Quantitative biokinetic analysis of radioactively labelled, inhaled Titanium dioxide Nanoparticles in a rat model
Quantitative biokinetic analysis of radioactively labelled, inhaled Titanium dioxide Nanoparticles in a rat model

by

Wolfgang G. Kreyling
Alexander Wenk
Manuela Semmler-Behnke

Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Institut für Lungenbiologie und Erkrankungen, Netzwerk Nanopartikel und Gesundheit

On behalf of the German Federal Environment Agency
Report Cover Sheet

1. Report No.
UBA-FB 001357

4. Report Title
Quantitative biokinetic analysis of radioactively labelled, inhaled Titanium dioxide Nanoparticles in a rat model

5. Autor(s), Family Name(s), First Name(s)
- Kreyling, Wolfgang G.
- Wenk, Alexander
- Behnke, Manuela

6. Performing Organisation (Name, Address)
Helmholtz Zentrum München, German Research Center for Environmental Health
Institute of Lung Biology and Disease
Ingolstädter Landstr. 1
85746 Neuherberg / München

7. Sponsoring Agency (Name, Address)
Umweltbundesamt, Postfach 14 06, 06813 Dessau-Roßlau

10. UFOPLAN-Ref. No.
FKZ 3707 61 301 1

15. Supplementary Notes

16. Abstract
The aim of this project was the determination of the biokinetics of TiO$_2$ nanoparticles (NP) in the whole body of healthy adult rats after NP administration to the respiratory tract – either via inhalation or instillation. We developed an own methodology to freshly synthesize and aerosolize TiO$_2$-NP in our lab for the use of inhalation studies. These NP underwent a detailed physical and chemical characterization providing pure polycrystalline anatase TiO$_2$-NP of about 20 nm (geometric standard deviation 1.6) and a specific surface area of 270 m2/g. In addition, we developed techniques for sufficiently stable radioactive 48V labelling of the TiO$_2$ NP. The kinetics of solubility of 48V was thoroughly determined. The methodology of quantitative biokinetics allows for a quantitative balance of the retained and excreted NP in control of the administered NP dose and provides a much more precise determination of NP fractions and concentrations of NP in organs and tissues of interest as compared to spotting biokinetics studies. Small fractions of TiO$_2$-NP translocate across the air-blood-barrier and accumulate in secondary target organs, soft tissue and skeleton. The amount of translocated TiO$_2$-NP is approximately 2% of TiO$_2$-NP deposited in the lungs. A prominent fraction of these translocated TiO$_2$-NP was found in the remainder. Smaller amounts of TiO$_2$-NP accumulate in secondary organs following particular kinetics. TiO$_2$-NP translocation was grossly accomplished within the first 2-4 hours after inhalation followed by retention in all organs and tissues studied without any detectable clearance of these biopersistent TiO$_2$-NP within 28 days. Therefore, our data suggest crossing of the air-blood-barrier of the lungs and subsequent accumulation in secondary organs and tissues depends on the NP material and its physico-chemical properties. Furthermore, we extrapolate that during repeated or chronic exposure to insoluble NP the translocated fraction of NP will accumulate in secondary target organs. When these NP are biopersistent as the materials we have studied, much higher NP doses are expected to accumulate in secondary target organs than after our two-hours inhalation studies. In this case accumulated NP doses may well reach levels of the initiation or the modulation of adverse health effects. Hence, further studies are necessary investigating the biokinetics and toxicologically relevant responses and the underlying mechanisms of TiO$_2$ NP in secondary target organs after chronic exposure.

17. Keywords
- Titanium dioxide nanoparticles, anatase, inhalation, biokinetics study, secondary organs and tissues, radioactive label 48V
Table of Contents

I. Short presentation ... 2

I.1. Tasks of the project ... 2
I.2. Premises of this R&D project .. 2
I.3. Design and procedure of the project .. 3
I.4. Scientific and technical status to be based on 4
I.5. Cooperation with other Partners .. 5

II. Comprehensive presentation of results 5

II.1. Achieved goals ... 5
 II.1.1. Background and Introduction ... 5
 II.1.2. Materials and Methods .. 6
 II.1.2.1. Materials ... 6
 II.1.2.1.1. Radiolabeling of commercial TiO₂ NP 6
 II.1.2.1.2. Production of 48V radioactive labeled TiO₂ NP by means of a spark generator ... 7
 II.1.2.2. Characterization .. 8
 II.1.2.3. In vitro solubility of 48V radio-labeled TiO₂ NP 9
 II.1.2.4. Laboratory animals .. 9
 II.1.2.5 Concept of quantitative biokinetic studies 9
 II.1.2.6 48V labeled TiO₂ NP applications 10
 II.1.2.6.1. Inhalation .. 10
 II.1.2.6.2. Intratracheal instillation 11
 II.1.2.7. Supporting studies ... 11
 II.1.2.7.1. Determination of biokinetic distribution of intravenously injected 48V-TiO₂ NPsuspension .. 11
 II.1.2.7.2. Determining the biokinetic distribution of intra-esophageal applied 48V- TiO₂ NPsuspension (i.e. gavage) 11
 II.1.2.7.3. Determining biokinetic distribution of dissolved 48V radio labelling .. 12
 II.1.2.8 Retention and clearance of TiO₂ NP 12
 II.1.2.9 Radioanalytical measurement and analysis 12
II.1.2.9.1 Correction on „fast clearance“ after inhalation or intratracheal instillation

II.1.2.9.2 Correction for dissolved 48V eventually leached off the administered TiO2 NP

II.1.2.10 Statistics

II.1.3 Results and discussion

II.1.3.1 Dispersion of available TiO2 nano-particles (NP) in aqueous media

II.1.3.2 Characterization of our own tailor-made 48V-TiO2 NP-aerosols generated with a spark generator

II.1.3.3 Results of in vivo studies

II.1.3.3.1 Biokinetics auf dissolved 48V following intratracheal or intravenous application in adult rats

II.1.3.3.2 Inhalation of 20 nm 48V radioactive labelled TiO2-NP by computer-controlled breathing of intratracheal intubated adult rats

II.1.3.3.2. Intratracheal Instillation and intravenous injection of P25 48V-TiO2-NP (<100 nm) in adult rats

II.1.3.3.3 Influence of the material of the particles regarding the translocation via the blood-air-barrier of the lung 24 hours after inhalation

II.1.4 Summary and Evaluation of the Results

II.1.5 Literature

II.2 Expected benefit and exploitation of the results

II.3 Other R&D related projects and their progress

II.4 Anticipated and already available publications of the results
Table of Figures and Tables

Fig. II.1.2.5.a: Scheme of the quantitative biokinetic studies

Fig. II.1.2.6.a: Computer-controlled ventilation of intubated and anaesthetized rats in plethysmograph boxes.

Fig. II.1.2.6.b: NP distribution in the lungs measured with gamma camera (left) and for comparison a dried rat lung at complete inspiration.

Fig. II.1.2.9.a: Left: Scheme of gamma-spectroscopic measurements with an automated sample changer. Center: Measuring station for large samples of a volume up to 1 liter. Right: Measuring station for small samples up to a volume of 10 mL.

Figure II.1.3.1.a: DLS measurement of the size distribution inactive (on the left) and a radioactive labeled size fraction (on the right) of P25 TiO2 NP.

Figure II.1.3.2.a: Aerosol data from the inhalation study for the 24-hours retention study. Top left: mean NP aerosol spectrum during the whole inhalation period. Top right: Median NP electrical mobility diameter (red) and geometric standard deviation (blue) of the aerosol during the inhalation measured with SMPS. Left: NP aerosol concentration during the inhalation, measured with a CPC3022.

Figure II.1.3.2.b: NP aerosol spectrum of the thermally treated (left) and the thermally untreated NP (right)

Figure II.1.3.2.c: left: thermally aftertreated crystalline TiO2 NP; 39170x magnification. Right: thermally untreated amorphous TiO2 NP; 39170x magnification

Figure II.1.3.2.d: left: thermally aftertreated crystalline TiO2 NP; 1090000x magnification. On the right: thermally untreated amorphous TiO2 NP; 559000x magnification.

Figure II.1.3.2.e: XEDS analysis in the HRTEM confirms that the NP are chemically composed of TiO2. Beside the peaks for Ti and O2 the copper lines of the EM substrate are recognised.

Figure II.1.3.2.f: X-ray diffraction analysis (XRD) of a TiO2 NP sample on a silicone wafer demonstrating dominance of anatase.

Figure II.1.3.3.1.a: Distribution of dissolved 48V in single organs, the remainder, and in urine following intratracheal instillation (left) and after intravenously injection (right) 24-hours and 7 days after application.

Figure II.1.3.3.2.a: Biokinetics of TiO2-NP following to a 2-hours inhalation period and various autopsy time points (0h, 4h, 24h, 7d und 28d).

Figure II.1.3.3.2.b: Fractions of NP found in lavaged lungs, broncho alveolar lavage fluid, and in the BAL cells and supernatant. Note, the sum of “lungs” and “total BAL” is smaller than unity because of the translocated fraction.

Figure II.1.3.3.3.a: Raw data of distribution of 48V-TiO2-NP investigated 24 hours after intratracheal instillation (left figure) and after the correction regarding the dissolved fraction of 48V (right figure)

Figure II.1.3.3.3.b: Raw data of distribution of 48V-TiO2-NP, investigated 24h after intravenous injection (left figure) and after the correction regarding the dissolved 48V (right figure)

Figure II.1.3.3.3.c: Translocation of inhaled NP composed of different materials via the blood-air-barrier, 24 hours after inhalation
Figure 3.3.3.d: Translocation and accumulation of NP composed of different materials 24 hours after inhalation.

Table: TiO$_2$-NP-aerosol characterisation
1. Tasks of the project; Aufgabenstellung,

The aim of this project was the determination of the biokinetics of TiO₂ nanoparticles (NP) in the whole body of healthy adult rats after NP administration to the respiratory tract – either via inhalation or instillation. Here we offered applying our previously developed methodology of quantitative biokinetics using radio-labelled NP. Quantitative biokinetics means that not only the NP absolute contents and concentrations of NP in primary and secondary organs and tissues of interest are determined but also those of the remaining body (carcass) and those in faecal and urinary excretion. This methodology of quantitative biokinetics allows for a quantitative balance of the retained and excreted NP in control of the administered NP dose and provides a much more precise determination of NP fractions and concentrations of NP in organs and tissues of interest. In addition, the radio-analysis provides a dynamics of radioactive quantities ranging over more than four orders of magnitude which in turn allows for a precise determination of low NP contents in organs of highest interest like brain, heart, genital organs, etc. Another advantage is the absence of any physical-chemical preparatory step prior to the radio-analysis which frequently will lead to artificial losses when NP quantities are very low. A major challenge is the firmly bound radio-labelling to the NP matrix which requires careful development.

2. Premises of this R&D project; Voraussetzungen, unter denen das FE-Vorhaben durchgeführt wurde,

We already performed inhalation studies followed by quantitative biokinetics analysis using radio-labelled iridium NP aerosols of 20 and 80 nm median diameter (Kreyling et al., 2002; Semmler et al., 2004 + 2007) and meanwhile also inhalation of 20 nm radio-labelled elemental carbon NP (Kreyling et al., 2009). We also performed instillation studies by quantitative biokinetics analysis using radio-labelled gold NP (Semmler-Behnke et all., 2008). For these previous studies we have characterized the various NP very carefully as detailed in the papers and (Szymczak et al., 2007).

In addition, we have already performed inhalation studies followed by morphometric analyses of the lungs using non-radioactive TiO₂ aerosols of 20 nm median diameter (Kapp et al., 2004, Geiser et al., 2005, Geiser et al., 2008).
1. Use of our inhalation apparatuses ranging from whole-body-exposure, to nose-only-exposure to intubation / ventilation inhalation.

2. Development of NP radio-labelling
 a. Development of radio-labelling of available industrial TiO$_2$ NP (e.g. P25) using proton irradiation at a cyclotron and leaching tests for the confirmation of the firmly bound radiolabel in the NP matrix.
 b. Development of the modification and adaptation of our existing spark-ignition NP aerosol generator using radio-labelled titanium electrodes

3. Application of our well established instillation protocol

4. Application of our well established analytical methodology of quantitative biokinetics

5. Application of our well established dissection protocol with an emphasis on the minimization of cross contamination

6. Application of our well established gamma spectrometers for radio analysis

7. Application of our well established computer routines for data evaluation

3. Design and procedure of the project; Planung und Ablauf des Vorhabens,

The design of the project is based on the previously developed methodology on quantitative biokinetics after the administration of radio-labelled NP.

Quantitative biokinetics
Briefly, quantitative biokinetics means that not only the NP absolute contents and concentrations of NP in primary and secondary organs and tissues of interest are determined but also those of the remaining body (carcass) and those in faecal and urinary excretion. This methodology of quantitative biokinetics allows for a quantitative balance of the retained and excreted NP in control of the administered NP dose and provides a much more precise determination of NP fractions and concentrations of NP in organs and tissues of interest. In addition, the radio-analysis allows for a dynamics of radioactive quantities over more than four orders of magnitude. No any physical-chemical preparatory step prior to the radio-analysis is required, which frequently will lead to artificial losses when NP quantities are very low.

Radio-labelling of NP
In a first attempt proton irradiation of a powder of available industrial TiO$_2$ (P25, Degussa / Evonik) was performed using a cyclotron accelerator operated by ZAG GmbH in Karlsruhe. This allowed 48V radio-labelling of the TiO$_2$ NP. Tests at ZAG Karlsruhe were performed to optimize irradiation conditions to achieve sufficiently a high specific radioactivity of the NP. Subsequently, we tested the radio-labelled NP for sufficiently low leaching rates of the radio-label 48V off the TiO$_2$ NP.

In a second attempt we developed a methodology proton irradiating titanium electrodes selectively at their tip providing sufficiently high specific 48V radioactivity solely at the one tip of the electrodes. These were then used in our spark-ignition NP aerosol generator adapted to the use of highly radioactive electrodes under the conditions of safe operation and the regulations of radiation protection. In pilot studies we tested the radio-labelled NP for sufficiently low leaching rates of the radio-label 48V off the TiO$_2$ NP. The NP aerosols generation was based on protocols derived from our previous studies using non-radioactive TiO$_2$ NP aerosols. It turned out that further engineering of the NP aerosol production was required to minimize 48V radio-label leaching off the TiO$_2$ NP. This was achieved by introducing a heat degradation unit in the downstream NP aerosol line to further stabilize
the tested radio-labelled NP for sufficiently low leaching rates of the radio-label ^{48}V within the TiO$_2$ NP.

Inhalation of freshly produced ^{48}V radio-labelled TiO$_2$ NP

Inhalation of freshly produced ^{48}V radio-labelled TiO$_2$ NP using the modified and adapted spark ignition NP aerosol generator was based on the previously developed inhalation protocols used for the previous NP, see Top 2 above.

Instillation of suspensions of ^{48}V radio-labelled TiO$_2$ NP

Protocols for the instillation of suspensions of ^{48}V radio-labelled TiO$_2$ NP were based on those derived previously (see Refs. in Top 2) and adapted to the requirements resulting from the physico-chemical properties of the TiO$_2$ NP, e.g. dispersion protocols.

Dissection, radio-analysis and data evaluation

Protocols for dissection, radio-analysis and data evaluation were based on those derived previously (see Refs. in Top 2) and adapted accordingly.

4. Scientific and technical status to be based on;

- **wissenschaftlichem und technischem Stand, an den angeknüpft wurde, insbesondere**

1. Adaptation and use of our inhalation apparatuses ranging from whole-body-exposure, to nose-only-exposure to intubation / ventilation inhalation.
2. Experimental experience from methods of previous NP radio-labelling; (Kreyling et al., 2002; Semmler et al., 2004 + 2007; Kreyling et al., 2009; Semmler-Behnke et all., 2008; Szymczak et al., 2007)
3. Application and adaptation of our well established instillation protocol
4. Application and adaptation of our well established analytical methodology of quantitative biokinetics
5. Application and adaptation of our well established dissection protocol with an emphasis on the minimization of cross contamination
6. Application and adaptation of our well established gamma spectrometers for radio analysis
7. Application and adaptation of our well established computer routines for data evaluation

- **list of known constructions, protocols and IPR to be used in the project**

Angabe bekannter Konstruktionen, Verfahren und Schutzrechte, die für die Durchführung des FE-Vorhabens benutzt wurden,

- **list of literature references and literature data bases;** Angabe der verwendeten Fachliteratur sowie der benutzten Informations- und Dokumentationsdienste,

- List of Endnote based literature data bases of more than 10 000 entries collected over the last three decades
- Libraries at the Helmholtz Center Munich, Ludwig-Maximillian-University, Technical University Munich
- Intensive use of international search tools like Pubmed, Medline, Web of Sciences, Google, etc.
5. Cooperation with other Partners

Zusammenarbeit mit anderen Stellen.

For the radio-labelling of the TiO₂ NP or Ti electrodes close cooperation and scientific exchange with ZAG GmbH, Karlsruhe, was mandatory. In addition, for design and concept of the radio-labelling of the TiO₂ NP or Ti electrodes we frequently consulted:

1. Prof. Dr. Tilman Butz, Director of the Institute of Nuclear Solid State Physics, University of Leipzig, Linnéstr. 5, 04103 Leipzig
2. Dr. Neil Gibson, Institute for Health and Consumer Protection, Joint Research Centre TP 500, Via E. Fermi, 2749, I-21027 Ispra (VA), Italy

For the characterization of the own taylor-made TiO₂ NP we consulted several colleagues highly acknowledged in their scientific community and sourced out various characterization methods to them:

1. EELS-TEM, EFTEM: Prof. Dr. Marianne Geiser,
2. HRTEM + XEDS: Prof. Dr. Knut Deppert, University of Lund, Institute of Solid State Physics, Box 118, 22100 Lund, Sweden
3. XRD: Dr. Neil Gibson, Institute for Health and Consumer Protection, Joint Research Centre TP 500, Via E. Fermi, 2749, I-21027 Ispra (VA), Italy
4. XRD + BET: Prof. Dr. Pratim Biswas, Washington University in St Louis, Department of Energy, Environmental & Chemical Engineering, Campus Box 1180, One Brookings Drive, St. Louis, MO 63130, USA
5. Consultation of international experts in nanoparticle toxicology:
 a. Prof. Dr. Günter Oberdörster, University of Rochester, USA;
 b. Ken Donaldson, University of Edinburgh, UK;
 c. Vicki Stone, Napier University of Edinburgh, UK;
 d. Prof. Dr. Paul Borm, University of Maastricht, Netherlands;
 e. Prof. Dr. Kenneth Dawson, University College Dublin, Ireland
6. Consultation of infrastructural expertise provided within the Helmholtz Center Munich and particularly within our Institute of Lung Biology & Disease (iLBD).

II. Comprehensive presentation of results Eingehende Darstellung

1. Achieved goals; des erzielten Ergebnisses,

II.1.1. Background and Introduction

In the present study, the biokinetics of small nanoparticles (NP) with a diameter of less than 50 nm was investigated using healthy adult rats. The particles were aerosolized and inhaled by the rats as well as instilled. Since most of the already existing studies investigated the kinetics and toxicology of larger TiO₂ particle-aggregates (> 200 nm), we decided to focus on these relatively small TiO₂ nanoparticles with a diameter less than 50 nm. Considering this, our study differs significantly from the BMBF project NanoCare. In detail, NanoCare focuses on upgrade and partially validation of already existing data. Furthermore, in the
NanoCare studies as well as the already existing literature, the retention of TiO₂ particles was mainly studied in the respiratory tract. In addition, selected organs as well as the whole body were analysed with an accuracy of 1%.

Approximately 100 000 tons of TiO₂ nanoparticles and microparticles are produced per year. An extensive exposure of the whole population, special groups of people and especially susceptible individuals are the consequence (Lomer et al., 2004). Therefore, to study the biokinetic behaviour of these particles following to inhalation is indispensable.

Previously, we developed a method to quantitatively determine radioactive labeled nanoparticles. Thereby, a macroscopic analysis of the retained fraction of nanoparticles in selected organs is warranted (Kreyling et al., 2002; Semmler et al., 2004). These fractions can be relatively calculated in proportion to the whole amount of particles in the body as well as the excrement. This quantitative dosimetric method warrants a very effective analysis of the nanoparticles within 3-5 size ranges, which is a substantial precondition, since the translocation of nanoparticles to the bloodstream via primary target organs as well as the accumulation in secondary target organs is very low (Kreyling et al., 2002; Semmler et al., 2004; Semmler-Behnke et al., 2007; Wiebert et al., 2006; Wiebert et al., 2006; Moller et al., 2008).

In the present project, we analysed the toxikokinetics of applied nanoparticles at several timepoints.

II.1.2. Materials and Methods

II.1.2.1 Materials

- TiO₂ P25 NP (Degussa / Evonik, Marl)
- PEG-TiO₂ NP of the former company Nanosolutions, Hamburg
- Our own tailor-made TiO₂ NP aerosols generated by a spark generator

II.1.2.1.1 Radiolabeling of commercial TiO₂ NP

For the radioactive labeling of titanium dioxide NP (TiO₂ NP) we use the proton irradiation in a cyclotron, figure on the left. During this process a nuclear reaction inside of the Ti-atom occurs, so that radioactive vanadium \(^{48}\)V originates. \(^{48}\)V is generated by the collision of the \(^{48}\)Ti with a proton. Thereby the ordinal of 22 (Ti) increases 23 (V), because the proton is integrated in the nucleus and a neutron from the nucleus of the titanium is emitted during the nuclear reaction: \(^{48}\)Ti (p, n) \(^{48}\)V. The radioactive \(^{48}\)V decays with a half-life of 16 days. This process leads to the formation of a positron and gamma rays with energy values of 0.99 and 1.3 MeV. The positron (anti-material) recombines immediately with an electron. The whole energy is emitted in the form of 2 gamma rays with 511 keV which emit in opposite directions (180°). The kinetic energy of the incident proton may lead to a recoil pulse of the transformed \(^{48}\)V-atom. Therefore, the transformed \(^{48}\)V-atom can be knocked out...
of the TiO$_2$ lattice to be replaced at another place of the lattice. If this happens on the
surface of the primary TiO$_2$ NP, the 48V is not tightly integrated into the lattice. Thereby it
can e.g. be dissolved as an ion from the particle matrix in aqueous solutions. After the
optimization of the radiation parameters, TiO$_2$ NP samples were irradiated with the
following parameters:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Specific activity (MBq / mg)</th>
<th>Atomic ratio 48V : TiO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>1</td>
<td>1.7×10^{-8}</td>
</tr>
<tr>
<td>low</td>
<td>0.1</td>
<td>1.7×10^{-9}</td>
</tr>
</tbody>
</table>

That means, for instance, at a specific activity of 1 MBq/mg statistically not more than one
radioactive 48V-atom can be found per single irradiated 20 nm TiO$_2$ NP. Furthermore, from
more than 1000 NP of this size only one NP statistically contains a radioactive 48V atom.
These ratio data show that the lattice like structure and other physical properties of the TiO$_2$
NP have not been damaged or significantly changed by the irradiation process.

1. The proton irradiations were made successfully in the Zyklotron AG (ZAG),
 Karlsruhe. ZAG irradiated TiO$_2$ in powder form as well as titanium electrode rods.
 We have covered the costs for irradiation and transport within this project.
 a. Proton irradiations of Degussa TiO$_2$ NP (P25) were successfully made for test
 purposes. The NP returned from the irradiation process as a white powder as sent
 in. However the particles were as strongly agglomerated as the original un-
 irradiated P25 NP powder. Therefore this nano-structured material did not fulfill
 our demands for nanoparticles to be smaller than 100 nm.
 b. The proton irradiation of 4.5 nm PEG-TiO$_2$ NP was not successful; after this
 irradiation the powder was not white anymore but black. This indicated that the
 PEG molecules have been oxidized and ashed during the proton irradiation. It was
 not possible to disperse the black powder.

2. Within the scope of the cooperation with the European Joint Research Center (JRC) in
 Ispra, Italy, a solution of dissolved 48V was produced and provided. Thereby we could make our control tests,
 as described below.

II.1.2.1.2 Production of 48V radioactive labeled TiO$_2$
NP by means of a spark generator

Besides the irradiation of the NP powder we also irradiated
titanium rods with a diameter of 3 mm a length of 4 mm on
one circular side, to be used for the production of 48V
radiolabeled TiO$_2$ NP aerosols, figure on the left. This
waranteed a high activity density of 48V on the circular front
side used for generating NP in the spark generator as
described below.

In the spark generator (GFG100 Palas, Karlsruhe) sparks
were ignited by a high voltage discharge between the adjacent
titanium rod electrodes in an argon gas stream with 0.1% of
oxygen, picture on the left. In this spark ignition process a
tiny amount of titanium and 48V of the electrode surface
evaporates and condenses very quickly forming primary
particles of the size of 2-5 nm. Because of the O₂ content in the gas stream these particles already are made up of TiO₂ with ⁴⁸V labeling. These primary particles occur at very high concentrations (>> 10⁸ cm⁻³), such that rapid coagulation occurs during the cooling. According to the initially high temperature, aggregates with firm chemical bonds will be formed. During further cooling agglomerates will be formed by weak physical forces like van-der-Waals-forces. The highly charged aerosol is quasi-neutralized by an inline radioactive ⁸⁵Kr source 10 cm³ downstream the spark generation chamber. Further coagulation is subsequently stopped by dilution of the aerosol with oxygen and nitrogen. Subsequently, a thermal treatment in a tube furnace with 950°C improves the firm integration of the ⁴⁸V-atoms into the matrix of the NP aggregates/-agglomerates. Using a condensation particle counter (CPC 3022, Aachen TSI) and a differential particle size spectrometer (DMPS 3071 + CPC 3010, TSI, Aachen) the concentration and electrical mobility size distribution of the produced NP are continuously measured online. The resulting ⁴⁸V-TiO₂ NP aerosol is oxygenated at 20-22% and humidified to 75% relative humidity. Hence, a physiological aerosol is provided to the animals for inhalation within 5 seconds.

II.1.2.2 Characterization

1. P₂₅ TiO₂ NP (Degussa)
 - For this industrial NP CAS certifications were investigated.
 - From every used sample the hydrodynamic diameter was measured by dynamic light scattering (DLS, Malvern HPPS, Malvern, Herrenberg).
 - We have checked the electo-negative surface charge (zeta potential) in water using a Zetasizer and we were able to confirm the values cited in the literature.
 - The specific surface was determined to be 52 m²/g and corresponds with in the literature shown values.

2. PEG- TiO₂ NP
 - Unfortunately, these NP made by the former company Nanosolutions in Hamburg have no certification by the manufacturer and cannot be reordered since the company does not exist any longer. However, the following data are available:
 - Material: titanium dioxide
 - Occurrence: the NPs are existent as a powder
 - Crystalline structure: 100% anatase
 - Size distribution: mean diameter of 4.5 nm; standard deviation 0.1
 - Surface modification: polyethylene glycol (PEG)
 - Hydrodynamic diameter (own measurement): 20 nm, standard deviation 0.2
 - Aggregation / agglomeration: the original particles dispersed completely with a minimum of agglomeration; the increased hydrodynamic size arises from the PEG surface modification
 - Specific surface: amounts approx. 400 m²/g of the pure TiO₂ NP (as calculated), from PEG-TiO₂ NP approx. 200 m²/g
 - Zeta potential (own measurement): -22 mV
 - Solubility: no detectable solubility in water.

3. Our own tailor-made TiO₂ NP aerosols generated with a spark generator
 i. Size distribution and concentration: Using a condensation particle counter (CPC 3022, Aachen TSI) and a differential mobility particle size spectrometer (DMPS 3071 + in 3010, TSI, Aachen) the concentration and size distribution of the generated NP were continuously measured online during the exposure.
ii. For the electron-microscopic analysis applying high-resolution transmission electron microscopy (HRTEM, University of Lund, Sweden) NP samples were collected on copper grids with a nanometer aerosol sampler (TSI 3089, Aachen).

iii. A crystallographic analysis with an X-ray diffractometer (XRD, JRC Ispra, Italy) was made.

iv. The specific surface of the TiO$_2$ NP was determined with the BET method which is based on a measurement of an absorbed monolayer of nitrogen molecules on the NP surface.

II.1.2.3 In vitro solubility of 48V radio-labeled TiO$_2$ NP

Solubility tests:
P25 48V-TiO$_2$ NP: NP samples with known mass were either suspended in distilled water or in 0.05 M sodium pyrophosphate and dispersed in an ultrasonic bath for a period of 15 sec.

Separation of particulate or suspended fractions was either performed by centrifugation at 15 x 10^3 g for a period of 40 min or ultra-filtered at 4 x 10^3 g for 30 min through an Amicon ultrafiltration tube with a molecular weight cut off at 5 kDa (Millipore, Amicon Ultra – 15; 5000 MWCO). Subsequently the two fractions were analyzed by gamma-spectroscopy.

48V-TiO$_2$ NP aerosol: Aerosols of 48V-TiO$_2$ NP were collected on an absolute filter and measured gamma-spectrometrically. Subsequently the filter was mounted in a filter holder with a maximum supernatant volume of 200 mL. 50 mL distilled water were added and after 5 minutes, 1 hour and 24 hours the water was pressed through the filter by compressed air (1.5 bar) and the 48V activity in the filtrate was measured.

II.1.2.4 Laboratory animals

Healthy, adult (3-months old) female WKY-rats were used as laboratory animals. The experiments were carried out in line with the ethical principles of the responsible authorities, the government of district of Upper Bavaria and the ethical committee of the Helmholtz-Center-Munich. The number of the governmental approval was: Az: 209.1/211-2531-94/04.

The rats were adapted to our animal facilities at a temperature of 22 ± 3°C and 50 ± 5% relative humidity with a 12 hour dark - 12 hour light cycle for a minimum of 10 days after delivery. Standard rodent chow and water were available ad libitum.

II.1.2.5 Concept of quantitative biokinetic studies

In order to give reliable statements on the distribution of the applied TiO$_2$ NP it is essential that the examination is quantitatively evaluated. At time $t=0$ radioactive material is administered into the rats. At different points of time t_1, t_2, t_n... the animals are sacrificed. We take the blood,
all organs in toto, tissue samples, the complete remainder (i.e. the whole animal tissue which is not examined in the before-mentioned individual samples) and all excrements (separated according to feces and urine). Only thus a 100% balance of biokinetics of each individual animal is possible, Fig. II.1.2.5.a.

In all subsequently described studies 4 rats were used for each application method and each time point. This number of animals was sufficient for a statistical evaluation as demonstrated in our former biokinetic studies (Kreyling et al., 2002, Semmler et al., 2004, Semmler-Behnke et al., 2007 + 2008), and at the same time the limited number satisfies the reduction principle in animal testing.

II.1.2.6 \(^{48}\text{V} \) labeled TiO2 NP applications:

II.1.2.6.1 Inhalation:

Four whole-body-plethysmographs which are operated intermittently at low pressure are connected to the aerosol line. Each anaesthetized and intubated rat is connected through an endotracheal tubus to the aerosol line in each whole-body-plethysmograph; the tubus is inserted into the trachea and tightened at the larynx. Afterwards the plethysmographs are closed, Fig. II.1.2.6.a. At periodic intervals (in these studies 40/minute) a low pressure of -1500 Pa is applied to the plethysmographs by computer-control, which causes an inspiration of the animals. After one second the negative pressure is removed and the animals expire again. During these investigations the animals were ventilated with a defined \(^{48}\text{V} \) labeled TiO\(_2\) aerosol for a period of 2h. Using this inhalation apparatus an optimized deposition can be achieved; inhaled NP are rather homogeneously deposited in all lung regions, see planar gamma-camera picture in Fig. II.1.2.6.b. Additionally, NP contamination of extrathoracic airways in the head and the fur is avoided. This inhalation apparatus for controlled inhalation of radioactive labeled NP by intubated animals is worldwide unique and is in our use since more than six years.
2.6.2 Intratracheal instillation:

For this application the anaesthetized animals were positioned onto an inclined board (60°) in a dorsal position. The animals are fixed with the front teeth to an elastic band. After that the larynx was exposed to a cold-light-source from the outside (extrinsically). The tongue was brought forward with forceps and the tongue root is slightly pressed towards the mandible. Now, catheter is gently inserted into the trachea under visual control. The correct position of the catheter in the trachea is controlled with a mirror right at the end of the catheterer for a visual condensate on the mirror during expiration. Now, a syringe filled with the NP suspension for instillation is connected to catheter and the NP suspension is injected during the inspiration phase of the animal. Instillations of 50µl of NP suspension of a concentration of 1mg/ml were applied to each animal.

II.1.2.7 Supporting studies

II.1.2.7.1 Determination of biokinetic distribution of intravenously injected 48V-TiO$_2$ NP-suspension

For a better understanding and interpretation of the biokinetic distribution of 48V labeled TiO$_2$-NP administered to the lungs, it is necessary to also intravenously inject the NP suspensions as well. Based on these additional studies differences can be evaluated between NP directly injected into blood and those NP entering the blood circulation after having crossed the air-blood-barrier of the lungs. From our biokinetic studies using gold NP (Semmler-Behnke et al., 2008) we have evidence that the subsequent accumulation pattern in different secondary target organs change drastically between the two routes of administration.

At first the animals are anaesthetized with isoflurane, and then the tail is dipped into warm water in order to widen the tail vein. Then the blood flow is blocked by a tourniquet at the tail root; and a flexible cannula (24G ¾”) is distally placed in the tail vein. The tourniquet is released and the correct position of the cannula in the vein is checked injecting a small amount of PBS without any hemorrhage. Then the TiO$_2$ NP-suspension is applied through the cannula. If necessary, the bleeding is stopped with a cotton swap in order to avoid secondary hemorrhage.

II.1.2.7.2 Determining the biokinetic distribution of intra-esophageal applied 48V-TiO$_2$ NP-suspension (i.e. gavage)

A further set of studies was also necessary administering an NP suspension into the gastrointestinal tract. As stated above, the conducting airways in the lungs possess a very effective mechanism eliminating NP deposited on the airways epithelium, the “mucociliary clearance”, which continuously transports material along the airways towards the larynx, where it is subsequently swallowed. To estimate the resorbed fraction of 48V-labelled TiO$_2$ NP across the gastrointestinal wall a well-defined TiO$_2$ NP-suspension was given directly into the esophagus (gavage) and subsequently the distribution in the organs and in the excretion was measured as described above.

Animals previously anaesthetized with isoflurane, were located in the same way on the tilted board as during instillation (see above). The tongue was pulled forward with forceps. A catheter (in this case a flexible cannula 16G 2“) was inserted into the esophagus under visual inspection using the cold-light-source. The correct position of the tubus was checked using a mirror as described above. However, proper placement of the cannula in the esophagus was assured when no condensate appeared visible on the mirror during expiration.
II.1.2.7.3 Determining biokinetic distribution of dissolved 48V radio labeling

To determine biokinetic distribution of non-particulate, ionic 48V radio label which eventually may have leached off the TiO$_2$ NP matrix, an aqueous solution of ionic 48V was either instilled intratracheally as described above or the solution was injected intravenously into the tail vein. These data are needed to correct for solubilized 48V radio label as described in 2.9.1. see below.

II.1.2.8 Retention and clearance of TiO$_2$ NP

After the application of TiO$_2$ NP each rat was kept individually in a metabolic cage in order to collect the whole urine and feces quantitatively and separately, see picture to the left. In cases where the retention times lasted more than 7 days, the animals were kept in normal cages in which fleece mats were laid out to absorb the urine. Thereby, in these cages the daily urine and daily feces were collected quantitatively and separately for the first 7 days and afterwards urinary and fecal excretions were integrated over three and four days until the end of the 28 days period.

II.1.2.9 Radioanalytical measurement and analysis

In our studies we usually use γ-emitting radio-isotopes such as 48V. Using this γ-emitters the amount of radioactivity is measured without further sample preparation after the dissection of the animals so that no artifactual losses occurred due to preparatory steps. By means of a massively lead-shielded NaI well-type-scintillation detectors including sample changers the individual samples were measured γ-spectrometrically. The lead shield reduces background radiation and the well geometry and the applied γ-spectrometry software further increases the sensitivity by measuring the photo peaks of the gamma emission line. The amount of the 48V radioactivity is calculated in units of Bq at a reference time point after correction of background radiation and physical decay of the 48V isotope in each individual sample. The measured radioactivity is directly proportional to the applied TiO$_2$ retained in the sample. In vivo retention of the retained 48V activity in the rats of the 28-days study was measured gamma-spectrometrically twice a week with an additional collimated NaJ scintillation-detector in order to determine the retention kinetics for every single animal, Fig. II.1.2.9.a.

For evaluation of the data the following parameters are significant:

$A_{rat} =$ entire 48V radioactivity in the animal after application of the radioactive materials
\[A_{\text{rat}} = \sum_{i=0}^{n} A_i \quad A_i = \text{the } ^{48}\text{V radioactivity of sample } i \]

In addition to the \(^{48}\text{V}\) radioactivity of each sample the fraction is then normalized to the entire activity

(2) \[f_i = \frac{A_i}{A_{\text{rat}}} \]

in this equation note that the activity (A) is directly proportional to the mass (m) of the applied TiO\(_2\) NP material.

(3) \[A(^{48}\text{V}) \sim m (\text{TiO}_2) \]

Several corrections have to be taken into account when processing the data:

II.1.2.9.1 Correction on ,,fast clearance“ after inhalation or intratracheal instillation

The term ,,fast clearance“ covers the cleaning mechanism of the conducting airways to the larynx within 24 hours after application of TiO\(_2\) NP into the lung. By this process NP deposited in the airways are transported by the mucociliary action to the larynx, where they are swallowed passing through the GI-tract and eventually being excreted with the feces. To correct the fractions of (2) they are divided by the correction factor \(k_{fc}\), and the amended data are referred to as \(f_i'\).

(4) \[k_{fc} = 1 - (f_{\text{feces}} + f_{\text{GIT}} + f_{\text{trachea/larynx}}) \]

\(f_{\text{feces}} = \text{Fraction feces}\)
\(f_{\text{GIT}} = \text{Fraction gastrointestinal tract}\)
\(f_{\text{trachea/larynx}} = \text{Fraction trachea/larynx}\)

(5) \[f_i' = f_i / k_{fc} \]

II.1.2.9.1 Correction for dissolved \(^{48}\text{V}“ eventually leached off the administered TiO\(_2\) NP

Assessing the in vivo \(^{48}\text{V}\) solubility of the administered TiO\(_2\) NP, supporting studies using soluble \(^{48}\text{V}\) are required, to determine the distribution of soluble \(^{48}\text{V}\) within the body and excretion.

The according correction factor (\(k_{sol}(t)\)) at the time t is calculated for each sample (\(g_{i,sol}(t)\)) individually after application of dissolved \(^{48}\text{V}\):

(6) \[k_{i,sol}(t) = \frac{g_{i,sol}(t)}{g_{urine,sol}(t)} \]

\(g_{i,sol}(t) = \text{Fraction of the sample } i \text{ after application of dissolved } ^{48}\text{V}\)
\(g_{urine,sol}(t) = \text{Fraction sample at application of dissolved } ^{48}\text{V}\)

We presume very conservatively that no \(^{48}\text{V}\) labeled TiO\(_2\) NP are excreted in the urine but only dissolved \(^{48}\text{V}\). Then the correction factor \(k_{i,sol}(t)\) for each sample is applied to estimate
the dissolved 48V fraction $f_{i,sol}$ in each sample using the urinary fraction after TiO$_2$ NP administration as an indicator of the potential dissolution of 48V.

$$f_{i,sol} = k_{i,sol} \times f_{urine}$$

Then the particulate fraction $f_{i,part}$ of each samples is:

$$f_{i,part} = f_i - f_{i,sol}$$

$f_{i,sol}(t)$ = dissolved fraction of a sample after NP application

$f_{i,part}(t)$ = particulate fraction of a sample after NP application

After analysis of the data for each single animal the standardized values of all animals of a group were averaged, and thus the biokinetic was determined using all data at all time points.

II.1.2.10 Statistics

To test significant differences the Student t-test was used. A significant difference was assumed if $p < 0.05$.

II.1.3. Results and discussion

II.1.3.1 Dispersion of available TiO$_2$ nano-particles (NP) in aqueous media

1. TiO$_2$ NP (Degussa) P25
 It is well known that P25 NP disperse rather poorly. To receive NP as small as possible the following methods of dispersion were applied:
 - ultrasonic treatment in distilled water (ultrasonic bath + ultrasonic probe)
 - ultrasonic treatment in rat's albumin solution (ultrasonic bath + ultrasonic probe)
 - ultrasonic treatment in rat's serum solution (ultrasonic bath + ultrasonic probe)
 - ultrasonic treatment in Tween-80 detergent solution (ultrasonic bath + ultrasonic probe)
 - ultrasonic treatment in CTAB detergent solution (ultrasonic bath + ultrasonic probe)
 - ultrasonic treatment using phosphine-modified surface P25 TiO$_2$ NP in distilled water (ultrasonic bath + ultrasonic probe)
 In all these tests the median hydrodynamic diameter was $>>$ 100 nm. Yet, our aim of a median hydrodynamic diameter $<$ 100 nm was missed.

2. Selection of a nano-fraction from P25 TiO$_2$ particles
 To meet our demands of a nano-scaled NP-fraction, we have selected a size distribution with a median diameter of 100 nm measured by DLS (dynamic light scattering) starting from an original P25 TiO$_2$ NP-suspension by centrifugation. The selection parameters were determined with non-radioactive original P25 TiO$_2$ NP
 Solvent: 0.005 M sodium pyrophosphate in distilled water
 Centrifugation: 20 min at 2000 g; afterwards extraction of the size-selected supernatant
 Mass fraction of the size-selected NP: 5%
Next an original P25 TiO$_2$ NP-sample was proton-irradiated first and then dispersed according to the above mentioned protocol. A size-selected dispersion of the irradiated TiO$_2$ NP-suspension was subsequently compared with an inactive size-selected NP-suspension using the same solvent. As shown in figure II.1.3.1.a, the size distributions differ only slightly.

However, the in vitro solubility of the size-selected P25 48V-TiO$_2$ NP with 0.005 M aqueous sodium pyrophosphate was 37% separating the dissolved from the particulate fraction by centrifugation and 25% using the Amicon-ultrafiltration method. A slightly lower solubility was measured for distilled water.

3. Monodisperse 4.5 nm TiO$_2$ NP with a polyethylene-glycol (PEG) surface modification.

These TiO$_2$ NP disperse very well in water and in a NaCl (0.1%) solution. By means of dynamic light scattering they have a hydrodynamic diameter of 20 nm with a very small distribution (SD 0.15). Unfortunately, these PEG-surface-modified TiO$_2$ NP are not suitable for the proton irradiation, because the PEG coating of the white PEG-TiO$_2$ NP reduces to black elementary carbon ash and it is impossible to disperse the NP again.

II.1.3.2 Characterization of our own tailor-made 48V-TiO$_2$ NP-aerosols generated with a spark generator

a. Aerosol generation: For the aerosol generation the addition of oxygen into the spark chamber was minimized in order to provide production of TiO$_2$ NP and minimize irritant O$_3$ in the aerosol which would irritate the airways of the exposed rodents. An O$_2$ flow rate of 0.1% of the Ar flow rate was chosen since NP turned out to be TiO$_2$ and the O$_3$ concentration was below 20 ppm.
b. **Aerosol-concentration:** The aerosol was usually at a concentration of 3-6 \(10^6\) NP/cm\(^3\) and constant for the whole exposure, Figure II.1.3.2.a.

![Graph](image)

Figure II.1.3.2.a: Aerosol data from the inhalation study for the 24-hours retention study. Top left: mean NP aerosol spectrum during the whole inhalation period. Top right: Median NP electrical mobility diameter (red) and geometric standard deviation (blue) of the aerosol during the inhalation measured with SMPS. Left: NP aerosol concentration during the inhalation, measured with a CPC3022.

c. **Size and size distribution:** The median electrical mobility diameter of the thermally untreated NP was about 25 nm, the diameter of the thermally treated NP was approx. 10% smaller, Figures II.1.3.2.a and II.1.3.2.b.

![Graph](image)

Figure II.1.3.2.b: NP aerosol spectrum of the thermally treated (left) and the thermally untreated NP (right)
d. **TiO$_2$ NP morphology:** In the HRTEM the coagulated structure of the 3-5 nm primary particles in aggregated / agglomerated NP is visible Figures II.1.3.2.c and II.1.3.2.d.

![Figure II.1.3.2.c](image1.png)
Figure II.1.3.2.c: left: thermally aftertreated crystalline TiO$_2$ NP; 39170x magnification.
Right: thermally untreated amorphous TiO$_2$ NP; 39170x magnification

![Figure II.1.3.2.d](image2.png)
Figure II.1.3.2.d: left: thermally aftertreated crystalline TiO$_2$ NP; 1090000x magnification.
On the right: thermally untreated amorphous TiO$_2$ NP; 559000x magnification.

But differences between the thermally untreated and the thermally treated TiO$_2$ NP are not visible. This means that the thermal treatment results in a slight sintering of the primary particles and stable fixation of the 48V radio-label – which is reflected by the slightly smaller NP size – but no massive melting of the primary particles was found. The melting point of both crystal forms (anatase and rutile) amounts to 1500°C. This follows also from the measured specific BET surface – see next below.

Furthermore the high-resolution TEM pictures show that the thermally treated NP have purely crystalline structures, but the thermally untreated NP have purely amorphous structures (Geiser et al., in 2005).

e. **Chemical composition of the TiO$_2$ NP:** The XEDS analysis in the HRTEM confirmed the chemical compounding of the TiO$_2$, see Figure II.1.3.2.e. This was also confirmed by electron energy loss spectroscopy (EELS) in TEM.

![Figure II.1.3.2.e](image3.png)
Figure II.1.3.2.e: XEDS analysis in the HRTEM confirms that the NP are chemically composed of TiO$_2$. Beside the peaks for Ti and O, the copper lines of the EM substrate are recognised.

![Figure II.1.3.2.f](image4.png)
Figure II.1.3.2.f: X-ray diffraction analysis (XRD) of a TiO$_2$ NP sample on a silicone wafer demonstrating dominance of anatase.

f. **Crystallinity of the TiO$_2$ NP:** The X-ray diffraction analysis (XRD) of a TiO$_2$ NP sample on a silicon wafer showed that the TiO$_2$ NP primarily consists of anatase with a very small amount of rutile (<5%), Figure II.1.3.2.f.
g. **Specific surface of the TiO$_2$ NP:** The analysis of the specific surface (BET) of the thermally treated TiO$_2$ NP amounted to 270 m2/g and was slightly smaller than the thermally untreated TiO$_2$ NP of 330 m2/g.

h. **In vitro solubility of 48V radio-labeled TiO$_2$ NP:** The in vitro dissolution tests of untreated 48V-TiO$_2$ NP generated by spark ignition the production in a tube furnace, showed a considerable 48V-solubility up to 25% after 24 hours. In contrast, when the NP-aerosols had been heated up to 950°C in a tube furnace immediately after their generation, the dissolved 48V-fraction of the thermally treated TiO$_2$ NP amounted to only 2% after 24 hours.

II.1.3.3 Results of in vivo studies

II.1.3.3.1 Biokinetics of dissolved 48V following intratracheal or intravenous application in adult rats

These investigations were indispensable for the correction of the instilled and inhaled 48V-TiO$_2$-NP. Therefore, these results are described at first in this report. As shown in Figure II.1.3.3.1.a, 50 % of the dissolved 48V is eliminated by urine within the first 24 hours after application. However, some 48V fractions remain in single organs as well as the remainder. The fraction of dissolved 48V, remaining in single organs as well as the remainder is similar for both applications after 7 and 28 days. Admittedly, the amount of dissolved 48V in the blood is decreasing drastically from day 1 to day 7. As described in chapter 2.9.2 and shown in the equations 6 - 8, the particulate fractions after 48V-TiO$_2$-NP inhalation or instillation will be calculated correcting for dissolved 48V fractions.

II.1.3.3.2 Inhalation of 20 nm 48V radioactive labelled TiO$_2$-NP by computer-controlled-breathing of intratracheal intubated adult rats

Some parameters of the 48V-TiO$_2$-NP aerosol used for the 24-hours retention study, are shown in Figure II.1.3.2.a and II.1.3.2.b. After the 2-hours-inhalation-period of 48V-TiO$_2$-NP, the rats were sacrificed after several time points after: a) 0 hours; b) 4 hours; c) 24 hours; d) 7 days; e) 28 days. The intratracheal intubation leads to a deposition fraction in the thoracic airways of about 0.15 – 0.2. In the first 24 hours following airway deposition, most 48V-TiO$_2$-NP are transported to the larynx by the mucociliary escalator and are subsequently swallowed. This fraction of 48V-TiO$_2$-NP can be measured by gamma
spectrometry in the gastro-intestinal tract and in the feces. As described in chapter 2.9.1 and in equation 4 these measured data were subtracted from the total 48V activity and re-normalized. Since the fraction of 48V, found in urine (presumed to represent the dissolved 48V) was not more than approximately 0.05, the corrections in the respective organs did not lead to 48V-TiO$_2$-NP fractions below the detection limit of the γ-spectrometers. Note however, due to this conservative assumption that all 48V radioactivity found in urine results from 48V dissolution we were not able to distinguish whether 48V-TiO$_2$-NP were excreted in urine. According to the corrections of the raw data regarding the fast clearance of NP from the airways and the dissolved 48V fraction, more than 90 % of the 48V-TiO$_2$-NP remained in the lungs during the whole observation period (Figure II.1.3.3.2.a.). Interestingly, immediately after the two-hours inhalation the 48V-TiO$_2$-NP fractions in the secondary organs and blood are lower than at later time points indicating that the process of translocation across the air-blood barrier is not yet finished. After four hours a maximum of translocated 48V-TiO$_2$-NP was observed in liver, kidneys, heart, and blood. For these organs, elimination of the 48V-TiO$_2$-NP was found starting after day 7. In contrast, the maximum of 48V-TiO$_2$-NP in the brain was observed seven days after inhalation. In case of the remainder, consisting of head, skin, muscles, bones, and adipose tissue, a NP translocation fraction of about 2-7 % of the inhaled 48V-TiO$_2$-NP was detected during the whole time. In the remainder the accumulation of 48V-TiO$_2$-NP was higher than in the sum of all secondary organs. Importantly, the NP translocation to the spleen was different compared to the other organs. A consistent increase of the translocated NP fraction was observed during the whole time of the measurement and no decline was detected during 28 days. However, a later elimination of nanoparticles can not be excluded and should be a matter of further studies.

In addition to secondary target organs, the lungs as the primary organ of intake were investigated distinguishing between NP in the lavaged lungs and in the broncho-alveolar lavage fluid (BALF). Importantly, about 60 % of the 48V-TiO$_2$-NP were retained in the lungs and not accessible in BALF (Figure II.1.3.3.2.b). After 24 hours the lavageable NP fraction accounted for about 20%. This agrees very well with previous studies which describe higher contents of micron-sized particles in the BALF and similar fractions of NP in BALF (Semmler-Behnke et al., 2007; Takenaka et al., 2006; Lehnert et al., 1989). Interestingly, no free nanoparticles were detected in the BALF supernatant later than 24 hours after
inhalation, indicating either an uptake of the NP by macrophages or by the epithelium (Figure II.1.3.3.2.b).

II.1.3.3.2. Intratracheal Instillation and intravenous injection of P25 48V-TiO$_2$-NP (<100 nm) in adult rats.

In this study a suspension of proton activated 48V-TiO$_2$-NP (P25; Evonik) was intratracheally instilled. Approximately a fraction of 0.2 – 0.3 of P25 48V-TiO$_2$-NP was deposited in the thoracic airways. In the first 24 hours, almost all of these NP were transported to the larynx by the mucociliary escalator and subsequently swallowed. The fraction of swallowed particles was measured for each individual animal and was thereupon subtracted from the entire activity as it is described in chapter 2.9.1 and equation 4.

After 24 hours, a broad distribution of the 48V-radioactivity was observed in the body (Figure II.1.3.3.3.a). Importantly, approximately 20 % of the instilled 48V activity was detected in urine. Since we assume dissolution of the 48V radio-label out of the matrix of 48V-TiO$_2$-NP, we corrected these activities as we corrected the observed 48V activities following to TiO$_2$ NP-inhalation. Thereby we assume that the whole activity in the urine results from dissolved 48V. Based on this estimate approximately 40 % of the 48V-activity was dissolved from the P-25 48V-TiO$_2$-NP (Figure II.1.3.3.3.a). Hence, particulate 48V-TiO$_2$-NP were only detected in lungs, liver, and spleen. Activities in all other organs were below the detection limit (Figure II.1.3.3.b.). This was true for both, P-25 48V-TiO$_2$-NP intratracheal instillation and intravenous injection.

Figure II.1.3.3.3.a: Raw data of distribution of 48V-TiO$_2$-NP investigated 24 hours after intratracheal instillation (left figure) and after the correction regarding the dissolved 48V (right figure)

Figure II.1.3.3.3.b: Raw data of distribution of 48V-TiO$_2$-NP, investigated 24h after intravenous injection (left figure) and after the correction regarding the dissolved 48V (right figure)
II.1.3.3.3. Influence of the material of the particles regarding the translocation via the blood-air-barrier of the lung 24 hours after inhalation

Previous studies using 20 nm similarly aggregated / agglomerated nanoparticles composed of Iridium (Ir) as well as elemental carbon (EC) have shown that translocation via the air-blood-barrier of lungs strongly depends on the NP material during the first 24 hours (Kreyling et al., 2002; Semmler et al., 2004; Semmler-Behnke et al., 2007; Kreyling et al., 2009). Fractions of Ir-NP, EC-NP, and TiO2-NP translocate of approximately 10 %, 3 %, and 2 %, respectively; the Ir fraction differs significantly from both other NP fractions. The importance of the respective material is further confirmed by NP accumulation in spleen, heart, brain and the remainder (Figure II.1.3.3.3.c and II.1.3.3.3.d). In contrast, during the first 24 hours following to application no material-specific translocation could be detected for the liver and kidneys. The liver is an important filter organ taking up particles by Kupffer cells; this happens independently on the respective NP material, this could be an explanation for the observed phenomenon. Interestingly, the large part of all three translocated NP (TiO2-NP, Ir-NP, and EC-NP) were found in the remainder, consisting of muscles, adipose tissue, skin, and skeleton. In addition, more TiO2-NP than EC-NP were found in kidneys and blood. A further study, investigating the translocation of 18 nm spherical gold nanoparticles, showed interesting results (Semmler-Behnke et al., 2008). Translocation of these perfectly spherical gold-NP is approximately one dimension smaller compared to EC-NP. However, in this study the gold nanoparticles were not inhaled by the rats but administered by instillation. Therefore a direct comparison with the results from the studies with Ir, TiO2, and EC is hardly possible. Since the gold nanoparticles were spherical, NP morphology may be another reason for the observed differences.

II.1.4. Summary and Evaluation of the Results

The prominent aim of these studies was the determination of the biokinetics of inhaled TiO2-NP in the lower nanometer size range (approximately 20 nm). Therefore, the translocation of inhaled TiO2-NP into blood and subsequent accumulation in secondary target organs was quantified during 28 days. Unfortunately, we were not able to disperse commercially available TiO2 NP to the anticipated extent even though their nanostructural size was as low as about 20 nm. Therefore we decided to develop an own methodology to freshly synthesize TiO2-NP in our lab for the use of inhalation studies. Using these NP the
aims of this project could be realized and inhalation studies were accomplished with TiO$_2$-NP of about 20 nm size. These NP underwent a detailed physical and chemical characterization providing pure polycrystalline anatase TiO$_2$-NP of about 20 nm (geometric standard deviation 1.6) and a specific surface area of 270 m2/g. In addition, we developed techniques for sufficiently stable radioactive 48V labelling of the TiO$_2$ NP. The kinetics of the solubility of 48V was thoroughly determined. Due to the low solubility of the radioactive 48V radiolabel finally achieved, our biokinetic data were thoroughly evaluated providing the biokinetics of 20 nm 48V-TiO$_2$-NP after a controlled short-term inhalation.

Unfortunately, the use of commercially available TiO$_2$ NP (P25, Evonik) was not possible although these NP would have been more relevance because of their wide spread use in sciences, technologies, medicine and by the population at large. The poor dispersibility of the TiO$_2$-NP not below a median diameter of 150 nm and the pronounced dissolution of the radioactive 48V label were the limitations. Therefore the results can not be used without reservation and may only depict a trend at best. However, the results are not in conflict with the results from the 20 nm TiO$_2$ NP inhalation study. Developing solutions for the described problems appears to be an urgent need for the future.

In summary, our experiments have shown that most of the inhaled TiO$_2$-NP were retained in the lungs as observed earlier for other NP materials iridium and elemental carbon of same size and morphology. Small fractions of TiO$_2$-NP translocate across the air-blood-barrier and accumulate in secondary target organs, soft tissue and skeleton. The amount of translocated TiO$_2$-NP is approximately 2-7% of TiO$_2$-NP deposited in the lungs. A prominent fraction of these translocated TiO$_2$-NP was found in the remainder. Smaller amounts of TiO$_2$-NP accumulate in secondary organs following particular kinetics. TiO$_2$-NP translocation was grossly accomplished within the first 2-4 hours after inhalation followed by retention in all organs and tissues studied without any detectable clearance of these biopersistent TiO$_2$-NP within 28 days. Previously we have investigated similar long-term biokinetics of iridium NP up to six months after a single short-term inhalation which also showed persistent long-term retention not only in the lungs but also in secondary organs, the skeleton and soft tissue (Kreyling et al., 2002; Semmler et al., 2004; Semmler-Behnke et al., 2007). Therefore, our data suggest that during repeated or chronic exposure to insoluble NP the translocated fraction of particles will accumulate in secondary target organs. Because of the biopersistence much higher NP doses are expected to accumulate in secondary target organs than after our two-hours inhalation studies. According to our biokinetic data and their extrapolation, further studies are necessary investigating the biokinetics and toxicologically relevant responses and the underlying mechanisms of TiO$_2$ NP in secondary target organs after chronic exposure. In addition, TiO$_2$-NP uptake via other routes like the gastro-intestinal-tract after oral administration needs further investigation as there are only very few data available.

Regarding our experiments, we conclude that translocation of NP via the air-blood-barrier of the lungs depends on the respective material and its physico-chemical properties like size etc. For a better estimation of the toxic potential of the TiO$_2$ NP a thorough estimate of the exposure of the total population, specific groups and susceptible individuals appears to be necessary. The need of thorough exposure studies including all possible routes of uptake into the body results from the wide spread use of nanostructured TiO$_2$ materials in large quantities under very many different conditions.
II.1.5 Literature

2. Expected benefit and exploitation of the results; des voraussichtlichen Nutzens, insbesondere der Verwertbarkeit des Ergebnisses.

The aim of this study was the biokinetics of inhaled anatase 20 nm TiO₂ NP and not any submicron and micron sized agglomerates / aggregates of nanoscaled TiO₂ NP. This was clearly achieved by using our own taylor-made anatase TiO₂ NP which we very comprehensively characterized. However, contribution had to be paid that these are no
industrial NP. Yet, we are working on the design of according inhalation studies. We are not aware of any break-through inhalation studies with an inhaled median size of less than 50 nm. Hence our study provides unique and yet unmatched data. The exploitation of toxicological studies including biokinetics studies is rather limited as the developed concept and design, the applied methodology and the scientific progress of knowledge were obtained with limited options for exploitation. The development of market-close or market-ready products was not the intention and goal of this study.

3. **Other R&D related projects and their progress:**

There are no efforts underway nor any publications on our unmatched and unique quantitative biokinetics of inhaled 20 nm TiO₂ NP. However, there are publications on the biokinetics and effects of submicron and micron sized agglomerates / aggregates of industrial TiO₂ NP. These biokinetics studies do not provide a consolidated balance of the whole of the retained and excreted NP in the experimental animals:

Furthermore there are numerous publications on TiO₂ NP characterization and health effects – many of them are in vitro studies – which we are carefully monitoring.

Radio-labelling of TiO₂ NP efforts are underway at the Institute for Health and Consumer Protection, of the Joint Research Centre in Ispra, Italy, with whom we are closely collaborating.

4. **Anticipated and already available publications of the results:**

According to the rather limited period of the project (13 months + 5 months extension) and its complexity no publications in the international journals have been published. However, two publications in international peer-reviewed journals are anticipated:

1. Generation and characterization of radio-labelled TiO₂ NP produced by spark ignition

2. Biokinetics of inhaled ⁴⁸V radio-labelled TiO₂ NP during 28 days after short-term inhalation