Uran in Boden und Wasser
Uran in Boden und Wasser

von

Claudia Dienemann, Jens Utermann
Umweltbundesamt, Dessau-Roßlau
Inhalt

1 Einleitung ... 1

2 Vorkommen und Eigenschaften .. 1
 2.1 Einführung .. 1
 2.2 Verwendung von Uran .. 2
 2.3 Humantoxische Wirkungen .. 3
 2.4 Uran in Grund- und Trinkwasser ... 4
 2.5 Uran in Oberflächenwasser .. 6
 2.6 Uran in Böden ... 8
 2.7 Uran in der Luft .. 10

3 Gesetzliche Regelungen .. 10

4 Uranlagerstätten – Uranbergbau – Altlastensanierungsgebiete .. 11

5 Diffuse Uraneinträge in Böden und Wasser .. 13
 5.1 Uraneinträge durch Düngung .. 13
 5.2 Uraneinträge durch Niederschlagswasser ... 16
 5.3 Uraneinträge über die Luft .. 16

6 Diffuse Uranausträge aus Böden und Transfer in die Nahrungskette ... 17

7 Fazit und Handlungsempfehlungen ... 18

Literatur .. 20
1 Einleitung

Die Versorgung einer wachsenden Weltbevölkerung mit ausreichenden und qualitativ hochwertigen Lebensmitteln sowie der zunehmende Bedarf an nachwachsenden Rohstoffen zur Energiegewinnung stellen bei begrenzter und sogar schrumpfender landwirtschaftlicher Nutzfläche eine permanente Herausforderung an die Produzenten dar.

Vor diesem Hintergrund stellt sich die Frage, wie mittel- bis langfristig ein ausreichender Schutz vor einer nicht mehr vernachlässigbaren, unerwünschten Anreicherung von Uran in Böden und einer möglichen Verlagerung ins Grundwasser gewährleistet werden kann.

2 Vorkommen und Eigenschaften

2.1 Einführung

Das Schwermetall Uran ist ein natürlicher Bestandteil der Erdkruste. Deshalb lässt es sich in unterschiedlichen Anteilen in Gesteinen und Mineralen, im Boden, im Wasser und in der Luft nachweisen. Der Durchschnittsgehalt in der Lithosphäre wird von verschiedenen Autoren mit 2,5 – 4 mg/kg angegeben (Rösler & Lange, 1976). Natürlich auftretendes Uran ist ein Isotopengemisch. Es besteht zu 99,27% aus dem Isotop U-238, zu 0,72% aus U-235 und zu 0,01% aus U-234 (Streit, 1992). Sämtliche Isotope sind radioaktiv.

1 92,7% aller landwirtschaftlichen Betriebe in Deutschland werden konventionell bewirtschaftet (Quelle: BMELV, 2011)
2 Gemäß Beschlusslage der gemeinsamen Agrar- und Umweltministerkonferenz vom Juni 2001 in Potsdam sind die Böden vor einer Anreicherung mit Schadstoffen zu schützen, damit auf ihnen dauerhaft gesunde Nahrungsmittel erzeugt werden können.
3 Bei Edelgasen sind alle Elektronenschalen vollständig besetzt, weshalb sie kaum chemisch reagieren. Im Unterschied dazu hat Uran eine Elektronenkonfiguration von 5f6 6d 7s2 – die Schalen sind also unvollständig besetzt, woraus die bevorzugten Oxidationsstufen IV und VI resultieren.

Abb. 1: Pechblende aus dem Erzgebirge (Bildquelle: TU Bergakademie Freiberg, A. Massanek)

2.2 Verwendung von Uran

⁴ Die Färbungen reichen von gelb-orange bis rot und besonders grün („Annagrün“), beliebt war auch der Effekt unter UV-Licht.
Bis heute wird (abgereichertes) Uran als Gegengewicht im Heck von Flugzeugen (z. B. Boeing 747), als Abschirmung in der Atomindustrie, in panzerbrechender Munition oder als Panzeramierung (z. B. M1 Abrams) verwendet.

2.3 Humantoxische Wirkungen

Bei Urankonzentrationen bis zu 60 µg/L im Trinkwasser steht die chemische Toxizität gegenüber der radiologischen Wirkung im Vordergrund; in noch höheren Konzentrationen überwiegt die Wirkung der Radioaktivität. Da das Uranyl-Kation hinsichtlich Größe und Ladungsdichte dem hydratisierten Ca²⁺-Ion ähnelt, wird es entsprechend gut in Skelett und Nieren eingelagert (Streit, 1992).

Limson Zamora et al. (1998) fanden in einer Studie zur chronischen Aufnahme von Uran aus kontaminiertem Trinkwasser aus privaten Brunnen deutliche Anzeichen für Störungen der Nierenfunktion (Expositionszeiten bis zu 59 Jahren und Urankonzentrationen zwischen 2 µg/L und 78 µg/L).

Die Weltgesundheitsorganisation (WHO) empfiehlt seit 2011 einen gesundheitlichen Leitwert (Guide Value) für Trinkwasser von 30 µg/L; in der EU-Trinkwasserrichtlinie ist kein Wert für Uran festgelegt. Die WHO hat einen Tolerable Daily Intake (TDI)-Wert für Uran abgeleitet. Dieser Wert gibt an, welche Menge eines Stoffes ein Mensch sein Leben lang täglich aufnehmen kann, ohne dass gesundheitliche Risiken zu befürchten sind. Für die Aufnahme von Uran wurden 0,6 µg/kg Körpergewicht und Tag ermittelt. Dieser Wert liegt auch der Ableitung der Höchstkonzentration von Uran in Mineralwassern zu Grunde.

Das Umweltbundesamt (UBA) und das Bundesinstitut für Risikobewertung (BfR) erkennen für die deutschen Verbraucher derzeit kein Risiko infolge einer Aufnahme von Uran mit der

2.4 Uran in Grund- und Trinkwasser

Die Urankonzentrationen des Grundwassers variieren in Abhängigkeit von der geogenen Zusammensetzung der wasserführenden Gesteine deutlich (Tabelle 1). Dabei liegt das 90. Perzentil weit unterhalb der Maximalwerte, was darauf hindeutet, dass die Maximalwerte auf wenige Messstellen zurückzuführen sind.

Im Hinblick auf die Trinkwasserversorgung ist anzumerken, dass Brunnen mit auffälligen Urankonzentrationen z. T. stillgelegt wurden oder Maßnahmen zur Reduzierung der Urankonzentration im Trinkwasser getroffen wurden.

<table>
<thead>
<tr>
<th>Gesteinsarten</th>
<th>N</th>
<th>Minimum [µg/L]</th>
<th>P90 [µg/L]</th>
<th>Maximum [µg/L]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sande und Kiese des Norddeutschen Flachlandes</td>
<td>790</td>
<td>0,001</td>
<td>1,20</td>
<td>1134,00</td>
</tr>
<tr>
<td>Quartäre Sedimente der Flussauen</td>
<td>463</td>
<td>0,06</td>
<td>4,40</td>
<td>58,00</td>
</tr>
<tr>
<td>Tertiäre Sedimente</td>
<td>575</td>
<td>0,0003</td>
<td>3,00</td>
<td>23,00</td>
</tr>
<tr>
<td>Sandsteine und silikatische Wechselfolgen</td>
<td>457</td>
<td>0,0003</td>
<td>7,20</td>
<td>1450,00</td>
</tr>
<tr>
<td>Kalksteinfolgen des Muschelkalks</td>
<td>398</td>
<td>0,02</td>
<td>1,80</td>
<td>11,80</td>
</tr>
<tr>
<td>Sandsteinfolgen des Buntsandsteins</td>
<td>402</td>
<td>0,0003</td>
<td>3,60</td>
<td>71,40</td>
</tr>
<tr>
<td>paläozoische Sedimentgesteine</td>
<td>62</td>
<td>0,0003</td>
<td>14,90</td>
<td>91,00</td>
</tr>
<tr>
<td>saure Magmatite und Metamorphite</td>
<td>627</td>
<td>0,0003</td>
<td>0,57</td>
<td>35,00</td>
</tr>
</tbody>
</table>

Ähnliche Urankonzentrationen lassen sich auch im Sickerwasser / oberflächennahen Grundwasser (SW / oGW) am Übergang von der ungesättigten zur gesättigten Bodenzone belegen. In einer Studie der Bundesanstalt für Geowissenschaften und Rohstoffe (Utermann et al., 2009) wurden auf 50 Lockergesteinsstandorten im ländlichen Raum Norddeutschlands Urankonzentrationen im SW / oGW gemessen, die in Abhängigkeit von Landnutzung und Substrat um mehrere Zehnerpotenzen variieren können (Abb. 3).

Beim dem Datenkollektiv für ackerbaulich genutzte Flächen steigen die Mediane der Urankonzentrationen im Sickerwasser / oberflächennahen Grundwasser von Sand (< 0,1 µg/L) über Geschiebelehmm (ca. 0,5 µg/L) bis zu Löss (> 1 µg/L).
Da sich die Art der Trinkwassergewinnung und -aufbereitung regional stark unterscheiden kann, lassen die Urankonzentrationen des Grundwassers nur eingeschränkt Rückschlüsse auf die Urankonzentrationen im Trinkwasser zu.

In Abbildung 4 ist die regionale Verteilung der Urankonzentrationen im Trinkwasser auf Basis von mehr als 4.000 Einzelmessungen in Deutschland dargestellt. Tendenziell spiegeln sich die geogen bedingten Unterschiede der Urankonzentrationen im Grundwasser im Trinkwasser wider. Andererseits können innerhalb eines Bundeslandes vereinzelt sehr hohe Urankonzentrationen im Grundwasser auftreten, während die Urankonzentrationen im überwiegenden Teil der von den Wasserwerken aufbereiteten Proben unterhalb von 1 µg/L liegen.
Es bleibt festzuhalten, dass die überwiegende Mehrzahl der Wasserwerke aller Bundesländer bereits vor der Einführung des Trinkwassergrenzwertes von 10 µg/L am 01.11.2011 Trinkwasser lieferte, das unterhalb dieses Wertes – der bis dahin vom UBA als Richtwert empfohlen worden war – lag. Es ist davon auszugehen, dass heute alle Wasserwerke den Trinkwassergrenzwert von 10 µg/L einhalten.

2.5 Uran in Oberflächenwasser

Schwermetalle kommen auch in Seen und Flüssen bereits natürlicher Weise vor. Die durchschnittliche Urankonzentration liegt in Flusswasser bei 0,04 µg/L und in Meerwasser bei 3,3 µg/L (Seim & Tischendorf, 1990). Die Verteilung der Urankonzentrationen in Oberflächenfließgewässern innerhalb der Bundesrepublik Deutschland ist in Abbildung 5 dargestellt.
Es zeigen sich deutliche regionale Unterschiede. Besonders hohe Urankonzentrationen tre-
ten in den Oberflächengewässern Mecklenburg-Vorpommerns, im nördlichen Harzvorland,
im Becken von Saale und Weißer Elster sowie in der Fränkischen und Schwäbischen Alb
auf. Die Werte korrespondieren mit den Maximalkonzentrationen im Grundwasser (Tabelle 1,
vgl. z. B. „Sande und Kiese des Norddeutschen Tieflandes“) sowie mit den Maximalwerten,
die im Trinkwasser einzelner Bundesländer gemessen wurden (z. B. in Bayern, Mecklen-
burg-Vorpommern, Hessen).

Außer geogen erhöhten Urankonzentrationen in Oberflächengewässern lassen sich Uran-
konzentrationen bis zu 8 µg/L vor allem in den Flüssen nachweisen, deren Einzugsgebiet
sich in (ehemaligen) Uranbergbauregionen mit entsprechend belasteten Sedimenten befin-
det (z. B. in der Zwickauer Mulde; Wismut, 2008). Durch Überschwemmungssereignisse kön-
nen Sedimente mit erhöhten Urangehalten auch in die Überflutungsflächen eingetragen wer-
den.

Im Unterschied zu den Fließgewässern liegen derzeit für Standgewässer keine flächenhaften
Untersuchungsergebnisse vor. Czegka et al. (2008) untersuchten verschiedene Tagebau-
restseen und natürliche Seen im Raum Leipzig-Halle („Neu-Seenland“), in denen die Urankonzentrationen zwischen 0,41 – 12 µg/L variierten.

2.6 Uran in Böden

Die Urangehalte der Böden sind überwiegend geogenen Ursprungs und schwanken in Abhängigkeit von der Zusammensetzung des jeweiligen Ausgangsgesteins (Abb. 6). Die bundesweit gemittelten Hintergrundwerte für Uran liegen für Sand bei 1,0 – 1,4 mg/kg TS, für Lehm/Schluff bei 1,6 – 2,5 mg/kg TS (Lockergesteinsböden6) bis zu 6,2 mg/kg TS (Festgesteinsböden7) (Utermann et al., 2008).

Abb. 6: Boxplots für Gehalte an königswasserextrahierbarem Uran [mg/kg] in Oberböden (OB), Unterböden (UB) und Untergrund (UG), differenziert nach Gruppen von Bodenausgangsgesteinen (Utermann & Fuchs, 2008)

Abb. 7 zeigt eine Übersicht über die Verteilung der Böden in Deutschland. Werden die nach Bodenausgangsgesteinen differenzierten Hintergrundwerte (90. Perzentile) diesen Böden

5 Hintergrundwerte werden hier definiert als das 90. Perzentil der Stichprobe; sie geben den Ist-Zustand der diffus-ubiquitär belasteten Böden an und beinhalten den geogenen Grundgehalt und die ubiquitäre Stoffverteilung als Folge diffuser Einträge in den Boden (LABO 2003).

6 Lockergestein ist nicht verfestigt, zwischen den einzelnen Bestandteilen besteht kein fester Zusammenshalt (z.B. Kies, Schotter, Geröll, Sand); Lockergesteinsböden haben sich aus Lockergestein entwickelt (z.B. Schwarzerde, Fahlere, Vega).

7 Festgestein ist mechanisch widerstandsfähig, entsprechend ihrer Entstehung werden sie in sedimentäre (z.B. Tonstein), metamorphe (z.B. Gneise, Marmore) und magmatische (z.B. Granite, Basalte) Festgesteine unterschieden; Festgesteinsböden haben sich aus Festgestein entwickelt (z.B. Rendzina, Ranker)
zugeordnet, ergibt sich die in Abb. 8 dargestellte räumliche Verteilung der Uran-Hintergrundwerte. Dabei sind die Hintergrundwerte in klassierter Form getrennt für die Ober- und Unterböden ausgewiesen. Obwohl in dieser Abbildung aus Gründen der besseren Darstellbarkeit mit klassierten Werten gearbeitet wurde, spiegeln die Unterschiede in den Urangehalten deutlich den geologischen Aufbau Deutschlands wider.

Hohe Uran-Hintergrundwerte mit max. 4,5 bis 5,0 mg/kg TS (rote bis orange Farben) weisen Festgesteinsböden aus sauren Magmatiten und Metamorphiten, Tongesteinen sowie Kalk- und Mergelgesteinen auf. Mittlere Werteniveaus (gelbliche Farben) finden sich v.a. im Lössgürtel sowie den Geschiebelehmen Norddeutschlands, während die sandigen Gebiete in Norddeutschland die niedrigsten Uran-Hintergrundwerte (grüne Farben) aufweisen.

Abb. 7: Bodenübersichtskarte Deutschland (1:5 000 000) (BGR 2008)

Insbesondere im Bereich der Festgesteinsböden mit den relativ höchsten Uran-Hintergrundwerten zeigen die Unterböden ein höheres Werteniveau als die Oberböden, was auf die dominierende geogene Komponente hinweist. Die Mediane (50. Perzentile) der Urangehalte liegen im Falle der unbelasteten Böden aus Sanden, mächtigen sandigen Deckschichten sowie aus Sandlössen, Sandsteinen und Geschiebelehmen/-mergeln zwischen 0,5 mg/kg (Sande) bis 1,5 mg/kg (Geschiebelehm). Für Lössböden werden Mediane von ca. 2 mg/kg angegeben. Die höchsten Urangehalte mit Medianen von ca. 2,5 bis > 3 mg/kg weisen Böden über sauren Magmatiten und Metamorphiten sowie Ton- und Karbonatgesteinen auf (Utermann & Fuchs, 2008).
Abb. 8: Verteilung der 90. Percentile der Hintergrundgehalte (mg/kg) in Böden in Deutschland, differenziert nach Ober- und Unterböden (nach Utermann & Fuchs, 2008), grau: keine Daten

Insgesamt entsprechen die in Abb. 8 dargestellten Hintergrundwerte (90. Percentile) in Deutschland – abgesehen von Uranerzlagerstätten – den Werten, die von verschiedenen Autoren mit 2,5 – 4 mg/kg als Durchschnittsgehalt für die Lithosphäre angegeben werden (Rösler & Lange, 1976).

2.7 Uran in der Luft

Der Urangehalt in der Luft kann besonders in Ballungsräumen stark schwanken (0,08 - ca. 1,5 ng/m³) (Kownacka et al., 1990). Dies ist vor allem auf anthropogene Ursachen zurückzuführen, die in Kapitel 5.3 ausführlicher betrachtet werden.

3 Gesetzliche Regelungen

Boden

Für die radiologische Bewertung von Altlasten durch historischen Bergbau existiert ein „Richtwert“ von 0,2 Bq (U-238) (SSK, 1991b, SSK, 1992), was einem Uranenghalt von etwa 16 mg/kg entspricht.

Wasser

Abfüller abgepackter Wässer dürfen nur dann mit dem Aufdruck „geeignet für die Zubereitung von Säuglingsnahrung“ für ihr Produkt werben, wenn es (u. a.) nicht mehr als 2 µg /L Uran enthält. Dieser Wert liegt wesentlich unter dem für Säuglinge als toxikologisch unbedenklich abgeleiteten. Er beruht auf § 1 Absatz 2 der Verordnung über solche (diätetischen) Lebensmittel (DiätV, 1963), die für eine besondere Ernährung bestimmt sind und die sich deshalb „aufgrund ihrer besonderen Zusammensetzung oder des besonderen Verfahrens ihrer Herstellung deutlich von den Lebensmitteln des allgemeinen Verzehrs unterscheiden“ müssen.

Für Oberflächengewässer existiert eine Umweltqualitätsnorm für Uran in Höhe von 2 µg/L in der filtrierten Probe (Bundesoberflächengewässerverordnung, 2011).

4 **Uranlagerstätten – Uranbergbau – Altlastensanierungsgebiete**

Abb. 9: Standortübersicht der Wismut GmbH in Sachsen und Thüringen (Copyright: geomartin, 2008)
Bis 1990 war die DDR nach der UdSSR, den USA und Kanada der viertgrößte Uranproduzent der Welt; insgesamt wurden ca. 231.000 t Uran gefördert (Gatzweiler, 1996). Wie aus Abbildung 9 ersichtlich, konzentrierte sich der Abbau der Uranlagerstätten auf ein relativ kleines Gebiet in Sachsen und Thüringen.

Kleinere Uranlagerstätten befinden sich auch in Bayern (Oberpfalz, Tirschenreuth), in Baden-Württemberg (Schwarzwald, Menzenschwand) und in Rheinland-Pfalz (Ellweiler) (Koß et al. 1992; Ziegler & Dardel, 1984).

Der Abbau des Uranerzes auf dem Gebiet der DDR erfolgte durch die SAG und später durch die SDAG Wismut. Durch diese Aktiengesellschaft wurde das gewonnene Erz aufbereitet und die Aufbereitungsschlämmen in so genannten Industriellen Absetzanlagen gepumpt (Abb. 10).

- Halden aufstandsflächen: 1.520 ha
- Haldenvolumen: 312 Mio. m³
- Industrielle Absetzanlagen: 14 (ca. 690 ha, Wismut 1993)
- sonstige Betriebsflächen der SDAG Wismut ca. 1.550 ha (Wismut 1993)
- Wasser (Reinigung / Behandlung): 214 Mio. m³

Das behandelte Wasser wird vorrangig in die Zwickauer Mulde (Abb. 10), untergeordnet auch in die Elbe, Weiße Elster und Pleiße eingeleitet. Dabei wurden zwischen 1999 und 2008 jährlich zwischen 2,2 und 4,5 t Uran in die Oberflächengewässer eingetragen (Wismut, 2008).

SAG: Sowjetische Aktien-Gesellschaft, SDAG: Sowjetisch-Deutsche Aktien-Gesellschaft
5 Diffuse Uraneinträge in Böden und Wasser

Während die Altlastenproblematik als Folge des Uranbergbaus eine eher punktförmige bzw. regional wirksame Belastung der Böden und Gewässer zur Folge hat, tragen verschiedene diffuse Quellen deutschlandweit in unterschiedlichem Ausmaß zur flächenhaften Belastung der Böden und Gewässer mit Uran bei.

5.1 Uraneinträge durch Düngung

Rohphosphat enthält – abhängig von seiner Entstehung – Uran. 90% aller abgebauten Rohphosphate werden zur Düngemittelherstellung genutzt. Entsprechend hängt der Urangehalt im Phosphatdünger von der Herkunft des Rohphosphates ab. Während die wenigen magmatischen Lagerstätten9 fast frei von Uran sind (Urangehalte < 10 mg/kg; Dybeck 1962), weisen die sedimentären Lagerstätten10 unterschiedlich hohe Urangehalte auf (Baturin & Kochenov, 2001).

Je nach Art der Verarbeitung und abhängig von der Aufschlussmethode variieren somit auch die Urangehalte in den Düngemitteln (vgl. Tabelle 2).

9 z. B. Russland (Kola-Apatit), Südafrika, Brasilien
10 z. B. Marokko, Algerien, Tunesien, Ägypten, USA, China
Tabelle 2: Urangehalte (mg/kg Düngemittel) verschiedener Phosphatdünger (Kratz et al., 2008)

<table>
<thead>
<tr>
<th>Düngertyp / Ursprung</th>
<th>n</th>
<th>Min.</th>
<th>Max.</th>
<th>Mittelwert</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superphosphat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>3</td>
<td>60.5</td>
<td>172</td>
<td>104</td>
<td>6, 9</td>
</tr>
<tr>
<td>Mexiko</td>
<td>5</td>
<td>90.2</td>
<td>90.6</td>
<td>90.5</td>
<td>4, 5</td>
</tr>
<tr>
<td>Brasilien</td>
<td>11</td>
<td>21.4</td>
<td>93.7</td>
<td>65.2</td>
<td>2, 13</td>
</tr>
<tr>
<td>Tansania</td>
<td>1</td>
<td></td>
<td></td>
<td>325</td>
<td>8</td>
</tr>
<tr>
<td>Ungarn (RP Kola)</td>
<td>6</td>
<td>1.8</td>
<td>2.0</td>
<td>2.0</td>
<td>1</td>
</tr>
<tr>
<td>Deutschland (RP unbekannt)</td>
<td>1</td>
<td></td>
<td></td>
<td>91</td>
<td>1</td>
</tr>
<tr>
<td>Triple Superphosphat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>4</td>
<td>143</td>
<td>208</td>
<td>178</td>
<td>6, 9, 11</td>
</tr>
<tr>
<td>Mexiko</td>
<td>4</td>
<td>196</td>
<td>197</td>
<td>197</td>
<td>4, 5</td>
</tr>
<tr>
<td>Brasilien</td>
<td>11</td>
<td>14.7</td>
<td>69.7</td>
<td>50.2</td>
<td>2, 13</td>
</tr>
<tr>
<td>Tansania</td>
<td>1</td>
<td></td>
<td></td>
<td>362</td>
<td>8</td>
</tr>
<tr>
<td>Deutschland (RP unbekannt)</td>
<td>2</td>
<td>52.3</td>
<td>160</td>
<td>106</td>
<td>1</td>
</tr>
<tr>
<td>Weicherdiges/gemahlenes Rohphosphat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>4</td>
<td>8.7</td>
<td>144</td>
<td>42.9</td>
<td>6</td>
</tr>
<tr>
<td>Nord-Afrika</td>
<td>32</td>
<td>10</td>
<td>1117</td>
<td>205</td>
<td>7, 12</td>
</tr>
<tr>
<td>Deutschland (RP unbekannt)</td>
<td>2</td>
<td>56.6</td>
<td>72.9</td>
<td>64.8</td>
<td>1</td>
</tr>
<tr>
<td>NP Dünger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>16</td>
<td>161</td>
<td>165</td>
<td>163</td>
<td>11</td>
</tr>
<tr>
<td>Mexiko</td>
<td>1</td>
<td></td>
<td></td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>Brasilien</td>
<td>2</td>
<td>49.6</td>
<td>93.8</td>
<td>71.7</td>
<td>2</td>
</tr>
<tr>
<td>Marokko</td>
<td>1</td>
<td></td>
<td></td>
<td>133</td>
<td>3</td>
</tr>
<tr>
<td>Rumänien (RP unbekannt)</td>
<td>4</td>
<td>3.5</td>
<td>149</td>
<td>59.4</td>
<td>10</td>
</tr>
<tr>
<td>Ungarn (RP Kola)</td>
<td>2</td>
<td>2.8</td>
<td>3.0</td>
<td>2.9</td>
<td>1</td>
</tr>
<tr>
<td>Deutschland (RP unbekannt)</td>
<td>3</td>
<td>0.62</td>
<td>61</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>PK Dünger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>3</td>
<td>69.9</td>
<td>109</td>
<td>89.4</td>
<td>9</td>
</tr>
<tr>
<td>Belgien (RP unbekannt)</td>
<td>1</td>
<td></td>
<td></td>
<td>98.6</td>
<td>3</td>
</tr>
<tr>
<td>Deutschland (RP unbekannt)</td>
<td>3</td>
<td>31.2</td>
<td>163</td>
<td>82.1</td>
<td>1</td>
</tr>
<tr>
<td>NPK Dünger</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td>5</td>
<td>39.7</td>
<td>113</td>
<td>65.5</td>
<td>9</td>
</tr>
<tr>
<td>Brasilien</td>
<td>12</td>
<td>5.2</td>
<td>54.3</td>
<td>27.1</td>
<td>14</td>
</tr>
<tr>
<td>Rumänien (RP unbekannt)</td>
<td>3</td>
<td>24</td>
<td>62</td>
<td>42.7</td>
<td>10</td>
</tr>
<tr>
<td>Ungarn (RP Kola)</td>
<td>8</td>
<td>0.04</td>
<td>1.9</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Belgien (RP unbekannt)</td>
<td>1</td>
<td></td>
<td></td>
<td>46</td>
<td>3</td>
</tr>
<tr>
<td>Deutschland (RP unbekannt)</td>
<td>20</td>
<td><0.05</td>
<td>33.3</td>
<td>9.9</td>
<td>1</td>
</tr>
</tbody>
</table>

1 FAL sample collection, 2003-2007; 2 Conceicao & Bonotto, 2006; 3 El Ghawi et al., 1999; 4 Godinez et al., 1997; 5 Guzman et al., 1995; 6 Hamamo et al., 1995; 7 Heiland, 1986; 8 Makweba & Holm, 1993; 9 McBride & Spears, 2001; 10 Pantelica et al., 1997; 11 Robarge et al., 2004; 12 Sam et al., 1999; 13 Sauelia & Mazilli, 2006; 14 Yamazaki & Geraldo, 2003; RP = Rohphosphat
Auch organische Dünger können Uran enthalten. Bei Klärschlamm haben sich die Gehalte zwischen Anfang der neunziger Jahre und 2008 ungefähr verdreifacht (BfS, 1994; 2008), von 1,2 mg/kg TM auf ≈ 3,0 mg/kg TM (Median). Kratz & Schnug (2006) weisen sogar 3,5 mg/kg als Medianwert von 204 deutschlandweit untersuchten Klärschlämmen aus.

Uran wurde auch in Stallmist (Bsp.: Rindermist: 0,05 – 3,7 mg/kg TM) und Gülle (Bsp.: Rindergülle: 0,09 – 0,23 mg/kg TM) nachgewiesen (Kratz & Schnug, 2006).

Eine Abschätzung möglicher Uraneinträge aus verschiedenen Düngemitteln (ausgehend von einer Düngung von 22 kg Phosphor/ha*a) ist anhand Tabelle 3 möglich.

Tabelle 3: Uraneinträge über Phosphor-Düngung mit verschiedenen Mehrnährstoffdüngern sowie Rindergülle und Klärschlamm (ausgehend von: 22 kg Phosphor/ha) (Kratz et al., 2008)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TSP (Triple-Superphosphat)</td>
<td>16,6 – 20,6</td>
<td></td>
<td>52,3 - 362</td>
<td></td>
<td>5,6 - 48</td>
<td></td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>NP (Stickstoff-Phosphat-Dünger)</td>
<td>5,3 – 25,8</td>
<td></td>
<td>0,62 – 198</td>
<td></td>
<td>0,05 – 82</td>
<td></td>
<td>7,0</td>
<td></td>
</tr>
<tr>
<td>PK (Phosphat-Kalium-Dünger)</td>
<td>5,8 – 13,4</td>
<td></td>
<td>31,2 - 163</td>
<td></td>
<td>5,1 - 61</td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>NPK (Stickstoff-Phosphat-Kalium-Dünger)</td>
<td>1,5 – 13,5</td>
<td></td>
<td>0,04 - 113</td>
<td></td>
<td>0,01 - 166</td>
<td></td>
<td>8,0</td>
<td></td>
</tr>
<tr>
<td>Rindergülle</td>
<td>0,43 – 2,1</td>
<td></td>
<td>0,15 – 1,4</td>
<td></td>
<td>0,16 – 7</td>
<td></td>
<td>2,9</td>
<td></td>
</tr>
<tr>
<td>Klärschlamm</td>
<td>2,1 – 2,2</td>
<td></td>
<td>0,0005 – 18,5</td>
<td></td>
<td>0,001 – 19</td>
<td></td>
<td>3,2</td>
<td></td>
</tr>
</tbody>
</table>

Es wird deutlich, dass die Urangehalte und resultierende Einträge in die Böden bei organischen Düngemittel weit niedriger als bei gängigen Mineraldüngern liegen.

Einen Hinweis auf die schleichende Anreicherung von Uran in Oberböden als Folge der Phosphatdüngung auf landwirtschaftlich genutzten Flächen identifizieren Utermann & Fuchs (2008) anhand von Bodenuntersuchungen an ca. 1.000 land- und forstwirtschaftlich genutzten Standorten in Deutschland, wo die Gehalte an königswasserextrahierbarem Uran in Ober- und Unterböden erfasst wurden.

Im Vergleich zu Forstböden, für die ein langjähriger Uraneintrag über Phosphatdünger ausgeschlossen werden kann, wiesen ackerbäulich genutzte Böden eine mittlere Anreicherung von 0,15 mg Uran/kg auf. Bezogen auf die mittleren Urangehalte in Sanden und Geschiebelehm bestätigen diese Befunde den im Rahmen der geochemischen Inventur der Ostseeklärschlämme aus Norddeutschland ausgewiesenen Anreicherungsfaktor von ca. 1,2.
5.2 Uraneinträge durch Niederschlagswasser

Uran kann durch Niederschlagswasser in Böden und Oberflächengewässer eingetragen werden. In Tabelle 4 sind auf der Grundlage von Urankonzentrationen im Niederschlagswasser die minimal und maximal zu erwartenden Uranfrachten für einen durchschnittlichen Jahresniederschlag von 650 mm berechnet.

<table>
<thead>
<tr>
<th>Aktivitätskonzentration [mBq/L]</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,02</td>
<td>1,4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0,002</td>
<td>0,113</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fracht [mg/ha-a]</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,5</td>
<td>734</td>
<td></td>
</tr>
</tbody>
</table>

5.3 Uraneinträge über die Luft

Abb. 12: Haldenlandschaft Schlema, 1965 (Wismut GmbH)

6 Diffuse Uranausträge aus Böden und Transfer in die Nahrungs-Kette

Pfad Boden – Grundwasser

Es gibt bislang nur sehr wenige Untersuchungsergebnisse über die Urankonzentrationen im Sickerwasser natürlicher Böden. Gleichwohl gibt es eine Reihe gut belegter wissenschaftlicher Annahmen über das Verhalten von Uran in Böden. Uran wird in Böden bevorzugt an der organischen Substanz, nachgeordnet aber auch an Tonmineralen sorbiert (Merkel, 2009). Da Uran mit organischen Säuren (Humin- und Fulvosäuren) Komplexe bildet, begünstigt das Vorhandensein von Huminstoffen die Rückhaltefähigkeit des Bodens gegenüber Uran.

Sickerwasser von Tailings aus der Uranerzaufbereitung enthalten durchschnittlich 1 – 15 mg/L Uran (Brackhage et al., 1999, Dienemann et al., 2002).

Pfad Boden – Pflanze

Gefäßpflanzen können Uran grundsätzlich über die Wurzel aufnehmen und dort anreichern. Wenn eine Aufnahme durch Pflanzen stattgefunden hat, lassen sich in den Wurzeln die höchsten Urangehalte messen; in den oberirdischen Pflanzenteilen sind die Urangehalte noch deutlich geringer (Brackhage et al., 1999, Barley et al., 2005).

11 Eine strahlenschutzrechtliche Relevanz ist aufgrund der geringen Radiotoxizität nicht gegeben.
12 Spezierung bezeichnet in diesem Fall die chemische Ausprägung (Spezies) von Uran (…)
13 Tailings sind feinkörnige Rückstände, die in Form von Schlämmen vorliegen
Insgesamt ist der Pfad Boden – Pflanze von untergeordneter Bedeutung, da die Aufnahme sehr gering ist. Der Entzug von Uran mit Ernteprodukten liegt deutlich unter 0,5 g/ha Uran (Kratz et al., 2008).

7 Fazit und Handlungsempfehlungen

Die Urangehalte in Böden schwanken naturbedingt zwischen < 1 mg/kg und ca. 5 mg/kg Boden. Im Grundwasser variieren die Urankonzentrationen stärker zwischen < 0,001 µg/L und ca 10 µg/L, liegen i. d. R. jedoch unterhalb von 10 µg/L. Höhere Urankonzentrationen finden sich in Oberflächengewässern, die durchschnittlichen Urankonzentrationen liegen in Flusswasser bei 0,04 µg/L und in Meerwasser bei 3,3 µg/L. Auch Sedimente und Böden im Einflussbereich ehemaliger Uranbergbauregionen (z. B. Zwickauer Mulde) enthalten vermehrt Uran.

Durch menschliches Tun wird Uran in die Böden Deutschlands primär im Zuge der Verwendung uranhaltiger, mineralischer Phosphatdünger auf landwirtschaftlich genutzten Flächen eingetragen. Eine Reduzierung des Eintrags durch Entfernung von Uran aus den Rohphosphaten sowie die Rückgewinnung von Uran aus Kraftwerksaschen ist technisch möglich, wird wohl aber erst mit deutlich steigenden Rohstoffpreisen wirtschaftlich attraktiv.

Um die unerwünschte Anreicherung von Uran in Böden im Zuge der Düngung landwirtschaftlich genutzter Flächen mit mineralischen Phosphatdüngern zu begrenzen, setzt sich das Umweltbundesamt in Übereinstimmung mit der Kommission Bodenschutz (KBU 2011 14) unter Vorsorgeaspekten für die folgenden Maßnahmen ein:

1. Der Urangehalt in Phosphatdüngern sollte in der Düngemittel-Verordnung wie folgt geregelt werden:
 • Kurzfristige Einführung einer Kennzeichnungspflicht von Phosphatdüngern ab einem Urangehalt von 20 mg/kg P₂O₅. Diese Kennzeichnung ermöglicht es dem Anwender gezielt Uran-arme Phosphatdünger einzusetzen.
 • Mittelfristige Festlegung eines Uran-Grenzwertes in Höhe von 50 mg/kg P₂O₅. Die Einführung eines Grenzwertes für das Inverkehrbringen von Düngemitteln setzt voraus, dass für die Entfernung von Uran aus den Rohphosphaten entsprechende technische Kapazitäten vorhanden sind und die Maßnahme wirtschaftlich vertretbar ist. Der Grenzwert berücksichtigt die Uranentzüge durch Kulturpflanzen.

2. Entsprechende Begrenzungen sollten sowohl für die Uran- als auch die Cadmiumgehalte in Phosphatdüngern auf EU-Ebene eingeführt werden.

Forschungsbedarf besteht insbesondere zum ökotoxikologischen Verhalten von Uran, vor allem im Hinblick auf Uranwirkungen auf die Fauna des Grundwassers und des Bodens. Auch die standortspezifischen und produktionstechnischen Randbedingungen des Einflusses der Mineraldüngung auf die Urankonzentrationen des Sickerwassers und des Grundwassers

sowie die Mobilität und damit Verlagerung des Urans sind noch nicht ausreichend untersucht.
Literatur

Fraktion BÜNDNIS 90/DIE GRÜNEN: „Zukunft der Kohleverstromung“ – Drucksache 16/8554; Drucksache 16/9032 5.5.2008

Sächsisches Landesamt für Umwelt und Geologie (LfUG) (1998): Uran in Oberböden, Karte

