
Simple Mass Balance (SMB) Critical Loads – UK status and application

ICP M&M 36th TF meeting 21 April 2020

Kasia Sawicka Ed Rowe

CL mapping methods in the UK

Acidity CL for woodland habitats

 $CLA = ANC_{w} - ANC_{le(crit)}$

where:

 ANC_w = acid neutralising capacity (ANC)

generated by base cation weathering

 $ANC_{le(crit)}$ = critical leaching of ANC

	Mineral/organo-mineral soil	Organic soils
Chemical criteria	Ca:Al=1	Critical pH 4.4
Gibbsite constant (m ⁶ eq ⁻²)	950 – mineral soil 100 - organo-mineral	-
Calcium deposition	CBED 1998-2000	-
Calcium weathering	ANC _w * calcium correction factor	zero
Base cation contribution from fertilizer (keq ha ⁻¹ year ⁻¹)	Conifer - 0.08 Broadleaf - 0.177 (organo-mineral soil only)	0.417
Calcium uptake values (keq ha ⁻¹ year ⁻¹) for managed woodland during harvesting/removal	Conifer – 0.16 Broadleaf Ca-rich soil – 0.29 Broadleaf Ca-poor soil – 0.195	-

Acidity CL for peat soils

Since 2003:

$CLA = Q * [H^+]$

where:

Q = runoff in metres (mean 1km values for 1941-1970)

[H⁺] = critical hydrogen ion concentration equivalent to pH 4.4

- Applicable to upland and lowland acid peat soils, but not to the lowland, arable fen peats
- CL for the lowland arable fen areas are 4.0 keq ha⁻¹ year⁻¹ (the top of CL empirical range for soils) and applied to all arable areas in LCM2000

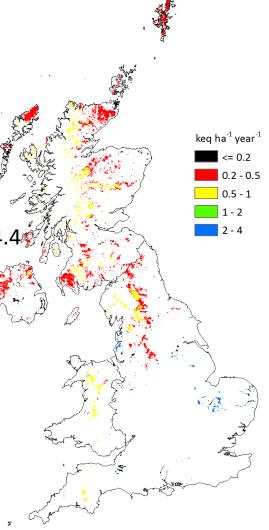


Figure 1 Acidity critical loads for 1km squares dominated by peat soils.

Since 1994:

The catchment-based First-Order Acidity Balance model (Henriksen & Posch, 2001)

• UK version assumes N sink average over the whole catchment.

No terrestrial nitrate leaching (Ndep <= CLminN)

- Terrestrial nitrate leaching occurs (Ndep > CLminN)
- Currently applied to 1752 sites across the UK
- Seasalts screening all sites with non-marine base cation conc. < 20 μ eq l⁻¹ were removed from the mapping data set
- Nested catchments a "net" or "unique" catchment area for each site to avoid any double-counting of habitat area
- ANC_{crit} value of 20 μ eq l⁻¹


```
CLnutN = N_{u} + N_{i} + N_{de} + N_{le(acc)}
```

where:

N_u = nitrogen uptake (removal by harvesting of trees)

N_i = nitrogen immobilisation

 N_{de} = denitrification

N_{le(acc)} = acceptable level of nitrogen leaching

- Data for N_u, N_i and N_{de} are the same as those used in the derivation of CLminN for managed woodlands
- Fixed values for N_{le(acc)} have been defined for application to managed conifers and managed broadleaved woodland separately:
 - Managed conifers: 4 kg N ha⁻¹ year^{-1,} (Emmett et al., 1993; and Emmett & Reynolds, 1996)
 - Managed broadleaf: 3 kg N ha⁻¹ year⁻¹ (Williams et al., 2000)

Uncertainties associated with SMB approaches in the UK

• N leaching

 $N_{le(acc)} = Q * [N]_{acc}$ where:

```
Q = precipitation surplus (m<sup>3</sup> ha<sup>-1</sup> year<sup>-1</sup>)
```

```
[N]_{acc} = acceptable N concentration (eq m<sup>-3</sup>)
```

o Denitrification

- spatiotemporal variability and the difficulty of measuring the denitrification flux to $\rm N_2$ (dinitrogen)

 \circ N fixation

- not generally considered as part of the steady-state mass balance for woodlands, but N fixation by alder (*Alnus* spp.) may be significant in some types of wet woodland

- Weathering rates
 - Measurement methods on different soil types and uncertain soil maps

THANK YOU

