

Energy management systems in practice

Annex

Exemplary calculation of the net present value of an energy efficiency action

In order to approve investment-related energy efficiency actions, companies usually need preceding economic feasibility studies. The procedure used to transparently determine economic efficiency is explained in detail in the main document of the guide in chapter 3.4. The tables in this document show the model calculation depicted in the main document, whereby Table 2 contains the respective formulas to explain the calculation in Table 1 in more detail. Table 1 can also be found in the same form in the guide as Table 5: "Determination of net present value; example: Replacement of cooling pumps".

Table1: Net present value calculation table

Α	В	С	D	E	F		S
2	Calculation interest rate "i"	7.0%					
3	"Energy" price increase rate	3%					
4	"Other" price increase rate	2%					
5	Current specific energy price	0.18 €/kWh					
6	CO ₂ emission factor electricity	0.486 kg/kWh					
7	Cash flows	Basic values	End of period t				
8	Casil nows	Dasic values	0	1	2		15
9	Payouts						
10	Investment expenditure for new pumps	€60,000	- €60,000				
11	Planning costs	€5,000	- €5,000				
12	Production downtime during installation	€3,000	- €3,000				
13	Inpayments						
14	Annual energy saving (electricity)	150,000 kWh		€27,810	€28,644		€42,065
15	Reduced maintenance and repair costs	€250			€260		
16	Scrap value of the old pumps	€1,500	€1,500				
17	Results						
18	Total		- €66,500	€27.810	€28,904		€42,065
19	Present values		- €66,500	€26,000	€25,265		€15,332
20	CO ₂ savings per year			72,900 kg	72,900 kg		72,900 kg
21	CO ₂ savings total		-1,093,500 kg				
22	Net present value of the investment		€238,202				

(Source: Own illustration)

Table 2: Net present value calculation table (with visible formulas)

				-	-			
A	В	С	D	E	F	•••	S	
2	Calculation interest rate "i"	7.0%						
3	"Energy" price increase rate	3%						
4	"Other" price increase rate	2%						
5	Current specific energy price	0.18 €/kWh						
6	CO ₂ emission factor electricity	0.486 kg/kWh						
7	Cash flows	Basic values	End of period t					
8	Casil nows	Dasic values	0	1	2	•••	15	
9	Payouts							
10	Investment expenditure for new	€60,000	=-C10					
	pumps							
11	Planning costs	€5,000	=-C11					
12	Production downtime during installation	€3,000	=-C12					
13	Inpayments							
14	Annual energy saving (electricity)	150,000 kWh		=\$C\$14×\$C\$5 ×(1+\$C\$3)^E8	=\$C\$14×\$C\$5 ×(1+\$C\$3)^F8		=\$C\$14×\$C\$5 ×(1+\$C\$3)^S8	
15	Reduced maintenance and repair costs	€250			=\$C\$15×(1+\$C\$4)^F8			
16	Scrap value of the old pumps	€1,500	=C16					
17	Results							
18	Total		=SUM(D10:D12) +SUM(D14:D16)	=SUM(E10:E12) +SUM(E14:E16)	=SUM(F10:F12) +SUM(F14:F16)		=SUM(S10:S12) +SUM(S14:S16)	
19	Present values		=(D18)÷(1+\$C\$2)^D8	=E18÷(1+\$C\$2)^D8	=F18÷(1+\$C\$2)^F8		=\$18÷(1+\$C\$2)^\$8	
20	CO ₂ savings per year			=C14x\$C\$6	=C14x\$C\$6		=C14x\$C\$6	
21	CO ₂ savings total		=SUM(D20:S20)					
22	Net present value of the investment		=SUM(D19:S19)				(Sourco) Ours illustrat	

(Source: Own illustration)

Imprint

Publisher Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau Telephone: +49 340-2103-0 Fax: +49 340-2103-2285 buergerservice@uba.de Internet: <u>www.umweltbundesamt.de</u> ➡/<u>umweltbundesamt.de</u> ➡/<u>umweltbundesamt</u>

Completion: March 2020

Authors, Institutions

Anton Barckhausen, adelphi Juliane Becker, adelphi Peter Malodobry, adelphi Nathanael Harfst, Niederrhein University of Applied Sciences Ulrich Nissen, Niederrhein University of Applied Sciences