Linking biogeochemical indicators in soil and vegetation to species change

Ed Rowe, Kasia Sawicka, Max Davis, Zak Mitchell & Simon Smart

Outline

- Brief introduction to MADOC-MultiMOVE-HQI
- Improved transfer functions from biogeochemical indicators to trait-means
- Effects on biodiversity-based critical loads (CL_{biodiv})
- Are biodiversity predictions useful?
- Conclusions

MADOC-MultiMOVE-HQI

MADOC

- N & S deposition
- Temperature
- Annual precipitation
- Cation exch. capacity

- Soil pH, C/N and mineralisable N
- Peak standing biomass

Fig. 5. Observed (dots) and predicted (lines) values for: a) pH and b) DOC at an example Acid Waters Monitoring Network site (Dargall Lane).

Rowe et al. (2014) Environmental Pollution 184: 271-282

MultiMOVE

• Mean scores for environmental traits: Ellenberg N, F & R Grime height-score

Habitat-suitability for 1342 species

- Annual precipitation
- Max and min temperature

Henrys et al. (2015) New J Botany 5, 89-100

HQI: Habitat Quality Index Habitat Quality Scenarios MultiMOVE MADOC pH, N, height Index **Biogeochemical dynamics** Plant niches 'Biodiversity' responses Habitat-suitability •

HQI

List of positive indicator species •

Rowe et al. (2016) PLOS-ONE. doi:10.1371/journal.pone.0161085

"Biodiversity"

HQI responses to N & S \rightarrow CL_{biodiversity} function

- Threshold for "damage" assumed to be the HQI value when N deposition is set to the **empirical CL for nitrogen**
- Why would HSI_{crit} not be the value of HSI at CL_{empN} ?

MADOC-MultiMOVE

VSD+/PROPS

MMM usually calculates a decline in HQI when N or S increases from zero

Maybe because the MultiMOVE niche models are derived:

- including data from cleaner areas
- with respect to soil available N and vegetation height (not *wrt* N deposition) ...and because tall, dominant species are excluded from positive indicators

However, MultiMOVE needs a score for each species on several environmental axes

Total nitrogen deposition

Figure 1.1: CBED deposition for 2013-15: (a) nitrogen (oxidised plus reduced) deposition to moorland; (b) nitrogen (oxidised plus reduced) deposition to woodland; (c) acid (sulphur + nitrogen) deposition

Hall et al. (2017) Trends Report

2018-19: work on transfer functions

"Transfer functions" relate

soil and vegetation properties:

• Soil pH, C/N & mineralisable N; canopy height

to the environmental axes used in MultiMOVE:

- Mean Ellenberg N (fertility) and R (alkalinity)
- Mean typical height (ground-level shading)

Mean Ellenberg R

Soil pH

Alkalinity transfer function

- New plots included (now 4487 plots where both Ellenberg R and soil pH recorded)
- Asymptotic curve fitted

Old function: Ellenberg R = 1.64 pH – 4.10

New function: Ellenberg R = $7.68(1 - e^{-0.391(pH-2.48)})$

Ground-level shading

Ground-level light availability is probably the most important environmental factor affected by N pollution

Hodgson et al. (2014) Func Ecol 28: 1284-1291.

Centre for

Ecology & Hydrology

Hautier et al. (2009) Science 324 (5927) 636-638.

Ground-level shading

Unfertilised calcareous grassland *Lotus corniculatus*: 'N' = 2, 'L' = 7

\rightarrow

more N --> increasing

- productivity
- ground-level shade
- litterfall

Adjacent woodland ground flora Urtica dioica: 'N' = 8, 'L' = 6

Ground-level shading

Why do these grasslands have different assemblages, when canopy height is similar?

Unfertilised calcareous grassland *Lotus corniculatus*: 'N' = 2, 'L' = 7

Perhaps because more productivity

- \rightarrow Faster gap closure
- → Less diversity of potential regeneration niches

Need to explore interactions among

- Biomass
- Net Primary Productivity
- Vegetation height
- Mean Ellenberg 'L' score

Fertilised calcareous grassland

Cirsium vulgare: (N' = 6, L' = 7)Trifolium repens: (N' = 6, L' = 7)

"Mean typical height" has strong effects

Mean typical height

Mean 'Ellenberg N' (~ fertility or productivity)

MultiMOVE plotter: Smart, Alison, Jarvis & Wilson (2019) https://shiny-apps.ceh.ac.uk/find_your_niche/

Mean typical height cf. measured height

- Cover-Weighted Mean Typical Height reflects measured height
- Canopy height is temporally variable, and measurements can be subjective
- CWMTH may be a better indicator for ground-level shading

Typical Height for each species is the median of the range given in 'Comparative Plant Ecology', Grime et al. (1988). Data from Bracken Survey: Rowe et al. (2016) STOTEN 572: 1636-1644; and Balmacara survey: Pakeman (2011) Ecology 92: 1353-1365

From biomass to mean typical height

- Few data points (biomass is rarely measured with floristic composition)
- Not a tight relationship
- Fitted with 'Type 2' regression (Ranged Major Axis), to avoid compressing the y axis

Cl_{biodiv} functions using revised model

- 2019 map is only ca. 50% of all bog 1 km² squares
- Colours not directly comparable
- Little overall change

Changes due to model revision

Revised

- New transfer functions result in a new response surface to N and S deposition
- ... and new values for the two nodes for CL_{biodiv}
- No systematic change new values for CLSmax, in particular, are similar

Old

Are biodiversity predictions useful?

Concerns about "biodiversity" are often about extinction

- the forever-extinction of species
- the extinction of local experience of habitats and species

Basing a biodiversity metric on "positive indicator species" reflects this concern, because some species matter more than others.

But do "Habitat Quality Index" or "Habitat Suitability Index" really speak to people?

Is dynamic modelling useful?

Allows assessment of chemical delay times for damage/recovery, and of target loads ... if response indicators are based on *exposure*, e.g. soil pH, soil available N

Rowe et al 2017 Biol Cons 212: 454-463, Adapted from Posch et al. 2004 Mapping Manual: Dynamic Modelling

Ways forward – we could...

- Persist: promote *Habitat Suitability for Positive Indicator Species* as a useful summary metric of biodiversity, and suggest that maps of CL_{biodiv} exceedance be used to support policy development
- Focus on **midpoint** indicators, i.e. biogeochemical indicators that the system is changing (soil pH, Ca/Al ratio, available N, foliar N, etc.)
- Focus on **particular species** that people appreciate and are affected by air pollution

Conclusions

- The UK NFC is continuing to improve models that predict biodiversity change
- Biodiversity loss is an important negative effect of N and S pollution
- Biodiversity-based critical load exceedance reflects impact on what people care about, i.e. it is an **endpoint** metric, not a **midpoint** (e.g. pH) or **pressure** (e.g. AAE) metric

AAE: Average Accumulated Exceedance

CL_{smax} from CL_{biodiv}