Texte

Probenaufbereitungs- und Analyseverfahren für Flammschutzmittel (Pentabromdiphenylether, Octabromdiphenylether) in Erzeugnissen

Umwelt Bundes Amt

UMWELTFORSCHUNGSPLAN DES BUNDESMINISTERIUMS FÜR UMWELT, NATURSCHUTZ UND REAKTORSICHERHEIT

Forschungsbericht 202 67 300 UBA-FB 000839

Probenaufbereitungs- und Analyseverfahren für Flammschutzmittel (Pentabromdiphenylether, Octabromdiphenylether) in Erzeugnissen

von

Dr. Sabine Kemmlein Meike Bergmann Dr. Oliver Jann

Bundesanstalt für Materialforschung und -prüfung (BAM)

Im Auftrag des Umweltbundesamtes

Diese Publikation ist ausschließlich als Download unter <u>http://www.umweltbundesamt.de</u> verfügbar.

Der Herausgeber übernimmt keine Gewähr für die Richtigkeit, die Genauigkeit und Vollständigkeit der Angaben sowie für die Beachtung privater Rechte Dritter. Die in der Studie geäußerten Ansichten und Meinungen müssen nicht mit denen des Herausgebers übereinstimmen.

Herausgeber:	Umweltbundesamt			
	Postfach 14 06			
	06813 Dessau			
	Tel.: 0340/2103-0			
	Telefax: 0340/2103 2285			
	Internet: http://www.umweltbundesamt.de			
D. I.I.I.				

Redaktion: Fachgebiet III 1.4 Dr. Johanna Wurbs Dr. Hans-Hermann Eggers

Dessau, September 2005

Berichts-Kennblatt

1.	Berichtsnummer	2.		3.
4.	Titel des Berichts			
	Entwicklung von Probenaufbereitur Octabromdiphenylether) in Erzeugr	igs- und Analysenverfahren für F nissen	lamn	nschutzmittel (Pentabromdiphenylether,
5.	Autor(en), Name(n), Vorname(n) Dr. Kemmlein, Sabine Bergmann, Meike		8.	Abschlußdatum 31.05.2005
6	Dr. Jann, Oliver	nschrift)	9.	Veröffentlichungsdatum
0.			10	
	Unter den Eichen 87 12205 Berlin	g und -prüfung (BAM)	10.	UFOPLAN-Nr. 202 67 300
			11.	Seitenzahl 152
7.	Fördernde Institution (Name, Ansch	nrift)	10	
	Umweltbundesamt, Postfach 1406,	06813 Dessau	12.	Literaturangaben 17
			13.	Tabellen und Diagramme 58
			14.	Abbildungen 42
15.	Zusätzliche Angaben			
16	Kurzfassung			
16. Im $0,1^{\circ}$ Grei Pen der Zur Pen und Vort Ison Cop mit Die Mess Ver Star $1,3^{\circ}$: Für Ver $s_{rj} = (6,9)$ $s_{Rj} = 17$.	Kurzfassung Rahmen der Richtlinie 2003/11/E Gewichts-% für penta- und octab nzwertes wurde ein Standar tabromdiphenylethern (PentaBDE-Is Gaschromatographie-Massenspektr Verfahrensentwicklung wurden folg taBDE), BDE100 (2,2',4,4',6-PentaE BDE197 (2,2',3,3',4,4',6,6'-OctaBDE bereitend wurden folgende Modellp nere, Epoxidharz (EP) mit 0,1 Gew 18 Teilnehmern durchgeführt, bei de Ringversuch wurde zwischen dem O Datenauswertung erfolgte in Anleh sverfahren und Messergebnissen gleichpräzision eines vereinheitlich ndardabweichungen wurden best \pm 0,19 mg g ⁻¹ (15 %) (Summe Pen nere/PS), 0,42 \pm 0,11 mg g ⁻¹ (26 %) statistische Kennzahlen für das Star PentaBDE-Isomere in EP wurde gleichstandardabweichung s _{Rj} = 0,10 0,038 mg g ⁻¹ (2,9 %) und s _{Rj} = 0,19 %) und s _{Rj} = 0,114 mg g ⁻¹ (27 %) Schlagwörter	G zur 24. Änderung der Ric promierte Diphenylether in Erz danalyseverfahren zur qua somere) und Octabromdiphenyle ometrie (GC/MS) entwickelt. gende Isomere ausgewählt: BE 3DE), BDE203 (2,2',3,4,4',5,5',6 E). olymere hergestellt: Polyuretha x-% Summe PentaBDE-Isomere. In em die genannten Polymere der 01. Juni und 30. November 2004 nung an DIN ISO 5725-2:2002 , Teil 2: Grundlegende Met ten Messverfahrens". Folgend immt: 1,09 ± 0,16 mg g ⁻¹ taBDE-Isomere/PUR-H), 0,99 ± (Summe OctaBDE-Isomere/ABS idardanalyseverfahren wurde fol eine Wiederholstandardabweid 57 mg g ⁻¹ (15 %). Für OctaBDE-Isomer %) und für OctaBDE-Isomere/	htlinie eeugn intitat DE85 -Octa n (PL e, Po m Ra verar -12 " hode e Mit (15 ± 0,27 S). gende chung Pent Isome re in	e 76/769/EWG wurde ein Grenzwert von issen festgelegt. Zur Überprüfung dieses iven Bestimmung von ausgewählten i (OctaBDE-Isomere) in Polymeren mit Hilfe (2,2',3,4,4'-PentaBDE), BDE99 $(2,2',4,4',5-BDE)$, BDE196 $(2,2',3,3',4,4',5,6'-OctaBDE)JR-H) mit 0,1 Gew% Summe PentaBDE-lystyrol (PS) und Acrylnitril-Butadien-Styrol-hmen des Projektes wurde ein Ringversuchindardanalyseverfahren unterzogen wurden.hstaltet.Genauigkeit (Richtigkeit und Präzision) vonfür die Ermittlung der Wiederhol- undttelwerte der Ermittlungsergebnisse sowie5%) (Summe PentaBDE-Isomere/EP),7 mg g-1 (27%) (Summe OctaBDE-e Parameter ermittelt:von srj = 0,044 mg g-1 (4,0%) und eineaBDE-Isomere in PUR-H ergab sich fürere in ABS ergab sich für srj = 0,029 mg g-1PS srj = 0,043 mg g-1 (4,3%) und$
Pen Wie	tabromdiphenylether (PentaBDE), C derholpräzision, Richtlinie 2003/11/E	ctabromdiphenylether (OctaBDE G, Richtlinie 76/769/EWG, GC/I	E), Po MS, p	lymer, Vergleichpräzision, olybromierte Flammschutzmittel
18.	Preis	19.		20.

Report Cover Sheet

1.	Report No.	2.			3.
4.	Report Title				
	Development of a standard mea (pentabromo diphenylether, octabro	asurement method for the omo diphenylether) in produc	determii cts	natio	n of polybrominated flame retardants
5.	Autor(s), Family Name(s), First Nar	ne(s)	8.	Re	port Date
	Dr. Kemmlein, Sabine			31	.05.2005
	Meike Bergmann				
6	Dr. Jann, Oliver	ddrooo\	9.	Pu	blication Date
6.	Performing Organisation (Name, Ad	daress)			
	Bundesanstalt für Materialforschung Unter den Eichen 87 12205 Berlin	g und -prüfung (BAM)	10.	UF 202	OPLAN-Ref. No. 2 67 300
			11	No	of Pages
				15	2
7.	Sponsoring Agency (Name, Addres	ss)			
	Umweltbundesamt, Postfach 1406,	D-06813 Dessau	12.	No	. of Reference 17
			13.	No 58	. of Tables, Diagrams
			14.	No 42	. of Figures
15.	Supplementary Notes				
16	Abstract				
10.	Abstract				
In a octa To diph chro Follo Pen BDE resir copo mea parti Data mea stan 1.09 0.99 The The S _{Rj} =	greement to the Directive 2003/11/ bromo diphenylethers may not be us verify this threshold value a sta enylethers (PentaBDE-isomers) an matography mass spectrometry (GC owing target compounds were sele taBDE), BDE100 (2,2',4,4',6-PentaE 197 (2,2',3,3',4,4',6,6'-OctaBDE). F n (EP) containing 0.1 % by mass of olymer (ABS) containing 0.1 weig isurement method an Interlaborato icipants were involved. a assessment was performed in a isurement method and results – Pa dard measurement method". Fo $\pm 0.16 \text{ mg g}^{-1}$ (15 %) (sum PentaBD $\pm 0.27 \text{ mg g}^{-1}$ (27 %) (sum OctaBD standard deviation of reproducibility repeatability of the sum of PentaBD = 0.167 mg g^{-1} (15 %). The s _{rj} and the	(EG amending for the 24 th f sed or placed on the market indard measurement meth nd octabromo diphenylethe CMS) was developed. ected for the investigations 3DE), BDE203 (2,2',3,4,4',5, Following reference materia of sum of PentaBDE isomer ght-% of sum of OctaBDE ory Study was conducted b inccordance to DIN ISO 572 art 2: basic method for the of lowing general mean var DE isomers/EP), 1.3 ± 0.19 r E isomers/PS), 0.42 ± 0.11 r r_{SRj} and repeatability s_{rj} was DE isomers in EP was $s_{rj} = 0.0$ e s_{Rj} was 0.038 mg g^{-1} (2.9	time Cou in conce od for t ers (Octa : BDE85 5',6-Octa ls were p s, polysty isomer petween 25-2:2002 determina- tilues an ng g ⁻¹ (15 ng g ⁻¹ (26 calculate 044 mg g ⁻ %) and 0	ncil ntrat he (BDE (2,2 BDE prepa (2,2 BDE prepa (2,2 BDE prepa (2,2 BDE prepa (2,2 BDE prepa (2,2 (2,2 (2,2 (2,2 (2,2) (2,	Directive 76/769/EEC pentabromo- and ion higher than 0.1 % by mass. determination of selected pentabromo E-isomers) in polymers based on gas 2',3,4,4'-PentaBDE), BDE99 (2,2',4,4',5- E), BDE196 (2,2',3,3',4,4',5,6'-OctaBDE), ared: polyurethane (PUR-H) and epoxy e (PS) and acryInitril-butadiene-styrene- for quality assurance of the standard ine and 30 November 2004 where 18 "Accuracy (trueness and precision) of of repeatability and reproducibility of a tandard deviations were determined: (sum PentaBDE isomers/PUR-H), (sum OctaBDE isomers/ABS). e statistical characteristics. 0 %) and the reproducibility was mg g ⁻¹ (15 %), respectively, for the
0.02	19 mg g ⁻¹ (6.9 %) and 0.114 mg g ⁻¹ (2	27 %), respectively. For the	sum of O	ctaß	DE isomers in PS the s_{rj} and the $s_{\textrm{R}j}$
were	<u>2 U.U43 mg g (4.3 %) and 0.255 mc</u>	g g (26 %).			
pent dire	abromo diphenylether (PentaBDE) ctive 2003/11/EG, directive 76/769/E), octabromo diphenylethe EEC, GCMS, polybrominated	r (OctaB I flame re	DE), tard	polymer, reproducibility, repeatability, ants
18.	Price	19.			20.
l I					

Kurzfassung

Einleitung

Flammschutzmittel (FSM) werden in verschiedenen Produkten, wie z.B. elektrischen Bauteilen, Kunststoffen, Textilien und Möbelschäumen eingesetzt, um deren Entflammbarkeit herabzusetzen. Zu den wichtigsten halogenierten FSM zählen die polybromierten Diphenylether, bei denen es sich – bedingt durch den Herstellungsprozess – um bromhomologe Gemische verschiedener Isomere und Kongenere (Σ_{Br} = 1 bis 10) handelt. Als kommerzielle Erzeugnisse sind technische Produkte auf der Basis von Penta- (PENTA-BDE), Octa- (OCTA-BDE) und Decabromdiphenylether (DECA-BDE) im Handel.

Zahlreiche Studien belegen die Persistenz und die ubiquitäre Verbreitung der PBDE in unterschiedlichsten Umweltkompartimenten und weisen auf eine Bioakkumulation hin.

Auf Grundlage europäischer Risikobewertungen zu Penta- und Octabromdiphenylether wurde die Richtlinie 2003/11/EG zur 24. Änderung der Richtlinie 76/769/EWG zur Beschränkung des Inverkehrbringens und der Verwendung gewisser gefährlicher Stoffe und Zubereitungen (Octabromdiphenylether, Pentabromdiphenylether) verabschiedet. In Deutschland wurde diese Richtlinie im Rahmen der Chemikalienverbotsverordnung und der Gefahrstoffverordnung umgesetzt. Dem gemäß dürfen Erzeugnisse, Zubereitungen und Produkte mit einem Massengehalt von mehr als 0,1 Gewichts-% Penta- oder OctaBDE-Isomere seit dem 30. Juni 2004 nicht in den Verkehr gebracht, verwendet oder eingesetzt werden. Basierend auf diesem Verbot war das Ziel der Arbeit die Entwicklung eines Standardanalyseverfahrens zur Bestimmung dieser regelungsrelevanten PBDE-Isomere in unterschiedlichen Polymeren. Seite K 2

Analytische Methoden und Materialien

Zur Entwicklung der Analysenmethode mussten die einzelnen Teilschritte (Probenhomogenisierung, Extraktion, GC/MS) getestet und optimiert werden.

Zur Probenhomogenisierung wurde eine Zentrifugalmühle verwendet. Die Probenaufbereitung erfolgte mittels Soxhletextraktion unter Verwendung von Toluol als Extraktionsmittel.

Die Identifizierung und quantitative Bestimmung der PBDE erfolgte mit Hilfe der Gaschromatographie-Massenspektrometrie (GC/MS) im Single-Ion-Monitoring (SIM)-Modus unter Verwendung von drei charakteristischen Ionenspuren pro Isomer.

Die Auswahl der zu untersuchenden penta- und octabromierten Diphenylether-Isomere erfolgte anhand der Hauptisomere der technischen Produkte PENTAund OCTA-BDE: 2,2',4,4',6-PentaBDE (BDE100), 2,2',4,4',5-PentaBDE (BDE99), 2,2',3,4,4'-PentaBDE (BDE85), 2,2',3,4,4',5,5',6-OctaBDE (BDE203), 2,2',3,3',4,4',5,6'-OctaBDE (BDE196) und 2,2',3,3',4,4',6,6'-OctaBDE (BDE197). Als interner Standard zur Korrektur des Spritzenfehlers wird Decachlorbiphenyl (CB209), als interner Standard zur Kontrolle der Wiederfindung wird Dibromoctafluorbiphenyl (DBOFB) verwendet.

Die Zusammenstellung der Polymerarten erfolgte anhand von Literaturangaben zum Einsatz der technischen Produkte PENTA- und OCTA-BDE. Zur Herstellung der Ringversuchsmaterialien wurden daher die Polymere Acrylnitril-Butadien-Styrol-Copolymer (ABS), Polystyrol (PS), Polyurethan-Hartschaumstoff (PUR-H) und Epoxidharz (EP) ausgewählt. Diese Polymere wurden von Compoundeuren bezogen bzw. im Fall des EP selbst gemischt und gegossen.

Zur Qualitätssicherung und Methodenvalidierung der Analysenmethode wurden verschiedene statistische Kenndaten ermittelt. Für die Kalibrierungen der sechs ausgewählten Isomere und des internen Standards DBOFB wurde Linearität und Varianzenhomogenität nachgewiesen, zudem wurden die relativen Verfah-

rensstandardabweichungen (3 - 7 %) ermittelt. Die Reproduzierbarkeit des GC/MS-Systems wurde je nach Isomer mit 2 bis 9 % bestimmt.

Zur Charakterisierung des Verfahrens dienen die Wiederfindungsfunktionen und die Wiederholstandardabweichungen (5 – 7 %) der Isomere. Die Abgrenzung des Arbeitsbereiches nach unten erfolgt über die Angabe der Nachweis-(0,02 bis 0,04 mg g⁻¹) und Bestimmungsgrenze (0,06 bis 0,12 mg g⁻¹).

Zur Bestimmung der Wiederhol- und Vergleichstandardabweichung als statistische Kennzahlen des Standardanalyseverfahrens wurde ein internationaler Ringversuch durchgeführt, dessen ermittelte Daten mittels grafischer Vereinbarkeitsprüfungen (Mandels h-Statistik und Mandels k-Statistik) und numerischer Ausreißertests (Grubbs-Test und Cochran-Test) geprüft wurden.

Ergebnisse

Der Ringversuch führte zu den in Tabelle K1 zusammengefassten Ergebnissen.

Polymer	Summe Isomere	pj	m _j [mg g⁻¹]	s _{rj} [mg g⁻¹]	s _{Rj} [mg g⁻¹]
Epoxidharz	PentaBDE	15	1,09	0,044	0,167
Polyurethan	PentaBDE	15	1,3	0,038	0,195
Polystyrol	OctaBDE	18	0,99	0,043	0,255
ABS	OctaBDE	17	0,42	0,029	0,114

Tabelle K1: Zusammengefasste Ergebnisse des Ringversuchs.

pj: Anzahl Labore; mj: Gesamtmittelwert; sj: Wiederholstandardabweichung; s_{Rj}: Vergleichstandardabweichung;

Bei der Angabe der Wiederhol- und Vergleichstandardabweichung muss berücksichtigt werden, dass diese statistischen Kennzahlen auf Basis definierter Modellpolymere ermittelt worden sind. Die höhere Matrixbelastung bei Realproben führt mit Sicherheit zu einer Veränderung dieser Parameter. Die 18 Teilnehmer des Ringversuchs waren aufgefordert, Kommentare, Verbesserungen und Unklarheiten des Standardanalyseverfahrens zu dokumentieren.

Bei der Analyse der OctaBDE-Isomere traten vereinzelt Probleme, wie eine ungenügende Auflösung sowie Tailing der Peaks im Chromatogramm, auf. Insbesondere die niedrigste zu verwendende Konzentration (50 ng mL⁻¹) der Kalibierlösungen konnte in einzelnen Fällen nicht oder nur schlecht ausgewertet werden, da die Peaks sehr klein und damit teils unterhalb oder nahe der Nachweisgrenze (bezogen auf das Signal-Rausch-Verhältnis) lagen.

Die Dokumentation der verwendeten Versuchsbedingungen durch die Teilnehmer zeigte insbesondere bei der Bestimmung der OctaBDE-Isomere z.T. Abweichungen von der Standardanalysevorschrift (z.B. im Kalibrierbereich, Extraktionsvolumen, Einwaage, Quantifizierung nicht über Einzelstandards sondern über ein technisches Produkt). Diese Änderungen können zu einer Verschlechterung der Vergleichstandardabweichung insbesondere für die Bestimmung der OctaBDE-Isomere geführt haben.

Die Wiederhol- und Vergleichstandardabweichungen der getesteten Polymere zeigen je für sich eine gute Übereinstimmung, damit liefert das Standardanalyseverfahren unter Wiederhol- und Vergleichbedingungen reproduzierbare Analysenergebnisse unabhängig von den hier untersuchten Polymertypen. Die Standardabweichung unter Vergleichbedingungen weist jedoch einen um den Faktor 4 bis 6 höheren Wert im Vergleich zur Standardabweichung unter Wiederholbedingungen auf. Dies kann verschiedene Ursachen haben, zu nennen sind hier z.B. der Einfluss der unterschiedlich konfigurierten GC/MS Systeme der Teilnehmer oder der Einfluss verschiedener Bearbeiter auf die Analysenergebnisse.

Das entwickelte Analysenverfahren wurde zudem an einigen Realproben getestet. Aufgrund der höheren Matrixbelastung ist es u.U. sinnvoll, zwischen der Extraktion und Messung ein Clean-up durchzuführen. Dabei erwies sich eine Minikieselgelsäule als ausreichend, um die auftretenden Trübungen und Färbungen der Probenextrakte zu entfernen.

Insgesamt lässt sich anhand der Ergebnisse zeigen, dass das entwickelte Standardanalyseverfahren für die Bestimmung der Summe Penta- bzw. OctaBDE-Isomere insbesondere im Bereich des Grenzwerts von 0,1 Gewichts-% [1 mg g⁻¹] unter den gegebenen Bedingungen präzise Messergebnisse liefert.

1 Verzeichnisse

1.1 Inhaltsverzeichnis

1	EINLEITUNG UND AUFGABENSTELLUNG
2	ANALYTISCHE BESTIMMUNG DER PBDE IN POLYMERPROBEN
2.1.	Allgemeine Vorbereitungen 20
2.2.	Ausgewählte Leitsubstanzen für die Entwicklung des
	Standardanalyseverfahrens21
2.3.	Spezifikation der verwendeten technischen PBDE
2.3	8.1. PENTA-BDE Formulierung (Anhang 2)
2.3	23. OCTA-BDE Formulierung (Anhang 2)
2.4.	GC/MS
2.5.	Auswahl und Herstellung des Probenmaterials
2.5	5.1. Spezifikation der verwendeten Polymere
2.5	5.2. Herstellung der Polymere mit einem OctaBDE- bzw. PentaBDE-
	Isomeren Gehalt von ca. 0,1 Gewichts-%
3	METHODENVALIDIERUNG
3.1.	Ermittlung der Kalibrierfunktion und der Verfahrenskenndaten 28
3.2.	Reproduzierbarkeit des GC/MS-Systems für PBDE
3.3.	Varianzenhomogenität 29
3.4.	Überprüfung des Standardanalyseverfahrens und
	oncersuonung auf machinennusse

3	.4.1.	Kontrolle der Analysenpräzision	31
3	.4.2.	Konstant-systematische Abweichungen	32
3	.4.3.	Proportional-systematische Abweichungen	34
3	.4.4.	Bestimmung der Wiederholstandardabweichung des	
		Standardanalyseverfahrens	35
3	.4.5.	Bestimmung der Nachweis- und Bestimmungsgrenze gemäß	
		DIN 32 645 (Modifikation der direkten Methode)	36
3.5.	Hor	nogenitätsprüfung der Polymere	38
3	.5.1.	ABS mit PENTA-BDE (Material A)	39
3	.5.2.	ABS mit OCTA-BDE (Material B)	41
3	.5.3.	PS mit OCTA-BDE (Material C)	43
3	.5.4.	PUR mit PENTA-BDE (Material D)	45
3	.5.5.	EP mit PENTA-BDE (Material E)	47
4	ÜB	ERPRÜFUNG DES STANDARDANALYSEVERFAHRENS:	
	ER	GEBNISSE DES RINGVERSUCHS	49
4.1.	Rin	gversuchsteilnehmer	51
4.2.	Per	ntaBDE-Isomere in ABS (RV-Material A)	52
4.3.	Per	ntaBDE-Isomere in Epoxidharz (RV-Material E)	54
4	.3.1.	Statistische Bewertung – PentaBDE-Isomere in Epoxidharz	55
	4.3.1	.1. Ergebnisse der Mandels h-Statistik (PentaBDE-Isomere in	
		Epoxidharz)	55
	4.3.1	.2. Ergebnisse der Mandels k-Statistik (PentaBDE-Isomere in	
		Epoxidharz)	56
	101		
	4.3.1	.3. Überprüfung der Varianzen – Cochran-Test (PentaBDE-	
	4.3.1	.3. Überprüfung der Varianzen – Cochran-Test (PentaBDE- Isomere in Epoxidharz)	57
	4.3.1	 .3. Überprüfung der Varianzen – Cochran-Test (PentaBDE- Isomere in Epoxidharz) .4. Überprüfung der Labormittelwerte – Grubbs-Test 	57
	4.3.1	 .3. Überprüfung der Varianzen – Cochran-Test (PentaBDE- Isomere in Epoxidharz) .4. Überprüfung der Labormittelwerte – Grubbs-Test (PentaBDE-Isomere in Epoxidharz) 	57 58

4.4. PentaBDE-Isomere in Polyurethan (RV-Material D)	61
4.4.1. Statistische Bewertung – PentaBDE-Isomere in Polyurethan	62
4.4.1.1. Ergebnisse der Mandels h-Statistik (PentaBDE-Isomere in	
Polyurethan)	62
4.4.1.2. Ergebnisse der Mandels k-Statistik (PentaBDE-Isomere in	
Polyurethan)	63
4.4.1.3. Überprüfung der Varianzen – Cochran-Test (PentaBDE-	
Isomere in Polyurethan)	64
4.4.1.4. Überprüfung der Labormittelwerte – Grubbs-Test	
(PentaBDE-Isomere in Polyurethan)	65
4.4.2. Ergebnis PentaBDE-Isomere in Polyurethan	66
4.5 OctoBBE loomono in Bolucture (D)/ Motoriel (C)	<u> </u>
4.5. OctaBDE-Isomere in Polystyrol (RV-Material C)	68
4.5.1. Statistische Bewertung – OctaBDE-Isomere in Polystyrol	69
4.5.1.1. Ergebnisse der Mandels h-Statistik (OctaBDE-Isomere in	
Polystyrol)	69
4.5.1.2. Ergebnisse der Mandels k-Statistik (OctaBDE-Isomere in	
Polystyrol)	70
4.5.1.3. Überprüfung der Varianzen – Cochran-Test (OctaBDE-	
Isomere in Polystyrol)	71
4.5.1.4. Überprüfung der Labormittelwerte – Grubbs-Test (OctaBDE-	
Isomere in Polystyrol)	72
4.5.2. Ergebnis OctaBDE-Isomere in Polystyrol	73
16 OctoBDE loomoro in ABS	74
4.6. OctaBDE-Isomere III ABS	74
4.6.1. Statistische Bewertung – OctaBDE-Isomere in ABS	75
4.6.1.1. Ergebnisse der Mandels h-Statistik (OctaBDE-Isomere in	
ABS)	75
4.6.1.2. Ergebnisse der Mandels k-Statistik (OctaBDE-Isomere in	
ABS)	76
4.6.1.3. Überprüfung der Varianzen – Cochran-Test (OctaBDE-	
Isomere in ABS)	77

	4.6.1.4. Überprüfung der Labormittelwerte – Grubbs-Test (OctaBDE- Isomere in ABS)	78
4.6	5.2. Ergebnis OctaBDE-Isomere in ABS	'9
4.7.	Wiederhol- und Vergleichspräzision des	
	Standardanalyseverfahrens8	30
4.8.	Bestimmung von PBDE in Realproben mittels	
	Standardanalyseverfahren8	31
4.8	8.1. Minikieselgelsäule 8	31
4.8	3.2. Untersuchung von Realproben 8	32
5	ZUSAMMENFASSENDE DISKUSSION8	34
5.1.	Ergebnisse des Ringversuchs8	34
5.2.	Kommentare und Hinweise der Teilnehmer zum	
	Standardanalyseverfahren8	37
5.3.	Ergebnis und Bewertung des Standardanalyseverfahrens9)1
5.4.	Vergleich der Ergebnisse des Standardanalyseverfahrens und	
	der Ergebnisse der Labormethoden)6
5.5.	Ergebnisdiskussion Realproben9)7
5.6.	Schlussdiskussion)8
6	ZUSAMMENFASSUNG9)9
7	VERWENDETE CHEMIKALIEN UND METHODEN)2
7.1.	Chemikalien und Geräte10)2
7.2.	Herstellung des Epoxidharzes (siehe Anhang 4) 10)4

7.3.	Zerkleinerung der Polymere	104
7.4.	Statistische Homogenisierung (Cross Riffling) der Polymermaterialien	105
7.5.	Minikieselgelsäule	106
8	LITERATURVERZEICHNIS	107

ANHANG

Anhang 1	Standardanalyseverfahren 111
Anhang 2	Charakterisierung der technischen PBDE 119
Anhang 3	Ermittlung der Kalibrierfunktion und der Verfahrenskenndaten. 121
Anhang 4	Spezifikation der verwendeten Polymere 129
Anhang 5	Formeln zur Berechnung der Homogenität der Polymermaterialien
	(Kap. 4.5)
Anhang 6	Massenspektren der untersuchten PBDE, DBOFB, CB209 136
Anhang 7	Berechnung der Indikatoren der Mandels h- und k-Statistik 140
Anhang 8	Überprüfung der Varianzen der Labormittelwerte (Cochran-Test)
Anhang 9	Überprüfung der Labormittelwerte (Grubbs-Test) 150
Anhang 10	Angaben der Teilnehmer des Ringversuchs 152

1.2 Tabellenverzeichnis

Tabelle 1:	Zusammensetzung kommerzieller PBDE1	8
Tabelle 2:	Flammgeschützte Polymere2	5
Tabelle 3:	Ringversuchsmaterialien (RV-Materialien)2	7
Tabelle 4:	Anzahl und Bezeichnung der Teilproben der auf Homogenität	
	zu prüfenden Polymere2	7
Tabelle 5:	Relative Standardabweichung der Wiederholmessungen2	9
Tabelle 6:	Ermittelte Prüfwerte zur Kontrolle der Analysenpräzision3	2
Tabelle 7:	Berechnung der Vertrauensbereiche der Achsenabschnitte	
	der Wiederfindungsfunktionen3	3
Tabelle 8:	Berechnung der Vertrauensbereiche der Steigungen der	
	Wiederfindungsfunktionen3	5
Tabelle 9:	Analytische Daten der Homogenitätsuntersuchungen des	
	Polymers ABS/PENTA-BDE	9
Tabelle 10:	ANOVA-Tabelle ABS/PENTA-BDE3	9
Tabelle 11:	Analytische Daten der Homogenitätsuntersuchungen des	
	Polymers ABS/OCTA-BDE4	1
Tabelle 12:	ANOVA-Tabelle ABS/OCTA-BDE4	1
Tabelle 13:	Analytische Daten der Homogenitätsuntersuchungen des	
	Polymers PS/OCTA-BDE4	3
Tabelle 14:	ANOVA-Tabelle PS/OCTA-BDE4	3
Tabelle 15:	Analytische Daten der Homogenitätsuntersuchungen des	
	Polymers PUR/PENTA-BDE4	5
Tabelle 16:	ANOVA-Tabelle PUR/PENTA-BDE4	5
Tabelle 17:	Analytische Daten der Homogenitätsuntersuchungen des	
	Polymers EP/PENTA-BDE4	7
Tabelle 18:	ANOVA-Tabelle Polymer EP/PENTA-BDE4	7
Tabelle 19:	Vorerfahrungen der Ringversuchsteilnehmer5	1

Tabelle 20:	Ermittlungsergebnisse der Wiederholanalysen als Summe
	der PentaBDE-Isomere in mg g ⁻¹ in ABS flammgeschützt
	mit PENTA-BDE
Tabelle 21:	Ermittlungsergebnisse der Wiederholanalysen als Summe
	der PentaBDE-Isomere in mg g ⁻¹ in Epoxidharz
	flammgeschützt mit PENTA-BDE54
Tabelle 22:	Zusammenfassung der Ergebnisse der statistischen Test für
	die Bestimmung von PentaBDE-Isomeren in Epoxidharz59
Tabelle 23:	Ermittlungsergebnisse der Wiederholanalysen als Summe
	der PentaBDE-Isomere in mg g ⁻¹ in Polyurethan
	flammgeschützt mit PENTA-BDE61
Tabelle 24:	Zusammenfassung der Ergebnisse der statistischen Test für
	die Bestimmung der PentaBDE-Isomere in Polyurethan 66
Tabelle 25:	Ermittlungsergebnisse der Wiederholanalysen als Summe
	der OctaBDE-Isomere in mg g ⁻¹ in Polystyrol
	flammgeschützt mit OCTA-BDE68
Tabelle 26:	Zusammenfassung der Ergebnisse der statistischen Test für
	die Bestimmung der OctaBDE-Isomere in Polystyrol73
Tabelle 27:	Ermittlungsergebnisse der Wiederholanalysen als Summe
	der OctaBDE-Isomere in mg g ⁻¹ in ABS flammgeschützt mit
	OCTA-BDE74
Tabelle 28:	Zusammenfassung der Ergebnisse der statistischen Tests
	für die Bestimmung der OctaBDE-Isomere in ABS79
Tabelle 29:	Zusammengefasste Ergebnisse des Ringversuchs
Tabelle 30:	Achsenabschnitt b _f , Steigung a _f und
	Reststandardabweichung syfder Wiederfindungsfunktionen.81
Tabelle 31:	Ergebnisse des Standardanalyseverfahrens für Realproben
	als Summe der PentaBDE-Isomere82
Tabelle 32:	Ergebnisse des Standardanalyseverfahrens für Realproben
	bezogen auf das PentaBDE-Isomer BDE99.
Tabelle 33:	Berechnete z-scores der Ringversuchsteilnehmer95

Seite 8

Tabelle 34:	Ermittlungsergebnisse der optional, mittels Labormethoden
	durchgeführten Analysen96
Tabelle 35:	Berechnete z-scores der Ergebnisse der Labormethoden96
Tabelle 36:	Ergebnisse des Ringversuchs100
Tabelle 37:	Kalibrierlösungen der PBDE115
Tabelle 38:	Gewichtsprozentuale Zusammensetzung PENTA-BDE
	technisch
Tabelle 39:	Gewichtsprozentuale Zusammensetzung OCTA-BDE
	technisch
Tabelle 40:	Mittelwerte der drei Wiederholmessungen der
	Kalibrierlösungen 121
Tabelle 41:	Lineare Kalibrierfunktion und Verfahrenskenndaten
Tabelle 42:	Kalibrierfunktion 2. Grades und Verfahrenskenndaten 122
Tabelle 43:	Ergebnisse des Anpassungstests nach Mandel
Tabelle 44:	Messwertserien (Response: A/A _{CB209}) für BDE100, BDE99,
	BDE85 der niedrigsten (x_1) und höchsten (x_N)
	Konzentration127
Tabelle 45:	Messwertserien (Response: A/A _{CB209}) für BDE197, BDE203,
	BDE196 der niedrigsten (x_1) und höchsten (x_N)
	Konzentration128
Tabelle 46:	Messwertserien (Response: A/A _{IS}) für DBOFB der
	niedrigsten (x_1) und höchsten (x_N) Konzentration
Tabelle 47:	ABS Allgemeine Kenndaten129
Tabelle 48:	PS Allgemeine Kenndaten
Tabelle 49:	PUR-H Allgemeine Kenndaten131
Tabelle 50:	EP Allgemeine Kenndaten
Tabelle 51:	Berechnete Werte für h (Σ PentaBDE-Isomere in
	Epoxidharz)141
Tabelle 52:	Berechnete Werte für k (Σ PentaBDE-Isomere in
	Epoxidharz)142

Tabelle 53:	Berechnete Werte für h (Σ PentaBDE-Isomere in
	Polyurethan)
Tabelle 54:	Berechnete Werte für k (PentaBDE-Isomere in Polyurethan). 144
Tabelle 55:	Berechnete Werte für h (Σ OctaBDE-Isomere in Polystyrol)145
Tabelle 56:	Berechnete Werte für k (Σ OctaBDE-Isomere in Polystyrol) 146
Tabelle 57:	Berechnete Werte für h (Σ OctaBDE-Isomere in ABS)
Tabelle 58:	Berechnete Werte für k (Σ OctaBDE-Isomere in ABS)

1.3 Abbildungsverzeichnis

Abbildung 1:	Grundstruktur PBDE; Σ x,y: 1-10	7
Abbildung 2:	Mittelwert (Mean) und Standardabweichung (St. Dev.) der	
	untersuchten Teilproben ABS/PENTA-BDE als Summe der	
	Penta-BDE-Isomere in mg g ⁻¹ 40	C
Abbildung 3:	Mittelwert (Mean) und Standardabweichung (St. Dev.) der	
	untersuchten Teilproben ABS/OCTA-BDE als Summe der	
	OctaBDE-Isomere in mg g ⁻¹ 42	2
Abbildung 4:	Mittelwert (Mean) und Standardabweichung (St. Dev.) der	
	untersuchten Teilproben PS mit OCTA-BDE als Summe	
	der OctaBDE-Isomere in mg g ⁻¹ 44	4
Abbildung 5:	Mittelwert (Mean) und Standardabweichung (St. Dev.) der	
	untersuchten Teilproben PUR/PENTA-BDE als Summe der	
	PentaBDE-Isomere in mg g ⁻¹ 46	6
Abbildung 6:	Mittelwert (Mean) und Standardabweichung (St. Dev.) der	
	untersuchten Teilproben EP/PENTA-BDE als Summe der	
	PentaBDE-Isomere in mg g ⁻¹ 48	3
Abbildung 7:	Grafische Darstellung der Summe PentaBDE-Isomere	
	[mg g ⁻¹] in ABS flammgeschützt mit PENTA-BDE (Mean:	
	Gesamtmittelwert; St.Dev: Standardabweichung); 11	
	Labore	3
Abbildung 8:	Grafische Darstellung der Labormittelwerte als Summe	
	Penta-BDE-Isomere [mg g ⁻¹] in Epoxidharz flammgeschützt	
	mit PENTA-BDE (Mean: Gesamtmittelwert; St.Dev:	
	Standardabweichung); 18 Labore5	5
Abbildung 9:	Berechnete Werte für h (PentaBDE-Isomere in	
	Epoxidharz); Indikatorlinien: 1,88 (Signifikanzniveau 5%);	
	2,36 (Signifikanzniveau 1%)	6

Abbildung 10:	Berechnete Werte für k (PentaBDE-Isomere in
	Epoxidharz), Indikatorlinien: 1,59 (Signifikanzniveau 5%);
	1,88 (Signifikanzniveau 1%)57
Abbildung 11:	Grafische Darstellung Summe PentaBDE-Isomere [mg g ⁻¹]
	in Epoxidharz flammgeschützt mit PENTA-BDE (Mean:
	Gesamtmittelwert; St.Dev: Standardabweichung); 15
	Labore (Ausreißer ausgesondert)60
Abbildung 12:	Grafische Darstellung der Labormittelwerte als Summe
	Penta-BDE-Isomere [mg g ⁻¹] in Polyurethan
	flammgeschützt mit PENTA-BDE (Mean:
	Gesamtmittelwert; St.Dev: Standardabweichung); 18
	Labore62
Abbildung 13:	Berechnete Werte für h (PentaBDE-Isomere in
	Polyurethan), Indikatorlinien: 1,88 (Signifikanzniveau 5%);
	2,36 (Signifikanzniveau 1%)63
Abbildung 14:	Berechnete Werte für k (PentaBDE-Isomere in
	Polyurethan), Indikatorlinien: 1,59 (Signifikanzniveau 5%);
	1,88 (Signifikanzniveau 1%)64
Abbildung 15:	Grafische Darstellung Summe PentaBDE-Isomere [mg g ⁻¹]
	in Polyurethan flammgeschützt mit PENTA-BDE (Mean:
	Gesamtmittelwert; St.Dev: Standardabweichung); 15
	Labore (Ausreißer ausgesondert)67
Abbildung 16:	Grafische Darstellung der Labormittelwerte als Summe
	Octa-BDE-Isomere [mg g ⁻¹] in Polystyrol flammgeschützt
	mit OCTA-BDE (Mean: Gesamtmittelwert; St.Dev:
	Standardabweichung); 18 Labore69
Abbildung 17:	Berechnete Werte für h (OctaBDE-Isomere in Polystyrol),
	Indikatorlinien: 1,88 (Signifikanzniveau 5%); 2,36
	(Signifikanzniveau 1 %)70

Abbildung 18:	Berechnete Werte für k (OctaBDE-Isomere in Polystyrol), Indikatorlinien: 1,59 (Signifikanzniveau 5%); 1,88	
	(Signifikanzniveau 1 %).	. /1
Abbildung 19:	Grafische Darstellung der Labormittelwerte als Summe	
	OctaBDE-Isomere [mg g '] in ABS flammgeschützt mit	
	OCTA-BDE (Mean: Gesamtmittelwert; St.Dev:	
	Standardabweichung); 18 Labore	.75
Abbildung 20:	Berechnete Werte für h (OctaBDE-Isomere in ABS),	
	Indikatorlinien: 1,88 (Signifikanzniveau 5 %); 2,36	
	(Signifikanzniveau 1 %).	.76
Abbildung 21:	Berechnete Werte für k (OctaBDE-Isomere in ABS),	
	Indikatorlinien: 1,59 (Signifikanzniveau 5%); 1,88	
	(Signifikanzniveau 1%).	.77
Abbildung 22:	Grafische Darstellung der Labormittelwerte als Summe	
	Octa-BDE-Isomere [mg g ⁻¹] in ABS flammgeschützt mit	
	OCTA-BDE (Mean: Gesamtmittelwert; St. Dev:	
	Standardabweichung); 17 Labore (Ausreißer	
	ausgesondert)	.79
Abbildung 23:	Zentrifugalmühle, Fa. Retsch ZM 1000	. 105
Abbildung 24:	Achterteiler (Fa. Retsch DR 100, links) und Zehnerteiler	
	(Fa. Fritsch Laborette 27).	. 105
Abbildung 25:	Schematische Darstellung einer Minikieselgelsäule	. 106
Abbildung 26:	Chromatogramm PENTA-BDE technisch; DB5-ms, 15 m,	
	0,25 mm ID, 0,1 μm df; 1 μL (50 ng/μL); 70°C (2 min) -	
	10°C/min - 300°C (15 min)	.119
Abbildung 27:	Chromatogramm OCTA-BDE technisch; DB5-ms, 15 m,	
	0,25 mm ID, 0,1 μm df; 1 μL (50 ng/μL); 70°C (2 min) -	
	10°C/min - 300°C (15 min)	. 120
Abbildung 28:	Kalibrierung BDE100.	. 124
Abbildung 29:	Kalibrierung BDE99.	. 124
Abbildung 30:	Kalibrierung BDE85.	. 124

Abbildung 31:	Kalibrierung BDE197125
Abbildung 32:	Kalibrierung BDE203 125
Abbildung 33:	Kalibrierung BDE196
Abbildung 34:	Kalibrierung DBOFB126
Abbildung 35:	EI-Massenspektrum von 2,2',4,4',6-PentaBDE (BDE100)136
Abbildung 36:	EI-Massenspektrum von 2,2',4,4',5-PentaBDE (BDE99) 136
Abbildung 37:	EI-Massenspektrum von 2,2',3,4,4'-PentaBDE (BDE85) 137
Abbildung 38:	EI-Massenspektrum von 2,2',3,4,4',5,5',6-OctaBDE
	(BDE203)
Abbildung 39:	(BDE203)
Abbildung 39:	(BDE203)
Abbildung 39: Abbildung 40:	(BDE203)
Abbildung 39: Abbildung 40:	(BDE203)
Abbildung 39: Abbildung 40: Abbildung 41:	(BDE203)
Abbildung 39: Abbildung 40: Abbildung 41: Abbildung 42:	 (BDE203)

1.4 Abkürzungsverzeichnis

alyse)

EUROLAB	Chemische Analytik; Mess- und Prüftechnik e.V.
F	Tabellenwert F-Test /12/
f	Freiheitsgrade
FSM	Flammschutzmittel
G	Prüfwert Grubbs-Test (zwei Ausreißer)
GC	Gaschromatographie
G _{crit}	Tabellenwert Grubbs-Test /12/
HeptaBDE	heptabromierte Diphenylether-Isomere
HexaBDE	hexabromierte Diphenylether-Isomere
ID	Innendurchmesser
L	Laborcode im Ringversuch
MS	Massenspektrometrie
m _j	Gesamtmittelwert im Ringversuch
Ν	Anzahl der Wiederholungen
NonaBDE	nonabromierte Diphenylether-Isomere
NS	Normalschliff
OctaBDE	octabromierte Diphenylether-Isomere
OCTA-BDE	technisches Produkt
Р	statistische Sicherheit
PBDE	polybromierte Diphenylether
PentaBDE	pentabromierte Diphenylether-Isomere
PENTA-BDE	technisches Produkt
PS	Polystyrol
PTV	programmable temperature vaporizer
PUR-H	Polyurethan-Hartschaumstoff
PW	Prüfwert F-Test
RV	Ringversuchsmaterial
SIM	single ion monitoring
S _{rj}	Standardabweichung unter Wiederholbedingungen

S _{Rj}	Vergleichstandardabweichung
STDev	Standardabweichung zum Labormittelwert
S _{x0}	Verfahrensstandardabweichung
Sy	Reststandardabweichung
Т	Prüfwert Grubbs-Test (einzelner Ausreißer)
t	Student-t-Faktor (Tabellenwert /12/)
T _{crit}	Tabellenwert Grubbs-Test /12/
TetraBDE	tetrabromierte Diphenylether-Isomere
TriBDE	tribromierte Diphenylether-Isomere
VB	Vertrauensbereich
VE-Wasser	vollentsalztes Wasser
V _{xo}	relative Verfahrensstandardabweichung
X _{BG}	Bestimmungsgrenze
X _{NG}	Nachweisgrenze

2 Einleitung und Aufgabenstellung

Flammschutzmittel (FSM) werden einer Vielzahl von Polymeren in Form von Additiven hinzugesetzt oder reaktiv in die Makromoleküle eingebunden, um deren Entflammbarkeit entsprechend den bestehenden Brandschutzbestimmungen herabzusetzen. So finden sie unter anderem Verwendung in Dämm- und Schaumstoffen, Elektronikbauteilen, Brandschutzbekleidung und Textilien, Freizeitausrüstung, in der Möbelindustrie sowie im Flug- und Fahrzeugbau.

FSM lassen sich in verschiedene Gruppen mit unterschiedlicher chemischer Basis und Wirkungsweise einteilen.

Zu den wichtigsten Gruppen zählen anorganische FSM (z.B. Al(OH)₃), phosphororganische FSM (z.B. Tris(2-chlorisopropyl)phosphat) und halogenierte organische FSM (z.B. polybromierte Diphenylether (PBDE)).

Die industrielle Herstellung der PBDE erfolgt durch Bromierung von Diphenylether. Aus dem Herstellungsprozess resultieren technische Produkte mit Bromhomologen unterschiedlicher Bromanzahl. In Abhängigkeit von der Anzahl und der Position der Bromatome an den beiden Phenylringen ist die Bildung von 209 verschiedenen Einzelverbindungen möglich (Abbildung 1).

Abbildung 1: Grundstruktur PBDE; Σ x,y: 1-10

Von kommerziellem Interesse sind hierbei die auf Penta- (PENTA-BDE), Octa-(OCTA-BDE) und Decabromdiphenylether (DECA-BDE) basierenden Produkte (Tabelle 1). Das Bromine Science and Environmental Forum (BSEF) kalkulierte für 1999 eine Gesamtmenge von 54.800 t DECA-BDE. Es findet vor allem Anwendung in Plastik, Textilien und in Formulierungen für Schutzüberzüge. Die Verbrauchsmenge an OCTA-BDE lag nach BSEF für 1999 bei 3.825 t. OCTA-BDE wird hauptsächlich als additiver Flammschutz in ABS-Applikationen eingesetzt. Die Produktionsmenge von PENTA-BDE lag nach BSEF für 1999 bei 9.500 t. Die Anwendung konzentriert sich hier auf den Markt der Polster- und Möbelindustrie (Polyurethanschaum, Textilien) /1/.

v								
Zusammensetzung nach /8/								
Produkt	TriBDE	TetraBDE	PentaBDE	HexaBDE	HeptaBDE	OctaBDE	NonaBDE	DecaBDE
DECA-BDE							0,3 - 3%	97 - 98%
OCTA-BDE				10 - 12%	43 - 44%	31 - 35%	9 - 11%	0 - 1%
PENTA-BDE	0 - 1%	24 - 38%	50 - 62%	4 - 8%				

Tabelle 1: Zusammensetzung kommerzieller PBDE.

Der notwendigen Verminderung des Brandrisikos von Polymeren durch den Zusatz von geeigneten Additiven steht die Gefährdung der Umwelt durch den Eintrag von anthropogenen Schadstoffen über Produktion, Anwendung, Gebrauchsphase und Entsorgung gegenüber. PBDE besitzen hohe Siedepunkte bzw. Zersetzungstemperaturen, ein hohes Adsorptionsvermögen und eine hohe chemische Stabilität, die als solches für die Qualität des Brandschutzes erwünscht sind. Diese Eigenschaften wirken sich jedoch nachteilig in der Umwelt aus, denn PBDE sind dem biologischen Abbau schwer zugänglich und zeichnen sich demzufolge durch eine hohe Persistenz aus. Aufgrund ihres ausgeprägt lipophilen Verhaltens neigen diese Verbindungen dazu, sich in verschiedenen Umweltkompartimenten anzureichern. Zahlreiche Studien belegen eine weite Verbreitung, insbesondere der häufig untersuchten tetra- und pentabromierten Diphenylether in der Umwelt, auch in entlegenen Regionen fernab der Industrie /1, 2, 3/. Das Wissen um das Abbauverhalten in der Umwelt sowie der Öko- und Humantoxikologie ist gering und mögliche Langzeitfolgen für Mensch und Umwelt sind derzeit nicht einschätzbar. Gemäß der EU Verordnung (EWG) Nr. 793/93 zur Bewertung und Kontrolle der Umweltrisiken chemischer Altstoffe wurden Risikobewertungen zur Einschätzung der Gefährdung der Umwelt durch PENTA-BDE, OCTA-BDE und DECA-BDE durchgeführt /5, 6, 7/. Basierend auf vorhandenen Daten zur Toxikologie, Ökotoxikologie und den Ergebnissen aus Umweltmonitoring-Studien, ergab die Bewertung einen zwingend notwendigen Handlungsbedarf, die von PENTA-BDE und OCTA-BDE ausgehende Gefährdung der Umwelt einzudämmen. Die amtliche Bekanntmachung erfolgte im Amtsblatt der Europäischen Union vom 15.02.2003 mit der Richtlinie 2003/11/EG zur 24. Änderung der Richtlinie 76/769/EWG zur Beschränkung des Inverkehrbringens und der Verwendung gewisser gefährlicher Stoffe und Zubereitungen (Octabromdiphenylether, Pentabromdiphenylether) /15/. Die Umsetzung in nationales Recht erfolgte im Rahmen der Chemikalienverbotsverordnung /16/ und der Gefahrstoffverordnung /17/. Für die Kontrolle des in der Richtlinie ausgewiesenen Grenzwertes von 0,1 Gew.-% PentaBDE-Isomere und 0,1 Gew.-% OctaBDE-Isomere in Stoffen, Zubereitungen und Erzeugnissen ist ein Analyseverfahren, das wissenschaftlich anerkannten Prüfverfahren entspricht, für die Probenahme und Untersuchung unerlässlich.

Ziel der Arbeiten war die Entwicklung eines Standardanalyseverfahrens zur Überprüfung des genannten Grenzwertes in unterschiedlichen, relevanten Materialien. Die statistische Absicherung erfolgte durch einen geeigneten Ringversuch, um die Praktikabilität und Vergleichbarkeit des Referenzverfahrens zu demonstrieren. Zur Entwicklung des Standardanalyseverfahrens erfolgte die quantitative Analyse von Pentabromdiphenylether-Isomeren (PentaBDE) und Octabromdiphenylether-Isomeren (OctaBDE) entsprechend dem Hinweis der Richtlinie 2003/11/EG mit Hilfe der Gaschromatographie-Massenspektrometrie (GC/MS).

3 Analytische Bestimmung der PBDE in Polymerproben

Für die Bestimmung der in den Polymerproben vorliegenden Stoffkonzentrationen sind geeignete Probenaufbereitungs- und Analyseverfahren notwendig. Zur Entwicklung der Analysenmethode müssen die einzelnen Teilschritte (Probenvorbereitung, -lagerung, -aufbereitung, Messmethode) getestet und die Dimensionierungen und Parameter entsprechend angepasst werden. Zur Qualitätssicherung und Methodenvalidierung der Analysenmethode muss eine Prüfung der Varianzenhomogenität des Kalibrierbereiches erfolgen und das Regressionsmodell (Linear, 2.Ordn.) bestimmt werden. Die Abgrenzung des Arbeitsbereiches nach unten erfolgt über die Nachweis- bzw. Bestimmungsgrenze. Die Richtigkeit wird mit Hilfe der Wiederfindungsfunktion überprüft. Damit können die Einflüsse der Probenaufbereitungsschritte auf die Messwertgewinnung aufgedeckt werden.

Die Probenaufbereitung der Polymere erfolgt mittels Soxhletextraktion unter Verwendung geeigneter organischer Lösungsmittel. Die Auswahl des Lösungsmittels hinsichtlich Löslichkeit der Komponenten, Verhinderung von Querkontaminationen etc. ist Teil der Methodenentwicklung. Die Identifizierung und quantitative Bestimmung erfolgt mit Hilfe der Gaschromatographie-Massenspektrometrie (GC/MS). Bei diesem kombiniertem Verfahren werden die Substanzen entsprechend ihrer chemischen und physikalischen Eigenschaften im gaschromatographischen System über eine geeignete Trennkapillare in Abhängigkeit von der Zeit getrennt. Die eigentliche Detektion und Quantifizierung erfolgt mit dem Massenspektrometer.

3.1. Allgemeine Vorbereitungen

Alle Lösungsmittel wurden vor der Anwendung auf Störkontaminationen und Leerwerte hin überprüft. Glasgeräte und -materialien wurden nach Benutzung grundsätzlich bei 450 °C ausgeheizt, im Laborgeschirrspüler (VE-Wasser) gereinigt, danach bei 150 °C getrocknet und vor erneuerter Verwendung mit Tolu-

ol bzw. Aceton gespült. Um die UV-empfindlichen PBDE vor lichtbedingter Zersetzung zu schützen, wurde Braunglas verwendet bzw. mit Aluminiumfolie vor Lichteinfall geschützt.

3.2. Ausgewählte Leitsubstanzen für die Entwicklung des Standardanalyseverfahrens

Das Standardanalyseverfahren wurde für die in der Richtlinie 2003/11/EG geregelten penta- und octabromierten Diphenylether entwickelt.

Die Auswahl der pentabromierten und octabromierten Diphenylether-Isomere erfolgte in Anlehnung an die bekannten Isomere in technischen Produkten sowie kommerziell verfügbaren Standards.

Die tatsächliche Zusammensetzung der technischen, kommerziell erhältlichen PENTA-BDE variiert je nach Hersteller. Es scheint jedoch, dass die verfügbaren Informationen über die Zusammensetzung eines Produktes repräsentativ bzw. vergleichbar mit weiteren Produkten ist. Kommerzielle Produkte sind neben DE-71 z.B. Bromkal 70 und Saytex 115, wobei die beiden letztgenannten Produkte in der EU nicht mehr produziert bzw. vertrieben werden. Es kann von einem Anteil von 50 – 62 % an PentaBDE-Isomeren im technischen PENTA-BDE ausgegangen werden /7/.

Im technischen Produkt PENTA-BDE DE-71 liegen drei Haupt-PentaBDE-Isomere vor (s. Anhang 2.1):

- 2,2',4,4',6-PentaBDE (BDE100)
- 2,2',4,4',5-PentaBDE (BDE99)
- 2,2',3,4,4'-PentaBDE (BDE85)

Die tatsächliche Zusammensetzung des technischen OCTA-BDE variiert ebenfalls je nach Hersteller, daher wird normalerweise nur ein prozentualer Bereich der jeweils in den technischen Produkten enthaltenen einzelnen Kongenerengruppen aufgeführt. Der Anteil an OctaBDE-Isomeren in technischen OCTA-BDE Produkten variiert dabei zwischen 26 – 36 % /6/. Im technischen Produkt OCTA-BDE DE-79 liegen drei Haupt-OctaBDE-Isomere vor (s. Anhang 2.2):

- 2,2',3,4,4',5,5'6-OctaBDE (BDE203)
- 2,2',3,3',4,4',5,6'-OctaBDE (BDE196)
- 2,2',3,3',4,4',6,6'-OctaBDE (BDE197)

Diese insgesamt sechs genannten Isomere sind kommerziell als Einzelstandards erhältlich.

Zur Vereinfachung werden im folgenden Text die technischen Gemische in Großbuchstaben (PENTA-BDE bzw. OCTA-BDE) und die penta- bzw. octabromierten Diphenylether-Isomere als PentaBDE-Isomere bzw. OctaBDE-Isomere abgekürzt.

Als Interner Standard zur Kontrolle der Wiederfindung wird 4,4'-Dibromoctafluorbiphenyl (DBOFB), zur Korrektur der Injektionsvolumens Decachlorbiphenyl (CB209) verwendet.

3.3. Spezifikation der verwendeten technischen PBDE

3.3.1. PENTA-BDE Formulierung (Anhang 2)

<u>Handelsname</u>	Great Lakes DE-71 [™]		
<u>CAS-Nummer</u>	32534-81-9		
Zusammensetzung	Bromgehalt 70,8 %		
	Hauptkomponenten:	TetraBDE	30 %
		PentaBDE	52 %
		HexaBDE	12 %
<u>Hauptanwendungen</u>	Polyurethan (PUR);		
	Epoxidharze (EP), Gummi	, Polyvinylch	lorid, Textilien

3.3.2. OCTA-BDE Formulierung (Anhang 2)

<u>Handelsname</u>	Great Lakes DE-79 [™]		
<u>CAS-Nummer</u>	32536-52-0		
Zusammensetzung	Bromgehalt 79,8 %		
	Hauptkomponenten:	HexaBDE	13 %
		HeptaBDE	44 %
		OctaBDE	42 %
<u>Hauptanwendungen</u>	AcryInitril-Butadien-Styrol-(Copolymer (A	ABS);
	Polystyrol (PS), Polyamid		

3.4. GC/MS

Verwendetes GC/MS-System:

Agilent GC Series 6890/ Bear Instruments Kodiak 1200 (Massenbereich 10 - 1500 amu)

Trägergas	Helium
Injektionssystem	PTV-Injektor
Injektion	Splitless
Purge time	1 min
Purge flow	50 mL min ⁻¹
Temperaturprogramm (PTV)	90°C (0 min) - 300°C/min - 350°C (15 min)
GC-Säule	DB-5-ms; 15 m; 0,25 mm ID; 0,1 µm df
Säulenvordruck	constant flow: 1,2 mL min ⁻¹
Temperaturprogramm	70 °C (2 min)-20 °C/min-300 °C (15 min)
Transferline	310 °C
Ionisierungsmethode	EI; 70 eV
Ion source T	200 °C

Die Analyse der polybromierten Flammschutzmittel erfolgte im SIM (Single Ion Monitoring)-Modus unter Verwendung folgender Massenspuren (Quantifizierung: unterstrichene Massenspur; Massenspektren s. Anhang 6).

PentaBDE-Isomere OctaBDE-Isomere	(M ⁺ -2Br)+2, (M ⁺ -2Br)+4, M ⁺ +4 (M ⁺ -2Br)+6, (M ⁺ -2Br)+8, M ⁺ +8	<u>403.7</u> , 405.7, 563.6 <u>641.6</u> , 643.6, 801.5		
Interner Standard zur Korrektur des Injektionsvolumens:				
CB209	M ⁺ +4, M ⁺ +6, (M ⁺ -2Cl)+4	<u>497.5,</u> 499.6, 427.6		
Interner Standard zur Kontrolle d	er Wiederfindung:			
DBOFB	M ⁺ +3, M ⁺ +2, (M ⁺ -FBr)+2	<u>455.8,</u> 454.4, 357.5		

3.5. Auswahl und Herstellung des Probenmaterials

3.5.1. Spezifikation der verwendeten Polymere

Entsprechend den in der Literatur verfügbaren Informationen zu den Anwendungsbereichen /6,7/ der technischen PENTA-BDE und OCTA-BDE Produkte wurden folgende Materialien zur Methodenentwicklung und zur Herstellung der Ringversuchsmaterialien (Tabelle 2) ausgewählt:

- Acrylnitril-Butadien-Styrol-Copolymer (ABS)
- Polystyrol (PS)
- Polyurethan-Hartschaumstoff (PUR-H)
- Epoxidharz (EP)

Die Polymermaterialien wurden mit definiertem FSM-Gehalt über Compoundeure bezogen bzw. im Fall des EP selbst gemischt und gegossen (s. Kap. 8.2). Die Herstellung der Compounds erfolgte je nach Polymer über die Zugabe der FSM während der Extrusion (ABS und PS) oder während des Aufschäumens (PUR-H).

Zusätzlich zu den flammgeschützten Polymeren wurden die reinen Polymermaterialien (ohne Additive) zur Verfügung gestellt. Die genauen Spezifikationen sowie die Hersteller der Polymere sind im Anhang 4 aufgelistet.

Polymer-Masterbatch	Zugesetzte	Gehalt FSM-Formulierung
	FSM-Formulierung	(laut Herstellerangaben)
ABS	PENTA-BDE	ca. 1 %
ABS	OCTA-BDE	2,95 %
PS	OCTA-BDE	2,96 %
PUR-H	PENTA-BDE	ca. 2 %
EP	PENTA-BDE	2 %

Tabelle 2:Flammgeschützte Polymere.
3.5.2. Herstellung der Polymere mit einem OctaBDE- bzw. PentaBDE-Isomeren Gehalt von ca. 0,1 Gewichts-%

Zur Durchführung des Ringversuchs wurden Polymere hergestellt, deren Summengehalt an PentaBDE bzw. OctaBDE-Isomeren in der Nähe des gesetzlich vorgeschriebenen Grenzwertes von 0,1 Gewichts-% liegt. Hierzu wurden die Polymer-Masterbatches (siehe Kap. 3.5.1, Anhang 4) mit additivfreiem Polymer gemischt. Die drei als Granulat vorhandenen Polymere (ABS/PENTA-BDE, ABS/OCTA-BDE, PS) konnten direkt mit additivfreiem Granulat gemischt werden. Die Epoxidharze und die Polyurethan-Hartschaumstoffe mit und ohne FSM-Zusatz wurden zunächst grob zerkleinert (mit einer Schere und einer Zange bzw. einem Messer) und anschließend gemischt.

Die verwendete technische PENTA-BDE Formulierung DE-71 besteht zu ca. 50 % aus Pentabromdiphenylether-Isomeren; die verwendete technische OCTA-BDE Formulierung DE-79 zu ca. 30 % (s. Anhang 2) aus Isomeren des Octabromdiphenylethers. Dies muss bei der Verdünnung der Polymere auf definierte Isomeren-Gehalte berücksichtigt werden (s. Tabelle 3).

Die hergestellten Polymere wurden nach Kap. 8.3 zerkleinert und auf eine Korngröße von 500 µm gemahlen und nach dem Cross-Riffling Verfahren (Kap. 8.4) statistisch homogenisiert /11/.

Es wurden je Polymer 80 Teilproben hergestellt (Tabelle 4), die mit den Buchstaben A bis E und einer fortlaufenden Nummer benannt wurden.

	Masterb	atch Gehalt	Mischungsverhältnis	Gehalt der Isomere im RV-		
	FSM- Zusatz	Summe Isomere	Polymer mit FSM + Polymer ohne FSM	Material		
ABS/ PENTA-BDE	ca 1 %	ca. 0,5 % PentaBDE	200 g + 800 g	ca. 0,1 % PentaBDE		
ABS/ OCTA-BDE	ca. 3 %	ca. 1 % OctaBDE	100 g + 900 g	ca. 0,1 % OctaBDE		
PS	ca. 3 %	ca. 1 % OctaBDE	100 g + 900 g	ca. 0,1 % OctaBDE		
PUR-H	ca. 2 %	ca. 1 % PentaBDE	100 g + 900 g	ca. 0,1 % PentaBDE		
EP	ca. 2 %	ca. 1 % PentaBDE	100 g + 900 g	ca. 0,1 % PentaBDE		

Tabelle 3:	Ringversuchsmaterialien (RV-Materialien).	

Tabelle 4:Anzahl und Bezeichnung der Teilproben der auf Homogenität zu
prüfenden Polymere.

Polymer	Teilprobe	Füllmenge pro Teilprobe [g]
ABS mit DE-71	A 1 bis A 80	2,03 ± 0,07
ABS mit DE-79	B 1 bis B 80	2,01 ± 0,06
PS mit DE-79	C 1 bis C 80	1,98 ± 0,29
PUR-H mit DE-71	D 1 bis D 80	0,54 ± 0,02
EP mit DE-71	E 1 bis E 80	1,93 ± 0,09

4 Methodenvalidierung

4.1. Ermittlung der Kalibrierfunktion und der Verfahrenskenndaten

Zur Überprüfung der Linearität der eingesetzten Kalibrierfunktion wurde der Konzentrationsbereich 50 bis 500 ng mL⁻¹ der ausgewählten Leitsubstanzen (Kap. 3.2) bzw. 10 bis 100 ng mL⁻¹ des Internen Standards DBOFB (10 Kalibrierlösungen, äquidistant; interner Standard zur Korrektur des Injektionsvolumens: Decachlorbiphenyl) mittels Anpassungstest nach Mandel /9/ untersucht (siehe Anhang 3):

 $DS^{2} = (N-2) s^{2}_{y1} - (N-3)s^{2}_{y2}$ $PW = DS^{2} / s^{2}_{y2}$

mit N = Anzahl der gewählten Konzentrationsstufen (= 10) $s_{y1} = Reststandardabweichung der Funktion 1. Grades$ $s_{y2} = Reststandardabweichung der Funktion 2. Grades$ $DS^2 = Differenz der Varianzen$ PW = Prüfwert

Aus den Reststandardabweichungen s_{y1} (der linearen Kalibrierfunktion) und den Reststandardabweichungen s_{y2} (der Kalibrierfunktion 2. Grades) wird die Differenz der Varianzen DS² berechnet. Für den Anpassungstest nach Mandel wird der Prüfwert PW berechnet und mit dem Tabellenwert F ($f_1 = 1$, $f_2 = N-3$, P = 99 %) verglichen. Ist PW kleiner oder gleich F wird durch die Kalibrierfunktion 2. Grades keine signifikant bessere Anpassung erreicht; die Kalibrierung ist linear.

Für die ausgewählten Leitsubstanzen (Kap. 3.2) wurde die Linearität überprüft.

Die für den verwendeten Konzentrationsbereich ermittelten Prüfwerte lagen für alle untersuchten Leitsubstanzen unter dem F-Wert (1; 7; 99 %) von 12,25 (s. Anhang 3). Daher sind alle Kalibrierungen als linear anzusehen.

Die relativen Verfahrensstandardabweichungen V_{xo} der linearen Kalibrierfunktionen lagen zwischen 3 - 7 %.

4.2. Reproduzierbarkeit des GC/MS-Systems für PBDE

Zur Bestimmung der Reproduzierbarkeit wurden Mehrfachbestimmungen (n = 10) für die ausgewählten Leitsubstanzen mit GC/MS durchgeführt (Konz: 250 ng mL⁻¹). Die Flächen der Leitsubstanzen (A) wurden durch die Fläche des internen Standards CB209 (A_{CB209}) korrigiert. Tabelle 5 gibt die relative Standardabweichung (%) der A/ A_{CB209} Werte wieder.

	rel. Standardabweichung [%]
2,2',4,4',6-PentaBDE (BDE100)	2,4
2,2',4,4',5-PentaBDE (BDE99)	2,2
2,2',3,4,4'-PentaBDE (BDE85)	2,6
2,2',3,3',4,4',6,6'-OctaBDE (BDE197)	9,4
2,2',3,4,4',5,5',6-OctaBDE (BDE203)	5,3
2,2',3,3',4,4',5,6'-OctaBDE (BDE196)	4,7
DBOFB	2,0

 Tabelle 5:
 Relative Standardabweichung der Wiederholmessungen

4.3. Varianzenhomogenität

Zur Überprüfung der Varianzenhomogenität wurden jeweils 10 Standardproben der niedrigsten (x₁) sowie der höchsten (x_N) Konzentration der ausgewählten Leitsubstanzen (Kap. 3.2)des vorläufigen Arbeitsbereiches (PBDE: 50 - 500 ng mL⁻¹; DBOFB 10 - 100 ng mL⁻¹) getrennt analysiert. Die Flächen der Leitsubstanzen (A) wurden durch die Fläche des internen Standards CB209 (A_{CB209}) korrigiert.

Die Varianzen der jeweiligen beiden Messwertserien s_1^2 und s_N^2 (siehe Anhang 3.2) wurden mittels F-Test auf Homogenität untersucht /9/.

 $PW = s_N^2 / s_1^2$ F (f₁ = 9; f₂ = 9, P = 99 %) = 5,35

Der ermittelte Prüfwert PW wird mit dem Tabellenwert F ($f_1 = f_2 = N - 1$, P = 99 %) verglichen. Falls PW kleiner oder gleich F kann von Homogenität innerhalb der Serie ausgegangen werden.

Für den vorgegebenen Arbeitsbereich lagen die für die Leitsubstanzen ermittelten Prüfwerte unter dem F-Wert (siehe Anhang 3.2). Varianzenhomogenität ist somit gegeben.

4.4. Überprüfung des Standardanalyseverfahrens und Untersuchung auf Matrixeinflüsse

Ein wesentliches Gütekriterium eines Analyseverfahrens ist dessen Anwendbarkeit auf natürliche Proben. Verfahrensschritte und Matrixeffekte können sich in der Erhöhung der Unpräzision und/oder als systematische (konstantsystematische oder proportional-systematische) Abweichungen der Analysenergebnisse von den "wahren" Werten äußern.

Sowohl zur Überprüfung einzelner Verfahrensschritte als auch zur Feststellung einer Matrixbeeinflussung eignet sich die Berechnung der Wiederfindungsfunktion, die es erlaubt, systematische Abweichungen aufzudecken /9/.

Jeder einzelne Kalibrierstandard wird dem Analyseverfahren unterzogen.

$$x_{\rm f} = \frac{y_{\rm f} - a_{\rm c}}{b_{\rm c}}$$

Stellt man die jeweils "gefundene" Konzentration (x_f) auf der Ordinate gegen die Kalibrier-Konzentrationen (x_c) auf der Abzisse graphisch dar, so erhält man die Wiederfindungsgerade, die sich mathematisch durch die Wiederfindungsfunktion

$$\mathbf{x}_{f} = \mathbf{a}_{f} + \mathbf{b}_{f} \cdot \mathbf{x}_{c}$$

beschreiben lässt. Im Idealfall ergibt die Wiederfindungsfunktion eine Gerade mit $a_f = 0$ und $b_f = 1$.

4.4.1. Kontrolle der Analysenpräzision

Voraussetzung für die Aussagefähigkeit der Wiederfindungsfunktion ist die Gleichwertigkeit zwischen der Verfahrensstandardabweichung s_{xoc} des Grundverfahrens und der Reststandardabweichung s_{yf} der Wiederfindungsfunktion. Die Verfahrensstandardabweichung der Kalibrierfunktion des Grundverfahrens s_{xoc} und die Reststandardabweichung der Wiederfindungsfunktion s_{yf} werden auf signifikanten Unterschied mittels F-Test überprüft.

$$\mathsf{PW} = \left(\frac{\mathsf{s}_{\mathsf{yf}}}{\mathsf{s}_{\mathsf{xoc}}}\right)^2$$

Ist PW größer als F ($f_1 = f_2 = N_c$ -2, P = 99%), so liegt ein signifikanter Unterschied zwischen beiden Standardabweichungen vor. In diesem Fall kann keine

endgültige Aussage bezüglich des Nicht-Vorliegens systematischer Abweichungen gemacht werden.

Zur Bestimmung der Wiederfindung wurden additivfreie Polymere (EP bzw. ABS) mit unterschiedlichen Konzentrationen der technischen Produkte PENTAbzw. OCTA-BDE (bedingt durch die Zusammensetzung der technischen Produkte: BDE99: 100 bis 500 ng mL⁻¹, BDE100: 20 bis 100 ng mL⁻¹, BDE197: 100 bis 420 ng mL⁻¹, BDE203: 50 – 220 ng mL⁻¹, in fünf Konzentrationsniveaus, äquidistant) dotiert und mittels Standardanalyseverfahren nach Anhang 1 untersucht. Beispielhaft wurden für die PentaBDE-Isomere BDE99, BDE100 und die OctaBDE-Isomere BDE197 und BDE203 die in Tabelle 6 aufgeführten Prüfwerte ermittelt.

l abelle 6:	Ermittelte Prufwe	erte zur Kontroll	Controlle der Analysenprazis			
	E	Epoxidharz		ABS		
	BDE99	BDE100	BDE197	BDE203		
S _{xoc}	39,99	10,87	11,20	5,6		
S _{yf}	35,55	28,31	25,51	4,38		
PW	0,79	6,79	5,19	0,61		
F (f1 = f2 =Nc-2, 9	99%)	29,46				

Anhand der Ergebnisse in Tabelle 6 ist Analysenpräzision gegeben.

4.4.2. Konstant-systematische Abweichungen

Bei konstant-systematischen Abweichungen ist der Fehler (die Abweichung) unabhängig von der Konzentration der analysierten Komponente, was zu einer Parallelverschiebung der Matrix-Kalibriergeraden gegenüber der mit reinen Standardlösungen erstellten Kalibriergeraden führt. Ursache für diese Abweichung kann das Miterfassen einer Matrixkomponente sein, d.h. das Analyseverfahren ist nicht ausreichend spezifisch. Zur Ermittlung der konstant4 Methodenvalidierung

systematischen Abweichung wird der Vertrauensbereich des Achsenabschnittes a_f berechnet.

Ermittlung des Vertrauensbereiches VB (a_f)

VB (a_f) =
$$a_f \pm t_{(p,f)} \bullet s_{yf} \sqrt{\left(\frac{1}{N_f} + \frac{\overline{x}_c}{Q_{xx}}\right)}$$

mit $Q_{xx} = \sum x_i^2 - \frac{1}{N} \cdot \left(\sum x_i\right)^2$

$$a_{f} = Achsenabschnitt$$

$$N_{f} = Anzahl der Konzentrationsniveaus = 5$$

$$t_{p,f} = Tabellenwert (Student-t-Faktor bei der Wahrscheinlichkeit P und dem Freiheitsgrad f = N_{f} - 2); t_{95\%,3} = 3,18$$

$$s_{yf} = Reststandardabweichung der Wiederfindungsfunktion$$

$$Q_{xx} = Quadratsumme$$

$$\overline{x}_{c} = arithmetischer Mittelwert des Konzentrationsbereiches$$

$$x_{i} = Konzentrationsniveau$$

Eine konstant-systematische Abweichung liegt mit 95 %iger statistischer Sicherheit vor, wenn der Vertrauensbereich nicht den Wert $a_f = 0$ einschließt. In Tabelle 7 sind die berechneten Vertrauensbereiche der Achsenabschnitte zusammengefasst.

	BDE99	BDE100	BDE197	BDE203
VB (a _f) für P = 95 %	-29,74 ± 118,57	$19{,}56\pm94{,}41$	$-36,48 \pm 90,93$	-11,94 ± 15,15
Ist der Wert a _f = 0	Ja	Ja	Ja	Ja
eingeschlossen?				
Liegt eine konstant-	Nein	Nein	Nein	Nein
systematische Ab-				
weichung vor?				

Tabelle 7:Berechnung der Vertrauensbereiche der Achsenabschnitte der
Wiederfindungsfunktionen.

Es ergeben sich mit einer statistischen Sicherheit von 95 % für alle getesteten Isomere (BDE99, BDE100, BDE197, BDE203) keine konstant-systematischen Abweichungen.

4.4.3. Proportional-systematische Abweichungen

Bei proportional-systematischen Abweichungen ist die Größe des Fehlers abhängig von der Konzentration der analysierten Komponente. Dies führt zu einer Änderung der Steigung der Matrix-Kalibriergeraden. Diese Abweichungen vom wahren Wert können durch einzelne Verfahrensschritte oder auch durch Matrix-Effekte bedingt sein. Zur Ermittlung der proportional-systematischen Abweichung wird der Vertrauensbereich VB (b_f) der Steigung b_f berechnet.

$$VB(b_f) = b_f \pm \frac{t_{(p,f)} \cdot s_{yf}}{\sqrt{Q_{xx}}}$$

mit $b_f = Steigung$ $t_{p,f} = Tabellenwert$ (Student-t-Faktor bei der Wahrscheinlichkeit P und dem Freiheitsgrad $f = N_f - 2$); $t_{95\%, 3} = 3, 18$; $t_{99\%, 3} = 5,841$; $t_{99,9\%, 3} = 12,92$ $s_{yf} = Reststandardabweichung der Wiederfindungsfunktion$ $Q_{xx} = Quadratsumme$ (s. Kapitel 4.4.2)

Schließt der Vertrauensbereich (P = 95 %) den Wert $b_f = 1$ ein, so liegt mit 95 %iger statistischer Sicherheit keine proportional-systematische Abweichung vor. Schließt der Vertrauensbereich (P = 99 %) den Wert $b_f = 1$ nicht ein, so liegt eine proportional-systematische Abweichung vor.

In Tabelle 8 sind die Vertrauensbereiche der Steigungen zusammengefasst. Daraus ergibt sich:

Für BDE100 liegt mit 95 %iger statistischer Wahrscheinlichkeit keine proportional-systematische Abweichung vor. Für BDE99 und BDE197 ist der Wert $b_f = 1$ erst bei einer statistischen Wahrscheinlichkeit von 99 % eingeschlossen. Somit liegt eine gering proportionalsystematische Abweichung vor.

Für BDE203 ist der Wert $b_f = 1$ erst bei einer statistischen Wahrscheinlichkeit von 99,9 % in den Vertrauensbereich der Steigung eingeschlossen. Es liegt somit eine proportional-systematische Abweichung vor.

Tabelle 8:Berechnung der Vertrauensbereiche der Steigungen der Wie-
derfindungsfunktionen.

	BDE99	BDE100	BDE197	BDE203
VB (b _f) für P = 95 %	$1,\!41\pm0,\!36$	1,16 ± 0,28	1,41 ± 0,32	1,31 ± 0,10
Ist der Wert b _f = 1	Nein	Ja	Nein	Nein
eingeschlossen?				
VB (b _f) für P = 99 %	1,41 ± 0,66		1,41 ± 0,59	1,31 ± 0,19
Ist der Wert b _f = 1	Ja		Ja	Nein
eingeschlossen?				
VB (b _f) für P = 99,9 %				1,31 ± 0,43
Ist der Wert b _f = 1				Ja
eingeschlossen?				
Liegt eine proportional-	Ja (gering)	Nein	Ja (gering)	Ja
systematische Abwei-				
chung vor?				

4.4.4. Bestimmung der Wiederholstandardabweichung des Standardanalyseverfahrens

Zur Bestimmung des Zufallsfehlers des Standardanalyseverfahrens (Anhang 1) wurde die Standardabweichung unter Wiederholbedingungen bestimmt. Man bestimmt diese Größe aus einer Reihe wiederholter, voneinander unabhängiger Messungen an homogenem Probenmaterial.

Die zehnmalige Analyse der Summe PentaBDE-Isomere in ABS/PENTA-BDE (siehe Tabelle 3 RV-Material) unter Verwendung des Standardanalyseverfahrens (Anhang 1) ergab 0,0622 mg g⁻¹ mit einer relativen Standardabweichung von 5,1 %.

Die zehnmalige Analyse der Summe OctaBDE-Isomere in PS/OCTA-BDE (siehe Tabelle 3 RV-Material) unter Verwendung des Standardanalyseverfahrens (Anhang 1) ergab 0,0778 mg g⁻¹ mit einer relativen Standardabweichung von 6,9 %.

4.4.5. Bestimmung der Nachweis- und Bestimmungsgrenze gemäß DIN 32 645 (Modifikation der direkten Methode)

Zur Ermittlung der Nachweisgrenze nach DIN 32 645 ist das Leerwertverfahren die direkte Methode. Es wurde eine Modifikation des Leerwertverfahrens angewendet, bei der an Stelle der Direktbestimmung der Leerwertstreuung die Ergebnisstreuung einer Analysenprobe, deren Gehalt in der Nähe der Nachweisgrenze liegt, ermittelt wird /10/.

Die Gleichung zur Berechnung der Nachweisgrenze x_{NG} lautet:

$$x_{NG} = s_x \cdot t_{\alpha;f} \cdot \sqrt{\frac{1}{m} + \frac{1}{n}}$$

mit

 s_x = Standardabweichung der Gehalte der Probe t = Tabellenwert (Student-t-Faktor); $t_{0,01;9}$ = 2,821 α = Signifikanzniveau (Wahrscheinlichkeit für den Fehler 1. Art), nach Norm = 0,01 f = Anzahl der Freiheitsgrade = n-1 m = Anzahl der Messungen der Analysenprobe, nach Norm = 1 n = Anzahl der Kalibrierdaten, nach Norm = 10

Es ergibt sich für die Nachweisgrenze:

$$x_{NG} = s_x \cdot 2,821 \cdot \sqrt{1 + \frac{1}{10}} = s_x \cdot 2,96$$

Die Bestimmungsgrenze x_{BG} (Mindestgehalt einer Probe, ab der eine quantitative Angabe zulässig ist) kann ohne Kenntnis der Streuungsdaten der Kalibriergeraden nicht exakt berechnet, sondern nur abgeschätzt werden. Da für Normbedingungen nach DIN 32 645 die Bestimmungsgrenze derjenige Gehalt sein soll, bei dem das halbe Prognoseintervall des Wertes gerade 33 % beträgt, lässt sich die Bestimmungsgrenze mit

 $x_{BG}\approx 3\cdot x_{NG}$

abschätzen.

Der Grenzwert für die Summe Penta- bzw. OctaBDE-Isomere liegt bei 0,1 Gewichts-%. Dies entspricht einem Gehalt von je 1 mg g⁻¹. Zur Bestimmung der Nachweis- und Bestimmungsgrenzen wurden Polymere untersucht, deren Gehalt bei 0,1 mg g⁻¹ liegt. Um einen PentaBDE-Isomeren Gehalt zu erhalten, der in der Nähe der Nachweisgrenze liegt wird das flammgeschützte Epoxidharz (Tabelle 3 RV-Material) während der Einwaage in die Soxhlethülse mit Epoxidharz ohne FSM-Zusatz im Verhältnis 1 : 9 gemischt und zehnmal gemäß Standardanalyseverfahren (Anhang 1) analysiert. Für die OctaBDE-Isomere wird eine höhere Nachweisgrenze erwartet, daher wird in diesem Fall das Polymer ABS mit OCTA-BDE (Tabelle 3 RV-Material) ohne weitere Verdünnungsschritte zehnmal untersucht.

Exemplarisch wird für die Berechnung der analytischen Grenzen der PentaBDE-Isomere das Hauptisomer BDE99 im technischen Produkt gewählt. Der Mittelwert der untersuchten Probe ergab 0,116 \pm 0,0061 mg g⁻¹.

Daraus ergeben sich die analytischen Grenzen mit:

$$x_{NG} = s_x \cdot 2,96 = (0,0061 \cdot 2,96)mg \cdot g^{-1} = 0,02mg \cdot g^{-1}$$

 $x_{BG} \approx 3 \cdot x_{NG} = 3 \cdot 0.02 \, mg \cdot g^{-1} = 0.06 \, mg \cdot g^{-1}$

Exemplarisch wird für die Bestimmung der analytischen Grenzen der OctaBDE-Isomere das Hauptisomer BDE197 im technischen Produkt gewählt. Der Mittelwert der untersuchten Probe ergab 0,257 \pm 0,0138 mg g⁻¹. Daraus ergeben sich die analytischen Grenzen mit:

 $x_{NG} = s_x \cdot 2,96 = (0,0138 \cdot 2,96) mg \cdot g^{-1} = 0,04 mg \cdot g^{-1}$

 $x_{BG} \approx 3 \cdot x_{NG} = 3 \cdot 0.04 \, mg \cdot g^{-1} = 0.12 \, mg \cdot g^{-1}$

4.5. Homogenitätsprüfung der Polymere

Ein Referenzmaterial wird hinsichtlich einer bestimmten Eigenschaft als homogen angesehen, wenn der bei Prüfungen an Stichproben in einem festgelegten Umfang bestimmte Eigenschaftswert innerhalb der festgelegten Unsicherheitsgrenzen liegt.

Die Qualitätskontrolle sieht bei den vorhandenen 80 Teilprobenmengen (siehe Kap. 3.5.2) eine Homogenitätsstudie an acht systematisch ausgewählten Teilproben vor. Durch vier parallele und unabhängige Bestimmungen der Analytgehalte in jeder dieser ausgewählten Teilproben wird über eine Varianzanalyse (F-Test) die Streuung der Gehalte innerhalb einer Teilprobe ("within the bottle") und zwischen den verschiedenen Teilproben ("between the bottles) ermittelt. Aus Zeitgründen wurden z.T. nur drei parallele Bestimmungen der Teilproben durchgeführt.

Der erhaltene Prüfwert PW wird mit dem Tabellenwert F (P, f₁, f₂) verglichen. Ist PW kleiner als F, kann das Material bei vorgegebener Signifikanz P, Stichprobengröße und Prüfverfahren als homogen angesehen werden.

Die Formeln zur Berechnung sind aufgrund ihrer Komplexität im Anhang 5 ausgewiesen. Die Auswertung der Messwerte kann mit Hilfe einer einfaktoriellen Varianzanalyse (analysis of variances - ANOVA-Tabelle) computergestützt erfolgen.

4.5.1. ABS mit PENTA-BDE (Material A)

Tabelle 9 und Abbildung 2 geben den ermittelten Gehalt von drei bzw. vier Parallelbestimmungen der ausgewählten Teilproben für das Polymer ABS/PENTA-BDE (Tabelle 3 RV-Material) wieder. In Tabelle 10 sind die Ergebnisse der einfaktoriellen Varianzanalyse beschrieben.

Tabelle 9:Analytische Daten der Homogenitätsuntersuchungen des Poly-
mers ABS/PENTA-BDE.

Teilprobe	A-01	A-15	A-28	A-34	A-47	A-54	A-63	A-74
	0,990	1,285	1,202	1,309	1,085	1,148	1,103	1,129
Summe der PentaBDE-Isomere,	1,139	1,336	1,188	1,354	1,245	1,288	1,178	1,166
ermittelter Gehalt [mg g ⁻¹]	1,173	1,235	1,266	1,197	1,154	1,154	1,151	1,178
		1,180	1,164	1,243	1,207	1,148	1,174	1,126
MW _i [mg g⁻¹]	1,101	1,259	1,205	1,276	1,173	1,185	1,152	1,150
s _i [mg g ⁻¹]	0,0973	0,0669	0,0436	0,0695	0,0694	0,0691	0,0345	0,0262
V _i [%]	8,8	5,3	3,6	5,5	5,9	5,8	3,0	2,3
MW _{Gesamt} [mg g ^{₋1}]				1,1	87			
s _{Gesamt} [mg g⁻¹]				0,0)58			
V _{Gesamt} [%]				4	,9			

MW_i: Mittelwert der Teilprobe i, s_i: Standardabweichung der Teilprobe i, V_i: rel. Standardabweichung der Teilprobe i, MW_{Gesamt}: Gesamtmittelwert, s_{Gesamt}: Standardabweichung der Mittelwerte der Teilproben, V_{Gesamt}: rel. Standardabweichung der Mittelwerte der Teilproben

Tabelle 10: ANOVA-Tabelle ABS/PENTA-BDE.

	Quadrat- Summe	Freiheits- grade	Varianz	$PW = s_v^2 / s_r^2$	F (0,95; 7; 23)	F (0,99; 7; 23)
Streuung zwischen den Teilproben	QS ₁ = 0,087	f ₁ = 7	s _v ² = 0,012	3,289	2,442	3,539
Streuung innerhalb der Teilproben	QS ₂ = 0,087	f ₂ = 23	$s_r^2 = 0,004$			

PW: Prüfwert, F(P, f₁, f₂): F-Wert (Tabellenwert) bei der Signifikanz P und den Freiheitsgraden f₁ und f₂

suchten Teilproben ABS/PENTA-BDE als Summe der Penta-BDE-Isomere in mg g⁻¹.

Das Polymer ABS/PENTA-BDE kann bei den vorgegebenen Versuchsbedingungen (8 Teilproben, insgesamt 31 Untersuchungen, Signifikanz 99%) als homogen angesehen werden.

4.5.2. ABS mit OCTA-BDE (Material B)

Tabelle 11 (siehe auch Abbildung 3) gibt den ermittelten Gehalt von drei bzw. vier Parallelbestimmungen der ausgewählten Teilproben für das Polymer ABS/OCTA-BDE (Tabelle 3 RV-Material) wieder. In Tabelle 12 sind die Ergebnisse der einfaktoriellen Varianzanalyse beschrieben.

Tabelle 11:Analytische Daten der Homogenitätsuntersuchungen des Poly-
mers ABS/OCTA-BDE.

Teilprobe	B-05	B-14	B-27	B-32	B-46	B-58	B-66	B-79
	0,524	0,504	0,502	0,570	0,527	0,532	0,458	0,542
Summe der OctaBDE-Isomere,	0,524	0,547	0,591	0,568	0,481	0,536	0,505	0,593
ermittelter Gehalt [mg g ⁻¹]	0,495	0,541	0,525	0,542	0,532	0,443	0,455	0,600
	0,487	0,604						
MW _i [mg g ⁻¹]	0,508	0,549	0,539	0,560	0,513	0,504	0,473	0,578
s _i [mg g ⁻¹]	0,0193	0,0413	0,0462	0,0156	0,0281	0,0526	0,0280	0,0317
V _i [%]	3,8	7,5	8,6	2,8	5,5	10,4	5,9	5,5
MW _{Gesamt} [mg g ^{⁻1}]		0,528						
s _{Gesamt} [mg g⁻¹]		0,035						
V _{Gesamt} [%]				6,	,6			

MW_i: Mittelwert der Teilprobe i, s_i: Standardabweichung der Teilprobe i, V_i: rel. Standardabweichung der Teilprobe i, MW_{Gesamt}: Gesamtmittelwert, s_{Gesamt}: Standardabweichung der Mittelwerte der Teilproben, V_{Gesamt}: rel. Standardabweichung der Mittelwerte der Teilproben

Tabelle 12: ANOVA-Tabelle ABS/OCTA-BDE.

	Quadrat- summen	Freiheits- grade	Varianz	$PW = s_v^2 / s_r^2$	F (0,95; 7; 18)	F (0,99; 7; 18)
Streuung zwischen den Teilproben	QS ₁ = 0,026	f ₁ = 7	$s_v^2 = 0,004$	3,096	2,577	3,841
Streuung innerhalb der Teilproben	QS ₂ = 0,022	f ₂ = 18	$s_r^2 = 0,001$			

PW: Prüfwert, F(P, f₁, f₂): F-Wert (Tabellenwert) bei der Signifikanz P und den Freiheitsgraden f₁ und f₂

Abbildung 3: Mittelwert (Mean) und Standardabweichung (St. Dev.) der untersuchten Teilproben ABS/OCTA-BDE als Summe der OctaBDE-Isomere in mg g⁻¹.

Das Polymer ABS/OCTA-BDE kann bei den vorgegebenen Versuchsbedingungen (acht Teilproben, insgesamt 26 Untersuchungen, Signifikanz 99 %) als homogen angesehen werden.

Homogenitätstest ABS mit OCTA-BDE

4.5.3. PS mit OCTA-BDE (Material C)

Tabelle 13 (siehe auch Abbildung 4) gibt den ermittelten Gehalt von drei bzw. vier Parallelbestimmungen der ausgewählten Teilproben für das Polymer PS/OCTA-BDE (Tabelle 3 RV-Material) wieder. In Tabelle 14 sind die Ergebnisse der einfaktoriellen Varianzanalyse zusammengefasst.

Tabelle 13:Analytische Daten der Homogenitätsuntersuchungen des Poly-
mers PS/OCTA-BDE.

Teilprobe	C-01	C-15	C-28	C-36	C-44	C-57	C-65	C-78
	1,131	1,050	1,222	1,206	0,915	1,121	1,069	1,061
Summe der OctaBDE-Isomere,	1,122	1,114	0,950	0,965	1,078	1,009	1,092	0,968
ermittelter Gehalt [mg g ⁻¹]	1,175	1,178	1,085	1,005	0,896	1,025	0,914	0,969
	1,132	1,182						
MW _i [mg g ⁻¹]	1,140	1,131	1,086	1,059	0,963	1,052	1,025	0,999
s _i [mg g⁻¹]	0,0238	0,0623	0,1360	0,1292	0,1000	0,0606	0,0968	0,0534
V _i [%]	2,1	5,5	12,5	12,2	10,4	5,8	9,4	5,3
MW _{Gesamt} [mg g⁻¹]				1,0	57			
s _{Gesamt} [mg g ⁻¹]		0,061						
V _{Gesamt} [%]				5,	,8			

MW_i: Mittelwert der Teilprobe i, s_i: Standardabweichung der Teilprobe i, V_i: rel. Standardabweichung der Teilprobe i, MW_{Gesamt}: Gesamtmittelwert, s_{Gesamt}: Standardabweichung der Mittelwerte der Teilproben, V_{Gesamt}: rel. Standardabweichung der Mittelwerte der Teilproben

	Quadrat-	Freiheits-	Varianz	PW	F	F
	summe	grade		$= {s_v}^2 / {s_r}^2$	(0,95; 7; 18)	(0,99; 7; 18)
Streuung zwischen den Teilproben	QS ₁ = 0,091	f ₁ = 7	s _v ² = 0,013	1,721	2,577	3,841
Streuung innerhalb der Teilproben	QS ₂ = 0,136	f ₂ = 18	$s_r^2 = 0,008$			

PW: Prüfwert, F(P, f₁, f₂): F-Wert (Tabellenwert) bei der Signifikanz P und den Freiheitsgraden f₁ und f₂

Abbildung 4: Mittelwert (Mean) und Standardabweichung (St. Dev.) der untersuchten Teilproben PS mit OCTA-BDE als Summe der OctaB-DE-Isomere in mg g⁻¹.

Das Polymer PS/OCTA-BDE kann bei den vorgegebenen Versuchsbedingungen (acht Teilproben, insgesamt 26 Untersuchungen, Signifikanz 99 %) als homogen angesehen werden. Auch bei einer angenommenen Signifikanz von 95 % kann von Homogenität ausgegangen werden.

4.5.4. PUR mit PENTA-BDE (Material D)

Tabelle 15 (siehe auch Abbildung 5) gibt den ermittelten Gehalt von drei bzw. vier Parallelbestimmungen der ausgewählten Teilproben für das Polymer PUR/PENTA-BDE (Tabelle 3 RV-Material) wieder. In Tabelle 16 sind die Ergebnisse der einfaktoriellen Varianzanalyse zusammengefasst.

Tabelle 15:Analytische Daten der Homogenitätsuntersuchungen des Poly-
mers PUR/PENTA-BDE.

Teilprobe	D-03	D-15	D-28	D-34	D-47	D-59	D-66	D-78
	1,429	1,255	1,570	1,395	1,283	1,464	1,453	1,377
Summe der PentaBDE-Isomere,	1,314	1,552	1,434	1,519	1,421	1,360	1,324	1,368
ermittelter Gehalt [mg g ⁻¹]	1,155	1,379	1,490	1,499	1,512	1,464	1,430	1,380
	1,413	1,424						
MW _i [mg g ⁻¹]	1,328	1,403	1,498	1,471	1,405	1,429	1,402	1,375
s _i [mg g ⁻¹]	0,1259	0,1226	0,0684	0,0666	0,1153	0,0600	0,0688	0,0062
V _i [%]	9,5	8,7	4,6	4,5	8,2	4,2	4,9	0,5
MW _{Gesamt} [mg g⁻¹]	1,414							
s _{Gesamt} [mg g⁻¹]	0,053							
V _{Gesamt} [%]				3,	8			

MW_i: Mittelwert der Teilprobe i, s_i: Standardabweichung der Teilprobe i, V_i: rel. Standardabweichung der Teilprobe i, MW_{Gesamt}: Gesamtmittelwert, s_{Gesamt}: Standardabweichung der Mittelwerte der Teilproben, V_{Gesamt}: rel. Standardabweichung der Mittelwerte der Teilproben

Tabelle 16: ANOVA-Tabelle PUR/PENTA-BDE.

	Quadrat- summe	Freiheits- grade	Varianz	$PW = s_v^2 / s_r^2$	F (0,95; 7; 18)	F (0,99; 7; 18)
Streuung zwischen den Teilproben	QS ₁ = 0,067	f ₁ = 7	$s_v^2 = 0,017$	1,112	2,577	3,841
Streuung innerhalb der Teilproben	QS ₂ = 0,154	f ₂ = 18	$s_r^2 = 0,093$			

PW: Prüfwert, F(P, f₁, f₂): F-Wert (Tabellenwert) bei der Signifikanz P und den Freiheitsgraden f₁ und f₂

Abbildung 5: Mittelwert (Mean) und Standardabweichung (St. Dev.) der untersuchten Teilproben PUR/PENTA-BDE als Summe der PentaB-DE-Isomere in mg g⁻¹.

Das Polymer PUR/PENTA-BDE kann bei den vorgegebenen Versuchsbedingungen (acht Teilproben, insgesamt 26 Untersuchungen, Signifikanz 99 %) als homogen angesehen werden. Auch bei einer angenommenen Signifikanz von 95 % kann von Homogenität ausgegangen werden.

Homogenitätstest PUR mit PENTA-BDE

4.5.5. EP mit PENTA-BDE (Material E)

Tabelle 17 (siehe auch Abbildung 6) gibt den ermittelten Gehalt von drei bzw. vier Parallelbestimmungen der ausgewählten Teilproben für das Polymer EP/PENTA-BDE (Tabelle 3 RV-Material) wieder. In Tabelle 18 werden die Ergebnisse der einfaktoriellen Varianzanalyse zusammengefasst.

Tabelle 17:Analytische Daten der Homogenitätsuntersuchungen des Poly-
mers EP/PENTA-BDE.

Teilprobe	E-04	E-16	E-24	E-36	E-44	E-56	E-64	E-77
	1,090	1,130	1,705	1,347	1,455	1,565	1,397	1,471
Summe der PentaBDE-Isomere,	1,159	1,154	1,681	1,561	1,555	1,512	1,359	1,402
ermittelter Gehalt [mg g ⁻¹]	1,169	1,267	1,416	1,606	1,359		1,334	1,337
	1,111	1,686						
MW _i [mg g ⁻¹]	1,132	1,309	1,601	1,505	1,456	1,539	1,363	1,403
s _i [mg g⁻¹]	0,0379	0,2582	0,1604	0,1384	0,0980	0,0375	0,0317	0,0670
V _i [%]	3,3	19,7	10,0	9,2	6,7	2,4	2,3	4,8
MW _{Gesamt} [mg g ⁻¹]	1,414							
s _{Gesamt} [mg g⁻¹]	0,148							
V _{Gesamt} [%]				10	,5			

MW_i: Mittelwert der Teilprobe i, s_i: Standardabweichung der Teilprobe i, V_i: rel. Standardabweichung der Teilprobe i, MW_{Gesamt}: Gesamtmittelwert, s_{Gesamt}: Standardabweichung der Mittelwerte der Teilproben, V_{Gesamt}: rel. Standardabweichung der Mittelwerte der Teilproben

Tabelle 18:	ANOVA-Tabelle Poly	mer EP/PENTA-BDE
	, , , , , , , , , , , , , , , , , , ,	

	Quadrat-	Quadrat- Freiheits-		PW	F	F
	summe	grade		$= {s_v}^2 / {s_r}^2$	(0,95; 7; 17)	(0,99; 7; 17)
Streuung zwischen	QS ₁	f ₁ = 7	$s_v^2 = 0,075$	3,909	2,614	3,927
den Teilproben	= 0,524					
Streuung innerhalb	QS ₂	f ₂ = 17	$s_r^2 = 0,019$			
der Teilproben	= 0,326					

PW: Prüfwert, F(P, f₁, f₂): F-Wert (Tabellenwert) bei der Signifikanz P und den Freiheitsgraden f₁ und f₂

Abbildung 6: Mittelwert (Mean) und Standardabweichung (St. Dev.) der untersuchten Teilproben EP/PENTA-BDE als Summe der PentaBDE-Isomere in mg g⁻¹.

Das Polymer EP/PENTA-BDE kann bei den vorgegebenen Versuchsbedingungen (acht Teilproben, insgesamt 25 Untersuchungen, Signifikanz 99 %) als homogen angesehen werden.

5 Überprüfung des Standardanalyseverfahrens: Ergebnisse des Ringversuchs

Das im Rahmen des Projektes entwickelte Standardanalyseverfahren (Anhang 1) wurde zur Bestimmung der Wiederhol- und Vergleichspräzision mit Hilfe eines internationalen Ringversuchs unter Teilnahme von 18 Laboren getestet.

Folgender Zeitrahmen wurde dabei eingehalten:

- 30.04.2003 Erster Aufruf zum Ringversuch an ausgewählte Labore
- 31.08.2003 Zweiter Aufruf zum Ringversuch an ausgewählte Labore durch EUROLAB
- 31.12.2003 Anmeldeschluss für interessierte Laboratorien
- 11.03.2004 Versand der Methodenbeschreibung, der Software und des Testmaterials PENTA-BDE/ABS für den freiwilligen Vorringversuch
- 30.04.2004 Einsendeschluss der Ergebnisse des Vorringversuchs
- 10.06.2004 Versand des Ringversuch-Probenmaterials
- 03.09.2004 Vorgesehene Deadline für die Ergebnisabgabe
- 15.10.2004 Eingang der letzten Ergebnisse
- 03.11.2004 Information über Ausreißer an betroffene Laboratorien
- 26.11.2004 Versand der Ergebnisse in Form eines Abschlussberichts an die Teilnehmer

Als Probenmaterial dienten die nach Kap. 3.5.2 hergestellten flammgeschützten Polymere (Material A bis E).

Die Auswertung erfolgte in Anlehnung an DIN ISO 5725 /12/.

Die Messergebnisse wurden rechnerunterstützt mit der Software SoftCRM (Version 1.2.2) ausgewertet /13/.

In Kap. 5.2 sind die Ergebnisse des durchgeführten Übungs-Ringversuchs mit PENTA-BDE in ABS (Material A) aufgeführt, der zum Einen durchgeführt wurde um grobe Fehler der Standardanalysevorschrift aufzudecken, zum Anderen um die verwendete Software auf Ihre Anwendbarkeit hin zu testen. Die ermittelten Daten wurden mit Hilfe des Cochran-Tests und des Grubbs-Tests auf Ausreißer geprüft (Anhang 8 und 9).

Im sich anschließenden Haupt-Ringversuch wurden folgende Polymerproben untersucht:

- Material E: Summe PentaBDE-Isomere in Epoxidharz (Kap. 5.3)
- Material D: Summe PentaBDE-Isomere in Polyurethan (Kap. 5.4)
- Material C: Summe OctaBDE-Isomere in Polystyrol (Kap. 5.5)
- Material B: Summe OctaBDE-Isomere in ABS (Kap. 5.6)

Zur Ermittlung der Wiederhol- und Vergleichspräzision des Standardanalyseverfahrens werden die Daten des Hauptringversuchs mittels grafischer Vereinbarkeitsprüfungen und numerischer Ausreißertests geprüft.

Zur grafischen Vereinbarkeitsprüfung wurden zwei Prüfgrößen angewendet: Mandels h-Statistik und Mandels k-Statistik (Anhang 7) /12/.

Zur numerischen Ausreißerprüfung wurden der Cochran-Test und der Grubbs-Test herangezogen (Anhang 8 und 9) /12/.

5.1. Ringversuchsteilnehmer

Am Ringversuch nahmen außer der BAM, IV.2 (Coordinator) noch 17 weitere Untersuchungsanstalten aus Deutschland, Österreich, der Schweiz, China, Italien, Korea und den USA teil. Die Vorerfahrungen dieser Labore im Umgang mit PBDE und der Analytik von Polymeren sind in Tabelle 19 zusammengefasst.

Labor code	Erfahrungen	Matrix
	in der Analytik von PBDE	
L001	Ja	Sediment, Wasser, biol. Proben
L003	Ja	Polymere, Textilien, Holzwolle
L004	Ja	Hausstaub, Textilien
L012	Ja	Polymere, Plüschtiere
L013	Ja	Polymere, Textilien
L014	Ja	Polymere, Textilien
L019	Ja	Polymere, Sediment, Wasser, biol. Proben
L021	Nein	-
L026	Ja	biol. Proben
L027	Nein	-
L030	Ja	Polymere, Textilien
L037	Nein	-
L040	Ja	Sediment, Wasser
L041	Ja	Sediment, Wasser
L044	Ja	Polymere
L045	Ja	Polymere
L046	Ja	Polymere

Tabelle 19: Vorerfahrungen der Ringversuchsteilnehmer.

5.2. PentaBDE-Isomere in ABS (RV-Material A)

Die mit Hilfe des Standardanalyseverfahrens (Anhang 1) ermittelten Ergebnisse (Summe PentaBDE-Isomere, siehe Kap. 3.2) für ABS flammgeschützt mit PENTA-BDE (s. Kap. 3.5.2) sind in Tabelle 20 in mg g⁻¹ aufgeführt.

	PE	NTA-BD	Ξ.					
Nr.	Labor		Probenn	ummern	Mittelwert	STDev	CV	
	Code	A-XX-1	A-XX-2	A-XX-3	A-XX-4	[mg g ⁻ ']	mg g ⁻ '] [mg g ⁻ ']	
1	Coordinator	0,994	1,06	1,0695	1,0345	1,040	0,034	3,2
2	L001	0,934	0,952	0,956	0,944	0,947	0,010	1,0
3	L003	1,06	1,15			1,105	0,064	5,8
4	L004	0,822	0,765	0,742	0,778	0,777	0,034	4,3
5	L013	0,88	0,84	0,9	0,85	0,868	0,028	3,2
6	L014	0,89	0,98	1,07	1,04	0,995	0,079	8,0
7	L019	1,008	1,021	1,089	1,008	1,032	0,039	3,8
8	L021	0,88	0,87	0,79		0,847	0,049	5,8
9	L026	0,85	0,86	0,89	0,86	0,865	0,017	2,0
10	L030	0,686	0,677	0,691	0,677	0,683	0,007	1,0
11	L040	0,733	0,793	0,736	0,752	0,754	0,028	3,7

Tabelle 20:Ermittlungsergebnisse der Wiederholanalysen als Summe der
PentaBDE-Isomere in mg g⁻¹ in ABS flammgeschützt mit
PENTA-BDE.

STDev: Standardabweichung zum Labormittelwert; CV: rel. Standardabweichung

Aus den im Rahmen des Ringversuchs ermittelten Daten wurde der Mittelwert für die Summe der PentaBDE-Isomere mit 0,901 \pm 0,134 mg g⁻¹ bestimmt. Die relative Standardabweichung beträgt 15 %. Es konnte sowohl bei der Prüfung der Laborvarianzen nach Cochran (Anhang 8), als auch bei der Prüfung der Labormittelwerte nach Grubbs (Anhang 9) kein Ausreißer detektiert werden.

In Abbildung 7 sind die Labormittelwerte für die Summe PentaBDE-Isomere in mg g⁻¹ in ABS flammgeschützt mit PENTA-BDE grafisch dargestellt.

Abbildung 7: Grafische Darstellung der Summe PentaBDE-Isomere [mg g⁻¹] in ABS flammgeschützt mit PENTA-BDE (Mean: Gesamtmittelwert; St.Dev: Standardabweichung); 11 Labore.

5.3. PentaBDE-Isomere in Epoxidharz (RV-Material E)

In Tabelle 21 und Abbildung 8 sind die Ermittlungsergebnisse als Summe der PentaBDE-Isomere in mg g⁻¹ in Epoxidharz flammgeschützt mit PENTA-BDE (s. Kap. 3.5.2) aufgeführt.

N I u	Labor		Probeni	nummer		Mittelwert	STDev	CV
INF.	Code	E-XX-1	E-XX-2	E-XX-3	E-XX-4	[mg g⁻¹]	[mg g ⁻¹]	[%]
1	001	0,89	0,97	0,88	0,92	0,914	0,040	4,4
2	003	1,78	1,68	2,26	1,75	1,868	0,265	14,2
3	004	1,07	1,14			1,107	0,046	4,1
4	012	1,28	1,26	1,31	1,27	1,279	0,023	1,8
5	013	0,79	0,75	0,84	0,76	0,786	0,040	5,0
6	014	1,19	1,14	1,15	1,1	1,145	0,037	3,2
7	019	1,19	1,29	1,23	1,28	1,250	0,045	3,6
8	021	0,95	0,88	0,85		0,893	0,051	5,7
9	026	1,11	1,05	1,13	1,16	1,113	0,046	4,2
10	027	1,20	1,19	1,15		1,181	0,024	2,0
11	030	1,30	1,20	1,27	1,23	1,250	0,044	3,5
12	037	0,85	0,73		0,91	0,832	0,092	11,1
13	040	1,25	1,33	1,31		1,297	0,041	3,2
14	041	1,09	1,09	1,04	1,06	1,070	0,024	2,3
15	044	1,08	1,16	1,18	1,08	1,125	0,053	4,7
16	045	1,75	1,91	1,73		1,795	0,099	5,5
17	046	0,96	1,16	1,34		1,152	0,190	16,5
18	Coord.	1,09	1,16	1,17	1,11	1,132	0,038	3,3

Tabelle 21:Ermittlungsergebnisse der Wiederholanalysen als Summe der
PentaBDE-Isomere in mg g⁻¹ in Epoxidharz flammgeschützt mit
PENTA-BDE.

STDev: Standardabweichung zum Labormittelwert; CV: rel. Standardabweichung

Abbildung 8: Grafische Darstellung der Labormittelwerte als Summe Penta-BDE-Isomere [mg g⁻¹] in Epoxidharz flammgeschützt mit PENTA-BDE (Mean: Gesamtmittelwert; St.Dev: Standardabweichung); 18 Labore.

5.3.1. Statistische Bewertung – PentaBDE-Isomere in Epoxidharz

5.3.1.1. Ergebnisse der Mandels h-Statistik (PentaBDE-Isomere in Epoxidharz)

In Abbildung 9 sind die nach Anhang 7 berechneten Werte für h in Reihenfolge der Labore grafisch dargestellt. Die eingezeichneten Indikatorlinien (Tabelle der Indikatoren für Mandels Vereinbarkeits-Prüfgrößen h und k nach /12/) liegen bei 2,36 (Signifikanzniveau 1 %) und 1,88 (Signifikanzniveau 5 %).

Mandel's statistic, h

Abbildung 9: Berechnete Werte für h (PentaBDE-Isomere in Epoxidharz); Indikatorlinien: 1,88 (Signifikanzniveau 5%); 2,36 (Signifikanzniveau 1%).

Anhand Abbildung 9 ist zu sehen, dass der h-Wert für Labor 003 außerhalb der Indikatorlinien liegt, und somit als Ausreißer anzusehen ist. Der h-Wert des Labors 045 liegt zwischen den beiden Indikatorlinien und ist somit als Fastausreißer zu beurteilen.

5.3.1.2. Ergebnisse der Mandels k-Statistik (PentaBDE-Isomere in Epoxidharz)

In Abbildung 10 sind die nach Anhang 7 berechneten Werte für k in Reihenfolge der Labore grafisch dargestellt. Die eingezeichneten Indikatorlinien (Tabelle der Indikatoren für Mandels Vereinbarkeits-Prüfgrößen h und k nach /12/) liegen bei 1,88 (Signifikanzniveau 1%) und 1,59 (Signifikanzniveau 5%).

Mandel's statistic k

Abbildung 10: Berechnete Werte für k (PentaBDE-Isomere in Epoxidharz), Indikatorlinien: 1,59 (Signifikanzniveau 5%); 1,88 (Signifikanzniveau 1%).

Wie die Abbildung 10 zeigt, sind die k-Werte für das Labor 003 und das Labor 046 außerhalb der Indikatorlinien und somit als Ausreißer anzusehen.

5.3.1.3. Überprüfung der Varianzen – Cochran-Test (PentaBDE-Isomere in Epoxidharz)

Nach Anhang 8 wird die Prüfgröße C_{PW} für das Labor mit der höchsten Varianz (Labor 003) berechnet. Es ergibt sich für das Labor 003 die Prüfgröße $C_{PW} = 0,476$.

Für maximal 4 Wiederholanalysen bei einer Anzahl von 18 Labors ergeben sich nach der Tabelle für kritische Werte des Cochran-Tests /12/ folgende Tabellenwerte:

C-crit = 0,288 (Signifikanzniveau 0,01)

C-crit = 0,240 (Signifikanzniveau 0,05)

Da die ermittelte Prüfgröße C_{PW} über dem kritischen Wert für das Signifikanzniveau 0,01 liegt, ist das Labor 003 als Ausreißer anzusehen und wird daher ausgesondert.

Für das Labor 046 wurde die Prüfgröße mit $C_{PW} = 0,465$ berechnet.

Für maximal 4 Wiederholanalysen bei einer Anzahl von 17 Labors (18 minus einem Ausreißer) ergeben sich nach der Tabelle für kritische Werte des Cochran-Tests folgende Prüfwerte:

```
C-crit = 0,301 (Signifikanzniveau 0,01)
```

C-crit = 0,250 (Signifikanzniveau 0,05)

Das Labor 046 ist somit als Ausreißer anzusehen und wird ausgesondert.

Eine weitere Prüfung der Laborvarianzen ergab keine weiteren Ausreißer.

5.3.1.4. Überprüfung der Labormittelwerte – Grubbs-Test (PentaBDE-Isomere in Epoxidharz)

Gemäß Anhang 9 werden der kleinste (L013) und der größte (L003) Labormittelwert dem Grubbs-Test unterzogen.

Es ergeben sich beim Test auf einen einzelnen Ausreißer folgende Prüfwerte:

für das Labor 013: T1 = 1,391

für das Labor 003: Tn = 2,457

Für 18 Labore ergeben sich nach der Tabelle für kritische Werte des Grubbs-Tests auf einen Ausreißer folgende Tabellenwerte /12/:

T-crit = 2,821 (Signifikanzniveau 0,01)

T-crit = 2,504 (Signifikanzniveau 0,05)

Im vorliegenden Fall liegen die ermittelten Prüfwerte T1 und Tn unter T-crit (0,05), somit liegt kein Ausreißer vor.

Gemäß Anhang 9 wird für die zwei kleinsten (L013 und L037) und die zwei größten (L045 und L003) Labormittelwerte der Grubbs-Test angewendet.

Es ergeben sich beim Grubbs-Test auf zwei Ausreißer folgende Prüfwerte:

für die Labore 013 und 037: G1,2 = 0,772

für die Labore 003 und 045: Gn-1,n = 0,281

Für 18 Labore ergeben sich nach der Tabelle für kritische Werte des Grubbs-Tests auf zwei Ausreißer folgende Tabellenwerte /12/:

G-crit = 0,353 (Signifikanzniveau 0,01)

G-crit = 0,446 (Signifikanzniveau 0,05)

Im vorliegenden Fall ist Gn-1,n kleiner als G-crit (0,01), die Labore L003 und L045 sind daher als Ausreißer anzusehen.

5.3.2. Ergebnis PentaBDE-Isomere in Epoxidharz

5.3.1.3

5.3.1.4

Cochran-Test

Grubbs-Test

In Tabelle 22 werden die Ergebnisse der statistischen Tests nochmals zusammengefasst.

Bestimmung von PentaBDE-Isomeren in Epoxidharz.							
Statistischer Test	s. Kapitel	Ergebnis					
Mandels-h-Statistik	5.3.1.1	L003 Ausreißer L045 Fastausreißer					
Mandel-k-Statistik	5.3.1.2	L003 Ausreißer L046 Ausreißer					

L003 Ausreißer L046 Ausreißer

L003 Ausreißer L045 Ausreißer

Tabelle 22:Zusammenfassung der Ergebnisse der statistischen Test für die
Bestimmung von PentaBDE-Isomeren in Epoxidharz.

Basierend auf diesen Ergebnissen werden die Labore L003, L045, L046 ausgesondert. In Abbildung 11 sind die Labormittelwerte, der Gesamtmittelwert sowie die Standardabweichung grafisch dargestellt.

Ringversuch PentaBDE-Isomere in Epoxidharz

Abbildung 11: Grafische Darstellung Summe PentaBDE-Isomere [mg g⁻¹] in Epoxidharz flammgeschützt mit PENTA-BDE (Mean: Gesamtmittelwert; St.Dev: Standardabweichung); 15 Labore (Ausreißer ausgesondert).

Es ergibt sich als Gesamtmittelwert der untersuchten Probe $1,092 \pm 0,163 \text{ mg g}^{-1}$ als Summe PentaBDE-Isomere in Epoxidharz. Die relative Standardabweichung ergibt sich mit 14,9 %.

5.4. PentaBDE-Isomere in Polyurethan (RV-Material D)

In Tabelle 23 sind die Ermittlungsergebnisse als Summe der PentaBDE-Isomere in mg g⁻¹ in Polyurethan flammgeschützt mit PENTA-BDE (Kap. 3.5.2) aufgeführt.

	PENTA-BDE.										
	Labor		Proben	nummer		Mittelwert	STDev	CV			
Nr.	Code	D-XX-1	D-XX-2	D-XX-3	D-XX-4	[mg g⁻¹]	[mg g ⁻¹]	[%]			
1	001	1,08	1,07	1,057	1,069	1,069	0,009	0,9			
2	004	1,1611	1,2431			1,202	0,058	4,8			
3	003	0,97	2,86	1,79	1,77	1,848	0,776	42			
4	012	1,503	1,464	1,421	1,411	1,450	0,042	2,9			
5	013		0,841	0,896	0,873	0,870	0,028	3,2			
6	014	1,4	1,39	1,4	1,41	1,400	0,008	0,6			
7	019	1,418	1,415	1,425	1,505	1,441	0,043	3,0			
8	021	1,12	1,16	1,15		1,143	0,021	1,8			
9	026	1,31	1,3	1,29	1,35	1,313	0,026	2,0			
10	027	1,35393	1,40678	1,34249		1,368	0,034	2,5			
11	030	1,64	1,65	1,65	1,67	1,653	0,013	0,8			
12	037	1,19		1,12	1,23	1,180	0,056	4,7			
13	040	1,26	1,371	1,334		1,322	0,057	4,3			
14	041	1,2	1,18	1,22	1,28	1,220	0,043	3,5			
15	044	1,35	1,349	1,411	1,365	1,369	0,029	2,1			
16	045	2,0893	1,9269	2,2308		2,082	0,152	7,3			
17	046	0,9748	1,2378	1,2326		1,148	0,150	13,1			
18	Coord.	1,57	1,434	1,49		1,498	0,068	4,6			

Tabelle 23:Ermittlungsergebnisse der Wiederholanalysen als Summe der
PentaBDE-Isomere in mg g⁻¹ in Polyurethan flammgeschützt mit
PENTA-BDE.

STDev: Standardabweichung zum Labormittelwert; CV: rel. Standardabweichung

Ringversuch PentaBDE-Isomere in Polyurethan

5.4.1. Statistische Bewertung – PentaBDE-Isomere in Polyurethan

5.4.1.1. Ergebnisse der Mandels h-Statistik (PentaBDE-Isomere in Polyurethan)

In Abbildung 13 sind die nach Anhang 7 berechneten Werte für h in Reihenfolge der Labore grafisch dargestellt. Die eingezeichneten Indikatorlinien (Tabelle der Indikatoren für Mandels Vereinbarkeits-Prüfgrößen h und k nach /12/) liegen bei 2,36 (Signifikanzniveau 1 %) und 1,88 (Signifikanzniveau 5 %).

Abbildung 12: Grafische Darstellung der Labormittelwerte als Summe Penta-BDE-Isomere [mg g⁻¹] in Polyurethan flammgeschützt mit PENTA-BDE (Mean: Gesamtmittelwert; St.Dev: Standardabweichung); 18 Labore.

Mandel's statistic, h

Abbildung 13: Berechnete Werte für h (PentaBDE-Isomere in Polyurethan), Indikatorlinien: 1,88 (Signifikanzniveau 5%); 2,36 (Signifikanzniveau 1%).

Anhand der Abbildung 13 ist zu sehen, dass der h-Wert für Labor 045 außerhalb der Indikatorlinien liegt, und somit als potentieller Ausreißer anzusehen ist.

5.4.1.2. Ergebnisse der Mandels k-Statistik (PentaBDE-Isomere in Polyurethan)

In Abbildung 14 sind die nach Anhang 7 berechneten Werte für k in Reihenfolge der Labore grafisch dargestellt. Die eingezeichneten Indikatorlinien (Tabelle der Indikatoren für Mandels Vereinbarkeits-Prüfgrößen h und k nach /12/) liegen bei 1,88 (Signifikanzniveau 1%) und 1,59 (Signifikanzniveau 5%).

Mandel's statistic k

Wie die Abbildung 14 deutlich zeigt, liegt der k-Wert für das Labor 003 außerhalb der Indikatorlinien und ist somit als Ausreißer anzusehen.

5.4.1.3. Überprüfung der Varianzen – Cochran-Test (PentaBDE-Isomere in Polyurethan)

Nach Anhang 8 wird die Prüfgröße C_{PW} für das Labor mit der höchsten Varianz (L003) berechnet. Es ergibt sich für das Labor 003 die Prüfgröße $C_{PW} = 0,896$. Für maximal 4 Wiederholanalysen bei einer Anzahl von 18 Labors ergeben sich nach der Tabelle für kritische Werte des Cochran-Tests /12/ folgende Tabellenwerte:

C-crit = 0,288 (Signifikanzniveau 0,01) C-crit = 0,240 (Signifikanzniveau 0,05) Da die ermittelte Prüfgröße C_{PW} über dem kritischen Wert für das Signifikanzniveau 0,01 liegt, ist das Labor 003 als Ausreißer anzusehen und wird ausgesondert.

Für das Labor 045 wurde die Prüfgröße mit $C_{PW} = 0,331$ berechnet.

Für maximal 4 Wiederholanalysen bei einer Anzahl von 17 Labors (18 minus einem Ausreißer) ergeben sich nach der Tabelle für kritische Werte des Cochran-Tests folgende Tabellenwerte /12/:

C-crit = 0,301 (Signifikanzniveau 0,01)

C-crit = 0,250 (Signifikanzniveau 0,05)

Das Labor 045 ist somit als Ausreißer anzusehen und wird ausgesondert.

Für das Labor 046 wurde die Prüfgröße mit $C_{PW} = 0,484$ berechnet.

Für maximal 4 Wiederholanalysen bei einer Anzahl von 16 Labors (18 minus zwei Ausreißer) ergeben sich nach der Tabelle für kritische Werte des Cochran-Tests folgende Tabellenwerte /12/:

C-crit = 0,316 (Signifikanzniveau 0,01)

C-crit = 0,262 (Signifikanzniveau 0,05)

Das Labor 046 ist somit als Ausreißer anzusehen und wird ausgesondert.

Eine weitere Prüfung der Laborvarianzen ergab keine weiteren Ausreißer.

5.4.1.4. Überprüfung der Labormittelwerte – Grubbs-Test (PentaBDE-Isomere in Polyurethan)

Gemäß Anhang 9 werden der kleinste (L013) und der größte (L045) Labormittelwert dem Grubbs-Test unterzogen.

Es ergeben sich beim Test auf einen Ausreißer folgende Prüfwerte:

für das Labor 013: T1 = 1,740

für das Labor 045: Tn = 2,520

Für 18 Labore ergeben sich nach der Tabelle für kritische Werte des Grubbs-Tests auf einen Ausreißer folgende Tabellenwerte /12/:

T-crit = 2,821 (Signifikanzniveau 0,01)

T-crit = 2,504 (Signifikanzniveau 0,05)

Im vorliegenden Fall liegt der Prüfwert Tn zwischen den kritischen Werten der Signifikanzniveaus 0,05 und 0,01. Somit ist das Labor 045 als Fastausreißer anzusehen.

5.4.2. Ergebnis PentaBDE-Isomere in Polyurethan

In Tabelle 24 werden die Ergebnisse der statistischen Tests nochmals zusammengefasst.

Statistischer Test	s. Kapitel	Ergebnis
Mandels-h-Statistik	5.4.1.1	L045 Ausreißer
Mandel-k-Statistik	5.4.1.2	L003 Ausreißer
Cochran-Test	5.4.1.3	L003 Ausreißer
		L045 Ausreißer
		L046 Ausreißer
Grubbs-Test	5.4.1.4	L045 Fastausreißer

Tabelle 24:Zusammenfassung der Ergebnisse der statistischen Test für die
Bestimmung der PentaBDE-Isomere in Polyurethan.

Basierend auf diesen Ergebnissen werden die Labore 003, 045, 046 ausgesondert.

In Abbildung 15 sind die Labormittelwerte, der Gesamtmittelwert sowie die Standardabweichung grafisch dargestellt.

Abbildung 15: Grafische Darstellung Summe PentaBDE-Isomere [mg g⁻¹] in Polyurethan flammgeschützt mit PENTA-BDE (Mean: Gesamtmittelwert; St.Dev: Standardabweichung); 15 Labore (Ausreißer ausgesondert).

Es ergibt sich als Gesamtmittelwert der untersuchten Probe $1,3 \pm 0,19$ mg g⁻¹ als Summe PentaBDE-Isomere in Polyurethan. Die relative Standardabweichung liegt bei 14,8 %.

5.5. OctaBDE-Isomere in Polystyrol (RV-Material C)

In Tabelle 25 und Abbildung 16 sind die Ermittlungsergebnisse als Summe der OctaBDE-Isomere in mg g⁻¹ in Polystyrol flammgeschützt mit OCTA-BDE (s. Kap. 3.5.2) aufgeführt.

	Labor	Probennummer				Mittelwert	STDev	CV
Nr.	Code	C-XX-1	C-XX-2	C-XX-3	C-XX-4	[mg g⁻¹]	[mg g ⁻¹]	[%]
1	001	0,934	0,979	1,006	0,902	0,955	0,046	4,8
2	003	1,62	1,56	1,54		1,573	0,042	2,6
3	004	1,4453	1,527			1,486	0,058	3,9
4	012	1,345	1,244	1,366	1,398	1,338	0,067	5,0
5	013	0,849	0,839	0,857	0,808	0,838	0,021	2,6
6	014	0,919	0,924	0,902	0,912	0,914	0,010	1,0
7	019	1,047	1,031	1,024	1,123	1,056	0,046	4,3
8	021	0,61	0,61	0,61		0,610	0,000	0
9	026	0,87	0,8	0,85	0,82	0,835	0,031	3,7
10	027	0,92229	1,03997	1,03656		1,000	0,067	6,7
11	030	0,74	0,7	0,71	0,69	0,710	0,022	3,0
12	037		0,953	1,05	1,01	1,004	0,049	4,9
13	040	0,8928	0,9154	0,9116		0,907	0,012	1,3
14	041	0,852	0,854	0,86	0,871	0,859	0,009	1,0
15	044	1,007	0,917	1,022	1,044	0,998	0,056	5,6
16	045	0,5948	0,5723	0,4785		0,549	0,062	11,2
17	046	1,1389	1,0819	1,0959		1,106	0,030	2,7
18	Coord	1,05	1,114	1,18	1,182	1,132	0,063	5,6

Tabelle 25:Ermittlungsergebnisse der Wiederholanalysen als Summe der
OctaBDE-Isomere in mg g⁻¹ in Polystyrol flammgeschützt mit
OCTA-BDE.

STDev: Standardabweichung zum Labormittelwert; CV: rel. Standardabweichung

Abbildung 16: Grafische Darstellung der Labormittelwerte als Summe OctaBDE-Isomere [mg g⁻¹] in Polystyrol flammgeschützt mit OCTA-BDE (Mean: Gesamtmittelwert; St.Dev: Standardabweichung); 18 Labore.

5.5.1. Statistische Bewertung – OctaBDE-Isomere in Polystyrol

5.5.1.1. Ergebnisse der Mandels h-Statistik (OctaBDE-Isomere in Polystyrol)

In Abbildung 17 sind die nach Anhang 7 berechneten Werte für h in Reihenfolge der Labore grafisch dargestellt. Die eingezeichneten Indikatorlinien (Tabelle der Indikatoren für Mandels Vereinbarkeits-Prüfgrößen h und k nach /12/) liegen bei 2,36 (Signifikanzniveau 1 %) und 1,88 (Signifikanzniveau 5 %).

Mandel's statistic, h

Abbildung 17: Berechnete Werte für h (OctaBDE-Isomere in Polystyrol), Indikatorlinien: 1,88 (Signifikanzniveau 5%); 2,36 (Signifikanzniveau 1%).

Anhand der Abbildung 17 ist zu sehen, dass der h-Wert für Labor L003 zwischen den beiden Indikatorlinien liegt, und somit als Fastausreißer anzusehen ist.

5.5.1.2. Ergebnisse der Mandels k-Statistik (OctaBDE-Isomere in Polystyrol)

In Abbildung 18 sind die nach Anhang 7 berechneten Werte für k in Reihenfolge der Labore grafisch dargestellt. Die eingezeichneten Indikatorlinien (Tabelle der Indikatoren für Mandels Vereinbarkeits-Prüfgrößen h und k nach /12/) liegen bei 1,88 (Signifikanzniveau 1 %) und 1,59 (Signifikanzniveau 5 %).

Mandel's statistic k

Abbildung 18: Berechnete Werte für k (OctaBDE-Isomere in Polystyrol), Indikatorlinien: 1,59 (Signifikanzniveau 5%); 1,88 (Signifikanzniveau 1%).

Anhand Abbildung 18 ist zu sehen, dass die k-Werte für die dargestellten Labors unterhalb der Indikatorlinien liegen und somit keine Ausreißer vorliegen.

5.5.1.3. Überprüfung der Varianzen – Cochran-Test (OctaBDE-Isomere in Polystyrol)

Die Anwendung des Cochran-Tests ergab für die Laborvarianzen keine Ausreißer.

5.5.1.4. Überprüfung der Labormittelwerte – Grubbs-Test (OctaBDE-Isomere in Polystyrol)

Gemäß Anhang 9 werden der kleinste (L045) und der größte (L003) Labormittelwert dem Grubbs-Test unterzogen.

Es ergeben sich beim Test auf einen einzelnen Ausreißer folgende Prüfwerte:

für das Labor 045: T1 = 1,644

für das Labor 003: Tn = 2,148

Für 18 Labore ergeben sich nach der Tabelle für kritische Werte des Grubbs-Tests auf einen Ausreißer folgende Tabellenwerte /12/:

T-crit = 2,821 (Signifikanzniveau 0,01)

T-crit = 2,504 (Signifikanzniveau 0,05)

Im vorliegenden Fall liegen die ermittelten Prüfwerte unter T-crit (0,05), somit liegt kein Ausreißer vor.

Gemäß Anhang 9 wird für die zwei kleinsten (L045 und L021) und die zwei größten (L004 und L003) Labormittelwerte der Grubbs-Test angewendet.

Es ergeben sich beim Grubbs-Test auf zwei Ausreißer folgende Prüfwerte:

für die Labore 045 und 021: G1,2 = 0,689

für die Labore 004 und 003: Gn-1,n = 0,474

Für 18 Labore ergeben sich nach der Tabelle für kritische Werte des Grubbs-Tests auf zwei Ausreißer folgende Tabellenwerte /12/:

G-crit = 0,353 (Signifikanzniveau = 0,01)

G-crit = 0,446 (Signifikanzniveau = 0,05)

In beiden vorliegenden Fällen ist G größer als G-crit (0,05), es liegen somit keine Ausreißer vor.

5.5.2. Ergebnis OctaBDE-Isomere in Polystyrol

In Tabelle 26 werden die Ergebnisse der statistischen Tests nochmals zusammengefasst.

Tabelle 26:	Zusammenfassung der Ergebnisse der statistischen Test für die					
Bestimmung der OctaBDE-Isomere in Polystyrol						
Statistischer Tes	st	s. Kapitel	Ergebnis			
Mandels-h-Statist	ik	5.5.1.1	L003 Fastausreißer			
Mandel-k-Statistik		5.5.1.2	keine Ausreißer			
Cochran-Test		5.5.1.3	keine Ausreißer			
Grubbs-Test		5.5.1.4	Keine Ausreißer			

Somit konnten in den Ergebnissen zur Bestimmung der OctaBDE-Isomere in Polystyrol keine Ausreißer detektiert werden.

Es ergibt sich als Gesamtmittelwert der untersuchten Probe $0,99 \pm 0,27$ mg g⁻¹ als Summe OctaBDE-Isomere in Polystyrol. Die relative Standardabweichung beträgt 27 %.

5.6. OctaBDE-Isomere in ABS

In Tabelle 27 und Abbildung 19 sind die Ermittlungsergebnisse als Summe der OctaBDE-Isomere in mg g⁻¹in ABS flammgeschützt mit OCTA-BDE aufgeführt.

	Labor	Probennummer				Mittelwert	STDev	C۷
Nr.	Code	B-XX-1	B-XX-2	B-XX-3	B-XX-4	[mg g ⁻¹]	[mg g ⁻¹]	[%]
1	001	0,413	0,446	0,412	0,423	0,424	0,016	3,7
2	003	0,5	0,31	0,33	0,74	0,470	0,199	42,4
3	004	0,4386	0,4413	-	-	0,440	0,002	0,4
4	012	0,588	0,59	0,633	0,641	0,613	0,028	4,6
5	013	0,331	-	0,306	0,273	0,303	0,029	9,6
6	014	0,468	0,495	0,524	0,506	0,498	0,023	4,7
7	019	0,47	0,428	0,379	0,395	0,418	0,040	9,6
8	021	0,32	0,31	0,23	-	0,287	0,049	17,2
9	026	0,55	0,56	0,6	0,62	0,583	0,033	5,7
10	027	0,25846	0,25903	0,3046	-	0,274	0,026	9,7
11	030	0,29	0,31	0,31	0,28	0,298	0,015	5,0
12	037	0,437	0,451	0,405	-	0,431	0,024	5,5
13	040	0,4764	0,5122	0,499	-	0,496	0,018	3,7
14	041	0,401	0,414	0,414	0,396	0,406	0,009	2,3
15	044	0,362	0,366	0,425	0,468	0,405	0,051	12,5
16	045	0,2606	0,2312	0,1893	-	0,227	0,036	15,8
17	046	0,455	0,4549	0,435	-	0,448	0,012	2,6
18	Coord	0,524	0,524	0,495	0,487	0,508	0,019	3,8

Tabelle 27:Ermittlungsergebnisse der Wiederholanalysen als Summe der
OctaBDE-Isomere in mg g⁻¹ in ABS flammgeschützt mit OCTA-
BDF

STDev: Standardabweichung zum Labormittelwert; CV: rel. Standardabweichung

Abbildung 19: Grafische Darstellung der Labormittelwerte als Summe OctaBDE-Isomere [mg g⁻¹] in ABS flammgeschützt mit OCTA-BDE (Mean: Gesamtmittelwert; St.Dev: Standardabweichung); 18 Labore.

5.6.1. Statistische Bewertung – OctaBDE-Isomere in ABS

5.6.1.1. Ergebnisse der Mandels h-Statistik (OctaBDE-Isomere in ABS)

In Abbildung 20 sind die nach Anhang 7 berechneten Werte für h in Reihenfolge der Labore grafisch dargestellt. Die eingezeichneten Indikatorlinien (Tabelle Indikatoren für Mandels Vereinbarkeits-Prüfgrößen h und k nach /12/) liegen bei 2,36 (Signifikanzniveau 1 %) und 1,88 (Signifikanzniveau 5 %).

Mandel's statistic, h

Anhand der Abbildung 20 ist zu sehen, dass die h-Werte für die dargestellten Labore innerhalb der Begrenzungen der Indikatorlinien liegen. Somit liegt kein Ausreißer vor.

5.6.1.2. Ergebnisse der Mandels k-Statistik (OctaBDE-Isomere in ABS)

In Abbildung 21 sind die nach Anhang 7 berechneten Werte für k in Reihenfolge der Labore grafisch dargestellt. Die eingezeichneten Indikatorlinien (Tabelle Indikatoren für Mandels Vereinbarkeits-Prüfgrößen h und k nach /12/) liegen bei 1,88 (Signifikanzniveau 1 %) und 1,59 (Signifikanzniveau 5 %).

Abbildung 20: Berechnete Werte für h (OctaBDE-Isomere in ABS), Indikatorlinien: 1,88 (Signifikanzniveau 5 %); 2,36 (Signifikanzniveau 1 %).

Mandel's statistic k

Abbildung 21: Berechnete Werte für k (OctaBDE-Isomere in ABS), Indikatorlinien: 1,59 (Signifikanzniveau 5%); 1,88 (Signifikanzniveau 1%).

Anhand Abbildung 21 ist zu sehen, dass der k-Wert für das Labor 003 oberhalb der Indikatorlinien liegt. Somit ist das Labor 003 als Ausreißer anzusehen.

5.6.1.3. Überprüfung der Varianzen – Cochran-Test (OctaBDE-Isomere in ABS)

Nach Anhang 8 wird die Prüfgröße C_{PW} für das Labor mit der höchsten Varianz (L003) berechnet. Es ergibt sich für das Labor 003 die Prüfgröße $C_{PW} = 0,741$. Für maximal 4 Wiederholanalysen bei einer Anzahl von 18 Labors ergeben sich nach der Tabelle für kritische Werte des Cochran-Tests folgende Tabellenwerte /12/:

C-crit = 0,288 (Signifikanzniveau 0,01) C-crit = 0,240 (Signifikanzniveau 0,05) Da die ermittelte Prüfgröße C_{PW} über dem kritischen Wert für das Signifikanzniveau 0,01 liegt, ist das Labor 003 als Ausreißer anzusehen und wird ausgesondert.

Eine weitere Prüfung der Laborvarianzen ergab keine weiteren Ausreißer.

5.6.1.4. Überprüfung der Labormittelwerte – Grubbs-Test (OctaBDE-Isomere in ABS)

Gemäß Anhang 9 werden der kleinste (L045) und der größte (L003) Labormittelwert dem Grubbs-Test unterzogen.

Es ergeben sich beim Test auf einen einzelnen Ausreißer folgende Prüfwerte:

für das Labor 045: T1 = 1,798

für das Labor 003: Tn = 1,831

Für 18 Labore ergeben sich nach der Tabelle für kritische Werte des Grubbs-Tests auf einen Ausreißer folgende Tabellenwerte /12/:

T-crit = 2,821 (Signifikanzniveau 0,01)

T-crit = 2,504 (Signifikanzniveau 0,05)

Im vorliegenden Fall liegen die ermittelten Prüfwerte T1 und Tn unter T-crit (0,05), somit liegt kein Ausreißer vor.

Gemäß Anhang 9 wird für die zwei kleinsten (L045 und L027) und die zwei größten (L026 und L012) Labormittelwerte der Grubbs-Test angewendet.

Es ergeben sich beim Grubbs-Test auf zwei Ausreißer folgende Prüfwerte:

für die Prüfgrößen L045 und L027: G1,2 = 0,665

für die Prüfgrößen L026 und L012: Gn-1,n = 0,620

Für 18 Labore ergeben sich nach der Tabelle für kritische Werte des Grubbs-Tests auf zwei Ausreißer folgende Tabellenwerte /12/:

G-crit = 0,353 (Signifikanzniveau 0,01)

G-crit = 0,446 (Signifikanzniveau 0,05)

Im vorliegenden Fall sind die ermittelten G größer als G-crit (0,01), es liegen somit keine Ausreißer vor.

5.6.2. Ergebnis OctaBDE-Isomere in ABS

In Tabelle 28 werden die Ergebnisse der statistischen Tests nochmals zusammengefasst.

Tabelle 28:	Zusammenfassung der Ergebnisse der statistischen Tests für				
-	ale bestimi	nung der OctabDE-Isomere			
Statistischer Te	st	s. Kapitel	Ergebnis		
Mandels-h-Statis	tik	5.6.1.1	keine Ausreißer		
Mandel-k-Statisti	k	5.6.1.2	L003 Ausreißer		
Cochran-Test		5.6.1.3	L003 Ausreißer		
Grubbs-Test		5614	keine Ausreißer		

Basierend auf diesen Ergebnissen wird das Labor 003 ausgesondert.

In Abbildung 22 sind die Labormittelwerte, der Gesamtmittelwert sowie die Standardabweichung grafisch dargestellt.

Ringversuch OctaBDE-Isomere in ABS

Abbildung 22: Grafische Darstellung der Labormittelwerte als Summe Octa-BDE-Isomere [mg g⁻¹] in ABS flammgeschützt mit OCTA-BDE (Mean: Gesamtmittelwert; St. Dev: Standardabweichung); 17 Labore (Ausreißer ausgesondert).

Es ergibt sich als Gesamtmittelwert der untersuchten Probe $0,415 \pm 0,11$ mg g⁻¹ als Summe OctaBDE-Isomere in ABS. Die relative Standardabweichung beträgt 26,2 %.

5.7. Wiederhol- und Vergleichspräzision des Standardanalyseverfahrens

In Tabelle 29 sind der Gesamtmittelwert m_j , die Wiederholstandardabweichung s_{rj} und die Vergleichstandardabweichung s_{Rj} der mit dem Standardanalyseverfahren (Anhang 1) untersuchten Proben (siehe Kap. 3.5.2) aufgeführt.

Polymer	Summe Isomere	\mathbf{p}_{j}	m _j [mg g⁻¹]	s _{rj} [mg g⁻¹]	s _{Rj} [mg g⁻¹]	
Epoxidharz	PentaBDE	15	1,09	0,044	0,167	
Polyurethan	PentaBDE	15	1,3	0,038	0,195	
Polystyrol	OctaBDE	18	0,99	0,043	0,255	
ABS	OctaBDE	17	0,42	0,029	0,114	

Tabelle 29: Zusammengefasste Ergebnisse des Ringversuchs.

p_j: Anzahl Labore; m_j: Gesamtmittelwert; s_{rj}: Wiederholstandardabweichung; s_{Rj}: Vergleichstandardabweichung;

5.8. Bestimmung von PBDE in Realproben mittels Standardanalyseverfahren

5.8.1. Minikieselgelsäule

Durch die Soxhletextraktion werden aus den Polymeren, neben den gewünschten Flammschutzmitteln auch andere Matrixbestandteile herausgelöst. Diese können sowohl zu einer schnellen Verschmutzung des GC/MS-Systems, als auch zu einer Verschlechterung der Auflösung der Peaks im Chromatogramm und damit zu einer Verringerung der Nachweisgrenze führen.

Zur Abtrennung der Verunreinigungen können verschiedene Chromatographiesäulen verwendet werden. Da nur ein Filtrationseffekt und eine Abtrennung der polaren Substanzen erforderlich ist, kann eine Minikieselgelsäule verwendet werden (s. Kap. 8.5).

Die Kieselgelsäule kann zu Verlusten oder anderen systematischen Abweichungen führen. Um diesen Fehler zu bestimmen wird je eine Wiederfindungsfunktion mit dem technischen Produkten PENTA- und OCTA-BDE exemplarisch für BDE99 und BDE197 (Kalibrierbereich für BDE99: 20 bis 180 ng mL⁻¹ und BDE197: 12 bis 106 ng mL⁻¹, 5 Kalibrierniveaus, äquidistant) aufgenommen.

Es ergeben sich die in Tabelle 30 aufgeführten Parameter der Wiederfindungsfunktionen (s. auch Kap. 4.4).

Tabelle 30:Achsenabschnitt b_f , Steigung a_f und Reststandardabweichung
 s_{vf} der Wiederfindungsfunktionen.

	a _f	b _f	S _{yf}
BDE99	0,9303	4,3978	13,15
BDE197	0,9515	4,4827	4,85

Ein Test auf konstant- oder proportional-systematische Abweichungen (analog zu Kap. 4.4) zeigt, dass die Behandlung mit der Minikieselgelsäule für die untersuchten Isomere im verwendeten Konzentrationsbereich mit einer statistischen Sicherheit von 95 % zu keinen Fehlern führt.

5.8.2. Untersuchung von Realproben

Das entwickelte Analysenverfahren wurde an unterschiedlichen Erzeugnissen aus Kunststoff getestet. Dabei war es schwierig, Probenmaterial zu erhalten, in dem PBDE gefunden werden.

Tabelle 31 stellt einige Realproben zusammen, in denen mit Hilfe des Standardanalyseverfahrens (Anhang 1) PentaBDE-Isomere nachgewiesen werden konnte (Industrieproben, die z.T. gemahlen vorlagen).

Produkt	Summe der PentaBDE-Isomere
	[mg g ⁻¹]
AcryInitril-Butadien-Styrol-Copolymer (ABS)	0,28
High-Impact Polystyrol (HIPS)	0,1
Polybutylenterephthalat (PBT)	0,08
Polycarbonat (PC)	0,11

Tabelle 31:Ergebnisse des Standardanalyseverfahrens für Realproben als
Summe der PentaBDE-Isomere

Bei der Analytik von Realproben stellte sich heraus, dass es u.U. nötig ist, im Anschluss an die Probenextraktion ein Clean-Up durchzuführen. Da die Probenextrakte z.T. stark getrübt oder gefärbt sind, können diese Verunreinigungen zu einer schnellen Verschmutzung des GC/MS-Systems führen.

Einige Probenextrakte wurde vergleichend ohne weiteres Clean-Up bzw. nach der Probenaufreinigung mittels Minikieselgelsäule (Kap 8.5, Kap. 5.8.1) vermessen (siehe Tabelle 32).

Tabelle 32:	Ergebnisse des Standardanalyseverfahrens für Realproben be-
	zogen auf das PentaBDE-Isomer BDE99.

Produkt	BDE99 [mg g ⁻¹]	BDE99 [mg g ⁻¹]
	ohne Clean-Up	mit Clean-Up
ABS	0,130	0,105
HIPS	0,098	0,105
PBT	0,081	0,065

Die insbesondere bei ABS auftretenden Trübungen und auch Verfärbungen bei einzelnen Proben konnten durch Anwendung der Minikieselgelsäule entfernt werden.

6 Zusammenfassende Diskussion

6.1. Ergebnisse des Ringversuchs

Zur Qualitätssicherung eines vereinheitlichten Messverfahrens müssen die mit dem Verfahren ermittelten Messergebnisse auf Genauigkeit, die durch die Richtigkeit und Präzision eines Messverfahrens definiert ist, geprüft werden. Die Ermittlung der Richtigkeitsmaße erfordert entsprechende Referenzmaterialien anhand derer die Richtigkeit eines Standardanalyseverfahrens mittels Ringversuchs untersucht wird. Da entsprechende Referenzmaterialien nicht zur Verfügung standen, beschränkte sich die Überprüfung des Standardanalyseverfahrens "Bestimmung von penta- und octabromierten Diphenylethern in Polymeren" (Anhang 1) auf die Ermittlung der Wiederholstandardabweichung s_{rj} und der Vergleichstandardabweichung s_{Rj} als statistische Kennzahlen der Präzision eines vereinheitlichten Messverfahrens nach DIN ISO 5725-2:2002-12 /12/.

Die Ermittlung der statistischen Kennzahlen erfolgte mittels Ringversuch. An dem Ringversuch mit insgesamt 18 Teilnehmern waren sowohl nationale als auch internationale Laboratorien aus der Industrie sowie öffentliche als auch privatwirtschaftliche Laboratorien beteiligt. Die Vorbereitung und Durchführung des Ringversuchs sowie die Auswertung der Ermittlungsergebnisse erfolgte in Anlehnung an /12/.

Vorbereitend erfolgte die Herstellung von je zwei mit PENTA-BDE bzw. OCTA-BDE flammgeschützten, repräsentativen Polymermaterialien. Als Basispolymere wurden Epoxidharz und Polyurethan für die analytische Bestimmung der PentaBDE-Isomere und Polystyrol und Acrylnitril-butadien-styrol (ABS) für die Bestimmung der OctaBDE-Isomere ausgewählt. Die flammgeschützten Polymere wurden zerkleinert, gemahlen und nach dem Cross-Riffling-Verfahren homogenisiert /11/. Die statistische Überprüfung der Probenhomogenität erfolgte unter Anwendung des Standardanalyseverfahrens auf jeweils 8 systematisch ausgewählte Teilproben mit jeweils 4 bzw. 3 Parallelbestimmungen. Die Homogenität der untersuchten Polymermaterialien ist unter den gegebenen Bedingungen bei einer Signifikanz von 99 % gewährleistet.

In Übereinstimmung mit der Richtlinie 2003/11/EG wurden PentaBDE-Isomere und OctaBDE-Isomere in Summe bestimmt /15/. Als Zielsubstanzen wurden folgende Isomere ausgewählt: 2,2',4,4',6-PentaBDE (BDE100), 2,2',4,4',5-PentaBDE (BDE99), 2,2',3,4,4'-PentaBDE (BDE85), 2,2',3,4,4',5,5',6-OctaBDE (BDE203), 2,2',3,3',4,4',5,6'-OctaBDE (BDE196), 2,2',3,3',4,4',6,6'-OctaBDE (BDE197).

Die Auswertung der Ermittlungsergebnisse des Ringversuchs erfolgte in Anlehnung an /12/ mittels grafischer (Mandels h-Statistik: Prüfung der Labormittelwerte; Mandels k-Statistik: Prüfung der Standardabweichung der Ermittlungsergebnisse auf einem Merkmalsniveau) und numerischer Ausreißertests (Grubbs-Test: Prüfung der Labormittelwerte; Cochran-Test: Prüfung der Laborvarianzen).

Die auf freiwilliger Basis im Vorfeld des Ringversuchs mit 11 Teilnehmern durchgeführte Analyse von PENTA-BDE in ABS lieferte einen Gesamtmittelwert der Summe PentaBDE-Isomere von $0,90 \pm 0,134$ mg g⁻¹. Mit Hilfe dieses Versuchs sollte das Standardanalyseverfahren seitens der Teilnehmer eingeübt werden und grobe Fehler in der Vorschrift bzw. in der Durchführung aufgedeckt werden. Die Bewertung der Ermittlungsergebnisse mittels Grubbs-Test bzw. Cochran-Test ergab keine Ausreißer einzelner Labormittelwerte bzw. Laborvarianzen. Auf Basis dieses Ergebnisses wurde das Standardanalyseverfahren für den Ringversuch freigegeben.

Die Ergebnisse des Ringversuchs werden im Folgenden diskutiert.

Für das Polymer Epoxidharz flammgeschützt mit PENTA-BDE wurden als Ergebnis der angewendeten Ausreißertests die Ermittlungsergebnisse der Labore 003, 045 und 046 ausgesondert. Labor 003 zeigte sowohl bei Anwendung der Mandels h-Statistik (extreme Abweichung vom Gesamtmittelwert) als auch der Mandels k-Statistik (hohe oder niedrige Standardabweichung der Ermittlungsergebnisse eines Merkmalsniveaus) eine Überschreitung der begrenzenden Indikatorlinien. Die numerische Ausreißerprüfung mittels Grubbs-Test und Cochran-Test bestätigten dieses Ergebnis. Labor 045 fiel in der Mandels h-Statistik als Fastausreißer und bei der Anwendung des Grubbs-Test als Ausreißer heraus. Labor 046 zeigte starke Streuungen der Ermittlungsergebnisse und wurde mittels Cochran-Test als Ausreißer erkannt. Nach Aussonderung der Ausreißer wurde der Gesamtmittelwert für die Summe PentaBDE-Isomere in Epoxidharz mit 1,09 \pm 0,163 mg g⁻¹ ermittelt.

Die Ermittlungsergebnisse des Polymers Polyurethan flammgeschützt mit PENTA-BDE wurden auf Ausreißer geprüft. Labor 003 wurde dabei eindeutig mit Hilfe der Mandels k-Statistik und des Cochran-Tests als Ausreißer erkannt. Die Mandels h-Statistik und der Grubbs-Test wiesen Labor 045 als Ausreißer aus. Labor 045 und Labor 046 zeigten starke Streuungen der Ermittlungsergebnisse und wurden mittels Cochran-Test als Ausreißer erkannt. Nach Aussonderung der Ausreißer wurde der Gesamtmittelwert für die Summe PentaB-DE-Isomere in Polyurethan mit 1,30 \pm 0,19 mg g⁻¹ ermittelt.

Die Prüfung nach Grubbs bzw. Cochran der für Polystyrol flammgeschützt mit OCTA-BDE erhaltenen Ermittlungsergebnisse ergab keine Ausreißer. Der Gesamtmittelwert für die Summe OctaBDE-Isomere in Polystyrol wurde mit $0,99 \pm 0,270$ mg g⁻¹ bestimmt.

Für das Polymer ABS flammgeschützt mit OCTA-BDE wurden als Ergebnis der Ausreißertests die Ermittlungsergebnisse des Labors 003 ausgesondert. Sowohl bei der Prüfung mittels Mandels k-Statistik als auch Cochran-Test wurde das Labor 003 als Ausreißer erkannt. Nach Aussonderung wurde der Gesamtmittelwert für die Summe OctaBDE-Isomere in ABS mit 0,42 \pm 0,110 mg g⁻¹ bestimmt. Es konnte nicht geklärt werden, warum die Summe OctaBDE-Isomere in ABS nicht den erwarteten ca. 1 mg g⁻¹ entspricht. Ein Fehler während der Mischung nach Kap. 3.5.2 ist nicht auszuschließen.

Die Labore, deren Ergebnisse als Ausreißer erkannt wurden, wurden im Rahmen einer Frist aufgefordert, ihre Messergebnisse zu überprüfen und gegebenenfalls zu korrigieren. Das Labor 003 zeigte für die Proben Epoxidharz, ABS und Polyurethan eine starke Streuung der Ermittlungsergebnisse. Nach Rücksprache mit dem Laborverantwortlichen wurde als Ursache die Instabilität des GC/MS-Systems genannt: Die wiederholte Injektion von Proben lieferte stark streuende Messergebnisse. Dieser Messfehler konnte während des Zeitraums der Durchführung des Ringversuchs nicht behoben werden.

Das Labor 045 zeigte Ausreißer für die Summe PentaBDE-Isomere in Epoxidharz und Polyurethan. Als mögliche Ursache wurde nach Rücksprache mit dem Laborverantwortlichen die hohe Temperatur im Labor (> 28 °C) während der Extraktion der Polymerproben und die fehlende Temperaturkontrolle des Heizsystems der Soxhletapparatur angegeben.

Für das Labor 046 wurden mittels Cochran-Test Ausreißer für die Summe PentaBDE in Polyurethan und Epoxidharz ermittelt. Die Ursache konnte seitens des Laborverantwortlichen nicht geklärt werden.

6.2. Kommentare und Hinweise der Teilnehmer zum Standardanalyseverfahren

Die Teilnehmer des Ringversuchs wurden zusätzlich aufgefordert über ihre Erfahrung und eventuelle Schwierigkeiten während der Durchführung der Analysen zu berichten. Es sollte dokumentiert werden, ob die Standardanalysevorschrift klar strukturiert und eindeutige, verständliche Anweisungen enthält. Die Tabelle in Anhang 10 enthält eine Übersicht mit Auszügen der zu dokumentierenden Angaben. Im Folgenden werden die zur Standardanalysenvorschrift seitens der Teilnehmer angegebenen Kommentare und Hinweise diskutiert.

Die empfohlene Zugabe von 1 mL Methanol zum Probenextrakt, die zum Auflösen eventuell auftretender Trübungen, welche insbesondere bei ABS beobachtet werden, führte nicht in jedem Fall zum gewünschten Ergebnis. Die Trübung beeinträchtigte jedoch nicht das Analysenergebnis.

In einem Fall wurde berichtet, dass die Korrelation zwischen der in der Vorschrift vorgegeben Standardsubstanz DBOFB zur Kontrolle der Wiederfindung und den PBDE nicht gegeben war. In der Standardanalysenvorschrift ist DBOFB zur Kontrolle der Wiederfindung vorgegeben, um grobe Fehler während der Probenaufbereitung aufzudecken. Eine Korrektur über die Wiederfindung erfolgt nicht, da davon ausgegangen wird, dass das vor der Extraktion zugegebene DBOFB sich nicht wie die direkt im Polymer in additiver Form vorliegenden PBDE verhält, und die Korrektur somit zu einem größeren Analysenfehler führen kann. Da das hinweisende Labor als Ausreißer ausgesondert wurde, könnte die mangelnde Korrelation zwischen dem DBOFB und den PBDE auch durch die Streuung der Ermittlungsergebnisse insgesamt bedingt sein.

Die Beschaffung des Standards DBOFB war in einigen Fällen problematisch und führte zu zeitlichen Verzögerungen. In solchen Fällen wie auch allgemein kann alternativ eine andere geeignete Standardsubstanz verwendet werden. So kann alternativ zu DBOFB z.B. Decachlorbiphenyl, der in der Standardanalysenvorschrift als Standard zur Korrektur des Spritzenfehlers vorgegeben ist, zur Kontrolle der Wiederfindung verwendet werden. In diesem Fall muss ein neuer Standard zur Korrektur des Spritzenfehlers gewählt werden (z.B. ¹³C₁₂-3,3',4,4'-Tetrabromdiphenylether).

Es wurde der Hinweis seitens eines Teilnehmers gegeben, dass die für die Durchführung der Analysen zu verwendenden Messkolben aus Gründen der Eichung nicht, wie in der Standardanalysenvorschrift vorgegeben, zur Dekontamination bei 450°C ausgeheizt wurden. Es wird beim Auftreten von PBDE-Blindwerten allgemein empfohlen die Messkolben, sowie alle weiteren verwendeten Glasgeräte, bei der angegebenen Temperatur von 450 °C auszuheizen und die Konzentration der PBDE in den Lösungen über die Einwaage und Dichte des Toluols zu berechnen.

Probleme traten vereinzelt bei der Analyse der ausgewählten OctaBDE-Isomere auf. Hier wurde über ungenügende Auflösung sowie Tailing der Peaks im Chromatogramm unter den jeweils gegebenen Bedingungen berichtet. Insbesondere die niedrigste Konzentration des in der Standardanalysenvorschrift vorgegeben Kalibrierbereichs von 50 bis 500 ng mL⁻¹ konnte in einzelnen Fällen nicht oder nur schlecht ausgewertet werden, da die Peaks sehr klein und damit teils unterhalb oder nahe der Nachweisgrenze, bezogen auf das Signal-Rausch-Verhältnis, lagen.

Es wurde weiterhin dazu angeregt, das Extraktvolumen der Proben von 100 mL auf 50 mL zu reduzieren um die adäquate Analytik der OctaBDE-Isomere zu gewährleisten. Hier muss im Einzelfall und in Abhängigkeit von der GC/MS-Konfiguration (Injektortyp, Säulentyp), die je nach Hersteller zu unterschiedlichen Ergebnissen führt, und damit einen Einfluss auf die Analysenempfindlichkeit des Verfahrens hat, entschieden werden. Problematisch könnte das durch das verminderte Extraktvolumen bei gleicher Probeneinwaage verstärkte Auftreten von Matrixproblemen sein. Ebenso könnte die Erhöhung der Probeneinwaage, wie in einem Fall empfohlen, zu einer Erhöhung von Matrixproblemen führen, die eine entsprechende Probenreinigung zum Erhalt der Analysenqualität voraussetzt. Insbesondere Realproben können im Vergleich zu den im Ringversuch getesteten Polymerproben eine durch Zusatz weiterer Additive deutlich höhere Belastung aufweisen.

Ein Vergleich der Chromatogramme der kleinsten gemessenen Kalibrierlösung, der von den Teilnehmern verwendete, von der Standardanalysenvorschrift abweichende Kalibrierbereich differiert dabei stark (kleinste gewählte Konzentration liegt zwischen 0,2 ng mL⁻¹ und 550 ng mL⁻¹ bei Quantifizierung mittels technischem PENTA-BDE), zeigt für die überwiegende Zahl der Teilnehmer eine nur mäßige Peakauflösung sowie Überlagerungen der Peaks der OctaBDE-Isomere. Abhilfe könnte hier das Zurückgreifen auf eine längere GC-Säule schaffen bzw. eine weitere Optimierung des Temperaturprogramms des Gaschromatographen bzw. des Injektors. Auch ergab die Auswertung der Kalibrierungen, die von den Teilnehmern in Kopie beigefügt wurden, insbesondere für die OctaBDE-Isomere gehäuft einen quadratischen Trend. Da die Erfahrung gemacht wurde, dass die Wahl des Injektortyps sowie dessen Optimierung erheblichen Einfluss auf die Auflösung und Trennung und damit auf die Peakhöhe der Isomere hat, wird empfohlen, durch das Testen verschiedener, vorhandener Injektoren die optimalsten Bedingungen auszuwählen. Insbesondere PTV-Systeme bedürfen bestmöglicher Optimierung. Möglicherweise bringt hier bei Seite 90

ungenügender Peakauflösung ein On-Column Aufgabesystem oder ein Split-Splitless Injektionssystem bessere Ergebnisse. Dies muss im Einzelfall vom Bearbeiter entschieden werden.

Die Quantifizierung der OctaBDE-Isomere mittels Kalibrierung mit einem technischem Produkt (Labor 021) lieferte vergleichbare Ergebnisse zu den Quantifizierungen mit Einzelsubstanzen. Vier Teilnehmer quantifizierten die Summe der drei ausgewählten OctaBDE-Isomere über einen bzw. zwei vorhandene einzelne OctaBDE-Standards (Labor 004, 012, 045, 046). Ein Teilnehmer quantifizierte die Zielanalyte mittels Responsefaktoren unter Verwendung von ¹³C₁₂ Isotopen markierten Standards (Labor 026). Eine Kontrolle der Ermittlungsergebnisse zeigt insbesondere für diese Labore für die Probe OCTA-BDE in Polystyrol im Vergleich zu den übrigen Labormittelwerten relativ starke Abweichungen zum Gesamtmittelwert.

Grundsätzlich wird empfohlen, die Quantifizierung durch Kalibrierung mit Einzelstandards vorzunehmen, da die Quantifizierung über das technische Produkt die Kenntnis über die exakte prozentuale Zusammensetzung voraussetzt (z.B. vorherige Quantifizierung des technischen Produktes mit einzelnen PBDE). Auch muss als Kalibrierbereich ein breiterer Konzentrationsbereich als in der Vorschrift vorgegeben gewählt werden, um die Analytgehalte aller Isomere, die in deutlich unterschiedlichen Gehalten in den technischen Produkten vorliegen, zu erfassen.

Weiterhin wurde darauf hingewiesen, dass die Bestimmung von Blindwerten bei der Quantifizierung von PBDE in Proben in der Standardanalysenvorschrift nicht berücksichtigt wird. Die Standardanalysenvorschrift (Anhang 1) wurde mit einem entsprechenden Hinweis versehen.

Es wurde seitens eines Teilnehmers vorgeschlagen, aus Gründen der Effizienz die Anzahl der Kalibrierstandards (zehn) zu verringern. Allgemein obliegt die Entscheidung über die gewählte Anzahl der Kalibrierpunkte im Hinblick auf die Gewährleistung der Qualitätssicherung der Analysenergebnisse dem jeweiligen Laborverantwortlichen. Für die Auswertung der Analysenergebnisse wurden von einzelnen Teilnehmern die Anzahl der Kalibrierpunkte bereits im Rahmen des Ringversuchs reduziert. Inwieweit diese Verringerung bzw. die im Vergleich zwischen den Teilnehmern unterschiedliche Anzahl an Kalibrierpunkten einen Einfluss auf die Qualität der Ermittlungsergebnisse und damit auf das Gesamtergebnis des Ringversuchs hat, bleibt offen.

Weiterhin wird der Standardanalysenvorschrift auf Empfehlung eines Teilnehmers hinzugefügt, dass die Auswertung der einzelnen Isomere über Retentionszeiten und auszuwählende SIM-Massen erfolgt, die im Vorfeld für die einzelnen Zielsubstanzen zu bestimmen sind.

6.3. Ergebnis und Bewertung des Standardanalyseverfahrens

Insgesamt lässt sich anhand der Ergebnisse zeigen, dass das entwickelte Standardanalyseverfahren insbesondere für die quantitative Analyse im Bereich des Grenzwerts 0,1 Gewichts-% Summe PentaBDE-Isomere bzw. OctaBDE-Isomere [1 mg g⁻¹] unter den gegebenen Bedingungen präzise Messergebnisse liefert. Die Standardabweichung unter Wiederholbedingungen s_{rj} ergibt einen Wert von 0,044 mg g⁻¹ für die Summe PentaBDE-Isomere bezogen auf den Gesamtmittelwert von 1,09 mg g⁻¹ der Epoxidharz-Probe und 0,038 mg g⁻¹ bezogen auf den Gesamtmittelwert von 1,3 mg g⁻¹ der Polyurethan-Probe. Die Analyse der Summe OctaBDE-Isomere ergibt als Wiederholstandardabweichung 0,043 mg g⁻¹ für ABS bezogen auf den Gesamtmittelwert von 0,42 mg g⁻¹. Ein Vergleich der Wiederholstandardabweichungen zeigt unter den gegebenen Bedingungen eine gute Übereinstimmung, d.h., dass das Standardanalyseverfahren unter Wiederholbedingungen reproduzierbare Analysenergebnisse unabhängig von den hier untersuchten Polymertypen liefert.

Die ermittelte Vergleichstandardabweichung s_{Rj} ergab für die Summe PentaBDE-Isomere 0,167 mg g⁻¹ für das Polymer Epoxidharz bezogen auf den Gesamtmittelwert von 1,09 mg g⁻¹. Für Polyurethan wurde für die Summe PentaBDE-Isomere s_{Rj} mit 0,195 mg g⁻¹ bezogen auf den Gesamtmittelwert von 1,3 mg g⁻¹ ermittelt. s_{Rj} lag für Polystyrol bei 0,255 mg g⁻¹ bezogen auf den Gesamtmittelwert von 0,99 mg g⁻¹. Für ABS resultierte für die Summe OctaBDE-Isomere ein Wert von 0,114 mg g⁻¹ für s_{Rj} bezogen auf den Gesamtmittelwert von 0,042 mg g⁻¹. Auch hier ergeben die unter den gegebenen Bedingungen untersuchten Polymere vergleichbare Werte für s_{Rj}.

Ein Vergleich der Werte für s_{rj} und s_{Rj} zeigt, dass das Standardanalyseverfahren für die Standardabweichung unter Vergleichbedingungen s_{Rj} einen um den Faktor 4 bis 6 höheren Wert im Vergleich zur Standardabweichung unter Wiederholbedingungen s_{rj} aufweist. Die größere Streuung der Analysenergebnisse unter Vergleichbedingungen kann verschiedene Ursachen haben, zu nennen sind hier der Einfluss der unterschiedlich konfigurierten GC/MS Systeme der Teilnehmer bzw. der Einfluss verschiedener Bearbeiter auf die Analysenergebnisse usw.

Die Untersuchung von Matrixeinflüssen auf das Standardanalyseverfahren mittels Wiederfindungsfunktion in Kap. 4.4 zeigt, dass für ein Signifikanzniveau von 95 % für die exemplarisch ausgewählten PBDE keine konstant-systematische Abweichung vorliegt. Die Untersuchung proportional-systematischer Abweichungen zeigt für drei der vier untersuchten PBDE eine geringe proportionalsystematische Abweichung bei einer statistischen Sicherheit von 95 %. Bei einer statistischen Sicherheit von 99 % liegt für BDE99 und BDE197 keine Abweichung mehr vor. BDE203 zeigt dagegen erst bei einer statistischen Sicherheit von 99,9 % keine Abweichung mehr. Proportional-systematische Abweichungen führen zu einer Änderung der Steigung der Matrix-Kalibriergeraden. Diese Abweichungen vom wahren Wert können durch einzelne Verfahrensschritte oder auch durch Matrix-Effekte bedingt sein. Die insbesondere für BDE203 beobachtete starke Abweichung könnte zudem durch die ungenauere Quantifizierung mittels technischem OCTA-BDE verursacht sein, da BDE203 mit relativ geringem Gehalt im technischen OCTA-BDE vorliegt. Die Verwendung der technischen PENTA-BDE bzw. OCTA-BDE zur Ermittlung der Wiederfindungsfunktion war notwendig, da hier höhere Einwaagen verwendet werden müssen. Bei einer ausschließlich proportional-systematischen Abweichung kann die Wiederfindungsrate angegeben werden. Sie berechnet sich aus der Steigung der Wiederfindungskalibriergeraden und beträgt für BDE203 131 %. Zur weiteren Absicherung der Analysenergebnisse kann auch das Verfahren der Standardaddition beim Vorliegen proportional-systematischer Abweichungen angewendet werden /9/.

Die in der Vorschrift des Standardanalyseverfahrens vorgegebene Extraktionsdauer von 2 Stunden mittels Soxhlet und Toluol als Lösungsmittel erwies sich, wie anhand der Ergebnisse des Ringversuchs zu sehen ist, für die quantitative Bestimmung der OctaBDE- und PentaBDE-Isomere als ausreichend. Einzelne Teilnehmer wie z.B. Labor 030 arbeiteten entgegen der Vorschrift mit längeren Extraktionszeiten von bis zu 10 Stunden. Die ermittelten Gehalte wiesen keinen signifikanten bzw. erkennbaren Unterschied im Vergleich zu den übrigen Ermittlungsergebnissen auf. Die überwiegende Mehrzahl der Teilnehmer arbeitete wie vorgegeben mit 20 bis 30 Extraktionszyklen. Vereinzelt wurden bedingt durch die geringfügig variierende Extraktionsdauer auch höhere Angaben von bis zu 100 Zyklen gemacht.

Die Einwaage des zu untersuchenden Probenmaterials ist in der Vorschrift des Standardanalyseverfahrens mit 0,1 g vorgegeben. Diese Vorgabe wurde von den Teilnehmern bis auf einzelne Ausnahmen (die Einwaage variierte hier je nach Polymer zwischen 0,06 und 0,2 g) eingehalten. Labor 037 verwendete 0,01 g als Einwaage und arbeitete, im Unterschied zu den in der Standardanalysevorschrift vorgegeben 100 mL, mit einem Sollvolumen des Probenextraktes von 10 mL.

Labor 019 gab eine Volumenabweichung von 0,3 % für die verwendeten Messkolben an und korrigierte daher die Einwaage des Probenextraktes nicht wie vorgegeben über die Dichte des Toluols, sondern dokumentierte das mit dem Messkolben gemessene Lösemittelvolumen. Labor 021 verwendete als Sollvolumen des Probenextraktes nicht wie vorgegeben 100 mL sondern 50 mL. Diese Labore zeigten jedoch für die ermittelten Gehalte keinen signifikanten Unterschied im Vergleich zu den übrigen Laboren. Auf Basis dieser Ergebnisse wird empfohlen, die vorgegebene Extraktionsdauer von mind. 2 Stunden einzuhalten. Das Volumen des Lösungsmittels (hier Toluol) kann gegebenenfalls, wie bereits im Vorfeld diskutiert, auf 50 mL reduziert werden. Hier muss jedoch, wie bereits diskutiert, die zunehmende Verunreinigung durch die erhöhte Probenkonzentration berücksichtigt werden.

Eine Einwaage von < 0,1 g ist nur bedingt empfehlenswert, da geringe Einwaagen neben dem erhöhten Einwaagefehler u.a. den Einfluss von Inhomogenitäten des zu untersuchenden Probenmaterials auf das Analyseergebnis erhöhen. Zur Erhöhung der Empfindlichkeit des Standardanalyseverfahrens haben mehrere Teilnehmer erhöhte Injektionsvolumina > 1 μ L verwendet. Insbesondere die Quantifizierung der OctaBDE-Isomere, die von den Teilnehmern als schwierig dargestellt wurde, kann dadurch verbessert werden. Hier muss im Einzelfall der Laborverantwortliche entscheiden, ob die Nachweisempfindlichkeit als ausreichend angesehen wird. Die Erhöhung des Injektionsvolumens kann wiederum zu einer Erhöhung von Matrixeinflüssen führen.

Zur Charakterisierung und zum Vergleich der Ergebnisse wurden z-scores berechnet. Sie zeigen die Abweichung des Labormittelwertes vom Gesamtmittelwert als ein Vielfaches der Standardabweichung. Ein z-score von 1 bedeutet, dass das Ergebnis 1 x s_{Rj} vom Gesamtmittelwert entfernt ist.

In Tabelle 33 sind die nach

$$z - score = \frac{X_i - \overline{X}}{S_{Ri}}$$

mit

x_i: Labormittelwert [mg g⁻¹] \overline{x} : Gesamtmittelwert [mg g⁻¹] s_{Ri:} Vergleichstandardabweichung [mg g⁻¹]

berechneten z-scores aufgeführt.

	z-score ¹					
Labor	OctaBDE in ABS	OctaBDE in Polystyrol	PentaBDE in PUR	PentaBDE in Epoxidharz		
001	0,08	-0,15	-1,19	-1,07		
003	*	2,28	*	*		
012	1,74	1,36	0,77	0,46		
013	-0,98	-0,61	-2,21	-0,75		
014	0,73	-0,31	0,51	0,13		
019	0,03	0,25	0,72	0,39		
021	-1,12	-1,50	-0,81	-0,49		
026	1,47	-0,62	0,07	0,05		
027	-1,24	0,03	0,35	0,22		
030	-1,03	-1,11	1,81	0,39		
037	0,14	0,04	-0,62	-0,64		
040	0,71	-0,34	0,11	0,50		
041	-0,08	-0,53	-0,41	-0,05		
044	-0,09	0,02	0,35	0,08		
045	-1,65	-1,74	*	*		
046	0,29	0,44	*	*		
Coord	0,82	0,55	1,02	0,10		
004	0,22	1,94	-0,50	0,04		

Tabelle 33: Berechnete z-scores der Ringversuchsteilnehmer.

|z| < 2 = zufriedenstellende Analyse; 2 < |z| < 3 = Ergebnis/Analyse ist fragwürdig; |z| > 3 = ungenügendes Ergebnis; *ausgesonderte Ausreißer

Anhand der Ergebnisse ist zu sehen, dass das Labor 003 für z (Summe OctaBDE-Isomere in Polystyrol) im Vergleich zu den übrigen Laboren einen erhöhten Wert (zwischen 2 und 3) liefert. Labor 013 zeigt für z (Summe PentaBDE-Isomere in PUR) ebenfalls einen Wert größer 2. Diese Ergebnisse überschreiten s_{Rj} um den Faktor 2 und sind somit als fragwürdig anzusehen. Alle übrigen Labore liefern für z zufriedenstellende Ergebnisse.

6.4. Vergleich der Ergebnisse des Standardanalyseverfahrens und der Ergebnisse der Labormethoden

Optional wurde den Ringversuchsteilnehmern die Möglichkeit gegeben, zusätzlich zum vorgeschriebenen Standardanalyseverfahren die interne Labormethode zur Bestimmung der Gehalte der Summe PentaBDE-Isomere und OctaBDE-Isomere anzuwenden. In Tabelle 34 sind die Ergebnisse von 4 Labormethoden zusammengefasst.

	i	Summe OctaBDE-		Summe PentaBDE-		
		Isomere [n	Isomere [mg g ⁻¹] in		ng g⁻¹] in	
Labor	Methode	ABS	Polystyrol	PUR	Epoxidharz	
L012	Mikrowelle, 50 mL Aceton/Toluol, 10 min bei 90°C, GC-ECD	0,43	0,69	1,58	1,19	
L014	Vial Extraktion statisch, 5 - 20 mL Toluol, 2 h	0,48	1,06	1,13	1,15	
L021	Ultraschall, 5 mL Toluol, 2h	0,25	0,61	1,21	1,03	
L044	ASE ¹ , 30 - 35 mL Toluol, 10 - 15 min	0,22	0,36	1,44	1,19	
Gesamtmittelwert Ringversuch m _j		0,42	0,99	1,3	1,09	
Vergleichsta	andardabweichung s _{Rj}	0,114	0,255	0,195	0,167	

Tabelle 34:Ermittlungsergebnisse der optional, mittels Labormethoden
durchgeführten Analysen.

¹Accelerated solvent extraction;

In Tabelle 35 sind die nach
$$\frac{X_i - \overline{X}}{S_{R_j}}$$
 berechneten z-scores der Ergebnisse der

Labormethoden aufgeführt.

Tabelle 35:	Berechnete z-scores	der Ergebnisse d	er Labormethoden.

	z-score*				
Labor	OctaBDE in ABS	OctaBDE in Polystyrol	PentaBDE in PUR	PentaBDE in Epoxidharz	
L012	0,09	-1,18	1,44	0,60	
L014	0,53	0,27	-0,87	0,36	
L021	-1,49	-1,49	-0,46	-0,36	
L044	-1,75	-2,4	0,72	0,60	

* |z| < 2 = zufriedenstellend; 2 < <math>|z| < 3 = Ergebnis ist fragwürdig; |z| > 3 = ungenügend

Labor 012 und Labor 014 liefern mit den jeweiligen Analysenverfahren z-scores mit |z| < 2 und können somit als zufriedenstellend betrachtet werden.

Labor 021 zeigt insbesondere für die Summe OctaBDE-Isomere erhöhte zscores, die Werte liegen aber unterhalb des Wertes 2. Labor 044 liefert für die Summe OctaBDE-Isomere in Polystyrol einen z-score von –2,4. Hier ist das Ergebnis als fragwürdig anzusehen. Auch hier zeigen wieder insbesondere die Ergebnisse für die Summe OctaBDE-Isomere höhere z-scores im Vergleich zu den Ergebnissen für die Summe PentaBDE-Isomere.

Bei der Bewertung der Labormethoden muss berücksichtigt werden, dass es sich hierbei um einzelne Ermittlungssergebnisse handelt. Diese Daten liefern keine Information über die Präzision der angewendeten Labormethoden, da zur Ermittlung der Präzision die Verfahren in einem Ringversuch geprüft werden müssten.

6.5. Ergebnisdiskussion Realproben

Das Standardanalyseverfahren wurde an Realproben mit unbekannten Gehalten an OctaBDE- und PentaBDE-Isomeren getestet. Die untersuchten Proben, in denen das technische PENTA-BDE nachgewiesen wurde, zeigten Verfärbungen der Probenextrakte und im Falle des ABS Materials leichte Trübungen. Durch Aufreinigung des Probenextraktes mittels Minikieselgelsäule (s. Kap. 8.5) konnten diese Trübungen und Verfärbungen entfernt werden.

Die Analyse des exemplarisch gewählten PentaBDE-Isomers BDE99 mit GC/MS zeigte, das die Trübungen und Verfärbungen keine Auswirkung auf das quantitative Ergebnis des Isomers hatten. Hier muss in Abhängigkeit von der Probenmatrix, die sich je nach Probe stark unterscheiden kann, entschieden werden, ob ein Clean-Up, wie z.B. die Minikieselgelsäule, angewendet werden muss.
6.6. Schlussdiskussion

Basierend auf den Gesamtergebnissen wird das entwickelte Standardanalyseverfahren als geeignet angesehen, den vorgegebenen Grenzwert von 0,1 Gewichts-% Summe PentaBDE-Isomere bzw. OctaBDE-Isomere [1 mg g⁻¹] unter Berücksichtigung der Messunsicherheit, die mit der Wiederholstandardabweichung s_{rj} und der Vergleichstandardabweichung s_{Rj} definiert ist, in Polymeren zu überprüfen.

Berücksichtigt werden muss der Einfluss der Matrix der zu überprüfenden Materialien unter Realbedingungen, da die statistischen Kennzahlen s_{Rj} und s_{rj} des Standardanalyseverfahrens auf Basis definierter Modellpolymere ermittelt worden sind. Im Einzelfall bedarf die Anwendung des Standardanalyseverfahren auf reale Proben zusätzlicher Probenaufreinigung.

Zur Überprüfung der Richtigkeit des Verfahrens und der Ermittlung der Messunsicherheit (Wiederhol- und Vergleichstandardabweichung) bei der Bestimmung von Realproben müssten weitere Ringversuche durchgeführt werden.

Hierbei wäre weitergehend die Prüfung nicht nur auf einem sondern mehreren Merkmalsniveaus empfehlenswert.

7 Zusammenfassung

Im Rahmen des Forschungsvorhabens wurde ein Standardanalyseverfahren zur Bestimmung von penta- und octabromierten Diphenylethern in Polymeren entwickelt. Dies dient der Überprüfung des im Rahmen der Richtlinie 2003/11/EG geforderten Grenzwertes von 0,1 Gewichts-% Summe PentaBDE- bzw. OctaBDE-Isomere in Produkten /15/.

Die Probenaufbereitung erfolgt mittels Soxhletextraktion unter Verwendung von Toluol als Extraktionsmittel. Die Identifizierung und quantitative Bestimmung der Komponenten erfolgt mit Hilfe der Gaschromatographie-Massenspektrometrie (GC/MS). Die Analyse der PBDE erfolgt im Single-Ion-Monitoring (SIM)-Modus unter Verwendung von drei charakteristischen Ionenspuren pro Isomer.

Die Auswahl der zu untersuchenden penta- und octabromierten Diphenylether-Isomere erfolgt in Anlehnung an die Zusammensetzung der technischen Produkte PENTA- und OCTA-BDE und der kommerziell erhältlichen Standards: 2,2',4,4',6-PentaBDE (BDE100), 2,2',4,4',5-PentaBDE (BDE99), 2,2',3,4,4'-PentaBDE (BDE85), 2,2',3,4,4',5,5',6-OctaBDE (BDE203), 2,2',3,3',4,4',5,6'-OctaBDE (BDE196) und 2,2',3,3',4,4',6,6'-OctaBDE (BDE197). Als interne Standards werden Decachlorbiphenyl (CB209) und Dibromoctafluorbiphenyl (DBOFB) verwendet.

Zur Qualitätssicherung und Methodenvalidierung der Analysenmethode wurden verschiedene statistische Kenndaten ermittelt. Zur Bestimmung der Wiederholund Vergleichstandardabweichung wurde in Anlehnung an DIN ISO 5725-2 /12/ ein internationaler Ringversuch mit 18 Teilnehmern durchgeführt.

Der Ringversuch wurde mit definierten Modellpolymeren durchgeführt und führte zu den in Tabelle 36 zusammengefassten Ergebnissen.

Polymer	Summe Isomere	pj	m _j [mg g⁻¹]	s _{rj} [mg g⁻¹]	s _{Rj} [mg g ⁻¹]
Epoxidharz	PentaBDE	15	1,09	0,044	0,167
Polyurethan	PentaBDE	15	1,3	0,038	0,195
Polystyrol	OctaBDE	18	0,99	0,043	0,255
ABS	OctaBDE	17	0,42	0,029	0,114

Tabelle 36: Ergebnisse des Ringversuchs.

pj: Anzahl Labore; mj: Gesamtmittelwert; srj: Wiederholstandardabweichung; srj: Vergleichstandardabweichung;

Bei der Analyse der OctaBDE-Isomere traten vereinzelt Probleme, wie eine ungenügende Auflösung der Peaks sowie Tailing der Peaks im Chromatogramm, auf. Insbesondere die niedrigste Konzentration (50 ng mL⁻¹) konnte in einzelnen Fällen nicht oder nur schlecht ausgewertet werden, da die Peaks sehr klein und damit teils unterhalb oder nahe der Nachweisgrenze, bezogen auf das Signal-Rausch-Verhältnis, lagen.

In Anlehnung an DIN 32 645 konnte exemplarisch für BDE99 die Nachweisgrenze mit 0,02 mg g⁻¹ und die Bestimmungsgrenze mit 0,06 mg g⁻¹ ermittelt werden. Beispielhaft für die OctaBDE-Isomere ergibt sich für BDE197 die Nachweisgrenze mit 0,04 mg g⁻¹ und die Bestimmungsgrenze mit 0,12 mg g⁻¹.

Das entwickelte Analysenverfahren wurde zudem an einigen Realproben getestet. Aufgrund der höheren Matrixbelastung durch andere Additive war teilweise ein Clean-up erforderlich. Dabei erwies sich eine Minikieselgelsäule als sinnvoll und ausreichend.

Insgesamt lässt sich anhand der Ergebnisse zeigen, dass das entwickelte Standardanalyseverfahren geeignet ist, den vorgegebenen Grenzwert von 0,1 Gewichts-% [1 mg g⁻¹] Summe PentaBDE-Isomere bzw. OctaBDE-Isomere unter Berücksichtigung der Messunsicherheit, die mit der Wiederholstandardabweichung s_{rj} und der Vergleichstandardabweichung s_{Rj} definiert ist, in Polymeren zu überprüfen. Berücksichtigt werden muss der Einfluss der Matrix der zu überprüfenden Materialien unter Realbedingungen, da die statistischen Kenn-

zahlen s_{Rj} und s_{rj} des Standardanalyseverfahrens auf Basis definierter Modellpolymere ermittelt worden sind. Im Einzelfall bedarf die Anwendung des Standardanalyseverfahrens auf reale Proben zusätzlicher Probenaufreinigung.

8 Verwendete Chemikalien und Methoden

8.1. Chemikalien und Geräte

Substanz	Hersteller/Vertrieb
Toluol	Merck
Supressly f d org Spurepenalyse	WEIGK
Suprasoly, I. u. org. Spurenanalyse	
2,2',3,4,4'-PentaBDE (BDE85)	CIL/Promochem
50 μg/mL in n-Nonan	
2,2',4,4',5-PentaBDE (BDE99)	CIL/Promochem
50 μg/mL in n-Nonan	
2,2',4,4',6-PentaBDE (BDE100)	CIL/Promochem
50 μg/mL in n-Nonan	
2,2',3,3',4,4',5,6'-OctaBDE (BDE196)	Wellington/Campro Scientific
50 μg/mL in n-Nonan	
2,2',3,3',4,4',6,6'-OctaBDE (BDE197)	Wellington/Campro Scientific
50 μg/mL in n-Nonan	
2,2',3,4,4',5,5'6-OctaBDE (BDE203)	Wellington/Campro Scientific
50 μg/mL in n-Nonan	
techn. Pentabromdiphenylether	Great Lakes Chemical Corporation
(PENTA-BDE) DE-71	
techn. Octabromdiphenylether	Great Lakes Chemical Corporation
(OCTA-BDE) DE-79	
Decachlorbiphenyl (CB209)	CIL/Promochem
4,4'-Dibromoctafluorbiphenyl	Sigma-Aldrich
AcryInitril-Butadien-Styrol-Copolymer	Grafe Color Batch GmbH
(mit 0,97 % DE-71)	
AcryInitril-Butadien-Styrol-Copolymer	Grafe Color Batch GmbH
(mit 2,95 % DE-79)	
Polystyrol	Grafe Color Batch GmbH
(mit 2,96 % DE-7-9)	
Polyurethan-Hartschaumstoffmuster	Rühl Puromer GmbH
(mit 1 % DE-71)	

Substanz	Hersteller/Vertrieb
Viscacid Epoxi-Bauharz	Remmers
Extraktionshülsen (Cellulose, 30 mL, ID 22 mm, Höhe 80 mm)	Schleicher & Schuell MicroScience
Glaswolle, extra fein	Hecht/Th. Geyer
Raschigringe, Soda-Kalkglas	Hilgenberg/Th.Geyer
Heizhauben (HRS 100 mL, 150 W)	Horst GmbH
Minishaker MS 2	IKA
Analysenwaage LA 230 S, d = 0,1 mg	Sartorius
GC Series 6890	Agilent
Kodiak 1200	Bear Instruments
(Massenbereich 10 – 1500 amu)	

8.2. Herstellung des Epoxidharzes (siehe Anhang 4)

In die Komponente A werden unter leichtem Erwärmen (30 °C) 20,2 g Great Lakes DE-71 gründlich eingerührt. Nach vollständigem Lösen des FSM in der Komponente A (keine Schlierenbildung mehr sichtbar) wird die Komponente B hinzugegeben, noch mal gut gerührt und das Polymer dünn auf eine PS-Baufolie gegossen. Nach Erkalten des Polymers kann es in Stücke geschnitten und in einem Glasgefäß aufbewahrt werden.

8.3. Zerkleinerung der Polymere

Der PUR-H und das EP müssen zunächst per Hand mit Hilfe einer Schere oder Zange auf eine Größe von max. 1 cm² grob vorzerkleinert werden. Die anderen Polymere (ABS und PS) wurden bereits in Granulatform geliefert.

Unter Versprödung mit flüssigem Stickstoff werden die Polymere mit einer Zentrifugalmühle (Fa. Retsch ZM 1000, siehe Abbildung 23) durch einen Siebeinsatz von 0,5 mm zerkleinert und homogenisiert. Um Kontaminationen zwischen den einzelnen Mahlvorgängen zu vermeiden, wird die Mühle zwischen jeder Mahlung gründlich gereinigt und mit ca. 100 g Polymer "gespült".

Die gemahlenen Polymere werden in Kristallisierschalen im Trockenschrank bei 22 °C bis zur Massenkonstanz getrocknet, um mögliche Kondensationsfeuchtigkeit zu entfernen.

Abbildung 23: Zentrifugalmühle, Fa. Retsch ZM 1000.

8.4. Statistische Homogenisierung (Cross Riffling) der Polymermaterialien

Die gemahlenen Polymere wurden vor der Anwendung des Verfahrens ca. 12 h mit Hilfe eines Überkopfschüttlers gemischt. Für das "Cross Riffling" /11/ wurden zunächst ein Zehner-, dann ein Achterteiler verwendet (Fa. Retsch DR 100 und Fa. Fritsch Laborette 27, siehe Abbildung 24).

Abbildung 24: Achterteiler (Fa. Retsch DR 100, links) und Zehnerteiler (Fa. Fritsch Laborette 27).

8.5. Minikieselgelsäule

Die Minikieselgelsäule wird in einer Pasteurpipette kostengünstig selbst hergestellt (schematische Darstellung s. Abbildung 25). Siloxanfreie Glaswolle dient zum Abdichten der Spritze und verhindert ein Aufschwimmen des Kieselgels.

Abbildung 25: Schematische Darstellung einer Minikieselgelsäule.

10 mL des Polymerextraktes werden abgenommen. Der Extrakt wird auf die trockene Kieselgelsäule gegeben und die ersten 1 bis 2 mL Filtrat verworfen. Das Filtrat wird in einem Vial gesammelt, nach Kap. 1.5.5 im Anhang 1 mit internem Standard versetzt und mittels GC/MS vermessen.

Zur Absicherung wird ein Blindwert mit Toluol genommen.

9 Literaturverzeichnis

- Arias, P A. Brominated flame retardants an overview. Proceedings of the Second International Workshop on Brominated Flame Retardants, BFR 2001, Stockholm,, Sweden, pp17-19, 2001
- Ryan J J. Polybrominated Diphenylethers (PBDEs) in human milk; occurrence worldwide. Proceedings of the Third International Workshop on Brominated Flame Retardants, BFR 2004, Toronto, Canada, pp 17-22, 2004
- Stapleton H M, Schantz M, Wise S. Polybrominated Diphenyl Ether Measurements in Household Dust. Proceedings of the Third International Workshop on Brominated Flame Retardants, BFR 2004, Toronto, Canada, pp 49-52, 2004
- Kemmlein S, Hahn O, Jann O. Emission von Flammschutzmitteln aus Bauprodukten und Konsumgütern. UBA-Texte 55/03, Umweltbundesamt, Berlin, 2003. English version available: www.umweltbundesamt.de
- European Chemicals Bureau. European Commission. Joint Research Centre. European Union Risk Assessment Report. Bis(pentabromophenyl)ether. CAS No. 1163-19-5. EINECS No: 214-604-9. 1st Priority List. Volume 17, 2002
- European Chemicals Bureau. European Commission. Joint Research Centre. European Union Risk Assessment Report. Diphenyl ether, octabromoderivative. CAS No. 32536-52-0. EINECS No. 251-087-9. Volume 16, 2002

- European Chemicals Bureau. European Commission. Joint Research Centre. European Union Risk Assessment Report. Diphenyl ether, pentabromo derivative. CAS No. 32534-81-9. EINECS No: 251-084-2. Volume 5, 2001
- WHO, IPCS (International Programme on Chemical Safety). Brominated Diphenylethers. Environmental Health Criteria 162, WHO Geneva, 1994 b
- 9. Funk, W., Dammann, G., Donnevert, G. Qualitätssicherung in der analytischen Chemie. ISBN 3-527-28291-2, 1992
- 10. Huber, W. Modifikation von DIN 32645 zur Bestimmung der Nachweisund Erfassungsgrenze, GIT Labor-Fachzeitschrift 12 1308 f., 2001
- 11. Van der Veen, A.M.H., Nater, D.A.G. Sample preparation from bulk samples: an overview. Fuel Processing Technology 36 (1-3) 1-7, 1993
- 12. DIN ISO 5725-2: 2002-12. Genauigkeit (Richtigkeit und Präzision) von Messverfahren und Messergebnissen Teil 2: Grundlegende Methode für die Ermittlung der Wiederhol- und Vergleichspräzision eines vereinheitlichten Messverfahrens. DIN Deutsches Institut für Normung e.V., Beuth Verlag GmbH, 10772 Berlin, Germany
- Bonas, G., Zervou, M., Papaeoannou, P. and Lees, M. "SoftCRM":A new Software for the Certification of Reference Materials", Accreditation and Quality Assurance, 8:101-107 (2003)
- 14. Kemmlein, S. Polybromierte Flammschutzmittel: Entwicklung eines Analyseverfahrens und Untersuchung und Bewertung der Belastungssi-

tuation ausgewählter Umweltkompartimente. Dissertation, Technische Universität Berlin, ISBN 3-89820-128-7, 2000

- 15. Richtlinie 2003/11/EG des Europäischen Parlaments und des Rates vom 06.02.2003 zur Änderung der Richtlinie 76/769/EWG des Rates über Beschränkungen des Inverkehrbringens und der Verwendung gewisser gefährlicher Stoffe und Zubereitungen (Pentabromdiphenylether, Octabromdiphenylether), Amtsblatt der Europäischen Union vom 15.02.2003, L 042, 45 – 46
- Verordnung über Verbote und Beschränkungen des Inverkehrbringens gefährlicher Stoffe, Zubereitungen und Erzeugnisse nach dem Chemikaliengesetz (Chemikalienverbotsverordnung) vom 14.10.1993 (BGBI. I S 1720), zuletzt geändert durch Artikel 1 der Verordnung vom 23.12.2004 (BGBI. I S 3855)
- Verordnung zum Schutz vor Gefahrstoffen (Gefahrstoffverordnung), vom 23.12.2004 (BGBI. I S 3758), geändert durch Artikel 2 der Verordnung vom 23.12.2004 (BGBI. I S 3855)

Anhang 1 Standardanalyseverfahren

Bundesanstalt für Materialforschung und -prüfung, IV.2 Emission aus Materialien

STANDARDANALYSEVERFAHREN ZUR BESTIMMUNG VON PENTABROMIERTEN UND OCTABROMIERTEN DIPHENYLETHERN IN POLYMEREN

1 Zusammenfassung

Die vorliegende Methode beschreibt ein Analyseverfahren zur Bestimmung von ausgewählten pentabromierten (PentaBDE-Isomere) und octabromierten (OctaBDE-Isomere) Diphenylethern in Polymeren. Die Summe PentaBDE-Isomere und die Summe OctaBDE-Isomere werden nach Soxhletextraktion der Polymere mit gaschromatographischer Trennung und massenspektrometrischer Detektion (GC/MS) qualitativ und quantitativ bestimmt.

2 Chemikalien und Standards

Alle Chemikalien müssen vor der Verwendung auf Kontaminationen und Blindwerte getestet werden.

- Toluol, pro analysi
- Standardsubstanzen
 BDE85 (2,2',3,4,4'-PentaBDE)
 BDE99 (2,2',4,4',5-PentaBDE)
 BDE100 (2,2',4,4',6-PentaBDE)
 BDE203 (2,2',3,4,4',5,5',6-OctaBDE)
 BDE196 (2,2',3,3',4,4',5,6'-OctaBDE)
 BDE197 (2,2',3,3',4,4',6,6'-OctaBDE)
 BDE197 (2,2',3,3',4,4',5,5',6,6'-Decachlorbiphenyl)
 DBOFB (4,4'-Dibromoctafluorbiphenyl)

50 μg mL⁻¹ in organischem Lösungsmittel 50 μg mL⁻¹ in organischem Lösungsmittel

3 Geräte und Hilfsmittel

- Analysenwaage, Genauigkeit 0,1 mg
- 1 mL, 5mL, 10 mL, 100 mL Meßkolben
- Extraktoren nach Soxhlet
 - 30 mL Soxhletextraktoren,
 - 100 mL Rundkolben,
 - Schliffstopfen NS 29/32,
 - Dimrothkühler NS 29/32.
 - Siedesteine (z.B. Glasperlen oder Raschigringe);
- Extraktionshülsen (Cellulose, 30 mL, ID 22 mm, Höhe 80 mm)
- Glaswolle

STANDARDANALYSEVERFAHREN ZUR BESTIMMUNG VON PENTABROMIERTEN UND OCTABROMIERTEN DIPHENYLETHERN IN POLYMEREN

- Heizhauben
- Tichter
- Aluminiumfolie
- Korkringe
- Mikroliterspritzen oder Transferpettor®
- Pasteurpipetten
- 1,5 mL Probenvials mit 100 µL Glaseinsätzen und einem Schraubdeckel mit Teflondichtung oder in Abhängigkeit vom analytischen System ein vergleichbares Probengefäß
- Kleinschüttler (Vortexer)

4 Allgemeine Anweisungen zur Analytik

- Um Blindwerte zu reduzieren, ist es sinnvoll alle Glasgeräte bei 450 °C auszuheizen. Um eine Zersetzung (Debromierung) der PBDE durch UV-Licht während der Extraktion und Analyse zu vermeiden, sollten soweit möglich Glasgeräte aus Braunglas verwendet werden. Wenn kein Braunglas zur Verfügung steht, kann Aluminiumfolie zum Schutz vor Licht genutzt werden.
- Um die Konzentrationen aller Standardlösungen und der Probenextrakte zu bestimmen, werden Differenzwägungen durchgeführt und mit Hilfe der Dichte von Toluol (0,87 g mL⁻¹) umgerechnet.
- Die GC-Methode muss auf den in Kapitel 6 genannten Konzentrationsbereich optimiert und validiert werden.
- Besonderheiten oder Schwierigkeiten während der Analyse müssen dokumentiert werden.

STANDARDANALYSEVERFAHREN ZUR BESTIMMUNG VON PENTABROMIERTEN UND OCTABROMIERTEN DIPHENYLETHERN IN POLYMEREN

5 Probenvorbereitung

5.1. Stammlösungen

Folgende Stammlösungen werden benötigt:

Interner Standard (zur Kontrolle der Wiederfindung)	DBOFB:	50 µg mL ⁻¹ in Toluol
Interner Standard (zur Korrektur des Injektionsfehlers)	CB209:	0,2 µg mL ⁻¹ in Toluol
		1 µg mL⁻¹ in Toluol
Polybromierte Diphenylether	PBDE:	50 µg mL ⁻¹ in organi-
		schem Lösungsmittel

Ergänzende Anmerkung auf Basis der im Ringversuch gemachten Erfahrungen:

• Das zur Kontrolle der Wiederfindung verwendete DBOFB kann auch durch eine andere geeignete Standardsubstanz ersetzt werden.

5.2. Vorextraktion der Soxhletextraktoren

Zur Reinigung der Soxhletextraktoren wird eine zweistündige Vorextraktion mit 70 mL Toluol durchgeführt. Das verwendete Lösungsmittel wird verworfen.

5.3. Einwaage der Polymere

Ca. 100 mg des Polymers werden auf einem Stück Aluminiumfolie mit einer Genauigkeit von 1 mg eingewogen. Die Einwaage wird dokumentiert. Die nach Überführung in die Extraktionshülsen (Kapitel 5.4) eventuell verbliebenen Reste des Polymers auf der Aluminiumfolie werden durch Differenzwägung bestimmt und bei der Berechnung der Probeneinwaage berücksichtigt.

5.4. Probenextraktion

Die Probe wird mit Hilfe eines Trichters in die Extraktionshülse überführt. Um einen quantitativen Transfer zu gewährleisten, wird der Trichter mit ca. 10 mL Toluol gespült. 200 μ L des Internen Standards DBOFB [50 μ g mL⁻¹] (gemäß Kapitel 5.1) werden hinzugefügt.

STANDARDANALYSEVERFAHREN ZUR BESTIMMUNG VON PENTABROMIERTEN UND OCTABROMIERTEN DIPHENYLETHERN IN POLYMEREN

Um ein Aufschwimmen der Probe zu vermeiden, wird die Hülse mit Glaswolle verschlossen. In den 100 mL Rundkolben werden ca. 60 mL Toluol gegeben, die Apparatur zum Ausschluss von Licht mit Aluminiumfolie umhüllt und die Probe ca. 2 Stunden (20 Extraktionszyklen) extrahiert.

Der Extrakt wird in einen gewogenen 100 mL Messkolben gegeben und der Rundkolben mit ca. 5 mL Toluol nachgespült.

Bemerkung: Weist die Lösung eine matrixbedingte Trübung auf, kann der Zusatz von 1 mL Methanol diese reduzieren. Der Unterschied zwischen der Dichte von Methanol und Toluol wird in diesem Fall bei den Berechnungen vernachlässigt.

Der Messkolben wird mit Toluol auf 100 mL aufgefüllt und gewogen. Das präzise Lösungsmittelvolumen wird über die Dichte berechnet.

5.5. Zugabe des Internen Standards CB209

50 µL des Extraktes werden mit einer Mikroliterpipette oder einem Transferpettor® in das Glasinsert des Probenvials überführt und 50 µL des Internen Standards CB209 [0,2 µg mL⁻¹] gemäß Kapitel 5.1 hinzugefügt. Die Probengläschen werden vor der Analyse durch Schütteln oder Vortexen homogenisiert.

6 Kalibrierung

Die Kalibrierung erfolgt im linearen Bereich des GC/MS-Systems. Für ihre Erstellung werden zehn Kalibrierlösungen in äquidistanten Konzentrationsschritten benötigt. Die Quantifizierung erfolgt über die Peakflächen.

6.1 Stammlösung PBDE [je Kongener 1 µg mL⁻¹] und DBOFB [0,2 µg mL⁻¹]

100 μ L jeder PBDE-Stammlösung (50 μ g mL⁻¹) und 20 μ L der DBOFB-Stammlösung (50 μ g mL⁻¹) gemäß Kapitel 5.1 werden in einen 5 mL Messkolben gegeben und bis zur Marke mit Toluol aufgefüllt. Das Lösungsmittelvolumen wird durch Differenzwägung unter Zuhilfenahme der Dichte des Toluols ermittelt.

STANDARDANALYSEVERFAHREN ZUR BESTIMMUNG VON PENTABROMIERTEN UND OCTABROMIERTEN DIPHENYLETHERN IN POLYMEREN

6.2. Kalibrierung

Für die externe Kalibrierung werden folgende Kalibrierlösungen aus der Stammlösung PBDE [je Kongener 1 µg mL⁻¹] und Interner Standard DBOFB [0,2 µg mL⁻¹] (Kapitel 6.1) sowie der Stammlösung des Internen Standards CB209 [1 µg mL⁻¹] (Kapitel 5.1) hergestellt.

Die in Tabelle 37 angegebenen Volumina werden in einen 1 mL Messkolben pipettiert und mit Toluol bis zur Marke aufgefüllt.

	Volumen PBDE+DBOFB ¹ (Kapitel 6.1)	Volumen <i>CB209²</i> (Kapitel 0)	c(PBDE) [ng mL ⁻¹ je Kongener]	c(DBOFB) [ng mL⁻¹]	c(CB209) [ng mL ⁻¹]
PBDE 1	50	100	50	10	100
PBDE 2	100	100	100	20	100
PBDE 3	150	100	150	30	100
PBDE 4	200	100	200	40	100
PBDE 5	250	100	250	50	100
PBDE 6	300	100	300	60	100
PBDE 7	350	100	350	70	100
PBDE 8	400	100	400	80	100
PBDE 9	450	100	450	90	100
PBDE 10	500	100	500	100	100

Taballa 37. Kalibrierlösungen der PRDE

¹ Interner Standard zur Kontrolle der Wiederfindung,

² Interner Standard zur Korrektur des Injektionsfehlers

Ergänzende Anmerkung auf Basis der im Ringversuch gemachten Erfahrungen:

Gegebenenfalls kann nach interner Validierung der Methode die Anzahl der • Kalibrierpunkte reduziert werden.

Der Interne Standard CB209 wird zur Korrektur des Injektionsfehlers verwendet. Daher erfolgt

die Auswertung über den Response mit $\frac{A_{PBDE}}{A_{CB209}}$.

STANDARDANALYSEVERFAHREN ZUR BESTIMMUNG VON PENTABROMIERTEN UND OCTABROMIERTEN DIPHENYLETHERN IN POLYMEREN

Zum Erstellen der Kalibriergeraden wird der Response $\frac{A_{PBDE}}{A_{CB209}}$ über die relative Konzentration

 $\frac{c_{PBDE}}{c_{CB209}}$ aufgetragen.

Es folgt eine lineare Regression mit der Gleichung

$$\frac{A_{PBDE}}{A_{CB209}} = a * \frac{c_{PBDE}}{c_{CB209}} + b$$

mit A_{PBDE}: Peakfläche PBDE

A_{CB209}: Peakfläche CB209

C_{PBDE}: Konzentration PBDE je Kongener in der Kalibrierung [ng mL⁻¹]

c_{CB209}: Konzentration Interner Standard CB209 in der Kalibrierung [ng mL⁻¹]

a: Steigung

b: Achsenabschnitt

6.3. Berechnung der PBDE-Konzentration

Die Konzentrationen der PBDE in der Probe [mg g⁻¹] werden mit folgender Formel berechnet:

mit D [mL]: Volumen Toluol, berechnet aus der ausgewogenen Extraktmenge [g] und der Dichte von Toluol (0,87 g mL⁻¹) nach der Formel:

D [mL] =
$$\frac{T[g]}{0.87[g]}$$
 * [mL]

F: Umrechnungsfaktor der Einheiten (von ng zu mg) = 10^6

E [g]: Probeneinwaage

G: Verdünnungsfaktor (Kapitel 5.5) = 2

STANDARDANALYSEVERFAHREN ZUR BESTIMMUNG VON PENTABROMIERTEN UND OCTABROMIERTEN DIPHENYLETHERN IN POLYMEREN

Ergänzende Anmerkung auf Basis der im Ringversuch gemachten Erfahrungen:

• Bei der Berechnung der Konzentrationen der PBDE in der Probe muss ein eventuell vorhandener Leerwert (nach Kap. 6.4) berücksichtigt werden.

Der Interne Standard DBOFB dient zur Kontrolle der Probenvorbereitung auf grobe Fehler (z.B. Verdünnungsfehler). Wenn die Wiederfindung weniger als 60 % oder über 115 % beträgt, sollte die Extraktion wiederholt werden. Die Ergebnisse werden nicht über die Wiederfindung korrigiert.

6.4. Leerwerte

Der Leerwert wird für jede Extraktionseinheit bestimmt. Um den Leerwert zu bestimmen, wird das Standardanalyseverfahren ohne Probenmaterial durchgeführt.

7 GC/MS

Zur Analytik wird die Kapillargaschromatographie gekoppelt an einen massenspektrometrischen Detektor verwendet.

Die GC-Säule sollte für die Bestimmung von höherbromierten PBDE nicht zu lang sein, da die PBDE zu Debromierung neigen, wenn sie zu lange hohen Temperaturen ausgesetzt sind. Eine Säulenlänge von ca. 15 m weist eine ausreichende Trennleistung der PentaBDE- und OctaBDE-Isomere auf.

Folgende Parameter werden in Abhängigkeit vom GC/MS-System empfohlen:

GC Säule:	Phenyl-Arylen-Polymer äquivalent zu (5% Phenyl)-methylpolysiloxan
	Länge 15 m; Innendurchmesser 0,25 mm; 0,1 µm Filmdicke
PTV Programm:	90 °C (0 min) – 300 °C min ⁻¹ – 350 °C (15 min)
	Modus: Splitless
	Purge time 1 min; Purge flow 50 mL min ⁻¹
GC-Ofen Programm:	70 °C (2 min) - 20 °C min ⁻¹ - 300 °C (15 min)
Constant flow	1,2 mL min ⁻¹
Trägergas	Helium
Restriktionskapillare	Deaktiviert, Fused Silica, Länge 3 m, Innendurchmesser 0,18 mm
Transferline	310 °C
Ion Source T	200 °C
Ionisierungsmethode	EI; 70 eV

STANDARDANALYSEVERFAHREN ZUR BESTIMMUNG VON PENTABROMIERTEN UND OCTABROMIERTEN DIPHENYLETHERN IN POLYMEREN

Die Analytik der PBDE wird im SIM (Single Ion Monitoring) Modus (EI: Electron Impact Ionisation) mit folgenden Massenspuren durchgeführt (Zur Quantifizierung wurden die unterstrichenen Massenspuren verwendet.):

PentaBDE	(M ⁺ -2Br)+2, (M ⁺ -2Br)+4, M ⁺ +4	<u>403.7,</u> 405.7, 563.6
OctaBDE	(M ⁺ -2Br)+6, (M ⁺ -2Br)+8, M ⁺ +8	<u>641.6,</u> 643.6, 801.5
CB209	M*+4, M*+6, (M*-2CI)+4	<u>497.5,</u> 499.6, 427.6
DBOFB	M ⁺ +3, M ⁺ +2, (M ⁺ -FBr)+2	<u>455.8,</u> 454.4, 357.5

Zur analytischen Bestimmung werden neben den SIM – Massen die Retentionszeiten der Standardsubstanzen herangezogen.

Anhang 2 Charakterisierung der technischen PBDE

2.1 Charakterisierung PENTA-BDE technisch (DE-71-Great-Lakes)

HerstellerGreat Lakes Chemical Corporation1500 E. 96th Street, Suite 500, Indiana 46240; USA

Tabelle 38: Gewichtsprozentuale Zusammensetzung PENTA-BDE technisch.

Nr.	Ballschmitter		Gewichts-% /14/
(s. Abbildung 26)	Nr.		
1	17	2,2',4-TriBDE	0,067
2	28	2,4,4'-TriBDE	0,22
3	47	2,2',4,4'-TetraBDE	32,96
4	66	2,3',4,4'-TetraBDE	0,77
5	100	2,2',4,4',6-PentaBDE	9,96
6	99	2,2',4,4',5-PentaBDE	42,03
7	85	2,2',3,4,4'-PentaBDE	1,82
8	154	2,2',4,4',5,6'-HexaBDE	4,15
9	153	2,2',4,4',5,5'-HexaBDE	4,77
10	138	2,2',3,4,4',5'-HexaBDE	0,46

¹ An dieser Stelle sei der Fa. Great Lakes für die großzügige Bereitstellung der Flammschutzmittel DE-71 und DE-79 gedankt.

2.2 Charakterisierung OCTA-BDE technisch (DE-79-Great-Lakes)

Hersteller Great Lakes Chemical Corporation 500 E. 96th Street, Suite 500, Indiana 46240; USA

Tabelle 39: C	Gewichtsprozentuale Zusammensetzung OCTA-BDE technisch.					
Nr.	Ballschmitter		Gewichts-% /14/			
(s. Abbildung 27)	Nr.					
1	154	2,2',4,4',5,6'-HexaBDE	1,19			
2	153	2,2',4,4',5,5'-HexaBDE	8,10			
3	183	2,2',3,4,4',5',6-HeptaBDE	40,17			
4	u	HeptaBDE	2,01			
5	190	2,3,3',4,4',5,6-HeptaBDE	0,84			
6	197*	2,2',3,3',4,4',6,6'-OctaBDE	21,42			
7	203*	2,2',3,4,4',5,5',6-OctaBDE	5,51			
8	196*	2,2',3,3',4,4',5,6'-OctaBDE	8,27			
9	u	NonaBDE	12,49			

u: unbekanntes Isomer; *Diese Isomere wurden durch Retentionszeitvergleich mit erhältlichen Standards identifiziert.

Abbildung 27: Chromatogramm OCTA-BDE technisch; DB5-ms, 15 m, 0,25 mm ID, 0,1 μm df; 1 μL (50 ng/μL); 70°C (2 min) - 10°C/min - 300°C (15 min).

Anhang 3 Methodenvalidierung (Kalibrierfunktion, Varianzenhomogenität)

3.1 Kalibrierfunktion und Verfahrenskenndaten

Die Kalibrierlösungen (nach Anhang 1, Tabelle 37) werden je dreimal vermessen (s. Tabelle 40) und aus den ermittelten Messwerten die vorläufigen Kalibrierfunktionen 1. und 2. Grades berechnet, deren Verfahrenskenndaten für weitere statistische Tests benötigt werden.

	mitterwerte der drei Wiederneimebedingen der Kallbhenebangen.						
		Response (A _{PBDE} /A _{CB209})					
	BDE100	BDE99	BDE85	BDE197	BDE203	BDE196	DBOFB
PBDE 1	0,242	0,233	0,216	0,034	0,022	0,033	0,129
PBDE 2	0,565	0,519	0,431	0,051	0,035	0,060	0,246
PBDE 3	0,939	0,826	0,702	0,092	0,058	0,103	0,364
PBDE 4	1,388	1,174	1,011	0,117	0,084	0,142	0,500
PBDE 5	1,804	1,499	1,170	0,149	0,105	0,173	0,620
PBDE 6	2,314	1,872	1,490	0,180	0,132	0,205	0,748
PBDE 7	2,983	2,381	1,955	0,241	0,166	0,264	0,900
PBDE 8	3,523	2,742	2,254	0,250	0,174	0,272	1,033
PBDE 9	4,113	3,170	2,456	0,300	0,201	0,325	1,132
PBDE 10	4,236	3,477	2,546	0,358	0,204	0,359	1,320

Tabelle 40: Mittelwerte der drei Wiederholmessungen der Kalibrierlösungen.

Kalibrierfunktion 1. Grades /9/

Die Regressionsanalyse liefert die lineare Kalibrierfunktion mit den Verfahrenskenndaten (Steigung b, Achsenabschnitt a, Reststandardabweichung s_{y1} , Verfahrensstandardabweichung s_{xo} , relative Verfahrensstandardabweichung V_{xo}), welche in Tabelle 41 zusammengefasst sind.

	Entourt						
	BDE100	BDE99	BDE85	BDE197	BDE203	BDE196	DBOFB
b	0,0096	0,0074	0,0056	0,0007	0,0004	0,0007	0,0131
a [ng mL ⁻¹]	-0,4227	-0,2549	-0,1120	-0,0181	-0,0036	-0,0074	-0,0209
s _{y1} [ng mL ⁻¹]	0,1512	0,0781	0,0953	0,0138	0,0079	0,0081	0,0182
s _{xo} [ng mL ⁻¹]	15,785	10,512	17,074	19,383	17,796	11,123	1,389
V _{xo} [%]	5,74	3,82	6,21	7,05	6,47	4,04	2,52

Lineare Kalibrierfunktion und Verfahrenskenndaten. Tabelle 41

Kalibrierfunktion 2. Grades /9/

Die Regressionsanalyse liefert die quadratische Kalibrierfunktion mit ihren Verfahrenskenndaten (Funktionskoeffizienten a, b, c; Reststandardabweichung sy2, Verfahrensstandardabweichung sxo, relative Verfahrensstandardabweichung V_{xo}), welche in Tabelle 42 zusammengefasst sind.

Tabelle 42:	Kalibrie	Kalibrierrunktion 2. Grades und Verrahrenskenndaten.					
	BDE100	BDE99	BDE85	BDE197	BDE203	BDE196	DBOFB
a [ng mL ⁻¹]	3 * 10 ⁻⁶	3 * 10 ⁻⁶	-2 * 10 ⁻⁷	5 * 10 ⁻⁷	-2 * 10 ⁻⁷	2 * 10 ⁻⁸	1,4 * 10 ⁻⁵
b	0,0078	0,0058	0,0057	0,0004	0,0005	0,0007	0,0115
С	-0,2411	-0,0949	-0,1245	0,0091	-0,0123	-0,0061	0,0107
s _{y2} [ng mL ⁻¹]	0,1482	0,0548	0,1018	0,0167	0,0186	0,0112	0,0149
s _{xo} [ng mL ⁻¹]	15,678	7,351	18,208	24,691	47,731	15,778	1,140
V _{xo} [%]	5,70	2,67	6,62	8,98	17,36	5,74	2,07

Taballa 12. Kalibriarfunktion 2 Grades und Verfahrenskenndaten

Überprüfung der Linearität

Nach Möglichkeit sollte mit einer linearen Kalibrierfunktion gearbeitet werden und nur in begründeten Ausnahmefällen die Kalibrierung 2. Grades angewendet werden.

Anpassungstest nach Mandel /9/:

Zur rechnerischen Prüfung auf Linearität wird der Anpassungstest nach Mandel empfohlen. Hierzu werden die lineare Kalibrierfunktion und die Kalibrierfunktion 2. Grades, einschließlich der jeweiligen Reststandardabweichung herangezogen. Aus den Reststandardabweichungen s_{y1} und s_{y2} wird die Differenz der Varianzen DS² berechnet:

$$DS^{2} = (N-2)s_{y1}^{2} - (N-3)s_{y2}^{2}$$

mit *f: Freiheitsgrad* = 1

N: Anzahl der gewählten Konzentrationsstufen = 10

Für den F-Test wird der Prüfwert PW berechnet: $PW = \frac{DS^2}{s_{y2}^2}$

und mit dem Tabellenwert F ($f_1 = 1$, $f_2 = N-3$, P = 99 %) verglichen.

Falls PW kleiner oder gleich F, wird durch die Kalibrierfunktion 2. Grades keine signifikant bessere Anpassung erreicht. Die Kalibrierfunktion ist linear.

	LIYEDII	Ergebnisse des Anpassungstests nach Mandel.					
	BDE100	BDE99	BDE85	BDE197	BDE203	BDE196	DBOFB
S _{y1}	0,1512	0,0781	0,0953	0,0138	0,0079	0,0081	0,0182
s _{y2}	0,1482	0,0548	0,1018	0,0167	0,0186	0,0112	0,0149
Ν	10	10	10	10	10	10	10
DS ²	0,0291	0,0279	0,0002	-0,0004	-0,0019	-0,0004	0,0011
PW	1,3	9,3	0,0	-1,5	-5,6	-2,8	4,9
F (1; 7; 99%)				12,25			

 Tabelle 43:
 Ergebnisse des Anpassungstests nach Mandel.

Alle untersuchten Kalibrierungen (s. Abbildung 28 bis Abbildung 34) sind linear.

Abbildung 28: Kalibrierung BDE100.

Abbildung 29: Kalibrierung BDE99.

Abbildung 30: Kalibrierung BDE85.

Abbildung 31: Kalibrierung BDE197.

Abbildung 32: Kalibrierung BDE203.

Abbildung 33: Kalibrierung BDE196.

Abbildung 34: Kalibrierung DBOFB.

3.2 Überprüfung der Varianzenhomogenität

Die niedrigste (x_1) und die höchste (x_N) Konzentration der Kalibrierung (PBDE und DBOFB) wurden jeweils zehnmal getrennt analysiert (s. Tabelle 44 bis Tabelle 46).

Jeder erhaltene Datensatz wurde mit Hilfe des Grubbs'schen Ausreißertests auf Ausreißer geprüft. Die zehnte Messung der hohen Konzentration der PBDE wurde als Ausreißer erkannt und somit bei der Auswertung nicht berücksichtigt. Die Messwerte sind mit Stern (*) gekennzeichnet.

	BDE100		BDE99		BDE85	
	50 ng mL ⁻¹	500 ng mL ⁻¹	50 ng mL ⁻¹	500 ng mL ⁻¹	50 ng mL ⁻¹	500 ng mL ⁻¹
1. Messung	0,3544	6,1359	0,3416	5,0415	0,2851	4,0520
2. Messung	0,3496	6,1801	0,3242	5,0882	0,2872	4,0934
3. Messung	0,3610	6,1719	0,3189	5,0118	0,2897	4,0128
4. Messung	0,3595	6,1608	0,3233	5,0329	0,2707	4,0355
5. Messung	0,3318	6,1523	0,3139	5,0207	0,2797	4,0140
6. Messung	0,3767	6,1213	0,3261	5,0743	0,2849	4,0211
7. Messung	0,3381	6,1735	0,2808	5,0789	0,2757	4,0645
8. Messung	0,3504	6,1380	0,3064	5,0177	0,2878	4,0125
9. Messung	0,3540	6,1064	0,2808	5,0342	0,2531	4,0225
10. Messung	0,3351	7,2114*	0,3186	5,6515*	0,2520	4,9159*
Mittelwert \overline{y}	0,3511	6,1489	0,3135	5,0445	0,2766	4,0365
Varianz s ²	0,000183	0,000640	0,000378	0,000823	0,000195	0,000792
PW	3	,50	2	,18	4	,06
F (0,99; 9; 8)			5	,47		

Tabelle 44:Messwertserien (Response: A/A_{CB209}) für BDE100, BDE99,BDE85 der niedrigsten (x_1) und höchsten (x_N) Konzentration.

BDE196 der niedrigsten (x_1) und höchsten (x_N) Konzentration.						
	BDE197		BDE203		BDE196	
	50 ng mL ⁻¹	500 ng mL ⁻¹	50 ng mL ⁻¹	500 ng mL ⁻¹	50 ng mL ⁻¹	500 ng mL ⁻¹
1. Messung	0,0532	0,5988	0,0382	0,4361	0,0497	0,6311
2. Messung	0,0510	0,5967	0,0388	0,4337	0,0530	0,6366
3. Messung	0,0503	0,5968	0,0398	0,4381	0,0560	0,6338
4. Messung	0,0591	0,5915	0,0392	0,4305	0,0575	0,6358
5. Messung	0,0521	0,5910	0,0383	0,4303	0,0550	0,6311
6. Messung	0,0535	0,5964	0,0309	0,4376	0,0505	0,6312
7. Messung	0,0505	0,5943	0,0323	0,4396	0,0494	0,6319
8. Messung	0,0504	0,5916	0,0326	0,4312	0,0498	0,6381
9. Messung	0,0498	0,5972	0,0329	0,4323	0,0477	0,6368
10. Messung	0,0505	0,7069*	0,0339	0,5550*	0,0458	0,7875*
Mittelwert \overline{y}	0,0520	0,5949	0,0357	0,4344	0,0514	0,6340
Varianz s ²	7,78E-06	8,47E-06	1,19E-05	1,26E-05	1,44E-05	7,95E-06
PW	1	,09	1	,06	1	,81
F (0,99; 9; 8)			5	,47		

Tabelle 45:	Messwertserien (Response: A/A _{CB209}) für BDE197, BDE203,
	BDE196 der niedrigsten (x_1) und höchsten (x_N) Konzentration.

Tabelle 46:Messwertserien (Response: A/A_{IS}) für DBOFB der niedrigsten
(x_1) und höchsten (x_N) Konzentration.

	10 ng mL ⁻¹	100 ng mL ⁻¹
1. Messung	1,9233*	6,5102
2. Messung	0,7716	6,5881
3. Messung	0,7370	6,5043
4. Messung	0,7735	6,5876
5. Messung	0,7079	6,5509
6. Messung	0,7910	6,5495
7. Messung	0,7146	6,5565
8. Messung	0,7189	6,5635
9. Messung	0,7020	6,5911
10. Messung	0,7126	5,1636*
Mittelwert \overline{y}	0,7366	6,5557
Varianz s ²	1,12E-03	1,02E-03
PW	1,10 < F(0,99	9; 9, 9) = 5,35

Seite 129

Anhang 4 Spezifikation der verwendeten Polymere

An dieser Stelle sei der Fa. Grafe Color Batch und der Fa. Rühl PUROMER für die Unterstützung bei der Herstellung der Polymermaterialien gedankt.

Anhang 4.1 AcryInitril-Butadien-Styrol-Copolymer (ABS)

<u>Hersteller</u>	Grafe Color Batch GmbH
	Waldecker Straße 21
	99444 Blankenhain
<u>Formulierung</u>	Magnum 8391 (Dow Chemical Company)
<u>Hauptanwendungen</u>	Haushaltsprodukte, Konsumartikel, Spielzeug

Tabelle 47: ABS Allgemeine Kenndaten.

	Testmethode	Wert
Physikalische Eigenschaften		
Dichte	ISO 1183	1050 kg/m ³
Schüttdichte		650 kg/m ³
Thermische Eigenschaften		
Vicat-Erweichungstemperatur, 49N/50 °C	ISO 306B	95 °C
Formbeständigkeitstemperatur, 1,82 MPa	ISO 75-1	95 °C

FSM-Zusatz in Gewichts-%:

0,97 % Great Lakes DE-71 bzw.

2,95 % Great Lakes DE-79

Zusätzlich wurde ABS ohne Additive geliefert.

Lieferform weißes Zylindergranulat

Anhang 4.2 Polystyrol (PS)

<u>Hersteller</u>	Grafe Color Batch GmbH
	Waldecker Straße 21
	99444 Blankenhain
Formulierung	Lacqrene [®] PS-HI 6631 (Atofina S.A.)
<u>Hauptanwendungen</u>	Spielwaren, Computer, Tastaturen, Büroausstattun-
	gen, Fernsehergehäuse

Tabelle 48: PS Allgemeine Kenndaten.

	Testmethode	Wert
Physikalische Eigenschaften		
Dichte	ISO 1183	1040 kg/m ³
Verarbeitungsschwindung		0,4-0,7 %
Thermische Eigenschaften		
Vicat-Erweichungstemperatur, 50N/50 °C	ISO 306B50	82 °C
Formbeständigkeitstemperatur, 1,82 Mpa	ISO 75-2A	78 °C

FSM-Zusatz in Gewichts-%:

2,96 % Great Lakes DE-79

Zusätzlich wurde PS ohne Additive geliefert.

Lieferform weißes Zylindergranulat

Anhang 4.3 Polyurethan-Hartschaumstoff (PUR-H)

<u>Hersteller</u>	Rühl PUROMER GmbH			
	Hugenottenstraße 105			
	61381 Friedrichso	61381 Friedrichsdorf		
<u>Formulierung</u>	Komponente A	PUR 460BS-85		
	(Polyetherpolyole)			
	Komponente B	PUR 900/1		
	(Diphenylmethan	-Diisocyanat, MDI)		
<u>Hauptanwendungen</u>	Blockschaumteile	, Hinterfüllschaum		

Tabelle 49: PUR-H Allgemeine Kenndaten.

	PUR 460BS-85	PUR 900/1	
Dichte (25 °C)	1,04 g/cm ³ 1,23 g/cm ³		
Viskosität (25 °C)	$550\pm100\ mPas$	$210\pm50\ \text{mPas}$	
Schäumverhalten (Bechertest bei 25 °C, Standardwerte)			
Mischungsverhältnis	100 g 120 g		
Ruhezeit	50 ± 5 s		
Steigzeit	230 ± 20 s		
Raumgewicht	$80 \pm 5 \text{ kg/m}^3$		

FSM-Zusatz in Gewichts-%

ca. 2 % Great Lakes DE-71

Zusätzlich wurde PUR-H ohne Additive geliefert.

Lieferform aufgeschäumt in zwei Bechern

Anhang 4.4 Epoxidharz (EP)

Die Herstellung des Harzes erfolgte nach Kap. 8.2.

<u>Hersteller</u>	Remmers Bauchemie GmbH
	Am Priggenbusch 13
	49624 Löningen
	Mischung der Komponenten: BAM IV.2
<u>Formulierung</u>	Viscacid [®] Epoxi-Bauharz
	Komponente A:
	Bisphenol-A-Epichlorhydrin-Harze MG<700,
	Glycidylester der Neodecansäure
	Komponente B:
	Polyoxypropylendiamin, Nonylphenol,
	m-Xylylendiamin, Isophorondiamin
<u>Hauptanwendungen</u>	Estrich, Fußbodenbeschichtungen, Bindemittel für
	Antirutschbeläge

Tabelle 50:EP Allgemeine Kenndaten.

	Komponente A	Komponente B	Mischung
Viskosität bei 25 °C	1800 mPas	80 mPas	730 mPas
Dichte	1,12 g/cm ³	0,97 g/cm ³	1,08 g/cm ³
Mischungsverhältnis	3 Teile Komponente A + 1 Teil Komponente B		
Verarbeitungszeit (1 kg, 20 – 50 °C)	50 min		
Topfzeit (100 g, 20 – 50 °C)	55 min		

FSM-Zusatz in Gewichts-%

2,0 % Great Lakes DE-71

Zusätzlich wurde EP ohne Additive gegossen.

Lieferform: zwei Weißblechgebinde á 1 kg

Anhang 5 Formeln zur Berechnung der Homogenität der Polymermaterialien

Abkürzungen:

 f_1 = Freiheitsgrade zwischen den Teilproben

 $f_2 = Freiheitsgrade innerhalb der Teilproben$

i = Teilprobe

j = Wiederholmessung

p=: Anzahl der Teilproben

 \overline{n} =: Mittelwert der Anzahl der Wiederholmessungen

n_i = Anzahl der Wiederholmessungen der Teilprobe i

 $MW_{Gesamt} = Mittelwert der MW_i$ aller Teilproben in mg g⁻¹

 MW_i = Mittelwert der Wiederholmessungen der Teilprobe i in mg g⁻¹

QS₁ = Quadratsumme zwischen den Teilproben

QS₂ = Quadratsumme innerhalb der Teilproben

 s_{Gesamt} = Mittelwert der s_i aller Teilproben in mg g⁻¹

 s_i = Standardabweichung der Teilprobe i in mg g⁻¹

 s_L = Standardabweichung infolge des Einflusses der Teilproben

 $s_r^2 = Wiederholvarianz$

 s_v^2 = Varianz zwischen den Teilproben

 V_{Gesamt} = Mittelwert der relativen Standardabweichungen aller Teilproben in %

V_i = relative Standardabweichung der Teilprobe i in %

 x_{ij} = Ergebnis der Wiederholmessung j der Teilprobe i in mg g⁻¹
Beispielrechnung (ABS mit OCTA-BDE) Teilprobe 4: $(n_1 = 3)$ **Gleichung** 1 $MW_4 = \frac{1}{3}(0,570 + 0,568 + 0,542) = 0,560$ $MW_i = \frac{1}{n_i} \sum_{i=1}^{n_i} \mathbf{x}_{ij}$ **Gleichung 2** $s_i = \sqrt{\frac{1}{n_i - 1} \sum_{i=1}^{n_i} (x_{ij} - MW_i)^2}$ $s_4 = \sqrt{\frac{1}{2} \left[(0,570 - 0,560)^2 + (0,568 - 0,560)^2 + (0,542 - 0,560)^2 \right]}$ = 0.0156 Gleichung 3 $V_i = \frac{S_i \cdot 100\%}{MW_i}$ $V_4 = \frac{0,0156 \cdot 100\%}{0,560} = 2,8\%$ Alle Teilproben (p = 8) $MW_{Gesamt} = \frac{1}{8}(0.508 + 0.549 + 0.539 + 0.560 + 0.513)$ Gleichung 4 +0,504+0,473+0,578) = 0,528 $MW_{Gesamt} = \frac{1}{p} \sum_{i=1}^{p} MW_i$ **Gleichung 5** $s_{\text{Gesamt}} = \frac{1}{8}(0,0193 + 0,0413 + 0,0462 + 0,0156)$ $S_{Gesamt} = \frac{1}{p} \sum_{i=1}^{p} S_i$ + 0,0281 + 0,0526 + 0,0280 + 0,0317) = 0.0329 Gleichung 6 $V_{\text{Gesamt}} = \frac{0,0329 \cdot 100\%}{0,528} = 6,2\%$ $V_{\text{Gesamt}} = \frac{S_{\text{Gesamt}} \cdot 100\%}{MW_{\text{Gesamt}}}$

Gleichungen zur Ermittlung der analytischen Daten

Gleichungen zur ANOVA-Tabelle

	Beispielrechnung (ABS mit OCTA-BDE)
Gleichung 7	
$QS_{1} = \sum_{i=1}^{p} n_{i} (MW_{i} - MW_{Gesamt})^{2}$	$\begin{aligned} & QS_1 = 4(0,508-0,528)^2 + 4(0,549-0,528)^2 + 3(0,539-0,528)^2 \\ & + 3(0,560-0,528)^2 + 3(0,513-0,528)^2 + 3(0,504-0,528)^2 \\ & + 3(0,473-0,528)^2 + 3(0,578-0,528)^2 = 0,026 \end{aligned}$
Gleichung 8	
$QS_{2} = \sum_{i=1}^{p} \sum_{j=1}^{n_{i}} (x_{ij} - MW_{i})^{2}$	$ \begin{array}{l} QS_2 = (0,524 - 0,528)^2 + (0,524 - 0,528)^2 + (0,495 - 0,528)^2 \\ + (0,487 - 0,528)^2 + (0,504 - 0,528)^2 + (0,547 - 0,528)^2 \\ + (0,540 - 0,528)^2 + (0,604 - 0,528)^2 + (0,502 - 0,528)^2 \\ + (0,591 - 0,528)^2 + (0,525 - 0,528)^2 + (0,570 - 0,528)^2 \\ + (0,568 - 0,528)^2 + (0,542 - 0,528)^2 + (0,527 - 0,528)^2 \\ + (0,481 - 0,528)^2 + (0,532 - 0,528)^2 + (0,532 - 0,528)^2 \\ + (0,536 - 0,528)^2 + (0,443 - 0,528)^2 + (0,458 - 0,528)^2 \\ + (0,505 - 0,528)^2 + (0,455 - 0,528)^2 + (0,542 - 0,528)^2 \\ + (0,593 - 0,528)^2 + (0,600 - 0,528)^2 = 0,022 \end{array} $
Gleichung 9 $f_1 = p - 1$	f ₁ = 7
Gleichung 10	
$f_2 = \left(\sum_{i=1}^p n_i\right) - p$	$f_2 = 4 + 4 + 3 + 3 + 3 + 3 + 3 + 3 - 8 = 18$
Gleichung 11 $s_v^2 = \frac{QS_1}{f_1}$	$s_v^2 = \frac{0,026}{7} = 0,0037$
Gleichung 12 $s_r^2 = \frac{QS_2}{f_2}$	$s_r^2 = \frac{0,022}{18} = 0,0012$
Gleichung 13 = $n = \frac{1}{p-1} \left[\sum_{i=1}^{p} n_i - \frac{\sum_{i=1}^{p} n_i^2}{\sum_{i=1}^{p} n_i} \right]$	$= n = \frac{1}{7} \left[26 - \frac{4^2 + 4^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2}{26} \right]$ = 3,24
Gleichung 14	
$S_{L} = \sqrt{\frac{S_{v}^{2} - S_{r}^{2}}{\frac{m}{n}}}$	$s_L = \sqrt{\frac{0,0037 - 0,0012}{3,24}} = 0,0278$

Abbildung 35: EI-Massenspektrum von 2,2',4,4',6-PentaBDE (BDE100).

Abbildung 36: EI-Massenspektrum von 2,2',4,4',5-PentaBDE (BDE99).

Abbildung 42: EI-Massenspektrum von 4,4'-Dibromoctafluorbiphenyl (DBOFB).

Anhang 7 Berechnung der Indikatoren der Mandels h- und k-Statistik

Anhang 7.1 Mandels h-Statistik

Die Mandels h-Statistik dient zur Berechnung der Vereinbarkeits-Prüfgröße zwischen den Labors, h, und ist wie folgt zu berechnen:

$$h_{ij} = \frac{\overline{y_{ij}} - \overline{y_j}}{\sqrt{\frac{1}{(p_j - 1)} \sum_{i=1}^{p_j} (\overline{y_{ij}} - \overline{y_j})^2}}$$

mit

 \overline{y}_{ij} : arithmetischer Labormittelwert $\overline{\overline{y}}_{j}$: arithmetischer Gesamtmittelwert p_{j} : Anzahl Labors

Anhang 7.2 Mandels k-Statistik

Die Vereinbarkeits-Prüfgröße innerhalb des Labors, k, ist wie folgt zu berechnen:

$$\mathbf{k}_{ij} = \frac{s_{ij}\sqrt{p_j}}{\sqrt{\sum s_{ij}^2}}$$

mit

 \boldsymbol{s}_{ij} : Standardabweichung der Ermittlungsergebnisse eines Labors

Anhang 7.3 Ergebnisse für h und k der einzelnen Polymere

Anhang 7.3.1 PentaBDE-Isomere in Epoxidharz

Tabelle 51	Arithmetischer Gesamtmittelwert		PenlaBDE-Isomere Ir	i Epoxianarz).
Labor	Arithmetischer	Gesamtmittelwert	Standardabweichung	h _{ij}
	Mittelwert		zwischen den Zellen	
	[mg g⁻¹]	[mg g⁻¹]	[mg g ⁻¹]	
001	0,914	1,177	0,281	-0,937
003	1,868	1,177	0,281	2,458
004	1,107	1,177	0,281	-0,250
012	1,279	1,177	0,281	0,362
013	0,786	1,177	0,281	-1,392
014	1,145	1,177	0,281	-0,114
019	1,25	1,177	0,281	0,259
021	0,893	1,177	0,281	-1,011
026	1,113	1,177	0,281	-0,228
027	1,181	1,177	0,281	0,014
030	1,25	1,177	0,281	0,259
037	0,832	1,177	0,281	-1,228
040	1,297	1,177	0,281	0,426
041	1,07	1,177	0,281	-0,381
044	1,125	1,177	0,281	-0, 186
045	1,795	1,177	0,281	2,199
046	1,152	1,177	0,281	-0,090
Coord	1,132	1,177	0,281	-0,161

Tabelle 51: Berechnete Werte für h (Σ PentaBDE-Isomere in Epoxidharz).

Labor	S _{ij}	S_{ii}^2	$\sqrt{D_i}$	$\sum s_{ii}^2$	$\sqrt{\sum s_{i}^2}$	k _{ij}
	[mg g ⁻¹]		\sqrt{r}	_ ,	N Z U	
001	0,040	0,0016	4,24	0,1476	0,38	0,44
003	0,265	0,0702	4,24	0,1476	0,38	2,93
004	0,046	0,0021	4,24	0,1476	0,38	0,51
012	0,023	0,0005	4,24	0,1476	0,38	0,25
013	0,040	0,0016	4,24	0,1476	0,38	0,44
014	0,037	0,0014	4,24	0,1476	0,38	0,41
019	0,045	0,0020	4,24	0,1476	0,38	0,50
021	0,051	0,0026	4,24	0,1476	0,38	0,56
026	0,046	0,0021	4,24	0,1476	0,38	0,51
027	0,024	0,0006	4,24	0,1476	0,38	0,27
030	0,044	0,0019	4,24	0,1476	0,38	0,49
037	0,092	0,0085	4,24	0,1476	0,38	1,02
040	0,041	0,0017	4,24	0,1476	0,38	0,45
041	0,024	0,0006	4,24	0,1476	0,38	0,27
044	0,053	0,0028	4,24	0,1476	0,38	0,59
045	0,099	0,0098	4,24	0,1476	0,38	1,09
046	0,19	0,0361	4,24	0,1476	0,38	2,10
Coord	0,038	0,0014	4,24	0,1476	0,38	0,42

Tabelle 52: Berechnete Werte für k (Σ PentaBDE-Isomere in Epoxidharz).

Tabelle 53:	Berechnete Werte für h (Σ PentaBDE-Isomere in Polyurethan) Arithmethischer Gesamtmittelwert Standardabweichung								
Labor	Arithmethischer	Gesamtmittelwert	Standardabweichung	n _{ij}					
	Mittelwert		zwischen den Zellen						
	[mg g⁻¹]	[mg g⁻¹]	[mg g⁻¹]						
001	1,069	1,365	0,285	-1,039					
003	1,848	1,365	0,285	1,695					
004	1,202	1,365	0,285	-0,572					
012	1,450	1,365	0,285	0,298					
013	0,870	1,365	0,285	-1,737					
014	1,400	1,365	0,285	0,123					
019	1,441	1,365	0,285	0,267					
021	1,143	1,365	0,285	-0,779					
026	1,313	1,365	0,285	-0,182					
027	1,368	1,365	0,285	0,011					
030	1,653	1,365	0,285	1,011					
037	1,180	1,365	0,285	-0,649					
040	1,322	1,365	0,285	-0,151					
041	1,220	1,365	0,285	-0,509					
044	1,369	1,365	0,285	0,014					
045	2,082	1,365	0,285	2,516					
046	1,148	1,365	0,285	-0,761					
Coord	1,498	1,365	0,285	0,467					

Anhang 7.3.2 PentaBDE-Isomere in Polyurethan

Labor	S _{ij}	S_{ii}^2	$\sqrt{D_i}$	$\sum s_{ii}^2$	$\sqrt{\sum s_{i}^2}$	k _{ij}
	[mg g ⁻¹]	9	N ^P J	<u> </u>	N Z U	
001	0,009	0,0001	4,24	0,6718	0,82	0,05
003	0,776	0,6022	4,24	0,67	0,82	4,02
004	0,058	0,0034	4,24	0,67	0,82	0,30
012	0,042	0,0018	4,24	0,67	0,82	0,22
013	0,028	0,0008	4,24	0,67	0,82	0,14
014	0,008	0,0001	4,24	0,67	0,82	0,04
019	0,043	0,0018	4,24	0,67	0,82	0,22
021	0,021	0,0004	4,24	0,67	0,82	0,11
026	0,026	0,0007	4,24	0,67	0,82	0,13
027	0,034	0,0012	4,24	0,67	0,82	0,18
030	0,013	0,0002	4,24	0,67	0,82	0,07
037	0,056	0,0031	4,24	0,67	0,82	0,29
040	0,057	0,0032	4,24	0,67	0,82	0,30
041	0,043	0,0018	4,24	0,67	0,82	0,22
044	0,029	0,0008	4,24	0,67	0,82	0,15
045	0,152	0,0231	4,24	0,67	0,82	0,79
046	0,150	0,0225	4,24	0,67	0,82	0,78
Coord	0,068	0,0046	4,24	0,67	0,82	0,35

Tabelle 54: Berechnete Werte für k (PentaBDE-Isomere in Polyurethan).

Tabelle 55:	e 55: Berechnete Werte für h (Σ OctaBDE-Isomere in Polystyrol). por Arithmetischer Gesamtmittelwert Standardabweichung h _{ii}										
Labor	Arithmetischer	Gesamtmittelwert	Standardabweichung	h _{ij}							
	Mittelwert		zwischen den Zellen								
	[mg g⁻¹]	[mg g ⁻¹]	[mg g⁻¹]								
001	1,069	1,365	0,285	-1,039							
003	1,848	1,365	0,285	1,695							
004	1,202	1,365	0,285	-0,572							
012	1,45	1,365	0,285	0,298							
013	0,87	1,365	0,285	-1,737							
014	1,4	1,365	0,285	0,123							
019	1,441	1,365	0,285	0,267							
021	1,143	1,365	0,285	-0,779							
026	1,313	1,365	0,285	-0,182							
027	1,368	1,365	0,285	0,011							
030	1,653	1,365	0,285	1,011							
037	1,18	1,365	0,285	-0,649							
040	1,322	1,365	0,285	-0,151							
041	1,22	1,365	0,285	-0,509							
044	1,369	1,365	0,285	0,014							
045	2,082	1,365	0,285	2,516							
046	1,148	1,365	0,285	-0,761							
Coord	1,498	1,365	0,285	0,467							

Anhang 7.3.3 OctaBDE-Isomere in Polystyrol

Labor	S _{ij}	S_{ij}^2	$\sqrt{p_i}$	$\sum s_{ij}^2$	$\sqrt{\sum s_{ii}^2}$	k _{ij}
	[mg g⁻¹]		V		V Z V	
001	0,046	0,0021	4,24	0,0348	0,19	1,05
003	0,042	0,0018	4,24	0,0348	0,19	0,96
004	0,058	0,0034	4,24	0,0348	0,19	1,32
012	0,067	0,0045	4,24	0,0348	0,19	1,52
013	0,021	0,0004	4,24	0,0348	0,19	0,48
014	0,010	0,0001	4,24	0,0348	0,19	0,23
019	0,046	0,0021	4,24	0,0348	0,19	1,05
021	0,000	0,0000	4,24	0,0348	0,19	0,00
026	0,031	0,0010	4,24	0,0348	0,19	0,71
027	0,067	0,0045	4,24	0,0348	0,19	1,52
030	0,022	0,0005	4,24	0,0348	0,19	0,50
037	0,049	0,0024	4,24	0,0348	0,19	1,11
040	0,012	0,0001	4,24	0,0348	0,19	0,27
041	0,009	0,0001	4,24	0,0348	0,19	0,20
044	0,056	0,0031	4,24	0,0348	0,19	1,27
045	0,062	0,0038	4,24	0,0348	0,19	1,41
046	0,030	0,0009	4,24	0,0348	0,19	0,68
Coord	0,063	0,0040	4,24	0,0348	0,19	1,43

Tabelle 56: Berechnete Werte für k (Σ OctaBDE-Isomere in Polystyrol).

Anhang 7.3.4 OctaBDE-Isomere in ABS

Labor	Arithmetischer	Gesamtmittelwert	Standardabweichung	h _{ij}
	Mittelwert		zwischen den Zellen	
	[mg g⁻¹]	[mg g⁻¹]	[mg g ⁻¹]	
001	0,424	0,4180	0,106	0,057
003	0,47	0,4180	0,106	0,491
004	0,44	0,4180	0,106	0,208
012	0,613	0,4180	0,106	1,840
013	0,303	0,4180	0,106	-1,085
014	0,498	0,4180	0,106	0,755
019	0,418	0,4180	0,106	0,000
021	0,287	0,4180	0,106	-1,236
026	0,583	0,4180	0,106	1,557
027	0,274	0,4180	0,106	-1,358
030	0,298	0,4180 0,106		-1,132
037	0,431	0,4180	0,106	0,123
040	0,496	0,4180	0,106	0,736
041	0,406	0,4180	0,106	-0,113
044	0,405	0,4180	0,106	-0,123
045	0,227	0,4180	0,106	-1,802
046	0,448	0,4180	0,106	0,283
Coord	0,508	0,4180	0,106	0,849

Tabelle 57:	Berechnete Werte für h ($(\Sigma \text{OctaBDE-Isomere in ABS})$	١.
	Dereonnete Werte für fit		

Labor	S _{ij}	S_{ij}^2	$\sqrt{p_i}$	$\sum s_{ii}^2$	$\sqrt{\sum s_{ii}^2}$	k _{ij}
	[mg g ⁻¹]	,	V, J	_ /	V "	
001	0,016	0,0003	4,24	0,0534	0,23	0,29
004	0,002	0,0000	4,24	0,0534	0,23	0,04
003	0,199	0,0396	4,24	0,0534	0,23	3,65
012	0,028	0,0008	4,24	0,0534	0,23	0,51
013	0,029	0,0008	4,24	0,0534	0,23	0,53
014	0,023	0,0005	4,24	0,0534	0,23	0,42
019	0,04	0,0016	4,24	0,0534	0,23	0,73
021	0,049	0,0024	4,24	0,0534	0,23	0,90
026	0,033	0,0011	4,24	0,0534	0,23	0,61
027	0,026	0,0007	4,24	0,0534	0,23	0,48
030	0,015	0,0002	4,24	0,0534	0,23	0,28
037	0,024	0,0006	4,24	0,0534	0,23	0,44
040	0,018	0,0003	4,24	0,0534	0,23	0,33
041	0,009	0,0001	4,24	0,0534	0,23	0,17
044	0,051	0,0026	4,24	0,0534	0,23	0,94
045	0,036	0,0013	4,24	0,0534	0,23	0,66
046	0,012	0,0001	4,24	0,0534	0,23	0,22
Coord	0,019	0,0004	4,24	0,0534	0,23	0,35

Tabelle 58: Berechnete Werte für k (Σ OctaBDE-Isomere in ABS).

Anhang 8 Überprüfung der Varianzen der Labormittelwerte (Cochran Test)

Der Cochran Test dient der Erkennung von Ausreißern innerhalb der Laborvarianzen /12/. Die Varianzen der Labore s_i^2 werden in absteigender Reihenfolge angeordnet. Der höchste Wert s_{max}^2 wird dem Cochran Test unterzogen:

$$C_{PW} = \frac{s_{max}^2}{\sum_{i=1}^p s_i^2}$$

Der berechnete Prüfwert C_{PW} wird mit dem kritischen Wert der Cochran-Statistik C-crit (bei gegebenen Signifikanzniveau von 1% bzw. 5%) verglichen. Die kritischen Werte, bei gegebener Anzahl von Labors und Anzahl von Proben, die mehrheitlich analysiert worden sind, sind der Tabelle der Cochran-Statistik zu entnehmen /12/.

Wobei gilt:

Fall 1: C ≤ C-crit (Signifikanzniveau 5%)Die geprüfte Einheit kann als korrekt angenommen werden.

Fall 2: C-crit (Signifikanzniveau 5%) < C \leq C-crit (Signifikanzniveau 1%) Die geprüfte Einheit wird als "Fastausreißer" betrachtet.

Fall 3: C > C-crit (Signifikanzniveau 1%)Die geprüfte Einheit wird als "statistischer Ausreißer" bezeichnet.

Anhang 9 Überprüfung der Labormittelwerte (Grubbs Test)

Der Grubbs Test dient der Erkennung von einzelnen Ausreißern (der niedrigste bzw. höchste Wert) bzw. von zwei Ausreißern (die zwei niedrigsten bzw. zwei höchsten Werte) /12/. Die Labormittelwerte werden in aufsteigender Reihenfolge angeordnet.

Anhang 9.1 Einzelner Ausreißer

In Übereinstimmung mit /12/ wird der Grubbs Test zur Erkennung von einzelnen Ausreißern zuerst angewendet. Wird ein einzelner Labormittelwert (z.B. der höchste) als Ausreißer erkannt, wird dieser Wert ausgesondert und der Test für den anderen extremen arithmetischen Mittelwert (z.B. der niedrigste) wiederholt.

Die Prüfung des größten Werts erfolgt mit:

$$T_n = \frac{x_p - \overline{x}}{s}$$

Die Prüfung des kleinsten Werts erfolgt mit:

$$T_1 = \frac{\overline{x} - x_1}{s}$$

mit

x̄ : Gesamtmittelwert x_p: größter Wert x₁: kleinster Wert s: Standardabweichung zum Gesamtmittelwert

Der berechnete Prüfwert T wird mit dem kritischen Wert der Grubbs-Statistik T-crit (bei gegebenen Signifikanzniveau von 1% bzw. 5%) verglichen. Die kritischen Werte, bei gegebener Anzahl von Labors sind der Tabelle des Grubbs-Tests zu entnehmen, z.B. /12/. Wobei gilt: Fall 1: T ≤ T-crit (Signifikanzniveau 5%)Die geprüfte Einheit kann als korrekt angenommen werden.

Fall 2: T-crit (Signifikanzniveau 5%)< T \leq T-crit (Signifikanzniveau 1%) Die geprüfte Einheit wird als "Fastausreißer" betrachtet.

Fall 3: T > T-crit (Signifikanzniveau 1%)Die geprüfte Einheit wird als "statistischer Ausreißer" bezeichnet.

Anhang 9.2 Zwei Ausreißer

Der Grubbs Test für zwei Ausreißer sollte nur angewendet werden, wenn der Grubbs Test für einzelne Ausreißer keinen arithmetischen Mittelwert als Ausreißer zeigt. Die Formeln zur Berechnung sind in /12/ aufgeführt.

Der berechnete Prüfwert G wird mit dem kritischen Wert der Grubbs-Statistik G-crit (bei gegebenen Signifikanzniveau von 1% bzw. 5%) verglichen. Die kritischen Werte, bei gegebener Anzahl von Labors sind der Tabelle des Grubbs-Tests zu entnehmen, z.B. /12/.

Fall 1: $G \ge G$ -crit (Signifikanzniveau 5%) Die geprüfte Einheit kann als korrekt angenommen werden.

Fall 2: G-crit (Signifikanzniveau 5%) > G \geq G-crit (Signifikanzniveau 1%) Die geprüfte Einheit wird als "Fastausreißer" betrachtet.

Fall 3: G < G-crit (Signifikanzniveau 1%) Die geprüfte Einheit wird als "statistischer Ausreißer" bezeichnet.

	Einwaage	Extraktions-	Einwaage	Injektions-	Injektions-	Säulentyp	Kalibrier	lösungen		Standardabweichung der Kalibrierung [%]]		
Labor	Polymer [9]	dauer [h]	Toluol [g]	system	volumen [µL]		Niedrige Konzentration [ng mL ⁻¹]	Hohe Konzentration [ng mL ⁻¹]	BDE85	BDE99	BDE100	BDE196	BDE197	BDE203
L001	0,1	2,5	100	PTV	2	RTX-CLP, 30 m, 0,25 mm, 0.25 um	50	500	1,88	1,41	2,19	3,62	3,76	3,98
L003	0,1	2	87	PTV	2	Rtx-5ms, 15 m, 0,25 mm; 0,25 µm	50	500	21	20	19	20	16	19
L004	0,05-0,1	2	86	splitless	2	ZB-5, 15 m; 0,25 mm; 0,1 μm, Vorsåule: 1,5 m ZB5, 0,25 mm, 0,25 μm; Restriktion: 5 m, 0,25 mm ID	50	500	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
L012	0,1	2	86	PTV	1	DB5ms, 15 m; 0 25 mm; 0 1 um	10	100	2	2	2	n.a.	n.a.	1
L013	0,1	3	-	PTV	1	DB-5ht, 15 m; 0 25 mm; 0 1 um	25	600	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
L014	0,08-0,2	2	81	PTV	2	HP-5ms 30m+7m Vorsäule 0,25mm; 0.25um	51	915	2,81	1,97	1,84	12,2	7,94	14,0
L019	0,1	2	100 mL	PTV	1	Phenomenex ZB5, 12 m; 0,25 mm; 0,25 um	50	500	5,94	6,05	3,04	5,91	4,79	6,70
L021	0,1	2	43	splitless	1	HP-5MS, 30m; 0,25 mm; 0,25 μm, Vorsäule 1m DPT MDS, 2,5 mm	16 – 550 *	700 – 5550*	10	1,9	5,2	OctaBDE 1 ¹ OctaBDE 2 ¹ OctaBDE 3 ¹	: 13 : 21 : 22	1
L026	0,1	2	100	splitless	1	RTX-5MS, 20m; 0,25 mm; 0,25µm, Vorsäule 1m desakti- viert. 0,25 mm	Best. über Respon- se-faktoren ¹³ C ₁₂ -Standards	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
L027	0,1	2	85	PTV	1	Agilent 112-5511, 15m; 0.25mm; 0.25um	100	500	2,4	3,5	3,5	6,2	7,4	9,6
L030	0,06-0,1	10	92	splitless	1	SGE BPX 5, 12m; 0.22mm; 25um	50	1000	4,39	3,56	2,63	0,24	8,25	12,60
L037	0,01	2	10 ml	splitless	1-2	HP-5MS, 30m; 0,25 μm; Restriktion 1m	50	500	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
L040	0,1	2	-	spitless	1	Faktor Four, 30m;	8,0	40.000,0	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
L041	0,1	2	87	splitless	1	DB 5 ms; 15 m; 0 25 mm; 0 25 um	50	500	2,08	2,99	2,49	5,18	4,12	3,70
L044	0,1	2		PTV	5	DB-5, 15 m; 0,25 mm; 0 1 um Vorsäule 1 m	50	500	7,65	5,47	3,72	23,01	15,13	21,78
L045	0,1	2 – 2,5	85	splitless	1	DB-XLB 30 m; 0,25 mm; 0.10 um	50	500	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
L046	0,1	3	96	splitless	1	DB-5-HT, 15m; 0,25mm; 0,1µm	0,2	800	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.

n.a.: nicht angegeben

¹Die Isomere wurden nicht zugeordnet, da über das technische Produkt quantifiziert wurde.

*Quantifizierung über die technischen Produkte PENTA- und OCTA-BDE.

Seite 152

Anhang 10 Angaben der Teilnehmer des Ringversuchs