Umweltforschungsplan des Bundesministers für Umwelt, Naturschutz und Reaktorsicherheit

Forschungsbericht 299 43 249

Modellierung von Feinstaubemissionen in Europa

Entwicklung eines Technologie- und Kosten-Moduls für Staubemissionen im Rahmen des Integrated Assessment Modelling zur Unterstützung europäischer Luftreinhaltestrategien

von

Zbigniew Klimont, Janusz Cofala, Imrich Bertok, Markus Amann, Chris Heyes, and Frantisek Gyarfas

Internationales Institut für angewandte Systemanalyse Laxenburg, Austria

Institutsleiter Professor Leen Hordijk

Im Auftrag des Umweltbundesamtes

Juni 2002

Berichts-Kennblatt

			1.
1. Berichtsnummer	2.		3.
UBA-FB 299 43 249			
4. Titel des Berichts			
Modellierung von Feinstaubemissionen in Euro Entwicklung eines Technologie- und Kosten-M Modelling zur Unterstützung europäischer Luft	Ioduls für Staubemissionen im Rah	men des	Integrated Assessment
5. Autor(en), Name(n), Vorname(n)		8. A	bschlussdatum
		Jı	ıni 2002
Zbigniew Klimont, Janusz Cofala, Imrich Berto	ok, Markus Amann,		
Chris Heyes, Frantisek Gyarfas		9. V	eröffentlichungsdatum
6. Durchführende Institution (Name, Anschr	rift)		
Internationales Institut für Angewandte System	analyse (IIASA),	10. U	FOPLAN-Nr.
A-2361 Laxenburg, Austria		F	B 299 43 249
		11. S	eitenzahl
7. Fördernde Institution (Name, Anschrift)		1	60
		12. L	iteraturangaben
Umweltbundesamt, Postfach 33 00 22, 14191 E	Berlin	1	56
		13. T	abellen und Diagramme
		1	34
		14. A	bbildungen 3
15. Zusätzliche Angaben			
16. Zusammenfassung			
Das RAINS Integrated Assessment Modell w Feinstaub für alle europäischen Länder Emissionsminderungsmaßnahmen in internat berechnen. Es wurden drei unterschiedlichen unterscheidet 392 Quellkategorien bei stationä. Landwirtschaft. Für jeden dieser Sektoren Effizienz und deren Kosten analysiert. Die I umfasst den Zeitraum 1990 bis 2010.	abzuschätzen, sich ergebende ional vergleichbarer Weise zu e Korngrößenfraktionen von Feinsta rer Verbrennung, industriellen Pro- werden die anwendbaren Emiss	Potentia erfassen aub berück zessen, n	elle für weitergehende und deren Kosten zu eksichtigt. Die Methode nobilen Quellen und der derungsoptionen, deren
17. Schlagwörter			
Staubemissionen, Emissionsprojektionen, Kost	enschätzung, Europa, integrated as	sessment	modelling
18. Preis	19.		20.

Berichts-Kennblatt 06/2002

Report Cover Sheet

1. Report No.	2.		3.
UBA-FB 299 43 249			
4. Report Title			
Modelling Emissions of Particulate Matter in Control Costs	Europe; A Framework to Estima	te the R	eduction Potential and
5. Author(s), Family Name(s), First Name(s)		8. Re	port Date
		Ju	ne 2002
Zbigniew Klimont, Janusz Cofala, Imrich Berto	ok, Markus Amann,		
Chris Heyes, Frantisek Gyarfas		9. Pu	blication Date
6. Performing Organisation (Name, Address)		
International Institute for Applied Systems Ana	lysis (IIASA)	10. UI	OPLAN-Ref. No.
A-2361 Laxenburg		FE	299 43 249
		11. No	o. of pages
		19	6
7. Funding Agency (Name, Address)			
Umweltbundesamt (Federal Environmental	Agency)	12. No	o. of references
Postfach 33 00 22, 14191 Berlin		15	6
		13. No	o. of Tables, Diagrams
		13	4
		14. No	o. of Figures 3
15. Supplementary Notes			
16. Abstract			
The RAINS integrated assessment model was a matter for all European countries, to estimate the associated control costs in an internationally of fine particulate matter. It considers 392 processes, mobile sources and agriculture. For control options, their removal efficiencies at countries, covering the period from 1990 to 201	ne potentials for further controlling y consistent manner. The methodole emission source categories for state each of these sectors the model and their costs. The method was	these em ogy distir ationary nalyses t	issions and to calculate iguishes three fractions combustion, industrial he applicable emission
17. Keywords			
Primary particles, fine particulate matter, em models	issions, projections, control costs,	Europe,	integrated assessment
18. Price	19.		20.

Umweltforschungsplan des Bundesministers für Umwelt, Naturschutz und Reaktorsicherheit

Forschungsbericht 299 43 249

Modellierung von Feinstaubemissionen in Europa. Entwicklung eines Technologie- und Kosten-Moduls für Staubemissionen im Rahmen des Integrated Assessment Modelling zur Unterstützung europäischer Luftreinhaltestrategien

von

Zbigniew Klimont, Janusz Cofala, Imrich Bertok, Markus Amann, Chris Heyes, and Frantisek Gyarfas

Internationales Institut für angewandte Systemanalyse Laxenburg, Austria

Institutsleiter Professor Leen Hordijk

Im Auftrag des Umweltbundesamtes

Inhaltsverzeichnis

1	Einleitung					
1.1	Hintergrund					
1.2	Konzept für ein Integrated Assessment Modell für Feinstaub					
2	Emissio	onsabschätzung für Staub im RAINS-Modell	22			
2.1	Korngr	ößenfraktionen	22			
2.2	Erstellu	ıng einer geeigneten Emittentenstruktur	24			
2.2.1	Aggrega	ationskriterien zur Bildung von Sektoren	24			
2.2.2	Stationä	re Quellen	26			
2.2.3	Mobile (Quellen	30			
2.3	Emissio	nsfaktoren	31			
2.3.1	Emissio	nsfaktoren für stationäre Quellen	31			
2.3.2	Emissio	nsfaktoren für mobile Quellen	32			
2.4	Emissio	nsminderungsmaßnahmen	33			
2.4.1	Stationä	re Quellen	33			
	2.4.1.1	Verfügbare Verfahren	33			
	2.4.1.2	Modellierte Maßnahmen	34			
2.4.2	Mobile (Quellen	37			
	2.4.2.1	Verfügbare Emissionsminderungsmaßnahmen	37			
	2.4.2.2	Modellierte Emissionsminderungsmaßnahmen	39			
2.5	Aktivitä	itsdaten	43			
3	Modell	ierung der Emissionsquellen	45			
3.1		äre Feuerungsanlagen				
3.1.1		rennstoffe				
3.1.2	Holzver	brennung	50			
3.1.3	Flüssige	Brennstoffe	54			
3.1.4	Gasförm	nige Brennstoffe	58			
3.2	Industr	ieprozesse	59			
3.2.1	Eisen- u	nd Stahlindustrie	59			
	3.2.1.1	Koksherstellung	60			
	3.2.1.2	Sinteranlagen	62			
	3.2.1.3	Roheisenherstellung (Hochofen)	64			
	3.2.1.4	Siemens-Martin-Öfen	66			
	3.2.1.5	Konverter	67			
	3216	Elektrolichthogenöfen	69			

	3.2.1.7	Eisen- und Stahlgießereien	71
3.2.2	Nichteis	sen-Metallindustrie	73
	3.2.2.1	Primäraluminiumproduktion	73
	3.2.2.2	Sekundäre Aluminiumherstellung	75
	3.2.2.3	Andere Sektoren der Nichteisenmetall-Herstellung	77
3.2.3	Andere	Industrieprozesse	78
	3.2.3.1	Kohlebrikettherstellung	78
	3.2.3.2	Zementherstellung	79
	3.2.3.3	Kalkherstellung	81
	3.2.3.4	Erdölraffinerien	83
	3.2.3.5	Düngemittelherstellung	84
	3.2.3.6	Ruß	85
	3.2.3.7	Glasherstellung	86
	3.2.3.1	Andere Produktionsprozesse	88
	3.2.3.2	Diffuse Emissionen aus Gewerbebetrieben	89
3.2.4	Bergbau	1	90
3.2.5	Landwir	rtschaft	92
	3.2.5.1	Landwirtschaftliche Tierhaltung	92
	3.2.5.2	Ackerbau	95
	3.2.5.3	Andere landwirtschaftliche Quellen	96
3.2.6	Abfacke	eln von Gas	97
3.2.7	Offene V	Verbrennung von Abfällen	97
3.2.8	Schüttgu	utumschlag	98
3.2.9	Andere	Quellen	101
	3.2.9.1	Bausektor	101
	3.2.9.2	Andere Aktivitäten	102
3.3	Mobile	Quellen	104
3.3.1	Abgaser	missionen	104
	3.3.1.1	Leichte Fahrzeuge, Dieselmotoren	104
	3.3.1.2	Schwere Nutzfahrzeuge, Dieselmotoren	107
	3.3.1.3	Leichte Fahrzeuge und Motorräder mit Ottomotoren	109
	3.3.1.3	Mobile Maschinen und Geräte, Schiffe	112
3.3.2	Abriebs	emissionen von mobilen Quellen	115
	3.3.2.1	Reifenabrieb	116

	3.3.2.2	Bremsabrieb	117
	3.3.2.3	Straßenabrieb	119
4	Kosten	berechnung	122
4.1	Prinzipi	ien der Kostenberechnung in RAINS	122
4.2	Feuerur	ngsanlagen	123
4.2.1	Investiti	onen	123
4.2.2	Betriebs	kosten	123
4.2.3	Spezifis	che Minderungskosten	124
4.2.4	Paramet	erwerte	124
4.2.5	Beispiel	einer Kostenberechung	125
4.3	Industr	ieprozesse	126
4.3.1	Investiti	onen	127
4.3.2	Betriebs	kosten	127
4.3.3	Spezifis	che Minderungskosten	127
4.3.4	Paramet	erwerte	127
4.3.5	Beispiel	einer Kostenberechung	129
4.4	Mobile	Quellen	130
4.4.1	Investiti	onen	130
4.4.2	Betriebs	kosten	131
4.4.3	Spezifis	che Minderungskosten	132
4.4.4	Paramet	erwerte	133
4.4.5	Beispiel	einer Kostenberechung	134
4.5	Landwi	rtschaft	134
4.6	Andere	Quellen	135
4.7	Grenzk	osten der Emissionsminderung	135
4.8	Nationa	le Kostenkurven	136
5	Eine Al	bschätzung der Staubemissionen in Europa	141
5.1	Emissio	nen	141
5.2	Emissio	nsminderungskosten	146
5.3	Emissio	nsschätzungen für Deutschland	146
5.3.1	RAINS-	Schätzung für Deutschland	146
5.3.2	Vergleic	ch mit anderen Schätzungen	149
6	Die Im	plementierung des RAINS-PM-Moduls im Internet	152
7	Ausblic	ck und weiteres Vorgehen	153
8	Literat	urverzeichnis	154
Anha	ıng 1: Tei	rminologie in RAINS	164

Anhang 2	: Verz	eichnis der verw	endeten	Abkürzungen fü	r die Sektorbezeic	hnungei	1.166
Anhang	3:	Verzeichnis	der	verwendeten	Abkürzungen	für	die
Emissions	minde	rungsmaßnahm	en	•••••		••••••	169
Anhang 4	: Verz	eichnis der verw	endeten	Abkürzungen fü	r die Brennstoffe	•••••	171

Abbildungsverzeichnis

Abbildung 1.1: Flussdiagramm des erweiterten RAINS	-Modells zur Analyse von Feinstau	ıb20
Abbildung 4.1: Graphische Darstellung der Gesamtkos	tenkurve von Tabelle 4.4	138

Tabellenverzeichnis

Tabelle 2.1: Die wichtigsten Sektoren des RAINS-PM-Moduls und ihr Anteil an Gesamtemissionen von PM in Europa 1995 laut Schätzung dieser Studie	
Tabelle 2.2: RAINS-Sektoren für Feuerungsanlagen.	27
Tabelle 2.3: Brennstoffkategorien im RAINS-PM-Modul	28
Tabelle 2.4: RAINS-Sektoren für andere stationäre Quellen von PM-Emissionen	29
Tabelle 2.5: Kategorien von Staubemissionen aus mobilen Quellen in RAINS	30
Tabelle 2.6: RAINS-Sektoren für Staubemissionen durch Abrieb	31
Tabelle 2.7: Korngrößenspezifische Abscheidegrade für Minderungsoptionen in RAINS Kraftwerke und Industrie	
Tabelle 2.8: Korngrößenspezifische Abscheidegrade für Minderungsoptionen in RAINS für Haush und Kleinverbrauch	
Tabelle 2.9: Korngrößenspezifische Abscheidegrade für Minderungsoptionen in RAINS für and Quellen	
Tabelle 2.10: PM-Emissionsstandards für leichte Diesel-Nutzfahrzeuge	40
Tabelle 2.11: PM-Emissionsstandards für schwere Nutzfahrzeuge	40
Tabelle 2.12: PM-Emissionsstandards für mobile Maschinen und Geräte	41
Tabelle 2.13: Minderungstechnologien für Dieselstraßenfahrzeuge und ihre Abscheidegrade	41
Tabelle 2.14: Minderungstechnologien für Diesel-Fahrzeuge im übrigen Verkehrssektor und de PM-Abscheidegrade	
Tabelle 2.15: Minderungstechnologien für Ottomotoren und deren PM-Abscheidegrade	43
Tabelle 2.16: Quellen der Aktivitätsdaten im RAINS-PM-Modell	44
Tabelle 3.1: Quellkategorien für die Emissionsberechnung für Kohleverbrennung	46
Tabelle 3.2: Übersicht über in der Literatur angeführte ungeminderte Emissionsfaktoren für Kohleverbrennung [kt/PJ]	
Tabelle 3.3: Übersicht über in der Literatur angeführte Korngrößenverteilungen bei Kohleverbrennung [Prozent der TSP-Emissionen]	
Tabelle 3.4: In RAINS verwendete Korngrößenverteilung für die Verbrennung fester Brennstoffe Industriebereich [Prozent der TSP-Emissionen]	

Tabelle 3.5: In RAINS verwendete Korngrößenverteilung für die Verbrennung fester Brennstoffe in Kraftwerken [Prozent der TSP-Emissionen]
Tabelle 3.6: In RAINS verwendete Korngrößenverteilung für die Verbrennung fester Brennstoffe bei Kleinverbrauchern [Prozent der TSP-Emissionen]
Tabelle 3.7: Emissionsquellkategorien für die Holzverbrennung
Tabelle 3.8: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Holzverbrennung [kt/PJ]
Tabelle 3.9: Literaturangaben über Korngrößenverteilungen bei der Holzverbrennung [Prozent der TSP-Emissionen]
Tabelle 3.10: Im RAINS-Modell verwendete Emissionsfaktoren für Holzfeuerungen in Westeuropa [kt/PJ]
Tabelle 3.11: Im RAINS-Modell verwendete Emissionsfaktoren für Holzfeuerungen in Osteuropa [kt/PJ]
Tabelle 3.12: Emissionsquellkategorien für flüssige Brennstoffe
Tabelle 3.13: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Verbrennung von schwerem Heizöl [kt/PJ]
Tabelle 3.14: Literaturangaben über Korngrößenverteilungen bei der Verbrennung von schwerem Heizöl [Prozent der TSP-Emissionen]
Tabelle 3.15: Im RAINS-Modell verwendete Emissionsfaktoren für schweres Heizöl [kt/PJ] 56
Tabelle 3.16: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Verbrennung von Mitteldestillaten [kt/PJ]
Tabelle 3.17: Literaturangaben über Korngrößenverteilungen bei der Verbrennung von Mitteldestillaten [Prozent der TSP-Emissionen]
Tabelle 3.18: Im RAINS-Modell verwendete Emissionsfaktoren für Mitteldestillate [kt/PJ]
Tabelle 3.19: Emissionsquellkategorien für gasförmige Brennstoffe
Tabelle 3.20: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Verbrennung von gasförmigen Brennstoffen [kt/PJ]
Tabelle 3.21: Im RAINS-Modell verwendete Emissionsfaktoren für die Verbrennung von gasförmigen Brennstoffen [kt/PJ]
Tabelle 3.22: Emissionsquellkategorie für die Koksproduktion
Tabelle 3.23: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Koksproduktion [kt PJ]

Tabelle 3.24: Literaturangaben über Korngrößenverteilungen bei der Koksproduktion [Prozent de TSP-Emissionen]
Tabelle 3.25: Im RAINS-Modell verwendete Emissionsfaktoren für die Koksproduktion [kt/PJ] 62
Tabelle 3.26: Emissionsquellkategorien für Sinterprozesse
Tabelle 3.27: Übersicht über in der Literatur angegebene Emissionsfaktoren für Sinteranlagen 63
Tabelle 3.28: Literaturangaben über Korngrößenverteilungen für Sinteranlagen [Prozent der TSP Emissionen]
Tabelle 3.29: Im RAINS-Modell verwendete Emissionsfaktoren für Sinteranlagen [kg/Tonne Sinte Pellets]
Tabelle 3.30: Emissionsquellkategorien für die Roheisenerzeugung
Tabelle 3.31: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Roheisenerzeugung [kg/Tonne Roheisen]
Tabelle 3.32: Im RAINS-Modell verwendete Emissionsfaktoren für Roheisenerzeugung [kg/Tonne Roheisen]
Tabelle 3.33: Emissionsquellkategorie für Siemens-Martin-Öfen 67
Tabelle 3.34: Übersicht über in der Literatur angegebene Emissionsfaktoren für Siemens-Martin-Öfer [kg/Tonne Stahl]
Tabelle 3.35: Im RAINS-Modell verwendete Emissionsfaktoren für Siemens-Martin- Öfen [kg/Tonno Stahl]
Tabelle 3.36: Emissionsquellkategorie für Konverteröfen
Tabelle 3.37: Übersicht über in der Literatur angegebene Emissionsfaktoren für Konverteröfer [kg/Tonne Stahl]
Tabelle 3.38: Im RAINS-Modell verwendete Emissionsfaktoren für Konverteröfen [kg/Tonne Stahl]69
Tabelle 3.39: Emissionsquellkategorie für Elektrolichtbogenöfen
Tabelle 3.40: Übersicht über in der Literatur angegebene Emissionsfaktoren für Elektro Lichtbogenöfen [kg/Tonne Stahl]
Tabelle 3.41: Literaturangaben über Korngrößenverteilungen für Elektrolichtbogenöfen [Prozent de TSP-Emissionen]
Tabelle 3.42: Im RAINS-Modell verwendete Emissionsfaktoren für Elektrolichtbogenöfen [kg/Tonno Stahl]
Tabelle 3.43: Emissionsquellkategorien für Eisen- und Stahlgießereien

Tabelle 3.44: Übersicht über in der Literatur angegebene Emissionsfaktoren für Eisen- und Stahlgießereien [kg/Tonne Stahl]
Tabelle 3.45: Literaturangaben über Korngrößenverteilungen für Eisen- und Stahlgießereien [Prozent der TSP-Emissionen]
Tabelle 3.46: Im RAINS-Modell verwendete Emissionsfaktoren für Eisen- und Stahlgießereien [kg/Tonne Stahl]
Tabelle 3.47: Emissionsquellkategorie für die Primäraluminiumproduktion
Tabelle 3.48: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Primäraluminiumproduktion [kg/Tonne Aluminium]
Tabelle 3.49: Literaturangaben über Korngrößenverteilungen für die Primäraluminiumherstellung [Prozent der TSP-Emissionen]
Tabelle 3.50: Im RAINS-Modell verwendete Emissionsfaktoren für die Primäraluminiumherstellung [kg/Tonne Aluminium]
Tabelle 3.51: Emissionsquellkategorie für die Sekundäraluminiumproduktion
Tabelle 3.52: Übersicht über in der Literatur angegebene Emissionsfaktoren für Sekundäraluminiumproduktion [kg/Tonne Aluminium]
Tabelle 3.53: Literaturangaben über Korngrößenverteilungen für die Sekundäraluminiumproduktion [Prozent der TSP-Emissionen]
Tabelle 3.54: Im RAINS-Modell verwendete Emissionsfaktoren für die Sekundäraluminiumherstellung [kg/Tonne Aluminium]
Tabelle 3.55: Emissionsquellkategorie für die Herstellung von Nichteisenmetallen
Tabelle 3.56: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Herstellung von Nichteisenmetallen [kg/t produzierten Metalls]
Tabelle 3.57: Literaturangaben über Korngrößenverteilungen bei der Herstellung von Nichteisenmetallen [Prozent der TSP-Emissionen]
Tabelle 3.58: Im RAINS-Modell verwendete Emissionsfaktoren für die Herstellung von Nichteisenmetallen [kg/Tonne Metall]
Tabelle 3.59: Emissionsquellkategorie für die Herstellung von Kohlebriketts
Tabelle 3.60: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Herstellung von Kohlebriketts [kg/t Briketts]
Tabelle 3.61: Im RAINS-Modell verwendete Emissionsfaktoren für die Herstellung von Kohlebriketts [kg/t Briketts]

Tabelle 3.62: Emissionsquellkategorie für die Zementproduktion
Tabelle 3.63: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Zementproduktion [kg/t produzierter Zement]
Tabelle 3.64: Literaturangaben über Korngrößenverteilungen für die Zementproduktion [Prozent der TSP-Emissionen]
Tabelle 3.65: Im RAINS-Modell verwendete Emissionsfaktoren für die Zementproduktion [kg/t Zement]
Tabelle 3.66: Emissionsquellkategorie für die Kalkproduktion
Tabelle 3.67: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Kalkherstellung [kg/t Kalk]
Tabelle 3.68: Literaturangaben über Korngrößenverteilungen für die Kalkproduktion [Prozent der TSP-Emissionen]
Tabelle 3.69: Im RAINS-Modell verwendete Emissionsfaktoren für die Kalkproduktion [kg/t Kalk] 82
Tabelle 3.70: Emissionsquellkategorie für Erdölraffinerien
Tabelle 3.71: Übersicht über in der Literatur angegebene Emissionsfaktoren für Erdölraffinerien (kg/t Rohöl)
Tabelle 3.72: Literaturangaben über Korngrößenverteilungen für Erdölraffinerien [Prozent der TSP- Emissionen]
Tabelle 3.73: Im RAINS-Modell verwendete Emissionsfaktoren für Erdölraffinerien [kg/t Rohöl] 84
Tabelle 3.74: Emissionsquellkategorie für die Düngemittelproduktion
Tabelle 3.75: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Düngemittelproduktion [kg/t Düngemittel]
Tabelle 3.76: Im RAINS-Modell verwendete Emissionsfaktoren für die Düngemittelproduktion [kg/t Düngemittel]
Tabelle 3.77: Emissionsquellkategorie für die Rußherstellung
Tabelle 3.78: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Rußherstellung [kg/t Ruß]
Tabelle 3.79: Im RAINS-Modell verwendete Emissionsfaktoren für die Rußherstellung [kg/t Ruß] 86
Tabelle 3.80: Emissionsquellkategorie für die Glasherstellung
Tabelle 3.81: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Glasherstellung

Tabelle 3.82: Literaturangaben über Korngrößenverteilungen für die Glasherstellung [Prozent der TSP-Emissionen]
Tabelle 3.83: Im RAINS-Modell verwendete Emissionsfaktoren für die Glasherstellung [kg/t Glas]. 88
Tabelle 3.84: Emissionsquellkategorie für andere Produktionsprozesse
Tabelle 3.85: Übersicht über in der Literatur angegebene Emissionsfaktoren für PVC-, Gips-, und Glasfaserherstellung [kg/t Produkte]
Tabelle 3.86: Im RAINS-Modell verwendete Emissionsfaktoren für die PVC-, Gips-, und Glasfaserherstellung [kg/t Produkte]
Tabelle 3.87: Emissionsquellkategorie für Gewerbebetriebe
Tabelle 3.88: Übersicht über in der Literatur angegebene Emissionsfaktoren für diffuse Emissionen aus dem Gewerbe [kg/Kopf]
Tabelle 3.89: Im RAINS-Modell verwendete Emissionsfaktoren Gewerbeanlagen [kg/ Kopf] 90
Tabelle 3.90: Emissionsquellkategorien für den Bergbau
Tabelle 3.91: Übersicht über in der Literatur angegebene Emissionsfaktoren für den Bergbau [kg/Tonne]
Tabelle 3.92: Im RAINS-Modell verwendete Emissionsfaktoren für den Bergbau [kg/Tonne] 91
Tabelle 3.93: Emissionsquellkategorien für die landwirtschaftliche Tierhaltung
Tabelle 3.94: Übersicht über in der Literatur angegebene Emissionsfaktoren für die landwirtschaftliche Tierhaltung [kg/Tier/Jahr]
Tabelle 3.95: Literaturangaben über Korngrößenverteilungen bei der landwirtschaftlichen Tierhaltung [Prozent der TSP-Emissionen]
Tabelle 3.96: Im RAINS-Modell verwendete Emissionsfaktoren für die landwirtschaftliche Tierhaltung [kg/Tier/Jahr]
Tabelle 3.97: Emissionsquellkategorie für den Ackerbau
Tabelle 3.98: Übersicht über in der Literatur angegebene Emissionsfaktoren für den Ackerbau [kg/Hektar]
Tabelle 3.99: Literaturangaben über Korngrößenverteilungen für den Ackerbau [Prozent der TSP-Emissionen]
Tabelle 3.100: Im RAINS-Modell verwendete Emissionsfaktoren den Ackerbau [kg/Hektar] 96
Tabelle 3.101: Emissionsquellkategorie für andere landwirtschaftliche Quellen

Tabelle 3.102: Emissionsquellkategorie für das Abfackeln von Gas
Tabelle 3.103: Übersicht über in der Literatur angegebene Emissionsfaktoren für das Abfackeln von Gas [kt/PJ]
Tabelle 3.104: Im RAINS-Modell verwendete Emissionsfaktoren für das Abfackeln von Gas [kt/PJ] 97
Tabelle 3.105: Emissionsquellkategorien für die offene Verbrennung von Abfällen
Tabelle 3.106: Übersicht über in der Literatur angegebene Emissionsfaktoren für die offene Verbrennung von Abfällen [kg/t Abfall]
Tabelle 3.107: Im RAINS-Modell verwendete Emissionsfaktoren für die offene Verbrennung von Abfällen [kg/t]
Tabelle 3.108: Emissionsquellkategorien für den Schüttgutumschlag
Tabelle 3.109: Übersicht über in der Literatur angegebene Emissionsfaktoren für den Schüttgutumschlag [kg/t]
Tabelle 3.110: Im RAINS-Modell verwendete Emissionsfaktoren für Schüttgutumschlag [kg/t] 101
Tabelle 3.111: Emissionsquellkategorie für den Bausektor
Tabelle 3.112: Übersicht über in der Literatur angegebene Emissionsfaktoren für den Bausektor [kg/Million m², wenn nicht anders aufgeführt]
Tabelle 3.113: Im RAINS-Modell verwendete Emissionsfaktoren für den Bausektor [kg/Million m²]
Tabelle 3.114: Emissionsquellkategorien für andere Aktivitäten
Tabelle 3.115: Übersicht über in der Literatur angegebene Emissionsfaktoren für andere Aktivitäten
Tabelle 3.116: Im RAINS-Modell verwendete Emissionsfaktoren für andere Aktivitäten [kg/Kopf] 103
Tabelle 3.117: Emissionsquellkategorie für leichte Fahrzeuge mit Dieselmotoren
Tabelle 3.118: Im RAINS-Modell verwendete Emissionsfaktoren für leichte Dieselfahrzeuge 106
Tabelle 3.119: Emissionsquellkategorie für schwere Nutzfahrzeuge mit Dieselmotoren
Tabelle 3.120: Im RAINS-Modell verwendete Emissionsfaktoren für schwere Dieselnutzfahrzeuge 108
Tabelle 3.121: Emissionsquellkategorien für leichte Fahrzeuge und Motorräder mit Ottomotoren 109
Tabelle 3.122: Im RAINS-Modell verwendete Emissionsfaktoren für unverbleites Benzin (GSL), Flüssiggas (LPG) und Erdgas (GAS) [g/GI]

Tabelle 3.123: Im RAINS-Modell verwendete Emissionsfaktoren für verbleites Benzin [g/GJ] 111
Tabelle 3.124: Emissionsquellkategorien für mobile Maschinen und Geräte
Tabelle 3.125: Übersicht über in der Literatur angegebene Emissionsfaktoren für mobile Maschinen und Geräte mit Dieselmotoren [g/GJ]
Tabelle 3.126: Im RAINS-Modell verwendete Emissionsfaktoren für mobile Maschinen und Geräte mit Dieselmotoren
Tabelle 3.127: Übersicht über in der Literatur angegebene Emissionsfaktoren für mobile Maschinen und Geräte mit Ottomotoren [g/GJ]
Tabelle 3.128: Im RAINS-Modell verwendete Emissionsfaktoren für mobile Maschinen und Geräte mit Ottomotoren
Tabelle 3.129: Im RAINS-Modell verwendete Emissionsfaktoren für mit schwerem Heizöl betriebene Motoren und Schiffe
Tabelle 3.130: Emissionsquellkategorien für den Reifenabrieb
Tabelle 3.131: Übersicht über in der Literatur angegebene Emissionsfaktoren für den Reifenabrieb bei leichten Fahrzeugen [g/km]
Tabelle 3.132: Übersicht über in der Literatur angegebene Emissionsfaktoren für den Reifenabrieb bei schweren Fahrzeugen [g/km]
Tabelle 3.133: Im RAINS-Modell verwendete Emissionsfaktoren für den Reifenabrieb [g/km] 117
Tabelle 3.134: Emissionsquellkategorien für den Bremsabrieb
Tabelle 3.135: Übersicht über in der Literatur angegebene Emissionsfaktoren für den Bremsabrieb [g/km]
Tabelle 3.136: Im RAINS-Modell verwendete Emissionsfaktoren für den Bremsabrieb [g/km] 119
Tabelle 3.137: Emissionsquellkategorien für den Straßenabrieb
Tabelle 3.138: Übersicht über in der Literatur angegebene Emissionsfaktoren für den Straßenabrieb [g/km]
Tabelle 3.139: Im RAINS-Modell verwendete Emissionsfaktoren für den Straßenabrieb [g/km] 121
Tabelle 4.1 Werte für die Parameter der Kostenberechnung für Technologien zur Emissionsminderung bei stationären Feuerungsanlagen
Tabelle 4.2: Werte der Kostenparameter für Technologien zur Minderung von Emissionen aus industriellen Prozessen
Tabelle 4.3: Werte für die Kostenparameter von Minderungstechnologien im Verkehrssektor

Tabelle 4.4: Ausschnitt einer Kostenkurve für TSP	137
Tabelle 4.5: PM10-Kostenkurve für die Wirtschaftsstruktur von Tabelle 4.4	139
Tabelle 4.6: PM2.5-Kostenkurve für die Wirtschaftsstruktur von Tabelle 4.4	140
Tabelle 5.1: Veränderung der Staubemissionen in Europa, 1990 – 2010 unter der Annahme vollständigen Implementierung aller derzeitigen Auflagen [kt]	
Tabelle 5.2: Staubemissionen der EU-15 nach SNAP 1-Sektoren [kt]	142
Tabelle 5.3: Staubemissionen der Nicht-EU-Länder nach SNAP 1-Sektoren [kt]	142
Tabelle 5.4: Staubemissionen in Europa für das hypothetische ungeminderte Szenario [kt]	143
Tabelle 5.5: Staubemissionen in Europa für das hypothetische technische Maximalminder Szenario [kt]	_
Tabelle 5.6: Schätzungen der PM-Emissionen nach Ländern für die Jahre 1995 und 2010; Vollstä Umsetzung bestehender Gesetzgebung [kt]	_
Tabelle 5.7: Vergleich der Staubemissionsschätzungen von RAINS und CEPMEIP für 1995 [kt]	145
Tabelle 5.8: Vergleich nationaler Emissionsschätzungen mit RAINS, kt	146
Tabelle 5.9: Kosten für Maßnahmen zur Verringerung von PM, für 1995 und für gegenwagen Gesetzgebung im Jahr 2010 (Millionen €/Jahr)	
Tabelle 5.10: Geschätzte Staubemissionen in Deutschland 1995	147
Tabelle 5.11: Geschätzte PM-Emissionen in Deutschland 2010.	148
Tabelle 5.12: Vergleich der Schätzungen für 1995 der TSP-Emissionen für Deutschland [kt]	149
Tabelle 5.13: Vergleich der Schätzungen für 1995 der PM10 Emissionen für Deutschland [kt]	150
Tabelle 5.14: Vergleich der Schätzungen für 1995 der PM2.5-Emissionen für Deutschland [kt]	151

Danksagung

Die Autoren möchten sich bedanken bei Rainer Remus, Matthias Tappe, Gunnar Gohlisch and Bernd Schärer vom Umweltbundesamt Berlin für die fachliche Unterstützung bei der Durchführung dieser Studie und für die Bereitstellung von Informationen zu Staubemissionen aus einer Reihe von laufenden deutschen Studien. Des weiteren bedanken sich die Autoren bei Les White von White Associates (UK), Jozef Pacyna vom Norwegian Institute for Air Research (NILU), AEA Technology, Helen ApSimon und Teresa Gonzalez vom Imperial College, London (UK), Helen Dunn vom UK Department of Environment, Food and Rural Affairs (DEFRA), Lena Lillieblad (ALSTOM Power Environmental Systems AB, Växjö, Sweden), Sten Maartmann (Sweden), Centre Interprofessionnel Technique d'Etudes de la Pollution Atmosphérique (CITEPA), Institut für Energiewirtschaft und Rationelle Energieanwendung (IER), Universität Stuttgart, und Jan Berdowski, Antoon Visschedijk und Tinus Pulles von der Organisation for Applied Scientific Research (TNO) in den Niederlanden.

Zusammenfassung

Dieser Bericht beschreibt die Erweiterung des Regional Air Pollution Information and Simulation (RAINS) Modells, die es erlaubt, die gegenwärtigen und zukünftigen Staubemissionen in Europa abzuschätzen, das Potential für weitergehende Emissionsminderungsmaßnahmen in international vergleichbarer Weise darzustellen und die dabei anfallenden Kosten zu ermitteln. Dadurch wird es möglich, die Möglichkeiten und Kosten zur Verminderung von Staubemissionen aus Primärquellen denjenigen Potentialen gegenüberzustellen, die sich für eine Verringerung der Sekundäraerosole ergeben. Sekundäraerosole werden in der Atmosphäre aus den Vorläufersubstanzen Schwefeldioxid (SO₂), Stickoxid (NO_x), Ammoniak (NH₃) und flüchtige organische Verbindungen (VOC) gebildet. Die für Feinstaub entwickelte Berechnungsmethode ist konsistent mit den im RAINS-Modell verwendeten Ansätzen zur Berechung des Potentials und der Kosten einer Verringerung dieser vier Vorläufersubstanzen, sodass in Zukunft Analysen zur kosteneffizienten Allokation von Maßnahmen zur Verringerung der Gesamtstaubbelastung alle fünf Schadstoffe berücksichtigen können.

Die Staubemissionen sowie das sich ergebende Minderungspotential werden im RAINS-Modell für drei unterschiedliche Korngrößen berechnet: für Feinstaub (PM2.5), für die Fraktion PM2.5-10 und für Partikel mit einem Durchmesser von mehr als $10~\mu m$. Die Gesamtsumme dieser drei Fraktionen ergibt TSP (total suspended particles).

Staubemissionen werden von einer Vielzahl von Quellen mit zum Teil stark unterschiedlichen technischen und ökonomischen Eigenschaften emittiert. Die Methode unterscheidet 392 Quellkategorien bei stationärer Verbrennung, industriellen Prozessen, mobilen Quellen und der Landwirtschaft. Für jeden dieser Sektoren werden die anwendbaren Emissionsminderungsoptionen, deren Effizienz und deren Kosten analysiert.

Die Emissionscharakteristika der einzelnen Sektoren sind in vielen Fällen wesentlich durch länderspezifische Bedingungen beeinflusst. Die entwickelte Methode erlaubt die Schätzung der Emissionen und Emissionsminderungskosten von Standardtechnologien unter den besonderen Bedingungen, die für die verschiedenen europäischen Länder charakteristisch sind. Unter der grundlegenden Annahme der allgemeinen Verfügbarkeit von Minderungstechnologien gleicher technischer Eigenschaften und Kosten wird eine Vielzahl von länderspezifischen Bedingungen (Grad der technologischen Entwicklung, Anlagengrößenverteilung, Arbeitskosten usw.) verwendet, um die tatsächlichen Betriebskosten der Umweltschutzausrüstung zu schätzen.

Die Emissionsabschätzungen berechnen Staubemissionen für die einzelnen Sektoren aus Aktivitätsdaten, die den verfügbaren nationalen und internationalen Statistiken entnommen sind, und verbinden diese Information mit Emissionsfaktoren, die die hypothetischen Emissionen ohne jegliche Anwendung von speziellen Minderungsmaßnahmen reflektieren (die "ungeminderten" Emissionen). Diese Emissionsfaktoren basieren auf Literaturrecherchen und werden soweit wie möglich den länderspezifischen Bedingungen angepasst. Die aktuellen Emissionen werden schließlich durch Berücksichtigung der Wirksamkeit der eingesetzten Emissionsminderungsmaßnahmen berechnet, wofür auch die Kosten abgeschätzt werden.

Die Methode wurde für alle europäischen Staaten implementiert und umfasst den Zeitraum 1990 bis 2010. Für historische Schätzungen (1990, 1995) zeigt sich auf aggregierter Ebene allgemeine Übereinstimmung mit anderen nationalen und internationalen Emissionsinventaren. Detailergebnisse für einzelne Sektoren und Aktivitäten jedoch weisen oft beträchtliche Divergenzen auf, deren Ursachen noch näher ergründet werden müssen.

Die vorläufige Implementierung deutet darauf hin, dass sich zwischen 1990 und 1995 der Ausstoß von Staubemissionen hauptsächlich durch die wirtschaftliche Umstrukturierung in mittel- und osteuropäischen Staaten um ca. 50 Prozent verringerte. Bis 2010 wird aufgrund strengerer Auflagen für Großfeuerungsanlagen und Kraftfahrzeuge ein weiterer Rückgang erwartet, sodass die Emissionen im Jahr 2010 ca. 60 Prozent unter den Werten von 1990 liegen dürften. Es ist allerdings anzumerken,

dass für die gesundheitsschädlichen Feinstäube (z.B. PM2.5) nur geringere Reduktionsraten erwartet werden können.

Diese vorläufigen Abschätzungen sind mit bedeutenden Unsicherheiten behaftet, sodass weitere Analysen unter Mitarbeit von nationalen Experten notwendig sind, bevor eine verifizierte und allgemein akzeptierte europäische Datenbasis zur Abschätzung des Potentials für weitergehende Maßnahmen zur Verringerung der Staubemissionen verfügbar sein wird.

Modellierung von Feinstaubemissionen in Europa

Entwicklung eines Technologie- und Kostenmoduls für Staubemissionen im Rahmen des Integrated Assessment Modelling zur Unterstützung europäischer Luftreinhaltestrategien

1 Einleitung

1.1 Hintergrund

Die Gesundheitseffekte von Feinstaub werden in zunehmendem Maße mit Besorgnis gesehen. Neuere Studien haben für typische Konzentrationshöhen in Europa und Nordamerika einen klaren Zusammenhang zwischen Feinstaubpartikeln in der Luft (particulate matter, PM) und der Beeinträchtigung der menschlichen Gesundheit (Atemwegssymptome, Herz-Kreislauf-Erkrankungen) bis hin zu erhöhter Mortalität nachgewiesen (Pope et al. , 2002).

Ein Teil der in der Umgebungsluft vorhandenen Feinstaubpartikel wird direkt von anthropogenen (z.B. Verbrennungsvorgänge, mechanischer Abrieb, etc.) und natürlichen Quellen (z.B. Pflanzen) emittiert. Zusätzlich entstehen Feinstaubpartikel auch durch sekundäre Folgereaktionen aus gasförmigen Luftschadstoffen (Schwefeldioxid, Stickoxiden, Ammoniak und flüchtigen organischen Verbindungen), hauptsächlich aus anthropogenen Quellen. Die geringe Größe der Partikel von wenigen Mikrometer führt dazu, dass diese Teilchen nach ihrer Entstehung üblicherweise mehrere Tage in der Atmosphäre verbleiben, bevor sie auf der Erdoberfläche abgelagert werden. Deshalb werden Feinstaubpartikel, wie auch viele ihrer gasförmigen Emissionsvorläufersubstanzen, in der Atmosphäre oft über Hunderte von Kilometern transportiert und stellen deshalb eine grenzüberschreitende Beeinträchtigung der Luftqualität weiter Gebiete dar.

Strategien zur Minderung der Partikelkonzentrationen in der Umgebungsluft müssen diese verschiedenen Ursprünge von Feinstäuben berücksichtigen und die Minderungspotentiale der verschiedenen Quellen in zielgerichteter Weise ansprechen. Dazu ist es notwendig, die Beiträge der einzelnen Quellen zu den Primär- und Sekundäremissionen zu bestimmen, die jeweiligen Emissionminderungspotenziale zu quantifizieren und deren Kosten abzuschätzen. Eine solche Analyse muss die Quellen aller maßgeblichen Wirtschaftssektoren in konsistenter Weise einschliessen, wobei aufgrund des Ferntransports von Feinstaub in der Atmosphäre eine europaweite Betrachtung notwendig wird. Die Erarbeitung von ausbalancierten Emissionsminderungsstrategien, die ein Gleichgewicht zwischen den verschiedenen Minderungstechniken für unterschiedliche Luftschadstoffe in unterschiedlichen ökonomischen Sektoren in unterschiedlichen Ländern erreichen, ist eine anspruchsvolle Aufgabe, welche ein großes Maß an Informationen benötigt.

Computergestützte *Integrated Assessment*-Modelle sind Werkzeuge, die durch eine systematische Aufbereitung von relevanter Information die Entwicklung von ausgewogenen Emissionsminderungsstrategien unterstützen. Solche Modelle wurden im Rahmen der Verhandlungen zum Göteborg-Protokoll der UN Konvention über Grenzüberschreitende Luftverschmutzung und bei der Diskussion zur EU-Richtlinie über nationale Emissionsobergrenzen (2001/81/EC) eingesetzt, um europäische Emissionsminderungsstrategien zu ermitteln, die vorgegebene Umweltqualitätsziele zu den geringsten Kosten erreichen können. Die von den Modellen errechneten nationalen Emissionsverringerungen wurden bei den internationalen Verhandlungen als Zielvorgaben benützt.

Im Rahmen der oben angeführten Verhandlungen fand insbesondere das am Internationalen Institut für Angewandte Systemanalyse (IIASA) entwickelte RAINS (Regional Air Pollution Information and Simulation) Modell praktische Anwendung. Dieses Modell ermittelt kosteneffiziente

Emissionsminderungsstrategien, mit denen für eine Reihe von Luftqualitätsproblemen politisch vorgegebene Umweltqualitätsziele zu geringsten Kosten erreicht werden können. In den Verhandlungen wurden quantitative Zielvorgaben für bodennahes Ozon, für Versauerung und für Eutrophierung (Überdüngung von natürlichen Ökosystemen durch zu hohen Stickstoffeintrag aus der Atmosphäre) politisch festgelegt. Die Modellanalyse ermittelte in der Folge für alle Länder Europas das notwendige Minderungsausmaß für Emissionen von Stickoxiden (NO_x), flüchtigen organischen Verbindungen (VOC), Schwefeldioxid (SO₂) und Ammoniak (NH₃). Dabei wurden sowohl die vielfachen und oft nichtlinearen Interaktionen zwischen den Luftschadstoffen und den jeweiligen Umweltauswirkungen als auch die aktuelle Implementierung von Emissionsminderungsmaßnahmen in den verschiedenen Ländern Europas und die sich daraus ergebenden Unterschiede im Potential und Kosten von weitergehenden Maßnahmen berücksichtigt (Amann und Lutz, 2000).

Die neu aufgeflammte Diskussion über die Gesundheitsauswirkungen von Feinstaub lässt eine Erweiterung dieses Multi-Schadstoff-/Multi-Effekt-Modellansatzes attraktiv erscheinen, mit dem sowohl die enge Verflechtung der Vorläuferemissionen für Feinstaub mit den bereits behandelten Luftqualitätsproblemen (Versauerung, bodennahes Ozon, etc.) erfasst als auch der großräumigen Ausbreitung von Feinstaub und dessen Vorläufersubstanzen Rechnung getragen werden kann. Langfristige Zielsetzung dieses Ansatzes ist es, kosteneffiziente Emissionsminderungsstrategien zu entwickeln, die eine Gesamtlösung sowohl für die Gesundheitsbelastung durch Feinstaub als auch durch bodennahes Ozon bei gleichzeitiger Berücksichtigung der Ökosystembelastungen durch Versauerung und Eutrophierung bieten.

Johansson *et al.* (2000) hat einen ersten Versuch unternommen, die bestehende Methodologie des RAINS-Modells zu erweitern, um Minderungsstrategien für Feinstaub einzubeziehen. Dieser Bericht beschreibt die im Auftrag des Umweltbundesamtes, Berlin, durchgeführten weitergehenden Arbeiten zur Erweiterung des RAINS-Modells durch einen Technologie- und Kostenmodul für Feinstaub. Dieses einführende Kapitel stellt den für das RAINS-Modell relevanten Kontext von Emissions- und Kostenschätzungen dar. Kapitel 2 erläutert die Methode zur Emissionsschätzung und untersucht, welcher Aggregationsgrad für eine europaweite Analyse angemessen erscheint. Kapitel 3 gibt einen Überblick über die vorhandene Literatur zu den individuellen Kategorien der Emissionsquellen und führt aus, wie Emissionsfaktoren für das RAINS-Modell ermittelt wurden. Die Kostenkalkulationen sind Thema von Kapitel 4. Vorläufige Ergebnisse der Analyse werden in Kapitel 5 präsentiert, worauf sich ein Ausblick auf die anstehenden Arbeiten im Rahmen der grenzüberschreitenden Luftreinhaltepolitik in Europa in Kapitel 6 anschließt. Anhang I enthält ein Glossar häufig verwendeter Termini.

1.2 Konzept für ein Integrated Assessment Modell für Feinstaub

Integrated Assessment Modelle, wie z.B. das RAINS-Modell, quantifizieren die physikalischen und ökonomischen Zusammenhänge zwischen wirtschaftlicher Aktivität, den dabei entstehenden Emissionen, dem Potenzial zur Emissionsminderung und dessen Kosten, der Ausbreitung von Schadstoffen in der Atmosphäre und den resultierenden Auswirkungen auf menschliche Gesundheit und Ökosysteme. Ein wesentlicher Aspekt dieser Modelle ist deren gesamtsystematischer Ansatz, der die wesentlichen Interaktionen zwischen den einzelnen Schadstoffen, zwischen unterschiedlichen Umweltauswirkungen und zwischen Schadstoffen und deren Auswirkungen erfassen. Besondere Optimierungsansätze machen es möglich, mit der in solchen Modellen gesammelten Information gezielt nach Maßnahmenbündeln zu suchen, die vorgegebene Umweltqualitätsziele zu geringsten Kosten erreichen können.

Für Feinstaub muss jede Suche nach kosteneffektiven Lösungen zur Minderung der Umgebungsluftkonzentrationen sowohl Emissionsminderungen für die Quellen der Primäremissionen als auch für die Vorläufer der Sekundäraerosole abwägen. Die gegenwärtige Implementierung des RAINS-Modells enthält bereits Module, welche Emissionen und Emissionsminderungskosten für die vier wichtigsten Vorläufersubstanzen von Sekundäraerosolen (SO₂, NO_x, VOC und NH₃) beschreiben. Die atmosphärischen Ausbreitungsmodelle, die von RAINS eingesetzt werden, umfassen auch die Prozesse, die zur Bildung von Sekundäraerosolen führen. Ein Modul, der die

Gesundheitsauswirkungen von Feinstaub quantifiziert, wurde kürzlich implementiert (Mechler et al., 2002).

Eine Ausweitung des RAINS-Modells auf Feinstaub erfordert daher einen zusätzlichen Modul zur Beschreibung der Primäremissionen von Feinstaub, deren Minderungspotenzial und Minderungskosten, sowie einen Modul, der die Ausbreitung von Primärpartikeln in der Atmosphäre berechnet. Die angestrebte Struktur des RAINS-Modells ist in Abbildung 1.1 veranschaulicht, wobei die zusätzlich notwendigen Elemente für die Analyse von Feinstaub hervorgehoben sind (Johansson *et al.*, 2000).

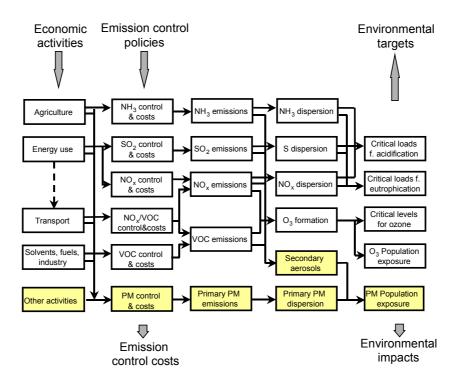


Abbildung 1.1: Flussdiagramm des erweiterten RAINS-Modells zur Analyse von Feinstaub

Zentrale Zielsetzung der *Integrated Assessment* Modelle ist es, Hilfestellung bei der Allokation von Emissionsreduktionsmaßnahmen für unterschiedliche Luftschadstoffe, unterschiedliche Länder und unterschiedliche ökonomische Sektoren zu leisten. Offensichtlich erfordert eine solche Aufgabe konsistente Informationen über die Potenziale von (weitergehenden) Emissionsminderungen an den einzelnen Quellen und deren Kosten, und es ist das Bestreben dieses Kostenmoduls, derartige Informationen bereitzustellen.

Unterschiede in den Emissionsminderungskosten für die einzelnen Emissionsquellen haben wesentlichen Einfluss auf eine optimale Verteilung von Emissionsminderungsmaßnahmen. Es ist daher von äußerster Wichtigkeit, diejenigen Faktoren zu identifizieren, die zu systematischen und objektiv nachvollziehbaren Unterschieden in den Emissionsminderungskosten zwischen Ländern, ökonomischen Sektoren und Schadstoffen führen. Solche Unterschiede sind unter anderem durch unterschiedliche Zusammensetzung der verschiedenen Emissionsquellen, des technologischen Entwicklungsstandes und dem Anwendungsgrad von Emissionsminderungsmaßnahmen bedingt.

Um diese Unterschiede innerhalb Europas systematisch zu erfassen, wurde in RAINS eine Methode entwickelt, welche eine Abschätzung von Emissionen und Emissionsminderungskosten der Standardtechnologien unter den besonderen Bedingungen erlaubt, die für die verschiedenen europäischen Länder charakteristisch sind. Unter der grundlegenden Annahme der allgemeinen Verfügbarkeit von Minderungstechnologien gleicher technischer Eigenschaften und Kosten wird eine Vielzahl von länderspezifischen Bedingungen (Grad der technologischen Entwicklung, Anlagengrößenverteilung, Arbeitskosten usw.) verwendet, um die tatsächlichen Kosten der Umweltschutzausrüstung abzuschätzen.

2 Emissionsabschätzung für Staub im RAINS-Modell

2.1 Korngrößenfraktionen

Stäube sind dispers verteilte Partikel festen Aggregatzustandes in der Luft oder anderen Gasen, entstanden durch mechanische oder pyrogene Prozesse oder Aufwirbelung. Staub aus natürlichen Quellen ist ständiger Bestandteil der Luft. Durch anthropogene Aktivitäten wird die Staubbelastung der Atmosphäre jedoch erhöht.

Stäube bestehen aus einer Vielzahl unterschiedlicher chemischer Substanzen unterschiedlicher Größe und unterschiedlicher Form. Obwohl sich die Wissenschaft in der Bewertung der Gefahrenpotentiale der einzelnen Eigenschaften noch nicht vollständig einig ist, erscheint es angebracht, wesentliche potenzielle Differenzierungsmerkmale bei der Erstellung von effizienten Emissionsminderungsstrategien zu berücksichtigen.

Basierend auf den derzeit vorhandenen Daten unterscheidet das RAINS-Modell die folgenden drei Korngrößenfraktionen¹:

- Feinstaub, d.h., Stäube mit einem aerodynamischen Durchmesser von weniger als 2.5 μm (PM2.5),
- die grobe Fraktion mit einem aerodynamischen Durchmesser zwischen 2.5 und 10 μm (PM10 PM2.5), und
- Grobstaub mit einem Durchmesser von mehr als 10 μm und weniger als 57 μm (PM>10 μm).

In Summe ergeben diese drei Fraktionen den mit TSP (Total Suspended Particulate) bezeichneten Staubanteil, der durch eine Sinkgeschwindigkeit von weniger als <10 cm/s und einem aerodynamischen Durchmesser von kleiner als 57 µm definiert ist. In der Vergangenheit wurde unter Staubbelastung hauptsächlich TSP verstanden, wofür entsprechende Auflagen und Messungen vorgeschrieben wurden.

In der jüngeren Literatur wird häufig PM10 (und neuerdings in steigendem Masse PM2.5) mit Gesundheitsschäden in Verbindung gebracht. PM10, für dessen Konzentration in der Atmosphäre die Europäische Union Grenzwerte gesetzt hat, setzt sich demnach aus dem Feinstaub (PM2.5) und der groben Fraktion (PM10-2.5) zusammen.

Da flächendeckende Informationen über die korngrößenabhängigen Emissionsraten der einzelnen Emissionsquellen nur spärlich vorhanden sind, wurde folgender Ansatz gewählt, um Emissionen und Emissionsminderungspotentiale nach den drei Größenfraktionen zu differenzieren:

- Zunächst werden sektor- und brennstoffspezifische "ungeminderte" Emissionsfaktoren für TSP ermittelt. Diese Faktoren repräsentieren die TSP-Konzentration im Rohgasstrom ohne jegliche Anwendung von Emissionsminderungsmaßnahmen.
 - Für feste Brennstoffe (mit Ausnahme von Biomasse und dem Verbrauch von festen Brennstoffen in Haushalten) wird ein Massenbilanzansatz verwendet, wobei Aschegehalt (ac) und Heizwert (hv) der Brennstoffe sowie die Ascherückhaltung im Kessel (ar) berücksichtigt werden:

$$ef_{TSP} = ac/hv * (1 - ar)$$

Für flüssige Brennstoffe, Biomasse, feste Brennstoffe in kleinen Anlagen im Haushalt im Kleinverbrauch, industrielle Prozesse, Bergbau, Schüttgutumschlag,

¹ In der Literatur wird PM10, d.h. Partikel bis zu einem Durchmesser von 10 μm, oft als Feinstaub bezeichnet. In diesem Bericht bedeutet Feinstaub PM2.5.

Abfallverbrennung, Landwirtschaft² und für den Verkehrssektor werden TSP-Emissionsfaktoren aus der Literatur entnommen.

- In einem zweiten Schritt werden die unverminderten Emissionsfaktoren für jede der Korngrößen bestimmt. Diese basieren auf Korngrößenprofilen, welche in der Literatur für ein Großzahl von Anlagen aufgeführt sind. Solche Profile werden typischerweise für PM10 und PM2.5 angegeben und sind brennstoff- und anlagen-/sektorspezifisch. Der Literatur entnommene typische Profile werden auf die länder-, brennstoff- und sektorspezifischen unverminderten Emissionsfaktoren angewendet (siehe erster Schritt), um die größenabhängigen Emissionsfaktoren für das RAINS-Modell zu ermitteln.
- In einem dritten Schritt werden tatsächliche Staubemissionen für die drei Korngrößen berechnet. Für ein Land (i) werden für jeden Brennstoff (Aktivität) und jeden Sektor Staubemissionen einer Korngröße (y) mittels der folgenden Formel ermittelt, die den Einsatz von Emissionsminderungsmaßnahmen sowie deren größenspezifische Abscheidegrade berücksichtigt:

$$EPM_{i,y} = \sum EPM_{i,j,k,m,y} = \sum \{A_{i,j,k} * ef_{i,j,k,y} * (1 - eff_{m,y}) * X_{i,j,k,m}\}$$
(2.1)

mit:

i,j,k,m Land, Sektor, Brennstoff, Vermeidungstechnologie;

y Korngröße, d.h. fein, grob, PM ≥10;

 $E_{i,y}$ Staubemissionen in Land *i* für Korngröße *y*;

A Aktivität in einem bestimmten Sektor, z.B. Kohleverbrauch bei Kraftwerken;

Ef ungeminderter Emissionsfaktor;

*eff*_{m,v} Abscheidegrad der Vermeidungsoption für Korngröße y;

X tatsächliche Einsatzrate der betrachteten Abscheidetechnologie, z.B. Prozent des gesamten Kohleverbrauchs in Kohlekraftwerken, die mit Elektrofiltern ausgerüstet sind.

Wird keine Emissionsminderung angewendet, ist der Abscheidegrad Null ($eff_{m,y} = 0$) und die Anwendungsrate ist Eins (X = 1). In diesem Fall reduziert sich die Emissionsberechnung auf eine einfache Multiplikation der Aktivitätsrate mit dem unverminderten Emissionsfaktor.

_

² Für die Viehwirtschaft bezieht sich der Emissionsfaktor normalerweise auf die Bewirtschaftungsperiode. Daher wurden Informationen über die Länge dieser Periode (im RAINS-NH₃-Modul verfügbar) berücksichtigt, um jährliche tier- und länderspezifische Werte zu berechnen.

2.2 Erstellung einer geeigneten Emittentenstruktur

Staub wird aus einer Vielzahl von Quellen mit unterschiedlichen technischen und ökonomischen Parametern emittiert. Um diese Unterschiede entsprechend zu reflektieren, sollte im Idealfall die Ermittlung des Potenzials und der Kosten von Emissionsminderungsmaßnahmen auf einem sehr detaillierten Prozessniveau durchgeführt werden. In der Praxis jedoch, wenn Vermeidungskosten für alle Länder in Europa für die nächsten 10 bis 20 Jahre abgeschätzt werden müssen, ist der sinnvollerweise realisierbare Detaillierungsgrad deutlich eingeschränkt. Während technische Details für einzelne (Referenz-) Prozesse noch gut dokumentiert sind, wird die Genauigkeit von Schätzungen auf aggregierter, nationaler Ebene für zukünftige Jahre durch den allgemeinen Mangel an zuverlässigen Projektionen für viele dieser prozessrelevanten Parameter (wie zukünftige Aktivitätslevels, autonomer technischer Fortschritt, etc.) stark beeinträchtigt.

Für ein *Integrated Assessment* Modell, das die gesamteuropäischen Zusammenhänge zu erfassen sucht, ist es notwendig, ein angemessenes Gleichgewicht zwischen dem Grad technischer Details und der Verfügbarkeit sinnvoller Daten, welche die zukünftige Entwicklung beschreiben, anzustreben. Dies macht die Entwicklung einer geeigneten Emittentenstruktur zu einem zentralen Thema, da damit schlussendlich die Genauigkeit der erwarteten Ergebnisse wesentlich bestimmt wird.

2.2.1 Aggregationskriterien zur Bildung von Sektoren

Für das RAINS-Staubmodul wurde der Versuch unternommen, die emissionsverursachenden Prozesse in eine angemessene Anzahl von Gruppen mit ähnlichen technischen und ökonomischen Eigenschaften zu aggregieren. Diese Gruppen müssen detailliert genug sein, um sinnvolle Ersatzindikatoren für die tatsächlichen Abläufe einer Vielzahl von unterschiedlichen technischen Prozessen darzustellen, und aggregiert genug sein, um eine sinnvolle Projektion ihrer zukünftigen Entwicklung mit einer angemessenen Anzahl von allgemeinen Annahmen zu erlauben. In Anbetracht der beabsichtigten Zwecke des *Integrated Assessment* wurden folgende Hauptkriterien für die Aggregation verwendet:

- Die Bedeutung der Emissionsquelle. Es wurde entschieden, sich auf Quellkategorien mit einem Anteil von mindestens 0,5 bis 2 Prozent an den anthropogenen Gesamtemissionen eines Landes zu beschränken.
- Die Möglichkeit, einheitliche Aktivitätslevels und Emissionsfaktoren zu definieren.
- Die Möglichkeit, plausible Prognosen für zukünftige Aktivitätslevels zu konstruieren. Da der Schwerpunkt der Kostenschätzungen im RAINS-Modell auf der zukünftigen Entwicklung liegt, ist es wichtig, angemessene Projektionen der Aktivitätsraten konstruieren oder ableiten zu können.
- Die Verfügbarkeit und Anwendbarkeit von "ähnlichen" Minderungstechnologien.
- Die Verfügbarkeit relevanter Daten. Eine Implementierung des Moduls ist nur möglich, wenn die erforderlichen Daten vorliegen.

Tabelle 2.1 stellt die wichtigsten Gruppen, die nach den obigen Kriterien aggregiert wurden, dar, und führt die jeweiligen Anteile an den gesamten europäischen Staubemissionen an, welche in dieser Studie für 1995 geschätzt wurden. Wie im Text später erklärt, enthalten einige der RAINS-Sektoren eine Vielzahl von Staub emittierenden Prozessen. Es ist häufig der Fall, dass für derart aggregierte Sektoren einige Emissionsminderungsoptionen nicht notwendigerweise auf alle Prozesse (Emissionsquellen) anwendbar sind, welche durch die Aktivität dargestellt sind.

Die RAINS-Quellenstruktur unterscheidet zehn Emissionskategorien für mobile und drei für stationäre Quellen, welche nach den relevanten Brennstoffen aufgegliedert wurden (siehe Tabelle 2.3), und 17 andere Sektoren. Einige Kategorien sind weiter disaggregiert und unterscheiden z.B. zwischen vorhandenen und neuen Anlagen in Kraftwerken, oder zwischen Reifen- und Bremsenabnutzung für Abriebemissionen (Reifen-, Bremsen-, Straßenabnutzung) im Verkehrssektor. Für eine komplette Liste der RAINS-Sektoren siehe Tabelle 2.2, Tabelle 2.4 und Tabelle 2.5.

Die derart definierte sektorale Struktur des RAINS-Modells ist nicht direkt mit der Struktur des Emissionsinventars der Europäischen Umweltagentur (CORINAIR) kompatibel. Dies liegt einerseits in der Tatsache begründet, dass CORINAIR keine Staubemissionen enthält, andererseits auch in der Notwendigkeit, mit RAINS das Emissionsminderungspotential und dessen Kosten abschätzen zu müssen. Die in diesem Abschnitt präsentierte Tabellen stellen zwar auf aggregierter Ebene einen Bezug zu den CORINAIR SNAP'94-Kategorien dar, allerdings ist dieser Zusammenhang in einigen Fällen nur für einen Primärsektor herstellbar (z.B. kann die Summe aller RAINS-Kategorien für Kraftund Fernheizkraftwerke nur mit der Summe einiger SNAP-Kategorien verglichen werden). RAINS enthält eine Routine, um Emissionen auf CORINAIR SNAP Level 1 zu aggregieren. Die folgenden Abschnitte definieren die in RAINS unterschiedenen Quellkategorien ausführlicher und beschreiben die Relation zu den entsprechenden SNAP-Quellsektoren des CORINAIR-Inventars.

Tabelle 2.1: Die wichtigsten Sektoren des RAINS-PM-Moduls und ihr Anteil an den Gesamtemissionen von PM in Europa 1995 laut Schätzung dieser Studie

RAINS-Sektor		Emissionen [kt]		Anteil an Gesamtemissionen in Europa 1995 [%]			
		TSP	PM10	PM2.5	TSP	PM10	PM2.5
Stationäre	Kraftwerke	1885	978	421	15.9	17.1	12.5
Feuerungen	Industriefeuerung	505	202	88	4.3	3.5	2.6
r cucrungen	HHKV	3115	1003	531	26.3	17.6	15.7
Industrieprozesse	Roheisen	233	37	26	2.0	0.7	0.8
musureprozesse	Sinter	266	53	27	2.0	0.7	0.8
	Konverter	396	342	282	3.3	6.0	8.3
	Elektrolichtbogenöfen	101	82	69	0.9	1.4	2.1
	Andere Eisen und Stahl	536	439	315	4.5	7.7	9.3
	Nichteisenmetalle	79	439 64	53	0.7	1.1	
	Zement und Kalk	667	383	219	5.6	6.7	1.6 6.5
	Andere Prozesse	893	509	314	7.5	8.9	9.3
Danahan	Andere Prozesse						
Bergbau	In desertion II - Due deslete	115	58	6	1.0	1.0	0.2
Schüttgut-	Industrielle Produkte	387	179	18	3.3	3.1	0.5
Umschlag	Landwirtschaftliche	50	17	2	0.5	0.2	0.1
C+ 0 1 1	Produkte	59	17	3	0.5	0.3	0.1
Straßenverkehr	Schwere Nutzfahrzeuge	185	182	179	1.6	3.2	5.3
	Leichte Nutzfahrzeuge	234	231	220	2.0	4.0	6.5
	Motorräder, Mopeds	13	12	11	0.1	0.2	0.3
	Abrieb	462	93	30	3.9	1.6	0.9
Übriger Verkehr	Bau und Industrie	32	31	29	0.3	0.5	0.9
	Landwirtschaft	135	128	121	1.1	2.2	3.6
	Schiene	34	32	30	0.3	0.6	0.9
	Binnenschifffahrt	29	27	26	0.2	0.5	0.8
	Andere landg.						
	Maschinen	22	20	18	0.2	0.3	0.5
	Seeschifffahrt	20	19	18	0.2	0.3	0.5
Offene Verbrennu		265	200	181	2.2	3.5	5.4
Land-	Vieh	492	221	45	4.1	3.9	1.3
Wirtschaft	Andere	511	28	0	4.3	0.5	0.0
Andere Quellen	Baustaub	83	41	4	0.7	0.7	0.1
	Kleinverbraucher ⁽¹⁾	87	87	87	0.7	1.5	2.6
	Andere	6	5	4	0.1	0.1	0.1
Gesamt		11852	5705	3378	100	100	100

⁽¹⁾ Essensherstellung, Grill, Zigarettenrauch, und Feuerwerke

2.2.2 Stationäre Quellen

Stationäre Feuerungen sind die bei weitem wichtigste Emissionsquelle von Staub, gefolgt von industriellen Prozessen; mehr als 70 Prozent der europäischen Staubemissionen stammten 1995 aus diesen Quellen. Für PM2.5 tragen industrielle Prozesse einen größeren Teil als die stationären Verbrennungsquellen bei, aber zusammen repräsentieren sie beinahe 70 Prozent der Gesamtsumme. Es wurde daher versucht, eine Emissionsquellenstruktur zu entwerfen, welche die wichtigsten Quellen und diejenigen Faktoren repräsentiert, die die Staubemissionen wesentlich beeinflussen. Die folgenden Tabellen stellen die Sektoren des RAINS-Modells vor, die für die Staubberechnung benutzt werden; größtenteils sind sie mit der Struktur der anderen RAINS-Module kompatibel, obwohl neue Elemente eingeführt wurden. Weitere Informationen hierzu in Kapitel 3.

Tabelle 2.2: RAINS-Sektoren für Feuerungsanlagen.

Reaftwerke und Fernheizung Neue Kraftwerke, Rostfeuerung PP_NEW	RAINS-Sektor	RAINS-Code	SNAP-Sektor
Neue Kraftwerke, Rostfeuerung Neue Kraftwerke, Wirbelschichtfeuerung Neue Kraftwerke, Wirbelschichtfeuerung Neue Kraftwerke, Wirbelschichtfeuerung Neue Kraftwerke (1), Schmelzkammerkessel Bestehende Kraftwerke (1), andere Typen (von Kesseln) Andere Typen, Rostfeuerung Andere Typen, Rostfeuerung Andere Typen, Trockenstaubfeuerung PP_EX_OTH1 Andere Typen, Wirbelschichtfeuerung Andere Typen, Trockenstaubfeuerung PP_EX_OTH2 PP_EX_OTH3 Brennstoffumwandlung Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwand	Kraftwerke und Fernheizung		
Neue Kraftwerke, Wirbelschichtfeuerung Neue Kraftwerke, Trockenstaubfeuerung Bestehende Kraftwerke (1), Schmelzkammerkessel Bestehende Kraftwerke (1), andere Typen (von Kesseln) Andere Typen, Rostfeuerung Andere Typen, Rostfeuerung Andere Typen, Wirbelschichtfeuerung Andere Typen, Trockenstaubfeuerung Brennstoffumwandlung Energieverbrauch beim Brennstoffumwandlungsprozess Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstof			
Neue Kraftwerke, Trockenstaubfeuerung Bestehende Kraftwerke (1) Schmelzkammerkessel Bestehende Kraftwerke (1) Schmelzkammerkessel Bestehende Kraftwerke (1) andere Typen (von Kesseln) Andere Typen, Rostfeuerung Andere Typen, Rostfeuerung Andere Typen, Wirbelschichtfeuerung Andere Typen, Trockenstaubfeuerung Brennstoffumwandlung Energieverbrauch beim Brennstoffumwandlungsprozess Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Br			
Bestehende Kraftwerke (1), Schmelzkammerkessel Bestehende Kraftwerke (1), andere Typen (von Kesseln) Andere Typen, Rostfeuerung Andere Typen, Rostfeuerung Andere Typen, Wirbelschichtfeuerung Andere Typen, Wirbelschichtfeuerung Andere Typen, Wirbelschichtfeuerung Andere Typen, Trockenstaubfeuerung Brennstoffumwandlung Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung, CoN_COMB Bolloude Brennstoffumwandlung, CoN_COMB Bolloude Brennstoffumwandlung, CoN_COMB Bolloude Brennstoffumwandlung, CoN_COMB Bolloude Brenstoffumwandlung, CoN_COMB Bolloude Brennstoffumwandlung, CoN_COMB Bolloude Brenstaubfeuerung Brennstoffumwandlung, CoN_COMB Bolloude Brennstoffumwandlung, CoN_COMB Bolloude Brennstoffumwandlung, CoN_COMB Bolloude Brenstaubfeuerung Brennstoffumwandlung, CoN_COMB Bolloude Bolloude Brenstaubfeuerung Brens	,	_	
Bestehende Kraftwerke (1), andere Typen (von Kesseln) Andere Typen, Rostfeuerung Andere Typen, Wirbelschichtfeuerung Andere Typen, Trockenstaubfeuerung Andere Typen, Trockenstaubfeuerung Brennstoffumwandlung Energieverbrauch beim Brennstoffumwandlungsprozess Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Wirbelschicht		PP_NEW3	
Andere Typen, Rostfeuerung Andere Typen, Wirbelschichtfeuerung Andere Typen, Wirbelschichtfeuerung Andere Typen, Trockenstaubfeuerung Brennstoffumwandlung Energieverbrauch beim Brennstoffumwandlungsprozess Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung CON_COMB2 CON_COMB2 CON_COMB3 ON_COMB2 ON_COMB3 ON_COMB3 ON_COMB4 ON_COMB5 ON_COM5 ON_COM5 ON_COM5 ON_COM5 ON_COM5 ON_COM5 ON_COM5 ON_COM5 ON_COM5 ON	Bestehende Kraftwerke (1), Schmelzkammerkessel		
Andere Typen, Wirbelschichtfeuerung Andere Typen, Trockenstaubfeuerung Brennstoffumwandlung Energieverbrauch beim Brennstoffumwandlungsprozess Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Rostfeuerung Bronnstoffumwandlung, Rostfeuerung Bronnstoffumwandlung, ConMassand Bronnstoffum Bronnscheng Bronnstoffum Bronnscheng Bronnstoffum Bronnscheng Bron			020201, 020301
Andere Typen, Trockenstaubfeuerung Brennstoffumwandlung Energieverbrauch beim Brennstoffumwandlungsprozess Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Trockenstaubfeuerung CON_COMB2 Brennstoffumwandlung, Trockenstaubfeuerung CON_COMB3 Haushalt und Kleinverbrauch (HHKV), Behörden und Landwirtschaft Verbrennung flüssiger Brennstoffe Offen DOM_STOVE Offen DOM_STOVE Offen DOM_STOVE Offen DOM_STOVE Offen DOM_SHB_M Offene Kamine Offene Kamine Offene Kamine Offene Kamine Offene DOM_SHB_M Offene Kessel (<50kW) automatisch DOM_SHB_M Offene Kessel (<50kW) automatisch DOM_MB_M DOM_MB_A Industriefe Kessel (<50kW) automatische Beschickung Verbrennung in Kesseln Verbrennung in Kesseln, Rostfeuerung Verbrennung in Kesseln, Wirbelschichtfeuerung Verbrennung in Kesseln, Trockenstaubfeuerung N_BO3 Andere Verbrennung, Rostfeuerung Andere Verbrennung, Wirbelschichtfeuerung N_OC2 Offene DOM_SHB_A Offene DOM_SHB_A Offene DOM_SHB_A Offene DOM_SHB_A Offene Name DoM_MB_A Offene Name Name Name Name Name Name Name Nam			
Brennstoffumwandlung Energieverbrauch beim Brennstoffumwandlungsprozess Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Trockenstaubfeuerung CON_COMB3 Haushalt und Kleinverbrauch (HHKV), Behörden und Landwirtschaft Verbrennung flüssiger Brennstoffe Offen DOM_FPLACE Öfen DOM_STOVE 020103-06 Einfamilienhauskessel (<50kW) Handbeschickung DOM_SHB_M 020103-03 Einfamilienhauskessel (<50kW) automatisch DOM_SHB_A 020103-05 Mittlere Kessel (<1 MW) Handbeschickung DOM_MB_M Mittlere Kessel (<50MW) automatische Beschickung DOM_MB_A Industriefeuerung Verbrennung in Kesseln, Rostfeuerung Verbrennung in Kesseln, Rostfeuerung Verbrennung in Kesseln, Trockenstaubfeuerung IN_BO2 Verbrennung in Kesseln, Trockenstaubfeuerung IN_BO3 Andere Verbrennung, Rostfeuerung Andere Verbrennung, Wirbelschichtfeuerung IN_OC1 In10304-06, I010304-06, I010504-06, I010504-06, I010504-06, I010504-06, I010304-06,			
Energieverbrauch beim Brennstoffumwandlungsprozess Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Trockenstaubfeuerung CON_COMB3 Haushalt und Kleinverbrauch (HHKV), Behörden und Landwirtschaft Verbrennung flüssiger Brennstoffe Offene Kamine Offene Kamine Öfen DOM_STOVE O20103-06 Einfamilienhauskessel (<50kW) Handbeschickung Einfamilienhauskessel (<50kW) automatisch DOM_SHB_M O20103-03 DOM_MB_M Mittlere Kessel (<1 MW) Handbeschickung DOM_MB_M DOM_MB_A Industriefeuerung Verbrennung in Kesseln Verbrennung in Kesseln, Rostfeuerung Verbrennung in Kesseln, Wirbelschichtfeuerung Verbrennung in Kesseln, Trockenstaubfeuerung Andere Verbrennung, Rostfeuerung Andere Verbrennung, Wirbelschichtfeuerung Nin_OC1 Nin_OC2 Nin_ON_COMB3 O104 O104 O20103-05 O20103-06 O20103-06 O20103-05 O10301-03, O10501-03, 0301 O10501-03, 0301 O10504-06, O10504-06, O10504-06, O10504-06, O302, O303	Andere Typen, Trockenstaubfeuerung	PP_EX_OTH3	
Energieverbrauch beim Brennstoffumwandlungsprozess Brennstoffumwandlung, Rostfeuerung Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Brennstoffumwandlung, Trockenstaubfeuerung CON_COMB3 Haushalt und Kleinverbrauch (HHKV), Behörden und Landwirtschaft Verbrennung flüssiger Brennstoffe Offene Kamine Offene Kamine Offene Kamine Offen DOM_STOVE Offen DOM_STOVE Offen DOM_SHB_M O20103-06 Einfamilienhauskessel (<50kW) Handbeschickung Einfamilienhauskessel (<50kW) automatisch DOM_SHB_A O20103-05 Mittlere Kessel (<1 MW) Handbeschickung DOM_MB_M Mittlere Kessel (<50MW) automatische Beschickung Verbrennung in Kesseln Verbrennung in Kesseln, Rostfeuerung Verbrennung in Kesseln, Wirbelschichtfeuerung Verbrennung in Kesseln, Trockenstaubfeuerung Andere Verbrennung, Rostfeuerung Andere Verbrennung, Wirbelschichtfeuerung Nin_OC1 O10304-06, O10504-06, O10504-06, O302, O303	Brennstoffumwandlung		
Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Haushalt und Kleinverbrauch (HHKV), Behörden und Landwirtschaft Verbrennung flüssiger Brennstoffe Offene Kamine Öfen Dom_STOVE Öfen Dom_STOVE Dom_STOVE Dom_STOVE Dom_SHB_M Dom_SHB_M Dom_SHB_A Dom_SHB_A Dom_MBB_A Dom_MBB		CON COMB	
Brennstoffumwandlung, Wirbelschichtfeuerung Brennstoffumwandlung, Trockenstaubfeuerung Haushalt und Kleinverbrauch (HHKV), Behörden und Landwirtschaft Verbrennung flüssiger Brennstoffe Offen BOM_STOVE 020103-06 Einfamilienhauskessel (<50kW) Handbeschickung DOM_SHB_M 020103-03 Einfamilienhauskessel (<50kW) automatisch DOM_SHB_A 020103-05 Mittlere Kessel (<1 MW) Handbeschickung DOM_MB_M Mittlere Kessel (<50MW) automatische Beschickung DOM_MB_A Industriefeuerung Verbrennung in Kesseln Verbrennung in Kesseln, Rostfeuerung Verbrennung in Kesseln, Wirbelschichtfeuerung Verbrennung in Kesseln, Trockenstaubfeuerung Andere Verbrennung, Rostfeuerung Andere Verbrennung, Wirbelschichtfeuerung IN_OC 1010304-06, 010504-06, 0302, 0303	Brennstoffumwandlung, Rostfeuerung	CON COMB1	0104
Haushalt und Kleinverbrauch (HHKV), Behörden und Landwirtschaft Verbrennung flüssiger Brennstoffe Offene Kamine Öfen DOM_FPLACE Öfen DOM_STOVE DOM_STOVE DOM_SHB_M DOM_SHB_M DOM_SHB_A DOM_SHB_A DOM_SHB_A DOM_MB_A Mittlere Kessel (<1 MW) Handbeschickung Mittlere Kessel (<50MW) automatisch DOM_MB_A Mittlere Kessel (<50MW) automatische Beschickung DOM_MB_A Industriefeuerung Verbrennung in Kesseln Verbrennung in Kesseln, Rostfeuerung Verbrennung in Kesseln, Wirbelschichtfeuerung Verbrennung in Kesseln, Trockenstaubfeuerung Andere Verbrennung, Rostfeuerung Andere Verbrennung, Wirbelschichtfeuerung Andere Verbrennung, Wirbelschichtfeuerung Andere Verbrennung, Wirbelschichtfeuerung Andere Verbrennung, Wirbelschichtfeuerung N_OC O10304-06, O10504-06, O302, O303	Brennstoffumwandlung, Wirbelschichtfeuerung	CON_COMB2	0104
Behörden und Landwirtschaft Verbrennung flüssiger Brennstoffe Offene Kamine Offen DOM_FPLACE Öfen DOM_STOVE DOM_STOVE DOM_SHB_M DOM_SHB_M DOM_SHB_A DOM_SHB_A DOM_MB_M Mittlere Kessel (<50kW) automatisch Mittlere Kessel (<50MW) automatisch DOM_MB_A Mittlere Kessel (<50MW) automatische Beschickung Nerbrennung in Kesseln Verbrennung in Kesseln, Rostfeuerung Verbrennung in Kesseln, Wirbelschichtfeuerung Verbrennung in Kesseln, Trockenstaubfeuerung Andere Verbrennung, Rostfeuerung Andere Verbrennung, Rostfeuerung Andere Verbrennung, Wirbelschichtfeuerung Andere Verbrennung, Wirbelschiehtfeuerung Andere Verbrennung, Wirbelschiehtfeuerung Andere Verbrennung, Wirbelschiehtfeuerung	Brennstoffumwandlung, Trockenstaubfeuerung	CON_COMB3	
Verbrennung flüssiger Brennstoffe Offene Kamine Offene Kamine Offen Offene Kamine Offen Offene Kamine Offen Offene Kamine Offen ODM_FPLACE DOM_STOVE 020103-06 DOM_SHB_M 020103-03 DOM_SHB_M 020103-05 Mittlere Kessel (<50kW) automatisch DOM_SHB_A O20103-05 Mittlere Kessel (<1 MW) Handbeschickung Mittlere Kessel (<50MW) automatische Beschickung DOM_MB_M Mittlere Kessel (<50MW) automatische Beschickung Verbrennung in Kesseln Verbrennung in Kesseln Verbrennung in Kesseln, Rostfeuerung Verbrennung in Kesseln, Wirbelschichtfeuerung Verbrennung in Kesseln, Trockenstaubfeuerung N_BO2 Verbrennung in Kesseln, Trockenstaubfeuerung N_BO3 Andere Verbrennung, Rostfeuerung Andere Verbrennung, Wirbelschichtfeuerung N_OC1 IN_OC2 010304-06, 010504-06, 010504-06, 0302, 0303	Haushalt und Kleinverbrauch (HHKV),		
Offene Kamine Öfen DOM_STOVE DOM_STOVE 020103-06 DOM_SHB_M 020103-03 DOM_SHB_A 020103-05 Mittlere Kessel (<1 MW) Handbeschickung Mittlere Kessel (<50MW) automatisch DOM_MB_M Mittlere Kessel (<50MW) automatische Beschickung Verbrennung in Kesseln Verbrennung in Kesseln Verbrennung in Kesseln, Rostfeuerung Verbrennung in Kesseln, Wirbelschichtfeuerung Verbrennung in Kesseln, Trockenstaubfeuerung Andere Verbrennung, Rostfeuerung Andere Verbrennung, Rostfeuerung Andere Verbrennung, Wirbelschichtfeuerung Andere Verbrennung, Wirbelschichtfeuerung Andere Verbrennung, Wirbelschichtfeuerung Andere Verbrennung, Wirbelschichtfeuerung NOC1 010304-06, 010504-06, 010504-06, 010504-06, 0302, 0303	Behörden und Landwirtschaft		
ÖfenDOM_STOVE020103-06Einfamilienhauskessel (<50kW) Handbeschickung		DOM	
Einfamilienhauskessel (<50kW) Handbeschickung Einfamilienhauskessel (<50kW) automatisch Mittlere Kessel (<1 MW) Handbeschickung Mittlere Kessel (<50MW) automatische Beschickung Mittlere Kessel (<50MW) automatische Beschickung Verbrennung in Kesseln Verbrennung in Kesseln, Rostfeuerung Verbrennung in Kesseln, Wirbelschichtfeuerung Verbrennung in Kesseln, Trockenstaubfeuerung Andere Verbrennung, Rostfeuerung Andere Verbrennung, Wirbelschichtfeuerung Andere Verbrennung, Wirbelschichtfeuerung Andere Verbrennung, Wirbelschichtfeuerung Andere Verbrennung, Wirbelschichtfeuerung IN_OC IN_OC1 010304-06, 010504-06, 010504-06, 0302, 0303		-	
Einfamilienhauskessel (<50kW) automatisch Mittlere Kessel (<1 MW) Handbeschickung Mittlere Kessel (<50MW) automatische Beschickung Industriefeuerung Verbrennung in Kesseln Verbrennung in Kesseln, Rostfeuerung Verbrennung in Kesseln, Wirbelschichtfeuerung Verbrennung in Kesseln, Trockenstaubfeuerung IN_BO2 Verbrennung in Kesseln, Trockenstaubfeuerung IN_BO3 Andere Verbrennung, Rostfeuerung Andere Verbrennung, Rostfeuerung Andere Verbrennung, Wirbelschichtfeuerung IN_OC1 IN_OC1 IN_OC2 O10304-06, O10504-06, O10504-06, O10504-06, O302, O303			
Mittlere Kessel (<1 MW) Handbeschickung Mittlere Kessel (<50MW) automatische Beschickung DOM_MB_M DOM_MB_M DOM_MB_A Industriefeuerung Verbrennung in Kesseln Verbrennung in Kesseln Verbrennung in Kesseln, Rostfeuerung Verbrennung in Kesseln, Wirbelschichtfeuerung Verbrennung in Kesseln, Wirbelschichtfeuerung Verbrennung in Kesseln, Trockenstaubfeuerung IN_BO2 IN_BO3 Andere Verbrennung Andere Verbrennung, Rostfeuerung Andere Verbrennung, Wirbelschichtfeuerung IN_OC1 IN_OC2 010304-06, 010504-06, 010504-06, 0302, 0303			
Mittlere Kessel (<50MW) automatische Beschickung Industriefeuerung Verbrennung in Kesseln Verbrennung in Kesseln, Rostfeuerung Verbrennung in Kesseln, Wirbelschichtfeuerung Verbrennung in Kesseln, Wirbelschichtfeuerung Verbrennung in Kesseln, Trockenstaubfeuerung IN_BO2 Verbrennung in Kesseln, Trockenstaubfeuerung IN_BO3 Andere Verbrennung Andere Verbrennung, Rostfeuerung IN_OC1 IN_OC1 O10304-06, O10504-06, O105			020103-05
Industriefeuerung Verbrennung in Kesseln Verbrennung in Kesseln, Rostfeuerung Verbrennung in Kesseln, Rostfeuerung Verbrennung in Kesseln, Wirbelschichtfeuerung IN_BO1 Verbrennung in Kesseln, Wirbelschichtfeuerung IN_BO2 Verbrennung in Kesseln, Trockenstaubfeuerung IN_BO3 Andere Verbrennung Andere Verbrennung, Rostfeuerung IN_OC1 IN_OC1 IN_OC2 O10304-06, O10504-06, O1050			
Verbrennung in Kesseln Verbrennung in Kesseln, Rostfeuerung Verbrennung in Kesseln, Wirbelschichtfeuerung Verbrennung in Kesseln, Wirbelschichtfeuerung Verbrennung in Kesseln, Trockenstaubfeuerung Andere Verbrennung Andere Verbrennung, Rostfeuerung IN_OC Andere Verbrennung, Wirbelschichtfeuerung IN_OC1 IN_OC2 O10304-06, 010504-06, 010504-06, 0303, 0303	Mittlere Kessel (<50MW) automatische Beschickung	DOM_MB_A	
Verbrennung in Kesseln Verbrennung in Kesseln, Rostfeuerung Verbrennung in Kesseln, Wirbelschichtfeuerung Verbrennung in Kesseln, Wirbelschichtfeuerung Verbrennung in Kesseln, Trockenstaubfeuerung Andere Verbrennung Andere Verbrennung, Rostfeuerung IN_OC Andere Verbrennung, Rostfeuerung IN_OC1 Andere Verbrennung, Wirbelschichtfeuerung IN_OC2 O10304-06, O10504-06, O1050	Industriefeuerung		
Verbrennung in Kesseln, Rostfeuerung Verbrennung in Kesseln, Wirbelschichtfeuerung Verbrennung in Kesseln, Wirbelschichtfeuerung Verbrennung in Kesseln, Trockenstaubfeuerung IN_BO2 IN_BO3 Andere Verbrennung IN_OC Andere Verbrennung, Rostfeuerung IN_OC1 IN_OC1 IN_OC2 O10304-06, 010504-06, 010504-06, 010504-06, 0303, 0303	_	IN BO	
Verbrennung in Kesseln, Wirbelschichtfeuerung Verbrennung in Kesseln, Trockenstaubfeuerung Andere Verbrennung Andere Verbrennung, Rostfeuerung IN_BO2 IN_BO3 IN_BO3 010501-03, 0301 010304-06, 010304-06, 010504-06, 010504-06, 010504-06, 010504-06, 0302, 0303		-	010301-03
Verbrennung in Kesseln, Trockenstaubfeuerung IN_BO3 Andere Verbrennung Andere Verbrennung, Rostfeuerung IN_OC IN_OC1 IN_OC1 IN_OC2 O10304-06, 010504-06, 010504-06, 010504-06, 0302, 0303		_	
Andere Verbrennung Andere Verbrennung, Rostfeuerung IN_OC IN_OC1 Andere Verbrennung, Wirbelschichtfeuerung IN_OC2 O10304-06, 010504-06, 010504-06, 0302, 0303		_	010001 05, 0501
Andere Verbrennung, Rostfeuerung IN_OC1 Andere Verbrennung, Wirbelschichtfeuerung IN_OC2 O10304-06, 010504-06, 010504-06, 0302, 0303	verbreiniung in Ressein, Trockenstaublederung	II_BO3	
Andere Verbrennung, Rostfeuerung IN_OC1 Andere Verbrennung, Wirbelschichtfeuerung IN_OC2 IN_OC2 O10304-06, 010504-06, 010504-06, 0302, 0303	Andere Verbrennung	IN OC	010004.06
Andere Verbrennung, Wirbelschichtfeuerung IN_OC2 010304-00, 0302,		_	· ·
Andere Verbrennung, Trockenstaubteuerung IN OC3	Andere Verbrennung, Trockenstaubfeuerung	IN OC3	0303

⁽¹⁾ Bezieht sich auf alle Quellen, welche vor oder in 1990 in Betrieb genommen wurden.

Tabelle 2.3: Brennstoffkategorien im RAINS-PM-Modul

Brennstofftyp	RAINS-Code
Braunkohle/Braunkohlenkoks, Qualität 1	BC1
Braunkohle/Braunkohlenkoks, Qualität 2	BC2
Steinkohle, Qualität 1	HC1
Steinkohle, Qualität 2	HC2
, •	
Steinkohle, Qualität 3	HC3
Koks, Brikett	DC
Schweres Heizöl	HF
Mitteldestillate (Diesel, Leichtöl)	MD
Unverbleites Benzin, Kerosin, Naphthalin	LF
Verbleites Benzin	LFL
Flüssiggas	LPG
Methanol	MTH
Ethanol	ETH
Wasserstoff	H2
Erdgas	GAS
Holz, Biomasse	OS1
Abfall	OS2

Viele Industrieprozesse emittieren bedeutende Mengen an Feinstaub, der nicht aus der Feuerung herrührt. Beispiele hierfür sind insbesondere metallurgische Prozesse, Erzverarbeitung, Raffinerie, Bergbau, die offene Verbrennung von Abfällen, Landwirtschaft, und Schüttgutumschlag. Tabelle 2.4 listet die Kategorien auf, die im RAINS-Modell unterschieden werden. Eine ausführliche Beschreibung wird in Kapitel 3 vorgenommen.

Tabelle 2.4: RAINS-Sektoren für andere stationäre Quellen von PM-Emissionen

RAINS-Sektor	RAINS-Code	SNAP-Sektor
Eisen- und Stahlindustrie		
Koksproduktion	PR_COKE	040201, 04
Roheisenproduktion	PR_PIGI	040202,03
Roheisenproduktion (flüchtig)	PR_PIGI_F	
Pellets-Anlagen	PR_PELL	
Sinteranlagen	PR_SINT	030301, 040209
Sinteranlagen (flüchtig)	PR_SINT_F	
Siemens-Martin-Öfen	PR_HEARTH	040205
Konverter	PR_BAOX	040206
Elektrolichtbogenöfen	PR_EARC	040207
Eisen- und Stahlgießereien	PR_CAST	030303, 040210
Eisen- und Stahlgießereien (diffus)	PR_CAST_F	
Nichteisenmetallindustrie		
Primäraluminium	PR_ALPRIM	040301
Sekundäraluminium	PR_ALSEC	030310
Andere Nichteisenmetalle (Blei, Nickel, Zink,	PR_OT_NFME	030304-09, 24;
Kupfer)	_ _	040305, 09
Andere Industrieprozesse		
Kohlebrikettherstellung	PR_BRIQ	0104
Zementherstellung	PR_CEM	030311, 040612
Kalkherstellung	PR_LIME	030312, 040614
Glasherstellung	PR GLASS	030314-15, 17;
	_	040613
Ölraffinerie	PR REF	040102
Rußherstellung	PR CBLACK	040409
Düngemittelherstellung	PR FERT	040404-08, 14
Andere Herstellungsprozesse (Glasfasern, PVC,	PR OTHER	040416, 040508,
Gips, andere)	_	040527
Kleinindustrieanlagen, flüchtig	PR SMIND F	
Bergbau		050101
Braunkohlebergbau	MINE BC	0.501.00
Steinkohlebergbau	MINE HC	050102,
Andere (Bauxit, Kupfer, Eisenerz, etc.)	MINE OTH	- 040616
Landwirtschaft		
Vieh – Geflügel	AGR POULT	100507-09
Vieh– Schweine	AGR PIG	100503-04
Vieh– Milchvieh	AGR COWS	100501
Vieh– Andere Rinder	AGR BEEF	100502
Vieh– Andere Tiere	AGR OTANI	100505, 06
Pflügen, Bearbeitung, Ernten	AGR ARABLE	,
Andere	AGR OTHER	
Abfall	_	
Abfackeln in Erdgas- und Ölindustrie	WASTE_FLR	090206
Offene Verbrennung von landwirtschaftlichen	WASTE_AGR	0907, 1003
Abfällen	_	
Offene Verbrennung von Hausabfällen	WASTE_RES	
Schüttgutumschlag	_	
Kohle	STH_COAL	050103
Eisenerz	STH_FEORE	040616
N, P, K Dünger	STH_NPK	040415
Andere Industrieprodukte(Zement, Koks, etc.)	STH OTH IN	040617

RAINS-Sektor	RAINS-Code	SNAP-Sektor
Landwirtschaftliche Produkte (Ernte)	STH_AGR	
Andere Quellen		
Bauaktivitäten	CONSTRUCT	
Fleischbraten, Essenszubereitung, Grillen	RES_BBQ	
Rauchen	RES_CIGAR	
Feuerwerke	RES_FIREW	
Andere	OTHER	

2.2.3 Mobile Quellen

Tabelle 2.5 und Tabelle 2.6 listen die Kategorien auf, die im RAINS-Modell zur Abschätzung der Emissionen und der Minderungskosten von Staubemissionen von mobilen Abgas- und Abriebsquellen verwendet werden. Diese Struktur ist kompatibel mit den anderen RAINS-Modulen mit Ausnahme der Abriebsquellen, welche nicht relevant für die Emissionen der anderen Luftschadstoffe (SO₂, NO_x, VOC) sind.

Tabelle 2.5: Kategorien von Staubemissionen aus mobilen Quellen in RAINS

RAINS-Sektor	RAINS-Code	SNAP-Sektor
Straßenverkehr		
Schwere Nutzfahrzeuge (Lastwagen, Busse und andere)	TRA_RD_HD	0703
Motorräder, Viertakter	TRA_RD_M4	0704
Motorräder und Mopeds (auch Autos), Zweitakter	TRA_RD_LD2	0704
Leichte Nutzfahrzeuge und Lastwagen, Viertakter	TRA_RD_LD4	0701-02
Leichte Nutzfahrzeuge und Lastwagen, Viertakter,	TRA_RDXLD4	0701-02
Direkt-Einspritzer		
Übriger Verkehr, mobile Maschinen und Geräte		
Zweitaktmaschinen	TRA_OT_LD2	
Baumaschinen	TRA_OT_CNS	
Landwirtschaftsmaschinen	TRA_OT_AGR	
Schiene	TRA_OT_RAI	0801-02,
Binnenschifffahrt	TRA_OT_INW	0806-10
Luftverkehr (LTO)	TRA_OT_AIR	
Andere: Viertakter (Militär, Haushalt, etc.)	TRA_OT_LB	
Seeschifffahrt		
Mittlere Schiffe	TRA_OTS_M	
Große Schiffe	TRA_OTS_L	0803,
		080402-03

Tabelle 2.6: RAINS-Sektoren für Staubemissionen durch Abrieb

RAINS-Sektor	RAINS-Code	SNAP-Sektor
Straßenverkehr, Reifenabrieb		
Schwere Nutzfahrzeuge (LKW, Busse, etc.)	TRT_RD_HD	
Motorräder, Viertakter	TRT_RD_M4	
Motorräder und Mopeds (auch Autos), Zweitakter	TRT_RD_LD2	
Leichte Nutzfahrzeuge und Lastwagen, Viertakter	TRT_RD_LD4	
Leichte Nutzfahrzeuge und Lastwagen,	TRT_RDXLD4	
Direkt-Einspritzer		
Straßenverkehr, Bremsabrieb		
Schwere Nutzfahrzeuge (LKW, Busse, etc.)	TRT_RD_HD	
Motorräder, Viertakter	TRT_RD_M4	
Motorräder und Mopeds (auch Autos), Zweitakter	TRT_RD_LD2	
Leichte Nutzfahrzeuge und Lastwagen, Viertakter	TRT_RD_LD4	
Leichte Nutzfahrzeuge und Lastwagen, Viertakter,	TRT_RDXLD4	
Direkt-Einspritzer		
Straßenverkehr, Abrieb ungeteerter Straßen		
Schwere Nutzfahrzeuge (LKW, Busse, etc.)	TRD_RD_HD	
Motorräder, Viertakter	TRT_RD_M4	
Motorräder und Mopeds (auch Autos), Zweitakter	TRT_RD_LD2	
Leichte Nutzfahrzeuge und Lastwagen, Viertakter	TRD_RD_LD4	
Leichte Nutzfahrzeuge und Lastwagen, Viertakter,	TRD_RDXLD4	
Direkt-Einspritzer		

2.3 Emissionsfaktoren

Die Genauigkeit der Emissionsfaktoren hat zentralen Einfluss auf die Qualität von Emissionsinventaren. In der Praxis werden Emissionsfaktoren nur für eine geringe Anzahl konkreter Anlagen oder Prozesse tatsächlich gemessen, wobei es oft schwer abzuschätzen ist, wie repräsentativ die gemessenen Werte für ähnliche Anlagen oder einen gesamten Sektor sind. Genau diese Übertragung von gemessenen Werten auf ganze Sektoren entscheidet aber letztlich über die Zuverlässigkeit der Gesamtschätzung.

Da genaue flächendeckende Emissionsmessungen für PM10 und PM2.5 nicht vorliegen, wurde versucht, für jede Quellkategorie jene Faktoren zu identifizieren, die nach objektiven Kriterien zu unterschiedlichen Emissionsfaktoren führen können. Unter Verwendung länderspezifischer Parameter wurden dann der Literatur entnommene durchschnittliche Emissionsfaktoren mit diesen Faktoren modifiziert. Wo dies nicht möglich war, oder wo die Quellkategorie nur einen geringen Beitrag zu den Gesamtemissionen leistete, wurden Emissionsfaktoren aus der Literatur verwendet.

2.3.1 Emissionsfaktoren für stationäre Quellen

Wegen des großen Gesamtanteils der Feuerungsanlagen für feste Brennstoffe an den Staubemissionen wurde versucht, länderspezifische Emissionsfaktoren für Kraftwerke, Industriefeuerungen, Müllverbrennungsanlagen und Öfen bei Haushalt und Kleinverbrauch abzuleiten. Emissionsfaktoren wurden mittels eines Massenbilanzansatzes berechnet: Länderspezifische Informationen über die Aschengehalte der unterschiedlichen Brennstoffe (IEA, 1998), Heizwerte (RAINS-Datenbank) und den zurückgehaltenen Anteil der Asche in der jeweiligen Dampfkesselart wurden verwendet (z.B. Kakareka *et al.*, 1999; EPA, 1998a) (vergleiche Gleichung 2).

In einem ersten Schritt werden Emissionsfaktoren für TSP geschätzt:

$$ef_{TSP} = ac/hv * (1 - ar)*10$$
 (2.2)

mit:

ef unvermiedener Emissionsfaktor [g/MJ],

ac Aschegehalt [%],

hv unterer Heizwert[GJ/t],

ar Anteil der im Kessel zurückgehaltenen Asche.

In einem zweiten Schritt werden die Emissionen für die zwei Korngrößen: PM10 und PM2.5 aus den TSP-Schätzungen errechnet, wobei typische Korngrößenprofile aus der Literatur Verwendung finden (z. B. Ahuja *et al.*, 1989; Houck *et al.*, 1989, EPA 1998a; AWMA, 2000; Kakareka *et al.*, 1999). Die Größenordnungen der mit dieser Methode ermittelten Emissionsfaktoren wurden mit Werten überprüft, welche in der Literatur angegeben werden, z.B. TA Luft 1986, Soud (1995), und zusammengefasst in Dreiseidler *et al.* (1999).

Für Emissionen aus der Verbrennung von Flüssigbrennstoffen (Benzin, Diesel, schweres Heizöl), Erdgas und der Verbrennung fester Brennstoffe in kleinen Anlagen in Haushalt und Kleinverbrauch wurden Emissionsfaktoren aus der Literatur verwendet (Details siehe unten).

Diese Faktoren beschreiben nur den während der Verbrennung entstehenden Anteil der Staubemissionen einer Quelle. Prozessbedingte Emissionen, die nicht aus der Verbrennung herrühren, behandelt. Emissionsfaktoren für die Eisengetrennt und Stahlindustrie Nichteisenmetallindustrie basieren hauptsächlich auf EPA, 1998a; Rentz et al., 1996; TA Luft, 1986; AWMA, 2000; UBA, 1999a; und einem Bericht von Passant et al. (2000). Für die Landwirtschaft wurden zwei Hauptstudien, d.h. Takai et al., 1998 und ICC u. SRI, 2000 verwendet. Informationen über PM-Emissionen und Emissionsfaktoren für die restlichen Sektoren, d.h. Bergbau, Schüttgutumschlag in der Industrie und Landwirtschaft, offene Abfallverbrennung, Bauaktivitäten und andere verschiedene Quellen, sind rar. Ein vor kurzem veröffentlichtes europäisches PM-Inventar (CEPMEIP, 2002) war sehr nützlich bei der Zusammenstellung dieser Informationen. Zusätzlich wurden Berichte von EPA (1995, 1998a), Dreiseidler et al.(1999) und Berdowski et al. (1997) verwendet. Im RAINS-Modell umfassen die Emissionsfaktoren für industrielle Abriebsemissionen alle Beiträge eines Sektors (Abschnitt 3.2). Die Emissionsfaktoren, die in dieser Studie verwendet werden, basieren hauptsächlich auf US-Daten (EPA, 1998a), welche in Passant et al. besprochen werden (2000).

2.3.2 Emissionsfaktoren für mobile Quellen

Für den Straßenverkehr leitet RAINS Emissionsfaktoren von Studien ab, die im Rahmen der Auto-Öl I und II Programme der Europäischen Kommission (EC, 1999) durchgeführt wurden. Für Benzinfahrzeuge wurden zusätzlich die folgenden Studien verwendet: Hildemann *et al.*, 1991; Norbeck *et al.*, 1998a; Durbin *et al.*, 1999; Kwon *et al.*, 1999; CONCAWE, 1998 (siehe Abschnitt 3.3.1.3). Somit basieren die Emissionsfaktoren, die in RAINS für die verschiedenen Fahrzeugkategorien verwendet werden, auf der ganzen Spannbreite von länderspezifischen Faktoren wie Fahrtmuster, Flottenzusammensetzung, klimatischen Verhältnissen, etc., welche in den Auto-Öl-Studien betrachtet wurden. Für die RAINS-Analyse wurden kraftstoffbezogene Emissionsfaktoren für Dieselfahrzeuge berechnet, indem die Menge der in den Auto-Öl-Studien für die RAINS-Fahrzeugkategorien errechneten PM-Emissionen durch den jeweiligen Kraftstoffverbrauch geteilt wurde.

Für den übrigen Verkehr wurden eine Reihe von amerikanischen und europäischen Studien verwendet, z.B. EPA, 1991; BUWAL, 2000; Breadsley *et al.*, 1998; Norbeck *et al.*, 1998ab; Kean *et al.*, 2000; und speziell für die Schifffahrt: Lloyd's Register, 1997 und Wright, 1997, 2000 (für Details siehe Abschnitt 3.3.1.4).

Abriebsemissionsfaktoren für den Straßenverkehr wurden aus verschiedenen Literaturquellen gewonnen (siehe Abschnitt 3.3.2). Da solche Emissionsfaktoren normalerweise in Gramm pro Kilometer (g/km) angegeben werden, wurde der spezifische Kraftstoffverbrauch der verschiedenen Fahrzeugkategorien verwendet, um sie in auf den Kraftstoffverbrauch bezogene Emissionsfaktoren umzuwandeln. Zeit- und länderabhängiger spezifischer Kraftstoffverbrauch wurden Studien entnommen, welche für das Auto-Öl II Programm (EC, 1999) durchgeführt wurden. Obwohl in hohem Maße unsicher, behandelt das RAINS-Modell Emissionen von Reifenabrieb, Bremsbelagabrieb und Straßenabrieb als eigene Quellen. Das RAINS-Modell umfasst eine lange Liste von Abriebsemissionsquellen (Tabelle 2.6). Hier werden nur Hauptkategorien und Primärquellen von Emissionsfaktordaten angesprochen. Ausführlichere Informationen können in den jeweiligen Abschnitten in diesem Dokument und der angeführten Literatur gefunden werden.

2.4 Emissionsminderungsmaßnahmen

2.4.1 Stationäre Quellen

Zusätzlich zu "strukturellen Änderungen," die zu einem niedrigeren Verbrauch von emissionsverursachenden Brennstoffen führen, gibt es eine Reihe von technischen Verfahren zur Verringerung von Staubemissionen aus stationären Quellen (z.B. Darcovich *et al.*, 1997; Soud, 1995; TA Luft, 1986; Rentz *et al.*, 1996). Die folgenden Abschnitte erläutern kurz die Hauptoptionen und ihre technischen Eigenschaften, um in der Folge eine Auswahl für das RAINS-Staubmodul durchführen zu können.

2.4.1.1 Verfügbare Verfahren

Massenkraftabscheider und Zyklone

Das Grundfunktionsprinzip von Zyklonen ist die Trägheitstrennung von Partikeln und Gasstrom. PM enthaltendes Gas wird gezwungen, die Richtung zu ändern, wobei die Trägheit der Partikel bewirkt, dass sie sich weiter in die ursprüngliche Richtung fortbewegen. In Westeuropa werden Multizyklone normalerweise nur als Vorabscheider (*pre-deduster*) für die Abscheidung mittelgroßer und grober Partikel benutzt. Die Nettoabwärtsbewegung der Partikel tritt bei Korngrößen größer als 5 µm auf. Somit ist die Schwerkraftabsetzung nur bei großen Partikeln effizient (40 bis 50 µm). Die Abscheideeffizienz fällt bei signifikantem Anteil von sehr feinem PM und führt generell nicht zu einer erheblichen Reduktion der ultra-feinen PM0.1-Emissionen.

Nassabscheider

Im meistverbreiteten *Venturi*wäscher wird Wasser in den Abgasstrom an der Venturidüse eingespritzt. Durch die sehr hohen Gasgeschwindigkeiten erfolgt ein intensiver Kontakt der Staubpartikel mit dem Wasser. Die mit Staub beladenen Tröpfchen werden in der Regel durch Zyklone abgeschieden. Das nasse Nebenprodukt muss im Allgemeinen entsorgt werden. Venturiwäscher haben einen hohen Energieverbrauch.

Filternde Abscheider

Häufig angewendete filternde Abscheider sind Gewebe- oder Schlauchfilter. Staubpartikel, die sich auf der Oberfläche von Gewebefiltern abscheiden, bilden einen filterwirksamen Kuchen. Dieser Kuchen vollbringt normalerweise den Hauptteil der Filtration, auch sehr feine Partikel werden gut abgeschieden. Herkömmliche Gewebefilter werden zunehmend durch *pulse-jet* Gewebefilter (PJFF) ersetzt. Periodische kurze, starke Luftausstöße werden verwendet, um das Gewebe zu säubern, damit der Druckverlust nicht zu stark anwächst.

Die Leistung der Gewebefilter und Nassabscheider kann mit elektrostatischer Aufladung erhöht werden.

Elektrofilter (ESP)

Bei Elektrofiltern (ESP) werden Partikel elektrisch aufgeladen, indem sie durch einen Bereich gezwungen werden, in dem gasförmige Ionen und Elektronen fließen. Die aufgeladenen Partikel wandern aufgrund des elektrischen Feldes zur Niederschlagselektrode und haften an dieser an. Die Partikel werden von den Niederschlagselektroden entfernt, indem sie losgeklopft oder mit Wasser abgewaschen werden. Die Modernisierung der ESP-Technologie zielt besonders auf die Verbesserung der Sammlung der extrem feinen Partikel ab. ESP können bei Temperaturen bis zu 400°C eingesetzt werden.

Hochtemperatur-, Hochdruck (HTHP)-Partikelminderung

Während des letzten Jahrzehnts hat es bedeutende Fortschritte in der Kommerzialisierung der kombinierten Zyklussysteme, wie der integrierten Kohletechnologie (IGCC) und der kombinierten Wirbelschichtfeuerung (PFBCC), gegeben. Kommerzielle Entwicklungen und Prototypen werden derzeit in den Vereinigten Staaten, Europa und Japan für die Stromerzeugung verwendet. Ein wichtiger Bestandteil in den kombinierten Zyklus-Energiesystemen ist eine Hochtemperatur-, Hochdruck (HTHP)-Feinstteilchenminderungsvorrichtung.

Effiziente Heißgasfiltration von Staub ist notwendig, um nachgeschaltete Wärmeaustauscher und Gasturbinen vor Beschmutzen und Abnutzung zu schützen und den Emissionsanforderungen zu entsprechen. Eine Reihe von Technologien ist für die Heißgas-PM-Filtration vorgeschlagen worden, aber wenige sind weit genug entwickelt, um einen kommerziellen Einsatz in kombinierten Zyklusenergiesystemen zu ermöglichen.

2.4.1.2 Modellierte Maßnahmen

Um eine europaweite Analyse handhabbar zu halten, betrachtet das RAINS-Modell eine begrenzte Anzahl von Emissionsminderungsoptionen, welche Gruppen von technologischen Lösungen mit ähnlichen Abscheidegraden und -kosten reflektieren. Für große Feuerungsanlagen in der Industrie, in Kraftwerken und in industriellen Prozessen werden folgende Optionen berücksichtigt:

- Zyklone;
- Nassabscheider;
- Elektrofilter (drei Phasen, d.h. ein Feld, zwei Felder, und mehr als zwei Felder);
- Nasselektrofilter;
- Gewebefilter;
- Regelmäßige Wartung von ölbefeuerten Industriekesseln;
- Zwei Minderungsstufen (niedrige und hohe Effizienz) für diffuse Emissionen.

RAINS unterscheidet beim Einsatz dieser Verfahren drei Anwendungsgruppen (Kraftwerke, industrielle Feuerung und industrielle Prozesse), bei denen die unterschiedlichen technischen und ökonomischen Charakteristiken berücksichtigt werden. Die jeweilige Anwendbarkeit dieser Verfahren für diese drei Gruppen wird aufgrund dokumentierter Betriebserfahrung bestimmt (z.B. TA Luft, 1986; AWMA, 2000, UBA, 19998a). Das RAINS-Modell berücksichtigt korngrößenspezifische Abscheidegrade für diese Minderungsoptionen (Tabelle 2.7).

Tabelle 2.7: Korngrößenspezifische Abscheidegrade für Minderungsoptionen in RAINS für Kraftwerke und Industrie

Minderungstechnologie	finderungstechnologie RAINS-Code Abscheidegrad			
winderungstechhologie	KAINS-Coue	> PM10	PM10-2.5	PM2.5
Zyklon	CYC, _CYC	90 %	70 %	30 %
Wäscher	WSCRB, WSCRB	99.9 %	99 %	96 %
Elektrofilter, 1 Feld	ESP1, ESP1	97 %	95 %	93 %
Elektrofilter, 2 Feld	ESP2, ESP2	99.9 %	99 %	96 %
Elektrofilter, 3 Felder und mehr	ESP3P, ESP3P	99.95 %	99.9 %	99 %
Nasselektrofilter	PR WESP	99.95 %	99.9 %	99 %
Gewebefilter	FF, FF	99.98 %	99.9 %	99 %
Regelmäßige Wartung, ölbefeuerte Kessel	GHIND	30 %	30 %	30 %
Gute technische Praxis (industrielle Prozesse diffuse Emissionen), Stufe 1	PRF_GP1	20 %	15 %	10 %
Gute technische Praxis (industrielle Prozesse diffuse Emissionen), Stufe 2	PRF_GP2	75 %	50 %	30 %

Für kleine und mittlere Feuerungsanlagen in Haushalt und Kleinverbrauch sind eine Vielzahl von Maßnahmen, abhängig von der Anlagengröße, dem Brennstoff und dem Betriebsmodus (manuelle oder automatische Beladung), vorhanden:

- Zyklone;
- Gewebefilter;
- Regelmäßige Wartung ölgefeuerte Kessel;
- Neue Anlagenarten, z.B. für Pellets oder Holzspäne.

Für Haushalte und Kleinverbraucher (HHKV), d.h. in erster Linie für Kamine und Heizungen, besteht die Hauptoption zur Staubminderung in der Erneuerung der Anlagen. Darüber berücksichtigt RAINS bei Kaminen die Möglichkeit von staubmindernden (katalytischen oder nicht katalytischen) Kamineinsätzen. Für Kohle- und Holzöfen werden zwei Stufen von Modernisierungsmaßnahmen berücksichtigt, die die Verwendung von katalytischen und nicht-katalytischen Kamineinsätzen sowie von Primär- und Sekundärluftumlenkblechen beinhalten.

Das in RAINS berücksichtigte Maßnahmenbündel enthält auch die regelmäßige Wartung von ölbefeuerten Kesseln.

Korngrößenspezifische Abscheidegrade sowie die Kosten der Minderungsoptionen sind in Tabelle 2.8 angegeben. Die Daten für die Holzverbrennung beruhen auf den amerikanischen Studien von Houck und Tiegs (1998), wobei deren Gültigkeit für europäische Konditionen noch weiterer Prüfung bedarf. Generell gibt es auf diesem Gebiet sehr wenig Literatur in Europa, weshalb die verwendeten Daten mit beträchtlichen Unsicherheiten behaftet sind.

Tabelle 2.8: Korngrößenspezifische Abscheidegrade für Minderungsoptionen in RAINS für Haushalte und Kleinverbrauch

Mindommagtachnologia	DAINIC Codo	Abscheidegrad		
Minderungstechnologie	RAINS-Code		PM10-2.5	PM2.5
Offene Kamine, kein	FP_ENC	44 %	44 %	44 %
Katalysatoreinsatz				
Offene Kamine, Katalysatoreinsatz	FP_CAT	47 %	47 %	47 %
Neue Öfen, HHKV (Kohle), Stufe 1	COAL1	30 %	30 %	30 %
Neue Öfen, HHKV (Kohle), Stufe 2	COAL2	50 %	50 %	50 %
Neue Kessel, HHKV(Kohle)	NB_COAL	40 %	40 %	40 %
Neue Öfen (Holz), nicht-katalytisch	WOOD1	63 %	63 %	63 %
Neue Öfen, HHKV (Holz), katalytisch	WOOD2	65 %	65 %	65 %
Neue Kessel, HHKV (Holzspäne,	MB_PELL	89 %	89 %	89 %
Pellets)				
Regelmäßige Wartung, ölbefeuerte	GHDOM	30 %	30 %	30 %
Kessel				
Zyklone	MB_CYC	90 %	70 %	30 %
Gewebefilter	MB_BAG, _PLBAG	99.98 %	99.9 %	99 %

Konkrete Möglichkeiten zur PM-Minderung bestehen auch für eine Reihe von Quellen in der Landwirtschaft, beim Schüttgutumschlag, im Bergbau, usw. Tabelle 2.9 führt die im RAINS-Modell berücksichtigten Optionen an. Es muss jedoch festgestellt werden, dass mit Ausnahme der Landwirtschaft (Takai *et al.*, 1998; ICC&SRI, 2000) solide Abschätzungen von Abscheidegraden und Kosten nur sehr spärlich oder überhaupt nicht vorhanden sind.

Tabelle 2.9: Korngrößenspezifische Abscheidegrade für Minderungsoptionen in RAINS für andere Quellen.

Minderungstechnologie	RAINS-Code	Abscheidegrad		
Winderungstechnologie	KAINS-Couc	> PM10	PM10-2.5	PM2.5
Landwirtschaft				
Futtermodifikationen (gesamtes Vieh)	FEED_MOD	45 %	35 %	10 %
Silofutter für Rind	HAY_SIL	70 %	40 %	10 %
Freilandhühner	FREE	40 %	15 %	5 %
Alternative Bewirtschaftung, Ernte alternativer Weizensorten	ALTER	40 %	15 %	5 %
Gute landwirtschaftliche Praxis bei anderen Tieren (allgemeine Option)	AGR1	40 %	15 %	5 %
Andere Quellen				
Gute technische Praxis für Lagerung und Gebrauch (Schüttgutumschlag)	STH_GP	50 %	20 %	10 %
Gute technische Praxis in der Öl- und Erdgasindustrie, Abflammen	FLR_GP	40 %	15 %	5 %
Verbot offener Abfallverbrennung	BAN	100 %	100 %	100 %
Gute technische Praxis im Bergbau	MINE_GP	50 %	20 %	10 %
Wassersprühen auf Baustellen	SPRAY	50 %	20 %	10 %
Filter im Haushalt (Küche)	FILTER	50 %	20 %	10 %
Andere Maßnahmen,	RESP1	n.def. (1)	n.def. (1)	$n.def^{(1)}$.
z.B. Straßen waschen				

⁽¹⁾ derzeit nicht definiert

2.4.2 Mobile Quellen

Emissionen von Primärpartikeln aus den mobilen Quellen sind zweierlei Ursprungs: Emissionen, die bei der Kraftstoffverbrennung entstehen, und Abriebsemissionen, d.h. Reifen-, Brems- und Straßenabrieb oder Staubaufwirbelung (durch Verkehr aufgewirbelter oder mitgerissener Staub). In diesem Abschnitt werden Maßnahmen zur Verminderung der Abgasemissionen von PM und deren Anwendung in RAINS besprochen.

2.4.2.1 Verfügbare Emissionsminderungsmaßnahmen

Emissionsminderungsmaßnahmen für mobile Quellen können in die folgenden Kategorien aufgeteilt werden:

- *Änderungen der Kraftstoffqualität*, z.B. Verringerung des Schwefelgehalts. Änderungen der Kraftstoffspezifikationen gestatten Motorenherstellern mehr Flexibilität, neue Emissionsminderungstechnologien einzusetzen.
- *Veränderungen im Motorendesign*, welche eine Optimierung der Verbrennungsprozesse im Motor ermöglichen.
- Abgasnachbehandlung, bei der verschiedene Arten von Katalysator- und Filterkonzepten angewendet werden können, um Emissionen umzuwandeln oder zu filtern, bevor sie den Auspuff verlassen.
- *Verbesserte Kontrolle und Wartung*. Beispiele sind: Funktionskontrolle des Abgassystems während des Betriebs, Inspektion und Wartung (Abgasuntersuchung), integrierte Diagnostiksysteme (OBD, On-Board Diagnostic).

Dieselkraftstoff und saubere Dieselmotoren

Ein hoher Gehalt an Schwefel oder aromatischen Verbindungen wirkt sich auf die Quantität und Qualität der PM-Emissionen aus. Eine gute Kraftstoffqualität ist eine Voraussetzung für den Einsatz neuer Technologien, die Dieselabgase vermindern. Eine Verringerung der Kraftstoffdichte senkt NO_x - und PM-Emissionen, andererseits erhöht sie die Emissionen von Kohlenwasserstoff (HC) und Kohlenmonoxid (CO). Der Gebrauch von synthetischem Dieselkraftstoff, gewonnen aus Energierohstoffen wie Gas oder Kohle, verringert alle Luftschadstoffemissionen einschließlich der PM-Emissionen erheblich. Andere Maßnahmen, welche PM-Emissionen reduzieren können, sind der Einsatz von Biodiesel (gewonnen aus verschiedenen Pflanzenölen) und von Dimethyl-Ether (DME), gewonnen zum Beispiel aus Erdgas und Kohle (http://www.dieselnet.com).

Konstruktionsänderungen bei Dieselmotoren haben PM-Emissionen aus Dieselfahrzeugen um mehr als 90 Prozent verringert. Wichtige Verbesserungen sind elektronische Kontrolle von Kraftstoffeinspritzdüsen, um den Kraftstoff in der optimalen Kombination von Einspritzdruck, Einspritztiming und Sprayposition einzuspritzen, Verbesserungen beim Lufteinlass, Brennkammeränderungen, Abgasrückführung und keramische Zylinderbeschichtungen (siehe auch Cofala und Syri (1998b)).

Dieselkatalysatoren

Katalysatoren erhöhen die chemische Reaktionsrate. Bei der Abgasnachbehandlung werden heterogene Katalysatoren eingesetzt. Zwei Prozesse können zu Störungen beim katalytischen Prozess führen: Vergiftung und thermische Deaktivierung. Die aktiven Zonen des Katalysators können dabei chemisch deaktiviert oder die katalytische Oberfläche blockiert werden, was hauptsächlich durch Schwefel und Phosphor erfolgt. Eine hohe Temperatur kann ein Sintern des katalytischen Materials oder des Trägers bewirken. Oxidationskatalysatoren wurden zuerst in den siebziger Jahren als eine CO-Minderungsmaßnahme im Untertagebergbau eingeführt. Heute werden diese Katalysatoren in vielen Dieselfahrzeugen in Europa eingesetzt, hauptsächlich zur Verminderung von PM- und Kohlenwasserstoffemissionen. Frühe Dieselkatalysatoren verwendeten aktive Oxidantien wie Platin oder Aluminiumoxid, die sehr wirkungsvoll die CO- und HC-Emissionen sowie den organischen Anteil (SOF) der Dieselpartikel reduzieren können.

Jedoch oxidieren Katalysatoren auch Schwefeldioxid, das bei der Verbrennung von schwefelhaltigen Kraftstoffen entsteht. Die Oxidation von Schwefel zu SO₂ führt zur Erzeugung von Sulfatpartikeln. Dies kann die Gesamtemissionen an Primärpartikeln erheblich erhöhen, auch wenn der Anteil an organischen PM verringert wird. Neuere Dieseloxidationskatalysatoren wurden daraufhin entworfen, um einen guten Kompromiss zwischen genügend hoher HC- und SOF-Aktivität und annehmbar niedriger SO₂-Bildung zu erreichen.

Dieselpartikelfilter

Partikelfilter entfernen die Dieselpartikel aus dem Abgas und verhindern somit ihre Emission in die Atmosphäre. Sie arbeiten hauptsächlich mittels einer Kombination von Tiefbettfiltrationsmechanismen unter Nutzung des Diffusions- und Trägheitsprinzips. Die gebräuchlichsten Filtermaterialien sind keramische Wandflussmonolithe und Wickelfilter aus keramischen Fasern. Es existiert eine Vielzahl von Methoden, um die Partikelfilter zu regenerieren, d.h. die im Filter angesammelte Partikelmasse zu verbrennen. Passive Filtersysteme verwenden einen Katalysator, um die Rußverbrennungstemperatur zu senken. Aktive Filtersysteme enthalten dagegen elektrische Heizungen oder Kraftstoffbrenner, um die gesammelten Partikel zu verbrennen.

Die Regeneration eines Dieselfilters ist durch ein dynamisches Gleichgewicht zwischen dem Ruß, der im Filter gesammelt wird, und dem Ruß, der oxidiert wird, gekennzeichnet. Die Rate der Rußoxidation hängt von der Filtertemperatur ab. Bei den Temperaturen, die gewöhnlich bei Dieselabgasen vorherrschen, ist die Rußoxidationsrate klein. Um die Filterregeneration zu erleichtern, muss daher entweder die Abgastemperatur erhöht oder ein Katalysator eingesetzt werden. Der Katalysator kann direkt auf die Filtermedien aufgebracht oder dem Kraftstoff als Kraftstoffzusatz zugeführt werden.

Wandflussmonolithe haben sich als gängigste Dieselfilter erwiesen. Sie wurden aus Durchfluss-Katalysatorunterstützern entwickelt, in denen die Kanalenden wechselweise verschlossen sind, um den Gasfluss durch die porösen Wände zu zwingen, welche dabei als Filter dienen. Die Monolithe werden aus speziellen keramischen Materialien hergestellt. Die meisten Dieselpartikelfilter verwenden monolithische Wanddurchfluss-Substrate, die mit einem Katalysator beschichtet sind. Der Katalysator senkt die Rußverbrennungstemperatur und erlaubt dem Filter während Perioden hoher Abgastemperatur, sich selbst zu regenerieren. Filter unterschiedlicher Größen, mit und ohne Katalysatoren, wurden entwickelt und sind als Standardprodukte erhältlich.

Das CRT (Continuously Regenerating Trap) System verwendet einen keramischen Wanddurchflussfilter, um die Dieselpartikel abzufangen. Die gesammelte Partikelmasse wird kontinuierlich durch Stickstoffdioxid oxidiert, welches in einem Oxidationskatalysator erzeugt wird, der stromaufwärts des Filters angebracht ist. Ein CRT-System benötigt für einen reibungslosen Betrieb praktisch schwefelfreien Kraftstoff.

Kraftstoffzusätze (kraftstofflösliche Katalysatoren) können in passiven Dieselfiltersystemen benutzt werden, um die Rußverbrennungstemperatur zu senken und so die Filterregeneration zu verbessern. Die gängigsten Zusätze sind unter anderem Eisen, Cer und Platin. Die Regeneration von verschiedenen Dieselfiltermaterialien mit Kraftstoffzusätzen wurde in zahlreichen Laborexperimenten und Feldversuchen untersucht. Der Cerzusatz wird in einem kommerziellen Filtersystem für Dieselfahrzeuge verwendet.

Elektrische Regeneration der Dieselfilter ist sowohl im Fahrzeug direkt als auch außerhalb des Fahrzeuges untersucht worden. Die Regeneration mittels einer elektrischen Heizung bewirkt eine signifikante zusätzliche Last des elektrischen Systems im Fahrzeug. Nebenstromanordnungen oder die Regeneration mit Heißluft sind da energieeffizienter. Ein Partikelfilter-System, das heiße Luft zur Regeneration einsetzt, wurde an über 2000 Stadtbussen in den USA getestet. Ein System mit elektrischer Regeneration, die außerhalb des Fahrzeuges durchgeführt wird, ist ebenfalls entwickelt und in den Handel gebracht worden.

Dieselkraftstoffbrenner können benutzt werden, um die Abgastemperatur stromaufwärts einer Falle zu erhöhen, um so die Filterregeneration zu erleichtern. Partikelfilter mit Brennern können in Einzelpunktsysteme und in Volldurchflusssysteme aufgeteilt werden. Die Volldurchflusssysteme können während des regulären Fahrzeugbetriebes regeneriert werden, benötigen aber ein aufwendiges Kontrollsystem, um eine thermisch ausgeglichene Regeneration sicherzustellen. Ein weiterentwickeltes System zeichnet sich daher durch eine elektronisch kontrollierte Regeneration der **Volldurchflussbrenner** aus.

Dieselruß hat die Eigenschaften, im Mikrowellenbereich Strahlung zu absorbieren. Es gibt Filtersubstratmaterialien, die bezüglich der **Mikrowellenbestrahlung** transparent sind. Das Heizen mit Mikrowellen ist somit eine weitere Methode, um Dieselpartikelfilter zu regenerieren.

2.4.2.2 Modellierte Emissionsminderungsmaßnahmen

RAINS orientiert sich in der Darstellung der Emissionsminderungsoptionen für Fahrzeuge an der europäischen Gesetzgebung und unterscheidet die verschiedenen Standards, die jeweils ein Bündel technischer Einzelmaßnahmen beinhalten. Tabelle 2.10 stellt die Entwicklung der Emissionsstandards für leichte Diesel-Nutzfahrzeuge seit 1990 dar. Standards für schwere LKW werden in Tabelle 2.11 dargestellt.

Die Emissionsgrenzwerte für mobile Maschinen und Geräte werden in Tabelle 2.12 wiedergegeben. Vorschriften für Maschinen und Geräte wurden in zwei Phasen eingeführt: Phase I 1999 und Phase II, abhängig von der Motorleistung, von 2001 bis 2004. Die Emissionsobergrenzen ähneln den EURO-I und EURO-II Standards für schwere Nutzfahrzeuge. Die Maschinen, die durch den Standard abgedeckt werden, schließen industrielle Bohranlagen, Kompressoren, Radlader, Planierraupen, Gelände-LKW, Bagger, Gabelstapler, Straßenwartungsausrüstung, Schneepflüge, Flughafenfahrzeuge, Hochbahnen und mobile Kräne mit ein. Landwirtschaftliche und Forstwirtschaftstraktoren haben die

gleichen Emissionsstandards, die aber zu anderen Zeitpunkten in Kraft treten. Schiffsmotoren, Bahnlokomotiven, Flugzeuge und Stromversorgungsaggregate werden nicht durch diese Standards abgedeckt.

Tabelle 2.10: PM-Emissionsstandards für leichte Diesel-Nutzfahrzeuge

Fahrzeugkategorie/Klasse/Standard Bezeichnung	gültig ab ⁽¹⁾	g/km
PKW und leichte LKW	EURO-I - 1992/94	0.14
Bruttofahrzeuggewicht < 1305 kg	EURO-II - 1996	0.08
	EURO-III - 2000	0.05
	EURO-IV - 2005	0.025
Leichte LKW	Klasse II - 1994	0.16
Bruttofahrzeuggewicht 1305 to 1760 kg	Klasse II- 2001	0.07
	Klasse II - 2006	0.04
Leichte LKW	Klasse III - 1994	0.25
Bruttofahrzeuggewicht > 1760 kg	Klasse III - 2001	0.10
•	Klasse III - 2006	0.06

⁽¹⁾ Direktive 98/69/EC (Diesel-Pkw und leichte LKW).

Tabelle 2.11: PM-Emissionsstandards für schwere Nutzfahrzeuge

Fahrzeugkategorie/Klasse/Standard Bezeichnung	gültig ab ⁽¹⁾	g/km
Schwere LKW und Busse	EURO-I - 1992, <85 kW	0.61
	EURO-I - 1992, >85 kW	0.36
	EURO-II - 1996	0.25
	EURO-II - 1998	0.15
	EURO-III - 2000	0.10
	EURO-IV und V –	0.02
	$2005/2008^{(2)}$	

⁽¹⁾ Direktive 88/77/EC (Schwere LKW und Busse).

Die europäischen Emissionsstandards schreiben Emissionsobergrenzen pro gefahrenen Kilometer vor. Zur Ermittlung der Kosteneffizienz und zum konsistenten Vergleich mit stationären Quellen werden in RAINS von diesen absoluten Grenzwerten hypothetische Minderungseffizienzen berechnet, die durch einen Vergleich mit dem ungeminderten Emissionsfaktor für Fahrzeuge, die Ende der achtziger Jahre gebaut wurden, ermittelt werden. Diese Vorgehensweise ist konsistent mit den Annahmen, die innerhalb des Auto-Öl-Programms gemacht wurden (EC, 1996; EC, 1999). Aufgrund des Mangels an ausführlicheren Daten wurden gleiche Abscheidegrade für alle PM-Korngrößen angenommen.

Da das RAINS-Modell darauf abzielt, die Notwendigkeit von weiteren Verschärfungen von Emissionsgrenzwerten zu untersuchen, ist es notwendig, Optionen für Maßnahmen vorzusehen, die über die derzeitige Gesetzeslage (EURO-IV) hinausgehen. Deshalb werden je nach Fahrzeugkategorie ein bis zwei zusätzliche Emissionsminderungsstufen reserviert, wobei deren quantitative Implementierung zum Teil noch weiterer Abklärung bedarf (für Dieselfahrzeuge ist derzeit der von Peugeot entwickelte Partikelfilter abgebildet).

⁽²⁾ Benötigt Fahrzeugausrüstung mit Partikelfilter.

Tabelle 2.12: PM-Emissionsstandards für mobile Maschinen und Geräte

Phase, Fahrzeugkategorie, Jahr de	es Inkrafttretens (1)(2)	g/kWh
Phase I	130 - 560 kW, 1999	0.54
	70 - 130 kW, 1999	0.70
	37 - 75 kW, 1999	0.85
Phase II	130 - 560 kW, 2002	0.20
	130 - 560 kW, 2003	0.30
	70 - 130 kW, 2004	0.40

⁽¹⁾ Direktive 97/68/EC für mobile Geländemaschinen, Direktive 2000/25/EC für Traktoren in der Land- und Forstwirtschaft.

Tabelle 2.13: Minderungstechnologien für Dieselstraßenfahrzeuge und ihre Abscheidegrade

Sektor, Minderungstechnologie, Jahr des	RAINS-Code	Abscheidegrad [%]
Inkrafttretens		
Leichte Diesel-LKW und -PKW		
EURO-I - 1992/94	MDEUI	60
EURO-II – 1996	MDEUII	74
EURO-III – 2000	MDEUIII	86
EURO-IV – 2005	MDEUIV	93
EURO-V – post- 2005, Stufe 1	MDEUV	99.95
EURO-VI - post 2005, Stufe 2	MDEUVI	99.99
Schwere Diesel-LKW und -Busse		
EURO-I – 1992	HDEUI	45
EURO-II – 1996	HDEUII	77
EURO-III – 2000	HDEUIII	85
EURO-IV – 2005	HDEUIV	97
EURO-V – 2008	HDEUV	97
EURO-VI - post-2008	HDEUVI	99.95

Tabelle 2.14 enthält eine Liste der Technologien für Dieselfahrzeuge der übrigen Verkehrsträger. Die Wirkungsgrade der einzelnen Phasen sind im Allgemeinen dieselben wie für den Straßenverkehr. RAINS berücksichtigt auch drei Technologien für die Emissionsminderung bei seetüchtigen Schiffen. Beschreibungen dieser Technologien basieren auf Daten des Lloyd's Register, 1995, von Wright, 1997 und Kjeld, 1995.

⁽²⁾ Standards für Traktoren müssen ungefähr zwei Jahre später in Kraft treten.

Tabelle 2.14: Minderungstechnologien für Diesel-Fahrzeuge im übrigen Verkehrssektor und deren PM-Abscheidegrade

	DADIG G 1	.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sektor, Minderungstechnologie, Jahr des Inkrafttretens	RAINS-Code	Abscheidegrad [%]
Fahrzeuge in Bau und Landwirtschaft		
Äquivalent zu EURO-I für HDV, 1999	CAGEUI	20
Äquivalent zu EURO-II für HDV, 2000/2002	CAGEUII	50
Äquivalent zu EURO-III für HDV	CAGEUIII	85
Äquivalent zu EURO-IV für HDV	CAGEUIV	97
Äquivalent zu EURO-V für HDV	CAGEUV	97.05
Äquivalent zu EURO-VI für HDV	CAGEUVI	99.95
Schiene und Binnenschifffahrt		
Äquivalent zu EURO-I für HDV, 1999	TIWEUI	20
Äquivalent zu EURO-II für HDV, 2000/2002	TIWEUII	50
Äquivalent zu EURO-III für HDV	TIWEUIII	85
Äquivalent zu EURO-IV für HDV	TIWEUIV	97
Äquivalent zu EURO-V für HDV	TIWEUV	97.05
Äquivalent zu EURO-VI für HDV	TIWEUVI	99.95
Seeschifffahrt		
Primäre Maßnahmen, mittlere Schiffe	STMCM	20
Primäre Maßnahmen, große Schiffe, schweres Heizöl	STLHCM	40
Primäre Maßnahmen, große Schiffe, Diesel	STLMCM	20

Obwohl es keine Standards für PM-Emissionen für Benzinmotoren (Ottomotoren) gibt, verringert der Einsatz von Technologien zur Vermeidung von NO_x und NMVOC-Emissionen auch die Emissionen von Partikeln. Es wurde angenommen, dass katalytische Konverter zu einer Verringerung der PM-Emissionen um 50 Prozent führen (EURO-I bis EURO-VI). Dieser Prozentsatz basiert auf dem Unterschied der Emissionsfaktoren für unverbleiten Kraftstoff mit und ohne Dreiwegekatalysator wie von APEG (1999) berichtet. Bezeichnungen der Technologien und ihre RAINS-Abkürzungen werden in Tabelle 2.15 dargestellt.

Tabelle 2.15: Minderungstechnologien für Ottomotoren und deren PM-Abscheidegrade

Sektor, Minderungstechnologie, Jahr des Inkrafttretens	RAINS-Code	Abscheidegrad [%]			
Leichte Nutzfahrzeuge mit Benzindirekteinspritzung (DI)					
EURO-III	LFGDIII	50			
EURO-IV	LFGDIV	50			
EURO-V - post 2005, Phase 1	LFGDV	50			
EURO-VI - post 2005, Phase 2	LFGDVI	50			
Leichte Nutzfahrzeuge mit 4-Takt-Ottomotoren, e.	ccl. Direkteinspritzer				
EURO-I	LFEUI	50			
EURO-II	LFEUII	50			
EURO-III	LFEUIII	50			
EURO-IV	LFEUIV	50			
EURO-V - post 2005, Phase 1	LFEUV	50			
EURO-VI - post 2005, Phase2	LFEUVI	50			
Motorräder, Mopeds and Geländemotoren mit 2-T	aktmotoren				
Phase 1	MMO2I	30			
Phase 2	MMO2II	70			
Phase 3	MMO2III	70			
Motorräder mit 4-Taktmotoren					
Phase 1	MOT4I	50			
Phase 2	MOT4II	50			
Phase 3	MOT4III	50			
Schwere Nutzfahrzeuge, Ottomotoren					
Phase 1	HDSEI	50			
Phase 2	HDSEII	50			
Phase 3	HDSEIII	50			

2.5 Aktivitätsdaten

Das RAINS-Modell schätzt Emissionen für einzelne Emissionsquellen durch Multiplikation der Aktivitätsraten dieser Quellen mit entsprechenden Emissionsfaktoren ab. Infolgedessen hat die Qualität der statistischen Information dieser Aktivitätsraten entscheidenden Einfluss auf die Emissionsschätzung. Die Qualität der Aktivitätsdaten wird für historische Emissionsinventare von der Verfügbarkeit zuverlässiger hochaufgelöster Statistiken bestimmt; für Emissionsprojektionen ist die Verfügbarkeit von ausreichend detaillierten (Wirtschafts-) Prognosen entscheidend.

Die RAINS-Datenbank umfasst historische Aktivitätsdaten für die Jahre 1990, 2995 und 2000 sowie, in Fünfjahresschritten, alternative Projektionen bis 2030. Historische Daten wurden hauptsächlich internationalen und nationalen Energie- und Wirtschaftsstatistiken entnommen. Statistische Angaben über einzelne Industrieaktivitäten, speziell für osteuropäische Länder, stammen aus der CEPMEIP (2002)-Datenbank. Die Prognosen wurden von Modellstudien abgeleitet. War keinerlei Information über den zukünftigen Entwicklungstrend verfügbar, wurde die zuletzt berichtete Aktivitätsrate konstant für die Zukunft fortgeschrieben. Die Datenbank ist mit den anderen Modulen des RAINS-Modells völlig kompatibel, d.h. es werden die gleichen Projektionen der Energie-, Vieh-, Bevölkerungsentwicklung verwendet, die auch zur Abschätzung der SO₂-, NO_x-, Ammoniak- und NMVOC-Emissionen Anwendung finden. Die Datenquellen für die unterschiedlichen Sektoren werden in Tabelle 2.16 zusammengefasst.

Aktivitätsdaten des Verkehrssektors werden z.T. vom jeweiligen Energieszenario (gesamter Benzinund Dieselverbrauch) abgeleitet. Strukturelle Informationen, wie die Flottenzusammensetzung etc., wurden den Auto-Öl-Studien entnommen.

Tabelle 2.16: Quellen der Aktivitätsdaten im RAINS-PM-Modell

Kategorie/ Sektor	Historische Daten	Projektionen
Energieverbrauch: Stationäre Feuerung, Straßenverkehr, übriger Verkehr	IEA, 1998; EC, 1999ab	EC, 1999ab; Cofala <i>et al.</i> , 2002
Energieproduktion, Umwandlung Feste Brennstoffe Öl- und Gasgewinnung	EC, 1999a; CEPMEIP, 2002; IEA, 1998	EC, 1999ab; Cofala <i>et al.</i> , 2002
Industrielle Prozesse Eisen und Stahl, Nicht-Eisen Zement und Kalk Andere	UN, 2002; CEPMEIP, 2002 UN, 2002; EC, 1999a UN, 2002; CEPMEIP, 2002	EC, 1999a; Cofala <i>et al.</i> , 2002 EC, 1999a; Cofala <i>et al.</i> , 2002 EC, 1999ab; ab 2000 konstant auf Niveau 1995
Schüttgut	CEPMEIP, 2002; UN, 2002	EC, 1999ab; ab 2000 konstant auf Niveau 1995
Offene Verbrennung von Abfällen	CEPMEIP, 2002	ab 2000 konstant auf Niveau 1995
Landwirtschaft Vieh, Düngemittel Ackerwirtschaft	FAO, 2002; IFA, 1998; Klimont, 1998 FAO, 2002	Klimont, 1998; Amann <i>et al.</i> , 1998; ab 2000 konstant
Bevölkerung	UN, 2000	UN, 2000
Andere	CEPMEIP, 2002; UN, 2002	ab 2000 konstant auf Niveau 1995

3 Modellierung der Emissionsquellen

Das folgende Kapitel beschreibt die Darstellung der einzelnen Quellkategorien von PM-Emissionen in RAINS. Es erläutert, welche Quellkategorien im Einzelnen im RAINS-Modell unterschieden werden, auf welchen Informationen deren Emissionsberechnung beruht und welche Maßnahmen zur Emissionsminderung berücksichtigt sind.

3.1 Stationäre Feuerungsanlagen

Die Verbrennung von fossilen Brennstoffen in stationären Anlagen ist eine Hauptquelle von PM-Emissionen in Europa. Es wird geschätzt, dass 1995 ungefähr 51 Prozent TSP, 48 Prozent PM10 und 40 Prozent PM2.5 von diesen Quellen emittiert wurden (CEPMEIP, 2002). Der Anteil schwankt stark zwischen den Ländern, abhängig vom Brennstoffmix und dem bereits erreichten Minderungsniveau. Für TSP und PM10 betragen die Anteile z.B. 43 und 34 Prozent in Großbritannien (APEG, 1999), ungefähr 17 und 28 Prozent in Österreich und in Deutschland (Winiwarter *et al.*, 2001; UBA, 1998a), und nur ungefähr 10 Prozent des PM10 in der Schweiz (BUWAL, 2001; EWE, 2000). Eine sehr wichtige Rolle spielen Emissionen aus kleinen Feuerungsanlagen bei Haushalten und Kleinverbrauchern (HHKV), die in den meisten Ländern ungefähr ein Drittel der PM-Emissionen aus stationären Feuerungsanlagen verursachen (UBA, 1998a; APEG, 1999). In einigen Ländern könnte diese Quelle jedoch dominieren, z.B. in Österreich entstanden 1995 mehr als 70 Prozent PM aus dieser Quelle (Winiwarter *et al.*, 2001).

PM-Emissionen aus Verbrennungsprozessen können grob in zwei Kategorien aufgeteilt werden (Flagan und Seinfeld, 1988):

- Asche, d.h. ein Verbrennungsprodukt zusammengesetzt aus nicht-brennbaren Mineralbestandteilen im Brennstoff, für gewöhnlich mit einem Gehalt von ungefähr 2 bis 30 Prozent nicht-brennbarem mineralischen Material (McElroy *et al.*, 1982), und
- kohlenstoffhaltige Partikel, z.B. Kohle, Koks und Ruß, die durch Pyrolyse aus unverbranntem Brennstoff gebildet werden.

Die größten Partikel der Asche und des unverbrannten Brennstoffs bleiben im Kessel in der Bodenasche. Teilchen mit einem Durchmesser von weniger als 100-300 µm werden im Verbrennungsgas mitgeführt und bilden sogenannte Verbrennungsaerosole oder Flugasche. Ein Teil der Verbrennungsaerosolpartikel könnte sich auf den Dampfkesselwänden oder den Wärmeaustauscheroberflächen niederlegen. Kraft- und Heizkraftwerke produzieren enorme Mengen des Nebenprodukts Flugasche, und entsprechende technische Vorkehrungen sind unumgänglich, um die Emissionspartikel in der Atmosphäre zu reduzieren. In heutigen Kraftwerken und industriellen Kesseln fangen Emissionsminderungsanlagen wie Zyklone oder Elektrofilter den größten Teil der Partikel ein, die die Dampfkessel verlassen.

3.1.1 Feste Brennstoffe

Bei der Verbrennung fester Brennstoffe in Kraftwerken und großen Industriekesseln ist die Aschebildung die Hauptquelle von Staubpartikeln. Zum Beispiel ist bei der Verbrennung pulverisierter Kohle der Anteil des unverbrannten Brennstoffs an den Gesamtemissionen normalerweise kleiner als fünf Prozent (Lammi *et al.*, 1993). Emissionen aus der Wirbelschichtfeuerung enthalten auch Partikel des Bettmaterials und, falls Kalksteineinspritzung in den Dampfkessel angewendet wird, auch die Partikel, die aus Kalkstein entstehen. Bei kleineren Kesseln und Öfen, wie sie hauptsächlich in Haushalten und im Kleinverbrauch eingesetzt werden, ist dagegen der Anteil des unverbrannten Brennstoffs normalerweise hoch.

RAINS-Sektoren

Für feste Brennstoffe unterscheidet das RAINS-Modell Emissionen aus 12 unterschiedlichen Kategorien (Tabelle 3.1).

Tabelle 3.1: Quellkategorien für die Emissionsberechnung für Kohleverbrennung

Emissionskategorien	
PP_EX_WB	Bestehende Kraftwerke, Schmelzkammerkessel
PP_EX_OTH	Bestehende Kraftwerke, andere Kesseltypen
PP_NEW	Neue Kraftwerke
IN_BO	Industriefeuerung, Verbrennung in Kesseln
IN_OC	Industriefeuerung, andere Verbrennung
CON_COMB	Energieverbrauch beim Brennstoffumwandlungsprozess
DOM_STOVE	HHKV, Verbrennung in Öfen
DOM_SHB_M	Einfamilienhauskessel (<50kW) Handbeschickung
DOM_SHB_A	Einfamilienhauskessel (<50kW) automatisch
DOM_MB_M	Mittlere Kessel (<1 MW) Handbeschickung
DOM_MB_A	Mittlere Kessel (<50MW) automatisch
Aktivitätsraten	Verbrennung von festen Brennstoffen (exklusive Brennholz) in stationären Quellen (Kraftwerke, Industrie und HHKV)
Einheit	kt/PJ Brennstoffverbrauch

Emissionsfaktoren

Um die Unterschiede in den Brennstoffqualitäten zwischen den Ländern widerzuspiegeln, werden für feste Brennstoffe die unverminderten Emissionsfaktoren (Rohgasemissionsfaktoren, siehe auch Kapitel 2.1) mit einem Massenbilanzansatz unter Berücksichtigung länderspezifischer Daten zu Aschegehalten, Heizwerten und Anteilen der im Feuerraum verbliebenen Asche nach der in Abschnitt 2.3.1 dargelegten Methode errechnet. Eine Ausnahme ist die Verbrennung fester Brennstoffe in kleinen Kesseln und in Öfen im Sektor Haushalt und Kleinverbrauch, für welche länderspezifische Emissionsfaktoren aus der Literatur abgeleitet wurden.

Die Massenkonzentrationen von TSP, PM10 und PM2.5 im Abgas sowie deren Korngrößenverteilungsprofile werden wesentlich von den jeweiligen Verbrennungsbedingungen bestimmt (Flagan und Seinfeld, 1988; Moisio, 1999). Bei der Verbrennung von festen Brennstoffen besteht der Großteil der PM-Emissionen aus aschebildenden Mineralien. Die Größe solcher Partikel ist unter anderem vom mineralischen Substanzaufbau abhängig, wobei hitzebeständige Metalloxide (SiO₂, MgO, FeO, Al₂O₃ usw.) und flüchtigere Arten (Na, K, Cd, AS, Pb, etc.) als Mineraleinschließung oder Heteroatome in Kohlemolekülen auftreten.

Die hitzebeständigen Verbindungen verflüchtigen sich nicht direkt bei den Temperaturen normaler Verbrennungsprozesse, und sie bilden hauptsächlich verhältnismäßig große Partikel (1-50 μm). Ein kleiner Teil der hitzebeständigen Sorte kann sich jedoch auch bei reduktiven Hochtemperaturbedingungen verflüchtigen. Flüchtige Arten vergasen bei hohen Temperaturen und resultieren in der Folge durch Kernbildung, Kondensation, Anhäufung und Koagulation in sehr kleinen Teilchen (0,01-0,5 μm) (Flagan und Seinfeld, 1988).

Das RAINS-Modell berücksichtigt diese unterschiedlichen Verbrennungsbedingungen durch Abbildung von drei Arten von Kesseln, die sich erheblich in der Ascheeinbindung und der Korngrößenverteilungen unterscheiden (Lind, 1999):

• Rostverbrennung (PP_EX_OTH1, PP_NEW1, IN_BO1, IN_OC1, DOM_MB_M, DOM_MB_A). Wird hauptsächlich für kleinere Anlagen eingesetzt. In der Industrie wird für Kohle die Rostverbrennung langsam durch Wirbelschichtfeuerung ersetzt, sie bleibt aber

- wichtig für die Biomasseverbrennung. Partikel der Rostverbrennung sind normalerweise mit einer durchschnittlichen Größe von 60-70 μm verhältnismäßig groß (Lammi *et al.*, 1993).
- Wirbelschichtfeuerung (FBC) (PP_EX_OTH2, PP_NEW2, IN_BO2, IN_OC2), wird typischerweise bei Anlagen mittlerer Größe (bis 100 MW) eingesetzt. Nach der Literatur (z.B., Lind, 1999) unterscheidet sich die Korngrößenverteilung in der Wirbelschichtfeuerung von der Trockenstaubfeuerung. Da Kesseltemperaturen bei atmosphärischen Wirbelschichtfeuerungsanlagen niedriger sind, werden weniger Feinpartikel gebildet und ausgetragen. Im Partikelbereich größer als 2,5 μm bilden Wirbelschichtfeuerungen größere Aschepartikel als Staubfeuerungen (Moisio,1999). Zusätzlich werden einige verhältnismäßig große Partikel des Bettmaterials und des zugegebenen Kalksteins mit dem Abgas mitgeschleppt. Durchschnittliche Flugaschenteilchengrößen von 20-30 μm vor ESP wurden bei der zirkulierenden FBC von Kohle gemessen (Lind et al., 1995, 1996).
- Staubfeuerung (z.B., PP_EX_OTH3), bei der der Brennstoff fein (40-80 μm) gemahlen und dann in den Dampfkessel geblasen wird. Neben Kohle kann auch Torf in pulverisierter Form verbrannt werden (Moisio, 1999). Trockenstaubfeuerungen sind allgemein sehr verbreitet und ihre Partikelbildung ist gut untersucht. Die Verbrennungstemperaturen bei Staubfeuerung sind hoch und erreichen bei flüssigem Ascheabzug bis 1700°C. Bei diesen hohen Temperaturen werden flüchtige Arten und ein kleiner Anteil der hitzebeständigen Bestandteile der aschebildenden Anteile freigesetzt, wobei der Anteil der verdampften Asche normalerweise kleiner als 10 Prozent ist. Die nicht verflüchtigen Mineralverbindungen bilden größere Aschepartikel, normalerweise über 1 μm (Moisio, 1999).

Neben der Ascherückhaltung werden zusätzliche Brennstoffeigenschaften zur genaueren Bestimmung des Rohgasemissionsfaktors verwendet. Tabelle 3.2 und Tabelle 3.3 geben einen Überblick über berichtete Emissionsfaktoren und gemessene Korngrößenverteilungen. Die entsprechenden RAINS-Werte sind in den Tabelle 3.4, Tabelle 3.5 und Tabelle 3.6 angeführt.

Tabelle 3.2: Übersicht über in der Literatur angeführte ungeminderte Emissionsfaktoren für die Kohleverbrennung [kt/PJ]

Quelle	Anlagentyp	PM2.5	PM10	TSP
BUWAL, 2001	Kleine Öfen		0.110	0.270
	Feuerungen, HHKV		0.090	0.150
	Industriefeuerungen		0.045	0.050
CEPMEIP, 2002	Kleinverbraucher, Braunkohle	0.07	0.14	0.35
	Kleinverbraucher, Steinkohle ('hoch')	0.06	0.12	0.30
	Kleinverbraucher, Steinkohle (,niedrig')	0.025	0.05	0.10
	Kleinverbraucher, Steinkohle, niedrige Qualität	0.10	0.20	0.80
Umweltbundes- amt TEXTE Pfeiffer <i>et al.</i> , 2000	Kleinverbraucher, Steinkohle			0.26-0.28
	Kleinverbraucher,			0.12-0.13
	Braunkohlebriketts Kleinverbraucher, Koks			0.014
Spitzer et al.,	Kiemverbraucher, Koks			0.014
1998	Kleinverbraucher, Heizung			0.153±50%
	Kessel, Öfen, Einfamilienhaus			0.094±54%
Winiwarter <i>et al.</i> , 2001	Kleinverbraucher, Anlagen	0.075	0.085	0.094
·	HHKV, Öfen, Kamine	0.122	0.138	0.153
UBA, 1999a	HHKV, Öfen, Steinkohle			0.250
	HHKV, Öfen, Braunkohle			0.350
EPA, 1998a	Kleine Kessel, Oben-			0.291
	beschickung Kleinkessel, Wurfbeschickung			0.273
	Pulverisierte Kohle, Trockenbettkessel			1.818
	Pulverisierte Kohle, Schmelzkammerkessel			1.273
	Steinkohle, Rostfeuerung			1.200
	Braunkohlekessel			1.105
Lammi et al.,	Trocken			3.60 - 5.40
1993	Wirbelschicht			4.30 - 7.20
Meier and Bischoff, 1996	Rostfeuerung, Braunkohle			2.237

Tabelle 3.3: Übersicht über in der Literatur angeführte Korngrößenverteilungen bei der Kohleverbrennung [Prozent der TSP-Emissionen]

Quelle	Anlagentyp	PM2.5	PM10	TSP
UBA, 1999a	Ofen, Steinkohle		90 %	100 %
EPA,	Kleinkessel, Obenbeschickung	14 %	37 %	100 %
1998a	Kleinkessel, Wurfbeschickung	25 %	41 %	100 %
	Steinkohle, Trockenbettkessel, keine Minderung	6 %	23 %	100 %
	Steinkohle, Wirbelschichtkessel, keine Minderung	21 %	37 %	100 %
	Braunkohle, keine Minderung	10 %	35 %	100 %
Moisio,	Steinkohle, keine Minderung	6 %	52 %	100 %
1999	Steinkohle, Wirbelschicht, keine Minderung	5 %	26 %	100 %

Tabelle 3.4: In RAINS verwendete Korngrößenverteilung für die Verbrennung fester Brennstoffe im Industriebereich [Prozent der TSP-Emissionen].

Brennstoff (Anlagentyp)	PM2.5	PM10	TSP
Kohle [Rost]	7 %	20 %	100 %
Kohle [Flüssigbett]	5 %	26 %	100 %
Braunkohle [trocken]	10 %	35 %	100 %
Steinkohle [trocken]	6 %	23 %	100 %
Koks, Briketts	45 %	79 %	100 %
Biomasse	77 %	89 %	100 %
Abfälle	23 %	38 %	100 %

Tabelle 3.5: In RAINS verwendete Korngrößenverteilung für die Verbrennung fester Brennstoffe in Kraftwerken [Prozent der TSP-Emissionen]

Brennstoff (Anlagentyp)	PM2.5	PM10	TSP
Kohle [Rost]	14 %	37 %	100 %
Kohle [Flüssigbett]	5 %	26 %	100 %
Braunkohle [trocken]	10 %	35 %	100 %
Steinkohle [trocken]	6 %	23 %	100 %
Steinkohle [Schmelzkammer]	21 %	23 %	100 %
Koks, Briketts	45 %	79 %	100 %
Biomasse	77 %	89 %	100 %
Abfälle, Hausmüll	23 %	38 %	100 %

Tabelle 3.6: In RAINS verwendete Korngrößenverteilung für die Verbrennung fester Brennstoffe bei Kleinverbrauchern [Prozent der TSP-Emissionen]

Brennstoff (Anlagentyp)	PM2.5	PM10	TSP
Kohle [Öfen und Kessel, HHKV]	13 %	90 %	100 %
Kohle [große Kessel, Kleinverbraucher]	7 %	20 %	100 %
Kohle	45 %	79 %	100 %
Biomasse [Öfen und Kessel, HHKV]	93 %	96 %	100 %
Biomasse [große Kessel, Kleinverbraucher]	77 %	89 %	100 %
Abfall	60 %	90 %	100 %

Anwendbare Minderungsoptionen

Die im RAINS-Modell berücksichtigten Minderungsoptionen umfassen Abgasreinigungstechniken, d.h. Zyklone, Gewebefilter und Elektrofilter. Für kleine Kohlefeuerungsanlagen im HHKV-Sektor werden zur stufenweisen Ersetzung alter Anlagen zwei Arten von emissionsarmen Kesseln/Herden (siehe Tabelle 2.7) vorgesehen, jedoch keine nachgeschalteten end-of-pipe Minderungsverfahren.

3.1.2 Holzverbrennung

Die Literatur stimmt grundsätzlich darin überein, dass Holzverbrennung eine Hauptquelle von PM-Emissionen ist. Jedoch ist es aus einer Reihe von Gründen relativ schwierig, PM-Emissionen aus der Holzverbrennung genau abzuschätzen:

- Es gibt ernsthafte Zweifel an der Genauigkeit der Holzverbrauchsstatistiken, da der nichtkommerzielle/gewerbliche Einsatz von Brennholz schwer zu quantifizieren ist.
- Es werden hunderte Arten von Holzfeuerungsanlagen verwendet, besonders im HHKV-Sektor. Die entstehenden PM-Emissionen werden wesentlich von der Anlagenart bestimmt.
- Studien zeigen einen starke Zusammenhang zwischen der verbrannten Holzart und den dabei entstehenden PM-Emissionen. In der Praxis werden verschiedene Baumarten als Brennholz benutzt, allerdings sind entsprechende Statistiken nicht verfügbar.
- Die Praxis der Lagerung und des Abhärtens von Brennholz variiert, und damit die Holzfeuchte und schlussendlich auch die PM-Emissionen.
- Unterschiede in der Lage des Haushaltes über Meeresspiegel.
- Kaminbedingungen zwischen verschiedenen Häusern können sehr unterschiedlich sein.
- Viele emissionsbestimmende Parameter beim Betrieb von Holzfeuerungsanlagen, so z.B. Verbrennungsraten, Branddauer, Feuchtengehalt, usw., weisen große Schwankungen auf.

Jeder dieser Parameter hat bedeutende Auswirkungen auf die Verbrennungsbedingungen und beeinflusst damit die PM-Emissionen (Houck et al., 2001).

RAINS-Sektoren

Tabelle 3.7: Emissionsquellkategorien für die Holzverbrennung

Emissionskategorien	
PP EX OTH	Bestehende Kraftwerke, andere Kesseltypen
PP_NEW	Neue Kraftwerke
IN_BO	Industriefeuerung, Verbrennung in Kesseln
IN_OC	Industriefeuerung, andere Verbrennung
CON_COMB	Energieverbrauch beim Brennstoffumwandlungsprozess
DOM-FPLACE	Offene Kamine
DOM_STOVE	Haushalte, kommerzieller, behördlicher, landwirtschaftlicher Verbrauch
	(HHKV), Verbrennung in Öfen
DOM_SHB_M	Einfamilienhauskessel (<50 kW), Handbeschickung
DOM_SHB_A	Einfamilienhauskessel (<50 kW), automatische Beschickung
DOM_MB_M	Mittlere Kessel (<1MW), Handbeschickung
DOM_MB_A	Mittlere Kessel (<50MW), automatische Beschickung
Aktivitätsraten	Verbrennung von Brennholz in der Industrie und bei HHKV
	-
Einheit	kt/PJ Brennstoffverbrauch

Emissionsfaktoren

Die Abbildung des Emissionsverhalten von Holzfeuerungen wird durch die geringe Verfügbarkeit von aktuellen Messstudien deutlich erschwert, wobei bei den vorhandenen Studien deren Repräsentativität für europäische Bedingungen oft unklar ist. So erscheinen einige der älteren Emissionsfaktoren, welche z.B. in EPA (1998a,b) aufgeführt sind, nicht immer für die gegenwärtigen europäischen Bedingungen repräsentativ, da inzwischen in Europa eine beträchtliche Verbesserung der Anlagenleistung stattgefunden hat, was auch zu niedrigeren Emissionen geführt hat (Houck *et al.*, 2001). Wie in Tabelle 3.8 gezeigt, variieren die Emissionsfaktoren in der Literatur beträchtlich.

Ein sehr wichtiger Aspekt von PM-Emissionen aus der Holzverbrennung im HHKV ist die Korngrößenverteilung. Einige Studien fanden bis zu 95 Prozent der PM-Emissionen aus dieser Quelle als PM2.5 (z.B. Smith, 1987; Ahuja *et al.*, 1989; Houck *et al.*, 1989; Tullin und Johansson, 2000; Baumbach *et al.*, 1999; Dreiseidler *et al.*, 1999; siehe Tabelle 3.9), wodurch diese Quellen bei einer Betrachtung der Gesundheitseffekte von PM2.5 große Bedeutung gewinnen.

Die aktuelle Implementierung des RAINS-Modells verwendet für die Holzverbrennung Emissionsfaktoren, die nach den Literaturangaben als charakteristisch für europäische Bedingungen betrachtet werden können (Tabelle 3.10, Tabelle 3.11). Um deutliche Unterschiede in Betriebspraxis, Alter der Anlagen usw. zu reflektieren, werden für Ost- und Westeuropa unterschiedliche Faktoren angenommen.

Tabelle 3.8: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Holzverbrennung [kt/PJ]

Quelle	Anlagentyp	PM2.5	PM10	TSP
BUWAL, 2001	Kamine, HHKV		0.150	0.150
	Öfen, HHKV		0.150	0.150
	Kleine Kessel, HHKV, Handbeschickung		0.050	0.050
	Kleine Kessel, automatisch		0.080	0.080
Karvosenja, 2000	Öfen, HHKV			0.2-0.5
Dreiseidler, 1999	Öfen, HHKV			0.200
Baumbach, 1999	Öfen, HHKV			0.05-0.10
Pfeiffer et al., 2000	ННКУ			0.041-0.065
CEPMEIP, 2002	'Hohe Emissionen'	0.270	0.285	0.300
	'Niedrige Emissionen'	0.135	0.143	0.150
Winiwarter et al.,	Kleinverbraucher, Anlagen	0.09	0.081	0.072
2001	Öfen, Kamine, HHKV	0.118	0.133	0.148
NUTEK, 1997	Einzelfamilie, Hauskessel, konventionell			1.500
	Einzelfamilie, Hauskessel, modern mit Akkumulatortank			0.017
Smith, 1987	Kleinverbraucher, Heizöfen < 5 kW			1.350
,	Kleinverbraucher, Herde < 5 kW			0.570
	Industriekessel			0.350
BUWAL, 1995	Schweizer Grenzwert 1992 bis zu 1MW			0.106
Spitzer et al.,	Kleinverbraucher, Heizung			0.148±46%
1998	Einfamilienhauskessel, Öfen			0.090±26%
Zhang <i>et al.</i> , 2000	Brennholz in China			0.76-1.08
Houck and Tiegs,	Konventioneller Ofen			0.91
1998	Nicht-katalytischer Ofen			0.33
	Katalytischer Ofen			0.32
	Pellet-Ofen			0.10
	Offener Kamin, konventionell			0.60
	Offener Kamin, nicht katalytischer			0.33
	Einsatz			
	Offener Kamin, katalytischer Einsatz			0.32
	Offener Kamin, Pellets mit Einsatz		0.00-	0.10
EPA, 1998b (1)	Offene Feuerstellen		0.805	0.875
	Holzöfen		0.724	0.787
EPA, 1998a	Kessel, Baumrinde			2.266
Lammi et al.,	Wirbelschicht in großen Kesseln			1.0-3.0
1993	Rostfeuerung in Kesseln			0.25-1.50

⁽¹⁾ Ursprüngliche Faktoren in lb/Tonne, für die Neuberechnung wurde ein Brennwert von 16 GJ/Tonne angenommen.

Tabelle 3.9: Literaturangaben über Korngrößenverteilungen bei der Holzverbrennung [Prozent der TSP-Emissionen]

Quelle	Sektor	PM2.5	PM10	TSP
Dreiseidler, 1999	Öfen, HHKV		90 %	100 %
	Pellets	84.4 %	94.6 %	100 %
EPA, 1998b			92 %	100 %
Baumbach, 1999	Öfen, HHKV	96 %	99.7 %	100 %
UMEG, 1999	Kleine Kessel	79 %	92 %	100 %

Tabelle 3.10: Im RAINS-Modell verwendete Emissionsfaktoren für Holzfeuerungen in Westeuropa [kt/PJ]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Kamine, Öfen	DOM_FPLACE, DOM_STOVE	0.067 -	0.07 -	0.072 -
		0.37	0.034	0.35
Kleine Kessel, HHKV	DOM_SHB_M, DOM_SHB_A	0.093 -	0.096 -	0.1 - 0.2
		0.186	0.19	
Große Kessel,	DOM_MB_M, DOM_MB_A	0.05 -	0.06 -	0.065 -
Kleinverbraucher		0.12	0.134	0.15
Industrie	PP_, IN_, CONV_COMB	0.185	0.214	0.24

Tabelle 3.11: Im RAINS-Modell verwendete Emissionsfaktoren für Holzfeuerungen in Osteuropa [kt/PJ]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Kamine, Öfen	DOM_FPLACE, DOM_STOVE	0.465	0.48	0.5
Kleine Kessel, HHKV	DOM_SHB_M, DOM_SHB_A	0.33 -	0.34 -	0.35 - 0.4
		0.37	0.38	0.33 - 0.4
Große Kessel,	DOM MB M, DOM MB A	0.27 -	0.31 -	0.35 - 0.4
Kleinverbraucher	DOM_MB_M, DOM_MB_A	0.31	0.36	0.33 - 0.4
Industrie	PP_, IN_, CONV_COMB	0.185	0.214	0.24

Anwendbare Minderungsoptionen

Das RAINS-Modell berücksichtigt für mittlere und große Kessel im HHKV und für industrielle Anlagen Zyklone, Gewebefilter und Elektrofilter als nachgeschaltete *end-of-pipe* Emissionsminderungsverfahren. Für kleine Anlagen bei HHKV wurden drei Arten moderner Kessel/Öfen einbezogen, um die stufenweise Ablösung alter Anlagen zu simulieren (siehe auch die kurze Diskussion in Abschnitt 2.4.1.2).

3.1.3 Flüssige Brennstoffe

Flüssigbrennstoffe enthalten i.d.R. weniger aschebildende Bestandteile als Kohle. So sind z.B. die bei der Verbrennung von schwerem Heizöl emittierten Feinstäube kohlenstoffhaltige Kokspartikel (Flagan und Seinfeld, 1988).

RAINS-Sektoren

Tabelle 3.12: Emissionsquellkategorien für flüssige Brennstoffe

Emissionskategorien	
PP EX OTH	Bestehende Kraftwerke, andere Kesseltypen
PP_NEW	Neue Kraftwerke
IN_BO	Industriefeuerung, Verbrennung in Kesseln
IN_OC	Industriefeuerung, andere Verbrennung
CON_COMB	Energieverbrauch bei der Brennstoffumwandlung
DOM	Haushalt und Kleinverbrauch (HHKV)
Aktivitätsraten	Verbrennung von flüssigen Brennstoffen in stationären Quellen (Kraftwerke, Industrie und Kleinverbraucher)
Einheit	kt/PJ Brennstoffverbrauch

Emissionsfaktoren

Bei der Verbrennung von flüssigen Brennstoffen entstehen durch Verflüchtigung von kohlenstoffhaltigen Bestandteilen Rußpartikel mit einer typischen Größe von 0.01- $0.5~\mu m$ (Flagan und Seinfeld, 1988). Bei schwerem Heizöl formieren sich zusätzlich Kokspartikel mit einer Größe von 1- $50~\mu m$. Es wird daher im RAINS-Modell zwischen schwerem und leichtem Heizöl unterschieden.

Schweres Heizöl

Tabelle 3.13: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Verbrennung von schwerem Heizöl [kt/PJ]

BUWAL, 2001 Industriekessel 0.023 0.023(1) BUWAL, 1995 Kraftwerke 0.023(1) Raffinerien, nach Minderung 0.023(1) EPA, 1998a (2) Große Kessel, keine Minderung 0.038 EPA, 1995 (3) Kraftwerke 0.038 Industrie 0.020 UBA, 1989 Kraftwerke 0.015 0.016 Umwandlung 0.023 0.027 0.030 Industrie 0.0045 0.050 UBA, 1998 (2) Kraftwerke 0.0023 0.027 0.030 Kleinverbraucher 0.0045 0.050 UBA, 1998 (2) Kraftwerke 0.0023 0.027 0.030 Kleinverbraucher (HHKV) 0.008- 0.005- 0.0068- 0.021 0.021 0.021 0.021 0.022 Kraftwerke, 'hoch' 0.012 0.04 0.2 20002 Kraftwerke, 'niedrig' 0.03 0.003 0.003 1ndustrie, 'niedrig' 0.01 0.01 0.01 0.01 1nd	Quelle	Anlagentyp	PM2.5	PM10	TSP
Raffinerien, nach Minderung 0.043	BUWAL, 2001	Industriekessel		0.023	$0.0239^{(1)}$
EPA, 1998a (2) Große Kessel, keine Minderung 0.038 EPA, 1995 (3) Kraftwerke Industrie 0.020 UBA, 1989 Kraftwerke (1000) 0.015 0.016 Umwandlung (1000) 0.023 0.027 0.030 Industrie (1000) 0.023 0.027 0.030 Kleinverbraucher (2000) 0.005 0.0065 0.0068 UBA, 1998 (2) Kraftwerke (2000) 0.0021 0.001 0.001 0.001 Kleinverbraucher (HHKV) 0.0028 0.009- 0.009- 0.002- 0.003- 0.003- Industrie (2000) Kraftwerke, (1000) 0.012 0.04 0.2 0.002- 0.003- 0.004- 0.004- 0.	BUWAL, 1995	Kraftwerke			$0.023^{(1)}$
EPA, 1995 (3) Kraftwerke Industrie 0.038 (0.020) UBA, 1989 Kraftwerke (0.015 0.016 0.016 0.028 0.028 0.031 0.028 0.028 0.031 0.028 0.031 0.027 0.030 0.027 0.030 0.027 0.030 0.027 0.030 0.027 0.030 0.025 0.0068 0.0065 0.0068 0.0065 0.0068 0.0021 0.021 0.0219 0.021 0.0219 0.021 0.0219 0.027 0.030 0.027 0.030 0.003 0.		Raffinerien, nach Minderung			0.043
EPA, 1995 (3) Kraftwerke Industrie 0.038 (0.020) UBA, 1989 Kraftwerke (0.015 0.016 0.016 0.028 0.028 0.031 0.028 0.028 0.031 0.028 0.031 0.027 0.030 0.027 0.030 0.027 0.030 0.027 0.030 0.027 0.030 0.025 0.0068 0.0065 0.0068 0.0065 0.0068 0.0021 0.021 0.0219 0.021 0.0219 0.021 0.0219 0.027 0.030 0.027 0.030 0.003 0.	EPA, 1998a (2)	Große Kessel, keine Minderung			0.238
UBA, 1989 Kraftwerke Umwandlung Industrie 0.023 0.027 0.030 UBA, 1998 (2) Kleinverbraucher 0.045 0.050 UBA, 1998 (2) Kraftwerke 0.0065-0.0068-0.0068-0.001 0.0021 0.0219 UBA, 1998 (2) Kleinverbraucher (HHKV) 0.0028-0.003-0.003-0.0021 0.0021 0.0021 Kleinverbraucher (HHKV) 0.0028-0.003-0.003-0.003-0.003-0.003-0.001 0.012-0.014-0.014-0.015 0.025-0.05 CEPMEIP, 20002 Kraftwerke, 'niedrig' 0.0025-0.003-		Kraftwerke		0.038	
Umwandlung 0.028 0.031 1 1 1 1 1 1 1 1 1		Industrie		0.020	
Industrie 0.023 0.027 0.030 0.050 0.045 0.050 0.0065 0.0068 0.021 0.0219 0.021 0.0219 0.027 0.030 0.027 0.030 0.027 0.030 0.027 0.030 0.027 0.030 0.012 0.014 0.0156 0.012 0.014 0.0156 0.0028 0.003 0.0037 0.012 0.014 0.0156 0.0028 0.003 0.0037 0.012 0.014 0.0156 0.0028 0.003 0.0	UBA, 1989	Kraftwerke		0.015	0.016
Name		Umwandlung		0.028	0.031
UBA, 1998 (2) Kraftwerke 0.0065-0.0068-0.021 0.00219 Kleinverbraucher (HHKV) 0.008-0.008-0.009-0.027 0.0030-0.002 Industrie 0.0028-0.012 0.014 0.0156 CEPMEIP, Kraftwerke, 'hoch' 0.012 0.04 0.2 20002 Kraftwerke, 'niedrig' 0.0025 0.003 0.003 Industrie, 'hoch' 0.13 0.19 0.24 Industrie, 'niedrig' 0.01 0.012 0.014 Kleinverbraucher 0.04 0.05 0.06 Pfeiffer et al., Kleinverbraucher 0.038 0.038 2000 Lammi et al., 5-50 MW 0.025-0.15 1993 Ohlström, 1998 5-50 MW 0.0025-0.038 Berdowski et al., Kraftwerke 0.0025-0.038 Industrie 0.001-0.0390(4)		Industrie	0.023	0.027	0.030
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Kleinverbraucher		0.045	0.050
Kleinverbraucher (HHKV) 0.008- 0.009- Industrie 0.0028- 0.0033- 0.012 0.014 0.0156 CEPMEIP, Kraftwerke, 'hoch' 0.012 0.04 0.2 20002 Kraftwerke, 'niedrig' 0.0025 0.003 0.003 Industrie, 'hoch' 0.13 0.19 0.24 Industrie, 'niedrig' 0.01 0.012 0.014 Kleinverbraucher 0.04 0.05 0.06 Pfeiffer et al., Kleinverbraucher 0.04 0.05 0.06 Pfeiffer et al., 5-50 MW 0.025 0.038 Ohlström, 1998 5-50 MW 0.001- Berdowski et al., Kraftwerke 0.025 0.038 Industrie 0.014 0.020	UBA, 1998 ⁽²⁾	Kraftwerke		0.0065-	0.0068-
Industrie 0.0028- 0.0033- 0.0037- 0.012 0.014 0.0156 0.0028- 0.0033- 0.0037- 0.012 0.014 0.0156 0.0025 0.003 0				0.021	0.0219
Industrie 0.0028- 0.0033- 0.0037-		Kleinverbraucher (HHKV)		0.008-	0.009-
CEPMEIP, 20002 Kraftwerke, 'hoch' 0.012 0.014 0.0156 20002 Kraftwerke, 'hoch' 0.0025 0.003 0.003 Kraftwerke, 'niedrig' 0.13 0.19 0.24 Industrie, 'niedrig' 0.01 0.012 0.014 Kleinverbraucher 0.04 0.05 0.06 Pfeiffer et al., Kleinverbraucher 0.038 0.038 2000 0.01 0.05 0.038 Lammi et al., 1993 5-50 MW 0.025-0.15 Ohlström, 1998 5-50 MW 0.001-0.390(4) Berdowski et al., 1997 Kraftwerke 0.025 0.038 1997 Industrie 0.014 0.020				0.027	0.030
CEPMEIP, 20002 Kraftwerke, 'hoch' 0.012 0.04 0.2 Kraftwerke, 'niedrig' 0.0025 0.003 0.003 Industrie, 'hoch' 0.13 0.19 0.24 Industrie, 'niedrig' 0.01 0.012 0.014 Kleinverbraucher 0.04 0.05 0.06 Pfeiffer et al., 2000 Kleinverbraucher 0.038 0.025 0.15 Lammi et al., 1993 5-50 MW 0.001-0.025 0.001-0.390(4) 0.091-0.390(4) Berdowski et al., 1997 Kraftwerke Industrie 0.014 0.025 0.038 1997 Industrie 0.014 0.020		Industrie	0.0028-	0.0033-	0.0037-
Normal			0.012	0.014	0.0156
Kraftwerke, 'niedrig' 0.0025 0.003 0.003 1.003 1.004 0.13 0.19 0.24 1.004 0.01 0.012 0.014 0.05 0.06 0.04 0.05 0.06 0.038 0.000 0.004 0.05 0.06 0.038 0.005	CEPMEIP,	Kraftwerke, 'hoch'	0.012	0.04	0.2
Industrie, 'hoch' Industrie, 'niedrig' Kleinverbraucher Pfeiffer et al., Lammi et al., 1993 Ohlström, 1998 S-50 MW Onumber Berdowski et al., 1997 Industrie, 'hoch' 0.01 0.012 0.014 0.05 0.06 0.038 0.025-0.15 0.001- 0.390 ⁽⁴⁾	20002				
Industrie, 'niedrig' 0.01 0.012 0.014 Kleinverbraucher 0.04 0.05 0.06 Pfeiffer et al., Kleinverbraucher 0.038 2000 Lammi et al., 5-50 MW 0.025-0.15 1993 Ohlström, 1998 5-50 MW 0.001-		Kraftwerke, 'niedrig'	0.0025	0.003	0.003
Kleinverbraucher 0.04 0.05 0.06 Pfeiffer et al., Kleinverbraucher 0.038 2000		Industrie, 'hoch'	0.13	0.19	0.24
Pfeiffer et al., 2000 Kleinverbraucher 0.038 Lammi et al., 1993 5-50 MW 0.025-0.15 Ohlström, 1998 5-50 MW 0.001-0.390(4) Berdowski et al., 1997 Kraftwerke Industrie 0.025 0.038 1997 Industrie 0.014 0.020		Industrie, 'niedrig'	0.01	0.012	0.014
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Kleinverbraucher	0.04	0.05	0.06
Lammi et al., 5-50 MW 0.025-0.15 1993 Ohlström, 1998 5-50 MW 0.001- 0.390 ⁽⁴⁾ Berdowski et al., Kraftwerke 0.025 0.038 1997 Industrie 0.014 0.020		Kleinverbraucher			0.038
Ohlström, 1998 5-50 MW 0.001- 0.390 ⁽⁴⁾ Berdowski <i>et al.</i> , 1997 Kraftwerke 10.025 No.025 No.038 No.020 Industrie 0.014 No.020	Lammi et al.,	5-50 MW			0.025-0.15
0.390 ⁽⁴⁾ Berdowski <i>et al.</i> , Kraftwerke 0.025 0.038 1997 Industrie 0.014 0.020					
1997 Industrie 0.014 0.020	Ohlström, 1998	5-50 MW			
1997 Industrie 0.014 0.020	Berdowski et al.,	Kraftwerke	0.025	0.038	
		Industrie	0.014	0.020	
Kleinverbraucher 0.030 0.050		Kleinverbraucher	0.030	0.050	

⁽¹⁾ Emissionsgrenzwert für Schweiz.
(2) Laut Dreiseidler *et al.*, 1999.
(3) Laut Berdowski *et al.*, 1997.
(4) Durchschnittswert 0.032 kt/PJ.

Nur wenige Studien haben die Korngrößenverteilung der PM-Emissionen aus der Verbrennung schweren Heizöls analysiert (Tabelle 3.14).

Tabelle 3.14: Literaturangaben über Korngrößenverteilungen bei der Verbrennung von schwerem Heizöl [Prozent der TSP-Emissionen]

Quelle	Sektor	PM2.5	PM10	TSP
EPA, 1998a	Große Kessel, keine Minderung	52 %	100 %	100 %
	Industrie, keine Minderung	56 %	100 %	100 %
	Kessel, HHKV	23 %	100 %	100 %
CEPMEIP,	Kraftwerke, 'hoch'	6 %	100 %	100 %
20002				
	Kraftwerke, 'niedrig'	83 %	100 %	100 %
	Industrie, 'hoch'	54 %	100 %	
	Industrie, 'niedrig'	71 %	100 %	
	Kleinverbraucher	67 %	100 %	
Lützke,	Industrie, keine Minderung	76 %	100 %	
1987	-			
Berdowski	Kraftwerke und Industrie	75 %(1)		
et al., 1997		. ,		

⁽¹⁾ Als Prozent PM10.

Derzeit verwendet das RAINS-Modell gleiche Emissionsfaktoren für alle Länder (Tabelle 3.15). Jedoch zeigt der Vergleich der Verbrennung schweren Heizöls in der ehemaligen Deutschen Demokratischen Republik (DDR) mit der in der Bundesrepublik Deutschland, dass es einen möglicherweise bedeutenden internationalen Unterschied in Höhe eines Faktors von drei geben kann (Dreiseidler *et al.*, 1999). Somit repräsentieren die gegenwärtigen RAINS Werte für Osteuropa möglicherweise eine Schätzung am unteren Ende. Abschließende Aussagen sind aufgrund mangelnder Dokumentation der den Emissionsfaktormessungen zugrunde liegenden Emissionsminderung derzeit nicht möglich.

Tabelle 3.15: Im RAINS-Modell verwendete Emissionsfaktoren für schweres Heizöl [kt/PJ]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Kraftwerke	PP_NEW, PP_EX	0.0093	0.0132	0.0155
Umwandlung	CON_COMB	0.0117	0.0166	0.0195
Industrie	IN_BO, IN_OC	0.0104	0.0147	0.0173
Kleinverbraucher	DOM	0.0095	0.0247	0.0380

Heizöl (Leichtes Heizöl, Mitteldestillate)

Tabelle 3.16: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Verbrennung von Mitteldestillaten [kt/PJ]

Quelle	Anlagentyp	PM2.5	PM10	TSP
	<u>e</u> ,,	T 1V12.3		
BUWAL, 2001	Öfen, HHKV		0.001	0.001
	Kessel, HHKV		0.0002	0.0002
	Industriekessel		0.0003	0.0003
CEPMEIP, 2002	Kraftwerke & Industrie, 'hoch'	0.005	0.005	0.238
	Kraftwerke &Industrie, 'niedrig'	0.002	0.002	
	HHKV	0.005	0.005	
UBA, 1989	Kraftwerke, Umwandlung			0.0033
	Industrie, Kleinverbraucher			0.0015
UBA, 1998	Alle			0.0015
Ohlström, 1998	0-50 MW Anlagen			0.003-
	-			$0.100^{(1)}$
Pfeiffer et al., 2000	Kleinverbraucher			0.0017
	HHKV			0.0016
Berdowski et al.,	Kraftwerke	0.005	0.005	
1997				
	Industrie	0.004	0.004	
	Kleinverbraucher	0.03	0.03	
EPA, 1998a	Umwandlung, Industrie			0.0047
(1) Daniel and misse 0.070	1./DI			

⁽¹⁾ Durchschnitt: 0.070 kt/PJ.

Tabelle 3.17: Literaturangaben über Korngrößenverteilungen bei der Verbrennung von Mitteldestillaten [Prozent der TSP-Emissionen]

Quelle	Sektor	PM2.5	PM10	TSP
EPA, 1998a	Kessel, HHKV	42%	100%	100 %
	Umwandlung, Industrie	12 %	100%	100 %
APEG, 1999 ⁽¹⁾	Kraftwerke	43 %		100 %
	Industrie	25 %		100 %
	Kleinverbraucher	76-94%		100 %
Berdowski et	HHKV	60 %		
al., 1997 ⁽¹⁾				

⁽¹⁾ Die Werte beziehen sich auf PM₁₀ und nicht auf TSP.

Tabelle 3.18: Im RAINS-Modell verwendete Emissionsfaktoren für Mitteldestillate [kt/PJ]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Kraftwerke	PP_NEW	0.0004	0.0011	0.0022
	PP_EX	0.0007	0.0018	0.0036
Umwandlung	CON_COMB	0.0004	0.0018	0.0036
Industrie	IN_BO, IN_OC	0.0003	0.0011	0.0022
Kleinverbraucher	DOM	0.0007	0.0009	0.0017

Anwendbare Minderungsoptionen

Das RAINS-Modell berücksichtigt für die Verbrennung von schwerem und leichtem Heizöl in industriellen Anlagen primäre Maßnahmen (regelmäßiges Kontroll- und Wartungsprogramm) und *end-of-pipe* Techniken vor (Gewebefilter). Für kleine Anlagen im HHKV-Sektor ist ein regelmäßiges Inspektionsprogramm (zum Beispiel obligatorische Überprüfungen, Einstellung und Austausch von beanspruchten Teilen wie in Österreich jährlich erforderlich) enthalten.

3.1.4 Gasförmige Brennstoffe

Bei der Verbrennung von Erdgas entstehen durch Verflüchtigung von kohlenstoffhaltigen Bestandteilen Rußpartikel mit einer typischen Größe von 0,01-0,5 µm. Tabelle 3.20 listet die Emissionsfaktoren auf, die in der Literatur für die Verbrennung von Erdgas in stationären Quellen berichtet werden. Obgleich sich die berichteten Faktoren etwas unterscheiden, sind sie alle verhältnismäßig klein und der Beitrag dieser Quelle zu den gesamten PM-Emissionen ist marginal. Nur zwei Studien haben Korngrößenverteilungen berichtet (APEG, 1999; Berdowski *et al.*, 1997) und in beiden Fällen bestand die Annahme darin, dass alle emittierten Partikel in der Größenordnung von PM2.5 lagen. Dasselbe wird im RAINS-Modell angenommen.

RAINS-Sektoren

Tabelle 3.19: Emissionsquellkategorien für gasförmige Brennstoffe

Emissionskategorien	
PP EX OTH	Bestehende Kraftwerke, andere Kesseltypen
PP_NEW	Neue Kraftwerke
IN_BO	Industriefeuerung, Verbrennung in Kesseln
IN_OC	Industriefeuerung, andere Verbrennung
CON_COMB	Energieverbrauch beim Brennstoffumwandlungsprozess
DOM	Haushalt und Kleinverbrauch (HHKV)
Aktivitätsraten	Verbrennung von gasförmigen Brennstoffen in stationären Quellen (Kraftwerke, Industrie und Kleinverbraucher)
Einheit	kt/PJ Brennstoffverbrauch

Emissionsfaktoren

Tabelle 3.20: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Verbrennung von gasförmigen Brennstoffen [kt/PJ]

Quelle	Anlagentyp	PM2.5	PM10	TSP
BUWAL, 2001	Öfen, HHKV		0.0005	0.0005
	Kessel, HHKV		0.0002	0.0002
	Industriekessel		0.0001	0.0001
CEPMEIP, 2002	HHKV	0.0002	0.0002	0.0002
Pfeiffer et al., 2000	HHKV		0.0003	
UBA, 1989; UBA, 1998	Alle		0.000095	0.0001
EPA, 1998a	Alle, keine Minderung			0.0009

Tabelle 3.21: Im RAINS-Modell verwendete Emissionsfaktoren für die Verbrennung von gasförmigen Brennstoffen [kt/PJ]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Kraftwerke	PP_NEW, PP_EX	0.0001	0.0001	0.0001
Umwandlung	CON_COMB	0.0001	0.0001	0.0001
Industrie	IN_BO, IN_OC	0.0001	0.0001	0.0001
HHKV	DOM	0.00003-	0.00003-	0.00003-
		0.0002	0.0002	0.0002

Anwendbare Minderungsoptionen

Das RAINS-Modell berücksichtigt keine Minderungsoptionen für die Verbrennung von Erdgas.

3.2 Industrieprozesse

Eine Vielzahl von industriellen Prozessen emittiert Staub. Aufgrund der internationalen Unterschiede im technologischen Entwicklungsstand sind auch bedeutende Unterschiede in den resultierenden Staubemissionen zu erwarten. Leider ist nur sehr wenig prozess- und länderspezifische Informationen dokumentiert, die erlauben würde, diese Variationen systematisch abzubilden. Deshalb werden in der derzeitigen Implementierung des RAINS-Modells für viele Industrieprozesse für alle Länder einheitliche ungeminderte Emissionsfaktoren angenommen. Die Struktur des Modells erlaubt jedoch die Anwendung länderspezifischer Werte, so vorhanden. Wie in anderen Inventaren (z.B. Berdowski et al., 1997; CEPMEIP, 2002) werden Emissionsfaktoren oft für gesamte industrielle Branchen und nicht für spezifische Prozesse abgeleitet.

3.2.1 Eisen- und Stahlindustrie

Die Eisen- und Stahlindustrie umfasst verschiedene Produktionsstufen (Sintern, Hochöfen, Konverteröfen, Lichtbogenöfen, Siemens-Martin-Öfen, Eisen- und Stahlgießereien). Eine ausführlichere Beschreibung dieser Industrie und typischer Prozesse ist zum Beispiel in AWMA (2000), TA Luft (1986) zu finden. Die Koksproduktion wurde in diese Kategorie einbezogen, da der Großteil des produzierten Koks (metallurgischer Koks) in dieser Industrie benutzt wird. Die in RAINS getroffene Aufteilung des Quellsektors für die Eisen- und Stahlindustrie ist mit einer neuen britischen Studie kompatibel, welche vorhandene Prozessemissionsfaktoren (Passant *et al.*, 2000) und andere nationale (APEG, 1999; UBA, 1998a) oder europäische PM-Inventare (Berdowski *et al.*, 1997; CEPMEIP, 2002) untersucht.

Laut CEPMEIP (2002) trugen Prozessemissionen aus der Eisen- und Stahlindustrie in Europa 1995 ungefähr neun Prozent zu TSP, 12 Prozent zu PM10 und acht Prozent zu PM2.5 bei. Der Anteil

schwankt erheblich von Land zu Land. So schätzt z.B. UBA (1998a), dass ungefähr 16,5 Prozent der PM10-Emissionen in Deutschland von dieser Industrie stammt, während in Großbritannien der Anteil auf ungefähr fünf Prozent (APEG, 1999) geschätzt wird.

3.2.1.1 Koksherstellung

Koks wird durch Pyrolyse der Kohle in einer Reihe von Prozessstufen (Zerkleinern, Sortieren, Mischen, Aufladen und schließlich Verkokung) produziert. Nach der Verkokung wird der Koks aus dem Ofen entfernt und zum Löschturm gebracht, in dem der Koks abgekühlt wird. Danach wird Koks auf ein Förderwerk zum Zerkleinern und Klassieren transportiert. Alle diese Phasen sind mögliche Quellen von Staubemissionen (EPA, 2000; AWMA, 2000; EPA, 1998a; Passant *et al.*, 2000; TA Luft, 1986).

Es wird geschätzt, dass 1995 ungefähr ein Prozent der europäischen TSP- und 0,8 Prozent PM10 - Emissionen aus dieser Quelle entstanden (CEPMEIP, 2002). Für Deutschland berechnete UBA (1998a) den Beitrag an den Gesamtemissionen mit ungefähr 0,6 Prozent für TSP und 0,8 Prozent für PM10.

RAINS-Sektoren

Tabelle 3.22: Emissionsquellkategorie für die Koksproduktion

Emissionskategorie PR_COKE	Koksproduktion
Aktivitätsraten	Koksproduktion für Verbrauch in Eisen und Stahlindustrie, in Gießereien und als rauchfreier Brennstoff
Einheit	kg/t hergestellter Koks

Emissionsfaktoren

Bei vielen in der Literatur angeführten Emissionsfaktoren ist eine genaue Zuordnung der Faktoren zu einzelnen Prozessstufen und den dabei angewendeten Emissionsminderungsmaßnahmen schwierig. Infolgedessen weisen die in Tabelle 3.23 dokumentierten Emissionsfaktoren beträchtliche Unterschiede auf.

Es ist anzumerken, dass Werte von EPA (2000) von der ursprünglichen Maßeinheit, d.h. kg/t Kohleaufladung, neuberechnet wurden und angenommen wird, dass ungefähr 1,6 Tonnen Kohle pro Herstellung einer Tonne Koks (AWMA, 2000) benutzt wird.

Ebenso sollte man bedenken, dass, wenn diese Zahlen mit früheren EPA-Publikationen, d.h. EPA, 1998a verglichen werden, die 1998er Version von Ap-42 einen Fehler in den Maßeinheiten enthielt, in denen Emissionen von der Koksproduktion angegeben wurden, nämlich in kg/t Koks anstelle von kg/t der Kohlebeladung.

Tabelle 3.23: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Koksproduktion [kt PJ]

Literatur	Angewandte	PM2.5	PM10	TSP
	Emissionsminderung			
UBA, 1989 ⁽¹⁾	keine Angabe			0.5-1.1
UBA, 1998a	Vermindert		0.162	0.18
EPA, 2000	Ungemindert			
Kohlevorheizer (*)		1.67	2.73	2.80
Ofenfeuerung (*)		0.15	0.19	0.38
Ofentürlecks (*)				0.43
Ofenbewegung (*)		0.16	0.40	0.93
Löschen (Schmutzwasser)		0.81	0.96	4.19
Löschen (sauberes Wasser	•)	0.10	0.27	0.91
Löschen mit Trennblech (Schmutzwasser)	0.21	0.34	1.04
Löschen ohne Trennblech	(sauberes Wasser) (*)	0.03	0.04	0.43
EPA, 1995 ⁽¹⁾	Ungemindert		2.8	
Passant et al., 2000	Moderate Minderung ⁽³⁾	0.55	0.75	1.40
	Beste Minderung ⁽³⁾	0.30	0.35	0.70
EEA, 1999 ⁽²⁾	Ungemindert			0.8 - 5.0
IPPC, 2000a ⁽²⁾	Altes Kraftwerk			0.48 - 0.75
CEPMEIP, 2002	Vermindert,	0.3	0.7	2.0
	'hohe Emissionen'			
	Vermindert,	0.02	0.05	0.1
	'niedrige Emissionen'			
Berdowski et al., 1997	Ungemindert	0.15	0.6	

Tabelle 3.24 listet Literaturangaben über die Korngrößenverteilung auf (die in Tabelle 3.23 angegebenen Werte aus EPA (2000) sind nicht wiederholt). Die berichteten Werte müssen mit großer Vorsicht interpretiert werden, weil die Informationen nicht immer für alle Prozesse angegeben sind und die Größenverteilung stark zwischen den Prozessen variiert.

Tabelle 3.24: Literaturangaben über Korngrößenverteilungen bei der Koksproduktion [Prozent der TSP-Emissionen]

Quelle	Angewandte Emissionsminderung	PM2.5	PM10	TSP
Passant et al., 2000	GB Koksanlage, moderate Minderung ⁽²⁾ Beste Minderung ⁽²⁾	40 % 43 %	54 % 50 %	100 % 100 %
Berdowski et al., 1997	Unkontrolliert	25 %	100 %	

⁽¹⁾ Bezieht sich auf PM10 und nicht auf TSP.

k.A.: keine Angabe

(1) Veränderung des Durchschnittsemissionsfaktors zwischen 1986 und 1966.

⁽²⁾ Laut Passant *et al.*, 2000.

⁽³⁾ Geschätzt auf Basis von EPA-Daten unter der Annahme von ungeminderten Türlecks.

⁽⁴⁾ CEPMEIP (2002) berichtet Emissionsfaktoren für die Kategorien niedrig bis hoch, was niedrige Emissionen (sehr effiziente Vermeidung) und hohe Emissionen (ineffiziente Vermeidung) bedeutet, ohne dass die Art der Maßnahme und ihre angenommene (oder tatsächliche) Effizienz aufgeführt wird. (*) Für die Emissionsberechnung in RAINS verwendet.

⁽²⁾ Geschätzt auf Basis von EPA-Daten unter der Annahme unverminderter Türlecks.

Die im RAINS-Modell verwendeten Emissionsfaktoren (Tabelle 3.25) wurden unter Berücksichtigung der in Tabelle 3.23 markierten Prozesse aus EPA (2000) abgeleitet. Es wurde dabei angenommen, dass sauberes Wasser und Leitbleche in Löschtürmen benutzt werden, was in etwas geringeren unverminderten Emissionen als im 'schlechtesten Fall' (d.h. mit schmutzigem Wasser und ohne Leitbleche) resultiert. Neue Studien in Großbritannien (Passant *et al.*, 2000) und den USA (AWMA, 2000) zeigen, dass dies ein Standardverfahren für bestehende Anlagen ist.

Die ungeminderten Emissionsfaktoren für TSP und PM10 resultieren nach dieser Rechung in 5 und 3,4 kg/t, was relativ gut mit anderen Quellen übereinstimmt (EEA, 1999; EPA, 1995). Die von Passant *et al.* (2000) berichteten Faktoren für kontrollierte Emissionen basieren auf einem sehr ähnlichen (obgleich etwas höheren) Niveau der unverminderten Emissionen. Nimmt man an, dass fast über die Hälfte der Emissionen, die von UBA (1998a) berichtet werden, diffuser Natur und deshalb nur mit geringer Effizienz reduzierbar sind, und der restliche Teil mit einer durchschnittlichen Effizienz von ungefähr 98 Prozent vermindert werden kann, würden die unverminderten Faktoren, die auf diese Art abgeleitet werden, ungefähr 5,5 kg/t Koks sein.

Tabelle 3.25: Im RAINS-Modell verwendete Emissionsfaktoren für die Koksproduktion [kt/PJ]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Koksproduktion	PR_COKE	1.9971	3.3618	4.976

Anwendbare Minderungsoptionen

Das RAINS-Modell sieht mehrere nachgeschaltete Minderungstechniken für die Koksherstellung vor (Zyklone, nasse Auswäscher, Gewebefilter und drei Phasen von Elektrofiltern).

Auch Ofentür- und Oberseitenlecks können eine bedeutende Quelle flüchtiger PM-Emissionen sein, die aber nur durch Anwendung guter technische Praxis und regelmäßiger Wartung reduziert werden können. Gegenwärtig beinhaltet das RAINS-Modell keine solchen Optionen für diesen Sektor, erlaubt aber, den Anteil an den unverminderten Gesamtemissionen zu spezifizieren, die dieser Kategorie angehören (engl. NSC - *Not Suitable for Control*, nicht verminderbar). Der Benutzer kann diesen Wert für jede Fünfjahresperiode frei wählen. Der derzeit implementierte Wert von 1,6 Prozent für NSC reflektiert die Tatsache, dass einige grundlegende Maßnahmen in den meisten Anlagen eingesetzt werden und ungefähr 80 Prozent der PM-Emissionen, welche von der Ofentür herrühren, entfernt werden. Dies entspricht PM-Emissionen (NSC) von ungefähr 0,08 kg/t Koks.

3.2.1.2 Sinteranlagen

Sinteranlagen wandeln Rohstoffe (Eisenerz, Koks, Kalkstein, usw.) in Produkte (Sinter, Pellets) um, die besonders geeignet sind, Hochöfen zu beschicken. Details über den Sinterprozess und die dabei entstehenden Emissionen können z.B. in EPA (1998a), AWMA (2000), EEA (1999), TA Luft (1986) gefunden werden.

Die Hauptquellen von Staubemissionen aus Sinteranlagen sind Sinterband, Rohstoffvorbereitung, Umschlag von Rohstoffen, Bandbeladung und Entladung vom Brecher sowie die Heißklassierung. Emissionen des Sinterbandes werden gewöhnlich durch Zyklone vermindert, gefolgt von trockenem oder nassem ESP, Hochdruck-Tropfenwäschern oder Gewebefiltern. Das Zerkleinern und die Heißklassierung (die nächst größte Quellen von PM) erfolgt normalerweise abgedeckt. Die dabei entstehenden Abgase werden zu einem Gewebefilter oder zu Wäschern geleitet. Andere diffuse Emissionen, die bei der Behandlung und beim Rohstofftransport auftreten, werden oft erfasst und durch einen Gewebefilter gereinigt (EPA, 1998a; Passant *et al.*, 2000). Da diffuse Emissionen einen bedeutenden Anteil an den Gesamtstaubemissionen bei diesem Prozess ausmachen, unterscheidet RAINS zwischen Prozess- und diffusen Emissionen. Zusätzlich werden Betriebe, in denen Pellets produziert werden, getrennt betrachtet.

CEPMEIP (2002) schätzt, dass 1995 zwischen zwei und drei Prozent der europäischen PM2.5- und PM10-Emissionen aus Sinteranlagen stammten, wobei zwischen einzelnen Ländern große Unterschiede auftreten. So schätzte z.B. UBA (1998a), dass im Jahr 1998 Sinteranlagen ungefähr vier Prozent des PM10 und 5 Prozent des TSP in Deutschland emittierten, wovon bis zu 75 Prozent diffuse Emissionen waren.

RAINS-Sektoren

Tabelle 3.26: Emissionsquellkategorien für Sinterprozesse

Emissionskategorie	
PR_SINT	Sinteranlagen
PR SINT F	Sinteranlagen (diffuse Emissionen)
PR_PELL	Pellets-Anlagen
Aktivitätsraten	Sintern in der Eisen- und Stahlindustrie (ohne Nicht-Eisen Prozesse)
Einheit	kg/t hergestellter Sinter

Emissionsfaktoren

Bei den Emissionsfaktoren für Sinteranlagen berichtet die Literatur beträchtliche Unterschiede (Tabelle 3.27), die aufgrund mangelnder Dokumentation über zugrundeliegende Emissionsminderungsmaßnahmen und deren Abscheidegrade nur schwer interpretierbar sind.

Tabelle 3.27: Übersicht über in der Literatur angegebene Emissionsfaktoren für Sinteranlagen

Literatur	Angewandte	PM2.5	PM10	TSP
	Emissionsminderung			
EPA, 1998a; AWMA, 2000	Ungemindert ⁽¹⁾	0.65	1.92	8.96
EEA, 1999	Ungemindert (2)			7.5
IPPC, 2000a (3)	Vermindert			0.23-1.2
CEPMEIP, 2002	Vermindert, hoch	0.5	0.8	2
	Vermindert, niedrig	0.1	0.1	0.2
CEPMEIP, 2002	[Für Pellets] Vermindert	0.03	0.03	0.03
Jockel, 1992 ⁽⁴⁾	ESP			0.5-0.65
diffuse Emissionen	Unvermindert			1.1-1.3
UBA, 1998a	Vermindert, Alte Länder		0.147	0.155
	Vermindert, Neue Länder		0.404	0.425
diffuse Emissionen	Vermindert, Alte Länder		0.140	0.465
	Vermindert, Neue Länder		0.383	1.275
Berdowski <i>et al.</i> , 1997	keine Angabe	0.38	0.5	

⁽ungemindert) und Sinteraustritt (nach dem Gewebefilter).

Die in der Literatur dokumentierten Korngrößenprofile (Tabelle 3.28) beziehen sich häufig auf bereits geminderte Emissionen. Für den ungeminderten Fall wurde die Verteilung von Sinterbädern (EPA, 1998a; AWMA, 2000) als charakteristisch angenommen.

⁽²⁾ Einschließlich Sintern (4 kg/t) und Kühlen (3.5 kg/t).

⁽³⁾ Laut Passant et al., 2000. Geometrischer Durchschnitt 0.5 kg/t von fünf untersuchten EU-Anlagen.

⁽⁴⁾ Laut Dreiseidler *et al.*, 1999; Werte ursprünglich angegeben in kg/t Erz, neuberechnet in kg/t Sinter unter der Annahme, dass 0.68 to 0.85 Tonnen Eisenerz für eine Tonne Sinter benötigt werden.

Tabelle 3.28: Literaturangaben über Korngrößenverteilungen für Sinteranlagen [Prozent der TSP-Emissionen]

Literatur	Angewandte	PM2.5	PM10	TSP
	Emissionsminderung			
Passant et al., 2000	Nach Minderung		79 %	100 %
UBA, 1998a (gefasste Emissionen)	Nach Minderung		75 %	100 %
(diffuse Emissionen)	Nach Minderung		30 %	100 %
EPA, 1998a (Windbox) (1)	Ungemindert	6.5 %	15 %	100 %
	Zyklone	52 %	74 %	100 %
	Gewebefilter	27 %	69 %	100 %
	ESP	33 %	59 %	100 %
Berdowski <i>et al.</i> , 1997 (2)	Keine Angabe	75 %	100 %	

⁽¹⁾ Durchschnitt für PM10 für verminderte Prozesse wurde mit 66 Prozent geschätzt (laut Passant *et al.*, 2000).

Tabelle 3.29: Im RAINS-Modell verwendete Emissionsfaktoren für Sinteranlagen [kg/Tonne Sinter Pellets]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Sinterprozesse	PR_SINT	0.557	1.285	8.563
Sinter, diffuse Emissionen	PR_SINT_F	0.104	0.24	1.6
Pellets-Anlage	PR PELL	0.03	0.03	0.03

Anwendbare Minderungsoptionen

Das RAINS-Modell berücksichtigt für Sinteranlagen (PR_SINT) drei Hauptkategorien von nachgeschalteten Vermeidungstechniken: Zyklone, drei Stufen von Elektrofiltern und Gewebefilter. Zur Verringerung diffuser Emissionen werden zwei Intensitätsstufen von guter technischer Praxis vorgesehen.

3.2.1.3 Roheisenherstellung (Hochofen)

Primäre Quellen für Staubemissionen sind die Hochofengießhalle, die Hochofenbeschickung, die Roheisenentschwefelung und der Heißmetalltransport. Die Prozesse zur Roheisenherstellung und die dabei entstehenden Staubemissionen sind in z.B. in AWMA (2000), EPA (1998a) und TA Luft (1986) im Detail beschrieben. Gelegentlich kann sich ein Hohlraum in der Hochofenbeladung bilden, der zu Druckschwankung im Ofen und zum Öffnen des Sicherheitsventils führt. Die dabei auftretenden diffusen Emissionen können verhältnismäßig hoch sein (EPA (1998a) nennt 39,5 kg/t).

Passant *et al.* (2000) schätzen einen Gesamtemissionsfaktor für TSP von 0,002 kg/t Roheisen. Laut CEPMEIP (2002) entstand 1995 etwas mehr als ein Prozent der europäischen PM10-und PM2.5-Emissionen aus dieser Quelle. Der Anteil schwankt international erheblich, abhängig von der Struktur der Industrieproduktion und von bereits implementierten Emissionsminderungsmaßnahmen. Für Deutschland schätzte UBA (1998a), dass 1998 ungefähr acht Prozent des Staubs und fast sieben Prozent der PM10-Emissionen aus diesem Sektor stammen.

⁽²⁾ Bezieht sich auf PM10 und nicht auf TSP.

RAINS-Sektoren

Tabelle 3.30: Emissionsquellkategorien für die Roheisenerzeugung

Emissionskategorie	
PR_PIGI	Roheisenproduktion
PR PIGI F	Roheisenproduktion (diffuse Emissionen)
Aktivitätsraten	Herstellung von Roheisen
Einheit	kg/t Roheisen

Emissionsfaktoren

Die in Tabelle 3.31 aufgelisteten ungeminderten Emissionsfaktoren bewegen sich in verhältnismäßig engem Rahmen, wobei jeweils angenommen ist, dass das Hochofengas gereinigt wird. Schwieriger ist jedoch die Quantifizierung der diffusen Emissionen, wo die Schätzungen zwischen einem und drei kg/t schwanken. Die Interpretation der Daten wird durch fehlende (oder begrenzte) Informationen über die Art und Weise und in welchem Ausmaß die flüchtigen Verluste in den einzelnen Studien berücksichtigt werden. Im Fall der CEPMEIP-Studie (2002) werden die diffusen Verluste der Eisenund Stahlindustrie in der Kategorie "heißer Metalltransport" zusammengefasst.

Tabelle 3.31: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Roheisenerzeugung [kg/Tonne Roheisen]

Literaturquelle	Angewandte	PM2.5	PM10	TSP
_	Emissionsminderung			
BUWAL 1995	Nach Minderung			1.3
UBA, 1989 ⁽¹⁾	Keine Angaben			1.8 - 4.5
Rentz et al., 1996	Ungemindert			1 - 2
Hochöfen (2)				
Gießhallen	Ungemindert			1
UBA, 1998a	Nach Minderung, Alte Länder		0.2375	0.25
	Nach Minderung, Neu Länder		0.4513	0.475
Diffuse Emissionen	Nach Minderung, Alte Länder		0.2250	0.75
	Nach Minderung, Neu Länder		0.4276	1.425
EPA, 1998a	Ungemindert			
Diffuse Emissionen		n.a.	n.a.	39.5 ⁽³⁾
Gießhalle (alter Typus)		0.07	0.15	0.3
Öfen mit lokaler Entleerung		0.10	0.16	0.65
Nur Abstichloch und Trog		n.a.	n.a.	0.15
Heißmetallentschwefelung		0.06	0.10	0.55
CEPMEIP, 2002	Nach Minderung, 'hoch'	0.50	1.00	2.00
	Ungemindert, 'niedrig'	0.036	0.038	0.040
Berdowski <i>et al.</i> , 1997	Keine Angaben	0.10	0.20	

⁽¹⁾ Veränderung des Durchschnittsemissionsfaktors zwischen 1986 und 1966.

Ähnlich wie bei den anderen Eisen- und Stahlsektoren sind Informationen über die Korngrößenverteilung der PM-Emissionen sehr rar. Die meisten Studien verwenden die in EPA (1998a) angegebenen Korngrößenprofile.

⁽²⁾ Unter der Annahme, dass das Hochofenabgas gesäubert wird.

⁽³⁾ Der Wert ist in kg/t slip angegeben. Laut Passant *et al.* (2000) ist der Gesamtanteil an den Emissionen gering, geschätzter gesamter Partikelemissionsfaktor ist 0.002 kg/t Roheisen.

Die von RAINS verwendeten ungeminderten Emissionsfaktoren für die nicht diffusen Emissionen (PR_PIGI) beruhen auf den Studien von Rentz *et al.* (1996), EPA (1998a) und CEPMEIP (2002). Für diffuse Emissionen (PR_PIGI_F) wird Rentz *et al.* (1996) und UBA (1998a) verwendet, wobei aufgrund der existierenden Unsicherheiten eine konservative Schätzung von 2,5 kg/t Roheisen angenommen wurde. Es muss jedoch beachtet werden, dass diese ungeminderten Faktoren nur theoretische Werte sind, da in der Praxis die Emissionen auch bei älteren Anlagen reduziert werden. Die Korngrößenverteilung orientiert sich an der von Öfen mit lokaler Entleerung und der heißen Metallentschwefelung (Tabelle 3.32).

Tabelle 3.32: Im RAINS-Modell verwendete Emissionsfaktoren für Roheisenerzeugung [kg/Tonne Roheisen]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Roheisenherstellung	PR_PIGI	0.15	0.24	1.48
Roheisenherstellung (diffuse Emissionen)	PR PIGI F	0.15	0.25	2.5

Anwendbare Minderungsoptionen

Das RAINS-Modell berücksichtigt für die Abgasemissionen der Roheisenproduktion (PR_PIGI) als Minderungsoptionen Zyklone, nasse Abscheider und drei Stufen von Elektrofiltern. Die Möglichkeiten zur Verminderung von diffusen Emissionen (PR_PIGI_F) werden durch zwei Stufen von guter technischer Praxis abgebildet.

3.2.1.4 Siemens-Martin-Öfen

Schrott und flüssiges Eisen werden in Siemens-Martin-Öfen zu Stahl geschmolzen. Mehr Details über den Prozess können z.B. in EPA (1998a) gefunden werden. Die Staubemissionen aus dem Siemens-Martin-Verfahren werden von einigen Faktoren wie z.B. dem Aufblasen von Sauerstoff wesentlich beeinflusst. Signifikante diffuse Emissionen werden durch Übertragung und Beladung des Roheisens, Aufladung des Schrottes, Klopfen und Schlackeentleeren hervorgerufen (EPA, 1998a). Emissionen aus dem Ofen werden normalerweise gefasst und zur Abgasreinigung (ESP oder nasse Abscheider) geleitet.

Die Herstellung des Stahls im Siemens-Martin-Ofen ist während der letzten Jahrzehnte drastisch gesunken und diese Methode wird in Westeuropa und in den USA nicht mehr angewendet. Nur eine Handvoll osteuropäischer Länder haben diese Art des Ofens noch in Betrieb. Mehr als 90 Prozent der Produktion von 1995 entfielen auf Russland und die Ukraine, der Rest auf Rumänien, Polen, Lettland. Basierend auf CEPMEIP (2002) entstand 1995 etwas mehr als ein Prozent des europäischen PM aus dieser Quelle, wobei in Russland 2,5 Prozent und in der Ukraine 3,5 Prozent verursacht wurden.

RAINS-Sektoren

Tabelle 3.33: Emissionsquellkategorie für Siemens-Martin-Öfen

Emissionskategorie PR_HEARTH	Siemens-Martin-Öfen
Aktivitätsraten	Herstellung von Stahl in Siemens-Martin-Öfen
Einheit	kg/t hergestellter Stahl

Emissionsfaktor

In der Literatur existieren nur sehr wenige Angaben über Emissionsfaktoren von Siemens-Martin-Öfen (Tabelle 3.34). Die von Berdowski *et al.* (1997) angeführten Emissionsfaktoren wurden von einer früheren Ausgabe der amerikanischen AP-42 (EPA, 1995) abgeleitet, wobei für Osteuropa keine Emissionsminderungsmaßnahmen für PM10 angenommen wurden und die ursprüngliche Korngrößenverteilung modifiziert wurde. Diffuse Emissionen scheinen in diesen Emissionsfaktoren nicht enthalten.

Mangels genauerer Information wurde für das RAINS-Modell der in EPA (1998a) angeführte Emissionsfaktor direkt übernommen (Tabelle 3.35).

Tabelle 3.34: Übersicht über in der Literatur angegebene Emissionsfaktoren für Siemens-Martin-Öfen [kg/Tonne Stahl]

Literaturquelle	Angewandte	PM2.5	PM10	TSP
	Emissionsminderung			
EPA, 1998a	Unvermindert	6.33	8.76	10.55
Berdowski et al., 1997	Unvermindert (Osteuropa)	4.4	8.8	
	Vermindert (ESP) (Westeuropa)	0.035	0.07	

Tabelle 3.35: Im RAINS-Modell verwendete Emissionsfaktoren für Siemens-Martin- Öfen [kg/Tonne Stahl]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Siemens-Martin-Öfen	PR HEARTH	6.33	8.76	10.55

Anwendbare Minderungsoptionen

Das RAINS-Modell sieht Zyklone, Wäscher, Gewebefilter und drei unterschiedlich wirksame Elektrofilter als *Abgas*minderungstechniken für Siemens-Martin-Öfen vor. Aufgrund der grundsätzlich veralteten Technik sind keine Maßnahmen zur Verminderung diffuser Emissionen (eventuell gute technische Praxis) berücksichtigt.

3.2.1.5 Konverter

Der Konverterprozess ist der weitest verbreitete Prozess zur Stahlerzeugung. Mehr Details über den Prozess können z.B. in EPA (1998a), AWMA (2000), TA Luft (1986) gefunden werden.

Bei Konvertern treten die höchsten Emissionen während des Sauerstoffeinblasens auf, während einige andere Abläufe (wie z.B. das Ein- und Ausleeren von Flüssigeisen) diffuse Emissionen hervorrufen (EPA, 1998a; AWMA, 2000; TA Luft, 1986). Emissionen vom Konverter können erfolgreich verringert werden, gewöhnlich durch Anwendung von Wäschern oder Elektrofiltern, wobei

Abscheidegrade über 99 Prozent erzielt werden. Diffuse Emissionen können mittels Ofeneinhausung, Hauben und Unterdruck verringert werden.

Laut CEPMEIP (2002) entstand 1995 ungefähr ein Prozent der europäischen Staubemission aus Konvertern. Der Anteil schwankt erheblich zwischen einzelnen Ländern; so schätzte z.B. UBA (1998a), dass 1998 in Deutschland ungefähr 1,5 Prozent der TSP- und mehr als zwei Prozent PM10-Emissionen aus diesem Sektor stammten.

RAINS-Sektoren

Tabelle 3.36: Emissionsquellkategorie für Konverteröfen

Emissionskategorie	
PR_BAOX	Konverteröfen
_	
Aktivitätsraten	Stahlproduktion in Konverteröfen
Einheit	kg/t hergestellter Stahl

Emissionsfaktoren

Die Literatur zeigt beträchtliche Unterschiede in Emissionsfaktoren (Tabelle 3.37), wobei die Hintergrundinformationen (besonders für das Minderungsniveau und einbezogene Prozesse) oft nicht ausreichen, um die jeweiligen Faktoren zu erklären.

Tabelle 3.37: Übersicht über in der Literatur angegebene Emissionsfaktoren für Konverteröfen [kg/Tonne Stahl]

Literaturquelle	Angewandte	PM2.5	PM10	TSP
	Emissionsminderung			
UBA, 1989 ⁽¹⁾	Keine Angabe			0.28 - 2.6
Jockel, 1992 Abgasstrom	Keine Angabe			0.06
diffuse Emissionen	Keine Angabe			0.49
Rentz et al., 1996 Ofen	Ungemindert			3.75-41.75
Beschickung	Ungemindert			0.5 - 1
UBA, 1998a	Nach Minderung		0.1485	0.165
EPA, 1998a	Ungemindert			
Obeneinblasung		n.a.	n.a.	14.25
(Schmelzen und Verfeinern)				
Beschickung (an Quelle) (2)		0.1	0.2	0.43
Abstechen		0.17	0.21	0.46
Heißmetalltransfer ⁽²⁾		n.a.	n.a.	0.14
CEPMEIP, 2002	Nach Minderung, 'hoch'	0.54	0.57	0.6
	Nach Minderung,	0.12	0.12	0.12
	'niedrig'			
ER, 1996	Nach Minderung	0.055	0.11	
Berdowski et al., 1997	Keine Angabe	0.1	0.2	

⁽¹⁾ Veränderung des Durchschnittsemissionsfaktors zwischen 1986 und 1966.

Informationen über die Korngrößenverteilung der Staubemissionen aus dieser Quelle werden nur in EPA, 1998a angegeben, jedoch fehlen Angaben über die Größe der beim Einblasen von Sauerstoff entstehenden Partikel.

⁽²⁾ EPA (1998a) gibt diesen Faktor in kg/Tonne Roheisen an, hier ist er umgerechnet in kg/t Stahl unter der Annahme von 0.7 t Roheisen /t Stahl.

Die in RAINS verwendeten Emissionsfaktoren beruhen auf UBA (1998a), Rentz et al. (1996), EPA (1998a) und Jockel (1992).

Tabelle 3.38: Im RAINS-Modell verwendete Emissionsfaktoren für Konverteröfen [kg/Tonne Stahl]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Konverteröfen	PR_BAOX	10.45	14.63	20.9

Anwendbare Minderungsoptionen

Das RAINS-Modell sieht zur Minderung der Staubemissionen von Konverteröfen Wäscher, Gewebefilter und drei Phasen von Elektrofiltern vor. Diffuse Emissionen sind mit guter technischer Praxis zu einem gewissen Grad reduzierbar. Da aber in vielen Betrieben weitere Verbesserungen des derzeitigen Zustands oft schwierig erscheinen, ist diese Option nicht in RAINS berücksichtigt.

3.2.1.6 Elektrolichtbogenöfen

Elektrolichtbogenöfen sind die wichtigsten Anlagen zur Wiederverwertung von Stahlschrott zu Flüssigstahl. Die Technologie, die mit diesem Prozess verbunden ist, entwickelt sich schnell und somit wächst auch der Anteil des in diesen Öfen produzierten Rohstahls. Mehr Details über den Prozess können z.B. in EPA (1999a), AWMA (2000), TA Luft (1986) gefunden werden.

Staubemissionen treten in allen drei Produktionsphasen auf, aber das Schmelzen und Verfeinern tragen am meisten dazu bei (EPA, 1998a; AWMA, 2000; TA Luft, 1986). Emissionen aus diesem Prozess können durch Absaugen des Gases, Verwendung von Hauben und Einhausungen gefasst und in Gewebefiltern gereinigt werden. Als Alternative zum Gewebefilter sind heute in seltenen Fällen auch Wäscher in Gebrauch, allerdings machen hohe Betriebskosten und verhältnismäßig niedrige Effizienzen diese Systeme zur Zeit uninteressant (AWMA, 2000).

Laut CEPMEIP (2002) stammte 1995 weniger als 0,5 Prozent des europäischen PM aus dieser Quelle. Der Anteil schwankt zwischen den Ländern; so schätzte z.B. UBA (1998a), dass 1998 in Deutschland ungefähr 0,7 Prozent der gesamten Staubemissionen und mehr als ein Prozent der PM10-Emissionen aus diesem Sektor stammen.

RAINS-Sektoren

Tabelle 3.39: Emissionsquellkategorie für Elektrolichtbogenöfen

Emissionskategorie	
PR_EARC	Elektrolichtbogenöfen
_	
Aktivitätsraten	Stahlproduktion in Elektrolichtbogenöfen
Einheit	kg/t hergestellter Stahl

Emissionsfaktoren

Die in der Literatur angeführten Emissionsfaktoren (siehe Tabelle 3.40) weisen beträchtliche Bandbreite auf. Die vorhandenen Hintergrundinformationen (besonders für das Minderungsniveau und einbezogene Prozesse) sind häufig unzulänglich, sodass es schwierig ist, diese Unterschiede zu erklären. Infolge der gewöhnlich hohen Abscheidegrade (98 bis 99 Prozent) ist die Bandbreite der Werte nach der Emissionsminderung kleiner. Anlagen mit guter Technik und Wartung können mit Gewebefültern PM-Emissionen unter 20 g/t Stahl erzielen (IPPC, 2000a; Passant *et al.*, 2000).

Tabelle 3.40: Übersicht über in der Literatur angegebene Emissionsfaktoren für Elektro-Lichtbogenöfen [kg/Tonne Stahl]

Literaturquelle	Angewandte	PM2.5	PM10	TSP
•	Emissionsminderung			
BUWAL 1995	Nach Minderung			0.14
	Diffuse Emissionen,			13.0
	ungemindert			
	Diffuse Emissionen,			1.2
	nach Minderung			
IPPC, 2000a ⁽¹⁾	Nach Minderung			0.124 ± 0.17
UBA, 1998a	Nach Minderung		0.252	0.28
Jockel, 1992	Abgas, nach Minderung			0.26
	Diffuse Emissionen, nach			0.2
	Minderung			
ER, 1996 ⁽²⁾	Nach Minderung	0.26	0.46	
EPA, 1998a	Ungemindert			
Schmelze und Raffineri	e– Kohlenstoffstahl	8.17	11.02	19.0
Schmelze, Raffinerie, B	Beladen, Abstechen, Verschlacken,			5.65
legierter Stahl				
Schmelze, Raffinerie, B	Beladen, Abstechen, Verschlacken,			25.0
Kohlenstoffstahl				
Rentz et al., 1996	Ungemindert			2.7-10.4
	Nach Minderung			0.009-0.17
	Diffuse Emissionen, nach			0.05-0.26
	Minderung			
CEPMEIP, 2002	Nach Minderung, 'hoch'	0.224	0.56	0.7
	Nach Minderung, 'niedrig'	0.06	0.095	0.1
Berdowski et al., 1997	Nach Minderung	0.228	0.4	
	(Westeuropa)			
	Ungemindert (Osteuropa)	5.5	11.0	

⁽¹⁾ Laut Passant *et al.*, 2000; Durchschnitt für 34 EU-Anlagen. (2) Laut Berdowski *et al.*, 1997

Fundierte Informationen über die Korngrößenverteilung von Staubemissionen aus dieser Quelle sind nur in EPA, 1998a (Tabelle 3.41) angeführt. CEPMEIP (2002) verwendet deutlich unterschiedliche Werte, die jedoch mangels genauer Dokumentation nicht nachvollzogen werden können.

Tabelle 3.41: Literaturangaben über Korngrößenverteilungen für Elektrolichtbogenöfen [Prozent der TSP-Emissionen]

Literaturquelle		Angewandte	PM2.5	PM10	TSP
		Emissionsminderung			
EPA, 1998a	Schmelze und	Ungemindert	43 %	58 %	100 %
	Raffinerie –				
	Kohlenstoffstahl				
	Schmelze, Raffinerie,	Nach Minderung	74 %	76 %	100 %
	Beladen, Abstechen,				
	Verschlacken –				
	Kohlenstoffstahl				
CEPMEIP, 2002	'hoch'	Nach Minderung,	32 %	80 %	100 %
	'niedrig'	Nach Minderung,	60 %	95 %	100 %

Aus den oben angeführten Literaturdaten ergibt sich ein durchschnittlicher ungeminderter TSP-Emissionsfaktor von 23,4 kg/t Stahl. Da die meisten Elektrolichtbogenöfen verhältnismäßig moderne Anlagen sind, wird angenommen, dass Maßnahmen zur Verminderung von Emissionen implementiert sind. Da bei ausreichender Minderung dieser diffusen Emissionen das Schmelzen und Verfeinern zu den dominierenden Hauptquellen von Staubemissionen werden, wird das für diese Prozesse charakteristische Korngrößenprofil als dominierend für die Gesamtemissionen angenommen.

Tabelle 3.42: Im RAINS-Modell verwendete Emissionsfaktoren für Elektrolichtbogenöfen [kg/Tonne Stahl]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Elektrolichtbogenöfen	PR_EARC	7.55	10.18	17.55

Anwendbare Minderungsoptionen

Das RAINS-Modell berücksichtigt Wäscher und Gewebefilter als Minderungsoptionen für die gefassten Emissionen von Elektrolichtbogenöfen. Gegenwärtig berücksichtigt das RAINS-Modell keine Optionen zur weiteren Minderung von diffusen Emissionen

3.2.1.7 Eisen- und Stahlgießereien

Die Hauptprozesse in Eisen- und Stahlgießereien umfassen Rohstoffvorbereitung und -transport, Schmelzen und Verfeinern, Entschwefelung von Flüssigeisen, Schlackeabbau, Kernproduktion, Gießen und Vollenden (Passant *et al.*, 2000). Die höchsten PM-Emissionen treten gewöhnlich beim Schmelzen und Verfeinern (Kupol- und Lichtbogenöfen) und beim Gießen und Verfeinern auf. Mehr Details über die Prozesse können in EPA (1998a), AWMA (2000), TA Luft (1986) gefunden werden.

CEPMEIP (2002) schätzt den Anteil dieses Sektors an den europäischen Staubemissionen auf ungefähr 0,2 Prozent, wobei er in Ländern mit bedeutender Schwerindustrie deutlich höher sein kann. UBA (1998a) rechnet für 1998 1,6 Prozent der TSP- und 1,3 Prozent der PM10-Emissionen Deutschlands diesem Sektor zu.

RAINS-Sektoren

Tabelle 3.43: Emissionsquellkategorien für Eisen- und Stahlgießereien

Emissionskategorie	
PR_CAST	Eisen und Stahlgießereien
PR_CAST_F	Eisen und Stahlgießereien (diffuse Emissionen)
Aktivitätsraten	Eisen und Stahlherstellung in Gießereien
Einheit	kg/t gegossenen Eisens

Emissionsfaktor

Die Literatur berichtet über beträchtliche Unterschiede in Emissionsfaktoren, wobei die vorhandene Hintergrundinformation meistens nicht ausreicht, um völlige Klarheit über deren Ursachen zu erreichen.

Tabelle 3.44: Übersicht über in der Literatur angegebene Emissionsfaktoren für Eisen- und Stahlgießereien [kg/Tonne Stahl]

Literaturquelle		Angewandte	PM2.5	PM10	TSP
1		Emissionsminderung			
BUWAL 1995	Kupol-	Nach Minderung			0.01-
	Elektrolichtbogenöfen				0.04
	Diffuse Emissionen	keine Angaben			0.5
UBA, 1998a	Gefasste Emissionen,	Nach Minderung		0.435	0.457
	Alte Länder				
	Diffuse Emissionen,	Nach Minderung		0.412	1.372
	Alte Länder				
	Gefasste Emissionen,	Nach Minderung		0.594	0.625
	Neue Länder				
	Diffuse Emissionen,	Nach Minderung		0.563	1.875
	Neue Länder				
EPA, 1998a	Kupolofen	Ungemindert	5.8	6.2	6.9
	Elektrolichtbogenöfen	Ungemindert	4.0	5.8	6.3
	Raffinerie	Ungemindert			1.5-2.5
	Säuberung, Beenden	Ungemindert			8.5
	Andere ⁽¹⁾	Ungemindert			6.6
	Kupolofen	Nach Minderung			0.3-4
	Elektrolichtbogenöfen	Nach Minderung			0.1-0.5
CEPMEIP, 2002		Nach Minderung	0.09	0.6	2

⁽¹⁾ Beinhaltet: Flammen, Schrottbeladung, Heizen, Magnesiumbehandlung, Gießen und Abkühlen, Kernbilden und Brennen.

Fundierte Informationen über die Korngrößenverteilung der Staubemissionen aus dieser Quelle werden nur in EPA, 1998a angegeben. CEPMEIP verwendet wesentlich niedrigere Anteile für PM10 und PM2.5 (Tabelle 3.45).

Tabelle 3.45: Literaturangaben über Korngrößenverteilungen für Eisen- und Stahlgießereien [Prozent der TSP-Emissionen]

Literaturquelle		Angewandte Emissionsminderung	PM2.5	PM10	TSP
EPA, 1998a	Kupolofen	Ungemindert	84 %	90.1 %	100 %
,	Kupolofen	Gewebefilter	94.9 %	94.9 %	100 %
	Kupolofen	Venturi-Wäscher	77.7 %	77.7 %	100 %
	Elektrolichtbogenöfen	Ungemindert	57.5 % ⁽¹⁾	90 %	100 %
	Ausgießen, Abkühlen	Ungemindert	24 %	49 %	100 %
	Ausgießen	Ungemindert	42 %	70 %	100 %
CEPMEIP, 2002		Nach Minderung	4.5 %	30 %	100 %

⁽¹⁾ Daten für PM2.0.

Die im RAINS-Modell verwendeten Emissionsfaktoren basieren auf den Angaben von UBA (1998a) und EPA (1998a), wobei die in EPA (1998a) angegebenen Korngrößenprofile (Durchschnitt von Kupol- und Lichtbogenofen für gefasste Emissionen, Gießen und Abkühlen für diffuse Emissionen) verwendet werden (Tabelle 3.46).

Tabelle 3.46: Im RAINS-Modell verwendete Emissionsfaktoren für Eisen- und Stahlgießereien [kg/Tonne Stahl]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Eisengießereien	PR_CAST	10.68	13.55	15.05
Eisengießereien (flüchtig)	PR_CAST_F	1.38	2.82	5.75

Das RAINS-Modell sieht Wäscher und Gewebefilter als Minderungsoptionen für Eisengießereien vor (PR_CAST). Flüchtige Emissionen können durch gute technische Praxis reduziert werden, wovon zwei Stufen von Maßnahmen vorgesehen sind.

3.2.2 Nichteisen-Metallindustrie

Diese Kategorie umfasst die Produktion von Primär- und Sekundäraluminium, Kupfer, Blei, Zink und die Primärproduktion von Nickel. Der Beitrag dieser Industrien zu den Staubemissionen in Europa wird auf ungefähr 0,5-1 Prozent geschätzt, wobei der Großteil in der Primäraluminiumproduktion entsteht (CEPMEIP, 2002; UBA, 1998a).

Das RAINS-Modell unterscheidet drei Sektoren für diesen Industriezweig: Herstellung von Primäraluminium, Sekundäraluminium und anderer Nichteisenmetalle.

3.2.2.1 Primäraluminiumproduktion

Aluminium wird durch elektrolytische Reduktion aus Aluminiumoxid mittels des Halls-Heroult-Prozesses hergestellt. Details dieses Prozesses können z.B. in AWMA, 2000; EPA, 1998a, EEA, 1999; TA Luft, 1986; und Passant *et al.*, 2000 gefunden werden. Hauptquellen von Staubemissionen sind die Herstellung vorgebrannter Kohleanoden, der elektrolytische Prozess und das Gießen und Formen des Aluminiumprodukts.

Es wird geschätzt, dass diese Aktivität weniger als 0,5 Prozent zu den europäischen Staubemissionen (CEPMEIP, 2002) beiträgt. UBA (1998a) schätzte den Anteil an Partikeln und PM10-Emissionen in Deutschland auf ungefähr 0,5 beziehungsweise 0,8 Prozent.

RAINS-Sektoren

Tabelle 3.47: Emissionsquellkategorie für die Primäraluminiumproduktion

Emissionskategorie PR_ALPRIM	Primäraluminimum
Aktivitätsraten	Primäraluminiumproduktion (Produktion von Bauxit nicht inbegriffen)
Einheit	kg/t hergestelltes Aluminium.

Emissionsfaktoren

Emissionsfaktoren variieren in der Literatur zwischen einem und 10 kg/t, abhängig von der Art des betroffenen Prozesses und dem Minderungsgrad Tabelle 3.48). Die durchschnittlichen TSP-Emissionsraten für Schweizer, englische und deutsche Betriebe sind 1,65, 2,8 und 3,3 kg/t (BUWAL, 1995; Passant *et al.*, 2000; UBA, 1998a). Ein großer Anteil dieser Emissionen ist diffus (Passant *et al.*, 2000).

Tabelle 3.48: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Primäraluminiumproduktion [kg/Tonne Aluminium]

Literaturquelle		Angewandte Emissionsminderung	PM2.5	PM10	TSP
BUWAL, 1995		keine Angabe		1.65	
Passant et al., 2000	Vorgebrannte Kohleanoden, Durchschnitt für Anlagen in Großbritannien	Nach Minderung		2.8 ⁽¹⁾	
IPPC, 2000b	Vorgebrannte Zellen	Nach Minderung		0.5-7	
	Vertikale Sodeberg	Nach Minderung		1.5-10	
EPA, 1998a	Vorgebrannte Zellen	Ungemindert	13.16	27.26	47.0
	Vorgebrannte Zellen Vertikale Sodeberg	Diffuse Emissionen	0.70	1.45 39.0	2.5
	Vertikale Sodeberg	Diffuse Emissionen		6.0	
	Horizontale Sodeberg		8.33	15.19	49.0
	Horizontale Sodeberg	Diffuse Emissionen	0.85	1.55	5.0
UBA, 1989 ⁽²⁾	C	keine Angabe			6-30
UBA, 1998a		Nach Minderung		3.135	3.3
CEPMEIP, 2002		Nach Minderung, 'hoch'	2.5	6	10
		Nach Minderung, 'niedrig'	1.28	2.85	3
Berdowski <i>et al.</i> , 1997	Westeuropa	keine Angabe	1.4	3	
	Osteuropa	keine Angabe	3.2	7	

⁽¹⁾ Passant et al. (2000) schätzen, dass ungefähr 2/3 der Emission flüchtig sind.

Tabelle 3.49: Literaturangaben über Korngrößenverteilungen für die Primäraluminiumherstellung [Prozent der TSP-Emissionen]

Literaturquelle	Prozess	PM2.5	PM10	TSP
EPA, 1998a; AWMA, 2000	Vorgebrannte Zellen, diffuse Emission, ungemindert	28 %	58 %	100%
	Horizontale Sodeberg, ungemindert	40 %	58 %	100%
	Horizontale Sodeberg, diffuse Emission, ungemindert	17 %	31 %	100%
Berdowski <i>et al.</i> , 1997 ⁽¹⁾	keine Angabe	45 %	100 %	

 $^{^{\}left(1\right)}$ bezieht sich auf PM_{10} und nicht auf TSP.

Der ungeminderte Emissionsfaktor in RAINS (Tabelle 3.50) basiert auf den von EPA (1998a) abgeleiteten Durchschnittswerten für vorgebrannte Kohleanoden sowie vertikale und horizontale Sodeberg-Zellen. Die größenspezifischen Emissionsfaktoren wurden aus den EPA-Profilen (1998a) ermittelt (Tabelle 3.49).

⁽²⁾ Die Spannbreite spiegelt die Veränderung im Emissionsfaktor zwischen 1986 und 1966 wider.

Tabelle 3.50: Im RAINS-Modell verwendete Emissionsfaktoren für die Primäraluminiumherstellung [kg/Tonne Aluminium]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Aluminiumherstellung	PR_ALPRIM	18.5	27.26	47.00

Das RAINS-Modell sieht Gewebefilter und drei unterschiedlich wirksame Elektrofilter als Optionen zur Minderung der gefassten Staubemissionen in der Aluminiumproduktion vor. Da gute technische Praxis zur Verminderung diffuser Emissionen weitgehend angewendet wird und deren Effekt bereits im Emissionsfaktor berücksichtigt ist, wird im Modell keine weitere Möglichkeit zur Reduzierung diffuser Emissionen angenommen.

3.2.2.2 Sekundäre Aluminiumherstellung

Sekundäre Aluminiumproduktion wandelt aluminiumhaltigen Schrott in Aluminiummetall um. Hauptproduktionsschritte sind die Vorbehandlung (Sortieren, Verarbeiten, Säubern), Einschmelzen, Raffinierung, Legieren, und Gießen. Details dieses Prozesses können z.B. in AWMA, 2000; EPA, 1999a, EEA, 1999; TA Luft, 1986; und Passant *et al.*, 2000 gefunden werden. Die größten Quellen von Staubemissionen sind das Einschmelzen und die Schrottverarbeitung.

Aus europäischer Perspektive ist dies eine kleinere Quelle von PM-Emissionen. CEPMEIP (2002) berechnete deren Anteil auf ungefähr 0,02 Prozent. Für einige Länder könnte dies relevanter sein, z.B. stammten 1996 in Deutschland ungefähr 0,1 und 0,2 Prozent TSP und PM10 aus dieser Quelle (UBA, 1998a).

RAINS-Sektoren

Tabelle 3.51: Emissionsquellkategorie für die Sekundäraluminiumproduktion

Emissionskategorie PR_ALSEC	Sekundäraluminium
Aktivitätsraten	Sekundäraluminiumproduktion
Einheit	kg/t hergestelltes Aluminium.

Emissionsfaktoren

Die Emissionsfaktoren für bestehende Sekundäraluminiumanlagen schwanken zwischen 0,9 und 2 kg/t Aluminium, wobei der durchschnittliche Emissionsfaktor für Großbritannien und Deutschland zwischen 1,6 und 1,2 kg/t liegt (Passant *et al.*, 2000; UBA, 1998a). Ein großer Anteil dieser Emissionen ist diffuser Natur (Passant *et al.*, 2000; AWMA, 2000).

Tabelle 3.52: Übersicht über in der Literatur angegebene Emissionsfaktoren für Sekundäraluminiumproduktion [kg/Tonne Aluminium]

Literaturquelle		Angewandte	PM2.5	PM10	TSP
		Emissionsminderung			
BUWAL, 1995		Unbekannt			0.9
Passant et al, 2000	Gesamtemissionen	Nach Minderung			$1.6^{(1)}$
EPA, 1998a	Schmelzöfen	Ungemindert			7.25
	zurückstrahlend	Ungemindert	1.08	1.3	2.15
	Magnesiumentfernung	Ungemindert	0.5	1.33	2.5
	Schmelzöfen	Gewebefilter			1.65
	zurückstrahlend	Gewebefilter			0.65
	Magnesiumentfernung	Gewebefilter			0.125
UBA, 1989 ⁽²⁾					1.7-7.5
UBA, 1998a	Westeuropa			1.09	1.15
	Osteuropa			1.71	1.8
CEPMEIP, 2002	'hoch'	Nach Minderung	0.55	1.4	2
	'niedrig'	Nach Minderung	0.405	0.9	1

⁽¹⁾ Basierend auf EPA (1998a).

Tabelle 3.53: Literaturangaben über Korngrößenverteilungen für die Sekundäraluminiumproduktion [Prozent der TSP-Emissionen]

Literaturquelle		Angewandte	PM2.5	PM10	TSP
		Emissionsminderung			
EPA, 1998a	Raffinerie, zurückstrahlend	Unvermindert	50 %	60 %	100 %
	Magnesiumentfernung	Unvermindert,	19.8 %	53.2 %	100 %
TÜV, 2000a	Schmelzen	Gewebefilter	75 %	99 %	100 %

Der in RAINS verwendete ungeminderte Emissionsfaktor (Tabelle 3.54) reflektiert die von EPA (1998a) angegebenen Gesamtemissionen aller Prozesse. Die korngrößenspezifischen Emissionsfaktoren sind von den EPA (1998a) Profilen (Tabelle 3.53) abgeleitet.

Tabelle 3.54: Im RAINS-Modell verwendete Emissionsfaktoren für die Sekundäraluminiumherstellung [kg/Tonne Aluminium]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Aluminiumproduktion	PR_ALSEC	5.195	6.97	11.9

Anwendbare Minderungsoptionen

Das RAINS-Modell berücksichtigt Gewebefilter und Wäscher als Optionen zur Verringerung der gefassten Emissionen in der Sekundäraluminiumproduktion. Obwohl diffuse Emissionen bedeutsam sind, wird keine Möglichkeit zur deren weiterer Verminderung in diesem Sektor angenommen.

⁽²⁾ Die Spanne spiegelt eine Veränderung im Durchschnittsemissionsfaktor zwischen 1986 und 1966 wider.

3.2.2.3 Andere Sektoren der Nichteisenmetall-Herstellung

Dieser Sektor umfasst die Produktion von Primär- und Sekundärkupfer, Blei, Zink und die Primärproduktion von Nickel. Details der Produktionsprozesse können z.B. in AWMA (2000), EPA (1998a), EEA (1999), TA Luft (1986) und Passant *et al.* (2000) gefunden werden.

Insgesamt macht dieser Sektor nur einen kleinen Beitrag zu den gesamten Staubemissionen in Europa aus (0,1 Prozent laut CEPMEIP (2002) und UBA (1998a)). Folglich werden im RAINS-Modell alle diese Industrien in einer Kategorie behandelt, obwohl deren Inhomogenität in technischer Sicht unbestritten sei.

RAINS-Sektoren

Tabelle 3.55: Emissionsquellkategorie für die Herstellung von Nichteisenmetallen

Emissionskategorie PR_OT_NFME	Andere Nichteisenmetalle (Blei, Nickel, Zink, Kupfer)
Aktivitätsraten	Produktion von primärem und sekundärem Kupfer, Blei, Zink, und Primärproduktion von Nickel
Einheit	kg/t produzierten Metalls

Emissionsfaktoren

Die Literatur führt einen weiten Bereich von Emissionsfaktoren an (Tabelle 3.56).

Tabelle 3.56: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Herstellung von Nichteisenmetallen [kg/t produzierten Metalls]

Literaturquelle	A	Angewandte	PM2.5	PM10	TSP
	E	Emissionsminderung			
BUWAL, 1995	Alle Metalle	-			0.27
.					
Blei					
Passant <i>et al</i> , 2000	Primär			0.72	0.8
	Sekundär			0.16	
EPA, 1998a	Primär				~ 0.5
	Sekundär				~ 1
UBA, 1989 ⁽¹⁾	Nicht spezifiziert				0.2-3.2
UBA, 1998a	Nicht spezifiziert			0.11	0.12
EEA, 1999	Sekundär				0.1 - 0.77
IPPC, 2000b	Primär				0.06-0.18
	Sekundär				< 0.05
CEPMEIP, 2002	'Hoch', Primär/Sekundär		0.6/0.4	3/0.7	10/1
	'Niedrig', Primär/Sekundär		0.06/0.15	0.11/0.29	0.12/0.3
Zink (2)					
UBA, 1989 ⁽¹⁾	Night apazifiziart				0.33-9
	Nicht spezifiziert			0.12	
UBA, 1998a	Nicht spezifiziert		4/0.2	0.13	0.14
CEPMEIP, 2002	'Hoch', Primär/Sekundär		4/0.3	5/0.4	6/0.5
	'Niedrig', Primär/Sekundär		0.16/0.3	0.18/0.4	0.2/0.5

Kupfer				
UBA, 1989 ⁽¹⁾	Nicht spezifiziert			0.39-10.5
UBA, 1998a	Nicht spezifiziert		0.13	0.14
IPPC, 2000b	Sekundär			0.1-1
CEPMEIP, 2002	'Hoch', Primär/Sekundär	1/0.6	3/0.8	10/1
	'Niedrig, Primär/Sekundär	0.4/0.6	0.475/0.8	0.5/1
Nickel				
CEPMEIP, 2002	'Hoch', Primär	3	6	10
	'Niedrig', Primär	0.3	0.5	0.6

Die Spanne spiegelt eine Veränderung im Durchschnittsemissionsfaktor zwischen 1986 und 1966 wider

Tabelle 3.57: Literaturangaben über Korngrößenverteilungen bei der Herstellung von Nichteisenmetallen [Prozent der TSP-Emissionen]

Literaturquelle	Prozess	PM2.5	PM10	TSP
EPA, 1998a	Schmelze, Metallveredelung (1)	82 %	92 %	100 %

⁽¹⁾ ohne Aluminium.

Tabelle 3.58: Im RAINS-Modell verwendete Emissionsfaktoren für die Herstellung von Nichteisenmetallen [kg/Tonne Metall]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Andere Nichteisenmetalle	PR_OT_NFME	12.3	13.8	15.0

Das RAINS-Modell sieht Wäscher, Gewebefilter, drei unterschiedlich wirksame Elektrofilter und Nass-Elektrofilter (Passant *et al.*, 2000; AWMA, 2000; Rentz *et al.*, 1996; UBA, 1999a) als mögliche Maßnahmen zur Verringerung der gefassten Emissionen vor, nimmt aber keine weiteren Verbesserungsmöglichkeit für diffuse Emissionen an.

3.2.3 Andere Industrieprozesse

Abgesehen von der metallurgischen Industrie sind einige andere industrielle Prozesse Quellen von Staub. Dieser Abschnitt bespricht die Herstellung von Briketts, Zement, Kalk, Glas, synthetischen Düngemitteln, Ruß, Gips, Glasfasern, PVC und Erdölraffinerien. Gegenwärtig sind die Herstellung von Zucker, Keramik, Baustoff, Bier etc. in einer gemeinsamen RAINS-Kategorie berücksichtigt.

3.2.3.1 Kohlebrikettherstellung

Diese Kategorie beinhaltet die Brikettherstellung aus Stein- und Braunkohle, berücksichtigt aber nicht die Kohlereinigung im Bergbausektor (siehe Abschnitt 3.2.4). Auf europäischer Ebene ist die Produktion von Briketts eine kleine Quelle von Staubemissionen (weniger als 0,1 Prozent der Gesamtstaubemission (CEPMEIP, 2002)), obwohl sie für einige Länder, z.B. Ukraine und Deutschland auf lokaler Ebene, verhältnismäßig wichtig ist. UBA schätzte, dass diese Aktivität 1996 0,8 und 0,4 Prozent der TSP und PM10 in Deutschland verursachte (UBA, 1998a).

⁽²⁾ Für primäres Zink berichten Passant *et al.* (2000), IPPC (2000b), und EPA (1998a) dieselben Werte wie für primäres Blei.

RAINS-Sektoren

Tabelle 3.59: Emissionsquellkategorie für die Herstellung von Kohlebriketts

Emissionskategorie PR_BRIQ	Kohlebrikettherstellung
Aktivitätsraten	Herstellung von Briketts
Einheit	kg/t hergestellter Briketts

Emissionsfaktoren

Die wenigen Literaturquellen zeigen eine geringe Bandbreite für die Emissionsfaktoren zwischen 0,2 bis 0,4 kg-/t Briketts (Tabelle 3.60). RAINS verwendet Emissionsfaktoren nach CEPMEIP, 2002 (Tabelle 3.61).

Tabelle 3.60: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Herstellung von Kohlebriketts [kg/t Briketts]

Literaturquelle		Angewandte Emissionsminderung	PM2.5	PM10	TSP
UBA, 1989 (1)	Steinkohle	keine Angabe			0.22-0.35
UDA, 1969		\mathcal{C}			
	Braunkohle	keine Angabe			0.4-0.9
UBA, 1998a	Steinkohle	keine Angabe		0.054	0.18
	Braunkohle	keine Angabe		0.12	0.40
CEPMEIP, 2002 (2)	keine Angabe	keine Angabe	0.0125	0.125	0.375

⁽¹⁾ Die Spanne spiegelt eine Veränderung im Durchschnittsemissionsfaktor zwischen 1986 und 1966 wider.

Tabelle 3.61: Im RAINS-Modell verwendete Emissionsfaktoren für die Herstellung von Kohlebriketts [kg/t Briketts]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Brikettherstellung	PR BRIQ	0.0125	0.125	0.375

Anwendbare Minderungsoptionen

Das RAINS-Modell sieht Zyklone und Wäscher als Optionen zur Staubminderung für gefasste Emissionen vor, trifft aber keine Annahmen bezüglich weiterer Reduzierbarkeit von diffusen Emissionen.

3.2.3.2 Zementherstellung

Die Zementherstellung umfasst Rohstoffvorbereitung, Brennen der Rohstoffmischung zur Klinkerherstellung, Vorbereitung anderer Zementbestandteile und Mahlen der Zementbestandteile. Alle diese Prozesse sind Quellen von Staubemissionen. Details der Produktionsprozesse können z.B. in Rentz *et al.*, 1996; TA Luft, 1986; EPA, 1998a; AWMA, 2000; Passant *et al.*, 2000 gefunden werden.

Dieser Sektor hat großen Anteil an den Staubemissionen, auch in Ländern, in denen strenge Emissionsbegrenzungen vorhanden sind. UBA schätzt für 1995 den Beitrag dieses Sektors in Deutschland auf drei (TSP) bzw. fünf (PM10) Prozent. APEG (1999) berechnete für Großbritannien

⁽²⁾ Die Emissionsfaktoren wurden von den ursprünglichen Einheiten (Mg/PJ) unter der Annahme eines Brennwertes von 25 GJ/t neu berechnet

den Beitrag zu PM10 mit ungefähr zwei Prozent, während Berdowski *et al.* (1997) den Anteil der Zementproduktion auf weniger als ein Prozent schätzt (CEPMEIP, 2002). Insgesamt stammten ungefähr 1,5 bis 2,5 Prozent der Staubemissionen in Europa aus dieser Quelle.

RAINS-Sektoren

Tabelle 3.62: Emissionsquellkategorie für die Zementproduktion

Emissionskategorie PR_CEM	Zementherstellung
Aktivitätsraten	Herstellung von Zement
Einheit	kg/t Zement

Emissionsfaktoren

Tabelle 3.63 listet die Emissionsfaktoren für die Zementherstellung auf. Da emittierter Staub zum großen Teil Zement ist, gibt es einen starken Anreiz, die Emissionen so niedrig wie möglich zu halten, da damit direkter ökonomischer Nutzen verbunden ist. Dies erklärt auch den Mangel an ungeminderten Emissionsfaktoren. Emissionsfaktoren für alle Prozesse reichen von 0,12 bis 1 kg/t, abhängig von der Effizienz der angewendeten Minderung. Daraus könnte man Rohgasemissionsfaktoren zwischen 60 und 200 kg/t schätzen. Derzeit wird in RAINS ein Wert von 130 kg/t (Tabelle 3.65) angenommen. Korngrößenspezifische Emissionsfaktoren basieren auf EPA-Daten (1998a) für trockene Prozesse (Tabelle 3.64).

Tabelle 3.63: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Zementproduktion [kg/t produzierter Zement]

Literaturquelle		Angewandte	PM2.5	PM10	TSP
Literaturquene		Emissionsminderung	1 1712.3	1 14110	101
EPA, 1998a	Brennofen Nassprozess	Ungemindert	4.6	15.6	65.0
L1 A, 1770a	Brennofen Nassprozess	ESP	0.24	0.32	0.38
	Brennofen Nassprozess	Filter	0.24	0.52	0.38
	•				0.23
	Rohstoffvorbereitung	Nach Minderung			
	Brennofen Trockenprozess	ESP			0.5
	Brennofen Trockenprozess	Filter	0.045	0.084	0.1
	Vorheizer	ESP			0.13
	Klinkerkühler	ESP			0.048
	Gesamter Prozess	Nach Minderung			$0.28 \text{-} 1.06^{\ (1)}$
BUWAL, 1995	Diffuse Emissionen	keine Angabe			0.10
UBA, 1989 (2)		keine Angabe			0.5-2.2
UBA, 1998a		Nach Minderung		0.261	0.29
IPPC, 2000b ⁽³⁾	Brennofen	Nach Minderung			0.01-0.4
Passant et al.,	Durchschnitt für GB	Nach Minderung		0.236	0.295
2000					
EEA, 1999 ⁽³⁾		keine Angabe			0.12-0.25
CEPMEIP, 2002	'hoch'	Nach Minderung	0.3	0.8	2
	'niedrig'	Nach Minderung	0.08	0.18	0.2
Berdowski <i>et al.</i> , 1997	S	keine Angabe	0	0.15	

⁽¹⁾ Niedrigerer Wert repräsentiert BAT und schlechter funktionierende Vermeidung.

⁽²⁾ Emissionsfaktoren repräsentieren Veränderung zwischen 1986 und 1966.

⁽³⁾ Laut Passant *et al.*, 2000.

Tabelle 3.64: Literaturangaben über Korngrößenverteilungen für die Zementproduktion [Prozent der TSP-Emissionen]

Literaturquelle	Prozess	PM2.5	PM10	TSP
EPA, 1998a	Brennofen, Nassprozess, ungemindert	7 %	24 %	100 %
	Brennofen, Trockenprozess, ungemindert	18 %	42 %	100 %
	Brennofen, Nassprozess, ESP	64 %	85 %	100 %
	Brennofen, Trockenprozess, Gewebefilter	45 %	84 %	100 %
TÜV, 2000a	Brennofen, ESP	51 %	87 %	100 %
	Klinkerkühler, ESP	68 %	99 %	100 %

Tabelle 3.65: Im RAINS-Modell verwendete Emissionsfaktoren für die Zementproduktion [kg/t Zement]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Zementherstellung	PR CEM	23.4	54.6	130

Das RAINS-Modell berücksichtigt Gewebe- und Elektrofilter als Maßnahmen zur Verminderung gefasster Staubemissionen in der Zementindustrie.

3.2.3.3 Kalkherstellung

Kalk wird in verschiedenen Arten von Brennöfen hergestellt; die gebräuchlichste Art ist der Drehrohrofen (in Deutschland der Schachtofen). Brennöfen sind eine Hauptquelle für Staubemissionen, diffuse Emissionen treten in fast jeder Phase der Produktion auf. Details der spezifischen Produktionsprozesse können z.B. in EPA, 1998a; AWMA, 2000 gefunden werden. Dieser Sektor trägt verhältnismäßig wenig zu den Gesamtstaubemissionen bei. In Deutschland schätzte UBA den Anteil für 1995 auf weniger als 0,3 Prozent (TSP) beziehungsweise 0,4 Prozent (PM10). Insgesamt entstanden nur ungefähr 0,2 Prozent aller PM-Emissionen, die in Europa emittiert wurden, in dieser Quelle (CEPMEIP, 2002).

RAINS-Sektoren

Tabelle 3.66: Emissionsquellkategorie für die Kalkproduktion

Emissionskategorie	
PR_LIME	Kalkherstellung
Aktivitätsraten	Kalk(Calciumoxid)herstellung aus Kalkstein
Einheit	kg/t hergestellter Kalk

Emissionsfaktoren

Tabelle 3.67 enthält Emissionsfaktoren für die Kalkproduktion. Die berichteten ungeminderten Emissionsfaktoren schwanken zwischen 50 und 250 kg/t (alle Prozesse einbezogen). Für RAINS wird ein Wert von 100 kg/t angenommen, wobei die Korngrößenverteilung auf den amerikanischen EPA-(1998a) Daten für Drehrohröfen beruht (Tabelle 3.69).

Tabelle 3.67: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Kalkherstellung [kg/t Kalk]

Literaturquelle		Angewandte	PM2.5	PM10	TSP
•		Emissionsminderung			
EPA, 1998a;	kohlebefeuerter	Ungemindert		22	180
AWMA, 2000	Drehrohrofen				
	kohlebefeuerter	ESP		2.2	4.3
	Drehrohrofen				
	Kohle-Gasbefeuerter	Ungemindert			40
	Drehrohrofen				
	Kohle-Gasbefeuerter	Wäscher			0.44
	Drehrohrofen				
	Gasbefeuerter	Ungemindert			48
	Kalkbrennofen				
	Kühler	Ungemindert			3.4
	Zerkleinern, Transport	Ungemindert			~1.5
UBA, 1989 ⁽¹⁾		keine Angabe			0.3-1.3
UBA, 1998a		Nach Minderung		0.104	0.13
IPPC, 2000b ⁽²⁾	nicht alle Prozesse	Ungemindert			3.6-21.6
	nicht alle Prozesse	Nach Minderung			0.12-0.96
Passant et al.,	Durchschnitt für GB	Nach Minderung		0.298	0.425
2000					(2)
EEA, 1999 ⁽²⁾	alle Prozesse	Ungemindert			103-234 (3)
	alle Prozesse	Nach Minderung			0.8-55 (4)
CEPMEIP, 2002	'hoch'	Nach Minderung	0.06	0.3	1
	'niedrig'	Nach Minderung	0.03	0.15	0.3

⁽¹⁾ Die Emissionsfaktoren reflektieren die Veränderung zwischen 1986 und 1966.

Tabelle 3.68: Literaturangaben über Korngrößenverteilungen für die Kalkproduktion [Prozent der TSP-Emissionen]

Literaturquelle	Prozess	PM2.5	PM10	TSP
EPA, 1998a	Drehrohrofen, ungemindert	1.4 %	12 %	100 %
	Drehrohrofen, Multiklon	6.1 %	16 %	100 %
	Drehrohrofen, ESP	14 %	50 %	100 %
	Drehrohrofen, Gewebefilter	27 %	55 %	100 %

Tabelle 3.69: Im RAINS-Modell verwendete Emissionsfaktoren für die Kalkproduktion [kg/t Kalk]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Kalkherstellung	PR_LIME	1.4	12	100

Das RAINS-Modell sieht Zyklone, Wäscher, Gewebefilter und Elektrofilter als Minderungsoptionen für die Kalkproduktion vor. Die Freisetzung diffuser Emissionen wird normalerweise durch die Prozessführung minimiert.

⁽²⁾ Laut Passant et al., 2000.

⁽³⁾ Große Spanne an verschiedenen Typen von Brennöfen.

⁽⁴⁾ Der niedrigere Wert repräsentiert BAT, der höhere Wert schlecht funktionierende Vermeidung.

3.2.3.4 Erdölraffinerien

Die Erdölindustrie wandelt Rohöl in mehr als 2500 raffinierte Produkte um, einschließlich der Flüssigbrennstoffe (Benzin, Diesel, Restöl), Nebenproduktkraftstoffe und Energierohstoffe (z.B. Asphalt, Schmiermittel) und Primärerdölchemikalien (z.B. Äthylen, Toluol, Xylen) (EEA, 1999). Eine ausführliche Beschreibung der spezifischen Prozesse kann z.B. in EPA, 1998a; AWMA, 2000 gefunden werden.

Raffinerien sind keine Hauptquelle von PM-Emissionen; ihr Beitrag wird gewöhnlich auf weniger als ein Prozent (APEG, 1999) geschätzt. Berdowski *et al.* (1997) errechneten höhere Anteile für diese Quelle für osteuropäische Länder (siehe auch Emissionsfaktoren in Tabelle 3.71), während CEPMEIP (2002) über einen Beitrag von weniger als 0,2 Prozent berichtet.

RAINS-Sektoren

Tabelle 3.70: Emissionsquellkategorie für Erdölraffinerien

Emissionskategorie PR_REF	Erdölraffinerie
Aktivitätsraten	Rohöleinsatz
Einheit	kg/t Rohöl

Emissionsfaktoren

Ein Überblick über die Emissionsfaktoren und die PM-Korngrößenverteilung in der Literatur ist in Tabelle 3.71 und Tabelle 3.72 aufgeführt. Es gibt eine ziemlich gute Übereinstimmung zwischen den berichteten Zahlen, abgesehen von erheblich größeren Werten von Berdowski *et al.*, 1997. Es wurde gegenwärtig entschieden, den Wert des holländischen Inventars zu verwenden (ER, 1996), kombiniert mit Informationen über Korngrößenverteilung von Berdowski *et al.* (1997).

Tabelle 3.71: Übersicht über in der Literatur angegebene Emissionsfaktoren für Erdölraffinerien (kg/t Rohöl)

Literaturquelle		Angewandte Emissionsminderung	PM2.5	PM10	TSP
ER, 1996 ⁽¹⁾	Durchschnitt der	Ungemindert		0.12	
	Raffinerien in den Niederlanden				
Ecker and Winter,	Ostdeutsche Anlage	Ungemindert			0.102
2000	Ostdeutsche Anlage	Nach Minderung			0.0167
	moderne Anlage	Nach Minderung			0.008
	(Schwechat, Österreich)				
CEPMEIP, 2002	Vermindert, 'hoch'	Nach Minderung	0.011	0.022	0.032
	Vermindert, 'niedrig'	Nach Minderung	0.0012	0.0024	0.0035
Berdowski et al.,	Westeuropa	keine Angabe	0.16	0.2	
1997	Osteuropa	keine Angabe	1.8	2.25	

⁽¹⁾ Laut Dreiseidler et al., 1999 und Berdowski et al., 1997.

Tabelle 3.72: Literaturangaben über Korngrößenverteilungen für Erdölraffinerien [Prozent der TSP-Emissionen]

Literaturquelle	Prozess	PM2.5	PM10	TSP
CEPMEIP, 2002	Nach Minderung	35 %	70 %	100 %
TÜV, 2000b	Zyklon, ESP	72.4 %	97.3 %	100 %
	ESP, FCC	51.8 %	82.4 %	100 %
Berdowski <i>et al.</i> , 1997	keine Angabe	80 %	100 %	

Tabelle 3.73: Im RAINS-Modell verwendete Emissionsfaktoren für Erdölraffinerien [kg/t Rohöl]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Erdölraffinerie	PR_REF	0.096	0.120	0.122

Das RAINS-Modell berücksichtigt Zyklone, Gewebefilter und Elektrofilter als Minderungsoptionen für Raffinerien.

3.2.3.5 Düngemittelherstellung

Diese Kategorie umfasst die Produktion von Stickstoff-, Phosphor- und Kalium-Düngemitteln. Es wird allgemein angenommen, dass der Beitrag dieses Sektors zu den Staubemissionen mit 0,1 bis 0,5 Prozent verhältnismäßig niedrig ist. (APEG, 1999; CEPMEIP, 2002).

RAINS-Sektoren

Tabelle 3.74: Emissionsquellkategorie für die Düngemittelproduktion

Emissionskategorie PR_FERT	Synthetische Düngemittelproduktion
Aktivitätsraten	hergestelltes Düngemittel
Einheit	kg/t hergestelltes Düngemittel.

Emissionsfaktoren

Tabelle 3.75 listet Emissionsfaktoren für die Düngemittelherstellung, die in einer großen Bandbreite berichtet werden, auf. Wegen unzulänglicher Hintergrundinformationen über die Emissionsminderungen ist es nicht immer möglich, die Gründe hierfür darzulegen. Es wurde angenommen, dass ein moderner Betrieb, der Gewebefilter verwendet, durch einen Emissionsfaktor von ungefähr 0,3 kg/t produzierten Düngemittels gekennzeichnet ist. Beginnend mit diesem Wert und unter Verwendung spezifischer Abscheidegrade für die Korngrößenanteile wurden Rohgasemissionsfaktoren errechnet (Tabelle 3.58). Die geschätzte Emissionsrate von 50 kg/t liegt in der Bandbreite der Daten, die in EPA, 1998a berichtet werden.

Tabelle 3.75: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Düngemittelproduktion [kg/t Düngemittel]

Literaturquelle		Angewandte Emissionsminderung	PM2.5	PM10	TSP
UBA, 1977		keine Angabe		4.6	4.5
UBA, 1989 UBA, 1998a		keine Angabe keine Angabe		1.6	2.5 2.0
EPA, 1998a,	Ammoniumnitrat Ammoniumsulfat	Ungemindert Ungemindert			57.2 23-109
Winiwarter <i>et al.</i> , 2001	7	keine Angabe	0.048	0.151	0.32
CEPMEIP, 2002 Berdowski <i>et al.</i> ,		Nach Minderung keine Angabe	0.18 0.18	0.24 0.25	0.3
1997		3	_	-	

Tabelle 3.76: Im RAINS-Modell verwendete Emissionsfaktoren für die Düngemittelproduktion [kg/t Düngemittel]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Düngemittelherstellung	PR_FERT	18	30	50

Zyklone, Beutelfilter und Elektrofilter werden als Minderungsoptionen für die Düngemittelproduktion berücksichtigt. Gegenwärtig umfasst RAINS keine Optionen, um diffuse Emissionen in diesem Sektor zu vermindern.

3.2.3.6 Ruß

Ruß wird als Verstärkungsmittel in Gummiverbindungen, z.B. für Gummireifen, Schläuche, als schwarzes Pigment in Druckerschwärze, in Oberflächenschichten usw. verwendet. Ruß ist ein Produkt der endothermischen Kohlenwasserstoffpyrolyse. Es kann durch teilweise Verbrennung mit Abflammung oder durch thermische Aufspaltungsprozesse ohne Abflammung produziert werden. Mehr Details über den Produktionsprozess können z.B. in AWMA, 2000 gefunden werden.

Der Anteil dieses Sektors an den gesamten Staubemissionen ist sehr klein und reicht von 0,006 Prozent für TSP in Europa (CEPMEIP, 2002) bis 0,04 Prozent für PM10 in Deutschland (UBA, 1998a). Der Grund, dass dieser Sektor als eine separate Kategorie in RAINS behandelt wird, liegt an seinem Beitrag zu den VOC-Emissionen, d.h. er ist bereits Teil der RAINS-Struktur.

RAINS-Sektoren

Tabelle 3.77: Emissionsquellkategorie für die Rußherstellung

Emissionskategorie PR_CBLACK	Rußherstellung
Aktivitätsraten	produzierter Ruß
Einheit	kg/t Ruß

Emissionsfaktoren

Emissionsfaktoren aus der Literatur werden in Tabelle 3.78 gezeigt. RAINS verwendet Emissionsfaktoren nach CEPMEIP (2002), 'hoher Fall (Tabelle 3.79). Infolge der geringen Bedeutung dieses Sektors für die PM-Emissionen werden die Emissionsfaktoren nicht weiter diskutiert.

Tabelle 3.78: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Rußherstellung [kg/t Ruß]

Literaturquelle		Angewandte	PM2.5	PM10	TSP
		Emissionsminderung			
UBA, 1989 (1)	Nicht spezifiziert	keine Angabe			0.3-1
UBA, 1998a	Nicht spezifiziert	keine Angabe		0.25	0.25
EPA, 1998a	Restgas	Ungemindert			3.25
	Restgas abgeflammt	Nach Minderung			1.35
	Restgas verbrannt	Nach Minderung			1.03
AWMA, 2000		keine Angabe			~ 1
	diffuse Emissionen	keine Angabe			0.05-0.1
CEPMEIP, 2002	'hoch'	Ungemindert	1.44	1.6	1.78
	'niedrig'	Nach Minderung	0.18	0.2	0.22

⁽¹⁾ Emissionsfaktor zwischen 1986 und 1966.

Tabelle 3.79: Im RAINS-Modell verwendete Emissionsfaktoren für die Rußherstellung [kg/t Ruß]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Rußherstellung	PR CBLACK	1.44	1.6	1.78

Anwendbare Minderungsoptionen

Das RAINS-Modell sieht Zyklone, Gewebefilter und Elektrofilter als Optionen zur Verringerung der gefassten Emissionen der Rußerzeugung vor, jedoch keine weiteren Maßnahmen für diffuse Emissionen.

3.2.3.7 Glasherstellung

Diese Kategorie umfasst die Produktion von Flachglas, Behälterglas und Hohlglas, wobei die letzten zwei Prozesse gewöhnlich den Großteil der Produktion ausmachen. Die Glasherstellung bezieht vier Phasen mit ein: Vorbereitung des Rohstoffes, Schmelzen in einem Ofen, Formgebung, und Fertigstellung. Staubemissionen treten in allen Phasen auf. Mehr Details über den Prozess und die Quellen der Emissionen können z.B. in EPA, 1998a; AWMA, 2000; Passant *et al.*, 2000 gefunden werden.

Der Beitrag dieses Sektors zu den Gesamtemissionen wird auf unter ein Prozent, d.h. 0,2 bis 0,7 Prozent für TSP und PM2.5 in Europa (CEPMEIP, 2002) und 0,1 bis 0,2 für TSP und PM10 in Deutschland (UBA, 1998a) geschätzt.

RAINS-Sektoren

Tabelle 3.80: Emissionsquellkategorie für die Glasherstellung

Emissionskategorie PR_GLASS	Glasherstellung
Aktivitätsraten	hergestelltes Glas
Einheit	kg/t hergestellten Glases

Emissionsfaktoren

Eine Anzahl von Literaturquellen gibt Emissionsfaktoren der Glasindustrie an (Tabelle 3.81). In den meisten Fällen beziehen sich die Faktoren auf bereits verminderte Emissionen, oder es gibt unzulängliche Informationen zum Ausmaß und der Art der Minderung.

Ein ungeminderter Emissionsfaktor konnte nach amerikanischen Angaben anhand der Information, dass Behälterglas und Hohlglas 51 beziehungsweise 25 Prozent der Produktion darstellen (EPA, 1998a), abgeleitet werden. Dies ergibt einen Wert von ungefähr 2,7 kg/t und vernachlässigt diffuse Emissionen aus der Vorbereitung, Behandeln, Formgebung und Fertigstellung. Für Europa konnte keine relevante Information gefunden werden. Unter der Annahme, dass der in UBA (1998a) angegebene Emissionsfaktor einen modernen Betrieb mit gut funktionierender Ausrüstung repräsentiert und dass das CEPMEIP (2002) 'niedrige Szenario' den Stand der Technik reflektiert, kann man einen ungeminderten Emissionsfaktor von 3,25 kg/t ableiten, der zu einer Emissionsrate im Bereich von 0,03-0,06 kg/t führt. Dieser Emissionsfaktor wird in RAINS (Tabelle 3.83) verwendet und größenspezifische Faktoren werden mittels des EPA-Profils (1998a) für das Schmelzen abgeleitet (Tabelle 3.82).

Tabelle 3.81: Übersicht über in der Literatur angegebene Emissionsfaktoren für die Glasherstellung [kg/t Glas]

Literaturquelle		Angewandte	PM2.5	PM10	TSP
_		Emissionsminderung			
UBA, 1989 (1)		keine Angabe			0.68-2.2
BUWAL, 1995		keine Angabe			0.47-3.7
UBA, 1998a		Nach Minderung		0.06	0.067
EPA, 1998a	(generell)	keine Angabe	0.64	0.66	0.68
	Rohstoffvorbereitung	Nach Minderung			~0
	Schmelze, Behälterglas	Ungemindert			0.7
	Schmelze, Hohlglas	Ungemindert			8.4
	Schmelze, Flachglas	Ungemindert			1.0
	Formgebung und	keine Angabe			~0
	Fertigstellung				
EEA, 1999		Nach Minderung			0.09-0.15
Passant et al., 2000	durchschnittliche	keine Angabe			0.4
	Anlage in GB				
CEPMEIP, 2002	'hoch'	Nach Minderung	1.6	1.8	2
(1)	'niedrig'	Nach Minderung	0.024	0.027	0.03

⁽¹⁾ Emissionsfaktoren von 1986 und 1966.

Tabelle 3.82: Literaturangaben über Korngrößenverteilungen für die Glasherstellung [Prozent der TSP-Emissionen]

Literaturquelle		Angewandte Emissionsminderung	PM2.5	PM10	TSP
EPA, 1998a	Schmelze	Ungemindert	91 %	95 %	100 %
,	Schmelze	nach Minderung	53 %	75 %	100 %
TÜV, 2000a	Flachglas	ESP	48 %	94 %	100 %
	Behälterglas	ESP	56 %	95 %	100 %
CEPMEIP, 2002	-	Nach Minderung	80 %	90 %	100 %

Tabelle 3.83: Im RAINS-Modell verwendete Emissionsfaktoren für die Glasherstellung [kg/t Glas]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Glasherstellung	PR_GLASS	2.96	3.09	3.25

Das RAINS-Modell sieht Zyklone, Gewebefilter und Elektrofilter als Optionen zur Verringerung der gefassten Emissionen bei der Glaszerzeugung vor, jedoch keine weiteren Maßnahmen für diffuse Emissionen.

3.2.3.1 Andere Produktionsprozesse

Eine Reihe von anderen Produktionsprozessen, die jedoch in Summe nur einen geringen Beitrag zu den Staubemissionen leisten, wurde in einer Gruppe zusammengefasst. Diese Gruppe enthält die Herstellung von Gips, Glasfasern und PVC. Eine ausführliche Beschreibung dieser Prozesse kann z.B. in AWMA, 2000; EPA, 1998a gefunden werden.

Laut CEPMEIP entstehen weniger als 0,5 Prozent der Staubemissionen in Europa aus diesen Prozessen (CEPMEIP, 2002). Für Deutschland schätzte UBA, dass der Anteil etwas größer sein könnte (UBA, 1998a).

RAINS-Sektoren

Tabelle 3.84: Emissionsquellkategorie für andere Produktionsprozesse

Emissionskategorie PR_OTHER	Herstellung von PVC, Gips, Glasfasern
Aktivitätsraten	Produkt
Einheit	kg/t hergestellten Produkts

Emissionsfaktoren

Tabelle 3.85 gibt einen Literaturüberblick über die Emissionsfaktoren. Für Gips verwendet RAINS Emissionsfaktoren von EPA (1998a), während für andere Produkte ungeminderte Emissionsfaktoren unter der Annahme, dass nicht-flüchtige Quellen durchschnittliche Abscheidegrade über 98 Prozent aufweisen, abgeleitet wurden. Die Produktionsstruktur schwankt zwischen den Ländern und wird den durchschnittlichen Emissionsfaktor beeinflussen. Statistische Daten bezüglich der Produktion von 1995 wurden verwendet, um länderspezifische Faktoren abzuleiten; Tabelle 3.86 zeigt nur Bandbreiten.

Tabelle 3.85: Übersicht über in der Literatur angegebene Emissionsfaktoren für PVC-, Gips-, und Glasfaserherstellung [kg/t Produkte]

Literaturquelle		Angewandte	PM2.5	PM10	TSP
		Emissionsminderung			
PVC				0.383	_
ER, 1986 ⁽¹⁾		keine Angabe	0.1	0.2	
Berdowski et al.,		keine Angabe		15	17.5
1997					
EPA, 1998a		Ungemindert			0.2625
		Nach Minderung	0.01	0.1	0.2625
CEPMEIP, 2002		Nach Minderung			
Gips		_		0.104	0.13
UBA, 1998a (2)		keine Angabe			0.05
BUWAL, 1995		keine Angabe	0.01	0.04	0.1
CEPMEIP, 2002	'hoch'	Nach Minderung	0.0075	0.025	0.05
	'niedrig'	Nach Minderung			
Glasfasern	-	_	1.4	1.8	2
CEPMEIP, 2002	'hoch'	Nach Minderung	0.35	0.45	0.5
	'niedrig'	Nach Minderung			

⁽¹⁾ Laut Berdowski *et al.*, 1997.

Tabelle 3.86: Im RAINS-Modell verwendete Emissionsfaktoren für die PVC-, Gips-, und Glasfaserherstellung [kg/t Produkte]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Andere Herstellung	PR_OTHER	0.5-8	2-15	5-17.5

Das RAINS-Modell sieht Zyklone, Gewebefilter und Elektrofilter als Optionen zur Verringerung der gefassten Emissionen bei der Glaserzeugung vor, jedoch keine weiteren Maßnahmen für diffuse Emissionen.

3.2.3.2 Diffuse Emissionen aus Gewerbebetrieben

Kleine Gewerbebetriebe, z.B. Zimmereien, kleine Sägemühlen, etc., sind eine bedeutende Quelle von diffusen Staubemissionen. Ein großer Anteil dieser Anlagen wird aufgrund ihrer kleinen Produktionskapazität, der wenigen Angestellten, des geringen Ressourcenverbrauchs oder wegen der geringen jährlichen Emissionen nicht von speziellen Umweltauflagen erfasst. Aufgrund der großen Zahl dieser Quellen und der oft fehlenden oder schlecht funktionierenden Ausrüstungen zur Emissionsminderung können solche Quellen in Summe eine verhältnismäßig große Menge an Staub emittieren.

CEPMEIP schätzte, dass 1995 etwa 3,5 Prozent des gesamteuropäischen Staubs und mehr als ein Prozent PM2.5 aus dieser Quelle stammte. Das Schweizer Inventar gibt für 1995 (EWE, 2000; BUWAL, 2001) an, dass in der Schweiz fast sechs Prozent von PM10 von kleinen industriellen Anlagen stammten, wobei der Großteil hiervon (ungefähr 90 Prozent) aus Holzwerkstätten kam. Ein hoher Anteil an den Emissionen aus der Holzverarbeitung könnte sehr spezifisch für die Schweiz sein. Einige andere nationale Inventare umfassen diese Art von Quellen nicht und, wie von Winiwarter *et al.* gezeigt (2001), ist einer der Gründe hierfür nicht nur die Schwierigkeit des Schätzens der Emissionsfaktoren, sondern auch das Auffinden von Aktivitätsdaten.

⁽²⁾ Aggregierter Emissionsfaktor, der auch andere Produkte beinhaltet.

RAINS-Sektoren

Tabelle 3.87: Emissionsquellkategorie für Gewerbebetriebe

Emissionskategorie PR_SMIND_F	Gewerbebetriebe
Aktivitätsraten	Bevölkerung wird als Ersatzvariable verwendet
Einheit	kg/Kopf

Emissionsfaktoren

Emissionsfaktoren für das Gewerbe sind nur selten dokumentiert (Tabelle 3.88). Der Emissionsfaktor des Inventars für die Schweiz (EWE, 2000) wurde ermittelt, indem berichtete Emissionen (ungefähr 1,7 kt) durch die Bevölkerung geteilt wurden. Für das RAINS-Modell wurde entschieden, vorläufig die CEPMEIP-Faktoren zu verwenden, obwohl der Ursprung dieser Faktoren nicht im CEPMEIP-Report dokumentiert ist (Tabelle 3.89). Die Schweizer Faktoren erscheinen als nicht repräsentativ für andere Länder in Europa.

Tabelle 3.88: Übersicht über in der Literatur angegebene Emissionsfaktoren für diffuse Emissionen aus dem Gewerbe [kg/Kopf]

Literaturquelle	Angewandte	PM2.5	PM10	TSP
	Emissionsminderung			
BUWAL, 1995	Keine Angabe (1)			0.7
EWE, 2000 ⁽²⁾	Keine Angabe		0.24	
CEPMEIP, 2002	Keine Angabe	0.06	0.18	0.545

⁽¹⁾ Unter der Annahme, dass im Durchschnitt ungefähr 30 Prozent des Staubs vermieden wird.

Tabelle 3.89: Im RAINS-Modell verwendete Emissionsfaktoren Gewerbeanlagen [kg/ Kopf]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Gewerbeanlagen	PR SMIND F	0.06	0.18	0.545

Anwendbare Minderungsoptionen

Das RAINS-Modell sieht zwei Stufen zur Verminderung von diffusen Emissionen aus dem Gewerbebereich vor.

3.2.4 Bergbau

Dieser Abschnitt umfasst den Bergbau von Kohle (Braunkohle und Steinkohle) und metallischen und nichtmetallischen Erzen (Zink, Eisen, Kupfer, Mangan, Bauxit, etc.). Die Informationen über Emissionen von Betrieben, die mit dem Bergbau zusammenhängen, sind gering. EPA (EPA, 1995) stellt einige Daten zu Tagewerkbergbau bereit, aber diese beziehen sich sehr spezifisch auf amerikanische Gruben und es ist schwierig, sie auf die europäische Situation zu übertragen.

APEG (1999) schätzte für 1995 die PM10- und PM2.5-Emissionen aus dem Bergbau und Steinbrüchen in Großbritannien auf ungefähr 24.000 beziehungsweise 7.000 Tonnen. Dies sind ca. 11 und 5 Prozent der gesamten PM10- und PM2.5-Emissionen Großbritanniens und liegt damit deutlich

⁽²⁾ Emissionsfaktor abgeleitet aus berichteten Emissionen.

über den Schätzungen von CEPMEIP (2000), die für Großbritannien 0,4 bzw. 0,1 Prozent aus diesem Sektor veranschlagen.

Dieser Unterschied könnte zumindest zum Teil damit erklärt werden, dass CEPMEIP nur den Steinkohlebergbau erfasst, während in der Studie von APEG der Geltungsbereich nicht klar ersichtlich ist. Winiwarter *et al.* (2001) schätzten den Anteil des Bergbaus an österreichischen Emissionen auf 0,2 und 0,6 Prozent für PM2.5 beziehungsweise TSP. Laut CEPMEIP (2002) tragen PM-Emissionen aus dem Bergbau in Europa im Durchschnitt ungefähr 1 Prozent zu TSP und PM10 und nur ungefähr 0,2 Prozent zu PM2.5 bei, wobei der Großteil (fast 90 Prozent) im Kohlebergbau entsteht.

RAINS-Sektoren

Tabelle 3.90: Emissionsquellkategorien für den Bergbau

Emissionskategorie	
MINE_BC	Braunkohlebergbau
MINE_HC	Steinkohlebergbau
MINE_OTH	Anderer Bergbau
Aktivitätsraten	Abbau von Kohle und Erzen
Einheit	kg/t

Emissionsfaktoren

Nur drei Literaturquellen berichten Emissionsfaktoren des Bergbaus (Tabelle 3.91). Unterschiede sind aufgrund unzureichender Hintergrundinformation nur bedingt erklärbar. RAINS benützt gegenwärtig für alle Länder gleiche Faktoren aus der CEPMEIP-Studie, wenngleich auch diese Faktoren in der CEPMEIP-Studie nicht näher dokumentiert wurden. Die 'hohen' Faktoren werden als ungeminderte Faktoren interpretiert, während die in CEPMEP als 'niedrig' bezeichneten Faktoren in RAINS durch Minderungsmaßnahmen erreicht werden können (Tabelle 3.92).

Tabelle 3.91: Übersicht über in der Literatur angegebene Emissionsfaktoren für den Bergbau [kg/Tonne]

Literaturquelle		Angewandte Emissionsminderung	PM2.5	PM10	TSP
APEG, 1999 Winiwarter <i>et al.</i> , 2001	Bergbau und Steinbruch Eisenerzabbau	keine Angabe keine Angabe	0.00029 0.03043	0.001 0.1047	0.2168
CEPMEIP, 2002	Wolframerzabbau 'hoch' 'niedrig'	keine Angabe keine Angabe keine Angabe	0.0038 0.005 0.0038	0.0119 0.05 0.025	0.0251 0.1017 0.0509

Tabelle 3.92: Im RAINS-Modell verwendete Emissionsfaktoren für den Bergbau [kg/Tonne]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Braunkohlebergbau	MINE_BC	0.005	0.05	0.1017
Steinkohlebergbau	MINE_HC	0.005	0.05	0.1017
Anderer Bergbau	MINE_OTH	0.005	0.05	0.1017

Im RAINS-Modell wird angenommen, dass mit "guter technische Praxis/primäre Maßnahmen" die diffusen Staubemissionen im Bergbau vom hohen CEPMEIP-Emissionsfaktor auf den niedrigen Faktor reduziert werden können.

3.2.5 Landwirtschaft

Auch landwirtschaftliche Aktivitäten sind Quellen von primären Staubemissionen. Beispiele sind Viehställe, Ackerwirtschaft, Erntearbeiten, Energieverbrauch (Verbrennung), Verbrennung von landwirtschaftlichem Abfall und unbefestigte Straßen. Einige dieser Quellen werden in anderen Abschnitten dieses Dokumentes behandelt, z.B. der Energieverbrauch, Schüttgutumschlag von Agrarerzeugnissen, offenes Verbrennen von landwirtschaftlichem Abfall. Natürliche Quellen von Staub wie Erosion, die zum Teil mit landwirtschaftlichen Aktivitäten verbunden sind, sind hier nicht enthalten. Die folgenden Abschnitte beziehen sich hauptsächlich auf die Viehwirtschaft, welche als größte Staubquelle in der Landwirtschaft angesehen wird (ICC und SRI, 2000), und kurz auf die Ackerwirtschaft und andere Quellen wie z.B. unbefestigte Straßen.

3.2.5.1 Landwirtschaftliche Tierhaltung

Die meisten Messungen von Staubkonzentrationen wurden auf Geflügel- und Schweinefarmen durchgeführt (z.B., Takai *et al.*, 1998; Donham *et al.*, 1986 und 1989; Louhelainen *et al.*, 1987), die als Hauptquelle von PM aus der Viehhaltung betrachtet werden (Berdowski *et al.*, 1997; ICC und SRI, 2000; EQB, 2001). Milch- und Mastvieh spielen eine geringere Rolle. Die wichtigsten Quellen umfassen Fütterung und fäkales Material und möglicherweise Lagerstreu. Geringere Anteile stammen von Haut, Haar, Schimmel, Blütenpollen und Insektenteilen. Der ICC- und SRI-Bericht (2000) weist darauf hin, dass der mittlere Massendurchmesser des Staubes, welcher sich in Schweine- und Geflügelställen ansammelt, zwischen 11 und 17 μm liegt. Der Anteil von PM5 im Gesamtstaub auf Schweine- und Geflügelfarmen wurde auf ungefähr 4 bis 16 Prozent geschätzt (z.B. Heber *et al.*, 1988; Louhelainen *et al.*, 1987; Cravens *et al.*, 1981). Der ICC- und SRI-Bericht (2000) verwendete für alle Tierkategorien die Korngrößenverteilung aus Louhelainen *et al.*, 1987, d.h. acht Prozent für PM2.5 und 45 Prozent für PM10. Ein neuer umfangreicher Bericht zu den Emissionen aus dieser Quelle ist im ICC- und SRI- (2000) Report vorhanden.

Berdowski *et al.* (1997) schätzten den Beitrag der Landwirtschaft zu europäischen Gesamtemissionen von PM10 und PM2.5 auf neun bzw. sieben Prozent, wobei sie jedoch andeuteten, dass diese Schätzungen eher am oberen Ende der Skala liegen. In der Tat deutet ein Vergleich zwischen dieser Studie und neueren Arbeiten von ICC und SRI (2000)³ für Großbritannien auf größere Unterschiede hin⁴, d.h. für PM10 11,5 kt laut ICC und SRI (2000) und 30 kt laut Berdowski *et al.* (1997) und für PM2.5 2 kt beziehungsweise 13 kt. Das vor kurzem abgeschlossene CEPMEIP- (Co-ordinated European Programme on Particulate Matter Emission Inventories, Projections and Guidance) Projekt (CEPMEIP, 2002) schätzte, dass 1995 der aus der Viehwirtschaft stammende Anteil von PM10- und PM2.5-Emissionen in Europa 4,5 bzw. 1,7 Prozent betrug.

_

³ Ihre Schätzungen beruhen auf Messungen in Großbritannien durch Takai et al. (1998).

⁴ Die Schätzungen beziehen sich auf verschiedene Jahre, d.h. 1990 (Berdowski *et al.*, 1997) und 1998 (ICC und SRI, 2000). Allerdings war in dieser Zeit die Veränderung der Tierzahl (ausschließlich Rinder) nicht sehr signifikant.

RAINS-Sektoren

Tabelle 3.93: Emissionsquellkategorien für die landwirtschaftliche Tierhaltung

Emissionskategorie		
AGR_POULT	Geflügel	
AGR_PIG	Schweine	
AGR_COWS	Milchvieh	
AGR BEEF	Andere Rinder	
AGR_OTANI	Andere Tiere	
Aktivitätsraten	Tierzahl	
Einheit	kg/Tier/Jahr	

Emissionsfaktoren

Beispiele für Emissionsfaktoren und Korngrößenverteilungen aus der Literatur werden in den Tabellen unten angegeben. Die Werte von Takai *et al.* (1998) in Tabelle 3.94 stellen die Durchschnitte von Messungen in Dänemark, den Niederlanden, Deutschland und in Großbritannien dar. Große Unterschiede wurden zwischen den Ländern beobachtet. Z.B. waren für Vieh die geschätzten Staubemissionen in Deutschland (ungefähr 1,2 kg/Tier/Jahr) fast zweimal so hoch wie in England (0,65 kg/Tier/Jahr), während für Schweineställe die in Dänemark gemessenen Emissionen (ungefähr 1,4 kg/Tier/Jahr) erheblich höher als in Deutschland oder Großbritannien (ungefähr 0,82 kg/Tier/Jahr) waren. Für Geflügel waren die in Deutschland gemessenen Werte (ungefähr 0,07 kg/Tier/Jahr) erheblich niedriger als der Durchschnitt, der in Tabelle 3.94 berichtet wird. Takai *et al.* (1998) zeigen, dass der Belüftungsgrad, Fütterungspraxis und Lagerstreu zu den Hauptgründen für die Unterschiede bei den gemessenen Emissionsfaktoren gehören.

Tabelle 3.94: Übersicht über in der Literatur angegebene Emissionsfaktoren für die landwirtschaftliche Tierhaltung [kg/Tier/Jahr]

Literaturquelle		PM2.5	PM5	PM10	TSP
Takai <i>et al.</i> , 1998	Rinder		0.166		0.964
	Schweine		0.123		0.972
	Geflügel		0.018		0.105
CEPMEIP, 2002	Rinder	0.0885		0.396	0.885
	Schweine	0.0785		0.354	0.785
	Geflügel, Hühner	0.0083		0.037	0.083
	Geflügel, andere	0.0553		0.249	0.553
Berdowski et al., 1997	Schweine	0.75		2.2	
	Geflügel	0.043		0.086	

Das RAINS-Modell verwendet Resultate von Takai *et al.*(1998) und der ICC- und SRI- Studie (2000). Diese ICC- und SRI-Studie ist nicht in Tabelle 3.94 angeführt, da ihre Emissionsschätzungen für Großbritannien auf den Resultaten von Takai *et al.* (1998) beruhen, wobei die Korngrößenverteilung aus Tabelle 3.95 angenommen wurde.

Tabelle 3.95: Literaturangaben über Korngrößenverteilungen bei der landwirtschaftlichen Tierhaltung [Prozent der TSP-Emissionen]

Literaturquelle		PM2.5	PM5	PM10	TSP
Louhelainen et al. 1987a	Schweine	8 %	14 %	45 %	100 %
Cravens et al., 1981	Geflügel			15-16 %	
Heber et al., 1988	Schweine		3.7 %		
TÜV, 2000b	Hähnchen	8.8 %		58.3 %	100 %
	Legehennen	3.1 %		33.1 %	100 %
CEPMEIP, 2002	Alle Tiere	10 %		45 %	100 %
Takai <i>et al.</i> , 1998	Rinder		17.3 %		
	Schweine		12.6 %		
	Geflügel		16.7 %		
Berdowski et al., 1997	Schweine	12 %		40 %	100 %
	Geflügel	20 %		40 %	100 %

Tabelle 3.96: Im RAINS-Modell verwendete Emissionsfaktoren für die landwirtschaftliche Tierhaltung [kg/Tier/Jahr]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Geflügel	AGR_POULT	0.0105	0.0473	0.1051
Schweine	AGR_PIG	0.0778	0.4376	0.9724
Milchvieh	AGR COWS	0.0964	0.4336	0.9636
Andere Rinder	AGR_BEEF	0.0964	0.4336	0.9636
Schafe, Pferde, Pelztiere	AGR_OTANI	-	-	-

Tabelle 3.96 gibt durchschnittliche Emissionsfaktoren an, die auf Resultaten von Takai *et al.* (1998) basieren und nicht die Länge der Bewirtschaftungsperiode in Betracht ziehen. Die tatsächlich in RAINS verwendeten Emissionsfaktoren wurden länderspezifisch unter Einbeziehung der Bewirtschaftungsperiode neuberechnet. Die Korngrößenverteilung wird gemäß Louhelainen *et al.* (1987a) und ICC und SRI (2000) angenommen, mit Ausnahme des Anteiles von PM2.5 bei Vieh und Geflügel, für das wie in CEPMEIP (2002) ein Wert von 10 Prozent verwendet wurde. Letztere Annahme scheint durch die Messungen von Takai *et al.* (1998) gerechtfertigt zu sein, nach denen Emissionen von Vieh- und Geflügelställen höhere Anteile Feinstaub aufweisen. Die Standardemissionsfaktoren für Milchkühe und anderes Vieh sind gleich und basieren auf dem von Takai *et al.* (1998) für 'Vieh' berichteten Durchschnittsfaktor.

Für andere Tierarten (AGR_OTANI) sind keinerlei Emissionsfaktoren verfügbar, sodass auch in RAINS vorläufig kein Faktor angenommen wurde.

Anwendbare Minderungsoptionen

Minderungsoptionen für Staubkonzentrationen in Tierställen sowie in der Nachbarschaft von Bauernhöfen werden z.B. in Visschedijk et al. (1997), Takai et al. (1998) und ICC und SRI (2000) diskutiert. Da Futter eine der Hauptstaubquellen in Ställen ist, kann der Zusatz von Tierfett oder Pflanzenöl durch Reduzierung des Futterstaubes eine Verringerung der Staubkonzentration in Schweineställen von 35 bis 70 Prozent bewirken. Andere Methoden umfassen das Einsprühen von kleinen Mengen Pflanzenöls in den Stall sowie die Verwendung von Trockenfiltern, Elektrofiltern oder Wäschern. Obwohl die letzteren Optionen Staubemissionen erheblich verringern könnten, wurden sie in der Landwirtschaft für undurchführbar befunden. Ein neuer Ansatz, der im ICC- und SRI-Bericht (2000) besprochen wird, ist 'strategisch gepflanzte Vegetation', d.h. Baumgürtel um Ställe. Basierend auf der Diskussion der Verwendbarkeit, Wirksamkeit, Kosten und der Annehmbarkeit einiger Minderungsoptionen (ICC und SRI, 2000), umfasst RAINS vier Minderungsoptionen: Futteränderungen (alle Tiere), Heu-Silofutter (nur Vieh), Wechsel zu

Freilandgeflügelfarmen und zusätzlich eine allgemeine Option für andere Tiere (diese muss zur Zeit noch als Platzhalter angesehen werden, kann aber später verwendet werden, wenn mehr Informationen vorhanden sind).

3.2.5.2 Ackerbau

Dieser Sektor umfasst Emissionen bei der Getreideernte sowie der Bodenvorbereitung (Pflügen, Eggen, Bodenbestellung, Aktivitäten nach der Ernte). Europäische Studien für diese Quellen gehen auf die siebziger und achtziger Jahre zurück, als die Exposition von Traktorfahrern studiert wurde (Batel, 1979; Noren, 1985; Louhelainen *et al.*, 1987b). Jüngere Arbeiten wurden in den USA durchgeführt (Clausnitzer und Singer, 1996). ICC und SRI (2000) analysierten die Emissionen durch die Ackerwirtschaft in Großbritannien und stellten fest, dass diese Emissionen ungefähr fünf Prozent der landwirtschaftlichen Emissionen von PM10 in Großbritannien ausmachen.

RAINS-Sektoren

Tabelle 3.97: Emissionsquellkategorie für den Ackerbau

Emissionskategorie AGR_ARABLE	Ackerbau
Aktivitätsraten	Ackerlandfläche
Einheit	kg/Hektar Ackerfläche

Emissionsfaktoren

Das RAINS-Modell benützt Emissionsfaktoren der ICC- und SRI (2000)-Studie für Großbritannien, für die umfangreiche Analysen durchgeführt wurden. Weder CEPMEIP (2002) noch Berdowski *et al.* (1997) schließen diese Quelle in ihren Inventaren ein.

Tabelle 3.98: Übersicht über in der Literatur angegebene Emissionsfaktoren für den Ackerbau [kg/Hektar]

Literaturquelle		PM2.5	PM10	TSP
Louhelainen et al., 1987b	Pflügen			0.0220
	Eggen			0.1400
Noren, 1985	Bodenbearbeitung			1.4601
Clausnitzer and Singer, 1996	Aktivitäten nach der Ernte		0.0250	
_	Getreideernte		0.0104	
	Säen			0.0771
Batel, 1979	Getreideernte			0.2

Tabelle 3.99: Literaturangaben über Korngrößenverteilungen für den Ackerbau [Prozent der TSP-Emissionen]

Literaturquelle		PM2.5	PM10	TSP
Nieuwenhuijsen <i>et al.</i> , 1998 (1)	Gesamte Ackerwirtschaft		5.5 %	100 %

⁽¹⁾ wie in ICC und SRI, 2000 zitiert

Tabelle 3.100: Im RAINS-Modell verwendete Emissionsfaktoren den Ackerbau [kg/Hektar]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Ackerwirtschaft	AGR_ARABLE	0	0.10	1.88

Basierend auf der Diskussion von Anwendbarkeit, der Wirksamkeit, der Kosten und der Annehmbarkeit der theoretisch möglichen Minderungsoptionen (ICC und SRI, 2000) berücksichtigt RAINS alternative Getreideernte und alternative Bewirtschaftungsformen.

3.2.5.3 Andere landwirtschaftliche Quellen

Neben den Emissionen aus Schüttgutumschlag von Agrarerzeugnissen, der offenen Abfallverbrennung und des Energieverbrauchs in der Landwirtschaft, welche in anderen Abschnitten in diesem Bericht behandelt werden, gibt es noch weitere Staubquellen in der Landwirtschaft. Diese umfassen zum Beispiel kleine Verbrennungsöfen, in denen verschiedenartiger Abfall und möglicherweise tote Tiere verbrannt werden. Die hierbei erzeugte Wärme wird für gewöhnlich nicht verwendet und nicht in Energiestatistiken berichtet und ist daher nicht in der RAINS-Energiedatenbank enthalten. Weiters wären Tierfutterproduktion sowie unbefestigte Straßen auf Bauernhöfen zu nennen. ICC und SRI (2000) versuchte eine Schätzung der Emissionen dieser Quellen für Großbritannien, es gelang jedoch nicht, alle Bereiche quantifizieren. Weder CEPMEIP (2002) noch Berdowski *et al.* (1997) berücksichtigen diese Quelle in ihren Inventaren. RAINS berücksichtigt in nationalen Inventaren angegebene Emissionen aus diesen Quellen, führt jedoch keine eigenständige Berechnung dieser Emissionen und keine Abschätzung des Minderungspotenzials durch.

RAINS-Sektoren

Tabelle 3.101: Emissionsquellkategorie für andere landwirtschaftliche Quellen

Emissionskategorie AGR_OTHER	Andere landwirtschaftliche Quellen
Aktivitätsraten	Emissionen
Einheit	kg/kg

Emissionsfaktoren

Der Leser sei verwiesen auf weiterführende Studien durch ICC und SRI (2000) und USEPA AP-42 (EPA, 1998a), in denen einige Emissionsfaktoren für die besprochenen Quellen angegeben werden.

Anwendbare Minderungsoptionen

RAINS berücksichtigt keine Minderungsoptionen für diese Kategorie.

3.2.6 Abfackeln von Gas

Dieser Abschnitt umfasst das Abfackeln in der Öl- und Gasindustrie.

RAINS-Sektoren

Tabelle 3.102: Emissionsquellkategorie für das Abfackeln von Gas

Emissionskategorie

WASTE FLR Gasabfackeln in der Öl und Gasindustrie

Aktivitätsraten abgefackeltes Gas

Einheit kt/PJ Gas

Emissionsfaktoren

Tabelle 3.103: Übersicht über in der Literatur angegebene Emissionsfaktoren für das Abfackeln von Gas [kt/PJ]

Literaturquelle		PM2.5	PM10	TSP
CEPMEIP, 2002	Gasabfackeln	0.064	0.064	0.064

Tabelle 3.104: Im RAINS-Modell verwendete Emissionsfaktoren für das Abfackeln von Gas [kt/PJ]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Gasabfackeln	WASTE_FLR	0.064	0.064	0.064

Anwendbare Minderungsoptionen

Das RAINS-Modell berücksichtigt gute technische Praxis als Option, um Emissionen durch Abfackeln in der Öl- und Gasindustrie zu verringern.

3.2.7 Offene Verbrennung von Abfällen

Dieser Abschnitt umfasst das offene Verbrennen von landwirtschaftlichem und Hausabfall, was bisher in den Emissionsinventaren kaum erfasst worden ist. Dementsprechend wenig Information ist über die Emissionen dieser Aktivitäten verfügbar. Laut CEPMEIP (2002) könnte die offene Müllverbrennung eine wichtige Quelle von Feinpartikeln sein und trägt in Europa bis zu fünf Prozent zu den PM2.5-Emissionen bei. Da mehr als die Hälfte dieser Emissionen aus der offenen Verbrennung landwirtschaftlichen Abfalls stammt und die gegenwärtige Politik in einigen Ländern diese Praxis verbietet, wird erwartet, dass die Bedeutung in den kommenden Jahren abnehmen wird.

Tabelle 3.105: Emissionsquellkategorien für die offene Verbrennung von Abfällen

Emissionskategorie	
WASTE_AGR	Offene Verbrennung von landwirtschaftlichen Abfällen
WASTE_RES	Offene Verbrennung von Müll
Aktivitätsraten	verbrannter Abfall
Einheit	kg/t Abfall

Emissionsfaktoren

Es gibt bedeutende Unterschiede zwischen den in verschiedenen Studien berichteten Emissionsfaktoren. EPA (1995) führt Emissionsfaktoren für einige landwirtschaftliche Ernteabfälle an, für die die RAINS-Datenbank jedoch keine Aktivitätsdaten enthält. RAINS verwendet derzeit die CEPMEIP-Faktoren, obwohl deren Herkunft nicht ausreichend dokumentiert ist.

Tabelle 3.106: Übersicht über in der Literatur angegebene Emissionsfaktoren für die offene Verbrennung von Abfällen [kg/t Abfall]

Literaturquelle		PM2.5	PM10	TSP
EPA, 1995	Hausmüll			8 (1)
	Feldfrüchte			11
BUWAL, 1995	Hausmüll			30 ⁽²⁾
,	Landwirtschaftliche Abfälle			20
CEPMEIP, 2002	Offene Müllverbrennung	6	6	8
,	Landwirtschaftliche Abfälle	2.82	3.3	4.7

⁽¹⁾ EPA gibt an, dass der Grossteil des Staubes PM2.5 zuzuordnen ist.

Tabelle 3.107: Im RAINS-Modell verwendete Emissionsfaktoren für die offene Verbrennung von Abfällen [kg/t]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Offene Abfallverbrennung, Landwirtschaft	WASTE_AGR	2.82	3.3	4.7
Offene Abfallverbrennung, Hausmüll	WASTE_RES	6.0	6.0	8.0

Anwendbare Minderungsoptionen

Das RAINS-Modell berücksichtigt das Verbot des Verbrennens landwirtschaftlichen Abfalls und Hausmülls.

3.2.8 Schüttgutumschlag

Dieser Abschnitt umfasst den Schüttgutumschlag von Kohle (Braunkohle und Steinkohle), Eisenerz, synthetischen Düngemitteln sowie anderen industriellen und Agrarerzeugnissen. Obgleich einige Literaturangaben über Emissionsfaktoren für diese Aktivitäten berichten, werden diese Quellen nur in wenigen Inventaren berücksichtigt.

⁽²⁾ Dieser Faktor basiert auf dem Emissionsfaktor für offene Müllverbrennung bei Müllverbrennungsanlagen.

Der Schüttgutumschlag ist eine wichtige Quelle von Staubemissionen, die laut CEPMEIP-Studie ungefähr vier bis fünf Prozent der TSP- und PM10-Emissionen verursacht (CEPMEIP, 2002). Der Anteil von PM2.5 ist erheblich niedriger und wurde auf 0,6 Prozent geschätzt. Hauptquellen sind der Schüttgutumschlag von Kohle (ungefähr 40 Prozent) und Eisenerz (ungefähr 30 Prozent). UBA (1998a) schätzte, dass in Deutschland 1998 ungefähr 12,9 Prozent des TSP und 4,5 Prozent des PM10 vom Schüttgutumschlag hervorgerufen wurden.

Tabelle 3.108: Emissionsquellkategorien für den Schüttgutumschlag

Emissionskategorie	
STH_COAL	Schüttgutumschlag Kohle
STH_FEORE	Schüttgutumschlag Eisenerz
STH_NPK	Schüttgutumschlag N, P, K Dünger
STH_OTH_IN	Schüttgutumschlag andere Industrieprodukte (Zement, Koks, etc.)
STH_AGR	Schüttgutumschlag landwirtschaftliche Produkte (Ernte)
Aktivitätsraten	umgeschlagene Menge
Einheit	kg/t

Emissionsfaktoren

Tabelle 3.109: Übersicht über in der Literatur angegebene Emissionsfaktoren für den Schüttgutumschlag [kg/t]

Literaturquelle		Angewandte Emissionsminderung	PM2.5	PM10	TSP
Getreide		Limssionsimilaciang			
UBA, 1989		keine Angabe			1.4
EPA, 1995		keine Angabe (1)	0.042	0.147	0.3
Dreiseidler <i>et al</i> ,		Nach Minderung	0.012	0.1-0.2	0.1-0.5
1999		•			0.1-0.5
Mulder, 1995		keine Angabe	0.00005	0.035	
Trenker und	verschiedene landwirt-	keine Angabe	0.001 -	0.005 -	0.01 -
Höflinger, 2000 ⁽¹⁾	schaftliche Produkte		0.007	0.021	0.045
CEPMEIP, 2002	verschiedene landwirt- schaftliche Produkte	keine Angabe	0.004	0.025	0.1
Kohle					
UBA, 1989		keine Angabe			0.2
Dreiseidler <i>et al</i> , 1999	Braunkohle	Nach Minderung		0.01	0.025
	Steinkohle	Nach Minderung		0.04	0.1
Mulder, 1995		keine Angabe		0.0005	
Trenker und	Braunkohle	keine Angabe	0.001	0.004	0.009
Höflinger, 2000 ⁽¹⁾					*****
	Steinkohle	keine Angabe	0.0005	0.001	0.003
Eisenerz					
UBA, 1989		keine Angabe			0.2
Jockel, 1992		keine Angabe			0.07-
					0.175
Mulder, 1995		keine Angabe		0.0005	
Dreiseidler <i>et al</i> , 1999		Nach Minderung		0.03	0.075
Trenker and		keine Angabe	0.03	0.105	0.217
Höflinger, 2000 ⁽¹⁾ CEPMEIP, 2002		taina Anagha	0.008	0.094	0.2
N,P,K - Dünger		keine Angabe	0.008	0.094	0.2
Mulder, 1995		keine Angabe		0.01	
Dreiseidler <i>et al</i> ,		Nach Minderung		0.01	0.05
1999		Nacii Williaerung		0.02	0.03
Trenker and		keine Angabe	0.048	0.151	0.32
Höflinger, 2000 ⁽¹⁾		keine Angube	0.040	0.131	0.52
CEPMEIP, 2002		keine Angabe	0.004	0.032	0.1
Andere Industriep	rodukte	Keine Angube	0.004	0.032	0.1
Mulder, 1995	todukte	keine Angabe		0.0005-	
Maidel, 1995		weine ingube		0.0003	
Trenker and	verschiedene Industrie-	keine Angabe	0.01 -	0.034 -	0.074 -
Höflinger, 2000 ⁽¹⁾	produkte;	wine migue	0.01	0.034	0.400
Dreiseidler <i>et al</i> ,	Producto,	Nach Minderung	0.050	0.100	0.400
1999		1 (aon 14 maorang		0.08	0.01 0.2
CEPMEIP, 2002		keine Angabe	0.001-	0.014-	0.035-
C21 111211 , 2002			0.007	0.07	0.175

⁽¹⁾ Laut Winiwarter et al., 2001 (gerundet).

RAINS verwendet die Faktoren der CEPMEIP-Studie, da diese alle Größenanteile umfasst und recht gut die Spannbreiten der Werte anderer Studien darstellt (Tabelle 3.110). Werte für andere Industrieprodukte (STH_OTH_IN) sind länderspezifisch, da dieser Sektor eine große Vielzahl von Materialien (z.B. Koks, Zement, Flugasche, etc.) umfasst, die durch unterschiedliche Emissionsfaktoren gekennzeichnet sind, und die Mengen zwischen den Ländern schwanken. Folglich wird kein Standardwert dargestellt.

Tabelle 3.110: Im RAINS-Modell verwendete Emissionsfaktoren für Schüttgutumschlag [kg/t]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Kohle	STH_COAL	0.006	0.06	0.15
Eisenerz	STH FEORE	0.008	0.094	0.2
N,P,K-Dünger	STH_NPK	0.004	0.032	0.1
Andere Produkte	STH OTH IN	Länderspezifische Werte nach CEPMEIP		
Landwirtschaftliche Produkte	STH_AGR	0.004	0.025	0.1

Anwendbare Minderungsoptionen

Das RAINS-Modell berücksichtigt gute technische Praxis, um diffuse Staubemissionen aus dem Schüttgutumschlag zu verringern.

3.2.9 Andere Quellen

Dieser Abschnitt umfasst so verschiedenartige Quellen wie den Bausektor, das Grillen, Zigarettenrauchen und Feuerwerke. Die Informationen über Emissionen aus diesen Quellen sind rar.

CEPMEIP (2002) berechnet den Beitrag dieser Quellen in Europa mit ungefähr 1,4 Prozent für TSP und ungefähr 2,8 Prozent für PM2.5, wobei etwa die Hälfte des TSP aus Bauaktivitäten stammt und etwas mehr als die Hälfte der PM2.5-Emissionen durch Grillen und Braten von Fleisch verursacht wird.

3.2.9.1 Bausektor

Obwohl Bauaktivitäten lokal eine wichtige Quelle von Staub sein können, ist der Gesamtanteil an den PM-Emissionen verhältnismäßig gering. CEPMEIP schätzte seinen Anteil in Europa auf unter ein Prozent. APEG (1999) berechnete für Großbritannien einen Anteil mit jeweils 1,3 Prozent für TSP und PM10 und ungefähr 0,2 Prozent für PM2.5.

Tabelle 3.111: Emissionsquellkategorie für den Bausektor

Emissionskategorie CONSTRUCT	Bauaktivitäten im öffentlichen und privaten Sektor
Aktivitätsrate	bebaute Grundfläche
Einheit	kg/Million m² verbauter Grundfläche

Emissionsfaktoren

Prinzipiell wurden nur zwei Quellen von Emissionsfaktordaten gefunden, da APEG (1999) auf EPA (1995) aufbaut, aber die britischen Bedingungen (Tabelle 3.112) berücksichtigt. Es gilt zu beachten, dass sich die angegebenen Faktoren nicht auf die gleiche Aktivitätsrate beziehen.

Tabelle 3.112: Übersicht über in der Literatur angegebene Emissionsfaktoren für den Bausektor [kg/Million m², wenn nicht anders aufgeführt].

Literaturquelle		PM2.5	PM10	TSP
APEG, 1999 (1)	Bau	0.0834	0.269	
EPA, 1995 ⁽¹⁾	Bau		0.538	2.69
CEPMEIP, 2002	Wohnungen	0.0108	0.1076	0.2152
	Versorgungsunternehmen	0.0061	0.0613	0.1227

⁽¹⁾ Emissionsfaktoren sind angegeben in kg/ha/Monat.

RAINS verwendet die Faktoren der CEPMEIP-Studie. Obgleich deren Ursprung im CEPMEIP-Report (CEPMEIP, 2002) nicht dokumentiert ist, zeigt ein Vergleich dieser Emissionsschätzungen mit den britischen Ergebnissen in (APEG, 1999), die auf EPA (1995) beruhen, Übereinstimmungen zumindest für TSP. Für PM10 empfiehlt EPA einen Anteil von 20 Prozent statt 50 Prozent, welcher von CEPMEIP verwendet wird.

RAINS berechnet länderspezifische Emissionsfaktoren, basierend auf den CEPMEIP-Daten über die verbaute Grundfläche.

Tabelle 3.113 präsentiert die Standardemissionsfaktoren, die unter der Annahme berechnet wurden, dass 65 Prozent der Neubaufläche auf den Wohnbau entfallen.

Tabelle 3.113: Im RAINS-Modell verwendete Emissionsfaktoren für den Bausektor [kg/Million m²]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Bau	CONSTRUCT	0.0092	0.0914	0.1828

Anwendbare Minderungsoptionen

Als Minderungsoption wird Wassersprühen auf Baustellen im RAINS-Modell berücksichtigt. Die Annahmen über Effizienz und Kosten dieser Option müssen als sehr vorläufig betrachtet werden.

3.2.9.2 Andere Aktivitäten

Zigarettenrauchen, Grillen, Fleischbraten oder Feuerwerke sind eine nicht zu vernachlässigende Quelle von Staubemissionen. Ihr gesamter Beitrag zu Gesamt-PM wurde von CEPMEIP (2002) auf ungefähr 1-1,5 Prozent für TSP und PM10 und ca. 2,5 Prozent für PM2.5 geschätzt, wobei diese Schätzungen mit großen Unsicherheiten befrachtet sind.

Tabelle 3.114: Emissionsquellkategorien für andere Aktivitäten

Emissionskategorie	
RES_CIGAR	Tabakrauchen
RES_BBQ RES_FIREW	Grillen Feuerwerke
OTHER	
Aktivitätsrate	Bevölkerungszahl als Ersatzvariable
Einheit	kg/Kopf

Emissionsfaktoren

Tabelle 3.115: Übersicht über in der Literatur angegebene Emissionsfaktoren für andere Aktivitäten

Literaturquelle		PM2.5	PM10	TSP
CEPMEIP, 2002	Zigarettenrauch [kg/t Tabak]	40.0	40.0	40.0
	Grillen [kg/t Holzkohle]	2.4	2.4	2.4
	Grillen [kg/t Fleisch]	40.0	40.0	40.0
	Fleisch braten [kg/t Fleisch]	1.3	1.3	1.3
	Feuerwerke [kg/Kopf]	0.035	0.035	0.035

Für das RAINS-Modell werden die Faktoren von der CEPMEIP-Studie abgeleitet, wobei alle Größen auf Pro-Kopf-Werte umgerechnet wurden. Tabelle 3.116 führt die Standardemissionsfaktoren für Zigarettenrauchen und Grillen an.

Tabelle 3.116: Im RAINS-Modell verwendete Emissionsfaktoren für andere Aktivitäten [kg/Kopf]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Zigarettenrauch	RES_CIGAR	0.0165	0.0165	0.0165
Grillen, etc.	RES_BBQ	0.075	0.075	0.075
Feuerwerk	RES_FIREW	0.035	0.035	0.035
Andere	OTHER	n.a.	n.a.	n.a.

Anwendbare Minderungsoptionen

RAINS sieht keine Minderungsoptionen für diese Emissionen vor.

3.3 Mobile Quellen

Dieser Abschnitt umfasst sowohl die Abgas- als auch die Abriebsemissionen aus mobilen Quellen. Die mobilen Quellen sind wichtige Verursacher von Staubemissionen, insbesondere von Feinstaub. Berdowski *et al.* (1997) berechneten für 1990 den Beitrag des Verkehrs mit 16 Prozent für PM10 und 19 Prozent für PM2.5. CEPMEIP (2002) schätzte für 1995 den Verkehrsbeitrag auf 18 und 28 Prozent für PM10 und PM2.5, von dem ungefähr 70 Prozent vom Straßenverkehr stammen. Es gibt jedoch große Unterschiede zwischen den Ländern und der Beitrag schwankt stark in Abhängigkeit von der Entwicklung des Verkehrssektors und dem Emissionsminderungsniveau der stationären Quellen. Zum Beispiel verursacht der Verkehr in Großbritannien zwischen 29 und 40 Prozent von PM10 und 40 bis 45 Prozent von PM2.5 (CEPMEIP (2002), Berdowski *et al.* (1997)).

Die in RAINS entwickelten Emissionsfaktoren für verschiedene Fahrzeugkategorien bauen soweit wie möglich auf den Auto-Öl-Studien (EC, 1999) auf. Aktivitätsstatistiken des Verkehrssektors (Kraftstoffverbrauch) sind der Energiedatenbank des RAINS-Modells entnommen und durch zusätzliche Daten vom Auto-Öl-Programm (durchschnittlich gefahrene Kilometer, Größenstruktur der Flotte usw.) ergänzt.

3.3.1 Abgasemissionen

Abgasemissionen aus Verkehrsaktivitäten sind für 80 bis 90 Prozent der gesamten Staubemissionen des Verkehrs verantwortlich. Der Hauptbeitrag stammt von den schweren Nutzfahrzeugen. In einigen Ländern können jedoch leichte Nutzfahrzeuge ebenfalls erhebliche Mengen zu den Emissionen beitragen. PM-Emissionen aus Ottomotoren sind mengenmäßig von geringerer Bedeutung, aber sie sind wichtig, wenn die Anzahl und die Partikelkorngröße betrachtet werden.

3.3.1.1 Leichte Fahrzeuge, Dieselmotoren

Dieselfahrzeuge sind die Hauptverursacher der PM-Emissionen im Straßenverkehr. Im letzten Jahrzehnt hat die Zahl der leichten Dieselfahrzeuge drastisch zugenommen, besonders in Frankreich und Österreich, wo sie zur Zeit ungefähr 50 Prozent der Neuanmeldungen ausmachen. Es gibt eine große Anzahl an Veröffentlichungen, welche die Eigenschaften der PM-Emissionen von Dieselmotoren (besonders von den schweren Nutzfahrzeugen) analysieren. Die aktuelle Forschung versucht, diese Emissionen weiter zu verringern.

Tabelle 3.117: Emissionsquellkategorie für leichte Fahrzeuge mit Dieselmotoren

Emissionskategorie TRA_RD_LD4	Straßenverkehr, leichte Nutzfahrzeuge
Aktivitätsrate	Dieselkonsum
Einheit	kt/PJ Dieselkraftstoff

Emissionsfaktoren

Dieselabgasemissionen sind zumeist Anhäufungen von kohlenstoffhaltigen, kugelförmigen Partikeln mit einer Größe von 10 bis 80 nm. Größere Partikel enthalten bis zu 4000 einzelne kugelförmige Partikel, die zusammen eine Größe von bis zu 30 µm erreichen (Morawska *et al.*, 1998). Der Prozess der Kraftstoffeinspritzung ist entscheidend für die Schadstoffbildung bei Dieselmotoren. Die Verteilung des in den Zylinder eingespritzten Kraftstoffs ist nicht homogen, und die Erzeugung

unerwünschter Emissionen (nicht nur von PM) ist in hohem Maße abhängig vom Grad der Verteilung (Yanowitz *et al.*, 2000). Es wird im Allgemeinen erwartet, dass sich die Bildung von PM bei unvollständiger Verbrennung infolge niedriger Temperaturen oder ungenügender Vermischung erhöht.

Das Hauptproblem bei der Senkung der Dieselemissionen ist die Wechselbeziehung zwischen NO_x und PM-Emissionen (Yanowitz *et al.*, 2000). Die Gesamtmasse und Anzahl der emittierten Partikel wird wesentlich von Betriebszustand des Motors bestimmt, wobei sich Emissionen mit der Last erhöhen (Morawska *et al.*, 1998; Durbin *et al.*, 2000). Daneben hat auch eine Vielzahl anderer Faktoren, wie z.B. Seehöhe, Feuchtigkeit, Temperatur und Trägheitsgewicht, Einfluss auf die Emissionen (Yanowitz *et al.*, 2000; Bishop *et al.*, 2001).

Ein signifikanter Anteil (ungefähr 90 Prozent) der Dieselpartikel ist kleiner als 1 μm (z.B. Harrison *et al.*, 2000).

Diese Studie leitet die länderspezifischen ungeminderten PM10-Emissionsfaktoren für leichte Dieselnutzfahrzeuge von der Auto-Öl II Studie (EC, 1999) ab. Für Länder, die nicht in der Auto-Öl II Studie erfasst sind, wurden Faktoren von Ländern mit einem ähnlichen Pro-Kopf-Einkommen und/oder der gleichen Klimazone gewählt (Tabelle 3.118). Informationen über PM2.5 und TSP wurden als Durchschnittswerte aus den Studien von Norbeck *et al.* (1998a), Durbin *et al.* (1999) und Kerminen *et al.* (1997) abgeleitet.

Anwendbare Emissionsminderungsmaßnahmen

Die Emissionsminderungsmaßnahmen, die im RAINS-Modell berücksichtigt werden, umfassen Maßnahmenbündel (Änderungen der Treibstoffqualität und motorseitige Maßnahmen), die den europäischen Abgasbestimmungen EURO-I bis EURO-IV entsprechen (siehe Tabelle 2.13) . Weiters ist ein zukünftiger EURO-V-Standard vorgesehen, dessen genaue Spezifikationen jedoch noch abgeklärt werden müssen.

Tabelle 3.118: Im RAINS-Modell verwendete Emissionsfaktoren für leichte Dieselfahrzeuge

Land / Region	PM2.5	PM10	TSP	TSP
	g/GJ	g/GJ	g/GJ	g/km
Albanien	95	99	100	0.37
Österreich	97	102	102	0.37
Weißrussland	95	99	100	0.37
Belgien	97	102	102	0.37
Bosnien-Herzegowina	95	99	100	0.37
Bulgarien	105	109	110	0.40
Tschechische Republik	105	109	110	0.40
Kroatien	95	99	100	0.37
Dänemark	97	102	102	0.37
Estland	122	127	128	0.47
Finnland	111	116	116	0.36
Frankreich	105	110	111	0.39
Deutschland	97	102	102	0.38
Griechenland	81	85	85	0.36
Ungarn	105	109	110	0.40
Irland	105	110	111	0.36
Italien	87	91	91	0.32
Lettland	122	127	128	0.47
Litauen	122	127	128	0.47
Luxemburg	99	104	104	0.38
Mazedonien, FYR	95	99	100	0.37
Moldawien, Republik	105	109	110	0.40
Niederlande	99	104	104	0.40
Norwegen	111	116	116	0.42
Polen	105	109	110	0.40
Portugal	87	90	91	0.33
Rumänien	95	99	100	0.37
Russland, St. Petersburg	122	127	128	0.47
Russland, Kola-Karelia, Kaliningrad	122	127	128	0.47
Russland, restliche Gebiete	105	109	110	0.40
Slowakei.	105	109	110	0.40
Slowenien	87	90	91	0.33
Spanien	92	96	97	0.35
Schweden	111	116	116	0.42
Schweiz	97	102	102	0.37
Ukraine	105	109	110	0.40
Großbritannien	104	109	110	0.43
Jugoslawien	95	99	100	0.37

3.3.1.2 Schwere Nutzfahrzeuge, Dieselmotoren

PM-Abgasemissionen von schweren Nutzfahrzeugen sind die wichtigste Einzelquelle für PM aus dem Straßenverkehr.

Tabelle 3.119: Emissionsquellkategorie für schwere Nutzfahrzeuge mit Dieselmotoren

Emissionskategorie TRA_RD_HD	Straßenverkehr, schwere Nutzfahrzeuge
Aktivitätsrate	Dieselverbrauch
Einheit	kt/PJ Diesels

Emissionsfaktoren

PM-Emissionen von neuen schweren Nutzfahrzeugen sind um ungefähr eine Größenordnung niedriger (in g/km) als in den siebziger Jahren. Allerdings bestehen die von einem modernen Dieselfahrzeug emittierten Partikel aus kleineren Teilchen (die Clusterstrukturen sind jedoch ähnlich) (Harrison *et al.*, 2000). Die Faktoren, welche die Emissionen von leichten Dieselfahrzeugen beeinflussen, gelten auch für die schweren Fahrzeuge. Zusätzlich ist jedoch bei schweren Nutzfahrzeugen aufgrund der größeren Serviceintervalle der Alterungseffekt und damit der schleichende Anstieg von Emissionen wichtig.

Die länderspezifischen ungeminderten PM10-Emissionsfaktoren für schwere Diesel-LKW (Tabelle 3.120) basieren auf der Auto-Öl II Studie (EC, 1999). Für Länder, die nicht in der Auto-Öl II Studie enthalten sind, wurden Faktoren von Ländern mit einem ähnlichen Pro-Kopf-Einkommen und/oder der gleichen Klimazone gewählt. Informationen über die PM2.5- und TSP-Anteile (Durchschnittswerte) wurden von Norbeck *et al.* (1998c), Williams *et al.* (1989) und Durbin *et al.* (1999) abgeleitet.

Tabelle 3.120: Im RAINS-Modell verwendete Emissionsfaktoren für schwere Dieselnutzfahrzeuge

Land / Region	PM2.5	PM10	TSP	TSP
-	g/GJ	g/GJ	g/GJ	g/km
Albanien	62	63	64	0.57
Österreich	48	48	49	0.44
Weißrussland	62	63	64	0.57
Belgien	48	48	49	0.44
Bosnien-Herzegowina	62	63	64	0.57
Bulgarien	68	69	70	0.63
Tschechische Republik	62	63	64	0.57
Kroatien	68	69	70	0.63
Dänemark	48	48	49	0.44
Estland	64	65	66	0.59
Finnland	58	59	60	0.54
Frankreich	51	52	53	0.47
Deutschland	48	48	49	0.44
Griechenland	57	58	59	0.53
Ungarn	68	69	70	0.63
Irland	53	54	55	0.49
Italien	58	59	60	0.54
Lettland	64	65	66	0.59
Litauen	64	65	66	0.59
Luxemburg	53	54	55	0.49
Mazedonien, FYR	62	63	64	0.57
Moldawien, Republik	68	69	70	0.63
Niederlande	53	54	55	0.49
Norwegen	58	59	60	0.54
Polen	68	69	70	0.63
Portugal	56	57	58	0.52
Rumänien	62	63	64	0.57
Russland, St. Petersburg	64	65	66	0.59
Russland, Kola-Karelia, Kaliningrad	64	65	66	0.59
Russland, restliche Gebiete	68	69	70	0.63
Slowakei	56	57	58	0.52
Slowenien	68	69	70	0.63
Spanien	54	55	56	0.50
Schweden	58	59	60	0.54
Schweiz	48	48	49	0.44
Ukraine	68	69	70	0.63
Großbritannien	58	59	60	0.54
Jugoslawien	62	63	64	0.57

Anwendbare Emissionsminderungsmaßnahmen

Die Emissionsminderungsmaßnahmen, die im RAINS-Modell berücksichtigt werden, umfassen Maßnahmenbündel (Änderungen der Treibstoffqualität und motorseitige Maßnahmen), die den europäischen Abgasbestimmungen EURO-I bis EURO-IV entsprechen (siehe Tabelle 2.13). Weiters ist ein zukünftiger EURO-V-Standard vorgesehen, dessen genaue Spezifikationen jedoch noch abgeklärt werden müssen.

3.3.1.3 Leichte Fahrzeuge und Motorräder mit Ottomotoren

Obwohl die PM-Emissionsniveaus der Ottomotoren erheblich niedriger sind als die der Dieselmotoren (und infolgedessen auch schwieriger exakt zu messen), sind sie dennoch wichtig. In einigen Ländern, in denen leichte Dieselfahrzeuge keine große Bedeutung haben (z.B. Skandinavien), könnten benzingetriebene Fahrzeuge einen größeren Beitrag zu den gesamten PM-Abgasemissionen liefern als Dieselfahrzeuge. Studien zeigen, dass die von Ottomotoren emittierten Partikel kleiner sind als die der Dieselmotoren (z.B. Cadle *et al.*, 2001; Ristovski *et al.*, 1998), was potentiell relevant für deren Gesundheitseffekte sein könnte.

Tabelle 3.121: Emissionsquellkategorien für leichte Fahrzeuge und Motorräder mit Ottomotoren

Emissionskategorie	
TRA_RD_LD4	Leichte Fahrzeuge und Lastwagen, Viertakter
TRA_RDXLD4	Leichte Fahrzeuge und Lastwagen, Viertakter, Direkteinspritzer
TRA RD M4	Motorräder, Viertakter
TRA_RD_LD2	Motorräder, Mopeds und Autos mit Zweitaktmotoren
Aktivitätsrate	Benzinverbrauch
Einheit	kt/PJ Benzinverbrauch

Emissionsfaktoren

Bei Ottomotoren resultieren die PM-Emissionen aus der unvollständigen Verbrennung von Benzin. Die Partikel sind meistens kohlenstoffhaltige, kugelförmige Anhäufungen mit einer Größe von 10 bis 80 nm. Sie bestehen aus einem Kohlenstoffkern mit verschiedenen angelagerten organischen Verbindungen (Ristovski *et al.*, 1998). Abgesehen von der Konstruktion der Ottomotoren beeinflussen einige andere Parameter, welche mit den Betriebsbedingungen der Motoren zusammenhängen, die Höhe der PM-Emissionen. Kayes und Hochreb (1999a) fanden heraus, dass Kraftstoffart und Kraftstoff-/Luft-Verhältnis zu den wichtigsten Einflussfaktoren gehören. Die gleichen Autoren demonstrieren in einem anderen Bericht (Kayes und Hochreb, 1999b), dass kein statistisch signifikanter Unterschied zwischen PM-Emissionen mit und ohne Katalysatoren festzustellen ist. Obwohl in einigen Fällen eine Reduktion der PM-Emissionen um bis zu 85 Prozent gemessen wurde, wiesen in anderen Fällen Fahrzeuge mit Katalysator erhöhte Emissionen auf - ein Phänomen, das nicht völlig verstanden ist. Dies widerspricht auch einigen anderen Studien, die geringere Emissionen (z.B. APEG, 1999) und unterschiedliche Korngrößenklassen (z.B. EPA, 1995; APEG, 1999) bei Fahrzeugen mit Katalysator beschreiben.

Bei den meisten Messungen, die an Fahrzeugen ohne Katalysator durchgeführt wurden, wurde verbleiter Kraftstoff eingesetzt und es ist deshalb schwierig, schlüssige Daten für die Kombination unverbleit/ohne Katalysator zu erhalten. Durbin *et al.* (1999) diskutiert eine Anzahl von Studien und fand heraus, dass für korrekt arbeitende moderne Benzinfahrzeuge die PM-Emissionen gewöhnlich unter 1 mg/MJ liegen. Jedoch zeigen Messungen an in Betrieb befindlichen Fahrzeugen eine große Variabilität (selbst wenn 'Raucher' ausgeschlossen werden), z.B. zeigen seine eigenen Resultate Mitte der 80er Jahre PM Emissionsfaktoren von über 3 mg/MJ. Hildemann *et al.*, 1991 haben PM2.0-Emissionen bei älteren US-Fahrzeugen mit Katalysator (1973-1983) in einer Höhe von 3,3 mg/MJ gemessen, während Lang (1981) herausgefunden hat, dass die PM-Emissionen für Fahrzeuge mit Katalysator in der Stadt und auf der Autobahn im Bereich von 1,3-20 beziehungsweise 0,9-13,4 mg/MJ lagen.

Insgesamt kann für Fahrzeuge mit Katalysator ein Durchschnittswert von ungefähr 3 mg/MJ für Submikrometer-Partikel angenommen werden (was einen ungefähren Wert von 3,6 mg/MJ für PM insgesamt ergeben würde) (Hildemann et al., 1991; Durbin et al., 1999; Norbeck et al., 1998abc;

Williams *et al.*, 1989). Diese Schlussfolgerung basiert in großem Maße auf US-Studien, die alte (vor 1985) und sehr neue (nach 1991) US-Fahrzeuge von der Analyse ausgeschlossen hatten und eine Verbesserung der Kraftstoff-Effizienz von ungefähr 15 Litern/100 Kilometer am Anfang der achtziger Jahre auf ungefähr 12 Liter/100 Kilometer am Anfang der neunziger Jahre angenommen haben. Für die jüngste Generation von mit Dreiwegekatalysatoren ausgerüsteten Kraftfahrzeugen (CONCAWE, 1998; Cadle *et al.*, 2001 und Norbeck *et al.*, 1998b,c) sind die berichteten Werte erheblich niedriger als Messungen für andere Jahrgänge; der geschätzte Durchschnitt für Submikrometer-Emissionen liegt bei 1 mg/MJ.

Nur wenige Studien (Hall und Dickens, 1999; Kwon et al., 1999; Lappi et al., 2001) haben die PM-Emissionen von Fahrzeugen mit Benzindirekteinspritzung (GDI) gemessen. Hall und Dickens (1999) konzentrierten sich auf die Messung der Anzahl und Korngrößenverteilung, obwohl sie auch die PM-Masse berichteten. Sie stellten fest, dass Zahl und Korngrößenverteilung für GDI- Motoren denen der Dieselmotoren ähneln, aber die Gesamtmasse erheblich niedriger ist. Die Literaturwerte für die Emissionen variieren aber stark, im Durchschnitt liegen sie im unteren Bereich der Emissionen für Dreiwegekatalysator-Benzinfahrzeuge. Dies wird in zwei anderen Studien nicht bestätigt, die im Allgemeinen höhere (um ungefähr 50 Prozent) PM-Emissionen bei GDI-Motoren im Vergleich zu Benzinmotoren mit Saugrohreinspritzung (FPI) zeigen. Kwon et al. (1999) prüften Fahrzeuge in europäischen und US-amerikanischen Tests und fanden einen Bereich von 0,8 bis 1,4 mg/km, was für den europäischen Test einen Durchschnitt von 1,3 mg/km ergibt (ungefähr 5,5 mg/MJ). Lappi et al. (2001) veröffentlichten die Korngrößenverteilungen für GDI- Fahrzeuge und die Massenemission von Ruß und organischen Kohlenstoffverbindungen, jedoch nicht die Gesamt-PM-Masse. Es lässt sich aber aus diesen Informationen schließen, dass ihre Messungen im Großen und Ganzen mit dem Bereich übereinstimmen, der von Kwon et al. (1999) angegeben wird.

Daten der Korngrößenverteilung der PM-Emissionen von Benzinfahrzeugen sind spärlich. In einer neuen Studie haben Cadle *et al.* (2001) die Korngrößenverteilung für 30 leichte benzingetriebene Kraftfahrzeuge (1990-1997 Modelle) gemessen und geschätzt, dass im Durchschnitt 95,1, 88,7 und 83,6 Prozent der Partikelmasse kleiner als 12,2, 3,0 beziehungsweise 1,2 μm waren. Obwohl die wenigen vorhandenen Untersuchungen (Williams *et al.*, 1989; Durbin *et al.*, 1999) bestätigen, dass Submikrometer-Partikel (Partikel <1 μm) gewöhnlich 80 bis 90 Prozent der PM ausmachen, gibt es keine gute Übereinstimmung für PM2.5 und PM10. Norbeck *et al.* (1998b) und Durbin *et al.* (1999) zeigen, dass ältere Fahrzeuge (vor 1985; möglicherweise ohne oder mit frühem Katalysator) einen höheren Anteil an PM10 und PM2.5 aufweisen, d.h. ungefähr 95 beziehungsweise 90 Prozent. Neuere Fahrzeuge (nach 1986) neigen dazu, mehr von der größeren Fraktion zu emittieren, d.h. < 90 Prozent PM10 und < 85 Prozent PM2.5. Eine mögliche Erklärung (Durbin *et al.*, 1999) hierfür ist, dass, wenn sich die Abgasemissionen verringern, sich der relative Anteil der wieder eingefangenen Partikel, wie Ablagerungen im Abgasstrang, erhöht. Die Korngrößenverteilung, die in RAINS für ungeminderte Emissionsfaktoren angenommen wird, basiert auf Messungen für Fahrzeuge vor 1985 (Durbin *et al.*, 1999 und Norbeck *et al.* 1998b).

In dieser Studie werden die ungeminderten Emissionsfaktoren für Benzinfahrzeuge von den oben besprochenen Messdaten abgeleitet (hauptsächlich für Autos mit Dreiwegekatalysator). Es wird zusätzlich angenommen, dass sich die PM-Emissionen von Fahrzeugen mit Katalysator um ungefähr 50 Prozent (APEG, 1999) verringern, wobei diese Annahme noch weiterer Analysen zur Bestätigung bedarf. Die höheren Emissionsfaktoren für Zweitakt-Motoren wurden mit Informationen des CBS-(1998) Berichtes errechnet. Die Werte (Tabelle 3.122) sind nicht länderspezifisch.

Nur wenige Daten wurden für Emissionsfaktoren für LPG- und CNG- (komprimiertes Erdgas) Fahrzeuge gefunden. Durbin *et al.* (1998) haben gasförmige und Partikelemissionen von CNG und von anderen alternativen Kraftstoffen gemessen, wobei sie mehrere Fahrzeuge der gleichen Marke untersuchten, die allerdings für die europäische Situation kaum repräsentativ ist (das 1994-Modell eines Dodge-Wohnwagens mit 3.3L V6 Motor). Die berichteten PM-Emissionsfaktoren schwankten zwischen 0,2 und 1 mg/MJ. In Anbetracht der Tatsache, dass die geprüften Autos mit modernen Dreiwegekatalysatoren ausgerüstet waren und die berichteten Emissionen sich auf Daten für 'übriger Verkehr' CNG-Motoren bezogen (Tabelle 3.122), wird für RAINS ein PM-Emissionsfaktor von 2 mg/MJ verwendet. Die Korngrößenverteilung basiert auf Breadsley *et al.*, 1998.

Tabelle 3.122: Im RAINS-Modell verwendete Emissionsfaktoren für unverbleites Benzin (GSL), Flüssiggas (LPG) und Erdgas (GAS) [g/GJ]

Kategorie	RAINS-Code	PM2.5	PM10	TSP
Leichte Nutzfahrzeuge and Motorräder, Benzin, Viertakter	TRA_RD_LD4	6.0	6.3	6.65
Leichte Nutzfahrzeuge, Benzin, Direkteinspritzer	TRA_RDXLD4	10.0	10.6	11.1
Motorräder und Moped, Benzin, Zweitakter	TRA RD LD2	94.9	100.5	111.7
Schwere Nutzfahrzeuge, LPG	TRA_RD_LD4	1.8	2.0	2.0
Schwere Nutzfahrzeuge, CNG	TRA_RD_LD4	1.8	2.0	2.0

Obgleich verbleites Benzin im Großteil der europäischen Länder nicht mehr verkauft wird, ist es wichtig, dessen Beitrag zu den PM-Emissionen in der Vergangenheit abschätzen zu können. Tetramethylblei wurde als Treibstoffzusatz benutzt, um die Oktanzahl zu erhöhen. Wegen der schädlichen Wirkungen des Bleis auf die menschliche Gesundheit und dem wachsenden Gebrauch von Katalysatoren, die durch Blei vergiftet werden, sank der Verbrauch verbleiten Benzins schnell. Der Bleizusatz zu Benzin ergibt höhere PM-Emissionen. Um diesen Punkt einzubeziehen, wurden zusätzliche PM-Emissionsfaktoren für leichte und schwere Nutzfahrzeuge (Tabelle 3.123) eingeführt.

Ganley und Springer, 1974, Hildemann *et al.*, 1991 und Williams et al, 1989a diskutierten einige Studien, in denen die PM-Emissionen von Fahrzeugen mit verbleitem Kraftstoff untersucht wurden. Die in diesen Studien berichteten Werte variieren von etwa 6 bis 40 mg/MJ. Der Durchschnitt aller Literaturdaten ergibt damit 20,4 mg/MJ. Annahmen über die Korngrößenverteilung basieren auf Resultaten, die in Williams *et al.* (1989a) dargestellt werden. Sie zeigten, dass der Submikron-Anteil der PM-Emissionen für Fahrzeuge, die mit verbleitem Benzin betrieben werden, ungefähr 86 Prozent beträgt. Nach einer Studie von Norbeck *et al.* (1998b) liegen die Anteile von PM10 und PM2.5 von Fahrzeugen, die vor 1981 gebaut wurden, bei ungefähr 96 und 90 Prozent.

Tabelle 3.123: Im RAINS-Modell verwendete Emissionsfaktoren für verbleites Benzin [g/GJ]

Kategorie	RAINS-Code	PM2.5	PM10	TSP
Verbleites Benzin	LFL	12.4	13.2	13.8

Anwendbare Emissionsminderungsmaßnahmen

Obwohl es keine PM-Emissionsstandards für Benzinfahrzeuge gibt, berücksichtigt das RAINS-Modell die Effekte der Einführung von Dreiwegekatalysatoren und Oxidationskatalysatoren auf die PM-Emissionen. Die Maßnahmen für Fahrzeuge sind vergleichbar mit den Minderungen, die notwendig sind, um die EU-Gesetzgebung für andere limitierte Schadstoffe einzuhalten (EURO-I bis EURO-V). Oxidationskatalysatoren werden auch für Zweitakt-Mopeds und Motorräder betrachtet.

⁵ 20 mg/km für ein durchschnittliches Auto.

3.3.1.3 Mobile Maschinen und Geräte, Schiffe

Tabelle 3.124: Emissionsquellkategorien für mobile Maschinen und Geräte

Emissionskategorie	
TRA_OT	
TRA_OT_AGR	Landwirtschaftsmaschinen
TRA OT CNS	Baumaschinen
TRA OT RAI	Schienenverkehr
TRA OT INW	Binnenschifffahrt
TRA OT LB	Andere Viertakter (Militär, Haushalt, etc.)
TRA OT AIR	Luftverkehr (LTO)
TRA OT LD2	Zweitaktmotoren
TRA OTS M	Seeschifffahrt, mittlere Schiffe
TRA_OTS_L	Seeschifffahrt, große Schiffe
Aktivitätsrate	Kraftstoffverbrauch
Einheit	kt/PJ Kraftstoff

Emissionsfaktoren

Eine Anzahl von Studien berichtet über Emissionsfaktoren von mobilen Maschinen und Geräten (Tabelle 3.125 für Diesel, Tabelle 3.127 für Ottomotoren). Die meisten Angaben beziehen sich auf TSP oder PM10, nur CEPMEIP (2002) macht spezifische Annahmen über den Anteil von PM2.5. Amerikanische und europäische Studien berichten ähnliche Ergebnisse.

Dieselmotoren

Tabelle 3.125: Übersicht über in der Literatur angegebene Emissionsfaktoren für mobile Maschinen und Geräte mit Dieselmotoren [g/GJ].

BUWAL, 2001 Züge 13.9 g/km Straßenbahnen 0.33 g/km Luftfahrt LTO 191 g/LTO Baumaschinen 15.4 g/h Landwirtschaftsmaschinen 1.92 g/h Militärfahrzeuge 40.7 g/h Eloyd's Register, 1995*; Wright, 1997*, 2000* Schifffahrt, Schweröl (2.8% S) 190	Literaturquelle		PM2.5	PM10	TSP
Straßenbahnen		Züge		13.9 g/km	
Luftfahrt LTO 191 g/LTO Baumaschinen 15.4 g/h Landwirtschaftsmaschinen 15.4 g/h 190 15.4 g/h 190 15.4 g/h 190	•			•	
Baumaschinen		Luftfahrt LTO		_	
Landwirtschaftsmaschinen 1.92 g/h Militärfahrzeuge 40.7 g/h Lloyd's Register, 1995*; Schifffahrt, Schweröl (2.8% S) 190 Wright, 1997*, 2000* Schifffahrt, Leichtöl (0.17% S) 28.6 Cooper, 2001* Hochgeschwindigkeitsfähre, Diesel Berdowski et al., 1997* Marineschiff, Schweröl 150±90 APEG, 1999 Marineschiff, Diesel 40±20 CEPMEIP, 2002 Binnenschifffahrt, Schweröl 132 139 146 Binnenschifffahrt, Diesel 88 93 97 mobile Maschinen und Geräte, 132 139 146 Diesel Diesel 107 BUWAL, 2000a Zug, Diesel 107 Bun, Diesel 117 Bau, Diesel 159 Forstwirtschaft, Diesel 159 Forstwirtschaft, Diesel 159 Forstwirtschaft, Diesel 155 Industrie, Diesel 145 mobile Maschinen und Geräte, Diesel 148 1991*; Beardsley and Lindhjem, 1998* Landwirtschaft, Diesel 131 mobile Maschinen und Geräte, Diesel 155 Diesel (Durchschnitt) Diesel Diesel Diesel (Durchschnitt) Diesel Diesel (Durchschnitt) Diesel Diesel (Diesel Diesel Diesel		Baumaschinen		•	
Industriemaschinen Militärfahrzeuge 40.7 g/h		Landwirtschaftsmaschinen		39.1 g/h	
Militärfahrzeuge		Industriemaschinen		1.92 g/h	
Lloyd's Register, 1995*; Wright, 1997*, 2000* Schifffahrt, Leichtöl (0.17% S) 28.6		Militärfahrzeuge		-	
Cooper, 2001*				C	190
Diese		Schifffahrt, Leichtöl (0.17% S)			28.6
APEG, 1999 Marineschiff, Diesel 40±20 CEPMEIP, 2002 Binnenschifffahrt, Schweröl 132 139 146 Binnenschifffahrt, Diesel 88 93 97 mobile Maschinen und Geräte, 132 139 146 Diesel Miersch & Sachse, 1999* Dieselmotoren (18-560 kW) 76-51 BUWAL, 2000a Zug, Diesel 107 Binnenschifffahrt, Diesel 117 Bau, Diesel 117 Bau, Diesel 152 Landwirtschaft, Diesel 155 Industrie, Diesel 155 Industrie, Diesel 145 mobile Maschinen und Geräte, Diesel (Durchschnitt) Kean et al., 2000*; EPA, 1998* Landwirtschaft, Diesel 148 1991*; Beardsley and Lindhjem, 1998* Landwirtschaft, Diesel 090 Bau, Diesel mobile Maschinen und Geräte, Diesel 131 mobile Maschinen und Geräte, Diesel 120±55 Diesel (Durchschnitt)	Cooper, 2001*	Ç ,			15
APEG, 1999 Marineschiff, Diesel 40±20 CEPMEIP, 2002 Binnenschifffahrt, Schweröl 132 139 146 Binnenschifffahrt, Diesel 88 93 97 mobile Maschinen und Geräte, 132 139 146 Diesel Miersch & Sachse, 1999* Dieselmotoren (18-560 kW) 76-51 BUWAL, 2000a Zug, Diesel 107 Binnenschifffahrt, Diesel 117 Bau, Diesel 117 Bau, Diesel 152 Landwirtschaft, Diesel 155 Industrie, Diesel 155 Industrie, Diesel 145 mobile Maschinen und Geräte, Diesel (Durchschnitt) Kean et al., 2000*; EPA, 1998* Landwirtschaft, Diesel 148 1991*; Beardsley and Lindhjem, 1998* Landwirtschaft, Diesel 090 Bau, Diesel mobile Maschinen und Geräte, Diesel 131 mobile Maschinen und Geräte, Diesel 120±55 Diesel (Durchschnitt)	Berdowski et al., 1997*	Marineschiff, Schweröl		150±90	
CEPMEIP, 2002 Binnenschifffahrt, Schweröl 132 139 146 Binnenschifffahrt, Diesel 88 93 97 mobile Maschinen und Geräte, 132 139 146 Diesel 132 139 146 Miersch & Sachse, 1999* Dieselmotoren (18-560 kW) 76-51 BUWAL, 2000a Zug, Diesel 107 Binnenschifffahrt, Diesel 117 Bau, Diesel 152 Landwirtschaft, Diesel 159 Forstwirtschaft, Diesel 155 Industrie, Diesel 145 mobile Maschinen und Geräte, 133 Diesel (Durchschnitt) 148 Kean et al., 2000*; EPA, Industriemaschinen, Diesel 148 1991*; Beardsley and 131 Lindhjem, 1998* Landwirtschaft, Diesel 090 Bau, Diesel 131 mobile Maschinen und Geräte, 120±55 Diesel (Durchschnitt)		· · · · · · · · · · · · · · · · · · ·			
Binnenschifffahrt, Diesel		,	132		146
mobile Maschinen und Geräte, 132 139 146 Diesel Miersch & Sachse, 1999* Dieselmotoren (18-560 kW) 76-51 BUWAL, 2000a Zug, Diesel Binnenschifffahrt, Diesel 117 Bau, Diesel 152 Landwirtschaft, Diesel 159 Forstwirtschaft, Diesel 155 Industrie, Diesel 145 mobile Maschinen und Geräte, Diesel (Durchschnitt) Kean et al., 2000*; EPA, 1991*; Beardsley and Lindhjem, 1998* Landwirtschaft, Diesel 900 Bau, Diesel mobile Maschinen und Geräte, Diesel 131 mobile Maschinen und Geräte, Diesel 120±55 Diesel (Durchschnitt)	CEI 11211 , 2 00 2				
Miersch & Sachse, 1999* Dieselmotoren (18-560 kW) 76-51 BUWAL, 2000a Zug, Diesel 107 Binnenschifffahrt, Diesel 117 Bau, Diesel 152 Landwirtschaft, Diesel 159 Forstwirtschaft, Diesel 155 Industrie, Diesel 145 mobile Maschinen und Geräte, Diesel (Durchschnitt) Kean et al., 2000*; EPA, 1991*; Beardsley and Lindhjem, 1998* Landwirtschaft, Diesel 090 Bau, Diesel maschinen und Geräte, Diesel 131 mobile Maschinen und Geräte, 131 mobile Maschinen und Geräte, 131 mobile Maschinen und Geräte, 120±55 Diesel (Durchschnitt)					
Miersch & Sachse, 1999* BUWAL, 2000a Zug, Diesel Binnenschifffahrt, Diesel Binnenschifffahrt, Diesel Bau, Diesel Landwirtschaft, Diesel Forstwirtschaft, Diesel Industrie, Diesel Industriemaschinen und Geräte, Diesel (Durchschnitt) Kean et al., 2000*; EPA, Industriemaschinen, Diesel		The state of the s			
BUWAL, 2000a Zug, Diesel Binnenschifffahrt, Diesel Bau, Diesel Bau, Diesel Landwirtschaft, Diesel Forstwirtschaft, Diesel Industrie, Diesel Industrie, Diesel Maschinen und Geräte, Diesel (Durchschnitt) Kean et al., 2000*; EPA, Industriemaschinen, Diesel Landwirtschaft, Diesel Bau, Diesel	Miersch & Sachse, 1999*	Dieselmotoren (18-560 kW)			76-51
Binnenschifffahrt, Diesel 117 Bau, Diesel 152 Landwirtschaft, Diesel 159 Forstwirtschaft, Diesel 155 Industrie, Diesel 145 mobile Maschinen und Geräte, 133 Diesel (Durchschnitt) Kean et al., 2000*; EPA, Industriemaschinen, Diesel 148 1991*; Beardsley and Lindhjem, 1998* Landwirtschaft, Diesel 090 Bau, Diesel 090 Bau, Diesel 131 mobile Maschinen und Geräte, 120±55 Diesel (Durchschnitt)		* * * * * * * * * * * * * * * * * * * *			107
Bau, Diesel Landwirtschaft, Diesel Forstwirtschaft, Diesel Industrie, Diesel Industrie, Diesel Industrie, Diesel Maschinen und Geräte, Diesel (Durchschnitt) Kean et al., 2000*; EPA, 1991*; Beardsley and Lindhjem, 1998* Landwirtschaft, Diesel Bau, Diesel	,				117
Forstwirtschaft, Diesel 155 Industrie, Diesel 145 mobile Maschinen und Geräte, Diesel (Durchschnitt) Kean et al., 2000*; EPA, Industriemaschinen, Diesel 148 1991*; Beardsley and Lindhjem, 1998* Landwirtschaft, Diesel 090 Bau, Diesel 131 mobile Maschinen und Geräte, Diesel (Durchschnitt)					152
Industrie, Diesel mobile Maschinen und Geräte, Diesel (Durchschnitt) Kean et al., 2000*; EPA, Industriemaschinen, Diesel Landwirtschaft, Diesel Bau, Diesel Bau, Diesel mobile Maschinen und Geräte, Diesel (Durchschnitt) 148 148 148 148 14991*; Beardsley and Lindhjem, 1998* Landwirtschaft, Diesel Bau, Diesel Bau, Diesel 131 mobile Maschinen und Geräte, Diesel (Durchschnitt)		Landwirtschaft, Diesel			159
mobile Maschinen und Geräte, Diesel (Durchschnitt) Kean et al., 2000*; EPA, 1991*; Beardsley and Lindhjem, 1998* Landwirtschaft, Diesel Bau, Diesel mobile Maschinen und Geräte, Diesel (Durchschnitt) 133 148 148 148 148 148 1490±55 Diesel (Durchschnitt)		Forstwirtschaft, Diesel			155
Kean et al., 2000*; EPA, 1991*; Beardsley and Lindhjem, 1998* Landwirtschaft, Diesel Bau, Diesel Bau, Diesel Maschinen und Geräte, Diesel (Durchschnitt) 148 090 131 mobile Maschinen und Geräte, Diesel (Durchschnitt)		Industrie, Diesel			145
Kean et al., 2000*; EPA, Industriemaschinen, Diesel 148 1991*; Beardsley and Lindhjem, 1998* Landwirtschaft, Diesel 090 Bau, Diesel 131 mobile Maschinen und Geräte, 120±55 Diesel (Durchschnitt)		mobile Maschinen und Geräte,			133
1991*; Beardsley and Lindhjem, 1998* Landwirtschaft, Diesel 090 Bau, Diesel 131 mobile Maschinen und Geräte, 120±55 Diesel (Durchschnitt)		Diesel (Durchschnitt)			
Landwirtschaft, Diesel 090 Bau, Diesel 131 mobile Maschinen und Geräte, 120±55 Diesel (Durchschnitt)	1991*; Beardsley and	Industriemaschinen, Diesel		148	
Bau, Diesel 131 mobile Maschinen und Geräte, 120±55 Diesel (Durchschnitt)		Landwirtschaft Diesel		090	
mobile Maschinen und Geräte, 120±55 Diesel (Durchschnitt)					
Diesel (Durchschnitt)					
·				120-55	
		Schiene, Diesel (Durchschnitt)		50±7	

^{*-} In g/kg berichtete Werte sind unter Annahme der Heizwerte für Öl und Diesel von 40 MJ/kg bzw. 42 MJ/kg in g/GJ umgerechnet worden.

RAINS verwendet für mobile Maschinen und Geräte mit Dieselmotoren grundsätzlich die Emissionsfaktoren aus BUWAL (2000a), da sie vermutlich die europäische Situation besser charakterisieren. Sie stimmen aber gut mit den Ergebnissen von Kean *et al.* (2000) und CEPMEIP (2002) überein. Die Korngrößenverteilung beruht auf CEPMEIP (2002). Für Schiffe wurden die Faktoren aus der Studie des Lloyd's Registers (Lloyds Register, 1995; Wright, 1997, 2000) unter der Annahme eines durchschnittlichen Schwefelgehalts im Heizöl von 2,5 Prozent in Europa abgeleitet.

Tabelle 3.126: Im RAINS-Modell verwendete Emissionsfaktoren für mobile Maschinen und Geräte mit Dieselmotoren

Sektor	RAINS-Code	PM2.5	PM10	TSP	TSP
		g/GJ	g/GJ	g/GJ	g/kWh ⁶
Landwirtschaft	TRA_OT_AGR	141	149	157	1.41
Bau	TRA_OT_CNS	134	141	149	1.34
Schienenverkehr	TRA_OT_RAI	96.4	102	107	0.96
Binnenschifffahrt	TRA_OT_INW	0.105	111	117	1.05
Andere Motoren	TRA_OT_LB	0.112	127	133	1.2
Mittlere Schiffe	TRA_OTS_M	25.7	27.2	28.6	0.26
Große Schiffe	TRA_OTS_L	25.7	27.2	28.6	0.26

Ottomotoren

Tabelle 3.127: Übersicht über in der Literatur angegebene Emissionsfaktoren für mobile Maschinen und Geräte mit Ottomotoren [g/GJ]

Literaturquelle		PM2.5	PM10	TSP
CEPMEIP, 2002	Benzin, 'hohe Emissionen'	93	93	93
	Benzin, 'niedrige Emissionen'	23.25	23.25	23.25
Beardsley et al., 1998	Benzin, Viertakter	4.6	5	5
	Benzin, Zweitakter	590	642	642
	LPG/ CNG, Viertakter	4.2	4.2	4.2
	Off-road*, Zweitakter		26.83	
EPA, 1991	Benzintraktoren			28.6
	(Landwirtschaft)			
	Benzin, andere landwirt-			24.5
	schaftliche Geräte			
	Baumaschinen			34 -44
	Industrieausrüstung			36.9
	Gartengeräte (Viertakter)			14.7
	Motorräder, Geländewägen,			45.8
	Schneemobile, Spezial-			
	fahrzeuge, und Bergbau-			
	maschinen (Viertakter)			
	Viertakter (Zweitakter)			177
	Viertakter ** (Zweitakter)			437
	Boote (Benzinmotor)			6

^{*} Motorräder, Geländewagen, Schneemobile, Spezialfahrzeuge, und Bergbaumaschinen.

_

Für Ottomotoren werden in RAINS die Emissionsfaktoren für PM10 von Breadsley *et al.* (1998) verwendet. Da die Emissionsfaktoren einer breiten Streuung unterliegen, wurden Durchschnittswerte abgeleitet, wobei für Viertaktbenzinmotoren zwei sehr niedrige Werte sowie der höchste Wert vernachlässigt wurden. Die Informationen zur Korngrößenverteilung für die Motoren von mobilen Maschinen und Geräten sind widersprüchlich; CEPMEIP (2002) nimmt an, dass alle Partikel kleiner als 2.5 µm sind, während Breadsley *et al.* (1998) 92 Prozent als PM2.5 und acht Prozent zwischen 2.5

^{**} Von einem anderen Auftragnehmer berichtet.

⁶ Koeffizient ausgedrückt in g/kWh, wurde berechnet vom Koeffizienten in g/GJ unter der Annahme eines 40-prozentigen Wirkungsgrades des Dieselmotors.

und 10 µm angibt. Dies widerspricht den Informationen, die für Benzinfahrzeuge (Norbeck *et al.*, 1998ab) vorliegen, bei denen fünf Prozent größer als 10 µm sind.

Für RAINS wird angenommen, dass infolge der oft schlechteren Wartung der Motoren bei den mobilen Maschinen und Geräten im Vergleich zu Straßenfahrzeugen die Emissionen durch einen höheren Anteil größerer Partikel gekennzeichnet sind. Es wird deshalb der PM10-Anteil mit 90 Prozent und der PM2.5-Anteil mit 83 Prozent angenommen. Wegen der generell großen Unsicherheiten bei den Emissionsfaktoren werden für die einzelnen Anwendungskategorien gleiche Emissionsfaktoren verwendet, wobei auch keine Differenzierung nach Ländern vorgenommen wird.

Tabelle 3.128: Im RAINS-Modell verwendete Emissionsfaktoren für mobile Maschinen und Geräte mit Ottomotoren

Sektor	RAINS-Code	PM2.5	PM10	TSP
		g/GJ	g/GJ	g/GJ
Benzinmotoren, Viertakter	TRA_OT_LB	28.0	30.4	33.8
LPG/CNG Motoren (Viertakter)	TRA OT LB	3.90	4.20	4.24
Benzinmotoren, Zweitakter	TRA_OT_LD2	289	381	423

Tabelle 3.129: Im RAINS-Modell verwendete Emissionsfaktoren für mit schwerem Heizöl betriebene Motoren und Schiffe

Sektor	RAINS-Code	PM2.5	PM10	TSP	TSP
		g/GJ	g/GJ	g/GJ	g/kWh ⁷
Andere Motoren	TRA OT LB	135	143	150	1.2
Schiffe, mittel	TRA_OTS_M	113	119	125	1.0
Schiffe, groß	TRA_OTS_L	113	119	125	1.0

Anwendbare Emissionsminderungsmaßnahmen

Das RAINS-Modell berücksichtigt die Anforderungen der EU-Gesetzgebung für die mobilen Maschinen und Geräte, die im Bau und in der Landwirtschaft benutzt werden (vergleiche Abschnitt 2.4.2.2). Für Benzinmotoren stimmen die Standards mit den EURO-I- bis EURO-V- Auflagen für Straßenfahrzeuge überein.

Für Schiffe wird der Einsatz niederschwefeligen Heizöls und motorseitige Maßnahmen, die die Emissionen von Staub beeinflussen, vorgesehen (Register Lloyds, 1995; Kjeld, 1995).

3.3.2 Abriebsemissionen von mobilen Quellen

Die Abriebsemissionen von mobilen Quellen sind eine wichtige Quelle von PM-Emissionen in Europa, deren Bedeutung in Zukunft weiter zunehmen wird, da wirkungsvolle Programme zur Minderung der Abgasemissionen im Verkehr eingeführt werden.

RAINS unterscheidet drei Kategorien von Abriebsemissionen aus mobilen Quellen: Reifenabrieb, Bremsabrieb und Straßenabrieb.

_

⁷ Koeffizient ist ausgedrückt in g/kWh und wurde vom Koeffizienten in g/GJ unter der Annahme eins 45-prozentigen Wirkungsgrades des Dieselmotors berechnet.

3.3.2.1 Reifenabrieb

Es wird geschätzt, dass der Gummireifenabrieb mit ungefähr 2,8 und 0,3 Prozent zum gesamteuropäischen TSP und PM10 (CEPMEIP, 2002) beiträgt. Dies kann von Land zu Land schwanken. Beispielsweise besagen Schweizer Studien, dass 4,2 Prozent PM aus dieser Quelle stammt (BUWAL, 2001; EWE, 2000). Winiwarter *et al.* (2001) schätzten für Österreich einen Anteil von ungefähr neun für TSP und vier Prozent für PM10. Wird die Wiederaufwirbelung ausgeklammert, ist der Reifenabrieb vermutlich die größte Quelle der Abriebsemissionen von TSP- und PM10-Emissionen im Straßenverkehr. Ungefähr die Hälfte der Abriebsemissionen von PM10 stammen aus dieser Quelle und möglicherweise 80 Prozent TSP.

Tabelle 3.130: Emissionsquellkategorien für den Reifenabrieb

Emissionskategorie	
TRT_RD_HD	Schwere Nutzfahrzeuge (Lastwagen, Busse und andere)
TRT_RD_M4	Motorräder, Viertakter
TRT_RD_LD2	Autos, Motorräder und Mopeds, Zweitakter
TRT RD LD4	Leichte Fahrzeuge und Lastwagen, Viertakter
TRT_RDXLD4	Leichte Fahrzeuge und Lastwagen, Direkteinspritzer
Aktivitätsrate	Gefahrene Kilometer
Einheit	g/km

Emissionsfaktoren

Tabelle 3.131: Übersicht über in der Literatur angegebene Emissionsfaktoren für den Reifenabrieb bei leichten Fahrzeugen [g/km]

Literaturquelle		PM2.5	PM10	TSP
EPA, 1995	PKW, leichte Nutzfahrzeuge		0.0050	
Environment Australia, 2000	Motorräder		0.0025	
Baumann <i>et al.</i> , 1997	PKW			0.0800
Dannis, 1974	Autos			0.024-0.36
SENCO, 1999	Autos			0.163
Rauterberg-Wulff, 1998	PKW		0.0061	
Garben <i>et al.</i> , 1997	PKW			0.0640
	Leichte Nutzfahrzeuge			0.1120
	Motorräder			0.0320
CEPMEIP, 2002	PKW		0.0018	0.069
	Leichte Nutzfahrzeuge		0.0045	0.09
	Motorräder		0.0018	0.0345
EMPA (2000)	Leichte Nutzfahrzeuge		0.0130	0.0530
	Motorräder		0.007	
Gebbe <i>et al.</i> , 1997	PKW			0.0528
	Leichte Nutzfahrzeuge			0.1100
	Motorräder			0.0264
	PKW, Benzin			0.0525
	PKW, Diesel			0.0563

Tabelle 3.132: Übersicht über in der Literatur angegebene Emissionsfaktoren für den Reifenabrieb bei schweren Fahrzeugen [g/km]

Literaturquelle		PM2.5	PM10	TSP
EPA, 1995	Schwere Nutzfahrzeuge		0.0075	
	LKW		0.0225	
Baumann et al., 1997	Schwere Nutzfahrzeuge			0.1890
	LKW			0.2340
	Bus			0.1920
SENCO, 1999	LKW			1.403
Rauterberg-Wulff, 1998	Schwere Nutzfahrzeuge		0.0310	
Garben et al., 1997	Schwere Nutzfahrzeuge			0.7680
CEPMEIP, 2002	Schwere Nutzfahrzeuge		0.0186	0.3713
EMPA (2000)	Schwere Nutzfahrzeuge		0.2000	0.7980
Gebbe et al., 1997	Schwere Nutzfahrzeuge			0.5394
	Schwere Nutzfahrzeuge,			0.0784
	Benzin			
	Schwere Nutzfahrzeuge,			0.2041
	Diesel			

Für das RAINS-Modell wurde für den Reifenabrieb der sich aus der obigen Tabelle ergebende durchschnittliche Emissionsfaktor verwendet. Die meisten der vorhandenen Inventare oder Messprogramme geben keine ausführlichen Korngrößenanteile an, was die Schätzung des PM2.5-Anteils schwierig macht. Ältere Studien zeigen, dass Reifenabrieb einen nicht unwesentlichen Teil von Feinstaub <2.5 μm enthält (EPA (1995), basierend auf Schätzungen der EPA 1985, Berdowski *et al.* (1997) und Israel *et al.* (1994)), während neuere Messungen dies nicht bestätigen (Rauterberg-Wulff, 1998; Weingartner *et al.*, 1997; Israel *et al.*, 1996 und neuere Versionen des Modells PART5 der EPA). Dementsprechend wurde für die RAINS-Berechnungen mit fünf Prozent ein verhältnismäßig niedriger PM2.5-Anteil angenommenen.

Tabelle 3.133: Im RAINS-Modell verwendete Emissionsfaktoren für den Reifenabrieb [g/km]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Leichte Nutzfahrzeuge (1)	TRT_RD_LD4	0.0003	0.0065	0.0661
Motorräder ⁽²⁾	TRT_RD_M4	0.0001	0.0032	0.0282
Schwere Nutzfahrzeuge	TRT RD HD	0.0020	0.0400	0.4208

⁽¹⁾ Der gleiche Emissionsfaktor wurde für Benzin-Direkteinspritzer (TRT RDXLD4) angenommen.

Anwendbare Emissionsminderungsmaßnahmen

RAINS berücksichtigt keine technischen Maßnahmen zur Verringerung der PM-Emissionen des Reifenabriebs.

3.3.2.2 Bremsabrieb

Diese Kategorie ist keine bedeutende Quelle von PM-Emissionen, gewöhnlich macht sie weniger als ein Prozent der Gesamtemissionen aus. Das Schweizer Inventar (BUWAL, 2001; EWE, 2000) schätzt seinen Anteil auf 0,4 Prozent, während CEPMEIP für Europa Anteile um 0,3, 0,5 und 0,8 Prozent für

⁽²⁾ Der gleiche Emissionsfaktor wurde für Mopeds (TRT_RD_LD2) angenommen.

TSP, PM10 beziehungsweise PM2.5 errechnete. Jedoch könnte sich die relative Bedeutung dieser Kategorie zukünftig erhöhen, da Abgasemissionen in Zukunft verringert werden und das Verkehrsaufkommen fortlaufend wächst.

Tabelle 3.134: Emissionsquellkategorien für den Bremsabrieb

Emissionskategorie	
TRT_RD_HD	Schwere Nutzfahrzeuge (LKW, Busse und andere)
TRT_RD_M4	Motorräder, Viertakter
TRT_RD_LD2	Motorräder und Mopeds (auch Autos), Zweitakter
TRT_RD_LD4	Leichte Fahrzeuge und LKW, Viertakter
TRT_RDXLD4	Leichte Fahrzeuge und LKW, Viertakter, Direkteinspritzer
Aktivitätsrate	gefahrene Kilometer
Einheit	g/km

Emissionsfaktoren

Die in Tabelle 3.135 angegebenen Literaturwerte sind teilweise nur bedingt vergleichbar, da die Arten der getesteten Fahrzeuge unterschiedlich sind und in einigen Fällen nur aggregierte Kategorien beschrieben sind (z.B. die Summe der Autos und LKW).

Tabelle 3.135: Übersicht über in der Literatur angegebene Emissionsfaktoren für den Bremsabrieb [g/km]

Literaturquelle		PM2.5	PM10	TSP
BUWAL (2001), abgeleitet	Motorräder		0.0009	
von Carbotech (1999)				
	PKW		0.0018	
	Schwere Nutzfahrzeuge		0.0035	
	Leichte Nutzfahrzeuge		0.0049	
Rauterberg-Wulff (1998)	PKW		0.0010	
- , , ,	PKW, Laster			0.012 - 0.018
	Schwere Nutzfahrzeuge		0.0245	
CEPMEIP, 2002	Motorräder	0.003	0.003	0.003
	PKW	0.006	0.006	0.006
	Leichte Nutzfahrzeuge	0.0075	0.0075	0.0075
	Schwere Nutzfahrzeuge	0.03225	0.03225	0.03225
Cadle et al., 2000	Kleine Autos	0.0018	0.0029	0.0034
	Große Autos	0.0028	0.0045	0.0053
	LKW	0.0048	0.0076	0.0088
EPA (1995), Environment	Autos und LKW	0.0037	0.0078	0.0080
Australia (2000), Cha <i>et al.</i> , 1983				

Die derzeit im RAINS-Modell verwendeten Werte (Tabelle 3.136) beruhen hauptsächlich auf den Angaben von Cadle *et al.* (2000) und Rauterberg-Wulff (1998). Die in vielen anderen Inventaren verwendeten US-amerikanischen Emissionsfaktoren der EPA (EPA, 1995) beruhen auf relativ alten Messungen, die 1983 von Cha *et al.* (1983) für Asbestbremsen durchgeführt wurden. Es wird angenommen, dass die Emissionsfaktoren für Motorräder ungefähr 15 Prozent derer für Autos betragen (eigene Annahme), woraus sich etwas niedrigere Werte als von BUWAL (2001) berichtet ergeben. Insgesamt sind die RAINS-Werte niedriger als die Emissionsfaktoren in der CEPMEIP-Studie (2002), wobei allerdings die Quellen für die CEPMEIP-Emissionsfaktoren nicht erläutert sind.

Die Korngrößenverteilung, die in verschiedenen Studien beschrieben wird, variiert stark. Es wurde daher entschieden, die neuesten Messungen (Cadle *et al.*, 2000) zu verwenden.

Tabelle 3.136: Im RAINS-Modell verwendete Emissionsfaktoren für den Bremsabrieb [g/km]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Leichte Nutzfahrzeuge (1)	TRB_RD_LD4	0.0022	0.0036	0.0044
Motorräder (2)	TRB_RD_M4	0.0003	0.0005	0.0006
Schwere Nutzfahrzeuge	TRB RD HD	0.0071	0.0228	0.0275

⁽¹⁾ Der gleiche Emissionsfaktor wurde für Benzin-Direkteinspritzer (TRT RDXLD4) angenommen.

Anwendbare Emissionsminderungsmaßnahmen

RAINS berücksichtigt keine technischen Maßnahmen zur Verringerung der PM-Emissionen des Reifenabriebs.

3.3.2.3 Straßenabrieb

Emissionen, die durch Straßenabrieb verursacht werden, sind schwer zu schätzen, da es keine Emissionsfaktoren gibt, die sich direkt darauf beziehen. Jede mögliche Abnutzung geteerter Straßen wird gewöhnlich im Gesamtabriebsemissionsfaktor berücksichtigt, welcher Reifen-, Bremsen- und Straßenabrieb enthält. Es gibt einige Studien, die Reifen- und Bremsabrieb analysieren (siehe vorhergehende Abschnitte), aber es ist schwierig, sie direkt mit den Gesamtabriebsemissionen im Verkehr zu vergleichen.

Im Kontext des RAINS *Integrated Assessment Modells* existiert eine klare Schnittstelle zwischen dem Emissionsinventar, das die Netto-Emissionen quantifiziert, und den atmosphärischen Ausbreitungsrechnungen, welche die Verteilung dieser Emissionen in der Atmosphäre beschreiben. In diesem Kontext ist die Wiederaufwirbelung von Straßenstaub eindeutig Teil der Ausbreitungsrechnung und darf zur Vermeidung von Doppelzählung nicht im Emissionsinventar enthalten sein. Leider ist es bei vielen Emissionsinventaren nicht klar, ob sie die wiederaufgewirbelten Staubteilchen enthalten, weshalb deren Ergebnisse für die Zwecke eines *Integrated Assessment* nur mit Vorsicht verwendet werden können.

Einige Studien besagen, dass der Straßenabrieb, zusammen mit der Wiederaufwirbelung, insbesondere in Städten eine der Hauptquellen von PM-Emissionen ist (Nicholson, 1988). So schätzten Gaffney *et al.* (1995) und Zimmer *et al.* (1992), dass in Kalifornien bis zu etwa 30 Prozent der gesamten PM10-Emissionen von geteerten Straßen stammten, im Großstadtbereich von Denver sogar zwischen 40 und 70 Prozent. Eine neuere Studie für Frankreich (Jäcker-Voirol und Haut, 2000) besagt, dass Straßenaufwirbelungsemissionen drei- bis siebenmal so hoch wie die Abgasemissionen des Straßenverkehrs sein können. Alle diese Studien verwendeten eine Näherung, die auf der US-EPA-Methode (EPA, 1995, 1997) basiert. Gerade aber die Zuverlässigkeit dieser Methode wurde in der

⁽²⁾ Der gleiche Emissionsfaktor wurde für Mopeds (TRT RD LD2) angenommen.

jüngeren Vergangenheit offen kritisiert (siehe die Diskussion in *Atmospheric Environment*, z.B. Venkatram, 2000; Nicholson, 2000), sodass auch die darauf beruhenden Rechnungen kritisch betrachtet werden müssen. Das in Las Vegas durchgeführte TRAKER-Messprogramm (Kuhns *et al.*, 2001) sollte weiteren Aufschluss bringen, jedoch liegen abschließende Ergebnisse noch nicht vor.

Tabelle 3.137: Emissionsquellkategorien für den Straßenabrieb

Emissionskategorie	
TRD_RD_HD	Schwere Nutzfahrzeuge (LKW, Busse und andere)
TRT_RD_M4	Motorräder, Viertakter
TRT_RD_LD2	Autos, Motorräder und Mopeds, Zweitakter
TRD_RD_LD4	Leichte Nutzfahrzeuge und LKW, Viertakter
TRD_RDXLD4	Leichte Nutzfahrzeuge und LKW, Viertakter, Direkt-Einspritzer
Aktivitätsrate	gefahrene Kilometer
Einheit	g/km

Emissionsfaktoren

Wie in der Einleitung in diesem Abschnitt angesprochen, ist es angesichts der Diskussion über die AP-42-Methode (Venkatram, 2000) schwierig, verlässliche Emissionsfaktoren für den Straßenabrieb zu ermitteln. Die in Tabelle 3.138 zusammengestellten Faktoren aus der Literatur sind nur bedingt direkt vergleichbar, da die Berichtsgrundlagen variieren.

Um Emissionsfaktoren für RAINS abzuleiten, wurde der Versuch gemacht, Reifen- und Bremsabrieb und Straßenaufwirbelung von den in der Literatur berichteten gesamten Abriebsemissionsfaktoren zu subtrahieren. Untersuchungen, die in Tunnels durchgeführt wurden, sind nicht mit einbezogen worden, da die verschiedenen Quellen der Abriebsemissionen in solchen Studien nur schwer unterscheidbar sind und häufig auch Abgasbestandteile enthalten sind.

Eine weitere Schwierigkeit ist die Differenzierung nach Korngrößen. Es wurde angenommen, dass 50 Prozent der TSP PM10 ist und dass PM2.5 ungefähr 50 Prozent an PM10 ausmacht. Die gegenwärtigen Werte sollten als vorläufige Schätzungen angesehen werden, welche einer weiteren Analyse bedürfen.

Ein Vergleich der RAINS-Emissionsfaktoren mit CEPMEIP zeigt gute Übereinstimmung für PM10, aber eine sehr große Diskrepanz für TSP. Für leichte und schwere Nutzfahrzeuge sind die CEPMEIP-Faktoren eine Größenordnung höher als in RAINS. Da die CEPMEIP-Dokumentation keine Angaben über die Grundlagen der Faktoren enthält, ist die Erklärung dieses Unterschiedes schwierig.

Tabelle 3.138: Übersicht über in der Literatur angegebene Emissionsfaktoren für den Straßenabrieb [g/km]

Literaturquelle		PM2.5	PM10	TSP
CBS, 1998	Schwere Nutzfahrzeuge		0.0380	
(einschließlich Reifen-,	Leichte Nutzfahrzeuge		0.0090	
Brems- und Straßenabrieb)	PKW		0.0070	
	Motorräder < 50cc		0.0020	
	Motorräder> 50cc		0.0040	
Berdowski et al., 1997	Leichte Nutzfahrzeuge		0.07	
(einschließlich Reifen-,	Motorräder		0.023	
Brems- und Straßenabrieb	Schwere Nutzfahrzeuge		1.17	
und Wiederaufwirbelung)				
EMPA, 2000 (einschließlich	Schwere Nutzfahrzeuge auf		0.450	
Wiederaufwirbelung)	geteerten Straßen			
	Leichte Nutzfahrzeuge auf		0.030	
	geteerten Straßen			
Israel et al., 1994	PKW (Tunnelmessung)			0.12
	LKW (Tunnelmessung)			2.00
CEPMEIP, 2002	Schwere Nutzfahrzeuge		0.0269	0.738
	Leichte Nutzfahrzeuge		0.0095	0.190
	PKW		0.0073	0.145
	Motorräder		0.0037	0.073
Israel et al., 1996	PKW (Tunnelmessung)		0.0380	
	LKW (Tunnelmessung)		0.5970	
Rauterberg-Wulff, 1998	PKW (Tunnelmessung)		0.0320	
	LKW (Tunnelmessung)		0.8340	

Tabelle 3.139: Im RAINS-Modell verwendete Emissionsfaktoren für den Straßenabrieb [g/km]

Sektor	RAINS-Code	PM2.5	PM10	TSP
Leichte Nutzfahrzeuge 1)	TRD_RD_LD4	0.0042	0.0075	0.0150
Benzin-Direkteinspritzer	TRT_RDXLD4	0.0042	0.0075	0.0150
Motorräder	TRD_RD_M4	0.0016	0.0030	0.0060
Mopeds	TRT_RD_LD2	0.0016	0.0030	0.0060
Schwere Nutzfahrzeuge	TRD_RD_HD	0.0209	0.0380	0.0760

Anwendbare Emissionsminderungsmaßnahmen

Es werden keine technische Maßnahmen zur Verringerung des Straßenabriebs im RAINS-Modell berücksichtigt.

4 Kostenberechnung

4.1 Prinzipien der Kostenberechnung in RAINS

Die Kostenberechnung im RAINS-Modell hat das zentrale Ziel, den gesellschaftlichen Wert des Ressourcenverbrauchs zur Verringerung von Staubemissionen zu ermitteln. Deshalb orientieren sich die Berechnungen an den Kosten von Maßnahmen und nicht an Marktpreisen. In diesem Konzept wird neben den Kosten des Ressourcenverzehrs nur die übliche Kapitalverzinsung berücksichtigt, jedoch keine Steuern und andere Transferzahlungen.

Um im Gesamtkontext des RAINS-Modells Analysen zur Kosteneffizienz von internationalen Emissionsminderungsstrategien durchführen zu können, ist es unumgänglich, bei den Kostenberechnungen internationale Vergleichbarkeit zu schaffen.

Dies geschieht, wie auch in den Kostenmodulen für die anderen Schadstoffe, durch die zentrale Annahme eines freien Marktes für Vermeidungstechnologie in Europa, welcher allen Ländern zu gleichen Bedingungen zugänglich ist. Demnach ist die gleiche Technologie für alle Länder zu gleichen Kosten verfügbar. Länderspezifische Umstände, unter denen eine Technologie Anwendung findet (z.B. Brennstoffqualität, klimatische Bedingungen, typische Anlagengröße, etc.), verursachen jedoch Unterschiede in den tatsächlichen Kosten des Einsatzes eines gegebenen Verfahrens. Das RAINS-Modell versucht die Faktoren, die zu objektiven Kostenunterschieden führen, zu quantifizieren und damit international konsistente Kostenabschätzungen zu erhalten.

Technologiespezifische Daten wie Abscheidegrade, spezifische Investitionskosten, Betriebs- und Wartungskosten, als auch Parameter für die Berechnung variabler Kostenkomponenten wie zusätzliche Nachfrage nach Arbeit, Energie und Materialien werden für alle Länder gleich angenommen. Dagegen werden Parameter als länderspezifisch behandelt, wenn sie die Situation in einer bestimmten Region charakterisieren.. Zu diesen Parametern gehören die durchschnittliche Größe der Anlagen in einem Sektor und ihre Auslastung, der jährliche Kraftstoffverbrauch und/oder Fahrleistung der einzelnen Fahrzeugkategorien. Auch die Kosten für Arbeit, Elektrizität, Brennstoff und andere Materialien sowie Abfallbeseitigung werden länderspezifisch berücksichtigt.

Alle konkreten Daten für alle Parameter, die zur Berechnung der länderspezifischen Kosten und der nationalen Kostenkurven verwendet werden, sind im Internet auf der RAINS-Website (http://www.iiasa.ac.at/rains) aktuell publiziert.

Aufwendungen für die Vermeidungstechnologien werden unterschieden in:

- Investitionen,
- fixe Betriebskosten, und
- variable Betriebskosten.

Aus diesen drei Komponenten berechnet RAINS die jährlichen Kosten von Emissionsminderungsmaßnahmen und bezieht sie auf die jeweilige Aktivitätseinheit (d.h., Kosten pro kWh oder pro Kilometer). In einem zweiten Schritt werden diese spezifischen Kosten in Bezug zur abgeschiedenen Schadstoffmenge gesetzt, was eine Beurteilung der Kosteneffizienz unterschiedlicher Maßnahmen erlaubt.

Alle Kosten im RAINS-PM-Modell sind in konstanten 1995er Preisen angegeben.

Obwohl auf den selben Grundprinzipien basierend, unterscheiden sich die Kostenberechnungen für einzelne Bereiche. Im folgenden werden die Kostenberechnungen für Feuerungsanlagen, Prozessquellen und mobile Quellen (Fahrzeuge) separat diskutiert.

4.2 Feuerungsanlagen

Minderungskostenschätzungen für Staub für stationäre Quellen im Kraftwerkssektor und bei industriellen Kesseln basieren auf Daten von Rentz *et al.* (1996), Takeshita (1995), Soud (1995) und UN/ECE (1996).

4.2.1 Investitionen

Investitionen umfassen die akkumulierten Aufwendungen bis zur Inbetriebnahme einer Vermeidungstechnologie. Diese Kosten umfassen z.B. die Lieferung der Anlage, Aufbau, Baumaßnahmen, Kanalisierung, Ingenieurs- und Beratungsgebühren, Lizenzgebühren, Bodenbedarf und Kapital. Das RAINS-Modell verwendet Investitionsfunktionen, bei denen diese Kostenelemente in aggregierter Form von der Anlagegröße abhängig gemacht werden, wobei Kostendegression bei zunehmender Anlagengröße angenommen wird.

Für die stationäre Feuerung sind die Investitionskosten für einzelne Minderungsanlagen in Abhängigkeit vom behandelten Abgasvolumen modelliert, was mit der Kesselgröße bs in Relation gesetzt wird. Die funktionale Form wird durch die Koeffizienten ci^{j} und ci^{v} beschrieben. Die Koeffizienten ci gelten für steinkohlebefeuerte Kessel, und der Koeffizient v berücksichtigt das unterschiedliche Abgasvolumen von anderen Brennstoffen. Die Koeffizienten ci werden getrennt für drei Kapazitätsklassen geschätzt: für weniger als 20 MW_{th}, von 20 bis 300 MW_{th} und über 300 MW_{th}. Höhere Investitionen im Falle einer Nachrüstung bestehender Kessel/Öfen werden mittels des Nachrüstungsfaktors r abgebildet. Diese Investitionsfunktion ist in Gleichung 4.1 gegeben:

$$I = (ci^{f} + \frac{ci^{v}}{bs}) * v * (1+r)$$
(4.1)

Die Koeffizienten *ci* werden auf Basis der in Rentz *et al.*, 1996 angegebenen Investitionsfunktionen geschätzt. Die ursprünglichen Investitionsfunktionen beziehen Kapitalinvestitionen in Euro/1000 m³ Abgas/h auf das Volumen der behandelten Abgase (in 1000 m³/h). Diese Funktionen sind in eine Funktion umgewandelt worden, welche die Kesselgröße verwendet (in MWth).

Investitionen werden über die betriebsübliche technische Nutzungsdauer der Anlagen *lt* annualisiert, wobei Kapitalverzinsung *q* verwendet wird (als Prozent/100):

$$I^{an} = I * \frac{(1+q)^{lt} * q}{(1+q)^{lt} - 1}$$
(4.2)

4.2.2 Betriebskosten

Die **Fixkosten** *OM*^{fix} bilden die jährlichen Kosten für Reparatur, Wartung und Verwaltung ab. Hierfür wird als grobe Schätzung ein Prozentsatz f der Gesamtinvestitionen verwendet:

$$OM^{fix} = I * f (4.3)$$

Die variablen Betriebskosten OM^{var} beziehen sich auf den Betrieb der Anlagen und berücksichtigen

- zusätzlichen Arbeitsbedarf,
- erhöhten Energiebedarf für den Betrieb der Anlage (z.B. für die Ventilatoren und Pumpen), und
- Abfallbeseitigung.

Diese Kostenelemente werden mit der jeweiligen technischen Verbrauchsmenge λ^x einer bestimmten Minderungstechnologie und ihres (länderspezifischen) Preises c^x berechnet.

$$OM^{var} = (\lambda^{l} c^{l} / pf + \lambda^{e} c^{e}) + efi * \eta_{l} * (\lambda^{d} c^{d})$$

$$ef_{i} = \frac{ac}{hv} * (1 - ar)$$

$$(4.4)$$

mit

Abscheidegrad für die verschiedenen Korngrößen (PM2.5, PM10-2.5, PM10, >PM10) η_l

 λ^{l} Arbeitskräftebedarf,

 $\lambda^{\,e}$ zusätzlicher Energiebedarf,

 $\boldsymbol{\lambda}^d$ Abfallbeseitigungsmenge,

 c^{l} Arbeitskosten,

 $c^e \\ c^d$ Elektrizitätspreis,

Kosten der Abfallbeseitigung,

pf typische Auslastung (jährliche Betriebsstunden mit voller Kapazität),

Rohgasemissionsfaktor für die verschiedenen Korngrößen (PM2.5, PM10-2.5, PM10, ef_l

>PM10),

Aschegehalt, ac

hv unterer Heizwert, und

Ascheeinbindung im Ofen. ar

4.2.3 Spezifische Minderungskosten

Spezifische Kosten pro Aktivitätseinheit

Mit den oben erwähnten Kostenelementen können die spezifischen Kosten der Reduktion der Staubemissionen pro Aktivitätseinheit errechnet werden. In Gleichung 4.5 werden alle Ausgaben auf den Brennstoffeinsatz bezogen (in PJ):

$$c_{PJ} = \frac{I^{an} + OM^{fix}}{pf} + OM^{var}$$

$$\tag{4.5}$$

Spezifische Kosten pro vermiedener Tonne Emissionen

Die tatsächliche Kosteneffizienz unterschiedlicher Maßnahmen kann jedoch nur beurteilt werden, wenn die Vermeidungskosten auf die Menge der verringerten Emissionen bezogen wird:

$$c_{PMl} = c_{PJ} / (efl * \eta l) \tag{4.6}$$

Diese auf die abgeschiedene Schadstoffmenge bezogenen Kosten können bei einer Maßnahme für die verschiedenen Korngrößenfraktionen unterschiedlich sein.

4.2.4 **Parameterwerte**

Als Beispiel einer Kostenberechnung führt Tabelle 4.1 die für Emissionsminderungsverfahren bei stationären Feuerungsanlagen verwendeten Parameterwerte an. Diese Rechnungen basieren auf Durchschnittswerten von Investitionsfunktionen, die von Rentz et al., 1996 veröffentlicht wurden. Es ergeben sich Kostenunterschiede von bis zu ±30 Prozent des Durchschnittswertes.

In der gegenwärtigen Version des Modells wurde angenommen, dass der Ersatz von vorhandenen Minderungstechniken durch neue, eventuell leistungsfähigere Techniken nur nach vollständiger Amortisierung der vorhandenen Ausrüstung geschieht, sodass keine vorzeitige Umrüstungskosten entstehen.

Tabelle 4.1 Werte für die Parameter der Kostenberechnung für Technologien zur Emissionsminderung bei stationären Feuerungsanlagen

m 1 1 1	INV_C	INV_V	Fixe O+M	zusätzlicher		zitätsspanne,
Technologie				Stromverbrauch		MWth
	Euro/kWth	kEuro	%	kWh/GJ	von	bis
ESP1 (1 Feld)	26.0	0.0	0.5	0.11	0	5
	6.9	95.9	0.5	0.11	5	50
	3.7	254.6	0.5	0.11		>50
ESP2 (2 Felder)	32.5	0.0	0.5	0.13	0	5
,	8.6	119.9	0.5	0.13	5	50
	4.6	318.2	0.5	0.13	-	>50
ESP3 (3 und	35.4	0.0	0.5	0.15	0	5
mehr Felder)	10.2	126.4	0.5	0.15	5	50
,	5.6	353.6	0.5	0.15		>50
Zyklone	10.4	0.0	0.5	0.15	0	5
J	2.7	38.4	0.5	0.15	5	50
	1.5	101.8	0.5	0.15		>50
Gewebefilter	21.5	0.0	1.0	0.20	0	5
	11.0	52.3	1.0	0.20	5	50
	7.9	212.1	1.0	0.20		>50
Nasswäscher	31.9	0.0	1.0	1.50	0	5
	9.1	113.8	1.0	1.50	5	50
	5.0	318.2	1.0	1.50		>50
Gute technische Praxi bei Ölkesseln	s 2.0	0.0	4.0	0.00		>0

4.2.5 Beispiel einer Kostenberechung

Als Beispiel für die Kostenberechnung werden in der Folge die Kosten für Gewebefilter bei braunkohlebefeuerten Kesseln erläutert. Technologiespezifische Parameter sind Tabelle 4.1 entnommen, und es wurden die folgenden länderspezifischen Parameter verwendet (RAINS-Daten für Deutschland):

Nachrüstungsfaktor	r = 0
Zinssatz	q = 4%
Abgasvolumen relativ zu Steinkohle	v = 1.2.
Arbeitskräftebedarf	$\lambda^{l} = 0.001$ Mitarbeiter-Jahre/MW _{th} (illustrativ)
Beseitigung von Nebenprodukten	$\lambda^{d} = 1 \text{ t/t vermiedenes TSP}$
Technische Lebensdauer der Anlage	lt = 20 Jahre
Abscheidegrad der Gewebefilter	
für TSP	$\eta_{TSP} = 99.9 \%$
für PM10	$\eta_{PM10} = 99.6 \%$

Ungeminderter TSP-Emissionsfaktor $ef_{TSP} = 3924 \text{ t/PJ}$ Ungeminderter PM_{10} Emissionsfaktor $ef_{PMI0} = 785 \text{ t/PJ}$ Personalkosten $c^{l} = 25\ 000\ \text{e/Mitarbeiter-Jahre}$ Elektrizitätskosten $c^{e} = 5\ \text{e/ents/kWh}$ Kesselgröße (Rostkessel) $bs = 30\ \text{MW}_{\text{th}}$ Auslastung $pf = 4500\ \text{h/a}\ \text{Vollbetriebsstunden}$ Kosten der Entsorgung von Nebenprodukten $c^{d} = 21\ \text{e/t}$

Mit diesen Parametern berechnen sich die Kostenelemente wie folgt:

Kapitalinvestitionen:

$$I = (11.0 + 52.3/30)*(1+0.0)*1.2 = 15.3 \text{ } \ell/\text{kW}_{\text{th}}$$

Annuität für q=4 %, und lt= 20 Jahre: 0.074 €/kW_{th}

Jährliche Kapitalkosten:

$$I^{an} = 15.3*0.074 = 1.13$$
 \in /kW_{th}- Jahr

Fixe Betriebs- und Wartungskosten (OM^{fix}) :

$$OM^{fix} = 0.01*15.3 = 0.15 \text{ } \text{€/kW}_{\text{th}}\text{- Jahr}$$

Variable Kosten:

 OM^{var} = 0.001[m-yr/MW_{th}]*25000[€/m-yr]/(4500[h/a]*3600[s/h])* 10⁹ [MJ/PJ] + 0.2 [kWh/PJ]*10⁶[GJ/PJ]*0.05[€/kWh] + 3924[t Staub/PJ]*0.999*1.0[t Nebenprodukt/t vermiedener Staub]* 21[€/t Nebenprodukt] = 93.9 *10³ €/PJ

Spezifische Kosten pro PJ verwendeter Brennstoff:

$$c_{PJ} = (1.13 + 0.15)[\text{E/kW}_{\text{th}}\text{-Jahr}]/(4500[\text{h/Jahr}]*3600[\text{s/h}])*10^{12}[\text{kJ/PJ}]+93.9*10^3 = 172.9*10^3 \text{E/PJ}$$

Spezifische Kosten pro entfernter Tonne PM_{10} :

$$c_{PMI0} = 172.9*10^3/(0.996*785) = 221.1 \text{ } \text{€/t}_{PM10}$$

4.3 Industrieprozesse

Die Berechnung der Minderungskosten bei Industrieprozessen stützt sich auf Angaben von BAT-Referenzdokumenten des *Integrated Pollution Prevention and Control* (IPPC) *Bureau* (e.g., IPPC, 1999a,b) und CONCAWE (1999). Außerdem wurden Informationen über Kosten für einzelne Prozesse von Rentz *et al.*, 1996 sowie von einer Reihe österreichischer Untersuchungen über Möglichkeiten der Verminderung der Schadstoffe aus industriellen Anlagen verwendet (vergleiche Staubenvoll und Schindler, 1998, Schindler und Ronner, 2000, Hübner *et al.*, 2000 und Ecker und Winter, 2000). Es muss angemerkt werden, dass die Minderungskosten von industriellen Prozessemissionen in hohem Grade orts- und prozessspezifisch sind. Für den häufigen Fall, dass die Staubminderung in der allgemeinen Abgasbehandlungsanlage erfolgt, ist es schwierig ist, die Kosten der PM-Minderung von den Kosten der Minderung anderer Schadstoffe zu trennen. Wegen dieser Schwierigkeiten betragen die Differenzen zwischen einzelnen Studien bis zu ±50 Prozent.

Die angeführten Beispiele sollten als vorläufig betrachtet werden, da erwartet wird, dass die Qualität der Informationen als Resultat der Arbeit der Expert Group on Techno-Economic Issues (EGTEI), die innerhalb der *UN/ECE Convention on Long-range Transboundary Air Pollution* etabliert wurde, verbessert wird.

4.3.1 Investitionen

Die Höhe der Investitionen hängt direkt mit der Anlagenkapazität zusammen.

Die Investitionsfunktion und sich ergebenden annualisierten Investitionen werden durch Gleichungen 4.7 und 4.8 berechnet:

$$I = ci^{f} * (1+r) \tag{4.7}$$

$$I^{an} = I * \frac{(l+q)^{lt} * q}{(l+q)^{lt} - 1}$$
(4.8)

4.3.2 Betriebskosten

Die Ermittlung der Betriebskosten erfolgt ähnlich wie für die stationäre Verbrennung, verwendet jedoch andere Aktivitätsgrößen:

$$OM^{fix} = I * f \tag{4.9}$$

$$OM^{var} = \lambda^{l} c^{l} + \lambda^{e} c^{e} + ef_{TSP} * \eta_{TSP} * \lambda^{d} c^{d}$$

$$(4.10)$$

Die Koeffizienten λ^1 , λ^e , und λ^d sind auf Tonnen bezogene Produktmengen.

4.3.3 Spezifische Minderungskosten

Spezifische Kosten bezogen auf die Produktmenge

Diese Kosten werden mit folgender Gleichung berechnet:

$$c_{ton} = I^{an} + OM^{fix} + OM^{var} \tag{4.11}$$

Spezifische Kosten bezogen auf die verminderte Emission des Schadstoffs k (k=Korngrößenfraktion)

In ähnlicher Weise wie für Feuerungsanlagen können spezifische Kosten pro Einheit verminderter Staubemissionen berechnet werden:

$$c_{PM_k} = c_{ton} / (ef_k * \eta_k) \tag{4.12}$$

4.3.4 Parameterwerte

Werte für die Parameter der Kostenberechnung für Industrieprozesse sind in Tabelle 4.2 angeführt. Daten für Gewebefilter bei der Zementproduktion (PR_CEM), deren Kosten in der Folge exemplarisch berechnet werden, sind grau unterlegt.

Tabelle 4.2: Werte der Kostenparameter für Technologien zur Minderung von Emissionen aus industriellen Prozessen

Prozess	Technologie	INV_C Euro/t	FO_M %	Elektrizität kWh/t	Nebenprodukt t/t Produkt
PR_PIGI	PR_ESP1	2.7	5.00	1.25	0.50
PR_PIGI	PR_ESP2	3.3	5.00	1.47	0.50
PR_PIGI	PR_ESP3P	3.9	5.00	1.70	0.50
PR_PIGI	PR_CYC	1.1	5.00	1.70	0.50
PR_PIGI	PR_WSCRB	3.9	5.00	8.50	0.50
PR_CAST	PR_ESP1	22.8	3.00	6.60	0.50
PR_CAST	PR_ESP2	28.3	3.00	7.80	0.50
PR_CAST	PR_ESP3P	33.3	3.00	9.00	0.50
PR_CAST	PR_FF	36.5	3.00	12.00	0.50
PR_CAST	PR_CYC	9.2	3.00	9.00	0.50
PR_CAST	PR_WSCRB	33.3	3.00	90.00	0.50
PR_COKE	PR_ESP1	0.6	4.00	0.22	0.50
PR_COKE	PR_ESP2	0.7	4.00	0.26	0.50
PR_COKE	PR_ESP3P	0.8	4.00	0.30	0.50
PR_COKE	PR_FF	0.9	4.00	0.40	0.50
PR_COKE	PR_CYC	0.2	4.00	0.30	0.50
PR COKE	PR WSCRB	0.8	4.00	3.00	0.50
PR SINT	PR ESP1	1.2	6.00	0.88	0.20
PR SINT	PR ESP2	1.5	6.00	1.04	0.20
PR SINT	PR ESP3P	1.8	6.00	1.20	0.20
PR SINT	PR FF	2.0	6.00	1.60	0.20
PR SINT	PR CYC	0.5	6.00	1.20	0.20
PR REF	PR ESP1	0.2	4.00	0.06	1.00
PR REF	PR ESP2	0.2	4.00	0.07	1.00
PR REF	PR ESP3P	0.3	4.00	0.08	1.00
PR REF	PR FF	0.3	4.00	0.11	1.00
PR REF	PR CYC	0.1	4.00	0.08	1.00
PR HEARTH	PR ESP1	3.6	4.00	1.83	0.50
PR HEARTH	PR ESP2	4.4	4.00	2.17	0.50
PR HEARTH	PR ESP3P	5.2	4.00	2.50	0.50
PR HEARTH	PR FF	5.7	4.00	3.33	0.50
PR HEARTH	PR CYC	1.4	4.00	2.50	0.50
PR HEARTH	PR WSCRB	5.2	4.00	25.00	0.50
PR BAOX	PR ESP1	21.9	4.00	0.81	0.50
PR BAOX	PR ESP2	27.3	4.00	0.95	0.50
PR BAOX	PR ESP3P	32.0	4.00	1.10	0.50
PR_BAOX	PR_FF	35.1	4.00	1.47	0.50
PR BAOX	PR_CYC	8.8	4.00	1.10	0.50
PR_BAOX	PR_WSCRB	32.0	4.00	11.00	0.50
PR_EARC	PR_FF	1.9	4.00	1.10	0.50
PR_EARC	PR_CYC	0.5	4.00	0.83	0.50
PR_EARC	PR_WSCRB	1.7	4.00	8.25	0.50
PR_ALPRIM	PR_ESP1	3.3	4.00	0.83	0.50
PR_ALPRIM	PR_ESP2	4.1	4.00	0.98	0.50
PR_ALPRIM	PR_ESP3P	4.8	4.00	1.13	0.50
PR_ALPRIM	PR_FF	5.3	4.00	1.50	0.50
PR_ALPRIM	PR_CYC	1.3	4.00	1.13	0.50
PR_ALSEC	PR_FF	23.0	3.00	8.90	0.50
PR_ALSEC	PR_CYC	5.8	3.00	6.68	0.50
PR ALSEC	PR WSCRB	21.0	3.00	66.75	0.50
PR OT NFME	PR WESP	19.5	3.00	4.13	0.50
PR_OT_NFME	PR FF	21.4	3.00	5.50	0.50
PR_OT_NFME	PR_CYC	5.4	3.00	4.13	0.50
PR OT NFME	PR_WSCRB	19.5	3.00	41.25	0.50

Prozess	Technologie	INV_C Euro/t	FO_M	Elektrizität kWh/t	Nebenprodukt t/t Produkt
PR BRIQ	PR ESP1	0.6	4.00	0.22	0.00
PR_BRIQ	PR ESP2	0.8	4.00	0.26	0.00
PR BRIQ	PR ESP3P	0.9	4.00	0.30	0.00
PR BRIQ	PR FF	1.0	4.00	0.40	0.00
PR BRIQ	PR CYC	0.3	4.00	0.30	0.00
PR BRIQ	PR WSCRB	0.9	4.00	3.00	0.00
PR GLASS	PR ESP1	2.7	4.00	0.61	1.00
PR GLASS	PR ESP2	3.3	4.00	0.72	1.00
PR GLASS	PR ESP3P	3.9	4.00	0.83	1.00
PR GLASS	PR FF	4.3	4.00	1.10	1.00
PR GLASS	PR CYC	1.1	4.00	0.83	1.00
PR FERT	PR FF	1.9	4.00	1.40	0.00
PR FERT	PR CYC	0.5	4.00	1.05	0.00
PR FERT	PR WSCRB	1.7	4.00	10.50	0.00
PR CEM	PR ESP1	3.1	5.20	1.39	0.00
_	PR ESP2	3.9	5.20	1.64	0.00
PR_CEM PR_CEM	PR ESP3P	4.6	5.20	1.89	0.00
PR CEM	PR FF	3.8	5.50	1.09	0.00
PR CEM	PR CYC	1.3	5.20	1.89	0.00
PR_CEM	PR_WSCRB	4.6	5.20	18.90	0.00
-	PR ESP1	11.4	4.00	1.69	0.00
PR_LIME PR_LIME	_	14.1	4.00	1.99	0.00
<u>—</u>	PR_ESP2	16.6	4.00	2.30	0.00
PR_LIME	PR_ESP3P	13.8	4.00	3.40	0.00
PR_LIME	PR_FF	4.6			
PR_LIME	PR_CYC		4.00	2.30	0.00
PR_LIME	PR_WSCRB	16.6	4.00	23.00	0.00
PR_CBLACK	PR_FF	0.9	4.00	0.40	0.00
PR_CBLACK	PR_CYC	0.2	4.00	0.30	0.00
PR_OTHER	PR_ESP1	3.6 4.5	4.00 4.00	1.10	1.00 1.00
PR_OTHER	PR_ESP2			1.30	
PR_OTHER	PR_ESP3P	5.3 5.8	4.00	1.50	1.00
PR_OTHER	PR_FF	3.8 1.5	4.00 4.00	2.00 1.50	1.00 1.00
PR_OTHER	PR_CYC				
PR_OTHER	PR_WSCRB	5.3	4.00	15.00	1.00
PR_SINT_F	PRF_GP1	1.5	4.00	1.04	0.00
PR_SINT_F	PRF_GP2	1.8 31.1	4.00 3.00	1.20	0.00
PR_CAST_F	PRF_GP1			10.40	0.00
PR_CAST_F	PRF_GP2	36.5	3.00	12.00	0.00
PR_PIGI_F	PRF_GP1	13.6	4.00	1.13	0.00
PR_PIGI_F	PRF_GP2	16.0	4.00	1.30	0.00
PR_SMIND_F	PRF_GP1	31.1	3.00	10.40	0.00
PR_SMIND_F	PRF_GP2	36.5	3.00	12.00	0.00

4.3.5 Beispiel einer Kostenberechung

Als Beispiel sei die Kostenberechung für Gewebefilter (PR-FF) bei der Zementproduktion (PR-CEM) erläutert. Die Kosten enthalten Vorkehrungen für alle drei Prozesse bei der Zementproduktion (Klinkerbrennöfen, Klinkerkühlvorrichtungen und Zementmühlen).

Die technologiespezifischen Parameter wurden der grau unterlegten Zeile in Tabelle 4.2 entnommen. Sie wurden auf Basis des BAT-Dokumentes (IPPC, 1999) geschätzt. Laut diesem Dokument sind die durchschnittlichen Investitionen und fixen Betriebs- und Wartungskosten zur Verminderung der Emissionen vom Zementproduktion:

Investitionen

I = 3.8 €/t Zement/Jahr

Fixe Betriebskosten

 $OM^f = 5.5 \%/Jahr$

Zusätzlich werden in der Berechnung als Beispiel die für Deutschland benutzten Werte verwendet:

Umrüstungskostenfaktor f=0Zinssatz q=4%

Zusätzlicher Arbeitskräftebedarf 0.2 Mitarbeiterjahr/Mt Zement Zusätzlicher Elektrizitätsbedarf e = 2.85 kWh/t Zement

Abfall- (Nebenprodukt-)entsorgung d = 0 t/t vermiedene TSP; dies bedeutet, dass der gesamte

Staub entweder in den Prozess zurückgebracht wird oder

als nützliches Nebenprodukt verwendet wird.

Lebensdauer des Filters lt =20 Jahre

Effizienz des Gewebefilters

Für TSP: $\eta_{TSP} = 99.78 \%$ Für PM10 $\eta_{PM10} = 99.51 \%$ Ungeminderter TSP-Emissionsfaktor $ef_{TSP} = 195 \text{ kg/t Zement}$ Ungeminderter PM10-Emissionsfaktor $ef_{PM1}0 = 81.9 \text{ kg/t Zement}$

Ungeminderter PM10-Emissionsfaktor ef $_{PM1}0 = 81.9 \text{ kg/t Zement}$ Gehälter cl = 25 000 \in /Mitarbeiterjahr

Elektrizitätskosten ce = 5 € Cents/kWh

Entsorgungskosten Abfall/Nebenprodukt cd = 21 €/t

Mit diesen Werten ergibt sich:

Variable Kosten:

 OM^{var} = 0.2[m-yr/Mt]*25000[€/m-yr]*10⁻⁶ [Mt/t]+ 2.85*[kWh/t]*0.05[€/kWh] + 195[kg Staub/t]*0.9978*0.0[t Nebenprodukt/t vermiedener Staub]*21[€/t Nebenprodukt] = 0.148 €/t Zement

Spezifische Kosten pro PJ verwendeten Brennstoff:

Annuität für *q*=4 %, und *lt*= 20 Jahre= 0.074

 $C_{ton} = (0.074*3.8 + 0.055*3.8) + 0.148 = 0.637$ E/t Zement

Spezifische Kosten pro Tonne entfernter PM_{10} :

 $c_{PM10} = 0.637/(0.9951*0.0819) = 7.82 \text{ } \ell/t_{PM10}$

4.4 Mobile Quellen

Die Berechnung von Minderungskosten der mobilen Quellen verwendet die Daten des RAINS-NO_x-Moduls (Cofala und Syri, 1998), die auf Arbeiten von Rodt *et al.*, 1995, 1996 sowie den Kostenanalysen des Auto-Öl-Programms (EC, 1996; Touche-Ross&Co, 1995; Barrett, 1996) beruhen. Diese Informationen wurden erweitert, wobei Kosteneinschätzungen der Auto-Öl II-Studie (EC, 1999) sowie neuere Publikationen über neuentwickelte Technologien für die Abgasemissionsminderung bei Fahrzeugen in Betracht gezogen wurden (Elvingson, 2002; Lerch, 2000; BUWAL, 2000). Literaturschätzungen reflektieren hauptsächlich die Meinung der Produzenten über die durch die neuen Emissionsstandards bedingten Kostensteigerungen bei der Serienproduktion.

4.4.1 Investitionen

Die Kosten für mobile Quellen werden nach den gleichen Grundsätzen wie für stationäre Quellen ermittelt und pro Fahrzeug angegeben. Die Zahl der Fahrzeuge wird dann auf der Basis von Informationen über den jährlichen Gesamtkraftstoffverbrauch einer gegebenen Fahrzeugkategorie und des durchschnittlichen Kraftstoffverbrauchs pro Fahrzeug pro Jahr (Cofala und Syri, 1998b)

berechnet. Die folgende Beschreibung verwendet die Indizes *i*, *j*, *k* und *l*, um die Art der Parameter zu kennzeichnen:

i bezeichnet das Land,

j den ökonomischen Sektor,

k die Minderungstechnologie,

l die Korngrößenfraktion.

Die Kosten der Minderungsvorrichtungen für Verkehrsquellen umfassen:

- zusätzliche Investitionskosten;
- zusätzliche Wartungskosten, ausgedrückt als Prozentsatz des Gesamtinvestitionsvolumens; und
- Änderungen (positiv oder negativ) des Kraftstoffverbrauchs durch Emissionsminderungs-Technologien.

Die Investitionskosten $I_{i,j,k}$ werden in EURO pro Fahrzeug angegeben und werden für jede Technologie und Fahrzeugkategorie getrennt ermittelt. Die Annualisierung erfolgt nach Gleichung 4.13:

$$I_{i,j,k}^{an} = I_{j,k} \cdot \frac{(1+q)^{lt_{i,j,k}} \cdot q}{(1+q)^{lt_{i,j,k}} - 1}$$
(4.13)

wobei *lt_{i,i,k}* Lebensdauer der Minderungsausrüstung

q Zinssatz +1

4.4.2 Betriebskosten

Die Zunahme der Wartungskosten (Fixkosten) wird ausgedrückt als Prozentsatz f der Gesamtinvestitionen

$$OM_{i,i,k}^{fix} = I_{i,i,k} \cdot f_k \tag{4.14}$$

Die Veränderung der Treibstoffkosten wird bedingt durch

- Veränderung der für ein bestimmtes Verminderungsziel notwendigen Verbesserung der Kraftstoffqualität,
- Veränderung des Kraftstoffverbrauchs nach Emissionsminderung.

Diese Kosten werden wie folgt berechnet:

$$OM_{i,j,k}^{e}(t) = \Delta c_{j}^{e} + \lambda_{j,k}^{e} * (c_{i,j}^{e} + \Delta c_{j}^{e})$$
(4.15)

wobei:

 $\lambda_{j,k}^e$ Prozentuale Veränderung des Kraftstoffverbrauchs bei Fahrzeugtyp j verursacht durch die Minderungsmaßnahme k,

 $c_{i,j}^e$ Kraftstoffpreis (nach Steuern) in Land i und Sektor j im Basisjahr,

Δc^e Veränderung der Kraftstoffkosten aufgrund von Veränderungen der Kraftstoffqualität.

Die Veränderung der Kraftstoffkosten bezieht sich auf eine Einheit Kraftstoff, der von einer bestimmten Fahrzeugkategorie verwendet wird.

Der jährliche Kraftstoffverbrauch pro Fahrzeug ist eine Funktion des Verbrauchs im Basisjahr (t₀=1990), der Kraftstoffeffizienzsteigerung, und der Veränderung des Aktivitätslevels pro Fahrzeug (d.h. der Veränderung der jährlich gefahrenen Kilometer), bezogen auf das Basisjahr:

$$fuel_{i,j}(t) = fuel_{i,j}(t_0) * fe_{i,j}(t)$$
 (4.16)

wobei:

 $fe_{i,j}(t)$ Kraftstoffeffizienzsteigerung nach Zeitschritt t relativ zum Basisjahr (1990 = 1)

 $\Delta ac_{i,j}(t)$ Veränderung der Aktivität pro Fahrzeug nach Zeitschritt t relativ zum Basisjahr (1990= 1).

4.4.3 Spezifische Minderungskosten

Die spezifischen Kosten der Verminderung ce_{PJ} (bezogen auf eine Einheit Kraftstoffinput) summieren sich zu

$$ce \ PJ_{i,j,k}(t) = \frac{I_{i,j,k}^{an} \div OM_{i,j,k}^{fix}}{fuel_{i,j}(t)} + OM_{i,j,k}^{e}(t)$$
(4.17)

Zur Ermittlung der Kosteneffizienz werden diese Kosten auf die Menge der reduzierten Emissionen bezogen:

$$cn_{i,j,k}(t) = \frac{ce_{i,j,k}(t)}{ef_{i,j,k,l}^{N} * \eta_{j,k,l}^{N}}$$
(4.18)

In der gegenwärtigen Version des PM-Moduls werden die Emissionsminderungskosten im Verkehrssektor gänzlich den Reduktionen von feinen, groben und >PM₁₀-Anteilen zugeschrieben.

Die wichtigsten Faktoren, die zu Unterschieden in den spezifischen Verminderungskosten zwischen den Ländern führen, sind Unterschiede im jährlichen Energieverbrauch pro Fahrzeug sowie Unterschiede in der Zusammensetzung der Fahrzeugflotten und in den Fahrgewohnheiten (z.B. Stadt/Überland/Autobahn), die unter anderem von der vorhandenen Infrastruktur in einem gegebenen Land abhängig sind.

4.4.4 Parameterwerte

Die im RAINS-Modell verwendeten Daten über Investitionen pro Fahrzeug sowie Betriebs- und Wartungskosten der betrachteten Minderungstechnologien sind in Tabelle 4.3 angeführt.

Tabelle 4.3: Werte für die Kostenparameter von Minderungstechnologien im Verkehrssektor

	Spezifische Investitionen	Fixe O+M
Technologie	Euro/Fahrzeug	%
MDEUI	165	9.8
MDEUII	303	6.3
MDEUIII	858	3.5
MDEUIV	1199	3.1
MDEUV	1400	2.9
MDEUVI	1500	2.9
HDEUI	660	7.9
HDEUII	1980	4.0
HDEUIII	4452	2.9
HDEUIV	7967	2.5
HDEUV	8852	2.4
HDEUVI	9452	2.4
CAGEUI	660	7.9
CAGEUII	1980	4.0
CAGEUIII	4452	2.9
CAGEUIV	7967	2.5
CAGEUV	8852	2.4
CAGEUVI	9452	2.4
TIWEUI	1716	7.8
TIWEUII	5148	3.9
TIWEUIII	11575	2.9
TIWEUIV	20714	2.5
TIWEUV	23015	2.4
TIWEUVI	24575	2.4
LFGDIII	891	3.5
LFGDIV	1122	3.2
LFGDV	1200	3.1
LFGDVI	1300	3.0
LFEUI	330	5.9
LFEUII	451	4.9
LFEUIII	891	3.5
LFEUIV	1122	3.2
LFEUV	1200	3.1
LFEUVI	1300	3.0
MMO2I	80	9.5
MMO2II	120	7.0
MMO2III	150	6.0
MOT4I	110	7.5
MOT4II	160	5.8
MOT4II MOT4III	200	5.8
MO14III HDSEI		
HDSEII	3025 3300	5.3
		5.0
HDSEIII	3600	4.8
STMCM	219522	2.0
STLHCM	439043	2.0
STLMCM	371250	2.0

4.4.5 Beispiel einer Kostenberechung

Als Beispiel sei die Kostenberechung für den EURO-IV-Standard bei schweren Dieselnutzfahrzeugen (RAINS-Sektor TRA RD HD) erläutert.

Es werden im Beispiel die für Deutschland verwendeten Werte angewendet:

Investitionskosten *I* = 7967 €/Fahrzeug Zusätzliche O+M Kosten f = 2.41 %/Jahrq = 4 %Zinssatz Lebensdauer der Minderungsausrüstung lt = 12 Jahre $\eta_{PM10} = 99.6 \%$ Abscheidegrad $\Delta c^e = 0.0463 \notin /GJ^8$ Zusätzliche Kosten für Dieselöl höherer Qualität $\lambda^e = 0.5 \%^9$ Veränderung des Dieselverbrauchs Ungeminderter PM10 Emissionsfaktor $ef_{PMI0} = 48.4 \text{ t/PJ}$ Durchschnittliche Treibstoffeffizienzsteigerung in der Periode 2005 – 2010 relativ zu 1990 fe = 0.87Veränderung der Kilometerleistung pro Fahrzeug in der Periode 2005 – 2010 relativ zu 1990 $\Delta ac = 0.86$

Unter Verwendung dieser Werte in den Formeln 4.13 bis 4.18 erhalten wir:

Zusätzliche Kraftstoffkosten:

Annuität (für q=4%, und lt=12 Jahre) = 0.107

Kraftstoffverbrauch pro Fahrzeug in Periode 2005 - 2010:

$$Kraftstoff = 621*0.87*0.86 = 465 GJ/Fahrzeug-Jahr$$

Spezifische Kosten pro PJ verwendeten Brennstoff:

$$c_{PJ} = ((0.107*7964+0.0241*7964)/465 + 0.0795)*10^6 = 2.32*10^6 \text{ } \text{€/PJ}$$

<u>Spezifische Kosten pro Tonne entfernter PM₁₀:</u>

$$c_{PMI0} = 2.32*10^6/(0.97*48.4) = 49.5*10^3 \in /t_{PM10}$$

4.5 Landwirtschaft

Wie in Abschnitt 3.2.5 dieses Dokumentes besprochen, umfasst RAINS eine Anzahl von Minderungstechnologien für Staubquellen aus der Landwirtschaft. Für die Maßnahmen zur Minderung von Staubemissionen aus Viehställen kann im Prinzip die gleiche Kostenberechnungsmethode, wie sie für die Minderung von Ammoniakemissionen entwickelt wurde (Klaassen, 1991), verwendet werden. Allerdings sind Informationen über die Kosten von Maßnahmen in der Landwirtschaft so unvollständig vorhanden, dass eine systematische Berechnung unmöglich erscheint. Auch der ICC-

⁸ Diese Zahl beinhaltet die zusätzlichen Kosten der Dieselölherstellung mit höherer Cetanzahl und geringerem Gehalt an polyaromatischen Verbindungen. Um Doppelzählung zu vermeiden, sind die Verringerungskosten für Schwefel im SO₂⁻ Modul von RAINS enthalten.

⁹ Aktuelle Betriebserfahrung von Fahrzeugen mit strengeren Emissionsstandards zeigt keinen erhöhten Kraftstoffverbrauch. Jedoch wurde im Beispiel ein positiver Wert angenommen, um die Berechnungsmethode besser zu veranschaulichen.

und SRI- (2000) Report erwähnt nur, welche Maßnahmen grundsätzlich relevant werden könnten, ohne jedoch quantitative Kostendaten anzuführen

Aus diesem Grunde wurden im RAINS-Modell für die Emissionsminderungspotentiale der berücksichtigten landwirtschaftlichen Maßnahmen schlichte Annahmen über deren Kosten getroffen, die in Zukunft noch bestätigt werden müssen. Vorläufig wurden für Maßnahmen in der Landwirtschaft höhere Kosten als bei anderen Sektoren angenommen.

Der gleiche Ansatz wurde auch für den Ackerbau gewählt

4.6 Andere Quellen

Das RAINS-Modell unterscheidet Minderungsoptionen für einige andere Sektoren wie den Bergbau, Schüttgutumschlag, offene Abfallverbrennung, Bauwirtschaft. Oft ist die vorhandene Information nur spärlich, sodass die angenommenen spezifischen Kosten als vorläufig betrachtet werden müssen.

4.7 Grenzkosten der Emissionsminderung

Grenzkosten setzen die Kosten einer zusätzlichen Maßnahme mit deren Minderungsleistung in Beziehung. RAINS verwendet das Konzept der Grenzkosten, um die verfügbaren Reduktionsoptionen in sogenannten nationalen Kostenkurven (siehe auch den folgenden Abschnitt) entsprechend ihrer Kosteneffizienz zu ordnen.

Ist für eine gegebene Kategorie von Emissionsquellen eine Anzahl von Minderungsoptionen M vorhanden, werden die Grenzkosten mc_m für die Minderungsoption m folgendermaßen berechnet:

$$mc_{m} = \frac{c_{m}\eta_{l_{m}} - c_{m-1}\eta_{l_{m-1}}}{\eta_{l_{m}} - \eta_{l_{m-1}}}$$
(4.18)

mit

 c_m Kosten einer Einheit für Option m, und

 η_{lm} Reduktionseffizienz von Option m (für die verschienene Korngrößen l)

Im folgenden ist die Berechnung der Grenzkosten mit der Annahme veranschaulicht, dass in einem gegebenen Sektor (Rostfeuerungen in der Industrie) die Kosten und Abscheidegrade von PM10 für zwei Technologien wie folgt sind:

Schritt *m*:

Gewebefilter (FF)
$$c_{FF} = 221 €/t_{PM10};$$
 $\eta_{PM10m} = 99.6 \%$

Schritt *m-1*:

Ein-Feld-Elektrofilter (ESP1)
$$c_{ESP1} = 194 \text{ } \ell/t_{PM10}; \qquad \eta_{PM10 \text{ } (m-1)} = 94.3\%$$

Damit ergeben sich durch die Erhöhung des Abscheidegrades von 94.3 Prozent auf 99.6 Prozent folgende Grenzkosten:

$$mc_{PM10 \text{ m}} = (221*99.6 - 194*94.3)/(99.6-94.3) = 701.4 \text{ } \ell/t_{PM10}$$

4.8 Nationale Kostenkurven

Kostenkurven beschreiben für jedes Land die Kombinationen von Maßnahmen, um von einem definierten Ausgangszustand bestimmte Emissionsminderungsziele zu geringsten Kosten erreichen. Kostenkurven sind nützlich, um für einzelne Länder die Potentiale für weitere Emissionsminderungen zu beschreiben und deren Kosten in international vergleichbarer Weise darzustellen. Der Optimierungsmodul von RAINS verwendet solche Kostenkurven, um die internationale Verteilung von Emissionsreduktionen zu bestimmen, die vorgewählte Umweltziele (z.B. Schutz von menschlicher Gesundheit oder Ökosystemen) zu insgesamt geringsten Kosten erzielen.

Solche Kostenkurven reihen alle zur Verfügung stehenden Minderungsoptionen nach steigenden Grenzkosten und bestimmen die Emissionsminderungspotentiale der einzelnen Optionen.

Mit den errechneten spezifischen Kosten werden für jeden Schadstoff Kostenkurven zuerst für jeden Sektor und dann für die vollständige Region (Land) konstruiert. Dies basiert auf dem Prinzip, dass jene Maßnahmen, die niedrigere Abscheidegrade zu höheren Kosten als eine andere Maßnahmen erreichen, als nicht kosteneffizient von der weiteren Betrachtung ausgeschlossen werden, und die verbleibenden Optionen nach ihren Grenzkosten gereiht werden.

RAINS erstellt zwei Arten von Kostenkurven:

- Gesamtkostenkurven beschreiben die j\u00e4hrlichen Gesamtkosten f\u00fcr die Erreichung bestimmter Emissionsniveaus in einem Land. Diese Kurven sind st\u00fcckweise linear, wobei die Steigungen der einzelnen Segmente durch die Kosten der zugeordneten Minderungstechnologien gegeben sind.
- Grenzkostenkurven zeigen als Treppenfunktion die Kosten und Minderungspotenziale der verschiedenen Maßnahmen an (für die Berechnung der Grenzkosten siehe Abschnitt 4.7).

Kostenkurven werden, neben den Einheitskosten der verschiedenen zur Verfügung stehenden Minderungsoptionen, auch von der jeweiligen Emittentenstruktur (z.B. Struktur des Energieverbrauchs, Energieszenario), die das Mengengerüst für die anwendbaren Maßnahmen festlegt, und den bereits implementierten Maßnahmen bestimmt. So unterscheiden sich Kostenkurven, die vom theoretischen ungeminderten Fall ausgehen, grundsätzlich von Kurven, die nur die nach vollständiger Implementierung der durch die derzeitige Gesetzgebung verbliebenen zusätzlichen Maßnahmen enthalten.

Als Beispiel einer Kostenkurve wird in Tabelle 4.4 ein Ausschnitt einer "ungeminderten" Kostenfunktion angeführt. Jede Zeile in dieser Tabelle repräsentiert eine mögliche Maßnahme. Die Spalten beschreiben den Sektor und die Art der Aktivität, bei der die Maßnahme gesetzt wird, die Bezeichnung der Minderungsmaßnahme, die spezifischen Kosten der Maßnahme (in €/Tonne reduzierten Schadstoffs), die Grenzkosten der Minderung, die tatsächlich verminderten Emissionen, die im betrachteten Land nach Implementierung der beschriebenen Maßnahme verbleibenden Gesamtemissionen sowie die Gesamtkosten der Minderung in dem Land (d.h., die Gesamtkosten, um in dem Land die Emissionen auf das in der vorherigen Spalte angegebene Niveau zu reduzieren).

Abhängig von der Zahl der betrachteten Minderungsoptionen bestehen nationale Kostenkurven im RAINS-Modell typischerweise aus ungefähr 80 bis 150 Segmenten (Einzelmaßnahmen).

Tabelle 4.4: Ausschnitt einer Kostenkurve für TSP

Aktivitäts- code	Sektor- Code	Technologie- Code	Grenzkosten €/t TSP	Verbleibende Emissionen 10 ⁶ Tonnen	Gesamtkosten 10 ⁶ €/Jahr
	Ausgangsemissionen (1)		15.07	0.0
NOF	PR CEM	PR CYC	2.6	12.39	7.0
NOF	PR FERT	PR CYC	3.4	12.29	7.3
NOF	PR LIME	PR CYC	7.3	11.90	10.2
NOF	PR CEM	PR ESP1	7.5	11.13	15.9
NOF	PR FERT	PR FF	9.9	11.08	16.5
NOF	PR ALPRIM	PR CYC	17.5	11.06	16.8
NOF	PR EARC	PR CYC	19.4	10.90	19.9
NOF	PR SINT	PR CYC	21.7	10.73	23.6
BC2	PP NEW3	ESP1	23.3	10.18	36.5
BC2	PP_NEW2	ESP1	23.5	10.03	40.0
NOF	PR COKE	PR CYC	23.8	10.01	40.4
BC2	PP EX OTH3	ESP1	23.9	6.72	119.1
NOF	PR ALPRIM	PR ESP1	24.2	6.71	119.3
BC2	PP EX OTH2	ES P 1	24.4	5.81	141.2
NOF	PR CEM	PR ESP2	26.4	5.70	144.2
HC2	PP NEW3	ESP1	27.3	5.52	149.1
HC2	PP NEW2	ESP1	27.6	5.47	150.5
HC2	IN OC3	IN ESP1	28.6	5.32	154.9
HC2	IN OC2	IN ESP1	29.0	5.21	157.9
HC2	PP EX OTH3	ESP1	29.2	3.03	221.7
BC2	PP EX OTH1	CYC	29.2	3.00	222.6
NOF	PR COKE	PR ESP1	30.1	2.99	222.9
HC2	PP EX OTH2	ESP1	30.1	2.36	241.9
HC2	IN BO3	IN ESP1	32.2	2.34	242.6
BC2	IN BO3	IN ESP1	32.5	2.32	243.0
HC2	IN BO2	IN ESP1	33.1	2.31	243.6
BC2	IN BO2	IN ESP1	34.2	2.30	243.8
BC2	PP NEW3	ESP2	36.4	2.28	244.5
NOF	PR EARC	PR FF	36.5	2.18	248.1
HC2	IN_OC1	IN_CYC	38.7	2.16	249.2
	••••	••••		••••	••••

(1) Ausgangsemissionen geben die Gesamtemissionen des Ausgangszustandes (z.B. ohne jegliche Minderungsmaßnahmen) an, die vornehmlich von der Struktur und dem Volumen der wirtschaftlichen Aktivitäten (Energieverbrauch, Verkehrsvolumen, Industrieproduktion, etc.) bestimmt sind.

Die in Tabelle 4.4 gegebene Kostenfunktion ist in Abbildung 4.1 graphisch dargestellt, wobei auf der Abszisse die verbleibenden Emissionen und auf der Ordinate die Gesamtkosten dargestellt sind. Der höchste Emissionswert wird als Ausgangsemissionen bezeichnet, das niedrigste Niveau reflektiert die mögliche Maximalreduktion. In der Literatur werden Kostenkurven häufig in unterschiedlicher Weise dargestellt, wobei anstatt der restlichen Emissionen die Menge des reduzierten Schadstoffs auf der x-Achse gezeigt wird. Wie zu sehen ist, schwanken die erzielte Vermeidung wie auch die assoziierten Kosten beträchtlich von Technologie zu Technologie. Die markierten Punkte zeigen diejenigen Technologien an, die in gleicher Reihenfolge wie in Tabelle 4.4 erscheinen.

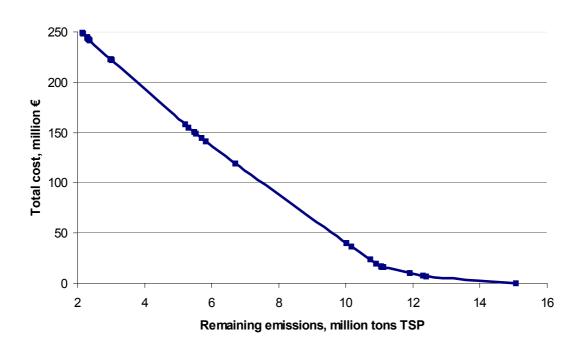


Abbildung 4.1: Graphische Darstellung der Gesamtkostenkurve von Tabelle 4.4

Kostenkurven stellen den Zusammenhang zwischen den abgeschiedenen Schadstoffmengen und den dabei anfallenden Kosten dar. Deshalb wird die Form der Kostenkurven maßgeblich von der reduzierten Emissionsmenge bestimmt. Da das RAINS-Modell bei Staubemissionen unterschiedliche Korngrößenfraktionen unterschiedet und die Minderungsmaßnahmen simultan, aber mit unterschiedlicher Effizienz, alle Korngrößen erfassen, ergeben sich für jede einzelne Korngrößenfraktion unterschiedliche Kostenkurven. Als Beispiel führt Tabelle 4.4 die Kostenkurve für die PM10-Minderung an, die für die Wirtschaftsstruktur der TSP-Kostenkurve von Tabelle 4.5 bestimmt wurde.

Tabelle 4.5: PM10-Kostenkurve für die Wirtschaftsstruktur von Tabelle 4.4

Aktivitäts- code	Sektor-Code	Technologie- Code	Grenzkosten €/t TSP	Verbleibende Emissionen 10 ⁶ Tonnen	Gesamtkosten 10 ⁶ €/Jahr
	Ausgangsemissionen			5.34	0.0
NOF	PR FERT	PR CYC	7.8	5.30	0.3
NOF	PR CEM	PR CYC	8.8	4.50	7.3
NOF	PR CEM	PR ESP1	9.2	3.88	13.1
NOF	PR_FERT	PR_FF	11.2	3.83	13.6
NOF	PR ALPRIM	PR ESP1	34.7	3.81	14.2
NOF	PR COKE	PR ESP1	39.0	3.80	14.9
NOF	PR_EARC	PR_FF	45.0	3.65	21.6
NOF	PR_CEM	PR_ESP2	56.0	3.59	24.7
NOF	PR_CEM	PR_FF	62.1	3.57	26.3
BC2	PP_NEW3	ESP1	67.7	3.37	39.3
BC2	PP_EX_OTH3	ESP1	69.6	2.24	118.0
NOF	PR CBLACK	PR CYC	75.6	2.24	118.0
NOF	PR CBLACK	PR FF	77.9	2.24	118.0
NOF	WASTE_RES	BAN	80.0	2.24	118.1
NOF	PR_LIME	PR_CYC	81.0	2.21	121.0
BC2	PP_NEW3	ESP2	89.4	2.20	121.7
BC2	PP_NEW2	ESP1	92.1	2.16	125.2
BC2	PP_EX_OTH1	ESP1	94.0	2.15	126.5
BC2	IN_BO3	IN_ESP1	94.5	2.14	126.9
BC2	PP_EX_OTH2	ESP1	95.7	1.91	148.8
NOF	PR_OTHER	PR_CYC	100.0	1.91	149.2
NOF	PR_OTHER	PR_ESP1	100.8	1.91	149.5
BC2	PP_EX_OTH3	ESP2	101.1	1.86	154.0
HC2	PP_NEW2	ESP1	108.1	1.85	155.4
HC2	PP_EX_WB	ESP1	108.6	1.64	178.2
HC2	IN_{OC2}	IN_ESP1	113.7	1.61	181.2
HC2	PP_EX_OTH2	ESP1	118.1	1.45	200.2
BC2	PP_NEW3	ESP3P	121.0	1.45	200.5
HC2	PP_NEW3	ESP1	121.1	1.41	205.4
BC2	PP_NEW2	ESP2	122.4	1.41	205.6
		••••			

Tabelle 4.6: PM2.5-Kostenkurve für die Wirtschaftsstruktur von Tabelle 4.4

Aktivitäts- code	Sektor-Code	Technologie- Code	Grenzkosten €/t TSP	Verbleibende Emissionen 10 ⁶ Tonnen	Gesamtkosten 10 ⁶ €/a
	Ausgangsemissionen			2.18	0.0
NOF	PR FERT	PR FF	16.0	2.12	0.9
NOF	PR CEM	PR ESP1	21.2	1.52	13.6
NOF	PR ALPRIM	PR ESP1	51.5	1.51	14.2
NOF	PR EARC	PR FF	60.8	1.40	20.9
NOF	PR COKE	PR ESP1	66.2	1.39	21.6
NOF	WASTE RES	$\overline{\text{BAN}}$	80.0	1.39	21.7
NOF	PR CBLACK	PR FF	85.7	1.39	21.8
NOF	PR CEM	PR FF	121.0	1.35	26.5
NOF	PR GLASS	PR ESP1	144.8	1.33	28.7
OS1	PP NEW	ESP1	181.7	1.33	29.7
NOF	PR ALPRIM	PR ESP3P	190.1	1.33	29.8
HC2	PP EX WB	ESP1	193.1	1.21	52.6
NOF	PR OT NFME	PR WESP	195.7	1.19	56.3
OS1	PP EX OTH	ESP1	226.6	1.19	57.1
BC2	PP NEW3	ESP1	240.5	1.13	70.1
BC2	PP EX OTH3	ESP1	247.3	0.81	148.8
BC2	PP EX OTH1	ESP1	251.9	0.81	150.2
NOF	PR OTHER	PR ESP1	264.5	0.81	150.9
NOF	PR BAOX	PR ESP1	281.2	0.54	224.7
OS1	IN OC	IN ESP1	283.7	0.54	224.7
NOF	PR CAST	PR ESP1	285.3	0.51	234.5
NOF	PR COKE	PR ESP3P	290.8	0.51	234.7
BC2	PP_NEW3	ESP3P	299.1	0.50	235.8
NOF	PR REF	PR ESP1	302.7	0.50	238.1
BC2	IN BO3	IN ESP1	335.8	0.50	238.5
BC2	PP EX OTH3	ESP3P	351.1	0.48	245.7
HC2	PP_EX_OTH1	ESP1	419.5	0.47	247.3
OS1	IN_BO	IN_ESP1	419.8	0.47	248.4
NOF	PR_SINT	PR_ESP1	469.5	0.46	254.1
HC2	PP_NEW3	ESP1	471.4	0.45	259.0
			••••		

5 Eine Abschätzung der Staubemissionen in Europa

Dieser Abschnitt präsentiert erste Emissions- und Kostenabschätzungen, die mit dem RAINS-PM-Modul ermittelt wurden. Obwohl neue europäische und nationale Studien laufend neue Informationen veröffentlichen, muss betont werden, dass diese ersten Schätzungen noch in hohem Grade unsicher sind und mehr Arbeit erforderlich ist, um diese Unsicherheiten zu verringern.

5.1 Emissionen

Tabelle 5.1 präsentiert die nationalen Gesamtemissionen für die europäischen Länder für die Jahre 1990, 1995 und 2010. Die Projektionen für das Jahr 2010 nehmen die vollständige Umsetzung der gegenwärtigen Gesetzgebung an, insbesondere die Vorschriften der Euro-IV-Emissionsstandards für Kraftfahrzeuge und die EU-Richtlinie für Großfeuerungsanlagen. Die Berechnungen erfolgten getrennt für die Staubfraktionen TSP, PM10 und PM2.5.

Zwischen 1990 und 1995 war ein massiver Rückgang der europäischen Staubemissionen zu verzeichnen. So verringerte sich in Europa in diesen fünf Jahren der Ausstoß von TSP um 50 Prozent, hauptsächlich bedingt durch die ökonomische Umstrukturierung in Osteuropa, wo viele der alten Kohlekraftwerke geschlossen wurden. Auch der Wechsel zu saubereren Kraftstoffen und die Implementierung besserer Minderungstechnik bei bestehenden Anlagen trug zu diesem Rückgang bei. Die vollständige Implementierung der derzeitigen Auflagen wird TSP bis 2010 weiter verringern, sodass die TSP-Gesamtemissionen im Jahre 2010 60 Prozent unterhalb des Niveaus von 1990 sein werden.

Die meisten der implementierten Maßnahmen sind für kleinere Staubfraktionen weniger effizient. So ist zu erwarten, dass sich die primären PM2.5-Emissionen bis 2010 nur um 55 Prozent verringern werden. Infolgedessen wird der Anteil des Feinstaubs (PM2.5) in Zukunft größer werden (28 Prozent von TSP 2010 verglichen mit 25 Prozent in 1990).

Tabelle 5.1: Veränderung der Staubemissionen in Europa, 1990 – 2010 unter der Annahme einer vollständigen Implementierung aller derzeitigen Auflagen [kt]

	PM2.5				PM10			TSP		
	1990	1995	2010	1990	1995	2010	1990	1995	2010	
EU	1593	1136	736	2655	1701	1161	5188	3182	2369	
Non-EU	3533	1923	1500	6465	3258	2509	15469	7196	5768	
Seeschifffahrt 1)	109	109	109	115	115	115	121	121	121	
Summe	5235	3168	2344	9235	5074	3785	20778	10499	8258	

¹⁾ Atlantik, Nordsee, Ostsee, Mittelmeer innerhalb der EMEP-Modellierungsdomäne

Der sektorale Ursprung der Staubemissionen in Europa (nach dem SNAP-Code) ist in Tabelle 5.2 und Tabelle 5.3 dargestellt. 1995 waren die Hauptquellen von TSP-Emissionen in EU-15 die stationären Feuerungen (32 Prozent), gefolgt von den mobilen Quellen (Straßen- und übriger Verkehr) mit einem Anteil von 26 Prozent, industriellen Produktionsprozessen (19 Prozent) und der Landwirtschaft (14 Prozent).

Da für Abriebsemissionen aus dem Verkehr keine Verringerung vorgesehen ist, nimmt der Anteil dieses Sektors 2010 auf 35 Prozent zu. Der relative Beitrag der stationären Verbrennungsprozesse halbiert sich auf 18 Prozent und gleicht sich dadurch den Beiträgen aus industrieller Produktion und Landwirtschaft (jeweils 18 Prozent) an.

Es ist charakteristisch, dass die relativen Beiträge der einzelnen Sektoren und die Entwicklung der Emissionen für Feinstaub (PM2.5) unterschiedlich sind, wozu der Verkehr in 1995 42 Prozent der Emissionen beitrug. Aufgrund der starken Verminderung der Abgasemissionen (insbesondere im

Straßenverkehr und in geringerem Ausmaß im übrigen Verkehr) wird der Anteil der mobilen Quellen an den Gesamtemissionen von PM2.5 auf 37 Prozent der Gesamtmenge sinken..

Tabelle 5.2: Staubemissionen der EU-15 nach SNAP 1-Sektoren [kt]

	1995	2010	1995	2010	1995	2010
SNAP 1-Sektor	PM	[2.5	PN	110	TSP	
1: Verbrennung in Energieindustrien	105	61	180	92	278	119
2: Nicht-industrielle Feuerungsanlagen	145	98	200	110	379	139
3: Verbrennung im produzierenden Gewerbe	124	75	185	96	374	173
4: Produktionsprozesse	157	114	282	216	612	451
5: Extraktion und Verteilung	5	2	41	20	83	38
7: Straßenverkehr	335	132	395	215	683	683
8: Andere mobile Quellen und Motoren	137	123	145	130	153	138
9: Abfallbehandlung	32	31	34	33	45	44
10: Landwirtschaft	26	26	136	134	435	426
12: Andere (nicht in CORINAIR)	71	74	103	115	140	160
Gesamt	1136	736	1701	1161	3182	2369

In dem Nicht-EU-Länder-Fall werden die Emissionen hauptsächlich in den Bereichen stationäre Verbrennung und industrielle Prozesse verursacht, die in diesen Ländern zusammen fast 80 Prozent der Staubemissionen verursachen. Der Anteil der mobilen Quellen 1995 ist weniger als fünf Prozent für TSP und 11 Prozent für PM2.5.

Tabelle 5.3: Staubemissionen der Nicht-EU-Länder nach SNAP 1-Sektoren [kt]

	1995	2010	1995	2010	1995	2010
SNAP 1-Sektor	PM	[2.5	PM	110	TSP	
1: Verbrennung in Energieindustrien	287	195	632	395	1185	671
2: Nicht-industrielle Feuerungsanlagen	399	356	793	696	2678	2481
3: Verbrennung im produzierenden Gewerbe	174	134	288	204	621	372
4: Produktionsprozesse	634	375	873	520	1262	739
5: Extraktion und Verteilung	9	8	93	68	210	129
7: Straßenverkehr	105	111	123	140	212	291
8: Andere mobile Quellen und Motoren	106	107	112	113	119	119
9: Abfallbehandlung	150	150	166	166	221	221
10: Landwirtschaft	22	29	131	163	633	691
12: Andere (nicht in CORINAIR)	37	35	46	44	56	54
Gesamt	1923	1500	3258	2509	7196	5768

Tabelle 5.4 stellt die hypothetischen Emissionen dar, wenn keine Minderungsmaßnahmen angewendet würden. Damit wird der bedeutende Umfang, in dem PM-Emissionen bis 1990 bereits vermindert wurden, veranschaulicht. Bis 1990 wurden 82 Prozent des TSP im Rohgas durch Emissionsminderungsmaßnahmen beseitigt, und es wird erwartet, dass sich dieser Anteil bis 2010 auf 90 Prozent erhöhen wird. Die Notwendigkeit genauer Informationen über den Status und die Leistung der angewendeten Emissionsminderungsanlagen liegt auf der Hand, und kleinere Ungenauigkeiten in solchen Informationen können zu bedeutenden Änderungen in den Schätzungen der Gesamtemissionen führen.

Tabelle 5.5 stellt das technische Maximalpotential (maximale durchführbare Verminderungen- MFR) dar, um das Staubemissionen durch vollständigen Einsatz aller technischen Maßnahmen verringert werden können. Dieses Potential ist vorerst theoretischer Natur, da kurzfristig nicht alle vorhandenen Quellen nachgerüstet werden können bzw. ein vorzeitiger Ersatz bereits vorhandener

Minderungstechnik hohe Kosten verursachen würde. Dennoch veranschaulicht diese Abschätzung das langfristige Potential für Emissionsminderungen. Die Analyse zeigt, dass trotz der weitreichenden Maßnahmen, die in vielen europäischen Ländern bereits ergriffen sind, Staubemissionen durch volle Implementierung von BAT um weiter 63-69 Prozent verringerbar wären. Dieses Potential ist jedoch ist für die gegenwärtigen EU-Mitgliedsländer niedriger (37 Prozent für TSP und 51 Prozent für Feinstaub).

Tabelle 5.4: Staubemissionen in Europa für das hypothetische ungeminderte Szenario [kt]

	PM2.5				PM10			TSP			
	1990	1995	2010	1990	1995	2010	1990	1995	2010		
EU	12973	11454	11174	32850	28056	26864	95167	80446	75181		
Nicht-EU	15147	11384	11809	41353	31841	32582	122368	95126	96877		
Seeschifffahrt	109	109	109	115	115	115	121	121	121		
Summe	28561	22947	23092	74318	60012	59561	217656	175693	172179		

Tabelle 5.5: Staubemissionen in Europa für das hypothetische technische Maximalminderungs-Szenario [kt]

	PM2.5				PM10			TSP		
	1990	1995	2010	1990	1995	2010	1990	1995	2010	
EU	471	398	361	792	691	661	1512	1396	1493	
Nicht-EU	551	425	306	823	750	679	1816	1429	1326	
Seeschifffahrt	65	65	65	69	69	69	73	73	73	
Summe	1087	888	732	1684	1509	1409	3401	2897	2892	

Tabelle 5.6 listet für die einzelnen Länder die Staubemissionen 1995 und 2010 unter der Annahme einer vollständigen Umsetzung der gegenwärtigen Gesetzgebung auf. Emissionsminderungen werden in allen Ländern und für alle Korngrößen erwartet. Wegen der Fortsetzung der ökonomischen Umstrukturierung und der Einführung von EU-Emissionsstandards sind die Minderungen für die Beitrittsländer besonders hoch.

Tabelle 5.6: Schätzungen der PM-Emissionen nach Ländern für die Jahre 1995 und 2010; Vollständige Umsetzung bestehender Gesetzgebung [kt]

Land	PM2.5		D!	M10	TSP		
Land	1995	vi2.5 2010	1995	2010	1995	2010	
Albanien	5	5	8	6	18	11	
Österreich	31	26	6 44	39	77	77	
Weißrussland	38	40	61	60	135	111	
Belgien	50	27	78	43	163	92	
Bosnien-	18	16	45	36	94	68	
Herzegowina	10	10	43	30	24	08	
Bulgarien	65	75	107	135	182	319	
Kroatien	13	14	18	20	31	35	
Tschechische	84	39	142	66	241	116	
Republik	01	3)	1 12	00	211	110	
Dänemark	20	13	31	24	56	47	
Estland	23	11	58	17	116	24	
Finnland	24	17	31	24	50	44	
Frankreich	205	126	289	198	527	417	
Deutschland	184	119	281	195	513	415	
Griechenland	40	42	57	62	93	99	
Ungarn	37	19	63	32	127	65	
Irland	12	8	21	16	39	37	
Italien	170	100	244	154	449	316	
Lettland	8	4	13	7	27	15	
Litauen	9	7	15	12	33	26	
Luxemburg	3	2	5	3	10	5	
Niederlande	38	28	62	49	118	101	
Norwegen	44	40	50	45	65	58	
Polen	192	128	340	221	575	387	
Portugal	30	21	43	31	75	60	
Moldawien	9	12	15	26	34	85	
Rumänien	126	109	193	172	319	305	
Russland	813	680	1322	1114	3323	2918	
Slowakei	26	19	45	34	85	64	
Slowenien	9	6	15	10	25	17	
Spanien	148	104	216	159	383	308	
Schweden	26	18	38	29	71	60	
Schweiz	13	10	18	16	32	32	
Mazedonien, FYR	11	8	25	16	50	30	
Ukraine	337	227	611	397	1483	948	
Großbritannien	155	84	261	138	556	292	
Jugoslawien	41	32	94	68	201	133	
Gesamt	3168	2344	5074	3785	10499	8258	

Tabelle 5.7 vergleicht die von RAINS berechneten Emissionen mit den Resultaten des CEPMEIP-Inventars. Während die Abweichungen für Europa als Ganzes innerhalb von sechs Prozent liegen, sind die Unterschiede für einzelne Länder groß. Aufgrund der kurzen zur Verfügung stehenden Zeit war es nicht möglich, die Gründe für diese Unterschiede für alle Länder zurückzuverfolgen. Eine Analyse der Unterschiede für Deutschland wird in Abschnitt 5.3 durchgeführt.

Es muss betont werden, dass der CEPMEIP-Ansatz in einigen Aspekten nicht mit der RAINS-Methode übereinstimmt. Zum Beispiel verwendet CEPMEIP für drei angenommene Emissionsminderungsniveaus (niedrig, mittel und hoch) allgemein angenommene Emissionsfaktoren, während RAINS-Berechnungen auf den ungeminderten Emissionsfaktoren und technischen Abscheidegraden beruhen. Eine umfassende Erklärung der Unterschiede erfordert eingehendere Analysen für jedes Land, was nur in enger Zusammenarbeit mit nationalen Experten möglich ist.

Tabelle 5.7: Vergleich der Staubemissionsschätzungen von RAINS und CEPMEIP für 1995 [kt]

Land	PN	M2.5	Pl	M10	TSP		
	RAINS	CEPMEIP	RAINS	CEPMEIP	RAINS	CEPMEIP	
Albanien	5	6	8	8	18	13	
Österreich	31	34	44	46	77	83	
Weißrussland	38	39	61	62	135	129	
Belgien	50	57	78	84	163	143	
Bosnien-Herzegovina	18	6	45	10	94	21	
Bulgarien	65	38	107	93	182	226	
Kroatien	13	14	18	21	31	41	
Tschechische	84	57	142	125	241	279	
Republik	04	37	142	123	241	219	
Dänemark	20	23	31	33	56	61	
Estland	23	14	58	33	116	81	
Finnland	24	22	31	30	50	50	
Frankreich	205	351	289	450	527	693	
Deutschland	184	217	281	335	513	686	
Griechenland	40	42	57	62	93	97	
Ungarn	37	36	63	62	127	111	
Irland	12	13	21	23	39	46	
Italien	170	232	244	319	449	518	
Lettland	8	9	13	13	27	27	
Litauen	9	13	15	20	33	40	
Luxemburg	3	3	5	5	10	9	
Niederlande	38	41	62	64	118	127	
Norwegen	44	43	50	49	65	65	
Polen	192	127	340	314	575	643	
Portugal	30	37	43	51	75	81	
Moldawien	9	10	15	16	34	32	
Rumänien	126	93	193	186	319	404	
Russland	813	896	1322	1709	3323	3649	
Slowakei	26	23	45	41	85	74	
Slowenien	9	7	15	13	25	26	
Spanien	148	159	216	226	383	367	
Schweden	26	30	38	42	71	77	
Schweiz	13	16	18	21	32	42	
Mazedonien, FYR	11	10	25	27	50	70	
Ukraine	337	281	611	608	1483	1296	
Großbritannien	155	164	261	260	556	473	
Jugoslawien	41	49	94	144	201	368	
Seeschifffahrt	109	n.a.	115	n.a	121	n.a	
Gesamt	3168	3208	5074	5607	10499	11149	

Die Notwendigkeit zu weiterer Verifikation und Konsistenzprüfung ergibt sich auch aus vorliegenden nationalen Inventaren (Tabelle 5.8)

Tabelle 5.8: Vergleich nationaler Emissionsschätzungen mit RAINS, kt.

	Jahr	Substanz	Nationale	RAINS 1995-	CEPMEIP 1995-
Land	Jaiii	Substaliz	Schätzung	Schätzung	Schätzung
Österreich (1)	1995	TSP/PM10/PM2.5	75/45/26	77/44/31	83/46/33
Frankreich (2)	1995	TSP/PM10/PM2.5	1527/579/319	527/289/205	693/450/351
Deutschland ⁽³⁾	1996	TSP/PM10/PM2.5	343/198/	513/281/184	686/335/217
Schweiz ⁽⁴⁾	1995	TSP/PM10/PM2.5	/28/	32/18/13	42/20/15
$GB^{(5)}$	1995	TSP/PM10/PM2.5	/220/143	556/261/155	473/260/164
GB ⁽⁶⁾	1995	TSP/PM10/PM2.5	/238/132	330/201/133	4/3/200/104

⁽¹⁾ Winiwarter *et al.*, 2001; (2) CITEPA, 2001; (3) UBA, 1998a; (4) BUWAL, 2000; (5) APEG, 1999; (6) UK-Berichterstattung an EMEP.

5.2 **Emissionsminderungskosten**

Tabelle 5.9 listet die vorläufigen Kostenschätzungen für 1995 und 2010 auf. Demnach betrugen 1995 die Kosten für Maßnahmen zur Verringerung von Staubemissionen ungefähr acht Milliarden Euro/Jahr in den EU-15. Für die Zukunft kann erwartet werden, dass für stationäre Quellen die Kosten im wesentlichen gleich bleiben, während die vor kurzem verabschiedete EU-Gesetzgebung für mobile Quellen die gesamten Vermeidungskosten auf ungefähr 41 Milliarden Euro erhöht. In diesen Schätzungen werden allerdings die gesamten Emissionsminderungskosten der Maßnahmen der Staubminderung zugerechnet, auch wenn dieselben Maßnahmen wesentliche Reduktionen anderer Schadstoffe bewirken. In den Nicht-EU-Ländern steigen die Gesamtkosten zwischen 1995 und 2010 um den Faktor drei, hauptsächlich bedingt durch die Einführung von EU-ähnlicher Gesetzgebung.

Tabelle 5.9: Kosten für Maßnahmen zur Verringerung von PM, für 1995 und für gegenwärtige Gesetzgebung im Jahr 2010 (Millionen €/Jahr).

Sektor	EU	J-15	Nicht-EU		
Sektor	1995	2010	1995	2010	
Kraftwerke	1218	1045	1482	1453	
Industriefeuerung	169	135	197	180	
Kleinverbraucher	554	1891	163	1006	
Industrielle Prozesse	1394	1911	781	1372	
Verkehr	4232	34842	433	5689	
Andere	439	453	70	786	
Gesamt	8006	40276	3126	10486	

Es ist zu beachten, dass in dieser Tabelle die Gesamtkosten der Maßnahmen im Verkehrssektor zur Gänze der Staubminderung zugerechnet werden.

5.3 Emissionsschätzungen für Deutschland

5.3.1 RAINS-Schätzung für Deutschland

Tabelle 5.10 und Tabelle 5.11 enthalten Schätzungen der Staubemissionen in Deutschland für die Jahre 1995 und 2010. Es wird erwartet, dass in dieser Zeit die Gesamtemissionen von TSP um 20

Prozent, von PM10 um 32 Prozent und von PM2.5 um 37 Prozent sinken werden. Der Verkehr und industrielle Prozesse sind die vorherrschenden Quellen von PM 1995 und tragen ungefähr 56 Prozent zu TSP und PM10 und fast 70 Prozent zu PM2.5 bei.

Tabelle 5.10: Geschätzte Staubemissionen in Deutschland 1995

RAINS-Sektor Primär	Sekundär	En TSP	nissionen	[kt] PM _{2.5}		Anteil and temissic chland 19 PM ₁₀	onen in
Stationäre	Kraftwerke	38.8	32.6	23.4	7.6	11.6	12.7
	Industriefeuerungen	8.1	5.8	3.7	1.6	2.1	2.0
1 cucrungsamagen	HHKV	22.3	16.3	11.3	4.3	5.8	6.2
Prozess-	Roheisen	31.8	5.5	3.8	6.2	1.9	2.1
Emissionen	Sinter und Pellets	19.1	3.5	1.8	3.7	1.2	1.0
	Konverteröfen	5.0	4.8	4.5	1.0	1.7	2.5
	Elektrolichtbogenöfen	2.5	2.3	2.1	0.5	0.8	1.1
	Andere Eisen und Stahl	7.4	4.8	3.1	1.4	1.7	1.7
	Nicht-Eisen-Metalle	2.1	1.6	1.3	0.4	0.6	0.7
	Zement und Kalk	11.3	9.8	8.4	2.2	3.5	4.6
	Andere Prozesse	38.2	17.2	9.1	7.4	6.1	4.9
Bergbau		12.6	6.8	0.9	2.5	2.4	0.5
Schüttgut-	Industrielle Produkte	34.3	18.8	1.9	6.7	6.7	1.1
umschlag	Landwirtschaftliche Produkte	4.4	1.5	0.3	0.9	0.5	0.1
Straßenverkehr	Schwere Nutzfahrzeuge	26.0	25.6	25.2	5.1	9.1	13.7
	Leichte Nutzfahrzeuge	35.9	35.4	33.8	7.0	12.6	18.4
	Motorräder, Mopeds	0.4	0.4	0.3	0.1	0.1	0.2
	Abrieb	81.0	16.4	5.4	15.8	5.8	2.9
Übriger Verkehr	Bau und Industrie	6.0	5.7	5.4	1.2	2.0	2.9
	Landwirtschaft	8.8	8.3	7.9	1.7	3.0	4.3
	Schiene	3.3	3.1	2.9	0.6	1.1	1.6
	Binnenschifffahrt	2.7	2.6	2.4	0.5	0.9	1.3
	Andere landg. Maschinen	3.3	2.9	2.6	0.6	1.0	1.4
	Seeschifffahrt	0.0	0.0	0.0	0.0	0.0	0.0
Offene Müllverbre	ennung	3.0	2.5	2.5	0.6	0.9	1.3
Land-	Vieh	49.0	22.0	4.4	9.5	7.8	2.4
wirtschaft	Andere	22.2	1.2	0.0	4.3	0.4	0.0
Andere Quellen	Baustaub	16.9	8.5	0.9	3.3	3.0	0.5
	Kleinverbraucher ⁽¹⁾	10.7	10.7	10.7	2.1	3.8	5.8
	Andere)	6.2	5.0	4.0	1.2	1.8	2.2
Gesamt		513	281	184	100	100	100

⁽¹⁾ Essensherstellung, Grill, Zigarettenrauch, und Feuerwerke.
(2) Beinhaltet Emissionen aus der Herstellung von Zucker, Keramik, Baustoff, und einige andere kleinere Quellen, aufgeführt im UBA (1998a)-Inventar.

Tabelle 5.11: Geschätzte PM-Emissionen in Deutschland 2010.

RAINS-Sektor		Em	issionen	[b+]		Anteil a	
KAINS-SEKIOI		EIII	issionen	[Kt]		thland 20	
Primär	Sekundär	TSP	PM_{10}	$PM_{2.5}$	TSP	PM_{10}	$PM_{2.5}$
Stationäre	Kraftwerke	21	16	13	5.1	8.3	10.9
Verbrennung	Industrieverbrennung	4	3	2	0.9	1.7	2.0
	HHKV	15	13	12	3.6	6.9	10.4
Prozess-	Roheisen	14	2	1	3.4	0.9	1.0
Emissionen	Sinter und Pellets	11	2	1	2.6	1.0	0.9
	Konverteröfen	4	4	4	1.0	2.1	3.3
	Elektrolichtbogenöfen	4	3	3	0.9	1.8	2.6
	Andere Eisen und Stahl	6	4	2	1.5	1.9	2.0
	Nicht-Eisen-Metalle	2	2	1	0.6	0.9	1.3
	Zement und Kalk	11	10	9	2.6	5.1	7.3
	Andere Prozesse	30	14	8	7.1	7.1	6.6
Bergbau		8	5	1	2.0	2.3	0.5
Schüttgut-	Industrielle Produkte	25	14	1	6.2	7.2	1.2
umschlag	Landwirtschaftliche Produkte	4	1	0	1.0	0.8	0.2
Straßenverkehr	Schwere Nutzfahrzeuge	5	5	5	1.2	2.6	4.2
	Leichte Nutzfahrzeuge	13	13	12	3.1	6.5	10.1
	Motorräder, Mopeds	0	0	0	0.1	0.2	0.3
	Abrieb	125	25	8	30.1	12.9	6.9
Übriger Verkehr	Bau und Industrie	3	3	3	0.8	1.6	2.5
	Landwirtschaft	6	5	5	1.4	2.8	4.4
	Schiene	0	0	0	0.0	0.1	0.1
	Binnenschifffahrt	2	2	2	0.4	0.9	1.4
	Andere landg. Maschinen	3	3	3	0.8	1.5	2.2
	Seeschifffahrt	0	0	0	0.0	0.0	0.0
Offene Müllverbr	ennung		2	2	0.7	1.2	2.0
Land-	Vieh	40	18	4	9.7	9.3	3.1
Wirtschaft	Andere	22	1	0	5.4	0.6	0.0
Andere Quellen	Baustaub	15	8	1	3.7	3.9	0.7
	Kleinverbraucher ⁽¹⁾	11	11	11	2.6	5.5	9.0
	Andere)	6	5	4	1.4	2.5	3.2
Gesamt	ng Crill Zigarattanrayah ya	414	190	115	100	100	100

⁽¹⁾ Essensherstellung, Grill, Zigarettenrauch, und Feuerwerke.

Obwohl erwartet wird, dass die Anteile von Verkehr und Industrieprozessen bis 2010 fallen werden, bleiben diese Sektoren die größten Quellen und emittieren mehr als 50 Prozent der Partikelmasse. Für PM10 und PM2.5 wird der Anteil des Verkehrssektors bis 2010 um fast 30 Prozent abnehmen, während eine Zunahme für TSP erwartet wird. Dies wird durch die Zunahme der Abriebsemissionen

⁽²⁾ Beinhaltet Emissionen von der Herstellung von Zucker, Keramik, Baustoff, und einige andere kleinere Quellen, aufgeführt im UBA (1998a)-Inventar.

erklärt, die eine wichtige Quelle von Staubpartikeln $> 10~\mu m$ sind. Andere Sektoren, in denen entweder effiziente Minderungsoptionen fehlen oder Anforderungen zur Emissionsminderung noch nicht gestellt werden, gewinnen an Bedeutung, d.h. ihr Anteil an den feinen PM wird auf ungefähr 16 Prozent zunehmen.

5.3.2 Vergleich mit anderen Schätzungen

Tabelle 5.12, Tabelle 5.13 und Tabelle 5.14 vergleichen die mit RAINS für 1995 errechnen TSP-, PM10- und PM2.5-Emissionen mit Werten des deutschen Emissionsinventars für 1996 (UBA, 1998a) und den Schätzungen von CEPMEIP für 1995 (CEPMEIP, 2002).

Tabelle 5.12: Vergleich der Schätzungen für 1995 der TSP-Emissionen für Deutschland [kt]

RAINS-Sektor	RAINS-Sektor	DAINIC	CEPMEIP,	UBA,
Primär	Sekundär	RAINS	2002	1998a ⁽¹⁾
Stationäre Verbrennung	Kraftwerke	38.8	51.0	33.4
	Industrie	8.1	13.4	7.0
	Kleinverbraucher	22.3	69.8	22.6
Prozessemissionen	Eisen und Stahl	65.8	55.5	66.3
	Nicht-Eisen-Metalle	2.1	2.1	2.3
	Zement und Kalk	11.3	8.3	11.6
	Andere Prozesse	38.2	51.3	14.1
Bergbau, Schüttgut		51.3	83.2	52.5
Straßenverkehr	Abgas	62.2	54.3	41.0
	Abrieb	81.0	202.3	73.0
Übriger Verkehr		24.1	16.8	19.0
Offene Müllverbrennung		3.0	3.0	n.d.
Landwirtschaft		71.1	47.0	n.d.
Andere Quellen		33.8	27.7	n.d.
Gesamt		513.2	685.8	342.9

⁽¹⁾ Daten für 1996.

Für eine Anzahl von einzelnen Sektoren ist ein Vergleich wegen der Unterschiede bezüglich der Sektoreneinteilung und der unterschiedlichen Aktivitätsdaten recht schwierig. Statistische Informationen über Aktivitätslevels wurden für die RAINS-Berechnungen generell internationalen Statistiken und dem CEPMEIP-Inventar (CEPMEIP, 2002) entnommen, während deutsche Berechnungen sich im wesentlichen auf nationale statistische Daten stützen. Unterschiede existieren z.B. für die Produktion von Ziegelsteinen und Dachfliesen, Zucker, Kalziumkarbid, hölzernen Paletten, Zinkbeschichtungen, aber auch für die offene Abfallverbrennung, Landwirtschaft, Baustaub oder Nichtenergiequellen (Grillen, Tabakrauchen, Feuerwerke), Schüttgutumschlag, etc..

Auf aggregierter Ebene (Summe der stationären Verbrennung, der Prozessemissionen, des Bergbaus und des Schüttgutumschlags) unterscheiden sich die Schätzungen der Emissionen von TSP und PM10 durch RAINS und UBA um weniger als 10 Prozent. Wenn man jedoch in RAINS die Schätzung von diffusen Emissionen aus den kleinen Quellen abzieht, welche im UBA-Inventar nicht berücksichtigt sind, reduziert sich der Unterschied auf nur ein Prozent. Offensichtlich sind die Unterschiede für einzelne Prozesse und/oder (Unter-)Sektoren größer. Auch das Verhältnis PM10/TSP ist für viele Emissionskategorien unterschiedlich. Dies ist von besonderer Bedeutung für Industrieprozesse, in denen das UBA-Inventar oft einen höheren Anteil von PM10 am Gesamtstaub annimmt. Andererseits sind die PM10-Emissionen im Bergbau und Schüttgutumschlag verglichen mit RAINS niedriger. Die größten Unterschiede zwischen RAINS- und UBA-Schätzungen einerseits und CEPMEIP sind die fast

dreimal höheren Emissionen bei HHKV, die jedoch aufgrund mangelnder Dokumentation der Annahmen des CEPMEIP-Inventars nur schwer erklärbar sind.

Tabelle 5.13: Vergleich der Schätzungen für 1995 der PM10 Emissionen für Deutschland [kt]

RAINS-Sektor	RAINS-Sektor	RAINS	CEPMEIP,	UBA,
Primär	Sekundär	KAINS	2002	1998a ⁽¹⁾
Stationäre Verbrennung	Kraftwerke	32.6	49.4	31.8
	Industrie	5.8	10.2	6.7
	Kleinverbraucher	16.3	45.8	20.3
Prozessemissionen	Eisen und Stahl	20.9	40.0	34.8
	Nicht-Eisen-Metalle	1.6	2.0	2.2
	Zement und Kalk	9.8	6.8	10.5
	Andere Prozesse	17.2	18.6	12.0
Bergbau, Schüttgut		51.3	27.1	34.6
Straßenverkehr	Abgas	61.3	54.3	41.0
	Abrieb	16.4	14.7	7.3
Übriger Verkehr		24.1	22.6	15.8
Offene Müllverbrennung		3.0	2.5	2.5
Landwirtschaft		23.3	21.2	n.d.
Andere Quellen		24.3	19.4	n.d.
Gesamt		281.6	335.3	198.0

⁽¹⁾ Daten für 1996.

Laut RAINS betrugen 1995 die Abgasemissionen vom Straßenverkehr ungefähr 62 kt PM10, während UBA für 1996 nur 41 kt berechnet. Ein Teil des Unterschiedes erklärt sich dadurch, dass RAINS auch für Benzinfahrzeuge (Zweitakt-Mopeds und -Motorräder, sowie Viertakt-Autos und leichte Nutzfahrzeuge) Staubemissionen erfasst und auf 7.3 kt schätzt. Damit verringert sich die Differenz zwischen den RAINS- und UBA-Berechnungen auf 18 Prozent, was innerhalb der generellen Unsicherheitsspanne für diese Schätzung liegt. Die CEPMEIP-Schätzung liegt zwischen RAINS und dem UBA-Inventar.

Die RAINS-Schätzung für Quellen des übrigen Verkehrs resultiert in ungefähr 20 Prozent höheren PM10-Emissionen, verglichen mit der UBA-Schätzung. Dies erklärt sich durch die Berücksichtigung der Emissionen aus mobilen Zweitaktmotoren in der Forstwirtschaft und bei HHKV (Motorsägen, Rasenmäher, kleine Motorboote etc.). Die CEPMEIP-Schätzung ist vergleichbar mit UBA.

RAINS-Schätzungen der Abriebsemissionen von TSP im Verkehr liegen im gleichen Bereich wie die von UBA, während CEPMEIP erheblich höhere errechnet (um einen Faktor von fast drei). Dies liegt sehr wahrscheinlich an der Mitrechnung der Wiederaufwirbelung, da die Emissionen von PM10 mit anderen Studien vergleichbar sind. Deutsche Inventare nehmen einen niedrigeren Anteil von PM10 an den Gesamtabriebsemissionen vom Verkehr an, was zu einem großen Unterschied zwischen RAINS-, UBA- und IER-Schätzungen führt.

Tabelle 5.14: Vergleich der Schätzungen für 1995 der PM2.5-Emissionen für Deutschland [kt]

RAINS-Sektor	RAINS-Sektor	RAINS	CEPMEIP,	UBA,
Primär	Sekundär	KAINS	2002	1998a ⁽¹⁾
Stationäre Verbrennung	Kraftwerke	23.4	44.8	
_	Industrie	3.7	7.7	
	Kleinverbraucher	11.3	36.3	
Prozessemissionen	Eisen und Stahl	15.3	19.6	
	Nicht-Eisen-Metalle	1.3	1.0	
	Zement und Kalk	8.4	2.8	
	Andere Prozesse	9.1	7.0	
Bergbau, Schüttgut		3.1	3.8	
Straßenverkehr	Abgas	59.3	54.3	
	Abrieb	5.4	5.6	
Übriger Verkehr		21.3	15.0	
Offene Müllverbrennung		2.5	2.5	
Landwirtschaft		4.4	4.7	
Andere Quellen		15.7	12.0	
Gesamt		184.0	217.1	

Für PM2.5 sind für Deutschland nur RAINS und das CEPMEIP-Inventar (Tabelle 5.14) vorhanden. Der Gesamtunterschied liegt unter 20 Prozent, während für Kraftwerke, Feuerung bei Kleinverbrauchern, industrielle Feuerung und Emissionen aus der Produktion von Zement und Kalk bedeutende Diskrepanzen bestehen. Einige der Gründe für diese Unterschiede sind oben besprochen (das in der CEPMEIP-Studie angenommene niedrigere Verminderungsniveau für Kraftwerke und höhere Emissionsfaktoren für Holzverbrennung bei HHKV). RAINS-Annahmen bezüglich des Minderungsniveaus bei Kraftwerken sind ein Resultat der Kalibrierung des Modells mit UBA-Schätzungen für TSP- und PM10-Emissionen in diesem Sektor. In ähnlicher Weise verwendet RAINS für die Holzverbrennung bei Kleinverbrauchern in Deutschland die Emissionsfaktoren von Pfeiffer *et al.* (2000), einer vom UBA beauftragten Studie.

6 Die Implementierung des RAINS-PM-Moduls im Internet

Die gegenwärtige Implementierung des RAINS-PM-Moduls im Internet (Version 2.0) (http://www.iiasa.ac.at/rains/Rains-online.html) gewährt freien Zugang zu den Eingangsdaten und Resultaten, um die Interaktion mit nationalen Experten zu erleichtern. Die folgenden Optionen sind für alle Länder und Szenarien vorhanden:

- Länderspezifische Aktivitätsdaten;
- allgemeine und länderspezifische Eingangsdaten für die Berechnung der Staubemissionen auf der detailliertesten Ebene;
- allgemeine und länderspezifische Eingangsdaten für die Berechnung der Minderungskosten auf der detailliertesten Ebene;
- Minderungsstrategien;
- resultierende Emissionsschätzungen auf der detailliertesten Ebene und in aggregierter Form (einschließlich CORINAIR SNAP 1 und der NFR-Aggregation);
- Schätzungen der Emissionsminderungskosten auf der detailliertesten Ebene und in aggregierter Form; und
- Kostenkurven ohne Verminderung für unterschiedliche PM-Korngrößen und Jahre.

Zur Zeit sind zwei Szenarien implementiert: (i) ein Szenario, das die Auswirkungen der gegenwärtigen Gesetzgebung simuliert und beim Vergleich mit nationalen Emissionsschätzungen hilfreich sein kann, und (ii) ein (hypothetisches) "Ungemindertes" Szenario.

Weitere Funktionen sind in Entwicklung und sollen Benutzern erlauben, ihre eigenen Emissionsinventare und Projektionen in völlig interaktiver Weise zu entwickeln und die Auswirkungen auf Emissionsminderungskostenkurven zu überprüfen.

7 Ausblick und weiteres Vorgehen

Dieser Bericht stellt einen ersten Ansatz vor, gegenwärtige und zukünftige Emissionen von Feinstaub in Europa in international vergleichbarer Weise abzuschätzen und das Potential für weitergehende Minderungsmaßnahmen sowie die dabei anfallenden Kosten zu ermitteln. Der Ansatz wurde für alle Länder Europas für den Zeitraum 1990 bis 2010 implementiert, sodass jetzt erstmals europaweit konsistente Abschätzungen verfügbar sind.

Es muss jedoch betont werden, dass die vorläufigen Ergebnisse noch mit großen Unsicherheiten belastet sind. Es gibt noch wichtige Informationslücken im Verständnis der Emissionsfaktoren von vielen Prozessen und der länderspezifischen Bedingungen, die diese Faktoren beeinflussen. Auch ist solide Information über die konkrete Anwendbarkeit von Minderungsmaßnahmen unter den aktuellen Bedingungen in den einzelnen Ländern rar. Aus diesen Gründen müssen alle quantitativen Angaben, die in diesem Report dargestellt werden, als vorläufig betrachtet werden.

Der Vergleich der vorläufigen RAINS-Schätzungen mit Ergebnissen vorhandener nationaler und internationaler Inventare deckt wichtige Unterschiede in den Schätzungen für einzelne Länder auf. Dies mag zum Teil an der Vernachlässigung wichtiger länderspezifischer Umstände bei der europaweiten Berechnung im RAINS-Modell liegen, zum anderen Teil aber auch in den international nur bedingt vergleichbaren Methoden, die von nationalen Experten zur Berechnung der Staubemissionen eingesetzt werden.

Es erscheint daher vordringlich, sich ergebende Unterschiede im Dialog mit nationalen Experten abzuklären, um damit ein gemeinsames Verständnis der Herkunft von Staubemissionen und des zur Verfügung stehenden Verminderungspotentials zu erreichen.

Die weitere Vorgehensweise sieht vor, dass bis Ende Januar 2003 alle Parteien der Konvention über den Grenzüberschreitenden Ferntransport von Schadstoffen ihre Emissionsschätzungen für das Jahr 2000 an das European Monitoring and Evaluation (EMEP) Programm berichten müssen. Diese Informationen werden in der Folge verwendet, um die in diesem Bericht vorgestellten vorläufigen Schätzungen zu überarbeiten, wobei sich ergebende Unstimmigkeiten mit nationalen Experten auf bilateraler Ebene abgeklärt werden. Die Ergebnisse werden dann im zweiten Halbjahr 2003 im Rahmen der internationalen Begutachtung des RAINS-Modells von Experten kritisch geprüft. Es kann daher angenommen werden, dass mit Jahresende 2003 eine verifizierte und von den Parteien akzeptierte gemeinsame Basis zur Abschätzung des Potentials und der Kosten von weitergehenden Maßnahmen zur Verminderung von Staubemissionen in Europa vorliegen wird. Diese ermöglichen dann im Rahmen der Konvention und des CAFE (Clean Air for Europe) Programms der Europäischen Union modellunterstützte quantitative Analysen von europaweiten Emissionsminderungsstrategien.

8 Literaturverzeichnis

- Ahuja, M.S., Paskind, J.J., Houck, J.E., and Chow, J.C. (1989) Design of a study for the chemical and size characterization of particulate matter emissions from selected sources in California. In: Watson, J.G. (ed.) Transaction, receptor models in air resources management. Air & Waste Management Association, Pittsburgh, PA, pp. 145-158.
- Amann, M., Bertok, I., Cofala, J., Gyarfas, F., Heyes, Ch., Klimont, Z., Makowski, M., Schöpp, W., Shibayev, S. (1998) *Cost-effective control of acidification and ground-level ozone*. Brussels: European Communities, 131 p, ISBN 92-828-4346-7
- Amann, M. and Lutz, M. (2000) *The revision of the air quality legislation in the European Union related to ground-level ozone*, Journal of Hazardous Materials 78, 41-62.
- APEG (The Airborne Particle Expert Group) (1999) Source apportionment of airborne particulate matter in the United Kingdom. Prepared on behalf of the Department of the Environment, Transport and the Regions, the Welsh Office, the Scottish Office and the Department of the Environment (Northern Ireland).
- AWMA (Air and Waste Management Association) (2000) Air Pollution Engineering Manual (Second Edition). [ed] Davis, W.T. John Wiley & Sons, Inc.
- Barrett, M. (1996) Characteristics of Technological Emission Control Options from the Auto/Oil Program in the RAINS Format. Pollen, Colchester, UK.
- Batel, W. (1979) Staubbelastung und Staubzusammensetzung an Arbeitsplätzen der landwirtschaftlichen Produktion und daraus abzuleitende Belastungsgrenzen und Staubschutzmassnahmen. Grundlagen der Landtechnik Vol 29. No. 2, pp. 41-54.
- Baumann, W. et al. (1997) Exemplarische Erfassung der Umweltexposition ausgewählter Kauschukderivate bei der bestimmungsgemäßen Verwendung in Reifen und deren Entsorgung. UBA-FB 98-003.
- Baumbach, G., Zuberbühler, U., Struschka, M., Straub, D., Hein, K.R.G. (1999) Feinstaubuntersuchungen an Holzfeuerungen. Teil 1: Bereich Hausbrand und Kleingewerbe. Institut für Verfahrenstechnik und Dampfkesselwesen, Report No. – 44-1999, Universtät Stuttgart. Juli 1999.
- Breadsley, M. and Lindhjem, Ch.E. (1998) Exhaust Emission Factors for Nonroad Engine Modeling Compression-Ignition. AP-42. Report No. NR-009A
- Breadsley, M., Lindhjem, Ch.E., and Harvey, C. (1999) *Exhaust Emission Factors for Nonroad Engine Modeling Spark Ignition*. AP-42. Report No. NR-010b.
- Berdowski, J.J.M., Mulder, W., Veldt, C., Visschedijk, A.J.H., and Zandveld, P.Y.J. (1997): *Particulate matter emissions* (PM_{10} $PM_{2.5}$ $PM_{0.1}$) in Europe in 1990 and 1993. TNO-report, TNO MEP R 96/472.
- Bishop, G., Morris, J.A., Stedman, J.A., Cohen, L.H., Countess, R.J., Countess, S.J., Maly, P., Scherer, S. (2001) *The Effects of Altitude on Heavy-Duty Diesel Truck On-Road Emissions*. Environmental Science & Technology, Vol. 35, No. 8, pp.1574-1578
- BUWAL (Bundesamt für Umwelt, Wald und Landschaft) (1995) *Emissionsfaktoren für stationäre Quellen*. BUWAL, Bern.
- BUWAL (Bundesamt für Umwelt, Wald und Landschaft) (2000a) *Offroad-Datenbank*. Handbuch. BUWAL, Bern.
- BUWAL (Bundesamt für Umwelt, Wald und Landschaft) (2000b) *Particulate traps for heavy duty vehicles. Technical basis for retrofitting big vehicle fleets.* Environmental Documentation No. 130 Air. BUWAL, Bern.

- BUWAL (Bundesamt für Umwelt, Wald und Landschaft) (2001) *Massnahmen zur Reduktion von PM10-Emissionnen*. Schlussbericht. BUWAL Abteilung Luftreinhaltung und NIS, January, 2001.
- Cadle, S.H. et al. (2000) Brake wear particulate matter emissions. Environmental Science and Technology Vol. 34, No. 21.
- Cadle, S.H., Mulawa, P., Groblicki, P., Laroo, C., Ragazzi, R.A, Nelson, K., Gallagher, G., Zielinska, B. (2001) In-Use Light-Duty Gasoline Vehicle Particulate Matter Emissions on Three Driving Cycles. *Environmental Science & Technology*, Vol. 35, No. 1, pp.26-32.
- Carbotech (1999) *PM*₁₀-Emissionsfaktoren: Mechanischer Abrieb im Offroad-Bereich; Arbeitsunterlage 17 im Auftrag des BUWAL, Basel, December, 1999.
- CBS, (1998) Methodiekbeschrijving van de berekeing van de emissies door mobiele bronnen in Nederland, In het kader van het Emissiejaarrapport.
- CEPMEIP (Co-ordinated European Programme on Particulate Matter Emission Inventories, Projections and Guidance) (2002) Database presented on the Internet: http://www.air.sk/tno/cepmeip/
- Cha, S., Carter, P., Bradow, R.L. (1983) Simulation of automobile brake wear dynamics and estimation of emissions. SAE Transactions Paper 831036. Society of Automotive Engineers. Warrendale, PA.
- CITEPA (Centre Interprofessionnel Technique d'Etudes de la Pollution Atmosphérique) (2001) Inventaire des émissions de particules primaires. CITEPA, Paris, December, 2001.
- Clausnitzer, H. and Singer, M.J. (1996) Respirable dust production from agricultural opearations in the Sacramento Valley, California. Journal of Environmental Quality Vol. 25, pp. 877-884.
- Cofala, J., and Syri, S. (1998a) Nitrogen oxides emissions, abatement technologies and related costs for Europe in the RAINS model database. IIASA, Interim Report IR-98-88/October.
- Cofala, J., and Syri, S. (1998b) *Sulfur emissions, abatement technologies and related costs for Europe in the RAINS model database.* IIASA, Interim Report IR-98-88/October.
- Cofala, J., Heyes, Ch., Klimont, Z., Amann, M. (2002) *Acidification, Eutrophication, and Tropospheric Ozone Impacts for Five Scenarios of Greenhouse Gases Abatement in Europe.* IIASA's contribution to the European Environmental Agency 'Kiev Report'. IIASA, Laxenburg, April, 2002.
- CONCAWE (1998) A Study of the Number, Size & Mass of Exhaust Particles Emitted from European Diesel and Gasoline Vehicles under Steady-State and European Driving Cycle Conditions. Report no. 98/51.
- CONCAWE (1999) *Best Available Techniques to Reduce Emissions from Refineries*. Document No. 99/01, Report by Air and Water Quality Group, CONCAWE, Brussels, Belgium.
- Cooper, D.A. (2001) *Exhaust emissions from high speed passenger ferries*. Atmospheric Environment, 35, pp. 4189-4200.
- Cravens et al. (1981) Characterisation of the aerosol in turkey rearing confinements. American Industrial Hygiene Association Journal Vol. 42 no.4 pp. 315-318.
- Dannis, M.L. (1974) *Rubber dust from the normal wear of tires*. Rubber Chemistry and Technology, Vol. 47, pp. 1011-1037.
- Darcovich, K., Jonasson, K.A., Capes, C.E. (1997) *Developments in the control of fine particulate air emissions*. Advanced Powder Technol., Vol. 8, No. 3, pp. 179-215.
- Donham *et al.* (1986) *Characterisation of dusts collected from swine confinement buildings*. American Journal of Industrial Medicine Vol. 10 pp. 294-297.

- Donham et al. (1989) Environmental and health studies of workers in Swedish swine buildings in: Dosman, J.A. and Cockcroft, D.W. [ed] Principles of Health and Safety in Agriculture, pp. 66-68, CRC Press Inc., Boca Raton, Florida, USA.
- Dreiseidler, A., Baumbach, G., Pregger, T., and Obermeier, A. (1999): Studie zur Korngrößenverteilung ($< PM_{10}$ und $PM_{2.5}$) von Staubemissionen. Forschungsbericht 297 44 853, i.A. des Umweltbundesamtes Berlin, Germany (different UBA sources, partly personal communication, cited in this study).
- Durbin, T.D., Norbeck, J.M., Smith, M.R., and Truex, T.J. (1997) *Particulate Emission Rates from Light-Duty Vehicles in the South Coast Quality Management District*. Environmental Science & Technology, Vol. 33, No. 24, pp.4401-4406.
- Durbin, T.D., Norbeck, J.M., Wilson, R.D., and Galdamez, H.A. (2000) *Effect of Payload on Exhaust Emissions from Light Heavy-Duty Diesel and Gasoline Trucks*. Environmental Science & Technology, Vol. 34, No. 22, pp.4708-4713.
- EC (European Commission) (1996) *The European Auto Oil Program*. A report by the Directorate Generals for: Industry; Energy; and Environment, Civil Protection & Nuclear Safety of the European Commission. XI 361/96. Brussels, Belgium.
- EC (European Commission) (1999) Auto-Oil II Study http://europa.eu.int/enn/comm/dg17/autooil.html
- EC (European Commission) (1999a) *European Union Energy Outlook to 2020*. Energy in Europe Special Issue. Directorate-General for Energy, November, 1999.
- EC (European Commission) (1999b) *Economic Foundations for Energy Policy*. Energy in Europe Special Issue. Directorate-General for Energy, December, 1999.
- Ecker, A., Winter, B. (2000) *Stand der Technik bei Raffinerien in Hinblick auf die IPPC-Richtlinie*. UBA-Monografien, Band 119, Umweltbundesamt, Wien, Austria.
- EWE (Elektrowatt Engineering) (2000) *Emissionsinventar für primäre Feinpartikel*. ZAP-Informationstag vom 16. November 2000, "Feinstaub (PM10 und PM2.5). Elektrowatt Engineering AG.
- Huebner, Ch., Boos, R., Bohlmann, J., Burtscher, K., Wiesenberger, H. (2000) *In Oesterreich eingesetzte Verfahren zur Dioxinminimierung*. UBA-Monografien, Band 116 Umweltbundesamt, Wien, Austria.
- EEA (European Environmental Agency) (1999) *Joint EMEP/CORINAIR Atmospheric Emission Inventory Guidebook*, Second Edition. Copenhagen, EEA.
- Elvingson, P. (2002) *New catalyzer for diesel vehicles*. Acid News No. 1, March 2002. Goeteborg, Sweden.
- EMPA (2000) Anteil des Strassenverkehrs an den PM₁₀ und PM_{2.5} Imissionen. NFP41, Verkehr und Umwelt, Dübendorf, Switzerland.
- Environment Australia (2000): Emission estimation technique manual for aggregated emissions from motor vehicles. Environment Australia, 22 November 2000 Version 1.0.
- EPA (Environmental Protection Agency) (1991) *Nonroad Engine and Vehicle Emission Study (NEVES)*. U.S.EPA, Office of Air and Radiation, 21A-2001, November, 1991.
- EPA (Environmental Protection Agency) (1998a) *Compilation of Air Pollutant Emission Factors*, 5th ed.: EPA AP-42. United States Environmental Protection Agency. Research Triangle Park, North Carolina.
- EPA (Environmental Protection Agency) (1998b) Compilation of Air Pollutant Emission Factors, Section 7.1, Residential Wood Combustion. 5th ed.: EPA AP-42. United States Environmental Protection Agency. Research Triangle Park, North Carolina, U.S.

- EPA (Environmental Protection Agency) (1995) Compilation of air pollution emission factors, Vol.1 and Vol.2, AP-42, 5th edition.
- EPA (Environmental Protection Agency) (1997) Compilation of air pollution emission factors, Vol.1: Stationary point and area sources. Chapter 13, Miscellaneous sources: paved road, AP-42 Supplement D, 5th edition.
- EPA (Environmental Protection Agency) (2000) Compilation of Air Pollutant Emission Factors AP-42, 5-th ed., Chapter Metallurgical Industry, Section 12.2 Coke Production. Section updated in September 2000, downloaded from the EPA web site. United States Environmental Protection Agency. Research Triangle Park, North Carolina, U.S.
- ER (1996) Dutch Emission Inventory System, TNO-MEP, Apeldoorn, the Netherlands.
- EQB (Environmental Quality Board) (2001) Final Technical Work Paper for Air Quality and Odor Impacts. Prepared for the Generic Environmental Impact Statement on Animal Agriculture. EQB, Saint Paul, MA, USA, March 2001.
- FAO (2002) *FAOSTAT: FAO Statistical Databases* [on-line]. Italy, to be found on the United Nations Food and Agriculture Organization web site: http://apps.fao.org/
- Flagan, R.C. and Seinfeld, J.H. (1988) *Fundamentals of air pollution engineering*. New Jersey, USA, Prentice-Hall Inc. 542 pp.
- Gaffney, P., Bode, R., Murchison, L. (1995) *PM*₁₀ emission inventory improvement program for *California*. Report available from Patrick Gaffney, Air Resources Board, 2020 L Street, Sacramento, CA. 95814.
- Ganley, J.T. and Springer, G.S. (1974) *Physical and chemical characteristics of particulates in spark ignition engine exhaust.* Environmental Science and Technology, 8, pp. 340-347.
- Garben *et al.* (1997) *Emissionskataster Kraftfahrzeugverkehr Berlin1993*, IVU GmbH Berlin, Gutachten im Auftrag der Senatsverwaltung für Stadtentwicklung, Umweltschutz und Technologie, Berlin, unveröffentlicht.
- Gebbe et al. (1997) Quantifizierung des Reifenabriebs von Kraftfahrzeugen in Berlin, ISS-Fahrzeugtechnik, TU Berlin, i.A. der Senatsverwaltung für Stadtentwicklung, Umweltschutz und Technologie, Berlin.
- GUS (Glowny urzad statystyczny) (1999) *Maly rocznik staystyczny* 1999 (Polish Statistical Yearbook 1999).
- Hall, D.E. and Dickens, C.J. (1999) Measurement of the Number and Size Distribution of Particles Emitted from a Gasoline Direct Injection Vehicle. General Emissions (SP-1477), Society of Automotive Engineers (SAE), Warrendale, PA.
- Harrison, R.M., Shi, J.P., Mark, D. (2000) *Characterization of Particles from a Current Technology Heavy-Duty Diesel Engine*. Environmental Science & Technology, Vol. 34, No. 5, pp.748-755.
- Heber et al. (1988) Size distribution and identification of aerial dust particles in swine finishing buildings. Transactions of the American Society of Agricultural Engineers Vol. 31 No. 3 pp. 882-887.
- Hildemann et al. (1991) Chemical Composition of Emissions from Urban Sources of Fine Organic Aerosol. Environmental Science and Technology, 25(4), pp. 744-759.
- Houck, J.E., Crouch, J., Huntley, R.H. (2001) *Review of Wood Heater and Fireplace Emission Factors*. Paper presented at the 10th Annual Emission Inventory Meeting, 30th April 3rd May, 2001, Denver, CO.
- Houck, J.E., Goulet, J.M., Chow, J.C., Watson, J.G., and Pritchett, L.C. (1989) *Chemical characterization of emission sources contributing to light extinction*. In: Mathai, C.V. (ed.) Transaction, visibility and fine particles. Air & Waste Management Association, Pittsburgh, PA, pp. 145-158.

- Houck, J. and Tiegs, P.E. (1998) *Residential Wood Combustion Technology Review*. EPA-600/R-98-174 (Volume 1 and 2).
- ICC and SRI (IC Consultants and Silsoe Research Institute) (2000) *Atmospheric emissions of particulates from agriculture: a scoping study*. Final report for the Ministry of Agriculture, Fisheries and Food (MAFF) Research and Development, London, UK.
- IEA (International Energy Agency) (1998) *Coalpower 3. CD-ROM.* IEA Coal Research Ltd., The Clean Coal Centre.
- IEA (International Energy Agency) (1998) *Energy Statistics and Balances; 1960/1971-1996.* 1998 Edition. IEA/OECD, Paris.
- IFA (1998) World fertilizer consumption statistics. No 29, Paris: International Fertilizer Industry Association, 197 p.
- IPPC (Integrated Pollution Prevention and Control) Bureau (1999a) *Best Available Technique Reference Document on the Production of Iron and Steel*, July 1999. European IPPC Bureau, Seville, Spain.
- IPPC (Integrated Pollution Prevention and Control) Bureau (1999b) *Best Available Techniques Reference Document on Cement and Lime Manufacturing Industries*, July 1999. European IPPC Bureau, Seville, Spain.
- IPPC (Integrated Pollution Prevention and Control) Bureau (2000a) *Best Available Technique Reference Document on the Production of Iron and Steel*, March 2000. European IPPC Bureau, Seville, Spain.
- IPPC (Integrated Pollution Prevention and Control) Bureau (2000b) *Best Available Techniques Reference Document on Cement and Lime Manufacturing Industries*, March 2000. European IPPC Bureau, Seville, Spain.
- Israel, G. et al. (1994) Bedeutung des Reifenabriebs für die Rußemission des Kfz Verkehrs, Staub, 54, pp. 423-430.
- Israel, G. et al. (1996) Rußimmission in Berlin, Fortschrittsbericht VDI Reihe 15, Nr. 152, VDI Verlag Düsseldorf.
- Jaecker-Voirol, A. and Pelt, P. (2000) *PM*₁₀ emission inventory in Ile de France for transport and industrial sources: *PM*₁₀ re-suspension, a key factor for air quality. Environmental Modelling & Software, Vol. 15, pp. 575-581.
- Jockel, W. (1992) Entstehung, Ausbreitung und Minderung von Emissionen aus kalten und niedrigen Quellen. TÜV Rheinland e.V., UBA-Forschungsbericht 92-104 03 146.
- Johansson, M., Lükewille, A, Bertok, I., Amann, M., Cofala, J., Heyes, C., Klimont, Z., Schöpp, W., and Gonzales del Campo, T. (2000) *An Initial Framework to Assess the Control of Fine Particulate Matter in Europe*. Report to the 25th Meeting of the UN/ECE Task Force on Integrated Assessment Modelling, IIASA, Laxenburg, Austria.
- Kakareka, S., Khomich, V., Kukharchyk, T., Kravchouk, L. (1999) *Particulate matter emission study: Regarding to size distribution and heavy metals content aspects.* Institute for Problems of Natural Resources Use and Ecology of the National Academy of Sciences of Belarus. Minsk, Belarus.
- Karvosenoja, N. (2000) Results of investigation in Finland. Personal communication.
- Kayes, D. and Hochgreb, S. (1999a) *Mechanism of Particulate Matter Formation in Spark-Ignition Engines. 1. Effect of Engine Operating Conditions*. Environmental Science & Technology, Vol. 33, No. 22, pp. 3957-3967.
- Kayes, D. and Hochgreb, S. (1999b) *Mechanism of Particulate Matter Formation in Spark-Ignition Engines. 1. Effect of Fuel, Oil, and Catalyst Parameters.* Environmental Science & Technology, Vol. 33, No. 22, pp. 3968-3977.

- Kean, A.J., Sawyer, R.F., Harley, R.A. (2000) A Fuel-based Assessment of Off-road Diesel Engine Emissions. Journal of the Air & Waste Management Association 50(11), pp 1929-1939.
- Kerminen, V.M., Mäkelä, T.E., Ojanen, Ch.H., Hillamo, R.E., Vilhunen, J.K., Rantanen, L., Havers, N., van Bohlen, A., Klockow, D. (1997) *Characterization of the Particulate Phase in the Exhaust from Diesel Cars*. Environmental Science and Technology, Vol. 31, No. 7, pp. 1383-1889.
- Kjeld, A. (1995) *Optimizing Engine Performance Towards Emission Control*. In: Control Technology for Emissions from Off-road Mobile Sources. Workshop in Oslo, 8-9th June 1995. Norwegian Pollution Control Authority. Report 95:02. Oslo, Norway.
- Klaassen, G. (1991) *Costs of controlling ammonia emissions in Europe*. IIASA Status Report SR-91-02, International Institute for Applied Systems Analysis, Laxenburg, Austria.
- Klimont, Z. (1998) *RAINS-NH*₃ module description file [on-line]. Austria, to be found on the IIASA/RAINS web site: www.iiasa.ac.at/~rains/nh3 review/nh3 sect-tech list.pdf
- Klimont, Z., Amann, M., and Cofala, J. (2000) *Estimating costs for controlling emissions of volatile organic compounds (VOC) from stationary sources in Europe*. Interim Report IR-00-51, International Institute for Applied Systems Analysis, Laxenburg, Austria.
- Klingspor, J.S., Vernon, J.L. (1988) *Particulate Control for Coal Combustion*. IEA Coal research, report No. IEACR/03, London, UK.
- Kuhns, H., Etyemezian, V., Shinbein, P. (2001) *Relating dust emissions surrogates to average daily traffic and vehicle speed in Las Vegas, Nevada.* Paper presented at the 10th Annual Emission Inventory Meeting, 30th April 3rd May, 2001, Denver, CO.
- Kwon, Y., Stradling, R., Heinze, P., Broeckx, W., Esmilaire, O., Martini, G., Bennet, P.J., Rogerson, J., Kvinge, F., Lien, M. (1999) *The Effect of Fuel Sulphur Content on the Exhaust Emissions from a Lean Burn Gasoline Direct Injection Vehicle Marketed in Europe*. Gasoline and Diesel Fuel Performance and Additives (SP-1479), Society of Automobile Engineers (SAE), Warrendale, PA.
- Lammi, K., Lehtonen, E., and Timonen, T. (1993). Energiantuotannon hiukkaspäästöjen teknistaloudelliset vähentämismahdollisuudet (Technical and economical alternatives to reduce particulate emissions from energy production). Helsinki, Finland, Ministry of the Environment, Report 120. 64 pp. (In Finnish with English summary.)
- Lappi *et al.* (2001) *Nykyaikaisen ajoneuvomoottorin hiukkasmittaus, hiukkaskoko ja hiilen laatu*. In: Mäkelä, S. Mobile2, Annual Book 2000. Espoo, 277 p. In Finnish.
- Lerch, A. (2000) *Schluss mit Ruβ*. Das Partikelfiltersystem im Peugeot 607. Auto Touring December 2000.
- Lind, T. (1999) *Ash formation in circulating fluidised bed combustion of coal and solid biomass*. VTT Publications 378, Technical Research Centre of Finland, Espoo, Finland.
- Lind, T., Kauppinen, E. I., Jokiniemi, J. and Maenhut, W. (1995) *A field study on the trace metal behaviour in atmospheric circulating fluidised bed coal combustion*. In: 25th International Symposium on Combustion Proceedings. Irvine, California, 31 July 5 August 1994.
- Lind, T., Kauppinen, E. I., Maenhut, W., Shah, A. and Huggins, F. (1996) *Ash Vaporization in Circulating Fluidized Bed Coal Combustion*. Aerosol Science and Technology 24:135-150.
- Lloyd's Register (1995): Marine exhaust emissions research programme. Lloyd's Register of Shipping, London, UK.
- Louhelainen *et al.* (1987a) *Dust exposure in piggeries*. European Journal of Respiratory Diseases Vol. 71, No. 152, pp. 80-90.
- Louhelainen *et al.* (1987b) *Total concentration of dust in the air during farm work*. European Journal of Respiratory Diseases Vol. 71, No. 152, pp. 73-79.

- Lükewille, A., Bertok, I., Amann, M., Cofala, J., Gyarfas, F., Heyes, Ch., Karvosenoja, N., Klimont, Z. and Schöpp, W. (2001) *A framework to estimate the potential and costs for the control of fine particulate emissions in Europe.* Interim Report IR-01-023, IIASA, Laxenburg, Austria, 119 p.
- Lützke, K. (1982) Mit Kaskadenimpaktoren, Feinstaubmessungen an Industrieanlagen.
- Lützke, K. (1987) Messung und Bewertung der Schwermetallemissionen ausgewählter Anlagen und Vorschläge zu Minderungsmassnahmen. Forschungsbericht 104 03 185, RW-TUV Essen (verschiedene Teilberichte), im Auftrag des UBA.
- McElroy, M.W., Carr, R.C., Ensor, D.S., Markowski, G.R. (1982) Size Distribution of Fine Particles from Coal Combustion. Science, Vol. 215, No. 4528, 1 January 1982, pp. 13-19.
- Mechler, R., Amann, M. and Schöpp, W. (2002) *A methodology to estimate changes in statistical life expectancy due to the control of particulate matter air pollution*. IR-02-035, International Institute for Applied Systems Analysis, Laxenburg, Austria.
- Meier, E. and Bischoff, U. (1996) *Alkalische Emissionsfaktoren beim Einsatz ballastreicher Braunkohlen in Verbrennunganlagen*, IfE Leipzig i.A. des BMBF, Beitrag C2.2 des Verbundvorhabens SANA, in: Wissenschaftliches Begleitprogramm zur Sanierung der Atmosphäre über den neuen Bundesländern, Abschlussbericht Band II.
- Miersch, W. and Sachse, J. (1999) *Emission Testing of Engines to be Installed in Non-Road Mobile Machinery*. Abgasprüfstelle Berlin-Adlershof GmbH, Final Report for the European Commission (DG XI), 20 August 1999.
- Moisio, M. (1999) *Real time size distribution measurements of combustion aerosols*. Publication 279, Tampere University of Technology, Tampere, Finland.
- Morawska, L., Bofinger, N.D., Kocis, L., and Nwankwoala, A. (1998) Submicrometer and Supermicrometer Particles from Diesel Vehicle Emissions. Environmental Science & Technology, Vol. 32, No. 14, pp.2033-2042.
- Mulder, W. (1995) Emission factors for dust from storage and handling activities, Emission factors for fine particulate matter. IMW-TNO, Revision of Rep. No. 86/205.
- Nicholson, K.W. (1988) *A review of particle resuspension*. Atmospheric Environment Vol. 22, No.12, p. 2639-2651.
- Nicholson, K.W. (2000) *Discussion of a paper by Venkatram, Vol.34, 1-11*. Atmospheric Environment Vol. 35, pp. 185-186.
- Nieuwenhuijsen, M.J., et al. (1998) Exposure to dust and its particle size distribution in California agriculture. American Industrial Hygiene Association Journal Vol. 58, pp. 34-38.
- Norbeck, J.M., Durbin, T.D., Truex, T.J. (1998a) *Characterization of Particulate Emission from Gasoline-Fueled Vehicles*. Final report for California Air Resources Board, Contract 94-319. Center for Environmental Research and Technology, University of California. Riverside, CA, September, 1998.
- Norbeck, J.M., Durbin, T.D., Truex, T.J. (1998b) *Measurement of Primary Particulate Matter Emissions from Light-Duty Motor Vehicles*. Final report CRC Project No. E-24-2. Center for Environmental Research and Technology, University of California. Riverside, CA, December 1998.
- Norbeck, J.M., Durbin, T.D., Truex, T.J., Smith, M.R. (1998c) *Characterizing Particulate Emissions from Medium- and Light-Heavy Duty Diesel-Fueled Vehicles*. Final report for South Coast Air Quality Management District, Contract No. 97031. Center for Environmental Research and Technology, University of California. Riverside, CA, September 1998.
- Noren, O. (1985) *Dust concentrations during operations with farm machines*. American Society of Agricultural Engineers, paper no. 85-1055. Paper for presentation at the 1985 summer meeting of the ASAE, Michigan State University, East Lansing, June 23-26.

- NUTEK (1997) Environmentally-adapted Local Energy Systems. Report 4733, Swedish Environmental Agency, Stockholm.
- OECD (1998) Environmental data compendium 1998. OECD, Paris.
- Ohlström, M. (1998) Energiantuotannon pienhiukkaspäästöt Suomessa (The fine particle emissions of energy production in Finland). Espoo, Finland, Technical Research Center of Finland, VTT Research Notes 1934. 114 pp. (In Finnish with English summary.)
- Passant, N.R., Peirce, M., Rudd, H.J., and Scott, D.W. (2000): *UK fine particulate emissions from industrial processes*. AEAT-6270 Issue 1 Draft B Final.
- Pfeiffer, F., Struschka, M., Baumbach, G. (2000) Ermittlung der mittleren Emissionsfaktoren zur Darstellung der Emissionsentwicklung aus Feuerungsanlagen im Bereich der Haushalte und Kleinverbraucher. UBA Texte 14/00, Umweltbundesamt, Berlin.
- Pope, C. A., Burnett, R., Thun, M. J., Calle, E. E., Krewski, D., Ito, K. and Thurston, G. D. (2002) Lung Cancer, Cardiopulmonary Mortality and Long-term Exposure to Fine Particulate Air Pollution. Journal of the American Medical Association 287(9): 1132-1141.
- Rentz, O., Sasse, H., Karl, U., Schleef, H-J., Dorn, R. (1996) *Emission Control at Stationary Sources in the Federal Republic of Germany. Vol. II: Heavy Metal Emission Control.* French-German Institute for Environmental Research, University of Karlsruhe (TH). Karlsruhe, Germany.
- Rauterberg-Wulff, A. (1998) *Beitrag des Reifen- und Bremsenabriebs zur Rußimmission an Straßen*, Dissertation am Fachgebiet Luftreinhaltung der Technischen Universität Berlin.
- Ristovski, Z.D., Morawska, L., Bofinger, N.D., and Hitchins, J. (1998) Submicrometer and Supermicrometer Particulate Emissions from Spark Ignition Vehicles. Environmental Science & Technology, Vol. 32, No. 24, pp.3845-3852.
- Rodt, S. et al. (1995) Passenger Cars 2000. Requirements, Technical Feasibility and Costs of Exhaust Emission Standards for the Year 2000 in the European Community. Federal Environmental Agency (UBA), Berlin, Germany.
- Rodt, S. et al. (1996) HDV 2000. Requirements, Technical Feasibility and Costs of Exhaust Emission Standards for Heavy Duty Vehicle Engines for the Year 2000 in the European Community. Federal Environmental Agency (UBA), Berlin, Germany.
- Schindler I., Ronner Ch. (2000) *Stand der Technik bei der Glasherstellung*. UBA Reports, R-152 Umweltbundesamt, Wien, Austria.
- SENCO (Sustainable Environment Consultants Ltd.) (1999) *Collation of information on particulate pollution from tyres, brakes and road surfaces.* 23 March, 1999, Colchester, Essex, UK.
- Smith, K.R. (1987) *Biofuels, Air Pollution, and Health, A Global Review*. Plenum Press, New York, p. 452.
- Spitzer, J., Enzinger, P., Fankhauser, G., Fritz, W., Golja, F., Stiglbrunner, R. (1998) *Emissionsfaktoren für Feste Brennstoffe*. Endbericht Nr.: IEF-B-07/98, Joanneum Research, Graz, December, 1998, 50 p.
- Staubenvoll, J., Schindler, I., (1998) Fachgrundlagen zur Erarbeitung eines BAT-Dokumentes über Zementherstellung. UBA Interne Berichte, IB-580, Umweltbundesamt, Wien, Austria.
- Soud, N.H. (1995) *Developments in particulate control for coal combustion*. IEACR/78, IEA Coal Research, London, UK, April 1995, p. 57.
- TA Luft (1986) *Die TA Luft'86 technischer Kommentar*. [ed] Davids, P. und Lange. M. VDI-Verlag GmbH, Düsseldorf.

- Takai, H., Pedersen, S., Johnsen, J.O., Metz, J.H.M., Groot Koerkamp, P.W.G., Uenk, G.H., Phillips, V.R., Holden, M.R., Sneath, R.W., Short, J.L., White, R.P., Hartung, J., Seedorf, J., Schröder, M., Linkert, K.H. and Wathes, C.M. (1998) Concentrations and emissions of airborne dust in livestock buildings in northern Europe. Journal of Agricultural Engineering Research Vol. 70, pp. 59-77.
- Takeshita, M. (1995) Air Pollution Control Costs for Coal-Fired Power Stations, IEAPER/17, IEA Coal Research, London, UK.
- TNO (1996) Dutch Emission Inventory System. TNO-MEP, Apeldoorn, the Netherlands.
- Touche Ross & Co. (1995) A Cost-Effectiveness Study of the Various Measures Likely to Reduce Pollutant Emissions from Road Vehicles for the Year 2010. Final Report. Edinburgh, UK.
- Tullin, C. and Johansson, L. (2000). *Particulate emissions from small-scale biomass combustion*. Background paper for Nordic Seminar on Small Scale Wood Combustion, 17-18.2.2000, Naantali, Finland.
- TÜV (2000a) Grundsatzuntersuchung über die Ermittlung der Korngrössenverteilung im Abgas verschiedener Emittenten (<PM2.5 und <PM10). Projekt I: Anlagen der Zement-, Glas-, Keramik-, und Metallindustrie, Asphaltmischanlagen, Schwerölfeuerungsanlagen. Bayerisches Landesamt für Umweltschutz (LfU), TÜV Süddeutschland. München, December 2000.
- TÜV (2000b) Grundsatzuntersuchung über die Ermittlung der Korngrössenverteilung im Abgas verschiedener Emittenten (<PM2.5 und <PM10). Projekt II: Analgen der Chemieindustrie, Raffinerien, Automobilindustrie, Holzindustrie und Tierhaltungen. Bayerisches Landesamt für Umweltschutz (LfU), TÜV Süddeutschland. München, December 2000.
- UBA (Umweltbundesamt) (1989) *Luftreinhaltung'88, Tendenzen Probleme Lösungen.* Federal Environmental Agency (Umweltbundesamt), Erich Schmidt Verlag Berlin. 1981.
- UBA (Umweltbundesamt) (1998) *Schriftliche Mitteilung von Hr. Nöcker vom 01.09.1998, UBA II 4.6.* Federal Environmental Agency (Umweltbundesamt), Berlin, in Dreiseidler *et al.* 1999.?
- UBA (Umweltbundesamt) (1998a) Schätzung der Staubemissionen in Deutschland (Industrieprozesse, Kraftwerke und Fernheizwerke, Industriefeuerungen); Schriftliche Mitteilung von Hr. Remus vom 09.2000. Federal Environmental Agency (Umweltbundesamt), Berlin.
- UBA (Umweltbundesamt) (1999a) Various estimates of particulate emission factors and particle size distributions by Federal Environmental Agency (Umweltbundesamt), Berlin, in Dreiseidler *et al.* 1999.
- UBA (Umweltbundesamt) (1999b) *Emissionen nach Emittentengruppen in Deutschland 1990 bis* 1998. UBA, Dezember, 1999. unvollständiges Zitat
- UMEG (Gesellschaft für Umweltmessungen und Umwelterhebungen mbH) (1999) Feinstaubuntersuchungen an Holzfeuerungen. Teil 2: Bereich Industriefeuerungen > 1 MW. Institut für Verfahrenstechnik und Dampfkesselwesen, Report No. 44-1999, Universität Stuttgart. Juli 1999.
- UN (United Nations) (2000) *World Population Prospects: The 2000 Revision Data in Digital Form.* UN Population Division, New York.
- UN (United Nations) (2002) *Industrial Commodity Statistics; Production Statistics Database 1950-1999*. CD-ROM, UN, New York.
- UN/ECE (1996) Report of the Sixth Seminar on Control Technologies for Emissions from Stationary Soruces, Budapest, 14-17 October 1996. EB.AIR/SEM3.3, UN/ECE, Geneva, Switzerland.
- Venkatram, A. (2000) A critique of empirical emission factor models: a case study of the AP-42 model for estimating PM_{10} emissions from paved roads. Atmospheric Environment, Vol. 34, pp. 1-11.
- Visschedijk, A.J.H., Berdowski, J.J.M., and Veldt, C. (1997) *Abatement efficiencies and technologies* for controlled particulate matter emissions in Europe. TNO-report, TNO-MEP R 96/473.

- Weingartner, E., Keller, C, Stahel, W.A., Burtscher, H., Baltensperger, U. (1997) *Aerosol emission in a road tunnel*. Atmospheric Environment Vol. 31, No.3, pp.451-462.
- Williams, D.J., Milne, J.W., Roberts, D.B., and Kimberlee, M.C. (1989a) *Particulate Emissions from 'In-use' Motor Vehicles I. Spark Ignition Vehicles*. Atmospheric Environment Vol. 23, No. 12, pp. 2639-2645.
- Williams, D.J., Milne, J.W., Quigley, S.M., Roberts, D.B., and Kimberlee, M.C. (1989b) *Particulate Emissions from 'In-use' Motor Vehicles II. Diesel Vehicles*. Atmospheric Environment Vol. 23, No. 12, pp. 2647-2661.
- Winiwarter, W., Trenker, Ch., Höflinger, W. (2001) Österreichische Emissionsinventur für Staub. A study for Austrian Environmental Agency (Umwelbundesamt), final report. ARC Seibersdorf research report, ARC—S-0151, 121 p., September 2001.
- Wright, A.A. (1997) *Marine diesel engine particulate emissions*. ImarE Transactions, Vol. 109, Part 4, pp 345-364.
- Wright, A.A. (2000) *Exhaust Emissions from Combustion Machinery*. Marine Engineering Practice (MEP) Series, Vol 3, Part 20. The Institute of Marine Engineers, 246 p.
- Yanowitz, J., McCormick, R.L., and Graboski, M.S. (2000) *In-Use Emissions from Heavy-Duty Diesel Vehicles*. Environmental Science & Technology, Vol. 34, No. 5, pp.729-740.
- Zhang, J., Smith, K., Ma, Y., Ye, S., Jiang, S., Qi, W., Liu, P., Khalil, M., Rasmussen, R., Thorneloe, S. (2000) *Greenhouse gases and other airborne pollutants from household stoves in China: a database for emission factors.* Atmospheric Environment 34 (2000) 4537-4549.
- Zimmer, R.A., Reeser, W.K., Cummins, P. (1992) *Evaluation of PM*₁₀ *emission factors for paved streets*. In: Chow, J.C., Ono, D.M. (Eds.), PM₁₀ Standards and Nontraditional Source Controls, pp. 311-323.

Anhang 1: Terminologie in RAINS

Aktivitäten:

Beispiele für Aktivitätsdaten sind der Einsatz von Steinkohle in Kraftwerken, gefahrene Kilometer durch schwere LKW, Produktion von Zement, Tierzahl, usw. Die Aktivitätsdaten sind in sogenannten Aktivitätspfaden gespeichert. Dabei handelt es sich um Dateien, die landes- und sektorspezifische Daten zu Energieverbrauch (Energiepfade), landwirtschaftlichen Aktivitäten (landwirtschaftliche Pfade) sowie anderen Aktivitäten wie Produktion von Stahl, Zement usw. umfassen. Daten sind für Fünfjahresperioden zwischen 1990 und 2010 vorhanden. Es ist möglich, alternative Entwicklungspfade entweder für einzelne Länder oder Gruppen von Ländern zu spezifizieren.

<u>Ungeminderte Emissionsfaktoren:</u>

Emissionsfaktoren beschreiben die pro →Aktivitätseinheit verursachten Emissionen der einzelnen Schadstoffe. Da es eine der Zielsetzungen des Integrated Assessment Modelling ist, den Umfang und die Kosten der Emissionsminderung vollständig zu erfassen, berechnet das RAINS-Modell Emissionen ausgehend von den (theoretischen) ungeminderten Emissionen (z.B. im Rohgas) und quantifiziert explizit das Ausmaß der durch Minderungsmaßnahmen verringerten Emissionen. Der Emissionsfaktor, der die ungeminderten Emissionen reflektiert, wird als ungeminderter Emissionsfaktor bezeichnet.

Korngrößen:

Das RAINS-Modell unterscheidet drei Korngrößenfraktionen der Staubemissionen:

- PM2.5 ($< 2.5 \mu m$);
- $PM > 2.5 \text{ und} < 10 \text{ }\mu\text{m}$;
- $PM > 10 \mu m$

In Summe ergeben die drei Fraktionen TSP (total suspended particles), PM10 ergibt sich als Summe von PM2.5 und PM >2.5 und <10 μ m.

Emissionsminderungsmaßnahmen:

Das RAINS-Modell unterscheidet eine Reihe von expliziten Maßnahmen, um bei einem Prozess Emissionen ausgehend von dem ungeminderten Niveau zu reduzieren. Für jeden Emissionssektor wird eine spezifische Liste von Maßnahmen berücksichtigt. Emissionsminderungskosten werden als die Kosten dieser Maßnahmen verstanden.

Spezifische Kosten der Emissionsminderung:

Spezifische Kosten beziehen die jährlichen Emissionsminderungskosten auf die vermiedene Staubemissionsmenge.

Grenzkosten:

Grenzkosten sind der Quotient aus den Kosten für eine zusätzliche Maßnahme und der damit erzielten Emissionsminderung.

Kostenkurve:

Kostenkurven beschreiben den Anstieg der Kosten von Maßnahmen mit steigender Emissionsminderung. Kostenkurven werden für ein vorgewähltes Land, ein Jahr und ein Szenario ermittelt. Kostenkurven in RAINS schließen nicht-kosteneffiziente Minderungsoptionen, d.h. Techniken, die höhere Kosten bzw. niedrigere Abscheidegrade als die vorhergehende Option aufweisen, aus. Sie stellen daher eine Reihung der verbliebenen Optionen nach steigenden Grenzkosten dar.

Anhang 2: Verzeichnis der verwendeten Abkürzungen für die Sektorbezeichnungen

Abbreviation	Sector
CON COMB1	Energieerzeugung und Umwandlung: Rostfeuerung
CON COMB2	Energieerzeugung und Umwandlung: Wirbelschichtfeuerungen
CON COMB3	Energieerzeugung und Umwandlung: Kohlestaubfeuerungen
CON COMB	Energieerzeugung und Umwandlung Verbrennungsprozesse
CON LOSS	Verteilungsverluste
DOM	Verbrennungsprozesse im Haushalt und Kleinverbrauch
DOM FPLACE	Haushalt und Kleinverbrauch: Offene Kamine
DOM_STOVE	Haushalt und Kleinverbrauch: Öfen
DOM SHB M	Haushalt und Kleinverbrauch: Kessel in Einfamilienhäusern (<50 kW) – händische Beschickung
DOM_SHB_A	Haushalt und Kleinverbrauch: Kessel in Einfamilienhäusern (<50 kW) – automatische Beschickung
DOM_MB_M	Haushalt und Kleinverbrauch: Mittlere Kesselanlagen (<1 MW) – händische Beschickung
DOM_MB_A	Haushalt und Kleinverbrauch: Mittlere Kesselanlagen (<50 MW) – automatische Beschickung
IN_BO1	Industrie: Kesselanlagen, Rostfeuerung
IN_BO2	Industrie: Kesselanlagen, Wirbelschichtfeuerungen
IN_BO3	Industrie: Kesselanlagen, Kohlestaubfeuerungen
IN_BO	Industrie: Kesselanlagen
IN_OC1	Industrie, andere Feuerungen, Rostfeuerung
IN_OC2	Industrie, andere Feuerungen, Wirbelschichtfeuerungen
IN_OC3	Industrie, andere Feuerungen, Kohlestaubfeuerungen
IN_OC	Industrie, andere Feuerungen
PP_EX_OTH1	Kraft- und Fernwärmewerke: Altanlagen, Rostfeuerung
PP_EX_OTH2	Kraft- und Fernwärmewerke: Altanlagen, Wirbelschichtfeuerung
PP_EX_OTH3	Kraft- und Fernwärmewerke: Altanlagen, Kohlestaubfeuerung
PP_EX_OTH	Kraft- und Fernwärmewerke: Altanlagen
PP_EX_WB	Kraft- und Fernwärmewerke: Altanlagen, Schmelzfeuerungen
PP_NEW1	Kraft- und Fernwärmewerke: Neuanlagen, Rostfeuerung
PP_NEW2	Kraft- und Fernwärmewerke: Neuanlagen, Wirbelschichtfeuerung
PP_NEW3	Kraft- und Fernwärmewerke: Neuanlagen, Kohlestaubfeuerung
PP_NEW	Kraft- und Fernwärmewerke: Neuanlagen
PP_TOTAL	Kraft- und Fernwärmewerke (gesamt)
TRA_RD_HD	Schwere Lastkraftwagen und Autobusse (Abgase)
TRA_RD_LD2	Motorräder, Mopeds, Autos, Zweitakter (Abgase)
TRA_RD_M4	Motorräder, Viertakter (Abgase)
TRA_RD	Personenkraftwagen und Motorräder (elektrisch angetrieben)
TRA_RD_LD4	Personenkraftwagen, Viertakter (excl. Benzin-Direkteinspritzer), (Abgase)
TRA_RDXLD4	Personenkraftwagen, Benzin-Direkteinspritzer (Abgase)
LEAD_GASOL	Schwere und leichte Fahrzeuge, verbleites Benzin (Abgase)
TRA_OT_LD2	Mobile Quellen: Eisenbahnen: feste Brennstoffe für Raumheizung
TRA_OT_LD2	Mobile Quellen: Nicht-Straßenfahrzeuge; Zweitakter (Abgase)
TRA_OT_CNS	Mobile Quellen: Baumaschinen (Abgase) Mobile Quellen: Londwittschoftliche Moschinen (Abgase)
TRA_OT_AGR	Mobile Quellen: Landwirtschaftliche Maschinen (Abgase)
TRA_OT_RAI	Mobile Quellen: Eisenbahnen (Abgase)
TRA_OT_INW	Mobile Quellen: Binnenschiffahrt (Abgase) Mobile Quellen: Luftfahrt, nur Starts und Landungen
TRA_OT_AIR	Mobile Quellen: Andere Nicht-Straßenfahrzeuge; Viertakter (Militär, Privatfahrzeuge, etc.)
TRA_OT_LB TRA_OTS_M	Mobile Quellen: Schiffe; mittlere Grösse (Abgase)
TRA_OTS_M TRA_OTS_L	Mobile Quellen: Schiffe; grosse Schiffe (Abgase)
INA_OIS_L	Moone Quenen. Senine, grosse Senine (Augase)

Abbreviation	Sector
TRT_RD_HD	Schwere Lastkraftwagen und Autobusse (Reifenabrieb)
TRT_RD_LD2	Motorräder, Mopeds, Autos, Zweitakter (Reifenabrieb)
TRT_RD_M4	Motorräder, Viertakter (Reifenabrieb)
TRT_RD_LD4	Personenkraftwagen, Viertakter (Reifenabrieb)
TRT_RDXLD4	Personenkraftwagen, Benzin-Direkteinspritzer (Reifenabrieb)
TRB_RD_HD	Schwere Lastkraftwagen und Autobusse (Bremsabrieb)
TRB_RD_LD2	Motorräder, Mopeds, Autos, Zweitakter (Bremsabrieb)
TRB_RD_M4	Motorräder, Viertakter (Bremsabrieb)
TRB_RD_LD4	Personenkraftwagen, Viertakter (Bremsabrieb)
TRB_RDXLD4	Personenkraftwagen, Benzin-Direkteinspritzer (Bremsabrieb)
TRD_RD_HD	Schwere Lastkraftwagen und Autobusse (Strassenabrieb)
TRD_RD_LD2	Motorräder, Mopeds, Autos, Zweitakter (Strassenabrieb)
TRD_RD_M4	Motorräder, Viertakter (Strassenabrieb)
TRD_RD_LD4	Personenkraftwagen, Viertakter (Strassenabrieb)
TRD_RDXLD4	Personenkraftwagen, Benzin-Direkteinspritzer (Strassenabrieb)
TRB_OT_RAI	Eisenbahnen (Nicht-Abgasemissionen)
PR PIGI	Industrielle Prozesse: Roheisenherstellung
PR_PIGI_F	Industrielle Prozesse: Roheisenherstellung, diffuse Emissionen
PR_COKE	Industrielle Prozesse: Kokserzeugung
PR PELL	Industrielle Prozesse: Pellets-Anlagen
PR SINT	Industrielle Prozesse: Sinteranlagen
PR_SINT_F	Industrielle Prozesse: Sinteranlagen, diffuse Emissionen
PR HEARTH	Industrielle Prozesse: Siemens-Martin Öfen
PR BAOX	Industrielle Prozesse: Konverteröfen
PR EARC	Industrielle Prozesse: Elekrolichtbogenöfen
PR_CAST	Industrielle Prozesse: Eisen- und Stahlgießereien
PR_CAST_F	Industrielle Prozesse: Eisen- und Stahlgießereien, diffuse Emissionen
PR_ALPRIM	Industrielle Prozesse: Primäraluminiumerzeugung
PR_ALSEC	Industrielle Prozesse: Sekundäraluminiumproduktion
PR_OT_NFME	Industrielle Prozesse: Nichteisenmetallproduktion
PR_BRIQ	Industrielle Prozesse: Kohlebrikettsherstellung
PR_CEM	Industrielle Prozesse: Zementproduktion
PR_LIME	Industrielle Prozesse: Kalkproduktion
PR_CBLACK	Industrielle Prozesse: Rußproduktion
PR_OTHER	Industrielle Prozesse: Herstellung von PVC, Gips, Glasfasern
PR_REF	Industrielle Prozesse: Erdölraffinierien
PR_GLASS	Industrielle Prozesse: Glasproduktion
PR_FERT	Industrielle Prozesse: Düngemittelproduktion
PR_SMIND_F	Industrielle Prozesse: Gewerbebetriebe (diffuse Emisionen)
MINE_BC	Braunkohlebergbau
MINE_HC	Steinkohlebergbau
MINE_OTH	Anderer Bergbau
WASTE_FLR	Abfackeln in der Öl- und Gasproduktion
WASTE_AGR	Offene Verbrennung von landwirtschaftlichen Abfällen
WASTE_RES	Offene Verbrennung von Hausmüll
STH_COAL	Schüttgutumschlag: Kohle
STH_FEORE	Schüttgutumschlag: Eisenerz
STH_NPK	Schüttgutumschlag: N, P,K Dünger
STH_OTH_IN	Schüttgutumschlag: Andere Industrieprodukte
STH_AGR	Schüttgutumschlag: Landwirtschaftliche Produkte
_	

Abbreviation	Sector
AGR_POULT	Landwirtschaft: Geflügelzucht
AGR_PIG	Landwirtschaft: Schweinezucht
AGR_COWS	Landwirtschaft: Milchviehhaltung
AGR_BEEF	Landwirtschaft: Andere Viehhaltung
AGR_OTANI	Landwirtschaft: Schafe, Pferde, Pelztiere
AGR_ARABLE	Landwirtschaft: Ackerbau
AGR_OTHER	Landwirtschaft: Andere Emissionen
CONSTRUCT	Bauwirtschaft
RES_BBQ	Grillen
RES_CIGAR	Tabakrauch
RES_FIREW	Feuerwerke
OTHER	Andere Emissionsquellen
NONEN	Emissionen beim nichtenergetischen Verbrauch von Brennstoffen

Anhang 3: Verzeichnis der verwendeten Abkürzungen für die Emissionsminderungsmaßnahmen

Abbreviation	Technology
NOC	Ohne Emissionsminderung
NSC	Keine Maßnahme anwendbar
ESP1	Elektrofilter, 1 Feld, Kraftwerke
ESP2	Elektrofilter, 2 Felder, Kraftwerke
ESP3P	Elektrofilter, 3 und mehr Felder, Kraftwerke
FF	Gewebefilter, Kraftwerke
CYC	Zyklon, Kraftwerke
WSCRB	Wäscher, Kraftwerke
IN_ESP1	Elektrofilter, 1 Feld, Industriefeuerungen
IN ESP2	Elektrofilter, 2 Felder, Industriefeuerungen
IN ESP3P	Elektrofilter, 3 und mehr Felder, Industriefeuerungen
IN FF	Gewebefilter, Industriefeuerungen
IN CYC	Zyklon, Industriefeuerungen
IN WSCRB	Wäscher, Industriefeuerungen
PR ESP1	Elektrofilter, 1 Feld, Industrieprozesse
PR ESP2	Elektrofilter, 2 Felder, Industrieprozesse
PR ESP3P	Elektrofilter, 3 und mehr Felder, Industrieprozesse
PR WESP	Nasselektrofilter, Industrieprozesse
PR FF	Gewebefilter, Industrieprozesse
PR CYC	Zyklon, Industrieprozesse
PR WSCRB	Wäscher, Industrieprozesse
GHIND	Regelmäßige Wartung
PRF GP1	Gute technische Praxis, Stufe 1
PRF GP2	Gute technische Praxis, Stufe 2
FP CAT	Offene Kamine, Katalysatoreinsatz
FP ENC	Offene Kamine, nicht-katalytische Maßnahmen
WOOD1	Neue Holzöfen, nicht-katalytische Maßnahmen
WOOD2	Neue Holzöfen, Katalysator
COAL1	Neue Kohleöfen, Stufe 1
COAL2	Neue Kohleöfen, Stufe 2
NB COAL	Neue Kessel in Haushalt und Kleinverbrauch
MB_PELL	Neue Kessel für Holzspäne, Pellets
MB PLBAG	Neue Kessel mittlerer Größe (Holzspäne, Pellets) mit nachgeschalteter Abgasreinigung
MB CYC	Zyklon
MB BAG	Gewebefilter
GHDOM	Regelmäßige Wartung
MDEUI	EURO I -1992/94, Diesel PKW
MDEUII	EURO II -1996, Diesel PKW
MDEUIII	EURO III -2000, Diesel PKW
MDEUIV	EURO IV -2005, Diesel PKW
MDEUV	EURO V - Diesel PKW, post-2005 St.1
MDEUVI	EURO VI - Diesel PKW - post 2005, St.2
CAGEUI	Bau- und landwirtschaftliche Geräte -1998, wie EUROI
CAGEUII	Bau- und landwirtschaftliche Geräte - 2000/02, wie EUROII
CAGEUIII	Bau- und landwirtschaftliche Geräte; wie EUROIII
CAGEUIV	Bau- und landwirtschaftliche Geräte; wie EUROIV
CAGEUV	Bau- und landwirtschaftliche Geräte; wie EUROV

Abbreviation	Technology
CAGEUVI	Bau- und landwirtschaftliche Geräte; wie EUROVI
TIWEUI	Bahn und Binnenschiffahrt -1998, wie EUROI
TIWEUII	Bahn und Binnenschiffahrt - 2000/02, wie EUROII
TIWEUIII	Bahn und Binnenschiffahrt; wie EUROIII
TIWEUIV	Bahn und Binnenschiffahrt; wie EUROIV
TIWEUV	Bahn und Binnenschiffahrt; wie EUROV
TIWEUVI	Bahn und Binnenschiffahrt; wie EUROVI
HDEUI	EURO I - 1992, Diesel-Schwerfahrzeuge
HDEUII	EURO II - 1996, Diesel-Schwerfahrzeuge
HDEUIII	EURO III - 2000, Diesel-Schwerfahrzeuge
HDEUIV	EURO IV - 2005, Diesel-Schwerfahrzeuge
HDEUV	EURO V - 2008, Diesel-Schwerfahrzeuge
HDEUVI	EURO VI, Diesel-Schwerfahrzeuge, post-2008
LFGDIII	EURO III, Benzin-Direkteinspritzer
LFGDIV	EURO IV, Benzin-Direkteinspritzer
LFGDV	EURO V, Benzin-Direkteinspritzer
LFGDVI	EURO VI, Benzin-Direkteinspritzer
LFEUI	EURO I, Otto-Motoren
LFEUII	EURO II, Otto-Motoren
LFEUIII	EURO III, Otto-Motoren
LFEUIV	EURO IV, Otto-Motoren
LFEUV	EURO V, Otto-Motoren
LFEUVI	EURO VI, Otto-Motoren
MMO2I	Motorräder und Mopeds, Zweitakter, Stufe 1
MMO2II	Motorräder und Mopeds, Zweitakter, Stufe 2
MMO2III	Motorräder und Mopeds, Zweitakter, Stufe 3
MOT4I	Motorräder, Viertakter, Stufe 1
MOT4II	Motorräder, Viertakter, Stufe 2
MOT4III	Motorräder, Viertakter, Stufe 3
HDSEI	Benzin-Schwerfahrzeuge, Stufe 1
HDSEII	Benzin-Schwerfahrzeuge, Stufe 2
HDSEIII	Benzin-Schwerfahrzeuge, Stufe 3
STMCM	Mittlere Schiffe, Primärmaßnahmen
STLHCM	Große Schiffe, Primärmaßnahmen, schweres Heizöl
STLMCM	Große Schiffe, Primärmaßnahmen, Diesel
STH GP	Regelmäßige Wartung
FEED MOD	Änderung der Futterzusammensettzung
HAY SIL	Heusilage in der Viehhaltung
FREE	Freie Geflügelhaltung
ALTER	Alternative Erntemethoden
AGR1	Verschiedene Maßnahmen bei der Haltung anderer Tiere
FLR GP	Gute technische Praxis bei der Abfackelung
BAN	Verbot von offener Verbrennung von Abfällen
MINE GP	Gute technische Praxis im Bergbau
SPRAY	Wasserversprühen bei Baustellen
FILTER	Filter in Haushaltsküchen
RESP1	Andere Maßnahmen, z.B. Straßen waschen

Anhang 4: Verzeichnis der verwendeten Abkürzungen für die Brennstoffe

Abbreviation	Technology
BC1	Braunkohle, Qualität 1
BC2	Braunkohle, Qualität 2
HC1	Steinkohle, Qualität 1
HC2	Steinkohle, Qualität 3
НС3	Steinkohle, Qualität 3
DC	Koks, Briketts
HF	Schweres Heizöl
MD	Diesel, mittleres Heizöl
GSL	Unverbleites Benzin, Kerosin
LFL	Verbleites Benzin
LPG	Flüssiggas
MTH	Methanol
ETH	Ethanol
H2	Wasserstoff
GAS	Erdgas
OS1	Holz, Biomasse
OS2	Hochschwefelige Abfälle