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ZUSAMMENFASSUNG I  

Zusammenfassung 

Große Arzneimittelmengen gelangen nach ihrer Anwendung in das Abwasser und 

erreichen, da sie durch die Abwasseraufbereitung häufig nur partiell eliminiert werden, 

die aquatische Umwelt. Trotz des intensiven Einsatzes von Pharmaka in der modernen 

Medizin ist relativ wenig über ihr Vorkommen und Verhalten in natürlichen 

Gewässer/Sediment-Systemen bekannt. 

Entwicklung analytischer Methoden  

In der vorliegenden Arbeit wurden analytische Methoden entwickelt, die eine 

empfindliche Bestimmung von verschiedenen Analgetika, Lipidsenkern, Antibiotika, 

sowie Carbamazepin, Diazepam, Ivermectin, Iopromid und einigen ihrer Metabolite in 

Sedimenten von Oberflächengewässern erlauben. Diese Methoden umfassen eine 

sequenzielle Ultraschall-Lösungsmittelextraktion, Festphasenextraktion und die 

Detektion der Analyten durch Flüssigkeitschromatographie-Tandem Massen-

spektrometrie (LC-Tandem MS). Des Weiteren wurden neue Methoden für die 

empfindliche Quantifizierung dieser Substanzen in wässrigen Umweltmatrices erstellt. 

Die Analyten wurden dabei durch Festphasenextraktion angereichert und ebenfalls 

durch LC-Tandem MS bestimmt. Für die Arzneimittelrückstände im Sediment wurden 

Bestimmungsgrenzen zwischen 0,4 und 20 ng/g erreicht, während die Bestimmungs-

grenzen in wässrigen Matrices zwischen 0,04 und 0,5 µg/l lagen. Zusätzlich wurden 

analytische Methoden für die Quantifizierung von 14C-markierten Pharmaka in 

Oberflächenwasser und Sediment durch Radio-Dünnschichtchromatographie (DC) 

entwickelt.  

Verhalten von Arzneimitteln in Wasser/Sediment Systemen   

Eine Auswahl von zehn Pharmaka und Pharmakametaboliten wurde während eines 

Zeitraums von 100 Tagen in Wasser/Sediment Systemen, angelehnt an die OECD 

Richtlinie 308, untersucht. Die 14C-markierten Testsubstanzen Diazepam, Ibuprofen, 

Iopromid und Paracetamol wurden durch Radio-DC bestimmt, wogegen die 

unmarkierten Substanzen Carbamazepin, 10,11-Dihydro-10,11-dihydroxycarbamazepin, 



II ZUSAMMENFASSUNG 

Clofibrinsäure, 2-Hydroxy-ibuprofen, Ivermectin und Oxazepam mittels LC-Tandem 

MS detektiert wurden.  

Da Carbamazepin, Diazepam und Clofibrinsäure im Wasser/Sediment-System eine 

hohe Persistenz zeigten, liegt eine geringe Abbaubarkeit in natürlichen Oberflächen-

gewässern nahe. Dagegen wurden Oxazepam und 10,11-Dihydro-10,11-dihydroxy-

carbamazepin während des Testverlaufs zu mehr als 50 % eliminiert. Für diese beiden 

Substanzen kann daher von einer prinzipiellen Abbaubarkeit in Oberflächengewässern 

ausgegangen werden. Das Kontrastmittel Iopromid wurde im Versuchszeitraum 

vollständig in mehrere stabile Transformationsprodukte umgewandelt. Die Entstehung 

dieser Transformationsprodukte wurde ebenfalls in ergänzenden Bodensäulenversuchen 

beobachtet (s. u.); d.h. diese können unter sehr verschiedenen Umweltbedingungen 

gebildet werden. Die Konzentrationen von Ivermectin und Paracetamol in der 

Wasserphase der Testsysteme nahmen sehr schnell ab, wobei jedoch Paracetamol in 

großem Umfang nicht extrahierbare Rückstände bildete. Eine schnelle Elimination aus 

der Wasserphase aquatischer Systeme ist für beide Substanzen zu erwarten. Das 

Analgetikum Ibuprofen und sein Humanmetabolit 2-Hydroxy-ibuprofen wurden im 

Testsystem ebenfalls schnell eliminiert, was eine leichte Abbaubarkeit dieser 

Substanzen in natürlichen Oberflächengewässern erwarten lässt. Für Diazepam, 

Oxazepam, Carbamazepin und Ivermectin muss, wegen ihrer Affinität zum Sediment, 

von einer potenziellen Akkumulierbarkeit in natürlichen Sedimenten ausgegangen 

werden.   

Das Versickerungsverhalten von sechs der zehn ausgewählten Pharmaka wurde in 

verschiedenen wassergesättigten Böden nach OECD Richtlinie 312 getestet und deren 

Mobilität, insbesondere hinsichtlich ihres Potenzials zur Grundwasserkontamination, 

beurteilt. Die Testergebnisse legen nahe, dass das Versickerungspotenzial für 

Diazepam, Ibuprofen, Ivermectin und Carbamazepin niedrig ist. Das letztgenannte 

Ergebnis ist überraschend, da Carbamazepin häufig im Grundwasser nachgewiesen 

wurde. Dieser Widerspruch könnte dadurch erklärt werden, dass die Tests mit 

Oberboden durchgeführt wurden, während in der Realität der Pharmakaeintrag in das 

Grundwasser über Infiltration kontaminierter Wässer durch Flusssedimente und 
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Unterböden erfolgt. Clofibrinsäure und Iopromid zeigten sich in den Tests als sehr 

mobil, so dass von diesen ein deutliches Grundwasserkontaminationsrisiko ausgeht.  

Die meisten der hier getesteten Arzneimittel und Arzneimittelmetaboliten wurden, 

ähnlich wie bei vergleichbaren Tests mit anderen Umweltchemikalien, z.B. Pestiziden, 

als hoch persistent oder sogar nicht abbaubar eingestuft. Ein Umweltrisiko durch 

Arzneimittelrückstände in aquatischen Systemen kann daher nicht ausgeschlossen 

werden. Abschließend bleibt festzuhalten, dass das Umweltverhalten von bereits auf 

dem Markt vorhandenen Pharmaka generell im Zulassungsverfahren berücksichtigt 

werden sollte, solange eine Exposition bestimmter Umweltkompartimente nicht 

auszuschließen ist.  



IV SUMMARY 

Summary 

Pharmaceutical residues are not totally eliminated during municipal sewage 

treatment and are thus discharged into the aquatic environment via STP effluents. 

Despite the extensive use of pharmaceuticals in modern medicine, relatively little is 

known about the occurrence and the fate of pharmaceuticals in sediments and 

environmental waters.  

Development of analytical methods 

Analytical methods have been developed in the present work, allowing for the 

sensitive determination of several analgesics, lipid regulators and antibiotics, as well as 

for carbamazepine, diazepam, ivermectin, iopromide and some of their metabolites in 

river sediment. Sediment analysis was accomplished by sequential ultrasonic solvent 

extraction, solid phase extraction for a clean-up and detection via liquid 

chromatography–tandem mass spectrometry (LC-tandem MS). Additionally, new 

methods have been created for the sensitive analysis of these compounds in various 

environmental waters. The analytes in the aqueous samples were enriched by solid 

phase extraction and detected via LC-tandem MS. For the determination of 

pharmaceuticals in sediments LOQs between 0.4 and 20 ng⋅g-1 were attained, whereas 

those in environmental waters ranged from 0.04 to 0.5 µg⋅L-1.  

Furthermore, analytical methods were developed for the analysis of 14C-labelled 

pharmaceuticals in surface water and river sediment samples via radio-thin layer 

chromatography (radio-TLC).  

Fate of pharmaceuticals in water/sediment systems 

In the second part of this project, the fate of ten selected pharmaceuticals and 

pharmaceutical metabolites were investigated in water/sediment tests according to 

OECD Guideline 308 over a period of 100 d. The 14C-labelled test substances diazepam, 

ibuprofen, iopromide and paracetamol were analyzed by radio-TLC, whereas 

carbamazepine, 10,11-dihydro-10,11-dihydroxy-carbamazepine, clofibric acid,  

2-hydroxy-ibuprofen, ivermectin and oxazepam were analyzed via LC-tandem MS.  
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Carbamazepine, diazepam and clofibric acid were persistent in the water/sediment 

system, suggesting their low degradability in natural surface waters. Oxazepam and 

10,11-dihydro-10,11-dihydroxy-carbamazepine disappeared by more than 50 % which 

indicates that an appreciable elimination in surface waters might occur. The contrast 

medium iopromide was totally metabolized in the water/sediment tests under formation 

of several stable TPs which were also formed in soil column experiments, performed 

according to OECD guideline No. 312. Obviously, these metabolites can be formed 

under very different environmental conditions. Ivermectin and paracetamol disappeared 

rapidly in the water/sediment systems and should also be eliminated to a high degree 

from aquatic water compartments. A high level of non-extractable residues was formed 

from paracetamol. Ibuprofen and its’ metabolite 2-hydroxy-ibuprofen were rapidly 

eliminated, suggesting their ready degradability in aquatic systems. The affinity of 

diazepam, oxazepam, carbamazepine and ivermectin for the sediment compartment 

indicates a potential risk for accumulation of these compounds in natural sediments.  

In addition, the leaching behaviour of six selected pharmaceuticals was tested in 

different soils. Based on the results of this assessment their mobility in different soils 

and their potential to contaminate groundwater was evaluated. The test results indicated 

that the leaching potential could be rated as low for diazepam, ibuprofen, ivermectin 

and for carbamazepine. The last result is surprising, since carbamazepine is often 

detected in groundwater. This discrepancy might be explained by the fact that the 

leaching tests were performed with topsoil, whereas in reality the groundwater 

contamination occurs mainly over river sediments and subsoils from receiving waters. 

Clofibric acid and iopromide were very mobile under the experimental conditions and 

thus, groundwater contamination would be possible if the soil is exposed to these 

pharmaceuticals.  

In comparison to other chemicals, notably pesticides, the distribution pattern of the 

compounds tested over the persistence classes showed a high percentage of high 

persistence or even non-biodegradability, leading to the conclusion that an 

environmental risk cannot be excluded. Summarizing these findings, it is recommended 

to include the investigation of the fate of pharmaceuticals already available on the 

market in the drug registration process as long as exposure in a specific environmental 

compartment is possible. 
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1 INTRODUCTION 

Environmental pollution has become an important issue for the society. Virtually any 

human activity leads to an environmental contamination with substances of 

anthropogenic origin (Schwarzenbach et al., 2003). Besides pesticides or heavy metals 

pharmaceuticals, being extensively used for medicinal purposes, belong to these 

anthropogenic substances. They were widely ignored as environmental contaminants 

until the early 1990th. Since then, the environmental risk caused by pharmaceuticals has 

become an important issue in environmental sciences (e.g. Golet et al., 2002a, Halling-

Sorensen et al., 1998, Jones et al., 2002, Römbke et al., 1996, Stuer-Lauridsen et al., 

2000, Van Wezel and Jager, 2002, Velagaleti and Robinson, 2001), mainly because an 

increasing number of pharmaceuticals, i.e. analgesics, antibiotics, antiepileptics, 

antiphlogistics, beta-blockers, contraceptives, diagnostics, lipid regulators, tranquilizers 

and corresponding metabolites have been detected in the environment (Golet et al., 

2001, Heberer, 2002a, Hirsch et al., 1999, Hirsch et al., 1998, Hirsch et al., 2000, 

Kolpin et al., 2002, McArdell et al., 2003, Stumpf et al., 1996, Stumpf et al., 1999, 

Ternes, 1998, Ternes and Hirsch, 2000, Ternes et al., 1998a, Ternes et al., 1999a, 

Ternes et al., 1999b).  

More than 2900 pharmaceutical substances are currently licensed in Germany for 

human and veterinary medicine. For most compounds, the total amounts sold are not 

available. Nevertheless, a good estimation of the annual quantities prescribed can be 

obtained based on the accessible number of prescription items multiplied by the defined 

daily dose (DDD) of a particular compound. In the case of free available 

pharmaceuticals, i.e. analgesics, this calculation leads to underestimations, since the 

amounts dispensed in non-prescription products are not considered.  

Detailed data on the prescribed quantities of several selected pharmaceuticals is 

shown in Table 1.1 (Rote Liste Service GmbH Frankfurt/Main, 2001, Schwabe and 

Paffrath, 2000). Annual consumption rates of frequently prescribed pharmaceuticals 

range from a few kilograms, i.e. for hormones, up to more than a hundred tons, i.e. for 

ibuprofen and iopromide.  
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Table 1.1:  Annual prescription items of selected pharmaceuticals and estimated 
total amounts used in Germany in 2001   

Compound Therapeutic use Total prescription 
items (×106)a 

Amounts usedc 
 (t⋅year-1) 

Diclofenac Antiphlogistic  494 86 
Ibuprofen Antiphlogistic 107 344 

Erythromycin Antibiotic  20.6 19 
Roxithromycin Antibiotic  20.8 10 

Sulfamethoxazole Antibiotic  23.6 54 
Trimethoprim Antibiotic  23.6 11 

Carbamazepine Antiepileptic 78.0 88 
Metoprolol Beta blocker 455 93 

Sotalol Beta blocker 120 27 
Iopromide Contrast medium - 130b 

Ethinylestradiol Hormone  355 0.047 
Bezafibrate Lipid regulator 43.2 33 
Diazepam Tranquilizer 44.3 1.1 

a taken from Schwabe and Paffrath, 2000, Schwabe and Paffrath, 2002, b Steger-Hartmann et al., 1999, 
c Bund/Länderausschuss für Chemikaliensicherheit (BLAC), 2003 

Corresponding data for England, Denmark and Australia have been published by 

Jones et al., 2002 and others (Jørgensen and Halling-Sorensen, 2000, Khan and 

Ongerth, 2002, Stuer-Lauridsen et al., 2000), all displaying the extensive circulation of 

the pharmaceuticals in developed countries. 

1.1 Theoretical background 

1.1.1 Pharmacokinetics 

A major factor determining the occurrence of pharmaceuticals in the aqueous 

environment is their pharmacokinetic behaviour which describes the time course of a 

drug and its’ metabolites in the body after any kind of administration (Merck & Co. 

Inc., 1999). The metabolism of pharmaceuticals occurs in two consecutive phases as 

shown in Figure 1.1. Phase I reactions involve the formation of new or modified 

functional groups including oxidation, reduction, hydrolysis, hydration, condensation 

and isomerization reactions, which usually all result in an increased polarity. In phase 

II, the metabolites are conjugated with endogenous molecules to obtain an elevated 

water solubility. The most important conjugation reaction for xenobiotics is 

glucuronidation. Finally, the water-soluble metabolites are excreted via urine and feces 
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(Eisenbrand and Metzler, 1994, Forth et al., 1996, Merck & Co. Inc., 1999, Mutschler, 

1997). 

Xenobiotic Phase I Metabolite
Phase I

 Oxidation
 Reduction
 Hydrolyisis

Phase II

Conjugation

Oxazepam-glucuronideOxazepam

Temazepam

Nordazepam

Diazepam

Cl N

N
O

CH3

Cl N

NH
O

OH

Cl N

O

OH

N
CH 3

Cl N

NH
O

Cl N

NH
O

O Glucuronic
acid

Phase II Metabolite

 

Figure 1.1:  General scheme for the metabolization of a xenobiotic and the meta-
bolization of diazepam in humans (Mutschler, 1997) 

1.1.2 Exposure pathway 

Production and application of human and veterinary pharmaceuticals leads to a 

potential environmental exposure and potentially to an accumulation in certain 

environmental compartments. The main exposure routes of human pharmaceuticals are 

expected to be through their use by patients in private households, in hospitals and by 

disposal of pharmaceuticals through toilets. After their use, pharmaceuticals are 

excreted unchanged and/or as metabolites in feces and urine and hence are present in 

wastewater (Mutschler, 1997). 

Similar to other compounds of anthropogenic origin, the fate of the pharmaceuticals 

residues during sewage treatment can follow one or a combination of three types of 

behaviour: a) (bio)degradation (mineralization), b) sorption of the residues onto sewage 

sludge or c) no elimination. The latter results in their presence in treated wastewater 

(Halling-Sorensen et al., 1998, Hartig et al., 1999, Heberer, 2002b).  
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Hence, compounds that are not readily degradable enter the environment either with 

the digested sludge or as dissolved pollutants in the sewage treatment plant (STP) 

discharges. The latter scenario results in the contamination of the receiving waters and 

finally, the aquatic environment (Golet, 2002, Golet et al., 2001, Golet et al., 2002b, 

Heberer, 2002a, Heberer, 2002b, Heberer et al., 2002, Richardson and Bowron, 1985, 

Stumpf et al., 1999, Ternes, 1998, Ternes et al., 1999a, Zuccato et al., 2000).  

Pharmaceutical residues have also been found in groundwater. They were often 

traced back either to an impact of municipal or industrial wastewater, animal farming, 

an infiltration of contaminated surface water or landfill seepage over vulnerable water 

aquifers (Campagnolo et al., 2002, Hirsch et al., 1999, Holm et al., 1995, Lindsey et al., 

2001, Sacher et al., 2001, Ternes, 2000). It is further conceivable, that contamination 

occurs with the discharges of the pharmaceutical industry. 

Environmental exposure routes for veterinary pharmaceuticals can mainly be 

attributed with the distribution and application of dung, urine and manure as fertilizer 

from medicated animals (Boxall et al., 2001, Campagnolo et al., 2002). Direct carry-

over into the water compartment from medical treatment of aquacultures has also been 

linked (Cannavan et al., 2000, Davies and Rodger, 2000, Hektoen et al., 1995).  

In contrast to pesticides, pharmaceuticals are applied during the entire year. Potential 

steady-state concentrations can thus result in the environmental waters, as they are 

continuously introduced via the sewage effluents.  

1.1.3 Occurrence and fate 

Numerous studies have been conducted to investigate various aqueous matrices for 

the presence of pharmaceutical residues, comprising the target compounds and 

metabolites. In fact, these residues have been found to be ubiquitous in environmental 

waters (Daughton and Ternes, 1999, Heberer, 2002a, Jones et al., 2001). 

The main contributing factor for the occurrence of pharmaceuticals in the aquatic 

environment is the elimination efficiency of the sewage treatment process (Alcock et 

al., 1999, McArdell et al., 2003, Ternes, 1998, Ternes et al., 1999a, Ternes et al., 

1999b). Particular weather conditions, i.e. rainstorm events, may result in a reduced 

elimination efficiency (Ternes, 1998). 
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Many pharmaceuticals are excreted to a large extent as transformed phase I 

metabolites and/or after conjugation to hydrophilic groups as phase II metabolites. 

Conjugates are easily cleaved in the STP, causing a re-formation of the original 

pharmaceuticals (Belfroid et al., 1999, Ternes et al., 1999a, Ternes et al., 1999b). This 

might lead to higher concentrations in the STP effluent than in the raw wastewater. 

Pharmaceuticals are principally designed to persist in the body after administration. 

That might be the reason that many pharmaceuticals are relatively resistant towards 

degradation under environmental conditions and pass through the STP without major 

elimination, such as the lipid regulator clofibric acid, the antiepileptic carbamazepine or 

the contrast medium diatrizoate (Putschew et al., 2000, Ternes, 1998, Ternes and 

Hirsch, 2000). 

Residues of various pharmaceuticals are present in the low µg⋅L-1 range in STP 

effluents. Discharge of the STP effluent into the receiving waters leads to a dilution of 

the pharmaceutical residues which occur up to the high ng⋅L-1 range in contaminated 

surface water. Once introduced into the surface waters, pharmaceuticals may undergo 

biodegradation, most likely due to co-metabolic processes. For some pharmaceuticals, 

i.e. diclofenac, photo induced degradation may occur from natural solar radiation 

(Andreozzi et al., 2003, Andreozzi et al., 2002, Buser et al., 1998, Lam et al., 2003, 

Steger-Hartmann et al., 2001). Additionally, depending on the lipophilicity and specific 

sorption properties of a particular compound, distribution to the sediment and 

suspended matter occurs (Schwarzenbach et al., 2003). This might result in a change in 

the transformation behaviour, when sorbed to particular matter, or in a formation of 

bound residues. However, the extent of pharmaceutical sorption to environmental 

matter is hardly known.  

1.1.4 Fate studies 

The determination of the environmental fate of a compound is a complex issue. 

Transformation and distribution processes are strongly dependant on the specific 

environmental conditions, which leads to a sophisticated linkage of individual system 

parameters. In general, there are two major approaches for environmental studies. Field 

studies allow for the elucidation of a substances behaviour under realistic conditions, 

whereas laboratory experiments display only certain details of the entire scenario. Since 
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field studies are quite costly, intensive and frequently the data are difficult to interpret, 

their realization is mostly limited to certain cases, justifying the effort to be undertaken. 

In this light, laboratory tests are powerful tools for the elucidation of individual 

environmental processes, providing high comparability and reproducibility, due to 

standardized conditions.  

In the last several years, numerous test systems have been established allowing for 

the investigation of a chemical’s fate and effects under a variation of relevant 

environmental conditions in terrestrial, aquatic and other scenarios (Brodsky et al., 

1997, Freitag et al., 1985, Freitag et al., 1982, Hill et al., 1994). Respective standardized 

test procedures are provided by several organizations and institutions, i.e. OECD, 2003b 

(Table 1.2) and SETAC, 1995. They are an important part of the ERA of environmental 

relevant chemicals. 

Table 1.2:  Available OECD Guidelines for the testing of the degradation of 
chemicals in terrestrial and aquatic laboratory test systems 

Test OECD Guideline No. 
Ready biodegradability (several variations) 301 

Inherent biodegradability (several variations) 302 
Simulation tests – aerobic sewage treatment 

A: Activated Sludge units B: Biofilms 303 

Inherent biodegradability in soil 304 
Biodegradability in seawater 306 

Aerobic and anaerobic transformation in soil 307 
Aerobic and anaerobic transformation in aquatic 

sediment systems 308 

Aerobic mineralization in surface water – 
simulation biodegradation test 309 

Leaching in soil columns 312 
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1.2 Objectives  

Pharmaceuticals are essential for our health system and are applied in high quantities 

for preventive, curative and diagnostic purposes. The main environmental exposure 

pathway is the introduction of pharmaceuticals and their metabolites via wastewater into 

the aquatic environment.  

To date, little is known about the fate and the distribution behaviour of 

pharmaceutical residues in aquatic compartments. Particularly, the role of surface water 

sediments in the elimination of pharmaceutical contaminants is widely unknown since 

appropriate analytical methods for sediments are rare. However, the number of 

pharmaceuticals which are quantifiable in environmental waters is restricted to 

approximately 100 compounds, including only a few metabolites.  

Hence, the major aim of the current study was the sensitive and reliable 

determination of the environmental fate of selected pharmaceuticals and their 

metabolites. In detail, the objectives of the present work were: 

� the development and the validation of analytical methods for the substance 

specific determination of pharmaceuticals and corresponding metabolites in 

river sediment and in the aqueous matrices groundwater, soil leachates, surface 

water and wastewater, based on LC tandem MS techniques; 

� the adaptation of the developed methods for the analysis of 14C-labelled 

pharmaceuticals in surface water and river sediment using radio-TLC-

techniques;  

� the elucidation of the fate and distribution behaviour of selected 

pharmaceuticals in water/sediment test systems according to OECD Guideline 

308 (OECD, 2002), using the analytical methods developed; 

� the investigation of the leaching behaviour of selected pharmaceuticals in soil 

column experiments according to OECD Guideline 312 (OECD, 2003a).   
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2 SELECTION OF ANALYTES  

The selection of target analytes was mainly focused on the environmental relevance 

of the pharmaceuticals and their metabolites which is derived from consumption rates, 

the environmental occurrence, the environmental persistence and possible (eco)toxic 

effects.  

For the investigation of pharmaceuticals in water/sediment test systems, the number 

of substances to be tested was restricted to 10 compounds. The leaching behaviour was 

investigated using six pharmaceuticals.  

2.1 Lipid regulators and antiphlogistics 

Fibric acid-derivatives, such as bezafibrate, gemfibrozil and clofibric acid esters are 

administered in humans to reduce the blood triglyceride- and cholesterol level. Their 

structures are shown in Table 2.1. The DDD amounts to 400 – 600 mg for bezafibrate 

and to 900 mg for gemfibrozil. In 2001, a total of more than 25 tons of bezafibrate has 

been prescribed in Germany, while gemfibrozil was not registered (Table 1.1). 

Clofibrate, etofyllinclofibrate and etofibrate are pro-drugs and as such cleaved in the 

body into the active metabolite clofibric acid. Bezafibrate, gemfibrozil and clofibric 

acid are excreted largely as glucuronides and/or unchanged with the urine (Forth et al., 

1996, Mutschler, 1997). 

The non-opioid analgesics display a wide application range, due to their combined 

analgesic, antipyretic and inflammatory effects (Mutschler, 1997). Their chemical 

structures are shown in Table 2.1. Their extensive use after prescription (see Table 1.1) 

is further increased by their dispense over the counter (Jones et al., 2002). In particular, 

ibuprofen is used in quantities of > 100 t⋅y-1 and its’ human and environmental 

metabolites 2-hydroxy-ibuprofen and carboxyl-ibuprofen have been identified in 

environmental waters (Stumpf et al., 1998, Winkler et al., 2001). Paracetamol belongs 

also to the group of antiphlogistics which are prescribed and used in extremely high 

quantities. Its fate in the aquatic environment was already studied in 1985 (Richardson 

and Bowron, 1985). Lipid regulators and especially antiphlogistics have a high 
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environmental relevance due to their high consumption rates shown in Table 1.1 and the 

low degradability of several compounds. As a result these pharmaceuticals occur 

ubiquitous in environmental waters (Heberer, 2002a, Heberer and Stan, 1998, Scheytt et 

al., 1998, Stumpf et al., 1999, Ternes, 1998, Ternes, 2000).  

Table 2.1:  CAS registry numbers, chemical structure and use/origin of acidic 
pharmaceuticals 

Compound CAS RN Structure Use/origin 

Bezafibrate 41859-67-0 N

O

COOH
O

Cl
H  

Lipid regulator   

Clofibric acid 882-09-7 Cl O COOH
 

Metabolite of three 
lipid regulators 

Gemfibrozil 25812-30-0 O
COOH

 
Lipid regulator 

Diclofenac 15307-86-5 N

Cl

Cl

H
HOOC

 
Antiphlogistics  

Fenoprofen 53746-45-5 O
COOH

 
Antiphlogistics  

Ibuprofen 15687-27-1 COOH

 
Antiphlogistics  

2-Hydroxy 
ibuprofen 51146-55-5 COOH

HO  
Metabolite of 

ibuprofen 

Indomethacin 53-86-1 N

C
O

Cl

H3CO

CH3

CH2 COOH  

Antiphlogistics  

Ketoprofen 22071-15-4 COOH

O

 
Antiphlogistics  

Naproxen 22204-53-1 COOH

O  
Antiphlogistics  

Paracetamol 103-90-2 NHHO COCH3  Antiphlogistics  

Meclofenamic 
acid 644-62-2 N

COOH H Cl

Cl  
Surrogate standard 

Fenoprop 93-72-1 
Cl

Cl
Cl

CH3

COOHCHO

 

Surrogate standard 
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2.2 Carbamazepine and tranquilizers 

The antiepileptic carbamazepine is a tricyclic substance and was used at an annual 

level of 88 t in 2001 (Table 1.1 and Table 2.2). It was thus the most important 

antiepileptic in terms of quantity. Medicinal application of carbamazepine is indicated 

in the treatment of epilepsy symptoms, trigeminal neuralgia, diabetic neuralgia, alcohol 

deterrent and other symptomatologies (Mutschler, 1997, Novartis, 2000). After oral 

administration, approximately 70 % of the administered carbamazepine is excreted in 

the urine, composed mainly by the hydroxylated and conjugated carbamazepine 

metabolite 10,11-dihydro-10,11-dihydroxy-carbamazepine, with only 3 % of unchanged 

carbamazepine (Mandrioli et al., 2001, Novartis, 2000). 

Table 2.2:  CAS registry numbers, chemical structure and use/origin of neutral 
pharmaceuticals 

Compound CAS RN Structure Use/origin 

Carbamazepine 298-46-4 N

C

O

NH2

 

Antiepileptic 

10,11-Dihydro-
10,11-

dihydroxy-
carbamazepine 

- N

C

O

NH2

OHHO

 

Human metabolite 
of carbamazepine 

Diazepam 439-14-5 Cl N

N
O

CH3

 

Psychiatric drug 

Oxazepam 604-75-1 Cl N

NH
O

OH

 

Psychiatric drug 
and 

metabolite of 
diazepam 

10,11-Dihydro- 
carbamazepine 3564-73-6 N

C

O

NH2

 
Surrogate standard 

 

Diazepam and oxazepam belong to the group of 1,4-benzodiazepines and are utilized 

as tranquilizers (Mutschler, 1997). Their DDD is relatively low at 5 – 40 mg, due to 

their high potency, resulting in annual consumptions of 400 – 1100 kg. Diazepam is 
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mainly metabolized to oxazepam and oxazepam-glucuronides, which are then renally 

excreted. 

The ubiquitous occurrence of carbamazepine derives from its’ relatively high 

prescription rates and that it is not appreciable removed when passing municipal STPs. 

In contrast, the consumed amounts of diazepam and oxazepam are relatively low (Table 

1.1), but the very high potency of the tranquilizers raises concerns about possible 

ecotoxicological effects. 
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2.3 Iopromide and derivatives 

Iodinated X-ray contrast media are widely applied as diagnostics for the 

roentgenoscopy of body tissues, at single doses of up to 200 g (structures given in Table 

2.3). As a prerequisite for their use in high quantities in humans, these compounds 

display minimal toxicity, high water solubility and inertness to biochemical 

transformations. Iopromide is a non-ionic compound, which is applied in Germany at 

approximately 130 t per year (Steger-Hartmann et al., 1999). Since iopromide is quite 

stable, it is poorly eliminated during sewage treatment and thus, is introduced into the 

receiving waters. Iopromide was detected in surface and groundwater up to the µg⋅L-1 

level (Putschew et al., 2001, Steger-Hartmann et al., 1999, Ternes, 2000, Ternes and 

Hirsch, 2000). 

Table 2.3:  CAS registry numbers, chemical structure and use/origin of iopromide, 
iopromide derivatives and paracetamol 

Compound CAS RN Structure Use/origin 

Iopromide 73334-07-3 
O N

OH

OH

II

I

NH

O

NH

OHO

O OH

 

X-ray contrast 
medium 

5-Amino-2,4,6-triiod-
isophthalic acid 

(ATI) 
35453-19-1 

I

H2N I

I

O
OH

OH
O  

Potential TP of 
iopromide 

Desmethoxyacetyl-
iopromide 
(DAMI) 

154361-51-0 
I

H2N I

I

O
N

NH
O

OH

OH

OH

OH

 

Potential TP of 
iopromide 

ATI-(2,3-dihydroxy-
propyl)-amide 

(ATH) 
111453-32-8 

I

H2N I

I

O
OH

NH
O

OH

OH

 

Potential TP of 
iopromide 

Desmethoxy-
iopromide 

(DMI) 
76350-28-2 

I

NH I

I

O
N

NH
O

OH

OH

OH

OH
O

 

Surrogate 
standard 
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2.4 Ivermectin 

Ivermectin is a lipophilic broad-spectrum parasiticide with a macrolide structure used 

for the treatment of humans, livestock and other animals against endoparasites 

(structure shown in Table 2.4). In detail, ivermectin is the pharmaceutical of choice for 

the human therapy of river blindness (onchocerciasis), applied in a single dose of  

10 – 15 mg once per year. Additionally, it is used as feed additive in aquaculture to 

alleviate sea lice infestations in farmed salmon. Hence, ivermectin combines a high 

pharmacological potency and a direct cross-over into the terrestrial and aquatic 

environment (Campbell, 1989, Davies et al., 1998, Edwards et al., 2001, Mutschler, 

1997, Van Wezel and Jager, 2002).   

Table 2.4:  CAS registry numbers, chemical structure and use/origin of parasiticides 

Compound CAS RN Structure Use/origin 

Abamectin 

71751-41-2, 
B1a 

65195-55-3 
 

R

H

OH
H

H

CH3

O

OO

O

O

H3C

HO

H

H3C
HH3C

OCH3

O

O

O

O

OCH3

CH3

CH3

OH

H

C C2H5

CH3

H

R=                             Abamectin B 1a

R=                             Abamectin B 1bCH(CH3)2  

surrogate standard 

Ivermectin 

B1a 
71827-03-7, 
70161-11-4, 

B1b 
70209-81-3 

R

H

OH
H

H

CH3

O

OO

O

O

H3C

HO

H

H3C
HH3C

OCH3

O

O

O

O

OCH3

CH3

CH3

OH

H

C C2H5

CH3

H

R=                             Ivermectin B 1a

R=                             Ivermectin B 1bCH(CH3)2  

parasiticide, 
pesticide 
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2.5 Selection of test compounds 

The water/sediment studies were conducted with ten compounds from various 

pharmacological classes (Table 2.5). Compounds were selected considering the 

annually consumption rates, the environmental occurrence, the biodegradability and the 

pharmacological properties. The selection included also 4 human metabolites which are 

excreted in high portions. With the exception of oxazepam, paracetamol, 2-hydroxy-

ibuprofen and 10,11-dihydro-10,11-dihydroxy-carbamazepine the same compounds 

were also tested in the leaching study. 

Table 2.5:  Selection of compounds for water/sediment studies 

Compound Major key-points for selection Form applied 

Iopromide 
extensive application 

environmental occurrence 
low biodegradability 

14C-labelled 

   

Diazepam environmental occurrence 
high potency 

14C-labelled 

Oxazepam 

 
main human metabolite of 

diazepam 
 

non-labelled 

Paracetamol extensive application 
environmental occurrence 

14C-labelled 

Ibuprofen 

 
extensive application 

environmental occurrence 
 

14C-labelled 

2-Hydroxy-ibuprofen ibuprofen metabolite non-labelled 

Clofibric acid 

 
environmental occurrence 

low biodegradability 
 

non-labelled 
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3 MATERIALS AND METHODS 

3.1 Methods for the characterization of water, sediment and soil 
samples 

Equipment and materials 

� Organic C analyser: TOCOR 2, Maihak AG, Hamburg 

� Muffle furnace, Nabler Typ L51/SP, Nabler Industrieofenbau, 

Lilienthal/Bremen; 

� pH-meter: CG 822, Schott-Geräte GmbH, Hofheim; 

� Oxygen-meter: Microprocessor OXI 196 (electrode EO 196-1,5), WTW, 

Weilheim; 

� Conductivity measurement: e.g. LF 96-A, WTW, Weilheim; 

� Total hardness: Aquamerck® Gesamthärte, Merck Eurolab, Frankfurt/M; 

� Nitrate: Spectroquant® Nitrate Test, Merck Eurolab, Frankfurt/M;  

� Phosphate: Spectroquant® Phosphate Test, Merck Eurolab, Frankfurt/M; 

� Chemicals: CHCl3, CaCl2, HCl conc., Merck Eurolab, Frankfurt/M. 

TOC of aqueous samples 

The total organic carbon content (TOC) of liquid samples were measured via an 

automatic TOC analyser (TOCOR 2, Maihak AG, Hamburg). Prior to the measurement 

3 drops of HCl conc. were added to each sample (30 mL) to remove carbonate bound 

carbon. 

Nitrate content, phosphate content and hardness of aqueous samples  

The total hardness and concentrations of nitrate and phosphate in the overlying water 

were measured using Aquamerck® and Spectroquant® test kits (Merck Eurolab, 

Frankfurt/M). 
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pH and redox potential of sediment and soil 

The pH values of sediment was measured directly in the wet substrate according to 

DIN 38 414, Teil 5. The pH values of soils were determined in a suspension of soil in a 

solution of 0.01 mol/L CaCl2 according to ISO 10390 (International Organization for 

Standardization, 1994). The redox potential of sediment was measured directly in the 

wet substrate according to DIN 38404, Teil 6.  

Maximum water holding capacity of soil 

The maximum water holding capacity of soil samples were determined according to 

Annex C of the ISO Guideline 11268-2 (International Organization for Standardization, 

1998). Therefore a defined quantity (e.g. 5 g) of the soil substrate was saturated with 

water for about three hours in a glass tube where the bottom was plugged with filter 

paper. Afterwards the sample was placed for a period of two hours on a layer of very 

wet Kleenex for draining in a closed vessel. The sample was weighed, dried to constant 

mass at 105 °C and re-weighed. The water capacity (WHC) was calculated according to 

the formula: 

 100/D x D - T - S  mass)dry  of %(in  WHC =  (3.1) 

where: 

S:  water-saturated substrate + mass of tube + mass of filter paper; 

T:  tare (mass of tube + mass of filter paper); 

D:  the dry mass of substrate. 

Microbial biomass of sediment 

The amount of microbial biomass carbon in sediment samples was determined via the 

fumigation-extraction-method (FE-method) according to ISO 14240-2 (International 

Organization for Standardization, 1997). For that, sediment samples were divided in two 

sub samples (equivalent to 25 g dry weight). One sub sample was fumigated prior to the 

extraction while from one sub sample the organic carbon was extracted immediately by 

horizontal shaking for 45 min with 100 mL 0.01 M CaCl2. For fumigation the sediment 

sub sample was filled into a petri dish and incubated for 20 hours at 25° ± 2 °C in a 
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CHCl3-atmosphere. After removal of all CHCl3 from the sediment sample the organic 

carbon was extracted by horizontal shaking for 45 min with 100 mL 0.01 M CaCl2. 

Thereafter the fumigated sample and the untreated one were filtered and the TOC of the 

extract was measured. The microbial biomass carbon (Cmic ) was calculated according to 

the formula: 

 ECCmic /kE  )(Ccarbon  biomass microbial =  (3.2)

where EC is (organic C extracted from fumigated sediment) - (organic C extracted from 

non-fumigated sediment) and kEC is 0.45 (Joergensen, 1995, Joergensen, 1996, 

Joergensen and Mueller, 1996). The results were expressed as µg Cmic /g soil (dry 

weight). 

Dry weight and organic carbon content of sediment and soil 

Samples of sediment and soil were weighed and dried overnight at 105 ± 2°C. After 

cooling in a desiccator, the specimens were weighed again. The water content of the 

samples is expressed in percent of wet weight (ww). 

The dried sediment and soil specimens were transferred to pre-heated, pre-weighed 

porcelain dish, and weighed. HCl (4 mol/L) was mixed with the specimens to remove 

carbonate bound carbon. After incubating for two to four hours, the specimens were 

dried overnight at 60 ± 2°C. The specimens were weighed after cooling in a desiccator 

and ashed in a muffle furnace at 550 ± 10°C. After cooling in a desiccator, the 

specimens were weighed again. The weight loss (loss on ignition, LOI) in percent of dry 

weight of the sample was calculated by subtracting the ash weight of the specimen from 

the dry weight of the specimen. The LOI was divided by the dry weight of the specimen 

and multiplied by 100 to result in the LOI in percent of dry weight of the specimen. The 

OC of the specimen was calculated by dividing the LOI in percent of dry weight by the 

factor 1.72 to correct for volatile sediment and soil components other than CO2 to result 

in the OC in percent of dry weight of sediment and soil. 
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3.2 Water/sediment tests 

The OECD Guideline 308 “Aerobic and anaerobic transformation in aquatic 

sediment systems”, based on BBA guideline IV 5-1 describes a laboratory test method 

to assess aerobic and anaerobic transformations of organic chemicals in aquatic 

sediment systems (Biologische Bundesanstalt für Land- und Forstwirtschaft, 1990, 

OECD, 2002). In general, this test is required for pesticides and industrial chemicals 

which are directly applied to water or which are likely to reach the aqueous 

environment by the routes described in chapter 1.1.2. Since surface layers of sediment 

can be either aerobic or anaerobic, the test methods include both conditions. The aerobic 

tests simulate an aerobic water column over an aerobic sediment layer that is underlain 

with an anaerobic gradient.  

Aim of the described tests were : 

� Measurement of the distribution of the test substance and its’ metabolites 

between water and sediment compartment.  

� Determination of transformation rates and mineralization rates 

� Balancing of radioactivity for 14C-labelled test substances 

� Quantification and identification (if possible) of transformation products 

� Calculation of dissipation times 

Deviating from the guidelines described, the tests were conducted with one aerobic 

sediment only, and due to the limited availability of appropriate 14C-labelled standards 

also non-labelled analytes were utilized as test compounds.  

Sampling and storage of native water and sediment 

Sediment and water were taken from the Wickerbach creek in Flörsheim (close to 

Frankfurt, Southwest Germany) (Figure 3.1) at a sampling site which was located close 

to the source of the creek. Since the creek is not used as a receiving water for STPs it is 

widely pristine (Umland-Verband Frankfurt / Region Rhein-Main, 1992).  

In order to sample mainly sediment under aerobic conditions, the sampling depth was 

restricted to 5 cm. The sediment was wet sieved (2 mm mesh) and homogenized with an 
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electric stirrer. Water and sediment were stored together with a water/sediment ratio of 

3:1 at 4°C in the dark for a maximum of 28 d. Water and sediment were characterized 

according to OECD guideline 308 (Table 3.1). 

 

Figure 3.1:  Sampling of sediment and water 

Table 3.1:  Characteristics of water and sediment used for test systems 

Parameter Sediment Parameter Water 
pH 7.7 pH 8.5 

Redox potential (mV) 269 Redox potential (mV) 382 
Corg (% dry weight) 1.4 TOC (mg carbon⋅L-1) 4.7 

Organic matter  
(% dry weight) 2.4 Oxygen content 

(mg⋅L-1) 7.8 

Microbial biomass 
(µg carbon⋅g-1 dry sediment) 41 Nitrate 

(mg⋅L-1) 6.2 

Water content (%) 20 Phosphate (mg⋅L-1) 0.9 
Clay (%) 9.9 Hardness (ppm CaCO3) 222 
Silt (%) 12.6 Conductivity (µS⋅cm-1) 515  

Sand (%) 77.5   
Soil type Loamy sand   
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Equipment and Materials 

� Glass flasks amber, 500 mL (Schott, Mainz, Germany) 

� Glass attachments for test vessels (Schott, Mainz, Germany)  

� PTFE-gasket (Schott, Mainz, Germany) 

� Soda lime granules with indicator (Merck, Darmstadt, Germany) 

Set-up of the test system 

The test system consisted of a 500 mL amber glass flask filled with 200 g sediment 

and 300 mL creek water (Figure 3.2). A CO2-trap filled with 30 g granulated soda lime 

was tidy coupled with the top of the flask. Thus, an exchange of air was possible, while 

CO2 was efficiently trapped. Further, the test vessels were wrapped with aluminum foil, 

to minimize photochemical reactions. Although, non-labelled compounds do not allow 

for a quantification of the mineralization product 12CO2 in the used experimental set-up, 

CO2-traps were coupled to the test vessels in all tests to achieve comparability to the 

tests with 14C-labelled pharmaceuticals. 

Soda lime

Glass wool

Air

Water
Sediment

CO2-trap

Test vessel

Gas exchange

Glass wool

CO2-

 

Figure 3.2:  Water/sediment test system 
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Prior to spiking with pharmaceuticals, the water/sediment systems were equilibrated 

under test conditions for at least 7 d. During the equilibration and the test period the test 

systems were slowly shaken avoiding a disturbance of the separation of sediment layer 

and overlying water as well as an excess suspension of sediment fines. 

The pharmaceuticals were spiked as aqueous solutions into the water phase of the 

test systems using water-miscible organic solvents (e.g. ethanol). In any case the 

concentration of the organic solvent in the overlying water did not exceed 0.5 %. 

Spiking levels of the individual compounds are listed in Table 3.2. These relatively high 

concentrations were chosen to enable a detection of 1 percent of the initial analyte 

concentration. For iopromide and diazepam which were the first compounds tested, a 

spiking level of 500 ng⋅g-1 µg/kg was chosen. Since the necessary detection limits were 

attained easily even at lower spiking levels, the spiking level was decreased to 100 

ng⋅g-1 for all further test substances. The vessels were slowly shaken for the test period 

of 100 d in an air-conditioned room at 20 ± 2°C.  

 For each sampling time two water/sediment vessels were sacrificed in parallel. 

Hence, 24 test systems were prepared per tested pharmaceuticals, to allow for 10 

sampling times, 2 solvent controls and 2 controls (Figure 3.3). Solvent controls were 

prepared in order to observe the influence of the used organic solvent in the application-

solution to the water/sediment system. The error bars in chapter 4.1 show the mean 

absolute deviation between the two test vessels sampled, their lower and their upper 

ends refer directly to the individual measurement values made. 
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Figure 3.3:  Test-vessels of the 14C-iopromide test before sampling after 24 h 

Table 3.2:  Spiking levels of pharmaceuticals 

Compound Concentration  
(ng⋅g-1 sediment) 

14C-Iopromide 500 
14C-Diazepam 500 

Oxazepam 100 
14C-Ibuprofen 100 

2-Hydroxy-ibuprofen 100 
14C-Paracetamol 100 
Carbamazepine 100 

10,11-Dihydro-10,11-dihydroxy-carbamazepine 100 
Clofibric acid 100 

Ivermectin 100 
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Sampling of the water/sediment test systems 

Samples were taken immediately after spiking and after 0.25, 1, 2, 7, 14, 28, 56 and 

100 d. For that, the entire water and sediment phase of each test-system were taken. 

Then, the supernatant water phase was decanted and homogenized using a magnetic 

stirrer. Sediment was manually homogenized. Water samples containing radio-labelled 

compounds were filtered through a paper filter, to remove suspended matter, and were 

divided into 15 mL aliquots. Possible analyte sorption to the filter was always checked. 

The sediments were divided into portions of 2× 10–20 g and 2× 80–90 g. For non-

labelled test compounds, the water phase was divided into aliquots of 75 mL and 

225 mL, and the sediments were stored in two portions of 100 g. In the radiotracer tests, 

the soda lime of the CO2-traps was transferred into PE-bags, while the soda lime 

granules were rejected in the tests with non-labelled compounds. All samples were 

finally frozen at –20°C and stored until analysis. The aliquot size for analysis was 

selected, to allow for the LOQs listed in Table 3.3.   

Table 3.3:  LOQs for analysis of system compartments 

Analysis LOQ in water (% C0) LOQ in sediment (% C0)
Quantification of non-labelled 

analytes 
≤ 1 ≤ 1 

Quantification of radioactivity ≤ 1 ≤ 1 
Radio-TLC ≤ 2.5 ≤ 1 
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3.3 Soil-column leaching experiments 

Equipment and materials 

� Cylindrical sectionable glass columns (350 mm long, 50 mm diameter) with 

glass tubes and glass drip outlets including metal rack; 

� Glass sinter discs D1 (diameter 50 mm), Merck Eurolab, Frankfurt, Germany; 

� Vibration device used for filling and packing the soil columns; 

� Peristaltic pump Ismatec IPS 12 including tubes (Tygon), Wertheim, Germany; 

� Chemicals: CaCl2, ethanol, methanol, acetone, (HPLC Grade), Merck, 

Frankfurt, Germany; 

� Standard laboratory equipment: PTFE-tubes, spoons, pipettes, amber glass 

bottles;  

Experimental set-up 

All tests were performed according to the OECD guideline No. 312 “Leaching in soil 

columns” (Brodsky et al., 1997, OECD, 2003a).  

Air-dried and sieved soils (< 2 mm mesh) were packed in sectional glass columns to 

a height of approximately 30 cm (Figure 3.4). To obtain uniform packing, the soil was 

added in small portions under gentle vibration of the column. Subsequently, the soils 

were saturated with artificial rain (0.01 mol⋅L-1 CaCl2) to their maximal water holding 

capacities. The test substances were applied on the top of the soil columns as aqueous 

solution or dissolved in organic solvent at a concentration level of 100 µg⋅kg-1 soil (dry 

weight). When necessary an organic solvent was used for application, the solvent was 

allowed to evaporate completely from the soil surface prior to the start of the 

experiment. All tests were performed in the darkness at a temperature of 20 ± 2°C. A 

total amount of 393 mL artificial rain (0.01 mol⋅L-1 CaCl2) corresponding to a rate of 

200 mm was added within 48 h drop wise on each soil column, which simulated an 

extremely high rainfall. Glass sinter disks on top of the columns ensured an even 

distribution of the artificial rain.  
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At the end of the experiments, the amounts of the non-labelled pharmaceuticals, 

respectively the total radioactivity contained in the leachates were determined. The time 

dependent leaching behaviour of the test substances was not investigated, since the 

leachates were collected in one fraction. Additionally, in the studies using 14C-labelled 

substances, the total radioactivity in different layers of the soil columns was measured. 

For this purpose, the soil columns were divided in six sections, each about 5 cm high. 

 

Figure 3.4: Cylindrical sectional glass column (350 mm long, 50 mm diameter) with 
glass tubes and a glass drip outlet including a metal rack 

Characterization of applied soils 

The soils selected for the leaching studies (Figure 3.5) covered a wide range of the 

soil spectrum with respect to organic content and pH (Table 3.4). Deviating from OECD 

guideline No. 312 OECD, 2003a two different soils, LUFA 2.2 (LU) and Euro Soil 5 

(E5) were used in the studies with non-labelled compounds, whereas in the studies 

using 14C-iopromide and 14C-diazepam a third soil was tested (Neuenkirchen; collected 



26  MATERIALS AND METHODS  

north of Braunschweig, Niedersachsen, Germany). The third soil was included to 

improve the comparability with studies performed in parallel to this project. EuroSoil 5 

was sampled at the site near Gatow (Schleswig-Holstein, Germany) where the original 

EUROSOIL (Kuhnt and Muntau, 1992) was taken, the soil LUFA 2.2 was obtained from 

the LUFA Speyer (Germany) and the third soil was collected north of Braunschweig 

(Niedersachsen, Germany). Data on the soil characteristics are given in Table 3.4. 

 

Figure 3.5: Soils used in the leaching studies (LUFA 2.2; EuroSoil 5; Neuenkirchen) 

Table 3.4 :  Soils applied in leaching experiments 

 LUFA 2.2 EuroSoil 5 Neuenkirchen 
pH (CaCl2) 5.8 2.9 7.0 

Corg [%] 2.3 6.3 1.3 
Org. content [%] 4.0 10.8 2.2 

C/N-Ratio 13 (1) --- --- 
Ntotal [mg/kg dw] --- --- 2600 (3) 

CEC [cmolc/kg] 11 (1) --- --- 
Water content [%] 10.7 2.2 22.7 

WHC [%]  51 25 (4) 33 
Soil texture loamy sand (1) loamy sand (4) silty loam(3) 

Clay [%] 8.2 (1) 8.4 (4) 17.0 (3) 
Silt [%] 17.0 (1) 17.7 (4) 78.4 (3) 

Sand [%] 74.8 (1) 73.9 (4) 4.7 (3) 
Soil type Gleysol (2) Podsol Luvisol (3) 

Sampling depth 0-10 cm (1) 0-10 cm 0-10 cm (3) 
Sampling horizon Ah (1) Ah Ap (3) 

Vegetation hay meadow (1) pine forest winter wheat (3) 
Sampling date 10. July 2001 (1) 12. July 2001 10. August 2001 

CEC = cation exchange capacity; WHC = water holding capacity; (1) data based on standard certificate of 
analysis, Landwirtschaftliche Untersuchungs-und Forschungsanstalt Speyer; (2) pers. comm. Weller, 2001, 
(Landwirtschaftliche Untersuchungs- und Forschungsanstalt Speyer); (3) data provided by Institut für 
Geoökologie, TU Braunschweig; (4) data provided by Fa. Geocomp, Bad Vilbel. 
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Sampling procedure and sample handling 

During the test period the leachates were collected in amber glass bottles (Figure 

3.6). After allowing the columns to drain, the concentrations of test substance 

respectively the total radioactivity were determined by methods described in the 

chapters 3.5 and 3.6. Additionally, in the studies using 14C-labelled test substances, the 

total radioactivity was measured in 5 cm soil layers when at the end of the experiments 

the sectionable glass columns were divided into six layers. After homogenization of the 

individual soil layers, sub-samples were combusted in a sample oxidizer and the 

radioactivity were measured by LSC (see chapter 3.6). The amounts of test substance, 

respectively total radioactivity, were given for each soil layer and leachate in relative 

concentrations normalized by the applied initial dose.  

 

Figure 3.6:  Soil columns in a soil leaching study (1: PTFE-tube; 2: glass sinter disk; 
3: soil column wrapped with aluminium foil; 4: glass bottle containing 
artificial rain; 5: peristaltic pump; 6: leachate collecting) 
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3.4  Materials and instrumentation for chemical analysis  

The following reference compounds, chemicals and solvents have been incorporated 

in this work: 

Lipid regulators and metabolites 

� Bezafibrate, clofibric acid, gemfibrozil (Sigma, Deisenhofen, Germany)  

Antiphlogistics and metabolites 

� Diclofenac, fenoprofen, ibuprofen, indomethacin, ketoprofen, naproxen, 

paracetamol, (Sigma, Deisenhofen, Germany), 2-hydroxy-ibuprofen (µ-Mol, 

Luckenwalde, Germany) 

Parasiticides 

� Ivermectin (Sigma, Deisenhofen, Germany) 

Antiepileptics and tranquilizers  

� Carbamazepine, diazepam, oxazepam, (Sigma, Deisenhofen, Germany), 10,11-

dihydro-10,11-dihydroxy-carbamazepine (µ-Mol, Luckenwalde, Germany) 

Iopromide derivatives 

� Iopromide, desmethoxy-iopromide, ATH, DAMI, ATI (courtesy from Schering, 

Berlin, Germany) 

Internal and surrogate standards 

� Abamectin, fenoprop (Riedel-de-Haen, Seelze Germany), 10,11-dihydro-

carbamazepine (Alltech, USA), paracetamol-D4 (Cerilliant, Austin, USA) 

14C-labelled reference compounds 

� 14C-Diazepam, [2-14C], radiochemical purity 99.8 %, specific activity  

7.22 MBq⋅mg-1, (Amersham Pharmacia Biotech UK Limited, Little Chalfont, 

UK) 

� 14C-Ibuprofen, [carboxyl-14C], radiochemical purity > 99 %, specific activity 

8.97 MBq⋅mg-1 (American Radiolabeled Chemicals Inc., St. Louis, MO, US) 
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� 14C-4-acetaminophen, [ring-UL-14C], radiochemical purity > 99 %, specific 

activity 1.54 MBq⋅mg-1 (Sigma-Aldrich, Steinheim, Germany) 

� 14C-iopromide, [ring-14C], radiochemical purity > 98 %, specific activity 

1.86 MBq⋅mg-1 (courtesy from Schering AG, Berlin, Germany) 

� 14C-4-nitrophenol, [ring-14C], radiochemical purity 99 %, specific radioactivity 

2.66 MBq⋅mg-1 (American Radiolabeled Chemicals Inc., St. Louis, MO, USA) 

Chemicals and solvents 

� Acetic acid (100 %, p.a.), amyl alcohol, sulphuric acid (suprapur), ammonia 

(25 %, p.a.), ammonium acetate (p.a.), KH2PO4, K2HPO4, (Merck, Darmstadt, 

Germany 

� Acetone, acetonitrile, chloroform, ethyl acetate, methanol, 2-methyl-propanol, 

n-hexane, toluene, all suprasolv (Merck, Darmstadt, Germany) 

 

The following instruments and materials were applied for the analyses and 

experiments:    

LC tandem MS 

� Perkin-Elmer Series Autosampler Series 200 connected to a Perkin-Elmer 

quaternary pump Series 200 and an AS–2000a auto sampler, Perkin Elmer Sciex 

API 365 tandem MS with ESI and APCI-interface 

Columns for HPLC 

� EcoCart (125 x 3 mm) LiChrospher 100 RP-C18 endcapped (5 µm) (Merck, 

Darmstadt) 

� EcoCart (125 x 3 mm) LiChrospher RP-C18 (5 µm) (Merck, Darmstadt) 

� EcoCart (125 x 3 mm) column cartridge (Merck, Darmstadt) 

Radiometry 

� Liquid scintillation counter Tricarb 2500 TR (Canberra Packard, Dreieich, 

Germany) 
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� LSC-Cocktails: EcoPlus (Roth, Karlsruhe, Germany), Ultima Gold F and 

Permafluor E+ (Canberra Packard, Dreieich, Germany);  

� Sample Oxidizer, TriCarb 307 (Canberra Packard, Dreieich, Germany) 

� Carbon dioxide absorbent Carbo-Sorb E (Canberra Packard, Dreieich, 

Germany) 

� Combusto-Cones (Canberra Packard, Dreieich, Germany) 

� 14C-Spec-Chec (Canberra Packard, Dreieich, Germany) 

� TLC-Radio-Scanner 1052 with Digital Signal Analyzer 1006 (Berthold GmbH, 

Wildbad, Germany) 

� TLC Plates 20 × 20 cm, KG 60, F254 (Merck, Darmstadt, Germany) 

Material and equipment for sample preparation 

� Lyophilizer Alpha 2-4 (Christ, Osterode am Harz, Germany) 

� Rotary evaporator RE 111, water jet pump and vacuum controller (Büchi, 

Konstanz, Germany) 

� Syringe filter Spartan 13/20 0.45 µm (Schleicher & Schuell, Dassel, Germany 

� Syringe filter PTFE 0.22 µm (Roth, Karlsruhe, Germany)  

� Glass fiber filter (< 1 µm) (Schleicher & Schuell, Dassel, Germany) 

� Glass cartridges 3 mL (Mallinckrodt Baker, Griesheim, Germany) 

� PTFE-frits (ICT, Bad Homburg, Germany) 

� Solid phase materials: Isolute ENV+, RP-C18 end capped (ICT, Bad Homburg, 

Germany), LiChrolute RP-C18 (40 – 63 µm), LiChrolute EN (40 – 120 µm) 

(Merck, Darmstadt, Germany) 

� Glass vials 10 mL with stretched tip (0.2 mL) and screw caps, (Glassblowing, 

Mainz, Germany) 

� LC vials 500 µL PP with PTFE caps (A-Z Analysenzubehör, Mainz, Germany) 

� Centrifugation flasks 250 mL, PPCO (Nalge Nunc International, Rochester, 

NY) 
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3.5 Analysis of pharmaceuticals with mass spectrometry 

3.5.1 Acidic pharmaceuticals 

Lipid regulators and analgesic pharmaceuticals were presumably the first 

prescription pharmaceuticals detected in the environment (Garrison et al., 1976, Hignite 

and Azarnoff, 1977). In recent years numerous methods have been reported for the 

detection of these pharmaceuticals, often containing carboxyl groups. Predominantly 

analysis in environmental compartments has been applied via GC/MS (Buser et al., 

1998, Heberer et al., 1997, Heberer and Stan, 1996, Sacher et al., 2001, Stumpf et al., 

1998, Stumpf et al., 1999, Ternes, 2001b, Weigel et al., 2002) but also by LC/MS 

(Ahrer et al., 2001, la Farré et al., 2001, Miao et al., 2002) and CE/MS (Ahrer et al., 

2001).   

Within the present work, the acidic pharmaceuticals were analyzed in leachate 

samples following a procedure, originally described by Ternes et al., 1998b using SPE 

enrichment, derivatization with diazomethane and GC/MS detection. Since this method 

included a derivatization step with the carcinogenic diazomethane, an entirely new 

method was developed, which allowed for the analysis of water and sediment by LC-

tandem MS detection (Löffler and Ternes, 2003).   

The new method included an SPE for aqueous samples of various origins, applying a 

polymer based mixed-bed material, which attained a high extraction efficiency and 

retained analytes based on reversed phase and cation-exchange mechanisms. This 

enabled for a limited sample clean-up since cationic compounds extracted remained 

attached to the SPE-material during elution and were thus removed from the sample 

extract. Furthermore, an LC-tandem MS method was developed, using atmospheric 

pressure chemical ionization (APCI) for the acidic analytes.  

Optionally, a sediment extraction procedure was developed which utilized the newly 

established SPE step as an clean-up of the sediment extracts. This was in response to the 

extracts being highly loaded with matrix impurities. 
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3.5.2 Neutral pharmaceuticals 

The term neutral pharmaceuticals relates to those pharmaceuticals, such as 

carbamazepine and diazepam, which are extractable using reversed phase SPE materials 

with a neutral pH. These compounds have been found in various environmental waters 

using gas- and liquid chromatography mass spectrometry (Meisenheimer and Ternes, 

2000, Öllers et al., 2001, Sacher et al., 2001).  

The analytical method applied for the analysis of various neutral pharmaceuticals is 

based on methods already reported (Ternes et al., 2001, Ternes et al., 1998a), but were 

extended to allow for the detection of two additional analytes. These were the main 

human metabolites of carbamazepine and diazepam, 10,11-dihydro-10,11-dihydroxy-

carbamazepine and oxazepam. Again, a solvent extraction procedure was developed for 

the determination of the analytes in sediment. The SPE, normally applied for the 

enrichment of the neutral pharmaceuticals in aqueous matrices, served here as a clean-

up step for the sediment extracts.  

3.5.3 Iopromide derivatives and paracetamol 

The iopromide derivatives were analyzed, based on the procedure recently described 

(Hirsch et al., 2000, Ternes and Hirsch, 2000) for aqueous matrices. The current method 

was developed for the determination of the analytes in aqueous matrices and sediment. 

In addition to the iopromide derivatives, the analgesic paracetamol was included into 

the method. Since the recoveries of the iopromide derivatives ATH and ATI in SPE 

were generally low, they were excluded as analytes in method development. The SPE 

was used as an enrichment procedure for aqueous matrices and as clean-up for sediment 

extracts.   

Sediment extraction 

All sediment samples were sieved prior to analysis (2 mm mesh), in order to remove 

the coarse sediment fraction. Sediment samples (50 g) were filled in PPCO flasks and 

were spiked with 800 ng of DMI, the surrogate standard for the iopromide derivatives, 

and 800 ng of paracetamol-D4 the surrogate standard for paracetamol. Sediments were 

then extracted using 2 × 45 mL methanol and successively 2 × 45 mL acetone in an 

ultrasonic bath. The slurries of the solvent/sediment mixtures were thoroughly hand 
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shaken and then ultrasonicated for 15 min. After extraction, the slurries were 

centrifuged for 7 min at 5400 rpm and the supernatant solvent phases were filtered, 

combined and evaporated at 40°C, 150 – 250 mbar by a rotary evaporator until only 

water remained. The resulting extracts and methanol rinses (3 × 1 mL) were combined 

and diluted with 500 mL of uncontaminated groundwater, which is known to be free of 

anthropogenic organic contamination. 

SPE of water samples and aqueous sediment extracts 

Water samples or aqueous sediment extracts were, if necessary, filled up to 500 mL 

with groundwater and adjusted to a pH 2.8 using H2SO4 (3.5 mol⋅L-1). Then, the 

surrogate standards DMI and paracetamol-D4 were spiked to the samples. Glass 

cartridges were manually packed with 250 mg of ENV+ and 100 mg of RP-C18ec-

material on the top and were conditioned prior to sample extraction with 6 mL of n-

hexane, 2 mL of acetone, 10 mL of methanol and 10 mL of groundwater. Aqueous 

samples (either water or aqueous sediment extracts) were passed through the SPE 

cartridges at a flow rate of 10 mL⋅min-1, since lower flow rates were crucial for good 

recoveries. Afterwards the cartridges were dried with nitrogen for 1 h. The RP-C18ec 

material was removed, while keeping the ENV+ material in the cartridges which were 

then eluted with 4 × 1 mL of methanol. All extracts were evaporated to dryness in a 

gentle nitrogen stream and the residue was finally dissolved in 50 µL of methanol and 

450 µL of phosphate buffer (pH 7, 20 mM KH2PO4/K2HPO4). 

HPLC conditions 

Prior to injection all wastewater samples and sediment extracts were filtered 

(0.45 µm, Spartan 13/20, Schleicher & Schuell, Dassel, Germany). The Perkin Elmer 

HPLC system consisted of a Series 200 in-line degasser and a quaternary pump 

connected to an AS–2000a autosampler. The injection volume was always 50 µl. For 

the chromatography of the X-ray contrast medium and paracetamol a 125 × 3 mm 

LiChrospher RP-18ec column (5 µm) (Merck, Germany) was applied and kept at 5°C. 

A isocratic flow of 0.2 mL⋅min-1 of the mobile phase was used for the LC-analysis 

containing a 5 mmol⋅L-1 ammonium acetate (pH 5.7) and acetonitrile (90:10, v/v).  
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MS/MS detection 

The iopromide derivatives and paracetamol analyzed using a Perkin-Elmer Sciex 365 

triple-stage quadrupole mass spectrometer equipped with turbo electrospray ionization 

(ESI). Analyses were performed at 400°C in the positive ion mode, with a spray voltage 

of 4.6 kV. Potential differences between skimmer and orifice varied from 14 to 35 V 

and ring electrode voltages from 140 to 190 V. Nitrogen was used as the curtain gas and 

the nebulizer gas at flow rates of 1 and 0.7 L⋅min-1, respectively. The eluent was split 

1:10 in the electrospray interface, resulting in a effective spray rate of 20 µL⋅min-1 into 

the mass spectrometer. MS/MS parameters were optimized in the continuous flow 

mode. Conditions for the measurement of precursor ions were optimized in the single 

MS scan mode. The protonated molecular ions were used as the precursor ions for 

subsequent MS/MS experiments. Product ion spectra were recorded by scanning Q3 

over the relevant mass range. After the determination of the product ions, the conditions 

for the nitrogen-collision-induced dissociation (CID) were optimized. Precursor and 

product ions of the individual compounds are shown in  

Table 3.5. 

Table 3.5: Retention times and fragmentation of iopromide derivatives and 
paracetamol 

Compound Retention time (min) Precursor and product ions (m/z)  
ATI 3.3 559.5 

432.81
[MH]+ 

[M-HI+H]+ 
ATH 4.9 632.7 

541.81
[MH]+ 

[M-C3H9NO2+H]+ 
DMI 5.6 761.8 

543.11
[MH]+ 

[M-HI-C3H9NO2+H]+ 
Iopromide 7.4 791.8 

572.81
[MH]+ 

[M-HI-C3H9NO2+H]+ 
Paracetamol 8.8 152.2 

133.8 
110.01

[MH]+ 

[M-H2O+H]+ 

[M-C2H4O+H]+ 
Paracetamol-D4 8.8 156.0 

113.81

95.6 

[MH]+ 

[M-C2H4O+H]+ 

[M-H2O-C2H4O+H]+ 
DAMI 9.5 719.7 

628.91
[MH]+ 

[M-C3H9NO2+H]+ 
1: Product ion used for quantification 



MATERIALS AND METHODS 35  

Determination of recoveries, LOQs and calibration  

 Individual recoveries for the SPE procedure were measured by spiking groundwater, 

soil leachates, surface water and wastewater.  

The efficiency of the solvent extraction step was determined for paracetamol using 

autoclaved sediment, spiked with a 14C-labelled standard, which was extracted after a 

contact time of approximately 14 h following the described extraction sequence. 

Finally, overall recoveries were obtained by spiking autoclaved sediment at two 

levels and analyzing the samples after a contact time of approximately 14 h as described 

above. The recoveries were calculated relative to a non-extracted standard. Calibration 

curves were prepared for each compound from the spiked groundwater samples by 

plotting the peak area of the respective MRM-transition versus the analyte 

concentration. In each calibration series, a blank sample and a recovery sample were 

included. Requiring a S/N-ratio > 10, the LOQs were set as the second lowest 

calibration point in the linear regression.  

Method characterization 

Groundwater and soil leachates 
Recoveries for the SPE of groundwater were quantitative for the iopromide 

derivatives and only slightly lower for paracetamol, as shown in Table 3.6. A 

compensation led to excellent relative recoveries ranging from 89 ± 9 to 104 ± 4 %. In 

soil leachates the recoveries differed to some extent. Iopromide and DMI were both 

recovered at the 83 ± 6 % level, while the iopromide metabolite DAMI was over 

determined with a 123 ± 5 % recovery. A relative recovery of 100 ± 7 % was obtained 

for iopromide, whereas the compensation increased the recovery to 143 ± 8 %, and thus 

quantification had to be done without compensation. Nevertheless, all recoveries had a 

low statistical error of < 10 %, exhibiting a reproducible enrichment procedure. 

All LOQs of the analytes in groundwater and soil leachates were 0.04 µg⋅L-1. The 

calibration curves, for the quantification of the iopromide derivatives and paracetamol 
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in all aqueous matrices and sediment, were prepared from spiked groundwater and 

attained regression coefficients always > 0.99. 

Table 3.6:  Recoveries (%) and confidence intervals (P=95 %) of iopromide, an 
iopromide metabolite and paracetamol for the SPE of spiked 
groundwater and soil leachates 

 Groundwater Soil leachates 

Compound LOQ 
(µg⋅L-1) 

Absolute
Recovery 

(%) 

Relative 
Recovery 

(%) 

LOQ 
(µg⋅L-1) 

Absolute 
recovery 

(%) 

Relative 
recovery 

(%) 
DAMI 0.04 97 ± 3 99 ± 5 0.04 123 ± 5 143 ± 8

Iopromide 0.04 87 ± 5 89 ± 9 0.04 83 ± 6 100 ± 7
DMI 0.04 97 ± 7 -  0.04 83 ± 6  -  

Paracetamol - 81 ± 9 104 ± 4 -  -   -  
Paracetamol-D4 0.04 78 ± 8 -  0.04  -   -  

 

Surface water 

The SPE method was also well suited for the surface water. Recoveries in surface 

water ranged from 87 ± 7 to 102 ± 11 % and after compensation between 100 ± 9 % and 

115 ± 6 % (Table 3.7). However, the method allowed for the determination of the 

analytes in groundwater, soil leachates and surface water with a LOQ of 0.04 µg⋅L-1.  

Table 3.7:  Recoveries (%) and confidence intervals (P=95 %) of iopromide, an 
iopromide metabolite and paracetamol for the SPE of surface water 
(n=4) spiked with 1 µg⋅L-1 

  Surface water 

Compound LOQ 
(µg⋅L-1)

Absolute 
Recovery 

(%) 

Relative 
Recovery 

(%) 
DAMI 0.04 87 ± 7 100 ± 9 

Iopromide 0.04 92 ± 8 105 ± 10
DMI - 87 ± 4 -  

Paracetamol 0.04 102 ± 11 115 ± 6 
Paracetamol-D4 - 89 ± 5 -  

1 The native analyte concentration of a sample was subtracted from the concentration of spiked samples 

for the calculation of the recoveries  
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Sediment 

The solvent extraction yielded an almost quantitative recovery of 95 ± 3 % 14C-

paracetamol. More than 89 % were attained within the first 2 extraction sequences 

(Table 3.8).  

Table 3.8:  Recoveries (%) and confidential intervals (P=95 %, n=4) for 
paracetamol after extraction of 50 g sediment spiked with 14C-
paracetamol at 20 ng⋅g-1 

 Paracetamol recovery (%) 
First extraction 73 ± 2 

Second extraction 17 ± 2 
Third extraction 2 ± 1 
Fourth extraction 3 ± 2 

Sum 95 ± 3 
 

Overall recoveries of the analytes in sediment were quantitative at a spiking level of 

20 ng⋅g-1, except for the surrogate standard DMI (Table 3.9). The latter was found at a 

significantly lower level of 54 ± 4 %. Hence, DMI was not appropriate as a surrogate 

standard for the determination of iopromide and its’ metabolite DAMI in sediments. In 

contrast to that finding, the compensation of the iopromide derivatives and paracetamol 

using paracetamol-D4 provided good relative recoveries between 101 ± 19 and 

117 ± 6 %.  

The recoveries at the lower spiking level of 3 ng⋅g-1 differed from those at the high 

spiking level. For iopromide and its’ metabolite DAMI the recoveries were decreased 

and ranged between 70 ± 4 and 77 ± 4 %, while the recovery of DMI was constant at 

50 ± 4 %. A paracetamol signal was found in non-spiked sediment samples, resulting 

either from contamination with paracetamol or from interfering matrix components. 

Therefore, the background signal was subtracted from the paracetamol signal in the 

spiked samples. A chromatogram of a standard sample is shown in Figure 3.7. 

Paracetamol was recovered with 52 ± 25 %, while the deuterated surrogate standard 

provided recoveries of 100 ± 11 %. The strong difference in the recovery rates of 

paracetamol and its’ deuterated standard might have been the result of the different 

spiking levels applied, since the surrogate standard was spiked in all experiments at the 
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same concentration of 16 ng⋅g-1 sediment. Hence, neither DMI nor paracetamol-D4 were 

appropriate surrogate standards and quantification was always conducted without 

compensation. The LOQs for iopromide and DAMI was set to 3 ng⋅g-1 while 

paracetamol’s was 20 ng⋅g-1.  

Table 3.9:  LOQs (ng⋅g-1), recoveries (%) and confidence intervals (P=95 %) of 
iopromide derivatives and paracetamol for the overall method at two 
spiking levels (20 ng⋅g-1 and 3 ng⋅g-1), using paracetamol-D4 as 
surrogate standard for all analytes (contact time ∼ 14 h)  

  Spiking level 20 ng⋅g-1 (n=3)Spiking level 3 ng⋅g-1 (n=4)

Compound LOQ 
(ng⋅g-1) 

Absolute 
recovery 

(%) 

Relative 
recovery 

(%) 

Absolute 
recovery 

(%) 

Relative 
recovery 

(%) 
DAMI 3 92 ± 19  101 ± 19 77 ± 4 79 ± 18 

Iopromide 3 100 ± 18  106 ± 17 70 ± 4 71 ± 7 
DMI - 54 ± 11  -  50 ± 4  -  

Paracetamol 20 102 ± 21  117 ± 6 52 ± 25 53 ± 29 
Paracetamol-D4 - 88 ± 18  -  100 ± 11  -  
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Figure 3.7:  Total ion chromatogram of a standard (500 ng) with iopromide 
derivatives and paracetamol (IO = iopromide, PAR = paracetamol) 
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3.5.4 Ivermectin 

Analytical methods for avermectin derivatives that apply mass spectrometry 

detection, are available for a wide range of biological matrices, such as vegetables, 

fruits, tissues and milk (Heller and Schenck, 1993, Tumipseed et al., 1999, Valenzuela 

et al., 2000, Wu et al., 2001, Yoshii et al., 2000). Unfortunately, most methods for their 

environmental detection apply fluorescence detection and achieve only a very limited 

specificity (Cannavan et al., 2000). Recently, Reyzer and Brodbelt published an SPME 

method for the detection of abamectin in water samples, with LC-tandem MS detection 

(Reyzer and Brodbelt, 2001). Usually SPME does not allow for a quantitative 

enrichment of the analyte from the samples and, therefore, the sensitivity was relatively 

low (LOQ > 1 µg⋅L-1).  

In the current work, a LC tandem MS method was developed for the determination of 

the parasiticide ivermectin in environmental waters and sediment (Löffler and Ternes, 

2003). As described by Reising, 1998, abamectin was applied as the surrogate standard 

and allowed for an effective compensation of virtually all analyte losses, since both 

compounds show very similar properties.  

3.6 Radiometric analysis of 14C-labelled pharmaceuticals 

Radio tracer techniques are useful tools in chemistry and environmental sciences. 

The analysis of samples containing radio-labelled compounds is usually divided in two 

major steps. At first, the total radioactivity in the various system compartments is 

determined. A balance of radioactivity can then be conducted, comparing the quantity 

of radioactivity originally applied versus the quantity found after sampling. This 

provides basic information on the distribution of the radioactivity in the system 

compartments. The second step is the chemical analysis of the radio-labelled 

compounds in the different system compartments which allows for the identification 

and quantification of test compound and its’ metabolites.  
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3.6.1 Analysis of the total radioactivity in environmental samples 

Water samples 

The total radioactivity in the water samples was determined by liquid scintillation 

counting (LSC) immediately after sampling. The water aliquots were mixed with an 

appropriate amount of scintillation cocktail (Ultima Gold F) and measured in the liquid 

scintillation counter. 

Sediment and soil 

The total amount of radioactivity included in sediment or soil samples was 

determined by the combustion of aliquots in a sample oxidizer. Aliquots of 1 g wet 

sediment were filled in Combusto-cones (paper-foam tubes) and were mixed with 

400 µL of amyl alcohol to enhance the combustion process. The samples were then 

combusted in a platinum heating coil under an oxygen atmosphere. The released 14CO2 

was automatically trapped in an absorbent (Carbo-Sorb E) and mixed with scintillation 

cocktail (Permafluor E+) before it was finally measured by LSC. Recovery rates of the 

sample oxidizer were determined prior to measurement in 3 replicates and after 8 to 16 

samples, by combusting cellulose samples spiked with a defined amount of a 14C-

standard (Spec-Check).  

All samples were measured in 3 or 4 replicates to minimize the variability. Since a 

small memory effect occurred, a blank was analyzed after each set of sample replicates. 

For quantification of the radioactivity in the samples, the recovery rates and the memory 

effects were considered. 

Soda lime CO2-traps 

For the analysis of the trap material, the CO2 sorbed to the soda lime had to be 

transferred quantitatively into the liquid phase for LSC-measurement. Soda lime 

samples of 30 g were mixed with 75 mL of hydrochloric acid and were stirred until 

complete dissolution of the soda lime pellets occurred. Nitrogen was led gently through 

the soda lime/hydrochloric acid mixture and the CO2 in the resulting gas current was 
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sequentially trapped in an absorbent (Carbo-Sorb E). After addition of the scintillation 

cocktail, the 14CO2 was then quantified by LSC.  

3.6.2 Sample preparation for chemical analysis 

Prior to analysis, the analytes in aqueous samples had to be concentrated. The 

enrichment via SPE, used for non-labelled analytes, is more or less specific for 

compounds of a certain range of polarity. However, the polarity of an analyte and its’ 

TPs usually differ significantly. Thus, an SPE optimized for a certain analyte is 

presumably less effective for transformation products. A solution for that problem was 

the use of lyophilization under mild vacuum since a discrimination of polar metabolites 

was largely avoided. 

Lyophilization procedure for surface water containing ibuprofen, diazepam, 

iopromide and paracetamol 

The water samples were lyophilized for 1 – 2 d at –82°C and a vacuum of 0.15 mbar, 

while keeping the screw cap of the storage vessels semi-closed to prevent losses and 

cross contamination. Residues were transferred into small glass tubes with 3 × 1 mL of 

methanol and 1 mL of acetone. Then, the solvent was evaporated under a gentle 

nitrogen-stream and the samples were dissolved in 1.5 mL methanol. All extracts were 

filtered using 0.22 µm PTFE syringe filters and refrigerated until measurement.  

Evaporation procedure for surface water containing iopromide 

Water samples of 15 mL were mixed with 180 mL acetonitrile. The liquid phase was 

evaporated to dryness by a rotary evaporator at 40°C and 150 mbar. Residues were 

successively dissolved under ultrasonic conditions in 3 mL of methanol and 3 mL 

acetone and were transferred into smaller tubes. The solvents were entirely removed in 

a gentle nitrogen stream and the remaining residues were dissolved in 1.5 mL of 

methanol. Then, the extracts were filtered using 0.22 µm PTFE syringe filters and 

refrigerated until measurement.  
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Extraction of ibuprofen, diazepam and paracetamol in sediment 

Analytes in sediment samples were solvent extracted according to the extraction 

sequences already described in the methods of the non-labelled analytes. After the 

removal of the extraction solvent, the remaining aqueous phase was diluted 1:12 with 

acetonitrile and was then azeotropically evaporated to dryness by a rotary evaporator at 

40°C and 150 mbar. The residues were successively dissolved under ultrasonic 

treatment in 3 mL of methanol and 3 mL acetone and were transferred into smaller 

tubes. The resulting solution was evaporated to dryness in a gentle nitrogen stream and 

the residues were re-dissolved in 1.5 mL of methanol. Extracts were filtered using 

0.22 µm PTFE syringe filters.  

Determination of recoveries, LOQ and calibration  

The efficiency of the combustion process was checked by combusting sediment 

samples spiked in triplicate at various levels, and measuring the recovered radioactivity. 

For further recovery experiments, native surface water (15 mL) was spiked with the 

radio-labelled analytes. Samples were prepared as described in chapter 3.6.2.  

Overall recoveries for the lyophilization procedure were calculated by comparing the 

quantity of radioactivity found in the final sample extracts with the respective quantity 

initially spiked to the surface water samples. Efficiencies of the solvent extractions were 

determined as already described in the methods of the individual non-labelled analytes. 

Quantification of radioactivity in the liquid samples was attained using a TriCarb 2500 

TR liquid scintillation counter (Packard, Dreieich, Germany). The measuring time 

varied, depending on the radioactivity in the samples ranged between 5 and 20 min. 

Calibration of the counter was done every day by measuring standard samples and the 

background radioactivity. The counter TriCarb 2500 TR provided, quench correction 

via external standardization, an automatic efficiency control and luminescence detection 

and correction. Luminescence interferences were further minimized by measuring all 

samples after a decay period of at least 5 h after preparation. The LOQ for 

quantification with LSC was not compound specific and set to 60 dpm per sample, 

calculated as the three times the mean 14C-background radioactivity of 20 dpm per 

sample.  
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Method characterization 

The efficiency of the sediment combustion process was 94 ± 2 % at all spiking levels 

ranging from 60 – 100,000 dpm⋅g-1 sediment (non-dried) and was considered for 

quantification. Losses occurred were presumably due to the occlusion of radioactivity 

into the inorganic sediment matter during combustion and from losses caused by 

incomplete oxidation caused by the water content in the samples.  

The recoveries of the four radio-labelled analytes attained in lyophilization of spiked 

surface water are shown in Table 3.10 which shows its’ excellent suitability for the 

analytes. However, the recovery of iopromide during lyophilization was strongly 

dependant on the vacuum applied.  

Hence, an alternative concentration procedure was established for iopromide via 

rotary evaporation. Acetonitrile was added to the aqueous samples, to form an 

azeotropic mixture with water, which allowed for an evaporation of water at more 

gentle conditions. This method achieved a recovery of 88 ± 10 % and was comparable 

with those of the lyophilization procedure. As already mentioned, the solvent extraction 

procedures attained extraction efficiencies between 94 ± 4 and 95 ± 8 %.  

Table 3.10:  Recoveries and confidence intervals (P=95 %, n=10) of various 14C-
labelled analytes for the lyophilization and the evaporation method for 
surface water 

Recovery (%) for Compound Lyophilization Evaporation 
14C-Diazepam 95 ± 2 -  
14C-Ibuprofen 90 ± 2 -  
14C-Iopromide 91 ± 9 88 ± 10 

14C-Paracetamol 87 ± 4 -  
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3.6.3 Radio - thin layer chromatography  

For radio-TLC analysis, the 14C-labelled test compound and at least one possible 

metabolite, either labelled or non-labelled, were used as standards. The TLC conditions 

were chosen according to the best separation of the respective test compound from its’ 

metabolites or similar derivatives. Silica gel TLC plates, Merck (Darmstadt, Germany) 

20 × 20 cm 60 µm, with a 254 nm fluorescence coating and a preconditioning zone were 

used for all chromatographic separations. The plates were activated for 1 h at 110°C and 

were divided into six tracks, of which two, were reserved for reference standards. 

Compositions of the mobile phases for the different analytes are shown in Table 3.11. 

The gas phase in the developing tank was equilibrated with the mobile phase prior to the 

development of the plates. Samples and standards were spotted in the pre-concentration 

zone 1 cm above the bottom of the plate. All plates were developed to a distance of at 

least 15 cm and were then dried in a fume hood.  

The positions of the bands resulting from non-labelled reference compounds were 

determined using UV light at 254 nm. Then, the TLC-plates were scanned for 10 –

 30 min with an autoradiograph (Berthold, Wildbad, Germany) at an amplifier voltage 

of 900 V, while applying a mixture of argon, methane and methylal (90:10:1.5) as purge 

gas. 

The software Chroma 3D (Berthold, Wildbad, Germany) was used to evaluate the 

data of the autoradiography. All TLC plates were analyzed by integrating measured 

values in certain plate areas as rectangular area segments. At first, all signals on a plate 

were integrated, then all signals in each of the six tracks and finally all signals in each 

of the four to six track sections. Compounds were identified according to their Rf-

values. 
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Table 3.11:  Mobile phase compositions, Rf -values and references  

Compounds Rf-value Mobile phase for TLC-separation Method source 
 

Iopromide  
  

 
 
 

DAMI 0.47 2-Methyl-propanol-1/propanol-2 
/ammonia 25 % 

Kalsch, 1999 

Iopromide 0.37 (50 : 30 : 20, v/v)  
ATH 0.32   
ATI 0.22   

 
Diazepam 

   

Diazepam 0.66 Chloroform/acetone Sarin et al., 1998 
Oxazepam 0.31 (85 : 15, v/v)  

 
Ibuprofen 

   

Ibuprofen 0.75 Chloroform/methanol/acetic acid American 
Radiolabeled 

Chemicals Inc., 
2001 

2-Hydroxy 
ibuprofen 

0.58 (85 : 15, v/v)  

 
Paracetamol 

   

4-Nitrophenol 0.54 Toluene/methanol/acetic acid American 
Radiolabeled 

Chemicals Inc., 
1994 

Paracetamol 0.36 (90 : 16 : 8, v/v)  
  

3.6.4 Calibration and quantification 

The aim of the TLC analysis was the separation of the radioactive test compounds 

from their corresponding metabolites and the quantitative determination of the sample 

composition. 

In contrast to other detection methods, such as mass spectrometry, the response of 

the autoradiographical detection is not substance specific and depends on quantity of 

radioactivity present in a certain area of a TLC plate. Hence, the same calibration could 

be applied for all analytes. The linearity and sensitivity of the detector was determined 

by measuring a non-developed TLC-plate that was spiked with 6 different quantities of 

radioactivity in triplicates. A reliable quantification was attained between 250 and 
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75,000 dpm per spot. For quantification, the background signals per unit area of each 

track were determined in the upper undeveloped part of a track. Background correction 

was then achieved by subtracting the respective background signal from the measured 

values in each segment of a track. 

3.6.5 Verification of radiochemical purity 

The radio-TLC analysis of the applied radiotracer compounds, exhibited the presence 

of significant amounts of radio-labelled impurities, despite a higher certified purity in 

the iopromide, paracetamol and 4-nitrophenol standard (Table 3.12). Therefore, a 

correction was conducted to avoid incorrect results, from contaminations in the radio-

labelled standards. For that, the percentage of contaminations in the radio-labelled 

standard was determined on each plate. The percentage of possible metabolites in the 

samples on a plate were then corrected by subtraction of the threefold percentage of 

observed contaminations with a corresponding Rf-value. 

Table 3.12:  Certified and measured radiochemical purities of radio-labelled analytes 

Compound Certified purity
(%) 

Measured purity
(%) 

Observed contaminations 

Iopromide > 98 91 1 
Diazepam 99.8 100 - 
Ibuprofen > 99 100 - 

4-Nitrophenol 99 89 2 
Paracetamol > 99 95 1 

 

3.7 Calculation of DT50 and DT90-values 

The amount of the respective test substance in percent of the initial amount is given 

in tabular form and graphically. Based on this data, dissipation times (DT50 and DT90-

values) were calculated separately for the water phase as well as for the whole test 

system (water and sediment together) using the statistical software Origin 6.0 (Microcal 

Software Inc., Northampton, MA, USA). According to the EU guidance on the 

Persistence in Soil (European Commission and Directorate General for Agriculture, 

2000) the regressions were accomplished considering at least 5 sampling times. 

Regression curves were calculated from first order kinetics depending on best fit. When 

the data did not follow a first order kinetics, a software package obtained from the BBA 
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(Biologische Bundesanstalt für Land- und Forstwirtschaft) was used. In those very few 

cases (Ibuprofen) where no fit could be achieved at all the DT-values were estimated. 

The determination coefficients r2 obtained were always > 0.95. In addition, the 

regression coefficients were calculated, indicating also the fit of the curve (again, they 

were always > 0.95). Finally, the degradation rate per day was determined.  

Considering that the duration of the tests was 100 days, numerical dissipation values 

are given only if the calculated number was not higher than one year. Instead, all values 

calculated as being between one and two years are given as “> 365 days”. All values 

calculated as being even higher are given as “>> 365 days”.     

3.8 Quality assurance  

Quality assurance plays a major role in the preparation of scientific results. The 

provision of accurate, reliable and well documented data is central to scientists involved 

in such areas as i.e. development and manufacture of drugs, testing of the environmental 

behaviour of chemicals, food control or drinking water analysis. 

All data exhibited in this work was attained following several basic criteria to ensure 

the desired quality of the results. The methods applied and developed were 

characterized considering specificity, accuracy, precision and the respective limit of 

quantification, to prove the reliability of these methods and to guarantee the quality of 

data generated therewith.  

An important part of the present work was the development of analytical methods. 

Additionally, water/sediment tests were conducted and the obtained samples were 

analyzed using the new analytical methods. The following measurements were taken to 

assure the quality of the data generated:  

� The reproducibility of analytical procedures was verified regularly by 

standard addition experiments. Further, all sample series included blanks and 

the recovery rates were checked to compare enriched and non-enriched 

standard samples. 

� All analytical results obtained were verified for their plausibility, i.e. recovery 

rates of analytes in different matrices. 
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� Analytical methods included, as far as possible, the use of internal and 

surrogate standards to compensate analyte losses throughout the sample 

preparation. 

� The stability of the reference compounds was continuously controlled by 

comparing previously used calibration series with freshly prepared ones. 

� The radiochemical purities of the 14C-labelled substances was checked. 

� Analytical scales, pH meters, redox meters and oxymeters were calibrated at 

least monthly, their function verified daily and the results reported in control 

cards.  

� After elucidation of an adequate material for SPE enrichment, the same 

material charge was used throughout the work 

� All LC separations were conducted under thermostatic control of the 

columns, to preclude temperature related shifts in chromatographic retention 

times. 

� Realization and documentation of all relevant operations in the conducted 

water/sediment and leaching tests according to the principles of good 

laboratory practice (GLP). 
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4 RESULTS AND DISCUSSION 

4.1 Water/sediment studies  

4.1.1 Principles and limitations of water/sediment tests 

Water/sediment studies are usually required for the registration of new active 

substances in pesticide formulations but they can also be applied to any chemical with a 

possible relevant occurrence in the aquatic environment. The general aim of those 

studies is the investigation of fate and persistence of a chemical under controlled 

laboratory conditions. The generated data is then utilized for conclusions on the 

environmental behaviour of a chemical and the risks linked therein. 

This approach was used to investigate pharmaceuticals which are detected in the 

aquatic environment of many countries. In fate studies, the test compounds are usually 

applied as 14C-radiotracers. That allows for a relatively easy and reliable quantification 

of all relevant processes, such as distribution to the various compartments, 

metabolization, mineralization and the formation of bound residues. Due to the lack of 
14C-labelled standards commercially available, non-labelled pharmaceuticals were also 

utilized in the test systems. The latter usually allow only for a measurement of their 

dissipation and not for a process differentiation between transformation, mineralization 

and formation of bound residues. Therefore, a complete mass balancing is usually not 

possible using non-labelled test compounds.  

Since the fate of a chemical in the water/sediment test system depends not only on its 

physico-chemical properties but also on the conditions of the test system itself (e.g. the 

pH in the water phase or the grain size distribution of the sediment used), it is essential 

to cover a broad range of different waters and sediments. However, due to practical 

limitations, it was not possible to test more than one sediment. Therefore, a sandy 

sediment with a low content of organic matter was selected in order to minimize 

sorption in the experiments. Furthermore, this represents a “worst-case” situation, since 

such sediments often contain a low microbial biomass, which also means that the 
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degradation of organic chemicals is usually low (e.g. the persistence of chemicals is 

higher than in “rich” sediments with a very active micro flora).  

The experimental set-up of the water/sediment test system allowed for a widely 

parallel development of the independent test vessels over a period of 100 d. The test set-

up was designed relatively robust, since the test vessels were shaken in batches of 24 

flasks for every test compound on an automatic shaker during the entire test period of 

100 d. Therefore, very sensitive sets, i.e. continuous gas flow through, were avoided and 

gas exchange with the environment was attained simply by diffusion through the CO2-

trap.  

A weakness of this experimental design became obvious in the tests with 
14C-ibuprofen and 14C-paracetamol, where extensive mineralization occurred and the 

balance of recovered radioactivity was partially incomplete. Especially in the tests with 

ibuprofen a wide balance gap was observed in the course of the experiment, whereas at 

the end of the test the balance was rather complete. This was most likely caused by 

losses of volatile 14CO2 during the sampling procedure. After 2 weeks the formation of 
14CO2 was fairly advanced and 14CO2 was present widely dissolved in the water. During 

the sampling procedure, 14CO2 was presumably withdrawn from the balance by 

volatilization with the gas phase of the test system after opening of the test vessels. An 

additional volatilization from the water or the sediment compartment cannot be 

excluded. These assumptions were further supported by the increasing recovery of 

radioactivity towards the end of the test, considering that losses from the test vessels did 

not occur in the course of the test. In fact, the progressive demobilization of 14CO2 in 

the trap material reduced the losses by volatilization. 

The losses might be at least partly overcome by bubbling a gentle nitrogen stream 

through the water compartment of the closed test vessels before opening for sampling, 

so that the demobilization of 14CO2 is enhanced. Another deficit of the test set-up can be 

seen in its´ static conditions, where the consumed nutrients will not be replaced. Hence, 

it cannot be excluded that a co-metabolic transformation of test compounds stops in the 

course of the experiment due to a lack of nutrients. In all other respects the test system, 

originally developed for the investigation of pesticides, is suitable for studying 

pharmaceuticals. 
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4.1.2 Behaviour of 14C-paracetamol 

In the experiments with 14C-paracetamol, the radioactivity dissipated rapidly out of 

the water and after 14 d only 13.10 ± 0.03 % of the initial radioactivity was left in the 

water compartment (Figure 4.1). On the other hand, the percentage of radioactivity in 

the sediment increased rapidly within 8 days. After that time, 57 ± 3 % of the 

paracetamol was located in the sediment. The percentage of radioactivity in the 

sediment remained then constant at approximately 60 % until the end of the experiment. 

At day 100, 19 ± 3 % of the initially applied radioactivity (IAR) was found in the CO2 

traps. It has to be noted, that the balance of radioactivity recovered was not entirely 

complete. After day 14, a loss of 20 % of the IAR was observed. This loss remained 

almost constant until the end of the experiment.  
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Figure 4.1:  Distribution of radioactivity in the water/sediment systems spiked with 
14C-paracetamol 

The composition of the radioactivity in the water phase was investigated using radio 

thin layer chromatography after concentration of the water volume by lyophilization 

(Figure 4.2). Immediately after spiking a transformation product (TP) was found in the 

water phase. The TP occurred in the course of the first two weeks with a maximum of 

4 ± 2 % and was not detected thereafter, suggesting further degradation or sorption. 
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However, it was observed that at day 7 the recovery of the radioactivity dropped by 

more than 50 % in the water phase. Later on, only negligible amounts of radioactivity 

were found in the lyophilized water samples. It can be presumed that during 

lyophilization the dissipation of volatile degradation products, most likely 14CO2, caused 

the observed losses of radioactivity. 

In the water phase paracetamol was found to be quickly eliminated with a DT50 of 

3.1 d and a DT90 of 10.4 d. To some extent it was even mineralized forming CO2. 

Figure 4.2:  Fate of 14C-paracetamol in the water compartment of the water/sediment 
system detected by radio-thin layer chromatography 

Solvent extraction of the sediments with acetone and methanol resulted only traces of 

radioactivity, while after combustion of the extracted sediment major radioactivity was 

found. Therefore, most of the initial radioactivity was reserved to compounds sorbed 

onto sediments and is classified as non-extractable (bound) residues. These bound 

residues = non-extracted residues are defined as chemical species originating from 

chemicals that cannot be extracted by methods which do not significantly change the 

chemical nature of these residues (European Commission and Directorate General for 

Agriculture, 2000). 
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This result corresponds to the findings of terrestrial studies in which the sum of the 

parent compound and its TPs were bound covalently to soil by various binding 

mechanisms or were entrapped in the soil matrix (Gevao et al., 2000, Northcott and 

Jones, 2000). Recovery experiments for the solvent extraction of 14C-paracetamol from 

non-autoclaved sediment showed that only 10 % of the radioactivity applied was 

extractable after a contact time of 14 h, whereas paracetamol was recovered 

quantitatively in experiments with autoclaved sediment. That is in good agreement with 

observations of Kreuzig, 2002, who also reported a rapid bio-transformation of 

paracetamol into non-extractable residues after an application onto bioactive soils. 

Paracetamol however, remained entirely extractable in autoclaved soils. With respect to 

the reported biodegradation of paracetamol, it is important to note that soil bacteria 

capable for the degradation of paracetamol could be isolated by Ahmed et al., 2001. 

Ready biodegradability of paracetamol in the environment was first quoted by 

Richardson and Bowron, 1985. Also Moehle et al., 1999 reported biodegradation of 

paracetamol in batch experiments with activated sludge and Ternes, 1998 found major 

elimination of paracetamol during STP passage.  

The rapid movement of paracetamol into the sediment cannot be explained by its’ 

lipophilicity, which is relatively low (log KOW = 0.49, pKa = 9.5) (Stuer-Lauridsen et al., 

2000). It is assumed that degradation products of paracetamol were attached covalently 

to the sediment matrix or were incorporated into the biomass of the sediments.  

No DT-values for paracetamol in the water/sediment system could be calculated. 

However, regarding the high amount of radioactivity bound to the sediment, DT-values 

of paracetamol or, probably, its TPs of more than 100 d are estimated. 

Summary: DT-values for paracetamol 

Water phase: 

Function and degradation rate: First order   d = 0.22 per day 

DT-values:    DT50: 3.1 d     DT90: 10.4 d  

Regression coefficient:  0.9984    Accepted (> 0.95) 

Water/sediment system:  

Kinetics and degradation rate: Not possible to determine 

DT-values:    Not possible to determine (> 100 d) 

Remark:     High amount of bound residues 
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4.1.3 Behaviour of 14C-ibuprofen 

The radioactivity of the 14C-labelled ibuprofen (mixture of R/S-diasteromers) 

dissipated rapidly from the water compartment as shown in Figure 4.3. After 100 d, less 

than 5 % of the IAR was detected in this compartment. The radioactivity was found to 

some extent in the sediment, where a flat maximum of 17 ± 1 % IAR was attained after 

14 d. It is remarkable, that the quantity of radioactivity in the CO2 traps increased very 

quickly. Total radioactivity found in the test vessels dropped to 73 ± 1 % after 14 d and 

increased to 90.2 ± 0.5 % after 100 d. 

For the correct interpretation of the results it has to be noted that, in contrast to all 

other radio-labelled pharmaceuticals applied, ibuprofen was 14C-radio-labelled in the 

carboxyl moiety. Therefore, the radio-label of the [carboxyl-14C]-ibuprofen can be 

cleaved relatively easy from the original molecule by decarboxylation, while the rest of 

the molecule remains unchanged. In this respect, it is important to mention that the 

ibuprofen metabolites known from humans are still containing the carboxyl group 

(Buser et al., 1999, Stumpf et al., 1998, Winkler et al., 2001, Zwiener et al., 2002).  
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Figure 4.3:  Distribution of radioactivity in the water/sediment systems spiked with 
14C-ibuprofen 
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Ibuprofen dissipation in the water phase was minor until day 8 (Figure 4.4). 

Afterwards, a total loss of radioactivity was observed similar to the observations for 

paracetamol. It can be assumed that these losses were caused by the presence of volatile 

radio-labelled degradation products dissolved in the water, such as 14CO2. The rapid 

transformation of ibuprofen is exhibited by a total of 56.61 ± 0.04 % IAR after 14 d and 

more than 70 % after 100 d present as 14CO2 and/or other volatile TPs. After day 8 only 

volatile TPs of ibuprofen were detected in the water (Figure 4.5). Due to their limited 

percentage of radioactivity, sediment samples were not further analyzed. 
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Figure 4.4:  Fate of 14C-ibuprofen in the water phase of the water/sediment system 

In recovery experiments of the solvent extraction, only 25 % of the radioactivity 

applied from 14C-ibuprofen was extractable from non-autoclaved sediment after a 

contact time of 14 h. To the contrary, ibuprofen was recovered quantitatively, when 

using autoclaved sediment. Hence, it can be presumed that 14C-ibuprofen was 

susceptible to rapid bio-transformation in the sediment.  
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Figure 4.5:  Calculated percentage of volatile TPs and measured 14CO2 in the test 
with ibuprofen detected by radio-thin layer chromatography 

Ibuprofen showed a low affinity for sorption onto sediment despite a log KOW of 3.5 

for the non-dissociated acid. Given its’ pKa-value of 4.9 (Jones et al., 2002), the 

sorption should be strongly influenced by the pH of the sediment. Under the conditions 

present in the sediment (pH 7.5), ibuprofen was widely dissociated and displayed 

therefore a very low lipophilicity (shown in Figure 4.6). 
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Figure 4.6:  Dissociation equilibrium of ibuprofen 

Richardson and Bowron, 1985 reported an inherent biodegradability of ibuprofen. 

Later, Stumpf et al., 1998 isolated the human ibuprofen metabolites 2-hydroxy-

ibuprofen and carboxy-ibuprofen and found their occurrence in municipal STP effluents 

and surface waters. Ibuprofen is degraded to a major extent (> 75 %) during sewage 

treatment, as recently shown (Stumpf et al., 1999, Ternes, 1998). Furthermore, Winkler 



RESULTS AND DISCUSSION 57  

et al., 2001 investigated the biodegradation of ibuprofen in surface water biofilm 

systems and found DT50-values between 1 and 6 d, depending on the river water applied 

(Winkler et al., 2001). They and other authors reported the rapid degradation of 

ibuprofen and the formation of 2 and 3 TPs. These TPs corresponded to approximately 

10 % of the initial ibuprofen quantity, varying with the conditions in STP- and surface 

water experiments (Buser et al., 1999, Zwiener et al., 2002). Hence, for the majority of 

ibuprofen degraded, the TPs and the transformation pathway is still unknown.  

Ibuprofen TPs could not be detected in the aerobic water compartments, presumably 

due to the rapid degradation process. After a lag period of eight days, complete 

mineralization towards volatile TPs occurred within the next six days. Therefore, in 

agreement with other authors (Buser et al., 1999, Winkler et al., 2001, Zwiener et al., 

2002), ibuprofen was completely degradable in the water compartment under the 

present conditions, resulting in a DT50-value of 10 d and a DT90 of 13 d. Since the data 

did not follow a certain kinetic function, these values were estimated using the graphical 

representation of the raw data. 

 

Summary: DT-values for ibuprofen 

Water phase: 

Function and degradation rate: Not possible to determine  

DT-values:    DT50: 10 d     DT90: 13 d  

Regression coefficient:  Not possible to determine  

Remark:    DT-values estimated based on raw data 

Water/sediment system: 

Kinetics and degradation rate: Not possible to determine 

DT-values:    Not possible to determine (< 20 d) 

Remark:     Complete degradation in the water phase 

  

4.1.4 Behaviour of 2-hydroxy-ibuprofen and comparison with 
ibuprofen 

The ibuprofen metabolite 2-hydroxy-ibuprofen dissipated rapidly out of the water 

compartment under oxic conditions, but was never found in the sediment (Figure 4.7). 
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After 28 d, its´ concentration was below the limit of quantification. A re-formation of 

the parent compound can be excluded, since ibuprofen was never detected.  
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Figure 4.7:  Behaviour of 2-hydroxy-ibuprofen in the water/sediment systems  

The occurrence of 2-hydroxy-ibuprofen and other ibuprofen metabolites in human 

urine, wastewater and other environmental waters has already been reported (Buser et 

al., 1999, Stumpf et al., 1998). In laboratory tests (Winkler et al., 2001, Zwiener et al., 

2002), 2-hydroxy-ibuprofen was mainly formed under aerobic conditions.  

2-Hydroxy-ibuprofen was not found in the sediment, an it can be assumed that it was 

rapidly (bio)transformed in the sediment. The DT50 of 6.7 d and DT90 of 22 d of 2-

hydroxy-ibuprofen are low and in agreement with reports on its degradability (Winkler 

et al., 2001). Again, no different values for the water/sediment system have to be 

considered. Due to the additional hydroxy moiety 2-hydroxy-ibuprofen possesses a 

higher polarity than ibuprofen, resulting in a reduced affinity towards the sediment.  

A comparison of the degradability of ibuprofen and its’ metabolite 2-hydroxy-

ibuprofen shows a similar behaviour for both compounds. After a lag phase of about 6 

days both compounds are rapidly degraded (Figure 4.8). While ibuprofen was totally 

degraded until day 14, the metabolite 2-hydroxy-ibuprofen was still present in the water 

phase on a low level.  
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Figure 4.8:  Comparison of the behaviour of ibuprofen and 2-hydroxy-ibuprofen 

 Summary: DT-values for 2-hydroxy-ibuprofen 

Water phase: 

Function and degradation rate: First order    d = 0.10 per day 

DT-values:    DT50: 6.7 d     DT90: 22 d  

Regression coefficient:  0.9682    Accepted (> 0.95)  

Water/sediment system: 

Kinetics and degradation rate: Not possible to determine 

DT-values:    Not possible to determine (< 30 d) 

Remark:     Almost complete degradation in the water phase 

 

4.1.5 Behaviour of clofibric acid 

The concentration of clofibric acid in the water decreased steadily until the end of the 

experiment (Figure 4.9). By that time, 49 ± 2 % of the initial concentration was still 

present in the water compartment. The sediment compartment never contained more 

than 12 ± 1 % of the initial quantity. This is equivalent to the ratio of pore water and 

total water in the system. A total of 55 ± 3 % clofibric acid was found in the entire 

water/sediment system at the end of the experiment.  
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Figure 4.9:  Behaviour of clofibric acid in the water/sediment systems 

Clofibric acid displayed a low affinity for the sediment. At pH 7.7 in the sediment, 

clofibric acid was widely dissociated (calculated low pKa-value of 2.84), and was thus, 

sorbed onto the sediment only to a negligible extent (Schwarzenbach et al., 2003). This 

corresponds with the distinct attenuation of clofibric acid in soil leaching experiments 

with a very acidic soil with pH of 2.9, while only little retardation was observed using a 

soil with a more common pH of 5.8 (see chapter 4.3.3). These results also are in 

consistence with other authors (Heberer, 2002a, Lenhard, 2000, Scheytt et al., 1998, 

Scheytt et al., 2001), who reported an almost tracer-like movement of clofibric acid in 

soil columns and during river bank filtration.  

Clofibric acid was considerably stable in the water/sediment system and disappeared 

slowly. Based on the time-concentration curves DT50 values of 82 d and 119 d and DT90 

values of 274 d and >365 d were calculated for clofibric acid in the water compartment 

and the entire water/sediment system, respectively.  

That is principally in good agreement with findings of other authors. In batch 

experiments with fresh field soil Lenhard, 2000 observed no biodegradation of clofibric 

acid. In wastewater treatment only little or no elimination of clofibric acid was observed 

(Heberer et al., 2002, Stumpf et al., 1999, Ternes, 1998). Consequently, clofibric acid is 

introduced to a high portion into surface waters. It is present ubiquitously in the aquatic 
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environment and was found at concentrations of 1 ng⋅L-1 North Sea (Buser et al., 1998, 

Weigel et al., 2002). 

Summary: DT-values for clofibric acid 

Water phase: 

Function and degradation rate: First order    d = 0.0084 per day 

DT-values:    DT50: 82 d     DT90: 274 d  

Regression coefficient:  0.9912    Accepted (> 0.95)  

Water/sediment system: 

Kinetics and degradation rate: First order    d = 0.0058 per day 

DT-values:    DT50: 119 d     DT90: > 365 d  

Regression coefficient:  0.9992    Accepted (> 0.95)  

 

4.1.6 Behaviour of 14C-diazepam 

After the application of 14C-diazepam, the substance was constantly transferred into 

the sediment (Figure 4.10). Even after 100 d an equilibrium between water and 

sediment seemed not to be totally attained. The time-concentration curve of the 

radioactivity in the sediment showed a rapid increase within the first 14 d. By then more 

than 30 % of the initial radioactivity were localized in the sediment. After that, the 

percentage of radioactivity in the sediment levelled off and at the end of the experiment, 

60 ± 6 % of the initial radioactivity was still found in the sediment. Mineralization was 

only observed to a minor extent. At the end of the experiment the CO2-traps contained 

only 1.49 ± 0.04 % of the initial radioactivity. A balance of radioactivity, at that time, 

showed that more than 90 % of the initial radioactivity could be recovered in the test 

systems.  

The TLC analysis of water samples exhibited that almost the entire radioactivity in 

this compartment was still present as diazepam, 95 ± 7 % at day 100. In the course of 

the experiment, at least two TPs occurred at very low levels (see Figure 4.11). TP 1 

appeared only at day 14 and the second TP was initially observed after day 7 for the 

first time. In the TLC analysis, TP 1 remained entirely at the spot of TLC-application, 

whereas TP 2 showed a slightly higher mobility but had a diffuse signal without a sharp 

defined Rf-value. The sum of both TPs never exceeded 5 %. Radio-TLC analysis of the 
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extracts, suggested that the entire radioactivity in sediment samples was extractable and 

could be uniformly identified as diazepam. 
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Figure 4.10:  Distribution of radioactivity in the water/sediment systems spiked with 
14C-diazepam 
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Figure 4.11:  Fate of 14C-diazepam in the water phase of the water/sediment system 

Under the pH conditions in sediment and water, the weak base diazepam (pKa = 3.4) 

(Hilal et al., 1996) should have been present in its’ neutral, non-protonated form.  
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Hence, the rapid sorption of diazepam onto the sediment can be expected to be 

caused mainly by non ionic interactions with the sediment (log POW = 2.85) (Stuer-

Lauridsen et al., 2000).  

A strong sorption of diazepam onto soil particles was also observed in the soil 

column leaching experiments (see chapter 4.3.4). In these experiments, the entire 

radioactivity initially applied as 14C-diazepam, remained in the uppermost soil layers.  

An elimination of diazepam, respectively the formation of TPs, occurred only to a 

minor extent in the water/sediment system (Figure 4.12). 
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 Figure 4.12:  Formation of CO2 by mineralization of 14C-diazepam 

More than 87 % of the initial diazepam quantity was recovered at the end of the 

experiment. In the water compartment, a DT50-value of 34 d and a DT90-value of 113 d 

were calculated. Corresponding dissipation times in the water/sediment system were 

calculated to be even higher (DT50-value > 365 d, DT90-value >> 365 d). The 

tranquilizer diazepam is applied in medicine in relatively low quantities (Table 1.1). 

Hence, reports on its occurrence in various aqueous compartments, such as STP 

effluents and rivers (Ternes et al., 2001, Zuccato et al., 2000) indicate a distinct 

environmental stability.  
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Summary: DT-values for diazepam 

Water phase: 

Function and degradation rate: First order    d = 0.020 per day 

DT-values:    DT50: 34 d     DT90: 113 d  

Regression coefficient:  0.9841    Accepted (> 0.95)  

Water/sediment system: 

Kinetics and degradation rate: First order    d = 0.0016 per day 

DT-values:    DT50: > 365 d     DT90: >> 365 d  

Regression coefficient:  0.9991    Accepted (> 0.95)  

 

4.1.7 Behaviour of oxazepam and comparison with diazepam 

Additionally, oxazepam, the main metabolite of diazepam in humans, was tested 

with a non-labelled compound in the water/sediment system. The oxazepam 

concentration in the water compartment decreased relatively fast within the first month 

and ranged at a level of 14.7 ± 0.4 % of its’ initial concentration at the end of the 

experiments (Figure 4.13). Oxazepam moved distinctly into the sediment compartment, 

where 27 ± 4 % were localized after two weeks. After that, the oxazepam content of the 

sediment remained almost constant until the end of the experiment. Finally, 33 ± 1 % of 

the initial oxazepam quantity was recovered in the test systems.  
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Figure 4.13:  Behaviour of oxazepam in the water/sediment system 
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The partitioning behaviour of oxazepam was presumably influenced mainly by its’ 

lipophilicity, given that oxazepam was present non-protonated in the water/sediment 

system (log KOW = 2.24, pKa = 1.7) (Hansch et al., 1990, Hilal et al., 1996). For the 

water compartment, a DT50 of 19 d and a DT90 of 63 d was calculated. Dissipation times 

for the entire water/sediment system, considering oxazepam also sorbed reversible onto 

the sediment, were significantly higher with a DT50 of 54 d and a DT90 of 179 d 

(assuming a second order function, the fit of the regression curve was as good as for a 

first order one, but in that case both DT90 values in the water sediment system would be 

as twice as high). The data indicates a delayed primary degradation of oxazepam in the 

water/sediment systems (Beek, 2001). However, the data available for this non-labelled 

test substance does not allow for a differentiation of transformation, mineralization and 

the formation of non-extractable or bound residues as cause for the dissipation. 

Up till now, few findings of oxazepam have been reported in sewage effluent (250 

ng⋅L-1) and river water (70 ng⋅L-1) (Heberer, 2002b, Heberer et al., 2002), indicating a 

distinct stability in the environment.  

 

Summary: DT-values for oxazepam 

Water phase: 

Function and degradation rate: First order    d = 0.036 per day 

DT-values:    DT50: 19 d     DT90: 63 d  

Regression coefficient:  0.9936    Accepted (> 0.95)  

Remark:  Assuming a second order function, the DT50 would 

remain the same but the DT90 would be doubled. 

Water/sediment system: 

Kinetics and degradation rate: First order    d = 0.013 per day 

DT-values:    DT50: 54 d     DT90: 179 d  

Regression coefficient:  0.9981    Accepted (> 0.95)  

Remark:  Assuming a second order function, the DT50 would 

remain the same but the DT90 would be doubled. 
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The elimination rates of the diazepam and oxazepam were very similar until day 8 

(see Figure 4.14). Afterwards, the quantity of oxazepam recovered decreased strongly, 

whereas that of diazepam remained more or less constant. 

In humans, diazepam is rapidly demethylated and then metabolized into oxazepam, 

which is then excreted directly or in the conjugated form (Mutschler, 1997). Under the 

conditions of the test system, diazepam was not transferred into oxazepam or into any 

other TP with appreciable quantities. That result underlines the low comparability of 

human and environmental transformation processes. Nevertheless, oxazepam, as 

frequently found for phase I metabolites, shows a higher polarity and was more 

amendable to conversion processes than the parent compound diazepam. Hence, 

diazepam exhibited a higher persistence than oxazepam in the environmental test 

system. 
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Figure 4.14:  Comparison of the behaviour of diazepam and oxazepam in a 
water/sediment system 
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4.1.8 Behaviour of carbamazepine 

 The antiepileptic drug carbamazepine moved from the water phase into the sediment 

until a steady state level was achieved at about day 58 (Figure 4.15). Carbamazepine 

displayed a high persistence in the system. An initial slow decrease occurred up until 

day 57 and a total of 83 ± 6 % of the initial carbamazepine quantity was still present in 

the system by the end of the experiment.  

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Relative concentration in
 water
 sediment
 all compartments

C
/C

0 [
%

]

[d]

 

Figure 4.15:  Behaviour of carbamazepine in the water/sediment system 

Based on its’ moderate lipophilicity (log POW= 2.25) (Jones et al., 2002), and its 

presence in a non-charged form under environmental conditions sorption could be 

expected (estimated pKa-values of 13.9 for the deprotonation (Jones et al., 2002) and 

< 1 for the protonation of the amino groups). The respective sediment study, the 

behaviour in soil columns (see chapter 4.3.1) and its´ behaviour in contact with 

activated carbon (Ternes et al., 2002b) seems to support that assumption. On the other 

hand, the negligible removal during bank filtration (Sacher et al., 1998), wastewater 

irrigation (Ternes, 2003), wastewater treatment (Ternes, 1998, Ternes, 2000) or soil 

passage (Drewes et al., 2002, Lenhard, 2000) were contradictory. The respective 

sorption mechanisms are still unclear. 

Ternes, 2000 found a similar course of the time/concentration curve for 

carbamazepine in the water phase of water/soil shake flask experiments with field fresh 

soil. In contrast to the results presented herein, he reported the total elimination of 
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carbamazepine from the water phase after a lag period of 30 d. Hence, it cannot be 

excluded that the virtually constant concentration of carbamazepine in the 

water/sediment systems might have significantly decreased after an adaptation time of 

yet unknown length. The DT50 and the DT90 for carbamazepine in the water 

compartment were calculated as 52 d and 173 d, whereas the respective DT-values for 

the entire water/sediment system were calculated as 333 d and >> 365 d.  

However the high stability of carbamazepine in the water sediment system is 

consistent with reports of Moehle et al., 1999 who found no primary degradation of 

carbamazepine in batch experiments with activated sludge. Carbamazepine also was 

widely resistant towards aerobic or anaerobic biodegradation in batch experiments with 

surface water and groundwater (Ternes et al., 2002b). Thus, it is ubiquitously present in 

environmental waters (Ternes, 1998) and was even detected in the marine ecosystem 

(Weigel et al., 2001). 

 

Summary: DT-values for carbamazepine 

Water phase: 

Function and degradation rate: First order    d = 0.013 per day 

DT-values:    DT50: 52 d     DT90: 173 d  

Regression coefficient:  0.9936    Accepted (> 0.95)  

Water/sediment system: 

Kinetics and degradation rate: First order    d = 0.0021 per day 

DT-values:    DT50: 333 d     DT90: >>365 d  

Regression coefficient:  0.9994    Accepted (> 0.95)  

 

4.1.9 Behaviour of 10,11-dihydro-10,11-dihydroxy-carbamazepine 
and comparison with carbamazepine 

The carbamazepine metabolite 10,11-dihydro-10,11-dihydroxy-carbamazepine 

dissipated rapidly out of the water compartment in the first 28 d (Figure 4.16). Then, the 

concentration of the test compound remained constant within the statistical error at 

36 ± 1 %. The test compound was found only to a minor extent in the sediment, where 

at no time more than 6 ± 1 % of the initial quantity could be detected.  
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Figure 4.16:  Behaviour of 10,11-dihydro-10,11-dihydroxy-carbamazepine in the 
water/sediment system 

Compared to the parent compound carbamazepine, the twofold hydroxylated and 

thus, more polar metabolite 10,11-dihydro-10,11-dihydroxy-carbamazepine, exhibited a 

significantly reduced affinity for the sediment. The apparent low level of the test 

compound in the sediment was checked and confirmed in additional experiments. 

Calculated DT50-values of 21 and 34 d for the metabolite in the water compartment and 

the water/sediment system, respectively, were lower than for carbamazepine. DT90-

values could not be calculated but they are larger than 365 d. Oxidation and cleavage of 

the dihydroxy moiety might play a role in the further degradation of 10,11-dihydro-

10,11-dihydroxy-carbamazepine. Those reactions have been elucidated in the 

biodegradation pathway of various aromatic compounds in the environment and involve 

frequently bacteria and fungi with a broad substrate specificity (Beek, 2001, Díaz et al., 

2001, Pointing, 2001, Reardon et al., 2000).  

After 28 days, the total quantities of 10,11-dihydro-10,11-dihydroxy-carbamazepine 

detected remained more or less constant on a level of about 38% of the initial 

concentration until the end of the test. In natural waters and soils, threshold 

concentrations for the degradation of contaminants have been reported before (Klimek 

et al., 2001, Kovar et al., 2002). However, in the case of the described experiments it 
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cannot be excluded that the static conditions might have lead to a major consumption of 

essential nutrients and therefore, to a stop of the assumed co-metabolic degradation.  

Despite the low DT50-value of 10,11-dihydro-10,11-dihydroxy-carbamazepine, its’ 

stability in the water compartment was relatively high. At a spiking level of 100 ng⋅g-1 

of sediment, more than 30 % of the test compound remained non-degraded in the test 

system at the end of the test. This is supported by Miao and Metcalfe, 2003 who stated a 

low degradability of 10,11-dihydro-10,11-dihydroxy-carbamazepine in sewage 

treatment. 

 

Summary: DT-values for 10,11-dihydro-10,11-dihydroxy-carbamazepine  

Water phase: 

Function and degradation rate: Root second order    

DT-values:    DT50: 21 d    DT90: > 365 d  

Regression coefficient:  0.9111    Best fit available 

Water/sediment system: 

Function and degradation rate: Root second order    

DT-values:    DT50: 34 d     DT90: > 365 d  

Regression coefficient:  0.8897    Best fit available 

Remark:    High portion remained non-degraded in sediment.  

 

4.1.10 Behaviour of ivermectin 

The parasiticide ivermectin moved rapidly from the water compartment into the 

sediment. After the course of 2 weeks, only 13 ± 6 % of the initial ivermectin 

concentration was left in the water compartment (Figure 4.17). A maximum 

concentration of ivermectin in the sediment was attained with 42 ± 2 % at day 7. 

Afterwards the percentage of ivermectin in the sediment decreased slowly to 16 ± 3 % 

by the end of the test. The total quantity of ivermectin found in the test system showed a 

sharp drop after the first 2 weeks and decreased much slower afterwards. The kinetics in 

both the water phase as well as in the entire water/sediment system followed a root first 

order function.   
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Figure 4.17:  Behaviour of ivermectin in the water/sediment systems 

The rapid and extensive sorption of ivermectin onto the sediment should have been 

mainly attributable to its’ lipophilicity (log POW = 3.22; Edwards et al., 2001, KOC = 

12,600-15,700; Halley et al., 1989a). Furthermore, additional specific interactions with 

soil such as a formation of adducts with cations in the sediment are likely (Ali et al., 

2000, Cerny et al., 1994, Tolls, 2001).  

An appreciable sorption of ivermectin onto sediment was also observed by Cannavan 

et al., 2000, who recovered a large portion of the ivermectin quantity applied as a feed 

additive for a marine fish farm in the top layers of the underlying sediment body.  

Mainly as a result of the rapid sorption of ivermectin, its’ DT50/90-values in the water 

phase were very low, with 2.9 d and 32 d respectively. Ivermectin disappeared within 

13 d by 50 % from the water/sediment system and the DT90 was estimated to be 144 d.  

In contrast, the persistence of ivermectin, reported by Davies and Rodger, 2000 from 

experiments with marine sediments with DT50 ≥ 100 d, was significantly higher. Strong 

differences in the DT50 of ivermectin under varying test conditions were also reported 

by Halley et al., 1989a, who found ivermectin half lives in soil of ≥ 93 d under 

laboratory conditions, whereas half lives under field conditions were about 1-2 weeks. 

Hence, the specific test conditions, such as temperature, are of high importance for the 

transformation kinetic.  
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Since the test was conducted with non-labelled ivermectin, possibly occurring TPs, 

the formation of non-extractable residues and mineralization products could not be 

quantified. In literature, an extensive metabolization of ivermectin and the formation of 

bound residues in soil were reported by Halley et al., 1989a. For abamectin, a closely 

related avermectin derivative the transformation in soil was studied in more detail by 

Bull et al., 1984. Using 3H- and 14C-labelled abamectin, he found the formation of at 

least 13 radioactive degradation products under aerobic conditions. Additional 

mineralization occurred at a level of less than 4 % of the IAR. The major soil 

degradation products were an 8α-hydroxyl-derivative and the corresponding opened 

ring aldehyde derivative of abamectin. In contrast to that, during a 3-month test period 

under anaerobic conditions, he found neither an apparent degradation of abamectin nor 

a formation of non-extractable residues. Hence, the formation of ivermectin TPs under 

the aerobic conditions in the water/sediment system is likely.  

 

Summary: DT-values for ivermectin  

Water phase: 

Function and degradation rate: Root first order    

DT-values:    DT50: 2.9 d    DT90: 10 d  

Regression coefficient:  0.9300    Best fit available 

Water/sediment system: 

Function and degradation rate: Root first order    

DT-values:    DT50: 13 d     DT90: > 144 d  

Regression coefficient:  0.9502    Accepted (> 0.95) 
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4.2 Determination of Kd-values 

The measured concentration levels in water and sediments were used for a 

calculation of KOC- and Kd-values, determining the distribution pattern between water 

and sediment phase. For each of the 6 compounds with a complete data set for water 

and sediment, the maximum values are given in Table 4.13. These maximum values 

were usually determined after 30 d or later and should therefore be close to distribution 

equilibrium.  

Additionally, KOC-values were predicted using the correlation between the 

octanol/water distribution coefficient KOW and the sorption coefficient KOC. For that 3 

semi-empirical methods were applied following the approaches used by Stuer-

Lauridsen et al., 2000 Kd = 0.41 × KOW, Karickhoff, 1981 log KOC = 0.989 × log KOW - 

0.346 and Gerstl, 1990 log KOC = 0.679 log KOW + 0.663. Since clofibric acid was 

dissociated in the sediment the DOW was used in the calculation instead of the KOW.  

The KOCvalues of the polar compounds clofibric acid and CBZ-Diol were relatively 

low < 30 L⋅kg-1 and for carbamazepine, oxazepam and diazepam KOCvalues obtained 

were between 83 and 192 L⋅kg-1 (Table 4.13). Ivermectin with the highest KOW 

exhibited the highest KOC with 1172 L⋅kg-1. All three model approaches attained a high 

conformity for the 6 compounds, within a factor of 3 which is comparable to typical 

deviations in KOC reported for a given compound on differing sediments (Delle Site, 

2001). Additionally, the experimental KOC-values for clofibric acid and diazepam were 

very similar to KOC-values measured in sewage sludge (Ternes et al., submitted) and for 

diazepam in soils (Kreuzig et al., 2003). However, the wide variation in the KOC of 

carbamazepine are presumably caused by the yet not understood sorption mechanisms. 

Albeit the KOC determined for ivermectin was relatively high, it has to be noted that 

Halley et al. reported KOC-values for ivermectin in soils (Halley et al., 1989a) which 

were even an order of magnitude higher than those from the water sediment study. 

These deviations in the distribution coefficients might result from variations in the 
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matrix composition and its impact on sorption processes. Although the main purpose of 

experiments was not the determination of the distribution coefficients of the 

pharmaceuticals investigated, it must be noted that the KOC-values obtained were in 

good agreement with estimated and experimental data previously reported.  

Table 4.13:  Experimental and predicted KOC- and Kd-values for the sorption onto 
sediment 

L⋅kg-1 
Experimental 

 
KOC     Kd 

Estimated
(Lit. a)  

KOC     Kd

Estimated
(Lit. b)  

KOC     Kd

Estimated
(Lit. c) 

KOC     Kd

Experimental 
(Lit. d,e,f) 
KOC     Kd 

Clofibric acid 26 0.3 0 0 0 0 0.2 0 14d 0.1d 

Diazepam 192 3.0 290 4.6 297 4.7 396 6.2 62d 
500e 

1.0d 
4-7e 

Oxazepam 152 2.2 71 1.0 74 1.1 153 2.2 - 
Carbamazepine 83 1.3 73 1.2 76 1.2 155 2.5 3.5d 0.1d 

CBZ-DIOL 29 0.3 - - - - 
Ivermectin 1172 11.7 680 67 690 68 707 69 15700    227   

 

a Stuer-Lauridsen et al., 2000; b Karickhoff, 1981; c Gerstl, 1990; d in sewage sludge 
(Ternes et al., submitted); e in soil (Kreuzig et al., 2003); e in soil Halley et al., 1989a 
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4.3  Soil-leaching-Study  

4.3.1 Principles and limitations of soil leaching studies 

Soil leaching studies are usually required as part of the registration of new active 

substances in pesticide formulations. As already mentioned (see Chapter 4.1.1), the 

results of such studies are utilized for environmental risk assessment (ERA) purposes.  

This approach was used to investigate pharmaceuticals which might pose a risk for 

groundwater contamination. This particular test was chosen, since for more realistic 

scenarios, e.g. covering the possible infiltration of these pharmaceuticals from river 

water through sediment and subsoil into the groundwater, no adequate methods are 

available. In fate studies, the test compounds are usually applied as 14C-radiotracers in 

order to facilitate their quantification. Due to the lack of 14C-labelled standards 

commercially available, for some test substances non-labelled pharmaceuticals were 

also utilized in the test systems. In that case it is often more difficult to study the 

distribution of the test substance in the soil column and to measure the drugs in the 

leachate, due to analytical reasons.  

Since the fate of a chemical in the soil leaching test system depends on its physico-

chemical properties as well as on the soil properties used, it is essential to cover a broad 

range of different soils (the OECD guideline requires at least three soils). However, due 

to practical limitations, only two different soils, LUFA 2.2 and Euro Soil 5 were used in 

the studies with non-labelled compounds. In the studies using 14C-iopromide and 14C-

diazepam a third soil was tested additionally (Neuenkirchen). These soils were selected 

in order to cover a broad range of soil properties:  

- Euro Soil 5 (a soil of a German pine forest) is an acidic sandy soil with a high 

content of organic matter, representing forest sites of Northern Germany; 

- LUFA 2.2 is a standard sandy loam soil with a medium pH value and a medium 

content of organic matter, being common at many German crop sites;  

- Neuenkirchen is also a common agricultural soil but with a low content of organic 

matter, also being used by the colleagues at the University of Braunschweig (Kreuzig 

2002). 
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Due to the limitations of the experimental set-up the soil leaching studies presented 

in this report should be regarded as a screening approach. Neither the usage of disturbed 

soil nor the size of the soil columns nor the duration of the test is directly relevant for 

field situations. As a result of this simplified laboratory approach the observed 

variability of the results between the two columns (= replicates) per treatment were 

usually very low. Therefore, the test system, originally developed for the investigation 

of pesticides, can be considered as suitable as a first approach to study the leaching 

potential of pharmaceuticals. 

4.3.2 Carbamazepine  

In all tests using non-labelled carbamazepine the leachate volumes were in the 

required range of 92–104 % recovery of the applied artificial rain (OECD, 2003a). 

Carbamazepine was retained in both soil substrates (Table 4.14). It was not detected in 

the leachates of LUFA soil 2.2 and Euro-Soil 5 and can therefore be classified as non-

mobile. 

Table 4.14:  Leaching of carbamazepine (CAR) in LUFA 2.2 and EuroSoil 5. The 
recovery in the leachate is given in % of the spiked test substance for 
each soil column (A and B) 

 LUFA 2.2 EuroSoil 5 
 CAR_A CAR_B CAR_A CAR_B 

Volume leachate [Ml] 368.8 390.6 361.2 366.1 
Concentration 
[ng/leachate] n.d. n.d. n.d. n.d. 

Recovery in leachate [%] < 1 % < 1 % < 1 % < 1 % 
n.d. = not detectable 

 

The mobility of carbamazepine (log KOW=3.5; Jones et al., 2002) did not differ in 

the two soils investigated. Obviously, the retention of carbamazepine was not 

decisively affected by the distinctly differing properties of both soils (in particular 

Corg and pH). The latter should be due to the fact that carbamazepine was always 

present in its neutral form, given pKa values of 13.9 Jones et al., 2002 for the 

deprotonation and approximately < 1 for the protonation. However, carbamazepine 

was frequently detected in groundwater (Heberer, 2002a, Sacher et al., 2001, Ternes, 

2001a, Ternes, 2000). This might be explained by the fact that groundwater 
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contamination occurs mainly over river sediments and subsoil from receiving waters 

(Mersmann et al., 2002). Drewes et al., 2002 observed no attenuation of 

carbamazepine in subsoil during bank filtration. Therefore, it might be assumed that 

the water volume applied was too low for a comparable leaching of carbamazepine. It 

is also conceivable that the usage of topsoil instead of subsoil resulted in effects as 

increasing sorption and/or biodegradation, although the latter is less likely. In order to 

elucidate these assumptions, it would be helpful to repeat the experiments with radio-

labelled carbamazepine, which was not available in the study performed, including a 

chemical analysis of the radioactivity in soils and leachates. Since topsoil and subsoil 

may differ significantly in Corg, bacterial community, and further properties, the 

results from the current leaching tests performed with top soil have only a limited 

transferability for subsoil or aquifer scenarios. 

4.3.3 Clofibric acid 

The leachate volumes from three of four soil columns used in the tests with non-

labelled clofibric acid were in the required range of 92–104 % recovery of the applied 

artificial rain (OECD, 2003a). The leachate volume from one LUFA 2.2 column 

(CLO_A) was slightly above this range (106.2%). This deviation from the required 

quality criteria should have no influence on the overall assessment of the leaching 

potential of clofibric acid. 60.5 % of the clofibric acid applied to the test substrate was 

detected in the LUFA 2.2 leachate (mean of the two columns), while only 3.5 % (mean 

of the two columns) was detected in the leachate of EuroSoil 5 (Table 4.15). Based on 

these results clofibric acid could be assumed as highly mobile in the LUFA 2.2 and as 

only slightly mobile in EuroSoil 5. 

Table 4.15:  Leaching of clofibric acid (CLO) in LUFA 2.2 and EuroSoil 5. The 
recovery in the leachate is given in % of the spiked test substance for 
each soil column (A and B) 

 LUFA 2.2 EuroSoil 5 
 CLO_A CLO_B CLO_A CLO_B 

Volume leachate [mL] 417.2 387.8 369.0 372.8 
Concentration 
[ng/leachate] 

34080 34460 1877 2651 

Recovery in leachate [%] 69 52 3 4 
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The sorption behaviour and thus, the mobility of organic acids (e.g. salicylic acid) in 

soils is strongly pH dependent (Dubus et al., 2001). Organic acids are widely present in 

their neutral, undissociated form at pH conditions below their pKa-value 

(Schwarzenbach et al., 2003). This results in a distinctly higher lipophilicity and usually 

in a higher tendency to sorb onto organic soil matter for the undissociated acids 

compared with their more polar dissociated form.  

It can be assumed that the relatively low pH of 2.9 in the EuroSoil 5 led to an 

appreciable higher retention of clofibric acid (estimated pKa of 2.84, log POW = 2.57 

Hansch et al., 1990), compared to the LUFA 2.2 soil, due to enhanced sorption of the 

undissociated acid onto soil particles. In LUFA 2.2 soil with a more common pH of 5.8 

a significantly higher mobility of clofibric acid was observed. This is in good agreement 

with findings of Scheytt et al., 2001 and Heberer, 2002a, who reported an almost tracer-

like movement of clofibric acid in soil columns and during riverbank filtration.  

Although a transformation of clofibric acid in the leaching experiment cannot 

entirely be excluded, it is very unlikely since clofibric acid remained widely persistent 

in the water/sediment test and during wastewater treatment, riverbank filtration and 

under other environmental conditions as reported by various authors (Heberer et al., 

2002, Stumpf et al., 1999, Weigel et al., 2002, Winkler et al., 2001). It can be concluded 

that groundwater contamination due to the infiltration of clofibric acid through topsoil is 

likely. 

4.3.4 Diazepam 

Non-labelled 
In all experiments using non-labelled diazepam the leachate volumes were in the 

required range of 92–104 % recovery of the applied artificial rain (OECD, 2003a). The 

non-labelled diazepam was retained in both soil substrates (Table 4.16). It was not 

detected in the leachates of LUFA soil 2.2 and Euro-Soil 5 and can therefore be 

classified as non-mobile. 
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Table 4.16:  Leaching of non-labelled diazepam (DIA) in LUFA 2.2 and EuroSoil 5. 
The recovery in the leachate is given in % of the spiked test substance for 
each soil column (A and B) 

 LUFA 2.2 EuroSoil 5 
 DIA_A DIA_B DIA_A DIA_B 

Volume leachate [mL] 385.0 382.6 381.7 391.8 
Concentration 
[ng/leachate] n.d. n.d. n.d. n.d. 

Recovery in leachate [%] << 1 % << 1 % << 1 % << 1 % 
n.d. = not detectable 

14C-Diazepam 
In the tests using 14C-diazepam the leachate volumes from the LUFA 2.2 and 

EuroSoil 5 columns were in the required range of 92–104 % recovery of the applied 

artificial rain (OECD, 2003a). The leachate volumes from the Neuenkirchen soil 

columns were slightly above this range (108 %). This deviation from the required 

quality criteria should have no influence on the comparability of the tests and the 

overall assessment of the leaching potential of 14C-diazepam. Comparable to the studies 

using non-labelled diazepam no radioactivity was detected in the leachates of the three 

tested soils (EuroSoil 5, LUFA 2.2, Neuenkirchen). In EuroSoil 5 14C-diazepam was 

only measured in the uppermost soil layer (0 – 5 cm), whereas in Neuenkirchen soil and 

LUFA-Soil 2.2 it was found up to a soil depth of 15 respectively 20 cm (Figure 4.18 -

Figure 4.20). Beyond these depths only negligible amounts of radioactivity (< 0.5 %) 

were detected. Therefore, it can be concluded that 14C-diazepam is totally immobile in 

EuroSoil 5 and partly immobile in LUFA-Soil 2.2 and Neuenkirchen soil.  

 

 



80  RESULTS AND DISCUSSION  

 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0-5

5-10

10-15

15-20

20-25

25-30

Leachate

So
il 

de
pt

h 
[c

m
]

Recovery 

 n.d.

 n.d.

 n.d.

 
Figure 4.18:  Leaching of 14C-diazepam in LUFA 2.2. Recovery rates in % of applied 

test substance in soil and leachates (means of measured soil aliquots of 
both columns (n=8); error bars: SD; n.d.: recovery < 0.5 %) 
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Figure 4.19:  Leaching of 14C-diazepam in EuroSoil 5. Recovery rates in % of applied 

test substance in soil and leachates (means of measured soil aliquots of 
both columns (n=8); error bars: SD; n.d.: recovery < 0.5 %) 
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Figure 4.20:  Leaching of 14C-diazepam in Neuenkirchen soil. Recovery rates in % of 

applied test substance in soil and leachates (means of measured soil 
aliquots of both columns (n=8); error bars: SD; n.d.: recovery < 0.5 %) 
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The relatively high standard deviations of soil aliquots measured (∼ 1 g per aliquot), 

especially in EuroSoil 5 (Table 4.17) indicate that the radioactive compounds were very 

inhomogeneously distributed in the different soil layers. This phenomenon could be 

explained by the low mobility of 14C-diazepam and may also cause the low total 

recovery rate in the Euro-Soil 5 soil columns (mean 77.5 %). According to the OECD 

draft guideline the recovery should range from 90–110 % for labelled substances. This 

deviation from the required quality criteria should have no influence on the overall 

assessment of the leaching potential of diazepam. 

Table 4.17:  Leaching of 14C-diazepam (14DIA) in LUFA 2.2, EuroSoil 5 and 
Neuenkirchen soil. Recovery in % of the spiked test substance for each 
soil column (A and B) 

 LUFA 2.2 EuroSoil 5 Neuenkirchen 
 14DIA_A 14DIA_B 14DIA_A 14DIA_B 14DIA_A 14DIA_B

recovery in soil [%] 97 108 67 88 98 86 
recovery in leachate [%] n.d. n.d. n.d. n.d. n.d. n.d. 

total recovery [%] 97 108 67 88 98 86 
n.d.: recovery < 0.5 % 

Diazepam is a lipophilic substance with a log KOW of 2.82 and a pKa of 3.3 (Stuer-

Lauridsen et al., 2000) and showed a very low mobility in all soils. Even in the 

relatively acidic EuroSoil 5 a significantly increased mobility due to a protonated 

amino moiety was not observed. It can be expected that its’ leaching behaviour was 

mainly determined by the organic carbon content of the soils. An extensive 

transformation of diazepam in the soil is unlikely, since diazepam was widely stable in 

the water/sediment test under aerobic conditions and transformation products might 

have shown certain mobility in the soil due their increased polarity. Therefore, the 

leaching potential for diazepam is estimated as very low. 
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4.3.5 Ibuprofen 

In all tests using non-labelled ibuprofen the leachate volumes were in the required 

range of 92–104 % recovery of the applied artificial rain (OECD, 2003a). Ibuprofen was 

retained in both soil substrates. It was not detected in the leachates of LUFA soil 2.2 and 

EuroSoil 5 and therefore can be classified as non-mobile (Table 4.18). 

Table 4.18:  Leaching of ibuprofen (IBU) in LUFA 2.2 and EuroSoil 5. The recovery 
in the leachate is given in % of the spiked test substance for each soil 
column (A and B) 

 LUFA 2.2 EuroSoil 5 
 IBU_A IBU_B IBU_A IBU_B 

Volume leachate [mL] 371.5 386.1 378.2 378.7 
Concentration 
[ng/leachate] n.d. n.d. n.d. n.d. 

Recovery in leachate [%] < 1 % < 1 % < 1 % < 1 % 
n.d. = not detectable 

The weak organic acid ibuprofen contains a carboxylic moiety with a pKa of 4.9 

(Merck, 2001) and a distinct lipophilicity in its’ undissociated form (log KOW of 3.5; 

Jones et al., 2002, Stuer-Lauridsen et al., 2000). In both tested soils with a pH of 5.8 

(LUFA-Soil 2.2) and 2.9 (EuroSoil 5), the carboxyl group of ibuprofen should be at least 

partly protonated leading to a sorption onto soil particles. Furthermore, it is known that 

ibuprofen can be transformed easily in sediments (see chapter 4.1.3) and under other 

environmental conditions (Ternes, 1998, Winkler et al., 2001). Since ibuprofen was not 

found in the soil leachates, it can be expected that the soil passage means an effective 

barrier for ibuprofen, due to sorption and/or by microbial degradation. However, the 

leaching potential of ibuprofen in basic soils with a pH clearly above its dissociation 

constant needs to be further investigated.  

4.3.6 Ivermectin 

In all tests using non-labelled ivermectin the leachate volumes were in the required 

range of 92–104 % recovery of the applied artificial rain (OECD, 2003a). Ivermectin 

was retained in both soil substrates (Table 4.19). It was not detected in the leachates of 

LUFA soil 2.2 and Euro-Soil 5 and can therefore be classified as non-mobile. 
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Table 4.19:  Leaching of ivermectin (IV) in LUFA 2.2 and EuroSoil 5. The recovery in 
the leachate is given in % of the spiked test substance for each soil 
column (A and B) 

 LUFA 2.2 EuroSoil 5 
 IV_A IV_B IV_A IV_B 

Volume leachate [mL] 376.2 375.3 379.9 367.5 
Concentration 
[ng/leachate] n.d. n.d. n.d. n.d. 

Recovery in leachate [%] < 1 % < 1 % < 1 % < 1 % 
n.d. = not detectable 

Concluding from the experimental data, ivermectin shows no leaching potential in 

soil columns. Comparable data for ivermectin were reported by Halley et al., 1989b, and 

for the ivermectin derivative abamectin by Gruber et al., 1990 and by Bull et al., 1984. 

The immobility of the test compound in the soils tested and its tendency to sorb onto 

soil particles should at least partly deviate from its high lipophilicity (log KOW = 3.22, 

KOC = 12,660-15,700 Halley et al., 1989a).  

However, Tolls could not assign the soil affinity of avermectins exclusively to their 

lipophilicity (Tolls, 2001). LC-MS data shows that ivermectin is capable to form 

adducts with cations, such as ammonium or sodium (Ali et al., 2000). Hence, there is 

some reason for the presumption of a specific binding of ivermectin to soil, which might 

deviate from the formation of adducts or complexes with immobile inorganic soil 

matter. 

4.4 A special case: Iopromide and its TPs 

4.4.1 Water/sediment study  

Iopromide is a very polar, highly water soluble compound (770 g⋅L-1) (Steger-

Hartmann et al., 1999) and therefore, the radioactivity initially related to 14C-iopromide 

remained mainly in the water compartment during the test (Figure 4.21). Even after 

100 d more than 65 % of the IAR were still located in the water phase. The quantity of 

radioactivity in the sediment increased almost linearly to 21 ± 1 % at the end of the 

experiment. Only negligible amounts of radioactivity were found in the CO2 traps, and 

therefore relevant mineralization did not occur. The balance of radioactivity showed a 
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small deficit, which increased in the course of the experiment but never exceeded 

11 ± 5 %. 
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Figure 4.21:  Distribution of radioactivity in the water/sediment system spiked with 
14C-iopromide 

The presence of 14C-iopromide equivalents in the sediment should mainly be 

attributable to its’ occurrence in the sediment pore-water, which contributed about 13 % 

to the total water amount in the test system. With regard to its’ low lipophilicity (log 

POW = -2.33) and missing moieties for known specific interactions (Steger-Hartmann et 

al., 1999), iopromide should have been sorbed onto the sediment particles only to a 

minor extent. 

The radioactivity in the water phase was analyzed by radio-TLC, whereas the 

sediment was not further investigated. After a lag period of two weeks, 14C-iopromide 

was transformed, resulting in total transformation after 100 d following a first order 

kinetic (Figure 4.22).  
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Figure 4.22:  Fate of 14C-iopromide in the water phase of the water/sediment system  

TP A occurred with a maximum of 20 ± 1 % at day 28 and was object to further 

degradation. At least three other TPs were formed and occurred in increasing 

percentages. After 100 d the TPs A, B and C occurred with 9 ± 1, 30 ± 2 and 24 ± 2 %, 

respectively and TP D appeared with 4.3 ± 0.1 %. The deviations within the individual 

test vessels were very low, which shows the widely similar development of the 

independent test vessels. 

For TP A and ATI, similar Rf-values were observed, while TP B matched very well 

with the Rf-value of ATH (shown in Table 4.20, for chemical structures see Table 2.3). 

A formation of the iopromide TP DAMI, as found by Steger-Hartmann (Steger-

Hartmann et al., 1998, Steger-Hartmann et al., 2001) in laboratory-STP’s can be 

excluded. Kalsch, 1992 also observed the formation of at least 3 different iopromide 

TPs in water/sediment systems and a laboratory STP. He found a similar pattern of Rf-

values for the unknown TPs formed, using the same method for TLC- analysis. 
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 Table 4.20:  Rf-values for iopromide and TPs of iopromide 

Compound Rf-value 
TP A 0.21 
ATI 0.23 
TP B 0.33 
ATH 0.33 
IO 0.39 

DAMI 0.47 
TP C 0.74 
TP D 0.89 

 

For iopromide in the water phase, a DT50 of 30 d and a DT90 of 99 d was calculated. 

Iopromide is amendable towards microbial degradation (Steger-Hartmann et al., 1998, 

Steger-Hartmann et al., 1999, Steger-Hartmann et al., 2001). In a somewhat similar 

study with iopromide, TPs formed were relatively stable, an appreciable mineralization 

did not occur. Kalsch reported also the degradation of iopromide in water/sediment 

systems, following a first order kinetic (Kalsch, 1992, Kalsch, 1999). The absence of a 

lag period in Kalsch’s experiments might have been caused by the river water used, 

which is known to contain iopromide residues (Ternes and Hirsch, 2000). Iopromide 

can be effectively removed during bank filtration (Putschew et al., 2000) and occurs in 

groundwater only at the low ng⋅L-1-level (Putschew et al., 2000, Sacher et al., 2001, 

Ternes and Hirsch, 2000).  

Summary: DT-values for iopromide 

Water phase: 

Function and degradation rate: First order    d = 0.0233 per day 

DT-values:    DT50: 30 d     DT90: 99 d  

Regression coefficient:  0.9909    Accepted (> 0.95)  

Water/sediment system: 

Kinetics and degradation rate: Not possible to determine 

DT-values:    Not possible to determine (< 100 d) 

Remark:     Complete transformation in the water phase 



RESULTS AND DISCUSSION 87  

4.4.2 Soil-Leaching Study 

4.4.2.1 Non-labelled iopromide 

In all tests using non-labelled iopromide the leachate volumes were in the required 

range of 92–104 % recovery of the applied artificial rain (OECD, 2003a). Non-labelled 

iopromide was retained in LUFA soil 2.2. It was not detected in the leachates of LUFA 

soil 2.2, while 37.5 % (mean of the two columns) of the test substance applied was 

detected in the leachate of EuroSoil 5 (Table 4.21). 

Table 4.21:  Leaching of non-labelled iopromide (IO) in LUFA 2.2 and EuroSoil 5. 
The recovery in the leachate is given in % of the spiked test substance for 
each soil column (A and B) 

 LUFA 2.2 EuroSoil 5 
 IO_A IO_B IO_A IO_B 

Volume leachate [mL] 389.9 398.4 406.7 401.4 
Concentration 
[ng/leachate] n.d. n.d. 20793 30112 

Recovery in leachate [%] 0 0 30.6 44.3 
n.d. = not detectable 

4.4.2.2 Radio-labelled iopromide 

In the tests using 14C-iopromide the leachate volumes from the LUFA 2.2 and 

EuroSoil 5 columns were in the required range of 92–104 % recovery of the applied 

artificial rain (OECD, 2003a). The leachate volumes from the Neuenkirchen soil 

columns were slightly above this range (108 %). This deviation from the required 

quality criteria should have no influence on the comparability of the tests and the 

overall assessment of the leaching potential of 14C-iopromide. High percentages of the 

IAR were found in the leachates of EuroSoil 5 (59.0 %), LUFA 2.2 (78.5 %) and 

Neuenkirchen soil (46.5 %) (Table 4.22). The mobility of 14C-iopromide was slightly 

higher in LUFA 2.2 soil than in Euro-Soil 5 and Neuenkirchen soil (Figure 4.23 - Figure 

4.25). Based on these data it can be presumed that the mobility of 14C-iopromide in the 

three soils tested is high. 
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Table 4.22:  Leaching of 14C-iopromide (14C-IO) in LUFA 2.2, EuroSoil 5 and 
Neuenkirchen soil. Recovery in % of the spiked test substance for each 
soil column (A and B) 

 LUFA 2.2 EuroSoil 5 Neuenkirchen 
 14C-IO_A 14C-IO_B 14C-IO_A 14C-IO_B 14C-IO_A 14C-IO_B

Recovery in soil [%] 21 19 43 50 52 57 
Recovery in leachate [%] 78 79 62 56 50 43 

Total recovery [%] 99 98 105 106 102 100 
n.d.: recovery < 0.5 % 
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Figure 4.23:  Leaching of 14C-iopromide in LUFA 2.2. Recovery rates in % of applied 
test substance in soil and leachates (means of measured soil aliquots of 
both columns (n=8); error bars: SD; n.d.: recovery < 0.5 %) 
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Figure 4.24:  Leaching of 14C-iopromide in EuroSoil 5. Recovery rates in % of applied 
test substance in soil and leachates (means of measured soil aliquots of 
both columns (n=8); error bars: SD; n.d.: recovery < 0.5 %) 
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Figure 4.25:  Leaching of 14C-iopromide in Neuenkirchen soil. Recovery rates in % of 
applied test substance in soil and leachates (means of measured soil 
aliquots of both columns (n=8); error bars: SD; n.d.: recovery < 0.5 %) 

Iopromide is a polar compound (log KOW of -2.33) and a high water solubility 

(Steger-Hartmann et al., 1999). Its tendency for a binding to soil particles can be 

expected to be very low, since specific interaction with soil particles are unknown for 

iopromide. Due to its high polarity, iopromide leaches rapidly through the soil, nearly 

unimpeded by interactions with soil particles. 

In experiments with 14C-labelled iopromide, more than 50 % of the radioactivity 

applied was found in the leachates of both soils. 14C-iopromide was retained slightly 

more by the EuroSoil 5 and the Neuenkirchen soil than by the LUFA 2.2. This could be 

explained by the coarser soil texture and therefore the faster leaching of the water in the 

LUFA 2.2 soil columns. 

However, in the study with non-labelled test substance a relative high percentage of 

the applied amount (38.6 %) was leached when using EuroSoil 5, while with LUFA 2.2 

no iopromide could be detected in the leachate with LC tandem MS. To verify this 

significantly different behaviour of 14C-iopromide and non-labelled iopromide in both 

soils further experiments were conducted. In a second study using non-labelled 

iopromide the results of the first experiment were confirmed. The major difference in 

the performance of the tests using labelled and non-labelled iopromide was the mode of 

application. 14C-iopromide was kindly provided by the Schering AG and stored in the 

laboratories of ECT dissolved in ethanol. This ethanol-solution was diluted with water 



90  RESULTS AND DISCUSSION  

and the resulting solutions were applied to the soil columns, whereas the non-labelled 

test substance was applied dissolved in water only. To exclude the possibility that traces 

of the organic solvent influenced the mobility of the 14C-iopromide in a second 

experiment the radioactive compound were applied to LUFA 2.2 soil columns after the 

ethanol was evaporated in a nitrogen stream and subsequently the 14C-iopromide was 

dissolved in water. At the end of the test 71.4% (mean of two columns) of the spiked 

radioactivity was found in the leachates. These results indicate that traces of ethanol in 

the application solution did not increase significantly the mobility of iopromide.  

In order to clarify these virtually contrary results, leachate samples of the 

experiments with 14C-labelled iopromide were analysed by radio TLC, applying several 

potential environmental transformation products (TPs) as reference compounds. TLC 

analysis showed that iopromide was completely transformed in LUFA 2.2 soil, under 

formation of at least three TPs at percentages between 14 ± 3% and 63 ± 2% (Table 

4.23). 

Table 4.23:  Composition of radioactivity in leachates of the soils Lufa 2.2 and 
EuroSoil 5 in % (2 replicates; error = mean absolute deviation) 

Compound Rf-value Lufa 2.2 EuroSoil 5 
TP A’  0.20 63 ± 2  15 ± 9 
ATI 0.22 - - 

TP B` 0.31 23 ± 1 - 
ATH 0.32 - - 
IO 0.37 - 85 ± 9 

DAMI 0.47 - - 
TP C` 0.70 14 ± 3 - 
Total - 100 100 

 

The Rf-values of the TPs A´ and B´ almost matched with those of the reference 

compounds ATI and ATH, respectively. In order to determine whether ATI or ATH 

were formed as TPs, additional LC-tandem MS experiments were conducted using soil 

leachates from the experiments with non-labelled iopromide. Although parameters for 

the detection of ATI in MRM experiments were optimized, the sensitivity for ATI 

remained low. The MRM experiments for ATH were conducted as described by Ternes 

and Hirsch, 2000.  
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Leachate samples spiked with 2 µg ATI showed the sharp ATI peak (Figure 4.26) 

with a retention time of 3.3 min, which was not observed in non-spiked samples. 

Additionally, a broad TP peak was observed for the MRM-transition of ATI which had 

a retention time of 4.1 min. The TP peak was also observed in non-spiked samples. 

Therefore, it is obvious that the TP in the soil leachates was not ATI, but showed a 

strong cross-selectivity to ATI. 

However, it cannot be entirely excluded that ATI was present in the leachate, due to 

the poor sensitivity in the measurement for this compound. The iopromide derivative 

ATH which was neither found by Ternes and Hirsch, 2000 nor by Putschew et al., 2001 

in various environmental waters, was not observed in the leachates, nor was the 

iopromide TP DAMI (Steger-Hartmann et al., 2001). 
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Figure 4.26:  Chromatograms showing the MRM-transition of ATI for soil leachates 
non-spiked (A) and spiked (B) with ATI  

During passage of EuroSoil 5, 14C-iopromide was transformed only to a minor 

extent, while 85 ± 9 % of the iopromide remained unchanged (Table 4.23). The TP 

formed had the same Rf-value as TP A , which was presumably formed in both soils. 

Additional experiments on the identification of the unknown iopromide TPs were not 

conducted.  
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Finally, the results of the experiments with 14C-labelled and non-labelled iopromide 

were linked to investigate the comparability of the experiments. In both experiments 

with soil LUFA 2.2 iopromide was never found in the leachates neither labelled nor 

non-labelled (Table 4.24), indicating that iopromide was entirely transformed during 

passage of LUFA 2.2 soil. In EuroSoil 5 a partial transformation occurred, resulting in 

50 ± 1 % and 38 ± 7 % of the initially applied quantity of 14C-iopromide and non-

labelled iopromide, respectively, in the leachates. This shows that both analytical 

methods led reproducibly to the same results. 

 Table 4.24:  Percentage of initially applied 14C-labelled and non-labelled iopromide 
recovered unchanged in soil leachates (2 replicates; error = mean 
absolute deviation) 

 LUFA 2.2 EuroSoil 5 
14C-labelled iopromide  0 % 50 ± 1 % 
non-labelled iopromide 0 % 38 ± 7 % 

 

It might be assumed that the varying mobility of the iopromide equivalents in the 

three soils was mainly a result of the differing extent of transformation.  

Hence, the at least partial transformation of iopromide during soil passage gives 

some evidence, that the removal of iopromide during riverbank filtration is caused by 

degradation (Putschew et al., 2000). It can be concluded that the introduction of 

iopromide onto soils means a certain risk for groundwater contamination, since in any 

case a groundwater contamination with iopromide or its TPs is very likely. 

Comparison of iopromide transformation in water/sediment systems and soil columns 

The iopromide TPs formed in both test systems displayed almost identical Rf-values 

(Table 4.25). This might indicate that the TPs A, B, C formed in the water/sediment 

tests, respectively the TPs A´, B´, C´ of the soil leaching experiments, were identical. 

Therefore, it can be presumed, that these TPs are frequently formed under a wide range 

of environmental conditions.  
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Table 4.25:  Rf-values for iopromide and corresponding TPs 

Water/sediment test Leaching test 
Compound Rf-value Compound Rf-value 

TP A 0.21 TP A´ 0.20 
ATI 0.23 ATI 0.22 
TP B 0.33 TP B´ 0.31 
ATH 0.33 ATH 0.32 
IO 0.39 IO 0.37 

DAMI 0.47 DAMI 0.47 
TP C 0.74 TP C´ 0.70 
TP D 0.89 - - 

 

The transformation velocity in LUFA 2.2 soil 5 was high in comparison to the 

transformation of iopromide in the water/sediment system. In the latter experiment TPs 

appeared not until 28 d and a total transformation was observed after 100 d. It is 

conceivable that iopromide was transformed in all cases following mainly the same 

transformation, but with different kinetics. This might give reason for a detailed 

elucidation of the environmental fate of iopromide in the future. 
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5 ENVIRONMENTAL RISK ASSESSMENT  

5.1 General principle 

Pharmaceuticals are potentially harmful environmental contaminants as they are 

biologically active and often have a low biodegradability (Christensen, 1998). Since 

1993, an environmental risk assessment (ERA) for new drugs has been implemented by 

the European Union, 1993. For the registration of veterinary pharmaceuticals an 

environmental assessment became obligatory in 1997 (EU, 1997) and VICH guidance 

paper are available (European Union, 2002, European Union, 2004). A corresponding 

guideline for human pharmaceuticals is still under discussion (2001, European Union, 

2002, Rönnefahrt and Koschorrek, 2002, Straub, 2002). However, an environmental 

risk assessment for pharmaceuticals follows basically the same rules which have been 

established for other chemicals (Römbke et al., 2001).  

The whole ERA is an iterative, tiered process in that the exposure and effect analysis 

can be repeated twice with increasing complexity. In general, the ERA consists of the 

steps shown in Figure 5.1.  

For the exposure and effect analysis a number of standardized tests have been 

published (e.g. by the OECD, 2003b), allowing for a comparable assessment of fate and 

ecotoxicological effects. In recent years several reports have been published on the 

effects and the environmental risk of pharmaceuticals in the aquatic and, less often, 

terrestrial environment (Christensen, 1998, Davies et al., 1998, Henschel et al., 1997, 

Jones et al., 2002, Pascoe et al., 2003, Schulman et al., 2002, Steger-Hartmann et al., 

2001, Stuer-Lauridsen et al., 2000, Van Wezel and Jager, 2002, Wollenberger et al., 

2000). However, in comparison to other chemicals (in particular pesticides) still little 

data is available on the fate and effects of pharmaceuticals in the environment (Golet, 

2002, Tixier et al., 2003). 

Within the last ten years, several concepts for an environmental risk assessment 

(ERA) of pharmaceuticals have been proposed (e.g. Römbke et al., 2001, Stuer-

Lauridsen et al., 2000). Due to the lack of data in comparison to other chemicals, in 

particular pesticides, the performance of an ERA is difficult for pharmaceuticals. 
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Therefore, only few examples of ERAs for this group of chemicals in the compartments 

sediment, soil or groundwater have been published so far, but the number is increasing 

recently (e.g. Boxall et al., 2000, Ferrari et al., 2003, Halling-Sorensen et al., 2000, 

Steger-Hartmann et al., 1999, Webb, 2001).  

Figure 5.1:  General principles of an environmental risk assessment process, adapted 
from Römbke et al., 2001 

In the following, the pharmaceuticals tested in this project will be evaluated 

concerning their fate in the aquatic environment (surface water and sediment) as well as 

regarding their potential impact on the groundwater.  

HAZARD IDENTIFICATION 
Evaluation, which environmental compartments (i.e. surface water, soil) 
are likely to be affected based on the properties of the compound and the 

use pattern 

EXPOSURE ASSESSMENT
Calculation of the predicted 

environmental concentrations 
(PEC) 

EFFECT ASSESSMENT 
Calculation of the predicted no 
effect concentrations (PNEC) 

(incl. safety factors) 

RISK ASSESSMENT 
Comparison of (measured or estimated) exposure data with (on different 

investigation levels, i.e. laboratory, microcosms, field) measured or 
estimated effect data (separately for the main environmental 

compartments)

RISK CHARACTERIZATION 
Assessment of the probability that an environmental risk is likely to occur 

by calculating the PEC/PNEC ratio (< 1 or > 1) 

RISK MANAGEMENT 
Measures, in order to avoid or to minimize an environmental risk as part 

of the registration or re-registration decision 
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5.2 Degradation and metabolization in water/sediment systems 

5.2.1 Assessment approach 

The results of water/sediment tests, performed as part of the registration of 

pesticides, are not assessed on their own (i.e. no „Cut-off“-values exists, meaning that 

no DT-value has been defined by the regulatory authorities which, if exceeded, prevents 

the registration of a pesticide). Instead, the data is used for the calculation of PECs 

(Predicted Environmental Concentrations), which are then used for a PEC/PNEC 

comparison or as a trigger for further effect testing (EU, 1991). Since such a 

comparison was not possible in this project due to the lack of effect data, another 

approach based purely on the results of fate tests was chosen.  

The characterization of the persistence of a substance from water/sediment tests is 

done mainly according to Beek, 2001, a procedure which has been proposed for the 

evaluation of environmentally relevant chemicals in Germany. In Table 5.1 the 

following classification parameters are shown: i) the time necessary for 50 % 

dissipation of the test compound (DT50) in the water compartment, ii) the extent of 

mineralization after 100 d, and iii) the extent of bound residues present after 100 d.  

Table 5.1:  Persistence classes according to Beek, 2001  

First criterion: primary degradation 
DT50 in water Class Assessment 

< 10 d I Rapid primary degradation 
10 – 30 d II Delayed primary degradation 
30 – 100 d III Slow primary degradation 

> 100 d IV Negligible primary degradation 
Second Criterion: mineralization (after 100 d) 

CO2 Class Assessment 
> 50 % I Extensive mineralization 

25 – 50 % II Moderate mineralization 
10 – 25 % III Limited mineralization 

< 10 % IV Negligible mineralization 
Third criterion: bound residues (after 100 d) 

Amount Class Assessment 
< 10 % I Low plateau 

10 – 25 % II Moderate plateau 
25 – 50 % III High plateau 

> 50 % IV Very high plateau 
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The resulting classes of the three criteria were equally taken for the calculation of the 

overall persistence category applying the following calculation (average by rounding): 

 categoryePersistencclassestheofSum
=

3
 (5.3)

Depending on the certain degradation kinetic of a substance, the shape of the 

degradation curve as well as the transformation scheme are considered for obtaining the 

overall persistence category. Finally the persistence of a chemical is assessed as one of 

the four persistence categories shown in Table 5.2.  

Table 5.2:  Persistence categories  

Category number Category name 
I Low persistence 
II Moderate persistence 
III High persistence 
IV Not biodegradable 

In most experiments with non-labelled compounds the persistence cannot be entirely 

assessed according to Beek, 2001, since detailed data on the dissipation processes, such 

as transformation and mineralization, can usually not be obtained. In such and related 

cases, the respective substance was preliminarily classified by expert knowledge. It has 

to be stated again that this approach is not considered to be an alternative to a “full” 

environmental risk assessment (i.e. a PEC/PNEC comparison), but should be seen as a 

first evaluation in case effect data are not available. 

 

5.2.2 Assessment of the individual test substances 

Before discussing the individual compounds, it has to be noted that the transferability 

of results attained in lab-scale experiments to large scale systems or even real 

environmental processes is limited, conditioned by fundamental differences in size, 

complexity and incubation of the systems (Rönnefahrt et al., 1997). However, the test 

conditions selected were a worst-case scenario, since the application of organic carbon 

poor sediment with a relative low TOC is associated with a relatively low microbial 

activity. Frequently, it is also accompanied with a relatively low extent of analyte 

sorption onto the sediment. Therefore, real environmental conditions, which include 



98  ENVIRONMENTAL RISK ASSESSMENT  

photo degradation (Andreozzi et al., 2003, Andreozzi et al., 2002, Buser et al., 1998, 

Lam et al., 2003, Poiger et al., 2001, Tixier et al., 2003) and nutrient replacement, 

should in general lead to a more efficient elimination of pharmaceutical residues. 

However, the data obtained allows for a principal estimation of the environmental fate 

and distribution of the selected pharmaceuticals and TPs which showed a wide range of 

different behaviours with respect to degradation/dissipation, affinity to the sediment and 

persistence (Table 5.3).  

Table 5.3:  Dissipation times, extent of mineralization and sediment sorption and 
persistence classification of pharmaceuticals tested in water/sediment 
test systems 

 DT50 
(d)1 

DT90 
(d)1 

Minerali-
zation 
(% C0) 

Sorption to 
sediment 
(% C0) 

Classification3 

Paracetamol -4 
(3.1) 

-4  
(10.4) 19 572 3.5 (Category IV) 

I = Low persistence 

Ibuprofen -5 
(10) 

-5 
(13) 77 9 1.0 (Category I) 

I = Low persistence 
2-Hydroxy-
ibuprofen 

-4 
(6.7) 

-4 
(22) n.d. < LOQ 1.0 (Category I) 

I = Low persistence 

Clofibric acid 119 
(82) 

> 365 
(274) n.d. 12 3.0 (Category III) 

III = High persistence 

Diazepam > 365 
(34) 

>> 365 
(113) < 2 60 4.0 (Category IV) 

IV = Not biodegradable 

Oxazepam 54  
(19) 

179 
(63) n.d. 29 3.0 (Category III) 

III = High persistence 

Carbamazepine 333 
(52) 

> >365 
(173) n.d. 40 3.5 (Category IV) 

IV = Not biodegradable 
10,11-Dihydro-
10,11-hydroxy- 
carbamazepine 

34 
(21) 

> 365 
(> 365) n.d. < 10 2.0 (Category II) 

III = High persistence 

Iopromide -5 
(30) 

-5 
(99) < 1 < 25 3.0 (Category III) 

III = High persistence 

Ivermectin 13 
(2.9) 

144 
(10) n.d. 16 2.0 (Category II) 

II = Moderate persistence 
1 dissipation times for entire water/sediment system, respective values for the water compartment are shown in 
brackets, 2 Present as non-extractable residues, n.d. = not determined, 3 numerically according to Beek, 2001 (upper 
line) and after a plausibility check (i.e. expert knowledge (lower line); final classification is given in italics, 4 no 
value because the compound was never found in the sediment, 5 no value because the compound was not TLC 
analyzed in the sediment  
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5.2.2.1 Paracetamol 

The results indicate that paracetamol is eliminated from the water phase in the 

water/sediment system. It can be suggested from the rapid and extensive binding onto 

the sediment that paracetamol, but more likely its TPs, are incorporated into the biomass 

and may potentially accumulate in sediments. Since paracetamol or its TPs were not 

extractable, even not under drastic conditions, it can be expected that the bio availability 

in the sediment is low. 

Consequently, following the classification of Beek, 2001, paracetamol has to be 

considered as highly persistent in the water/sediment test system (see Table 5.3). 

However, taking into account what is known about this substance a categorization with 

“low persistence” is more likely. However, a profound assessment can only be done 

after elucidation the nature of the non-extractable residues. 

5.2.2.2 Ibuprofen 

Ibuprofen, which carried a 14C-labelled carboxylic moiety, seemed to be mineralized 

by more than 75 % in the course of the experiment, displaying a ready degradability in 

surface water (see Table 5.3). However, de-carboxylation as a major or even solely 

process cannot be ruled out. In surface waters, a distinct degradation of this substance 

should be expected. Since ibuprofen is continuously discharged via STP effluents, the 

micro organisms in the receiving waters should be adapted on its’ degradation. 

Ibuprofen displayed no potential for accumulation in sediments due to its’ rapid 

degradability and its’ relatively low lipophilicity under common pH conditions in 

environmental waters and sediments. 

According to Beek`s classification scheme ibuprofen is categorized as “lowly 

persistent” (Beek, 2001).  

5.2.2.3 2-Hydroxy-ibuprofen 

With regard to the present data, 2-hydroxy-ibuprofen can be expected to undergo 

rapid degradation in surface waters and should display neither significant persistence 

nor accumulation in the sediments and suspended matter (see Table 5.3).  

Since a categorization according to (Beek, 2001) was not possible 2-hydroxy-

ibuprofen is classified as “lowly persistent”. 
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5.2.2.4 Clofibric acid 

The high stability of clofibric acid in surface waters reported in the literature could 

be confirmed according to the results of the water/sediment test system shown here. The 

low affinity towards the sediment confirms that clofibric acid shows no potential for 

accumulation in sediments (see Table 5.3).  

Despite the fact that a complete classification according to Beek, 2001 was not 

possible, clofibric acid is categorized with “highly persistent” due to the high DT-values 

and the existing monitoring data. 

5.2.2.5 Diazepam 

Based on the experimental data it is clear that diazepam is hardly degraded in surface 

waters (excluding light induced degradation) and that it is therefore persistent in the 

aquatic environment. Due to its’ behaviour, an accumulation in sediments, especially in 

those with high Corg levels, can be expected (see Table 5.3). 

According to Beek, 2001 diazepam is categorized as “not biodegradable”. This is 

consistent with findings of (Kreuzig, 2003), who found diazepam to be highly stable in 

soils. 

5.2.2.6 Oxazepam 

Oxazepam should be eliminated to some extent in surface waters. With respect to its´ 

moderate lipophilicity and Kd values, the potential for accumulation of oxazepam in 

natural sediments cannot be ruled out. 

The persistence according to Beek, 2001 could not fully be assessed. However, 

according to the DT-value and its sorption to the sediment a categorization as “highly 

persistent” is the most appropriate (see Table 5.3).  

5.2.2.7 Carbamazepine 

The results of the water/sediment test suggest, in agreement with other authors, that 

carbamazepine is widely resistant to elimination in natural surface waters (excluding 

light induced degradation). For carbamazepine, a moderate potential for accumulation 

in sediments, especially in those with a high Corg cannot be excluded (see Table 5.3).  
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Based on the existing data and literature experiences carbamazepine has to be 

categorized as “not biodegradable” (Beek, 2001).  

5.2.2.8 10,11-Dihydro-10,11-dihydroxy-carbamazepine 

The compound 10,11-dihydro-10,11-dihydroxy-carbamazepine disappeared quickly 

in the first days but remained almost stable at a level of 35 % after the first month until 

the end of the test. This might indicate the presence of threshold concentrations in the 

degradation of this TP or was caused by a deficit of nutrients which are essential for the 

respective degrading micro organisms. Significant sorption of 10,11-dihydro-10,11-

dihydroxy-carbamazepine onto sediments can be excluded. A degradation of the TP in 

surface waters might occur, but due to the threshold concentration found a final 

conclusion is impossible to be taken.  

Despite the fact that a classification according to Beek, 2001 is not fully possible, the 

DT-values, the negligible sorption to the sediment and recent monitoring data (Miao 

and Metcalfe, 2003) indicate at least a “moderate persistence” (see Table 5.3). In fact, 

the time course of this substance in the water phase make a categorization as “highly 

persistent” more likely.  

5.2.2.9 Iopromide 

Iopromide can be in principal transformed in surface waters, even though the extent 

of the transformation may be low due to the slow kinetics. An accumulation in 

sediments can be excluded. For the X-ray contrast medium iopromide, at least four 

relatively stable TPs were detected of which three occurred at a level of > 10 %. These 

TPs were also observed in soil column leaching experiments, where iopromide was 

transformed between 15 and 100 % during soil passage. It is suggested that iopromide is 

transformed into the observed TPs under various environmental conditions. 

According to Beek, 2001, iopromide has to be classified as “highly persistent” in 

water/sediment systems (see Table 5.3) when considering also the formation of stable 

TPs. 
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5.2.2.10 Ivermectin 

In surface waters a rapid elimination of ivermectin from the water compartment can 

be presumed. Due to the elevated sorption properties of ivermectin, an accumulation in 

natural sediments is likely, in particular for anaerobic sediments with a high Corg. 

A formal classification according to Beek, 2001 is difficult to be done. However, due 

to the low DT-values and the transitory sorption in the sediment, it is proposed to 

categorize this parasiticide as “moderately persistent” (see Table 5.3). This proposal is 

in accordance with literature data from the compartment soil (Edwards et al., 2001). 

5.2.2.11 Final note 

The phase I metabolites 10,11-dihydro-10,11-dihydroxy-carbamazepine, 2-hydroxy-

ibuprofen and oxazepam showed lower system half lives than the parent compounds, 

reflecting the comparably elevated accessibility of phase I metabolites towards further 

degradation reactions. These main human metabolites were never found as TPs in the 

water sediment systems. Thus, the transformation of the selected pharmaceuticals in 

humans and in the environmental systems was totally different. Therefore, the 

transferability of pharmacological data towards environmental behaviour is limited and 

for a reliable assessment of the environmental fate of pharmaceuticals, appropriate tests 

are indispensable. 

5.3  Mobility and transformation in column leaching systems 

Especially the compartment groundwater is a subject of high interest not only from 

an ecotoxicological point of view but mainly due to toxicological reasons. In most 

member states of the European Union groundwater is the main source of drinking water. 

Therefore, the assessment of potential risks of chemicals to human health via 

groundwater contamination must always be considered. In order to evaluate the risk for 

this compartment in an ERA, usually adsorption/desorption kinetics and the leaching 

behaviour are used as the main endpoints. 

For the assessment of the leaching potential of pharmaceuticals existing concepts 

should be applied. Already in the 1980th the Biologische Bundesanstalt für Land- und 

Forstwirtschaft (Braunschweig, Germany) required for the registration of pesticides the 

evaluation of their leaching potential. As a first step always a laboratory leaching study 
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using small disturbed soil columns had to be performed (Biologische Bundesanstalt für 

Land und Forstwirtschaft, 1986). Depending on the results of this study and taking into 

account the persistence of the test substance, a data refinement could be required. For 

substances with a DT90 < 100 d, a recovery of more than 10% of the test item and its 

TPs in the leachate served as a trigger for further tests, e.g. leaching with aged residues, 

lysimeter tests or even field studies. For substances with a DT90 > 100 d a recovery rate 

of > 5% triggers a data refinement. Later on, in a guideline describing the performance 

of semi-field lysimeter studies, the BBA specified the trigger values (Biologische 

Bundesanstalt für Land und Forstwirtschaft, 1990).  

A data refinement (i.e. modelling and - depending on the results of the model 

predictions - further studies) were necessary if one of the following criteria is fulfilled: 

a) water solubility of the test substance is higher than 30 mg/L; b) adsorption coefficient 

Koc is below 500; c) Kd-value is below 10 L⋅kg-1 and d) the soil persistence, given as 

DT50 is higher than 21 days. 

In the current practice of pesticide registration according to EU guideline 91/414 

(EWG, 1991), the investigation of the mobility of these substances in soil starts also 

with small laboratory columns (EU, 1991). In addition, the same test has to be done 

with aged residues. Taking into consideration the results of these tests as well as the 

persistence of the test substance in soil and its adsorption/desorption behaviour, it has to 

be decided whether a field lysimeter study must be performed. In any case the expected 

concentration of the test substance in the groundwater has to be calculated. If according 

to the modeling this concentration is higher than 0.1 µg/L, the substance cannot be 

registered, unless it has been shown via data refinement, that no unacceptable effects of 

the substance on the groundwater will occur (EU, 1997). This data refinement is usually 

focusing on real field conditions (either by performing a field study or by further model 

calculations) to show that under such conditions the test substance will not exceed the 

trigger value in the groundwater. 

Since it was not possible to model the potential concentration of the six test 

pharmaceuticals in the groundwater (this would be the most appropriate approach 

followed by EU as well as national authorities today), the results gained so far were 
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assessed using the criteria of the BBA guidelines. According to the BBA trigger values 

a data refinement would be required as follows (Table 5.4): 

Table 5.4:  Reasons for a data refinement for certain pharmaceuticals    

Reason for data refinement Compounds 
 

Detection of test substance and its TPs 
in the leachate of disturbed soil 
columns > 10% (respective 5%) 

 

 
 

iopromide, clofibric acid 

 
Water solubility > 30 mg/L 

 

 
iopromide, clofibric acid, diazepam 

 
Koc < 500  

 

 
iopromide, clofibric acid, diazepam, 

carbamazepine 
 

 
Kd < 10  

 

 
iopromide, clofibric acid, diazepam, 

carbamazepine 
 

 

The DT90-criterion could not be applied, given that no soil DT-values are available 

for the compounds investigated. Since four of the pharmaceuticals investigated exceed 

at least one of the trigger values further modelling and testing with iopromide, clofibric 

acid, diazepam and carbamazepine will be necessary.  

The case of carbamazepine shows clearly that the studies with the disturbed soil 

columns should only be considered as a first screening approach. No carbamazepine 

was detected in the leachates of the soil columns. However, carbamazepine is known to 

be present in groundwater very often (Heberer, 2002a, Sacher et al., 2001, Ternes, 

2000). Decisions in environmental risk assessment should not be based only on the 

results of these soil column leaching studies. Therefore - as foreseen in the BBA-

scheme - the compound’s properties (e.g. water solubility, Koc, Kd) should be regarded 

in addition to the soil column experiments. In the case of ibuprofen no leaching 

potential was evaluated using the BBA-approach. However, taken into account that the 

soil column experiments were performed with non-labelled ibuprofen and also 

considering the high potential mobility of ibuprofen due to its pH dependent 



ENVIRONMENTAL RISK ASSESSMENT 105  

dissociation, a data refinement is recommended. Especially the pH dependent mobility 

of ibuprofen should be investigated further. Only the veterinary pharmaceutical 

ivermectin fulfills the BBA registration criteria for pesticides; i.e. no further 

investigations are required. 

In the cases where data refinements are required, registration restrictions and/or risk 

reduction measures have to be identified, if the potential to leach cannot definitely be 

excluded in further studies. However, a direct transfer of the risk mitigation steps 

developed for pesticides seems questionable due to the medical importance of 

pharmaceuticals. In other words, the benefits of the use of a certain pharmaceutical have 

always to be taken into consideration. 

The observed mobility of clofibric acid and iopromide (including its TPs) in the soil 

columns indicates a risk for the occurrence in groundwater. This result could be 

confirmed by the occurrence of both substances in the groundwater of several German 

regions (Heberer, 1995, Ternes, 2001a, Ternes, 2000, Ternes and Hirsch, 2000). 

Substances which enter the aquifer may pose a problem not only for short-term periods. 

Due to the low microbial activity in the deeper soil layers these contaminants may be 

persistent in the aquifer over decades (DVWK, 1988) and therefore rather cause a long 

term risk. In addition, the discrepancy between the lack of mobility in the laboratory 

columns and literature data (occurrence in groundwater) in the case of carbamazepine 

requires further investigations. In particular, the hypothesis that the mobility differs 

between columns filled with top soil in comparison to the use of sub-soils or river 

sediments. 

Despite the fact that these pharmaceuticals were able to enter the groundwater, no 

concept to assess their ecotoxicological risk in this compartment is available. However, 

for the assessment of groundwater contaminations (Röder et al., 1999) developed 

criteria to establish threshold levels, which can be used for a precautionary protection of 

this precious compartment. Despite an increased contaminant level above the geogenic 

background, groundwater can be classified as minor polluted, if no relevant 

ecotoxicological effects will be observed and the quality criteria of the Drinking Water 

Directive (or analogous values) are fulfilled. 
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Currently, no data on the effects of pharmaceuticals on organisms in the 

compartment groundwater are available (Health Council of the Netherlands, 1996). 

Furthermore, until now no tools are existing to predict the effects of pollutants to 

groundwater organisms or ecosystematic parameters. Hence, in the year 2002 the 

German Environmental Agency, Berlin, initiated a project to identify suitable 

groundwater test-organisms. Based on the results of this project the next step has to be 

the development of useful test-systems, in order to determine the toxicity of selected 

contaminants to groundwater organisms. Depending on their ecotoxicological effects 

threshold levels especially for pharmaceuticals which have a potential to leach into the 

groundwater (e.g. clofibric acid and iopromide) should be defined in the near future. 

With respect to the human-toxicological risk of pharmaceuticals the requirements of 

the Drinking Water Directive have to be fulfilled (European Union, 1998, Van der 

Tenck et al., 1999). Herein a threshold level of 0.1 µg/L is defined for pesticides. Such 

quality criteria do not exist for pharmaceuticals yet. Since various pharmaceuticals like 

clofibric acid or iopromide could be detected in German drinking water (Heberer, 

2002b, Steger-Hartmann et al., 2001, Stumpf et al., 1999, Ternes, 2001a, Ternes et al., 

2002a) over the last decade, threshold levels have to be defined in the near future; in 

particular for those pharmaceuticals which have a potential to leach into the 

groundwater. Both chemicals are obviously able to pass the elimination procedures 

involved in drinking water processing. Based on a PECdrinking water (Predicted 

Environmental Concentration), Webb et al., 2003 calculated the uptake via drinking 

water of clofibric acid and iopromide by a “model human”. Assuming a daily 

consumption of 2 L drinking water the author calculated an uptake of clofibric acid of 

14.3 mg (1% of a daily dose) and 112 mg iopromide (< 1% of a daily dose) over a life 

time of 70 years. Therefore, direct pharmaceutical effects associated with the uptake of 

both pharmaceuticals by the consumption of drinking water can be excluded, although a 

general risk for long term effects cannot be ruled out. 
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6 OUTLOOK 

As mentioned already, some results of the current project will require further studies 

not covered so far. Especially, we propose to consider the following subjects: 

6.1 Modeling 

The results gained in the water/sediment as well as the leaching tests should be 

complemented by further tests with differing test conditions, e.g. other sediments, soils, 

temperatures. This would allow for a more general modelling of the fate of the 

pharmaceuticals investigated which is necessary for a profound risk assessment of the 

pharmaceuticals.   

6.2 “Ageing” of compounds in soils and sediments 

The leaching tests performed here are based on a screening approach. Therefore, the 

compounds assessed as being mobile should be tested after a period of “ageing” in the 

same soil according to the OECD draft guideline. For this purpose we propose the 

mobile compounds clofibric acid and radio-labelled iopromide. In addition, the 

available test method, currently focusing on top soils, should be modified in order to 

simulate sub-soils or even river sediments, thus being representative for those 

environmental compartments relevant for the supplement of groundwater.  
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7 FINAL CONCLUSIONS 

In this study, analytical methods have been developed allowing for the determination 

of pharmaceutical residues in environmental waters and sediment. The new methods 

were applied for the investigation of the fate and distribution behaviour of selected 

pharmaceuticals in aerobic water/sediment systems and in leaching tests. 

Several of the selected pharmaceuticals displayed a high persistence in the 

water/sediment studies conducted and/or a potential for accumulation in sediment 

compartments. These findings indicate an environmental risk, due to the presence of 

pharmaceuticals in the aquatic environment. In addition, two of the tested 

pharmaceuticals proved to be mobile in laboratory soil columns (in a third case, a 

discrepancy between test results and literature data could be clarified). 

For a comprehensive environmental risk assessment of pharmaceuticals, further data 

on the fate in other compartments, i.e. in soil and anaerobic sediments, and on the 

(eco)toxicicological effects have to be generated. In general, it should be a future aim of 

the research to elucidate the environmental transformation of pharmaceuticals to allow 

for a balancing of their elimination in the various environmental compartments.  

It is common sense in the European Union that the environmental risk of new 

pharmaceuticals and their metabolites should be generally evaluated as an obligatory 

prerequisite for their registration. The situation for approved pharmaceuticals is 

different. Many of these have been introduced into the environment for a long time, 

causing an environmental exposure of widely unknown portion.  

In the light of a potential accumulation of pharmaceutical residues in sediments, 

future monitoring programs are strongly recommended to elucidate the pharmaceutical 

contamination of aquatic sediments. Based on these results and effect data, priority 

substances among the approved pharmaceuticals should be identified, to which a 

supplementary ERA is demanded. In addition, the potential risk of pharmaceuticals to 

the groundwater has also to be taken into account. Laboratory tests (for new substances) 

as well as monitoring programs (for existing pharmaceuticals) as well as effect tests are 

necessary to protect this highly relevant compartment.    
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10 ANNEX 

Properties of water and sediment at the sampling site in the Wickerbach and at the set-up of the test 

 

 

Study
sediment

Date T (°C) pH O2 (%) O2 (mg/L) pH Date pH Redox (mV) O2 (%) O2 (mg/L) pH Redox (mV)
WS/IO 26/01/2001 4.6 7.8 100 7.3 02/02/2001 73 7.3 7.3

WS/DIA 03/07/2001 15.9 6.8 92.9 8.9 7.3 17/07/2001 7.5 459 99.7 10.7 7.7 155
WS/IBU + OXA 06/09/2001 12.9 6.3 106 11.1 7.3 17/09/2001 7.5 354 100.1 10.9 7.5 111
WS/PAR + CAN 17/10/2001 12.8 6.5 91 9.7 7.8 23/10/2001 7.7 501 99.3 10.2 7.6 223

WS/COH 07/12/2001 6.2 7.2 94.1 8.9 7.5 14/12/2001 7.6 473 102 11.1 7.5 198
WS/CLO + HI 27/12/2001 6.0 8.2 99 7.6 10/01/2002 8.1 576 105 11.8 7.4 528

WS/IV 26/02/2002 6.0 8.1 101 7.5 18/03/2002 7.7 431 99.8 10.5 7.5 389

sedimentwater water
Sediment+water sampling Wickerbach Test set-up



ANNEX                           B 

Course of the temperature during the experiments 

Study Test vessel-no: Mean SD Min Max
Day: -20 -17 -16 -14 -6 0 1 2 7 14 27 58 100

WS/IO 21 22.0 21.8 20.5 20.2 21.8 19.7 20.1 20.1 19.3 19.7 20.5 19.9 21.4 20.5 0.9 19.3 22.0
22 22.0 21.9 20.4 20.2 21.8 19.7 20.1 20.1 19.3 19.7 20.5 19.9 21.4 20.5 0.9 19.3 22.0
23 21.9 21.9 20.4 20.2 21.8 19.7 20.2 20.0 19.3 19.7 20.5 20.0 21.4 20.5 0.9 19.3 21.9
24 21.2 21.8 20.4 20.2 21.8 19.7 20.1 19.9 19.3 19.7 20.5 20.0 21.4 20.5 0.8 19.3 21.8
25 22.1 21.9 20.3 20.3 21.9 19.7 20.1 19.9 19.3 19.7 20.5 19.8 21.4 20.5 1.0 19.3 22.1
26 21.8 21.9 20.4 20.2 21.9 19.6 20.3 20.0 19.3 19.7 20.5 20.0 21.4 20.5 0.9 19.3 21.9

Mean/day 21.8 21.9 20.4 20.2 21.8 19.7 20.2 20.0 19.3 19.7 20.5 19.9 21.4

Day: -12 -8 -5 -1 0 1 2 7 14 27 58 100
WS/DIA 21 21.9 22.4 22.1 22.9 22.9 22.2 22.9 22.3 22.4 22.2 20.6 20.5 22.1 0.8 20.5 22.9

22 21.8 22.5 22.1 22.9 22.8 22.2 22.5 22.2 22.9 22.0 20.6 20.5 22.1 0.8 20.5 22.9
23 21.8 22.6 22.0 22.9 22.9 22.2 22.6 22.2 22.4 22.0 20.5 20.5 22.1 0.8 20.5 22.9
24 21.7 22.5 22.1 22.9 22.9 22.3 22.5 22.2 22.8 22.0 20.3 20.8 22.1 0.8 20.3 22.9

Mean/day 21.8 22.5 22.1 22.9 22.9 22.2 22.6 22.2 22.6 22.1 20.5 20.6

Day: -4 -2 1 2 8 14 28 56 100
WS/IBU + OXA 21 21.1 21.2 20.5 20.0 20.5 20.7 20.3 20.8 19.4 20.5 0.6 19.4 21.2

22 21.1 21.4 20.7 20.1 20.3 20.7 20.2 20.8 19.5 20.5 0.6 19.5 21.4
23 21.1 21.3 20.8 20.0 20.5 20.7 20.2 20.6 19.4 20.5 0.6 19.4 21.3
24 21.1 21.5 20.8 20.1 20.5 20.7 20.4 20.5 19.5 20.6 0.6 19.5 21.5

Mean/day 21.1 21.4 20.7 20.1 20.5 20.7 20.3 20.7 19.5

Day: -4 -2 0 1 2 7 15 29 57 100
WS/PAR + CAN 21 19.9 20.6 20.7 20.4 20.1 19.3 20.5 20.0 20.5 19.9 20.2 0.4 19.3 20.7

22 20.0 20.5 20.7 20.4 20.2 19.3 20.4 20.2 20.4 19.9 20.2 0.4 19.3 20.7
23 20.1 20.5 20.6 20.4 20.2 19.4 20.5 20.0 20.5 19.8 20.2 0.4 19.4 20.6
24 20.2 20.3 20.7 20.4 20.1 19.3 20.5 20.1 20.5 20.1 20.2 0.4 19.3 20.7

Mean/day 20.1 20.5 20.7 20.4 20.2 19.3 20.5 20.1 20.5 19.9

Day: -7 -2 0 1 2 8 14 28 56 100
WS/COH 21 19.6 19.8 19.9 19.8 20.0 20.2 19.9 20.1 20.0 19.9 19.9 0.2 19.6 20.2

22 19.6 19.8 19.9 19.9 20.0 20.0 19.9 20.0 20.0 20.0 19.9 0.1 19.6 20.0
23 19.7 19.7 19.9 20.0 20.0 20.1 19.7 20.1 20.0 19.8 19.9 0.2 19.7 20.1
24 19.8 19.7 19.9 19.9 20.0 20.0 19.8 20.0 20.0 19.9 19.9 0.1 19.7 20.0

Mean/day 19.7 19.8 19.9 19.9 20.0 20.1 19.8 20.1 20.0 19.9

Day: -6 -2 0 1 2 7 14 28 56 100
WS/CLO + HI 21 19.7 19.9 20.1 19.8 19.9 20.0 19.9 20.0 20.4 21.6 20.1 0.5 19.7 21.6

22 19.8 19.9 20.0 19.7 19.9 20.0 19.9 20.2 20.4 21.5 20.1 0.5 19.7 21.5
23 19.8 19.9 19.9 19.9 20.0 20.0 19.9 20.0 20.6 21.7 20.2 0.6 19.8 21.7
24 19.8 19.9 20.1 19.8 19.9 20.1 19.9 20.2 20.5 21.6 20.2 0.5 19.8 21.6

Mean/day 19.8 19.9 20.0 19.8 19.9 20.0 19.9 20.1 20.5 21.6

Day: -1 0 1 2 7 14 29 56 100
WS/IV 21 20.0 19.8 19.8 20.1 20.1 20.9 20.2 20.0 20.3 20.1 0.3 19.8 20.9

22 19.9 19.8 19.9 19.9 20.0 20.9 20.2 20.1 20.1 20.1 0.3 19.8 20.9
23 19.9 19.7 19.9 19.9 19.9 20.9 20.1 20.0 20.1 20.0 0.3 19.7 20.9
24 19.9 19.8 19.8 20.1 19.9 20.8 20.1 20.0 20.1 20.1 0.3 19.8 20.8

Mean/day 19.9 19.8 19.9 20.0 20.0 20.9 20.2 20.0 20.2

°C
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Course of the pH in the water during the experiments  

Study Test vessel-no: Mean SD Min Max n
Day: -20 -17 -16 -14 -6 0 1 2 7 14 27 58 100

WS/IO 21 8.3 8.2 8.3 8.3 8.3 8.6 8.6 8.3 8.3 8.5 8.8 8.5 8.6 8.4 0.2 8.2 8.8 13
22 8.2 8.2 8.3 8.3 8.3 8.6 8.6 8.3 8.3 8.4 8.9 8.6 8.6 8.4 0.2 8.2 8.9 13
23 8.2 8.2 8.3 8.3 8.3 8.5 8.6 8.5 8.6 8.6 8.9 8.7 8.6 8.5 0.2 8.2 8.9 13
24 8.2 8.3 8.3 8.3 8.3 8.6 8.6 8.6 8.5 8.5 8.9 8.7 8.5 8.5 0.2 8.2 8.9 13
25 8.2 8.3 8.3 8.3 8.3 8.6 8.6 8.5 8.5 8.5 9 8.8 8.5 8.5 0.2 8.2 9 13
26 8.2 8.2 8.3 8.3 8.6 8.5 8.6 8.5 8.5 8.6 9 8.8 8.6 8.5 0.2 8.2 9 13

Mean/day 8.2 8.2 8.3 8.3 8.4 8.6 8.6 8.5 8.5 8.5 8.9 8.7 8.6

Day: -12 -8 -5 -1 0 1 2 7 14 27 58 100
WS/DIA 21 8.3 8.3 8.3 8.5 8.7 8.6 8.6 8.5 8.4 8.8 8.8 8.8 8.6 0.2 8.3 8.8 12

22 8.3 8.3 8.3 8.6 8.6 8.5 8.3 8.4 8.5 8.8 8.8 8.8 8.5 0.2 8.3 8.8 12
23 8.2 8.3 8.3 8.4 8.5 8.4 8.6 8.4 8.4 8.4 8.6 8.6 8.4 0.1 8.2 8.6 12
24 8.3 8.3 8.3 8.5 8.7 8.6 8.8 8.3 8.3 8.4 8.5 8.6 8.5 0.2 8.3 8.8 12

Mean/day 8.3 8.3 8.3 8.5 8.6 8.5 8.6 8.4 8.4 8.6 8.7 8.7

Day: -4 -2 1 2 8 14 28 56 100
WS/IBU + OXA 21 8.4 8.7 8.6 8.5 8.7 8.7 8.7 8.7 8.8 8.6 0.1 8.4 8.8 9

22 8.4 8.7 8.6 8.5 8.7 8.7 8.7 8.7 8.7 8.6 0.1 8.4 8.7 9
23 8.4 8.7 8.6 8.8 8.7 8.7 8.7 8.7 8.7 8.7 0.1 8.4 8.8 9
24 8.4 8.6 8.6 8.8 8.7 8.7 8.7 8.7 8.6 8.6 0.1 8.4 8.8 9

Mean/day 8.4 8.7 8.6 8.7 8.7 8.7 8.7 8.7 8.7

Day: -4 -2 0 1 2 7 15 29 57 100
WS/PAR + CAN 21 8.5 8.5 8.5 8.5 8.6 8.6 8.6 8.7 8.7 8.8 8.6 0.1 8.5 8.8 10

22 8.5 8.5 8.6 8.6 8.6 8.6 8.7 8.7 8.7 8.7 8.6 0.1 8.5 8.7 10
23 8.5 8.5 8.5 8.5 8.6 8.6 8.6 8.6 8.7 8.7 8.6 0.1 8.5 8.7 10
24 8.5 8.5 8.5 8.6 8.6 8.6 8.6 8.7 8.7 8.8 8.6 0.1 8.5 8.8 10

Mean/day 8.5 8.5 8.5 8.6 8.6 8.6 8.6 8.7 8.7 8.8

Day: -7 -2 0 1 2 8 14 28 56 100
WS/COH 21 8.3 8.3 8.2 8.4 8.5 8.7 8.9 8.9 8.9 8.9 8.6 0.3 8.2 8.9 10

22 8.4 8.4 8.5 8.5 8.5 8.6 8.9 8.9 8.9 8.9 8.7 0.2 8.4 8.9 10
23 8.2 8.5 8.4 8.4 8.5 8.7 8.8 8.8 8.9 8.9 8.6 0.2 8.2 8.9 10
24 8.4 8.3 8.4 8.4 8.4 8.6 8.9 8.9 8.9 8.9 8.6 0.3 8.3 8.9 10

Mean/day 8.3 8.4 8.4 8.4 8.5 8.7 8.9 8.9 8.9 8.9

Day: -6 -2 0 1 2 7 14 28 56 100
WS/CLO + HI 21 8.1 8.4 8.4 8.4 8.5 8.6 8.7 8.7 8.7 8.6 8.5 0.2 8.1 8.7 10

22 8.1 8.3 8.4 8.4 8.4 8.6 8.6 8.7 8.8 8.9 8.5 0.2 8.1 8.9 10
23 8.2 8.4 8.4 8.4 8.5 8.5 8.7 8.7 8.8 8.9 8.6 0.2 8.2 8.9 10
24 8.1 8.5 8.5 8.5 8.6 8.6 8.7 8.7 8.8 8.9 8.6 0.2 8.1 8.9 10

Mean/day 8.1 8.4 8.4 8.4 8.5 8.6 8.7 8.7 8.8 8.8

Day: -1 0 1 2 7 14 29 56 100
WS/IV 21 7.8 8.0 8.1 8.2 8.8 8.8 8.8 8.7 8.7 8.4 0.4 7.8 8.8 9

22 7.7 8.1 8.2 8.2 8.7 8.8 8.8 8.9 8.8 8.5 0.4 7.7 8.9 9
23 7.8 8.0 8.1 8.1 8.8 8.8 8.8 8.7 8.6 8.4 0.4 7.8 8.8 9
24 7.7 7.9 8.1 8.2 8.8 8.8 8.8 8.7 8.7 8.4 0.4 7.7 8.8 9

Mean/day 7.8 8.0 8.1 8.2 8.8 8.8 8.8 8.8 8.7

pH
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Course of the redox potential in the water during the experiments  

Study Test vessel-no: Mean SD Min Max n
day: -20 -17 -16 -14 -6 0 1 2 7 14 27 58 100 

WS/IO 21 417 392 375 416 399 400 18 375 417 5
22 386 382 408 417 398 17 382 417 4
23 383 388 406 413 398 14 383 413 4
24 386 393 404 416 400 13 386 416 4
25 383 396 401 410 398 11 383 410 4
26 405 396 398 415 404 9 396 415 4

Mean/day 417 389 388 406 412

day: -12 -8 -5 -1 0 1 2 7 14 27 58 100 
WS/DIA 21 353 417 405 399 397 365 354 320 358 361 381 386 375 28 320 417 12

22 428 398 400 400 385 372 341 356 373 378 392 384 24 341 428 11
23 412 395 406 414 392 376 354 368 407 386 402 392 19 354 414 11
24 423 394 405 408 383 370 349 372 420 397 375 391 23 349 423 11

Mean/day 353 420 398 403 405 381 368 341 364 390 386 389

day: -4 -2 1 2 8 14 28 56 100
WS/IBU + OXA 21 404 406 394 367 351 374 369 390 415 386 21 351 415 9

22 392 406 395 354 349 365 373 367 412 379 23 349 412 9
23 388 408 397 346 344 332 376 372 411 375 29 332 411 9
24 379 406 400 345 342 358 349 398 411 376 28 342 411 9

Mean/day 391 407 397 353 347 357 367 382 412

day: -4 -2 0 1 2 7 15 29 57 100
WS/PAR + CAN 21 408 393 382 361 390 400 372 352 316 395 377 28 316 408 10

22 413 376 326 349 395 400 338 376 350 393 372 29 326 413 10
23 414 388 332 407 349 312 346 375 380 390 369 33 312 414 10
24 413 364 315 354 353 349 360 411 350 384 365 30 315 413 10

Mean/day 412 380 339 368 372 365 354 379 349 391

day: -7 -2 0 1 2 8 14 28 56 100
WS/COH 21 377 314 424 369 396 381 427 386 311 413 380 41 311 427 10

22 364 363 420 373 324 409 430 371 333 412 380 36 324 430 10
23 410 314 419 328 389 378 432 334 393 408 381 41 314 432 10
24 322 356 417 396 316 382 434 387 334 406 375 41 316 434 10

Mean/day 368 337 420 367 356 388 431 370 343 410

day: -6 -2 0 1 2 7 14 28 56 100
WS/CLO + HI 21 318 319 395 382 343 381 442 392 325 352 365 40 318 442 10

22 392 401 393 375 396 364 443 387 364 410 393 23 364 443 10
23 391 347 354 403 410 323 445 405 392 312 378 42 312 445 10
24 332 329 372 342 357 363 445 322 393 365 362 36 322 445 10

Mean/day 358 349 379 376 377 358 444 377 369 360

day: -1 0 1 2 7 14 29 56 100
WS/IV 21 425 395 393 405 417 390 356 353 340 386 30 340 425 9

22 405 423 410 405 424 369 350 392 344 391 30 344 424 9
23 404 409 328 402 434 314 378 315 315 367 48 314 434 9
24 409 423 401 401 374 368 306 356 366 378 35 306 423 9

Mean/day 411 413 383 403 412 360 348 354 341

Redox potential in the water measured by a platinum electrode 
versus a silver/silverchloride reference electrode , c(KCl) 3 mol/L 

[mV]
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Course of the oxygen concentration in the water during the experiments  

Study Test vessel-no: Mean SD Min Max n
Day: -20 -17 -16 -14 -6 0 1 2 7 14 27 58 100

WS/IO 21 7.5 8.5 8.0 8.2 7.5 7.4 6.5 5.0 5.6 5.3 5.4 6.9 7.1 6.8 1.2 5.0 8.5 13
22 7.4 8.4 8.1 8.1 7.7 7.6 6.3 5.0 6.6 5.7 5.9 6.9 7.2 7.0 1.0 5.0 8.4 13
23 7.4 8.4 7.8 8.0 7.7 7.4 7.4 8.0 7.3 7.5 7.6 7.2 7.4 7.6 0.3 7.2 8.4 13
24 7.9 8.4 8.0 8.1 7.8 8.0 6.7 7.8 7.4 7.3 7.6 7.3 7.4 7.7 0.4 6.7 8.4 13
25 7.4 8.6 7.9 8.3 7.8 7.1 6.8 7.6 7.1 7.0 7.2 7.4 7.4 7.5 0.5 6.8 8.6 13
26 7.0 8.4 7.9 8.0 7.3 7.1 7.6 7.6 7.3 7.2 7.1 7.4 7.3 7.5 0.4 7.0 8.4 13

Mean/day 7.4 8.5 8.0 8.1 7.6 7.4 6.9 6.8 6.9 6.7 6.8 7.2 7.3

Day: -12 -8 -5 -1 0 1 2 7 14 27 58 100
WS/DIA 21 7.5 7.5 7.4 6.9 6.6 6.4 4.9 5.6 6.7 8.3 7.5 7.3 6.9 0.9 4.9 8.3 12

22 7.5 7.6 7.4 6.9 6.6 6.1 4.2 6.1 6.2 8.0 7.4 7.5 6.8 1.0 4.2 8.0 12
23 7.3 7.1 7.5 6.7 7.0 6.9 6.6 6.7 6.9 7.3 7.8 7.6 7.1 0.4 6.6 7.8 12
24 7.5 7.5 7.4 6.6 7.2 7.1 6.8 4.4 6.1 7.6 8.1 8.3 7.1 1.0 4.4 8.3 12

Mean/day 7.4 7.4 7.4 6.8 6.9 6.6 5.6 5.7 6.5 7.8 7.7 7.7

Day: -4 -2 1 2 8 14 28 56 100
WS/IBU + OXA 21 8.0 7.8 6.7 3.2 6.8 6.9 7.4 6.5 8.7 6.9 1.6 3.2 8.7 9

22 7.8 7.8 6.7 3.6 6.5 6.7 7.6 6.3 8.6 6.8 1.4 3.6 8.6 9
23 7.5 7.9 7.7 8.0 7.5 7.4 7.4 7.4 8.6 7.7 0.4 7.4 8.6 9
24 8.0 7.8 7.7 8.0 7.7 7.9 8.0 6.7 8.6 7.8 0.5 6.7 8.6 9

Mean/day 7.8 7.8 7.2 5.7 7.1 7.2 7.6 6.7 8.6

Day: -4 -2 0 1 2 7 15 29 57 100
WS/PAR + CAN 21 8.1 8.1 8.3 8.5 8.7 7.8 7.5 6.9 8.9 9.2 8.2 0.7 6.9 9.2 10

22 8.2 7.9 8.8 8.9 8.4 7.4 6.7 6.3 8.6 9.5 8.1 1.0 6.3 9.5 10
23 8.2 8.1 8.9 8.6 7.7 7.6 6.8 7.5 8.4 9.1 8.1 0.7 6.8 9.1 10
24 8.1 8.7 8.7 8.9 7.6 7.5 8.2 7.5 8.0 9.3 8.3 0.6 7.5 9.3 10

Mean/day 8.2 8.2 8.7 8.7 8.1 7.6 7.3 7.1 8.5 9.3

Day: -7 -2 0 1 2 8 14 28 56 100
WS/COH 21 8.0 7.8 8.1 7.6 7.6 8.2 9.0 7.8 8.0 7.6 8.0 0.4 7.6 9.0 10

22 7.4 7.6 8.5 7.7 8.0 8.5 9.3 8.5 8.8 8.5 8.3 0.6 7.4 9.3 10
23 8.0 8.2 8.4 7.4 7.8 8.8 9.2 8.1 7.3 8.2 8.1 0.6 7.3 9.2 10
24 7.8 8.7 8.4 7.5 8.6 8.7 9.2 8.6 7.8 8.2 8.4 0.5 7.5 9.2 10

Mean/day 7.8 8.1 8.4 7.6 8.0 8.6 9.2 8.3 8.0 8.1

Day: -6 -2 0 1 2 7 14 28 56 100
WS/CLO + HI 21 7.7 7.7 7.7 7.7 9.0 7.2 8.8 8.4 8.4 8.6 8.1 0.6 7.2 9.0 10

22 8.6 7.5 8.8 7.5 7.8 7.0 8.6 8.0 8.7 8.5 8.1 0.6 7.0 8.8 10
23 7.5 8.5 8.8 8.5 8.5 8.0 8.5 7.9 8.5 8.3 8.3 0.4 7.5 8.8 10
24 7.4 7.7 8.2 7.7 8.2 7.5 8.6 8.8 8.6 8.2 8.1 0.5 7.4 8.8 10

Mean/day 7.8 7.9 8.4 7.9 8.4 7.4 8.6 8.3 8.6 8.4

Day: -1 0 1 2 7 14 29 56 100
WS/IV 21 7.9 8.0 8.0 9.1 9.3 7.9 9.6 8.2 7.8 8.4 0.7 7.8 9.6 9

22 7.9 8.0 9.0 8.4 9.5 8.0 9.5 8.0 8.8 8.6 0.7 7.9 9.5 9
23 8.4 9.0 7.9 8.5 9.4 7.9 9.3 8.3 8.1 8.5 0.6 7.9 9.4 9
24 8.7 8.2 7.6 8.6 9.4 7.9 9.4 8.7 8.0 8.5 0.6 7.6 9.4 9

Mean/day 8.2 8.3 8.1 8.7 9.4 7.9 9.5 8.3 8.2

Oxygen concentration [mg/L]
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Course of the pH in the sediment during the experiments  

Study-name: Test vessel-no: Mean SD Min Max n
Day: -20 -17 -16 -14 -6 0 1 2 7 14 27 58 100

WS/IO 21 7.8 7.8 7.7 7.6 7.7 7.6 7.6 7.7 0.1 7.6 7.8 7
22 7.8 7.7 7.7 7.6 7.7 7.7 7.5 7.7 0.1 7.5 7.8 7
23 7.7 7.6 7.4 7.5 7.6 7.6 7.5 7.6 0.1 7.4 7.7 7
24 7.7 7.6 7.5 7.5 7.6 7.5 7.5 7.6 0.1 7.5 7.7 7
25 7.6 7.5 7.5 7.5 0.1 7.5 7.6 3
26 7.6 7.7 7.5 7.6 0.1 7.5 7.7 3

Mean/day 7.8 7.7 7.6 7.6 7.6 7.6 7.5

Day: -12 -8 -5 -1 0 1 2 7 14 27 58 100
WS/DIA 21 7.5 7.7 7.7 7.7 7.3 7.6 7.1 7.1 7.4 7.2 7.4 7.4 7.4 0.2 7.1 7.7 12

22 7.7 7.7 7.6 7.7 7.3 7.3 7.3 7.2 7.3 7.6 7.4 7.5 0.2 7.2 7.7 11
23 7.3 7.6 7.7 7.6 7.8 7.5 7.9 8.0 7.6 7.7 7.9 7.8 7.7 0.2 7.3 8.0 12
24 7.4 7.6 7.7 7.7 7.7 7.4 7.9 7.8 7.5 7.7 7.9 7.8 7.7 0.2 7.4 7.9 12

Mean/day 7.4 7.7 7.7 7.7 7.6 7.5 7.6 7.6 7.4 7.5 7.7 7.6

Day: -4 -2 1 2 8 14 28 56 100
WS/IBU + OXA 21 7.7 7.9 8.0 8.0 7.9 7.9 7.9 7.9 8.0 7.9 0.1 7.7 8.0 9

22 7.6 7.8 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.8 0.1 7.6 7.9 9
23 7.6 8.0 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 0.1 7.6 8.0 9
24 7.6 7.9 7.8 7.9 7.9 7.9 7.9 7.9 7.6 7.8 0.1 7.6 7.9 9

Mean/day 7.6 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9

Day: -4 -2 0 1 2 7 15 29 57 100
WS/PAR + CAN 21 7.7 7.7 7.7 7.7 7.7 7.6 7.7 7.8 7.7 7.7 7.7 0.0 7.6 7.8 10

22 7.7 7.7 7.7 7.6 7.7 7.7 7.7 7.7 7.7 7.7 7.7 0.0 7.6 7.7 10
23 7.6 7.6 7.6 7.7 7.6 7.7 7.7 7.8 7.8 7.9 7.7 0.1 7.6 7.9 10
24 7.6 7.6 7.6 7.6 7.7 7.7 7.7 7.8 7.9 7.9 7.7 0.1 7.6 7.9 10

Mean/day 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.8 7.8 7.8

Day: -7 -2 0 1 2 8 14 28 56 100
WS/COH 21 7.5 7.6 7.6 7.6 7.7 7.8 7.9 7.9 8.0 7.9 7.8 0.2 7.5 8.0 10

22 7.6 7.7 7.7 7.7 7.7 7.8 7.9 7.8 7.8 7.7 7.7 0.1 7.6 7.9 10
23 7.5 7.7 7.8 7.8 7.8 7.9 8.2 8.0 8.1 8.0 7.9 0.2 7.5 8.2 10
24 7.5 7.6 7.7 7.7 7.7 7.8 8.0 8.0 8.1 8.1 7.8 0.2 7.5 8.1 10

Mean/day 7.5 7.7 7.7 7.7 7.7 7.8 8.0 7.9 8.0 7.9

Day: -6 -2 0 1 2 7 14 28 56 100
WS/CLO + HI 21 7.5 7.7 7.7 7.7 7.6 7.8 7.9 7.8 7.8 7.6 7.7 0.1 7.5 7.9 10

22 7.4 7.6 7.6 7.6 7.7 7.7 7.9 7.9 7.8 7.7 7.7 0.2 7.4 7.9 10
23 7.5 7.5 7.5 7.6 7.5 7.8 7.9 7.9 7.9 8.0 7.7 0.2 7.5 8.0 10
24 7.6 7.6 7.5 7.6 7.6 7.7 7.8 7.8 7.9 7.8 7.7 0.1 7.5 7.9 10

Mean/day 7.5 7.6 7.6 7.6 7.6 7.8 7.9 7.9 7.9 7.8

Day: -1 0 1 2 7 14 29 56 100
WS/IV 21 7.7 7.8 7.8 7.8 8.1 7.8 7.6 7.7 7.5 7.8 0.2 7.5 8.1 9

22 7.6 7.7 7.8 7.7 7.8 7.8 8.0 7.7 7.7 7.8 0.1 7.6 8.0 9
23 7.8 7.8 7.8 7.9 7.9 7.9 7.8 7.8 7.6 7.8 0.1 7.6 7.9 9
24 7.6 7.6 7.5 7.6 8.0 7.9 7.6 7.7 7.8 7.7 0.2 7.5 8.0 9

Mean/day 7.7 7.7 7.7 7.8 8.0 7.9 7.8 7.7 7.7

pH



ANNEX                          G 

Course of the redox potential in the sediment during the experiments 

 

Study- name Test vessel-no: Mean SD Min Max
day: -20 -17 -16 -14 -6 0 1 2 7 14 27 58 100 

WS/IO 21 417 392 375 416 399 400 18 375 417
22 386 382 408 417 398 17 382 417
23 383 388 406 413 398 14 383 413
24 386 393 404 416 400 13 386 416
25 383 396 401 410 398 11 383 410
26 405 396 398 415 404 9 396 415

Mean/day 417 389 388 406 412

day: -12 -8 -5 -1 0 1 2 7 14 27 58 100 
WS/DIA 21 353 417 405 399 397 365 354 320 358 361 381 386 375 28 320 417

22 428 398 400 400 385 372 341 356 373 378 392 384 24 341 428
23 412 395 406 414 392 376 354 368 407 386 402 392 19 354 414
24 423 394 405 408 383 370 349 372 420 397 375 391 23 349 423

Mean/day 353 420 398 403 405 381 368 341 364 390 386 389

day: -4 -2 1 2 8 14 28 56 100
WS/IBU + OXA 21 404 406 394 367 351 374 369 390 415 386 21 351 415

22 392 406 395 354 349 365 373 367 412 379 23 349 412
23 388 408 397 346 344 332 376 372 411 375 29 332 411
24 379 406 400 345 342 358 349 398 411 376 28 342 411

Mean/day 391 407 397 353 347 357 367 382 412

day: -4 -2 0 1 2 7 15 29 57 100
WS/PAR + CAN 21 408 393 382 361 390 400 372 352 316 395 377 28 316 408

22 413 376 326 349 395 400 338 376 350 393 372 29 326 413
23 414 388 332 407 349 312 346 375 380 390 369 33 312 414
24 413 364 315 354 353 349 360 411 350 384 365 30 315 413

Mean/day 412 380 339 368 372 365 354 379 349 391

day: -7 -2 0 1 2 8 14 28 56 100
WS/COH 21 377 314 424 369 396 381 427 386 311 413 380 41 311 427

22 364 363 420 373 324 409 430 371 333 412 380 36 324 430
23 410 314 419 328 389 378 432 334 393 408 381 41 314 432
24 322 356 417 396 316 382 434 387 334 406 375 41 316 434

Mean/day 368 337 420 367 356 388 431 370 343 410

day: -6 -2 0 1 2 7 14 28 56 100
WS/CLO + HI 21 318 319 395 382 343 381 442 392 325 352 365 40 318 442

22 392 401 393 375 396 364 443 387 364 410 393 23 364 443
23 391 347 354 403 410 323 445 405 392 312 378 42 312 445
24 332 329 372 342 357 363 445 322 393 365 362 36 322 445

Mean/day 358 349 379 376 377 358 444 377 369 360

day: -1 0 1 2 7 14 29 56 100
WS/IV 21 425 395 393 405 417 390 356 353 340 386 30 340 425

22 405 423 410 405 424 369 350 392 344 391 30 344 424
23 404 409 328 402 434 314 378 315 315 367 48 314 434
24 409 423 401 401 374 368 306 356 366 378 35 306 423

Mean/day 411 413 383 403 412 360 348 354 341

Redox potential in the water measured by a platinum electrode 
versus a silver/silverchloride reference electrode , c(KCl) 3 mol/L 

[mV]



ANNEX                           H 

Water content, microbial, biomass, Corg of the sediment and TOC of the water at the beginning and the end of the experiments 

 

 

Water content Microbial biomass Corg TOC

Study Sampling 
day

% weight of dry 
weight

Cmic [µg C/g 
sediment (TG)]

org. C in % 
of dry weight [mg C/L]

WS/IO 0 19.7 27.4 1.7 2.7
100 22.8 22.6 2.1 3.7

WS/DIA 0 16.6 32.4 1.5 2.3
100 17.9 33.7 1.7 8.1

WS/IBU + OXA 0 21.3 53.9 1.5 2.2
100 22.5 21.8 1.5 2.3

WS/PAR + CAN 0 20.6 84.3 1.4 8.2
100 19.4 51.9 1.7 8.0

WS/COH 0 18.1 52.0 1.0 3.0
100 18.2 29.1 1.2 3.9

WS/CLO +HI 0 15.8 47.5 1.0 2.3
100 18.8 36.7 1.0 5.0

WS/IV 0 19.7 43.5 1.0 3.0
100 19.4 32.5 1.0 4.2


