teil III Historische Emissionsdaten für 1990

Einleitung

In diesem dritten Teil werden die Emissionsdaten der fluorierten Treibhausgase für das Berichtsjahr 1990 abgeschätzt und dokumentiert. Das Jahr 1995 ist bei diesen Gasen zwar Bezugsjahr für Reduktionsmaßnahmen nach dem Kyoto-Protokoll. Die Emissionsberichterstattung erfolgt allerdings nach UNFCCC und hat daher, wie die Klimarahmenkonvention selbst, als Basisjahr 1990. Obwohl die Emissionsdaten für 1990 von besonderer Bedeutung sind, wurden sie bislang in Deutschland vernachlässigt.

Die nachfolgenden Schätzungen von Aktivitätsdaten und Emissionen gleichen diesen Mangel aus. Um die Übernahme in vorhandene Berichtsformate und in das ZSE zu erleichtern, werden die Einzelquellen gleich in CRF-Tabellen präsentiert, geordnet nach drei (Haupt-)Quellgruppen 2.C (Metallproduktion), 2.E (Produktion halogenierter Kohlenwasserstoffe) und 2.F (Verbrauch von F-Gasen). Diese Gliederung deckt sich nicht mit der Einteilung in die drei Stoffgruppen FKW, HFKW und SF₆. Diese wird zum Schluss im dritten Kapitel dieses Teils herangezogen, wo die Klimawirksamkeit der Emissionen des Jahres 1990 zusammenfassend betrachtet wird.

Die Spezifik des Emissionsbildes des Jahres 1990 wird allerdings auch in der Quellgruppen-Sicht sofort deutlich: Bestimmend sind die Stoffe SF₆ und FKW (CF₄ und C₂F₆), während bewusst eingesetzte HFKW, die gegenwärtig die weitaus größte Stoffgruppe sind, bis auf eine Ausnahme (als Halbleiter-Ätzgas) noch gar nicht vorkommen. Gleichwohl sind sie in ihrer "alten", unbeabsichtigten Form als Nebenprodukt der HFCKW-Synthese hoch klimawirksam.

Bereits die erste deutsche Studie zu Emissionen fluorierter Treibhausgase aus dem Jahr 1996 (Schwarz/Leisewitz) bemühte sich durchweg um Vergleichsdaten aus dem Jahr 1990. Einige davon finden sich nachfolgend unverändert wieder. In manchen Fällen hat der in den letzten neun Jahren geschärfte Blick auf die Einzelquellen rückwirkende Korrekturen erzwungen. Die 1990er Daten der Quellgruppe 2.E "Produktion halogenierter Kohlenwasserstoffe" mussten fast völlig neu ermittelt werden. Im Anschluss an die 1990er Aktivitätsdaten und Emissionen in den CRF-Tabellen wird für jede Einzelquelle die Datenherkunft angeführt.

Die Dokumentation der Daten beschränkt sich auf diese meist nur knappen Datennachweise, um an anderer Stelle Ausgeführtes nicht zu wiederholen. Wer Erörterungen zur Methode vermisst, findet Quellenbeschreibungen, Erhebungsverfahren, Begründungen der Emissionsfaktoren, Einschätzungen von Datenqualität und Datensicherheit für sämtliche Einzelquellen in der bereits mehrfach erwähnten Studie "Emissionen, Aktivitätsraten und Emissionsfaktoren von fluorierten Treibhausgasen (F-Gasen) in Deutschland für die Jahre 1995-2002", die 2005 als UBA-Text 14/05 erschienen ist. Das meiste für 1995-2002 Erörterte ist mit geringen Einschränkungen auch auf 1990 anwendbar. Die Studie wird nachfolgend als "UBA-Text 14/05" abgekürzt und bildet neben "Aktuelle und künftige Emissionen treibhauswirksamer fluorierter Verbindungen in Deutschland" vom Dezember 1996 (abgekürzt: Schwarz/Leisewitz 1996) die Möglichkeit zu vertiefter Information.

Erstes Kapitel. Die Quellgruppen 2.C und 2.E im Jahr 1990

Im Folgenden wird ein Grundverständnis der CRF-Tabellen vorausgesetzt.

Tabelle 16

TABLE 2(II). C, E SECTORAL BACKG	ROUND DATA FO	R INDUSTI	RIAL PROCESSES		Germany		
Metal Production; Production of Halocark	oons and SF ₆				1990		
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	ACTIVITY I	DATA	IMPLIED EMISSION FACTORS	EMISSIONS			
	Description	(t)	(kg/t)	(t)	(t)		
C. PFCs and SF ₆ from Metal Production							
PFCs from Aluminium Production							
CF ₄	Al-production	740.300	0,453	335,5			
C_2F_6	Al-production	740.300	0,045	33,5			
SF ₆				7,9			
Aluminium Foundries	$(SF_6 consumption)$	0,50	NA	0,5			
Magnesium Foundries	Mg-production	2.000	3,70	7,4			
E. Production of Halocarbons and SF ₆							
1. By-product Emissions							
Production of HCFC-22	Production	31.400					
HFC-23			11,78	370	[360]		
Production of CFC-11/12	Production	72.000					
PFC-14 (CF4)			0,17	12	[5]		
2. Fugitive Emissions							
HFCs (specify chemical)				•			
SF_6	Production	Confid	Confid.	5			

Die Zahl [360] rechts außen in eckigen Klammern bedeutet HFKW-23 (in Tonnen), der aufgefangen und zu Kältemitteln oder Halonen weiter verarbeitet, die [5] bedeutet CF₄, das aufgefangen und zu Ätzgas aufgereinigt wurde. Beide Maßnahmen mindern Emissionen.

Nachweise der Daten

FKW-Emissionen aus der Aluminiumproduktion (CF₄, C₂F₆)

Die seit 1995 dokumentierten Produktions- und Emissionsdaten beziehen sich auf fünf inländische Hütten. Im Jahr 1990 gab es allerdings noch fünf weitere Hütten. Zwei waren in der DDR, die noch im gleichen Jahr geschlossen wurden. Drei lagen in den alten Bundesländern. Sie wurden ebenfalls Anfang der 90er Jahre geschlossen.

Alle Daten zu 1990 wurden bereits 1996 mit ausreichender Sorgfalt ermittelt bzw. abgeschätzt und in Schwarz/Leisewitz 1996, S. 61-72, präsentiert und dokumentiert.

SF₆-Anwendung in Aluminiumgießereien (Schmelzenreinigung)

Verbrauch und – damit identische - Emissionen stammen ebenfalls aus Schwarz/Leisewitz 1996, S. 50 (unverändert).

SF₆-Anwendung in Magnesiumgießereien (Schutzgas)

Verbrauch und – damit identische - Emissionen: Schwarz/Leisewitz 1996, S. 39-44 (kontrolliert und bestätigt 2005).

Nebenprodukt-Emissionen von HFKW-23 aus der HFCKW-22-Herstellung

Die – unerwünschten - Emissionen des HFKW-23 wurden in Schwarz/Leisewitz 1996, S. 125/126, für 1990 auf 200 t geschätzt. Außerdem wurde eine aufgefangene Teilmenge von 10 t angegeben, die teils als Tieftemperatur-Kältemittel R-23 direkt verkauft und teils zum bromhaltigen Kältemittel R-13B1 weiterverarbeitet wurde.

Diese Schätzungen stützten sich ausschließlich auf die größte der damals drei bestehenden Anlagen für HFCKW-22 in Deutschland (einschl. DDR), die Anlage bei der Hoechst AG in Frankfurt am Main.

In 2005 wurden die Betreiber der in 1990 zweitgrößten Anlage (Bad Wimpfen) erneut befragt. Sie bestätigten ihre Aussage vom 23.04.1996 (gegenüber Öko-Recherche), dass 1990 der anfallende HFKW-23 quantitativ aufgefangen und als Ausgangsstoff für Halon 1301 genutzt wurde, somit erwähnenswerte Emissionen nicht entstanden.

In 2005 wurde rückwirkend auch nach der HFCKW-22-Produktion in der DDR des Jahres 1990 (dritte Anlage) gefragt. Nach Auskunft von Rainer Niepel (03.06.2005), heute Geschäftsführer der Fluorchemie Dohna GmbH, die Flusssäure (HF) produziert, wurde in Dohna (bei Dresden) bis 1991 auf einer Technikums-Anlage HFCKW-22 hergestellt, und zwar jährlich ca. 1100 t. Der zwangsläufig anfallende HFKW-23 wurde über einen Rieselturm in die Atmosphäre abgelassen. Da keine Messungen stattfanden, wird hier zur Emissionsbestimmung der internationale Standard-Emissionsfaktor 3% angesetzt. Demzufolge emittierten von dieser Anlage etwa 30 t HFKW-23, die früher nicht berücksichtigt worden waren.

Schließlich wurden auch die 1990er Daten zur Anlage der Hoechst AG überprüft. Im Öko-Recherche-Archiv fand sich ein Fax der Hoechst AG (Schönfeld, Harder) vom 14.08.1991, worin die 1990er Produktion von HFCKW-22 mit 20.842 t beziffert wurde. In diesem Lichte erhielt die Aussage der am 23.03.1996 von Schwarz/Leisewitz befragten Hoechst-Experten Dr. Hug und Dr. Debrodt über einen "R-23-Anteil von 1,5 bis 2% an der R-22-Produktion" neues Gewicht. Denn der Zwangsanfall von R-23 aus der Hoechst-Anlage muss zwischen 300 und 400 t (anstatt 200 t) betragen haben. Er wird hier auf 350 t geschätzt. Davon werden 10 t für Kältemittel-Verwendung subtrahiert. 340 t emittierten in die Atmosphäre.

Hier ist anzumerken, dass in Frankfurt seit Mitte 1995 alles überschüssige R-23-Abgas in der benachbarten thermischen Spaltanlage vernichtet wird.

Nebenprodukt-Emissionen von CF₄ (R-14) aus der FCKW-Produktion

In Schwarz/Leisewitz 1996, S. 75, wurde der 1990er Zwangsanfall von CF₄ (R-14) aus der Synthese der FCKW-11 und -12 auf 15 t beziffert. Davon wurden 5 t aufgefangen und nach Aufreinigung als Ätzgas für die Halbleiter-/Elektronikindustrie verkauft, so dass die CF₄-Emissionen ca. 10 t betragen haben. Im April 1994 wurde die FCKW-Produktion eingestellt und die Produktion von HFKW-134a begonnen.

Wie bei HFKW-23 stammen die genannten 1990er Daten ausschließlich von der größten deutschen Anlage, die ebenfalls von der Hoechst AG betrieben wurde.

In 2005 wurden die Betreiber der in 1990 zweitgrößten Anlage um Überprüfung ihrer Aussage vom 23.04.1996 (gegenüber Öko-Recherche) gebeten, dass ihre FCKW-Produktion nicht mit CF₄-Emissionen verbunden war. Antwort: "Da bei der FCKW-Produktion von Solvay Fluor im Werk Wimpfen der Schwerpunkt bei FCKW-11 für Schaumanwendungen lag, wurde der Fluorierungsprozess von Tetra (CCl₄) so gefahren, dass möglichst wenig FCKW-12, damit auch nur minimale Anteile FCKW-13 und praktisch kein FKW-14 mehr entstanden. Tatsächlich konnte nach Angaben meiner Kollegen nie FKW-14 im Rohprodukt nachgewiesen werden. Die Emissionen von FKW-14 im Werk Wimpfen können damit mit 0 angesetzt werden" (Dr. Ewald Preisegger, Solvay Fluor & Derivate GmbH, Hannover, 27.06.2005).

In 2005 wurde auch rückwirkend nach den FKW-14-Emissionen in der DDR des Jahres 1990 recherchiert. In Nünchritz bei Dresden, einem Standort des VEB Chemiekombinats Bitterfeld, wurden die FCKW-11 und -12 hergestellt. Die Produktion wurde 1992 eingestellt, nachdem die Hüls AG zum 01.06.1991 das Chemiewerk Nünchritz für seine Siliconchemie gekauft hatte (Archivdaten Öko-Recherche). Die Kapazität betrug 10.000 bis 11.000 t (Robin Wood Magazin, Nr. 29/2.1991, S. 27), wovon 1990 nach unserer Schätzung 7.000 t realisiert wurden.

Wird die gleiche Relation zwischen FKW-14-Anfall und FCKW-11/12-Ausstoß wie bei der Hoechst AG zugrunde gelegt, nämlich 0,03%, können die R-14-Emissionen aus Nünchritz auf etwa 2 t geschätzt werden.

Nachrichtlich sei hier noch die 1990er Produktion von FCKW-11/-12 der Hoechst AG und der Kali-Chemie (heute Solvay Fluor) erwähnt. Hoechst: 42.500 t (Fax der Hoechst AG, 14.08.1991, Harder und Schönfeld); Kali-Chemie: 22.500 t (Schätzung Öko-recherche).

Emissionen bei der SF₆-Produktion

SF₆ wurde auch schon 1990 in Deutschland nur in Bad Wimpfen hergestellt. Ausstoß und dabei auftretende flüchtige Emissionen waren bisher nicht recherchiert worden. Der heutige Betreiber der Anlage, die Solvay Fluor GmbH, ermittelte für diese Studie die Produktionsmenge von 1990, die hier vertraulich bleiben muss. (Mitt. Ewald Preisegger, Solvay Fluor & Derivate GmbH, Hannover, 27.06.2005). Die flüchtigen Emissionen werden von Öko-Recherche auf 5 t veranschlagt.

Zweites Kapitel. Die Quellgruppe 2.F im Jahr 1990

Tabelle 17

TABLE 2(II).F SECT	ORAL BA	CKGRO UI	ND DATA	FOR INDU	USTRIAL	PROCES	SES	Gern	nany
Consumption of Haloc	arbons and	l SF ₆						1	1990
-	AC	CTIVITY DA	TA		IED EMIS		EMISSIONS		
	A	mount of flu	id	Product	Product	Disposal	From	From	From
	Filled in new manu- factured products	In operating systems (average annual stocks)	Re- mained in products at decomm- issioning	manu- facturing factor	life factor	loss factor	manu- facturing	stocks	dis- posal
		(t)		(%	6 per annu	m)		(t)	
SF ₆ -Anwendungen									
Elektrische Betriebsm.	273	800		10%	1%		30,0	8,0	
Schallschutzscheiben	180	903		33%	1%		59,4	9,0	
Autoreifen	100	250	65			100%			65,0
Spurengas	0,5			100%			0,5		
Schuhsohlen/Radar									7,0
Teilchenbeschleuniger	1,5	61,4		1%	8%		0,02	5,2	
Halbleiter/Elektronik									
Halbleiter CF ₄	8			85%			6,8		
Halbleiter C ₂ F ₆	12			75%			8,4		
Halbleiter CHF ₃	4			85%			3,4		
Halbleiter NF ₃	1			40%			0,4		
Halbleiter SF ₆	5			73%			3,7		
Elektronik CF ₄	3			85%			2,6		

NF₃ wird in der Tabelle nur angeführt, aber nach CRF noch nicht als klimawirksam gezählt.

Nachweise der Daten

Betriebsmittel zur Elektrizitätsübertragung

Bestand und Bestandsemissionen: Schwarz/Leisewitz 1996, S. 14-24, kontrolliert und bestätigt 2005.

Verbrauch und Herstellungsemissionen neu rekonstruiert 2005 an Hand der Daten aus dem jährlichen ZVEI-VDN-Monitoring im Rahmen der Selbstverpflichtung von 1997, sowie durch pers. Gespräche mit Experten wie Friedrich Plöger (Siemens AG), Jürgen Voss (Ritz Messwandler GmbH & Co. KG), Johannes Stein (ZVEI, Fachbereich Schaltgeräte, Schaltanlagen, Industriesteuerungen).

Schallschutzscheiben

Verbrauch, Bestand und Emissionen: Schwarz/Leisewitz 1996, S. 25-32. Überarbeitet 2004 in: UBA-Text 14/05, S. 213-227.

Autoreifen

Verbrauch und Emissionen: Schwarz/Leisewitz 1996, S. 34-38, korrigiert im Zuge der Studie über Emissionsfaktoren und Aktivitätsdaten UBA-Text 14/05, S. 228-233.

Spurengas

Verbrauch und Emissionen: Schwarz/Leisewitz 1996, S. 49 (unverändert).

Flugzeugradar

Emissionen neu ermittelt in UBA-Text 14/05, S. 245-248 (Daten vertraulich).

<u>Sportschuhsohlen</u>

Emissionen ermittelt im Rahmen der Studie Schwarz/Leisewitz 1996 (Datenquelle dort veröffentlicht, Daten selbst vertraulich).

<u>Teilchenbeschleuniger</u>

Verbrauch, Bestand und Emissionen zuerst in Schwarz/Leisewitz 1996, S. 45/46. Erneut rekonstruiert im Rahmen der Öko-Recherche-Sondererhebung 2004 (unveröffentlicht, erst ab 1995 wiedergegeben in UBA-Text 14/05, S. 254-261).

Halbleiterindustrie: SF₆, CF₄, C₂F₆, CHF₃, NF₃

Verbrauch und Emissionen: Schwarz/Leisewitz 1996, S. 133-142 (kontrolliert und bestätigt 2005).

Elektronikindustrie (Leiterplattenreinigung mit CF₄)

Verbrauch und Emissionen: Schwarz/Leisewitz 1996, S. 74 (kontrolliert und bestätigt 2005).

Drittes Kapitel. Ökologische Bewertung der Emissionen von 1990

Werden die in den beiden Tabellen 16 und 17 nach Quellgruppen geordneten Einzelquellen nach Stoffgruppen zusammengefasst, ergibt sich folgendes Bild:

Tabelle	18: Die Emissionen	von 1990 nach Stoff	gruppen
Stoffgruppe	Emissionen in	Emissionen in Tsd.	Mittleres
	metrischen t	t CO ₂ -Äquivalente	GWP
FKW (CF ₄ , C ₂ F ₆)	399	2705	6784
HFKW-23 (CHF ₃)	373	4369	11700
SF ₆	201	4797	23900
Summe	973	11871	12202

Quellen: Tabelle 16 und Tabelle 17

Die gesamten F-Gas-Emissionen des Jahres 1990 betragen metrisch nur 973 t. Das ist ein Bruchteil der Menge des Jahres 2003 mit 6837 t (s. Teil II, Erstes Kapitel). In der Klimawirkung machen die 1990er Emissionen allerdings 11,87 Mio. t CO_2 -Äquivalente aus, was nicht sehr viel unter dem Wert von 2003 mit 13,69 Mio. t ist. Der Grund dafür ist, dass 1990 nur F-Gase mit extrem hohem GWP emittierten, nämlich CF_4 (GWP: 6500), C_2F_6 (9200), CHF_3 (11700) und SF_6 (23900). Das durchschnittliche GWP (s. Tab. 18, letzte Spalte) betrug 12.202 (1990) gegenüber rechnerischen 2001 im Jahre 2003.

Die bewusst als FCKW-Nachfolger eingesetzten neuen HFKW wie HFKW-134a haben ein GWP von 1300 oder generell zwischen 140 und 3300. Darum schlägt sich das auf verstärkten HFKW-Einsatz zurückgehende rapide Wachstum der F-Gas-Emissionen nach 1990 bisher nur als mäßiger Zuwachs ihrer Klimawirkung nieder.

Dazu kommt, dass die Emissionen der "alten" F-Gase aus der Zeit vor dem FCKW-Ersatz seit 1990 tendenziell abnehmen.

- Aus fast 400 t FKW (überwiegend CF₄) in 1990 sind im Jahr 2003 vor allem dank der Anstrengungen der Aluminiumindustrie – 121 t geworden.
- Noch stärker ist der Rückgang bei den Emissionen des HFKW-23 aus der R-22-Produktion. Hier ist die Chemische Industrie mittlerweile tätig geworden.
- Umso auffälliger ist die relative Konstanz der SF₆-Emissionen. Sie sind von 201 t (1990) nur auf 184 t (2003) gesunken, nach einem zwischenzeitlichen Hoch von über 300 t im Jahr 1995. Da aus der Einzelquelle Schallschutzscheiben noch bis 2020 ein starker Emissionsanstieg vorgezeichnet ist, sind politische Maßnahmen (EU F-Gase-Verordnung) zur Emissionsdämmung hier vorrangig.

Der mögliche Emissionsrückgang der "alten" F-Gase ist heute bereits zu großem Teil ausgeschöpft. Wenn es politische Absicht ist, das klimawirksame Wachstum der F-Gase grundsätzlich wieder auf den Stand des Jahres 1990 zurückzuführen, sind weitere Maßnahmen zur Emissionsdämpfung bei den "neuen" F-Gasen, den bewusst für ihren Einsatz hergestellten HFKW erforderlich. Die EU-Direktive über den Ausstieg aus HFKW-134a aus Pkw-Klimaanlagen geht in diese Richtung.

Anhang: Die verwendeten GWP-Werte

GWP-W	erte der in der Studie vorkom (ohne chlorhaltig		eibhausgase
Substanz	Summenformel bzw. Zusammensetzung	Name	GWP 100
FKW (PFC)	-		
	CF ₄	14	6500
	C_2F_6	116	9200
	C ₃ F ₈	218	7000
	c-C₄F ₈	318	8700
HFKW (HFC)			
	CHF ₃	23	11700
	CH ₂ F ₂	32	650
	C ₂ HF ₅	125	2800
	$C_2H_2F_4$	134a	1300
	$C_2H_3F_3$	143a	3800
	$C_2H_4F_2$	152a	140
	C ₃ HF ₇	227ea	2900
	$C_3H_2F_6$	236fa	6300
	$C_3H_3F_5$	245fa	950*
	$C_4H_5F_5$	365mfc	890*
	$C_5H_2F_{10}$	43-10mee	1300
Kältemischungen	(ohne "Drop-In"-Mischungen)		
	143a/125/134a (52/44/4)	404A	3260
	32/125/134a (23/25/52)	407C	1525,5
	32/125 (50/50)	410A	1725
	125/143a (50/50)	507	3300
	116/23 (54/46)	508B	10350
Sonstige			
	SF ₆		23900

Erläuterung

Die GWP-Werte folgen den Angaben im Zweiten Sachstandsbericht (Second Assessment Report) des IPCC von 1996, die für die UNFCC-Berichterstattung immer noch maßgeblich sind. Lediglich für HFKW-365mfc und -245fa wurde der Dritte Bericht des IPCC (Third Assessment Report) von 2001 herangezogen, weil diese beiden Substanzen in IPCC 1996 noch nicht vorkommen.

Literatur

IPCC (1996) *Climate Change 1995: The Science of Climate Change*. Intergovernmental Panel on Climate Change; J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell, eds.; Cambridge University Press. Cambridge, U.K.

IPCC (2001) *Climate Change 2001: A Scientific Basis*, Intergovernmental Panel on Climate Change; J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, C.A. Johnson, and K. Maskell, eds.; Cambridge University Press. Cambridge, U.K.