TEXTE

77/2014

Toxikologie von Nanomaterialien, Wirkmechanismen und Kanzerogenität

CNT-Kinetik nach Kurzzeitinhalation

TEXTE 77/2014

Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit

Forschungskennzahl 3710 62 221 UBA-FB 001833

Toxikologie von Nanomaterialien, Wirkmechanismen und Kanzerogenität

CNT-Kinetik nach Kurzzeitinhalation

von

Bernd Bellmann Otto Creutzenberg Anja Hackbarth Dirk Schaudien Albrecht Leonhardt

Fraunhofer-Institut für Toxikologie und Experimentelle Medizin ITEM, Abteilung Inhalationstoxikologie, Hannover

Im Auftrag des Umweltbundesamtes

Impressum

Herausgeber:

Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau Tel: +49 340-2103-0 Fax: +49 340-2103-2285 info@umweltbundesamt.de Internet: www.umweltbundesamt.de

✔ /umweltbundesamt.de✔ /umweltbundesamt

Durchführung der Studie:

Fraunhofer-Institut für Toxikologie und Experimentelle Medizin ITEM, Abteilung Inhalationstoxikologie Nikolai-Fuchs-Straße 1, 30625 Hannover

Abschlussdatum:

2012

Redaktion: Fachgebiet II 1.2 Toxikologie, Gesundheitsbezogene Umweltbeobachtung Petra Apel

Publikationen als pdf: http://www.umweltbundesamt.de/publikationen/toxikologie-von-nanomaterialien-wirkmechanismen

ISSN 1862-4804

Dessau-Roßlau, Januar 2015

Das diesem Bericht zu Grunde liegende Vorhaben wurde mit Mitteln des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit unter der Forschungskennzahl 3710 62 221 gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autorinnen und Autoren.

Kurzbeschreibung

In einer Kurzzeitinhalationsstudie wurden Ratten gegenüber Carbonanotubes (MWCNTs) exponiert. Das Ziel der Untersuchung war die Verteilung der MWCNTs im Körper zu erfassen und die Ausscheidungsprozesse und mögliche Ablagerungen im Körper zu erforschen. Im ersten Teil wurde die Exposition mit unmarkierten MWCNTs durchgeführt. In einer Lungenlavage konnte 1 Tag nach Exposition eine entzündliche Reaktion nachgewiesen werden, nach 28 Tagen war der Effekt verschwunden. Im hochauflösenden Lichtmikroskop konnten einzelne MWCNTs in Leber und Nieren und im Agaroseabguß des Pleuraspalts nachgewiesen werden.

Im zweiten Teil wurde die Exposition mit Co-60 markierten MWCNTs durchgeführt. Die Gammaaktivität wurde in verschiedenen Organen, Körperflüssigkeiten und Ausscheidungsprodukten gemessen. Durch die Untersuchung der Lungenspülflüssigkeit konnte gezeigt werden, dass schon 1 Tag nach Exposition die meisten MWCNTs von Makrophagen phagozytiert waren. Die Messungen ergaben Hinweise auf eine sehr schnelle Wanderung der MWCNTs aus der Lunge in den Pleuraspalt (Tag 0 und 1) und eine anschließende relativ schnelle Abwanderung aus dem Pleuraspalt (Tag 14 und 28).

Abstract

Rats were exposed to Carbonanotubes (MWCNTs) in a short-term inhalation study. The objective of the study was to investigate the distribution, storage and excretion of MWCNTs. In the first part of the experiments the exposure was performed using unlabeled MWCNTs. In lung lavage inflammatory reactions were observed 1 day after exposure but not 28 days after exposure. Individual MWCNTs were detected in liver, kidneys and in the agarose cast of the pleural cavity using a high resolution light microscope.

In the second part Co-60 labeled MWCNTs were used for exposure. The gamma-activity was analysed in several organs, body fluids, and secretion products. The analysis of the lung lavage fluid has shown, that already 1 day after exposure most MWCNTs were phagocytized by macrophages. By analysis of the agarose cast of the pleural cavity a fast translocation to the pleural cavity was detected at day 0 and 1 after exposure. Thereafter a fast decrease of MWCNT concentration in the pleural cavity was seen at day 14 and 28.

Inhaltsverzeichnis

I.	Leis	stungsbeschreibung	1
	I.1	Aufgabenstellung	1
	I.2	Voraussetzungen, unter denen das Vorhaben durchgeführt wurde	1
	I.2.	.1 Auswahl der zu untersuchenden MWCNTs	1
	I.2.	2 Auswahl der Organe und Gewebe	4
	I.3	Planung und Ablauf des Vorhabens	5
	I.3.	.1 Herstellung und Charakterisierung der MWCNTs	5
	I.3.	2 Untersuchung der Suspendierbarkeit	7
	I.3.	.3 Untersuchungen zur Löslichkeit von Kobalt in den MWCNT-Proben	7
	I.3.	4 Exposition der Tiere	8
	I.3.	5 Sektion	10
	I.3.	.6 Untersuchungen nach Exposition mit unmarkierten MWCNTs	11
	I.3.	7 Quantitative Bestimmung der MWCNTs in den Proben	12
	I.3.	.8 Arbeitssicherheitsmaßnahmen	12
	I.4	Wissenschaftlicher und technischer Stand an den angeknüpft wurde	12
	I.5	Zusammenarbeit mit anderen Stellen	13
II.	Erg	ebnisse	14
	II.1	Klinische Beobachtungen, Nekropsiebefunde, Organgewichte und Körpergewichte	14
	II.2	Erzielte Expositionsbedingungen	14
	II.3	Bronchoalveoläre Lungenspülung	15
	II.4	REM-Messungen der Fasern in der BAL und im Urin	15
	II.5	Untersuchungen im hochauflösenden Lichtmikroskop (Cytoviva)	16
	II.6	Untersuchungen nach Exposition mit markierten MWCNTs	18
	II.6	5.1 Untersuchungen der Gammaaktivität in den biologischen Proben	18
	II.7	Kinetik der MWCNT-Fasern in der Ratte	23
	II.8	Schlussfolgerung und Diskussion	24
III.	Lite	eratur	26
An	hang	1: Organgewichte (Einzeltierdaten)	29
An	hang	2: Körpergewichte (Einzeltierdaten)	30
An	hang	3: Messdaten der Expositionsatmosphäre	32
An	hang	4: Differentielle Zellzählung (Einzeltierdaten)	33

Toxikologie von Nanomaterialien, Wirkmechanismen und Kanzerogenität - CNT-Kinetik nach Kurzzeitinhalation

Anhang 5: REM-Bilder aus Suspension, Aerosol und Lungenspülung	34
Anhang 6: Bilder im Cytoviva hochauflösenden Lichtmikroskop	38
Anhang 7: Gammaaktivitätsmessungen (Einzeltierdaten)	58

Abbildungsverzeichnis

Abb.	1: Durchmesserverteilung von Co-MWCNTs.	.5
Abb. 2	2a: Längenverteilung von Co-MWCNTs-Bündel	.6
Abb. 2	2b: Längen individueller Co-MWCNTs	.6
Abb. 3	3a: REM-Aufnahme von as-grown Co MWCNTs	.6
Abb. 3	3b: REM-Aufnahme von Co-MWCNTs nach einer Säure-Behandlung	.6
Abb. 4	4: Suspension der MWCNT-Probe in Dispersionsmedium nach Ultraschallbehandlung	.7
Abb. S	5: Aufbau der Inhalationsanlage	.9
Abb. (5: Transportwege im Körper nach Inhalation2	23

Tabellenverzeichnis

Tab. 1: Mögliche Analysemethoden für MWCNTs in verschiedenen Organen	4
Tab. 2: Design der Inhalationsstudie	9
Tab. 3: Untersuchungstermine für verschiedene Parameter nach Co-60-MWCNT Exposition	11
Tab. 4: Untersuchungstermine für verschiedene Parameter nach Exposition mit unmarkierten MWCNTs	11
Tab. 5: Organgewichte der Gruppe 2	14
Tab. 6: Körpergewichte	14
Tab. 7: MWCNT-Konzentrationen im Aerosol während der Exposition	15
Tab. 8: Differentielle Zellzählung in der bronchoalveolären Lungenlavage	15
Tab. 9: Fasergrößenverteilung der WHO-Fasern in den MWCNT-Proben von der Ausgangssuspension, Aerosol, BAL und Urin	16
Tab. 10: Retinierte MWCNT-Mengen in den biologischen Proben (in ng)	18
Tab. 11: Retinierte MWCNT-Mengen in den biologischen Proben (in ng pro g)	19
Tab. 12: Retinierte MWCNT-Mengen in der Lunge und in Fraktionen der BAL	21
Tab. 13: MWCNT-Mengen im Kot und Urin	22

Abkürzungen

99mTc-MWNT-G	99mTc-glucosamine-MWCNT (MWCNT, die mit einem Gammatransmitter 99mTc funktionalisiert wurden)
AAS	Atomic Absorption Spectroscopy
C-14-Tau-MWCNTs	14C-taurine MWCNTs
DTPA	Diethylenetriaminepentaacetic-acid
ICP-OES	Inductively Coupled Plasma -Optical Emission Spectrometer
intratracheale Instillation	Direkte Verabreichung einer Substanz in die Luftröhre
LALN	lung associated lymph nodes (Lungen assoziierte Lymphknoten)
Lavage	Lungenspülung
Mean	Mittelwert
MWCNTs	Multi Walled Carbonanotubes
Ν	Anzahl der Tiere
REM	Rasterelektronenmikroskop
Std	Standardabweichung
SWCNT	Single Walled Carbonanotubes
TEM	Transmissionselektronenmikroskop
WHO Fasern	Fasern mit einer Länge > 5µm; Durchmesser < 3µm; Längen/Durchmesserverhältnis > 3/1

I. Leistungsbeschreibung

I.1 Aufgabenstellung

In diesem Vorhaben sollten die Verteilung von Carbonanotubes (MWCNTs) im Körper erfasst und die Ausscheidungsprozesse und mögliche Ablagerungen im Körper untersucht werden. Dafür wurde ein typischer MWCNT-Typ mit definiertem Durchmesser und Länge hergestellt und verwendet.

I.2 Voraussetzungen, unter denen das Vorhaben durchgeführt wurde

I.2.1 Auswahl der zu untersuchenden MWCNTs

In Abstimmung mit dem UBA wurde folgender MWCNT-Typ zur Untersuchung eingesetzt:

MWCNT mit einem Durchmesser von etwa 40 nm und einer mittleren Länge der WHO-Fasern von etwa 5-10 $\mu m.$

Bei diesem Faserdurchmesser war aus einem anderen vom BMBF geförderten Projekt des Fraunhofer ITEM (CarboTox) bekannt, dass dieses Material in einem lungenähnlichen Milieu noch suspendierbar ist, während dünnere MWCNTs bei gleichen Bedingungen größtenteils als Agglomerate vorliegen.

Die Verwendung einer kürzeren MWCNT-Probe (Länge < 5 μ m) war nicht vorgesehen, da nach Erkenntnissen der intensiven Untersuchungen mit Asbest für Fasern mit einer Länge < 5 μ m kein Risiko einer krebserzeugenden Wirkung aufgrund der Faserform besteht.

Im September 2010 wurde im Fraunhofer ITEM das BMBF-Verbundprojekt "CarboTox" (innnerhalb von Nanocare 2) mit dem Titel "Entwicklung von Screening-Verfahren zur Untersuchung eines möglichen kanzerogenen Potentials von Carbonanotubes gestartet. In diesem Projekt wurde die Suspendierbarkeit von ähnlichen Test-MWCNTs in simuliertem Lungenmilieu untersucht. Nur in diesem Milieu als Einzelfasern vorliegende MWCNTs wurden innerhalb von CarboTox vollständig charakterisiert und für weitere Untersuchungen eingesetzt. Außerdem sollte die mögliche Wanderung von MWCNTs von der Lunge zum Pleuraspalt mit Hilfe des Rasterelektronenmikroskops (REM) untersucht werden. Für dieses Projekt wurden die MWCNTs mit Eisen als Katalysator hergestellt. Kinetische Untersuchungen mit radioaktiv markierten MWCNTs wurden im Projekt CarboTox nicht durchgeführt.

Bei der Herstellung der MWCNTs im hier beschriebenen Projekt musste Kobalt als Katalysator verwendet werden, damit durch Neutronenaktivierung radioaktiv markierte MWCNTs erzeugt werden konnten. Die Markierung war für die weitere Analyse unbedingt erforderlich.

Analysemethoden zur Quantifizierung von MWCNTs

Die meisten in der Literatur beschriebenen Methoden zur Quantifizierung von MWCNTs in Organproben verwendeten eine Oberflächenmodifizierung mit hydrophilen Gruppen, an die dann radioaktive Substanzen gekoppelt wurden. Durch diese Oberflächenmodifizierung veränderte sich aber auch das Translokationsverhalten von MWCNTs, die ohne Funktionalisierung zunächst eine hydrophobe Oberfläche besitzen. In der vorliegenden Untersuchung wurde daher eine Methode ohne Funktionalisierung der MWCNT-Oberfläche ausgewählt.

Eine Möglichkeit zur Analytik ohne Oberflächenmodifizierung wäre der Einbau von C-14 oder C-13 bei der Produktion der Nanotubes. Die Herstellung von C-14-MWCNTs war bei unserem Partner IFW nicht möglich. Die Herstellung von C-13 angereicherten MWCNTs wäre zwar prinzipiell möglich, die Analyse im Massenspektrometer ist aber sehr aufwändig.

Bei der Herstellung von MWCNTs werden üblicherweise die Elemente Eisen, Kobalt oder Nickel als Katalysator verwendet. Die Atome dieser Elemente werden bei der Synthese in die Nanoröhren eingeschlossen. Der Massengehalt liegt im Bereich von etwa 1-5%. Da diese Atome sehr fest in die MWCNTs gebunden sind, bieten sie sich für einen Nachweis der MWCNTs an. Bei kinetischen Untersuchungen von MWCNTs über den Eisengehalt stört aber das natürlich vorkommende Eisen im Körper. Elgrabli et al. (2008) konnten den Gehalt an MWCNTs in der Lunge und in den LALN von Ratten nach intratrachealer Instillation durch Ni-Analyse verfolgen. Ein Nachweis in anderen Organen war nicht möglich. Muller et al. (2005) verfolgten den MWCNT-Gehalt in der Rattenlunge nach intratrachealer Instillation von 0,5 mg MWCNTs durch Co-Analyse. Ebenfalls durch Co-Analyse konnte Pauluhn (2010) den Gehalt in Lunge und LALN nach 3-monatiger Inhalation von MWCNTs verfolgen. Die Empfindlichkeit dieser chemischen Analysen ist aber nicht ausreichend, um die Translokation einer geringen Menge (z.B. 1%) in ein anderes Organ nachzuweisen, insbesondere wenn nur eine Kurzzeitinhalation durchgeführt wird.

Eine weitere analytische Methode zum spezifischen Nachweis von MWCNTs ist die Raman-Spektroskopie. Yang konnte nach der IV-Injektion von 1 mg Single-Walled CNTs (SWCNTs) über das Ramansignal die SWCNTs in Lunge, Leber und Milz von Mäusen nachweisen. Die Empfindlichkeit reicht aber nicht aus, um wesentlich geringere Mengen an CNTs nachzuweisen, insbesondere bei Multi-Walled CNTs (MWCNTs).

Ein weiteres Verfahren ist die Analyse der MWCNTs im TEM oder REM nach Aufschluss der Organproben. Im Fraunhofer ITEM wird diese Methode zur quantitativen Analyse von Mineralfasern in der Lunge seit etwa 20 Jahren eingesetzt auch z.B. für Para-Aramidfasern, die morphologisch eine gewisse Ähnlichkeit zu MWCNTs aufweisen (Bellmann et al., 2000).

Das Verfahren ist aber relativ zeitaufwändig (bei MWCNTs ist durch die gewundene Form und die im Vergleich zum Durchmesser extrem große Faserlänge die Faseranalyse wesentlich langwieriger als bei Mineralfasern) und hätte bei der Analyse von insgesamt etwa 500 Proben den Zeit- und Kostenrahmen dieses Projektes gesprengt. Als empfindlichste Methode zum sicheren Nachweis auch kleiner Mengen MWCNTs wurde deshalb die Neutronenaktivierung von Co ausgewählt. Dafür mussten MWCNTs verwendet werden, die mit Co als Katalysator hergestellt wurden.

Kobalt ist für die Neutronenaktivierung von den möglichen Katalysatoren (Fe, Co oder Ni) am besten geeignet. Die Katalysatoratome sitzen relativ fest in den MWCNTs und werden im physiologischen Milieu nur in geringen Mengen herausgelöst. Kobalt besteht zu 100% aus dem Isoptop Co-59 und durch Neutroneneinfang werden einige Co-59-Atome in Co-60 umgewandelt. Dieses radioaktive Isotop zerfällt unter Aussendung von gamma-Strahlung (und beta-Strahlung) mit einer Halbwertszeit von etwa 5,5 Jahren. Im Gegensatz zu den in Tabelle 1 zitierten radioaktiven Markierungen an der MWCNT-Oberfläche ist bei dieser Art der Markierung sowohl keine Veränderung der MWCNT-Oberfläche als auch keine Veränderung im Verhalten der MWCNTs im physiologischen Milieu zu erwarten.

In Tabelle 1 sind in der Literatur vorgestellte Wege zur Quantifizierung von MWCNTs in Organen bzw. Körperausscheidungen zusammengestellt.

Methode	Analyse	Nachteile	Vorteil	Referenz
Elektronenmikroskopie				
REM/TEM	Messung Länge, Durchmesser und Anzahl der MWCNTs nach Organaufschluss	sehr zeitaufwändig	Gewebeauf- schluss ohne MWCNT- Abbau, Größen- verteilung	Yang 2008
Nicht-radioaktive Isotopen	-Markierung			
C-13-angereicherte SWCNTs	Massenspektr.	Sehr aufwändig, wenig empfindlich		Yang 2007
Radioaktive Isotopen-Mark	tierung			
C-14-Markierung der MWCNTs	beta-Messung	Herstellung der MWCNTs im Isotopenlabor, Radioaktive Abfälle	Empfindlich	
C-14-Tau-MWCNTs	beta-Messung	Oberfläche verändert	Empfindlich	Deng 2007
I-125 SWCNTs-OH	gamma-Messung	Oberfläche verändert	Empfindlich	Wang 2004
I-131 SWCNTs-OH	gamma-Messung	Oberfläche verändert	Empfindlich	Wang 2008
In111-DTPA-CNTs	gamma-Messung	Oberfläche verändert	Empfindlich	Singh 2006, McDevitt 2007
99mTc-MWNT-G	gamma-Messung	Oberfläche verändert	Empfindlich	Guo 2007
Neutronenaktivierung MWCNTs (Co-haltig)	gamma-Messung Co-60	Radioaktive Abfälle: Co-60 T1/2=5 a	Sehr empfindlich	ITEM-Vorschlag (bevorzugt)
Neutronenaktivierung MWCNTs (Fe-haltig)	gamma-Messung Fe-59	Radioaktive Abfälle: Fe-55 T1/2=2,7 a; Fe-59 T1/2= 45 d; Aktivitätsausbeute wesentlich kleiner als bei Co	Empfindlich	ITEM-Alternative I
Einbau Fe-59 in geöffnete CNTs	gamma-Messung Fe-59	keine normalen CNTs	Sehr empfindlich	ITEM-Alternative II
Andere Methoden				
MWCNTs (Co-haltig)	Co-AAS	Wenig empfindlich		Muller 2005 Pauluhn 2010
MWCNT (Ni-haltig)	Ni-ICP-OES	Wenig empfindlich		Elgrabli 2008
Raman-Spektroskopie		Bei MWCNTs geringere	Bei SWCNTs	Yang 2008;
		Empfindlichkeit	empfindlich	(Richter, IKTS)

I.2.2 Auswahl der Organe und Gewebe

Bisher liegen kinetische Untersuchungen an Nagern nur nach intravenöser Gabe von MWCNTs vor. In den meisten Fällen waren allerdings die MWCNTs durch hydrophile Gruppen an der Oberfläche funktionalisiert, um dort radioaktive Markierungen anzubringen. In diesen Studien wurden MWCNTs hauptsächlich in der Leber und in der Lunge sowie in kleineren Mengen in der Milz gefunden, also in den blutreichen Organen. Deshalb wurden in dem hier berichteten Projekt neben der Lunge als Zielorgan auch Leber, Nieren und Milz analysiert, sowie als weitere Organe Herz und Gehirn. Da nach der Inhalation von schwerlöslichen Partikeln häufig ein Transport zu den lungenassoziierten Lymphknoten (LALN) beobachtet wurde, sollten auch die LALN einbezogen werden. Um generell die systemische Verfügbarkeit und Eliminierung zu überprüfen, wurde zudem die Analyse der Kompartimente Blut und Urin durchgeführt. Die Untersuchung von Faeces und der Karkasse (Restkörper) wurde ebenfalls durchgeführt. Die Gammaaktivität im Kot stammt hauptsächlich von MWCNTs, die in den ersten Tagen aus der Nase und später durch mukoziliäre Clearance aus dem Bronchialbereich der Lunge abtransportiert und abgeschluckt wurden.

Nach der Inhalation von Asbestfasern werden beim Menschen und auch bei Nagetieren Mesotheliome induziert. Dabei handelt es sich um eine sehr spezifische Tumorart der Pleura. Zur Induktion dieses Tumors müssen die Asbestfasern aus der Lunge in den Pleuraspalt wandern. Um diese Wanderung zu untersuchen, kann ein Agaroseabguss des Pleuraspalts erstellt werden. Dieses von Bermudez (1994) beschriebene Verfahren wurde am Fraunhofer ITEM erfolgreich in einer Faserinhalationsstudie angewendet (BIA-Report 2/98,1998). Dieser Agaroseabguss des Pleuraspalts wurde im berichteten Projekt angewandt und ebenfalls untersucht, um das Risiko einer Mesotheliominduktion durch die untersuchten MWCNTs abschätzen zu können

I.3 Planung und Ablauf des Vorhabens

I.3.1 Herstellung und Charakterisierung der MWCNTs

Die maßgeschneiderten MWCNTs (siehe I.2.1) wurden im Unterauftrag beim IFW (Dresden) mit einem CVD-Verfahren (Chemische Gasphasenabscheidung) hergestellt. Das IFW hat auf dem Gebiet der Herstellung von Kohlenstoffnanoröhren eine mehr als 10-jährige Erfahrung.

Die Synthese der mehrwändigen CNTs (MWCNTs) erfolgte durch die Aerosol-gestützte chemische Gasphasenabscheidung (Ae-CVD). Hierbei wurde die metallorganische Verbindung Kobaltocen in Acetonitril gelöst. Die Lösung wurde durch Ultraschall vernebelt (Aerosol) und mit einem Transportgas (Ar/H2) in den CVD-Reaktor (Temperatur 800 °C) geleitet. In der Reaktionszone zersetzten sich sowohl Kobaltocen als auch das als Kohlenstoffquelle dienende Acetonitril. Die spontan entstandenen Co- Nanopartikel katalysierten die Bildung der Kohlenstoffnanoröhren. Die MWCNT-Abscheidung erfolgte im Wesentlichen in ausgerichteter Form an der Innenwand des CVD-Reaktors, von der die MWCNTs leicht mechanisch (als Carpets) entfernt werden konnten.

Die für die Neutronenaktivierung vorgesehenen MWCNTs wurden hinsichtlich Durchmesser und Länge am IFW durch Ausmessung im Rasterelektronenmikroskop charakterisiert. Der mittlere Durchmesser der gelieferten MWCNTs lag bei 35 ±12 nm (Abb. 1).

Die mittlere Länge der meist als Bündel vorliegenden MWCNTs betrug ca. 13 \pm 5 µm (Abb. 2a). Durch Dispergierung ("Entbündelung") der MWCNT-Bündel wurden die MWCNTs individualisiert. Somit konnten die Längen einzelner MWCNTs mittels einer speziellen Software von Olympus ("ITEM") ermittelt werden. (Abb. 2b). Bei Ausmessung einer repräsentativen Anzahl von MWCNTs ergab sich eine mittlere Länge von 7 \pm 3µm.

Diese tendenziell kürzeren MWCNTs (im Vergleich zu den Bündeln) könnten verursacht sein durch Kürzung bei der Dispergierung (Bruch), oder die Bündel bestanden aus unterschiedlich langen MWCNTs.

Um eventuell frei vorliegendes, nicht durch die Nanoröhren komplett umhülltes Kobalt (siehe Löslichkeit in I.3.3) zu entfernen, wurden die as-grown Co-MWCNTs mit Mineralsäuren gewaschen (HCl, HNO3). Dabei wurde die Behandlungsdauer derart eingestellt, dass möglichst nur die freiliegenden Kobaltpartikel gelöst wurden und die in den MWCNTs eingeschlossenen Katalysatorpartikel unbeeinträchtigt blieben. Abbildung 3a zeigt MWCNTs; die hellen Punkte sind Co-Partikel, die nicht von Kohlenstoff umhüllt sind. Nach der Behandlung mit Säure waren frei liegende Co-Partikel weitgehend verschwunden (Abb. 3b). Darüber hinaus wurde durch diese Nachbehandlung (MWCNTs in Säure dispergiert inkl. einer kurzen Behandlung im Ultraschallbad und Neutralwaschen) ein großer Teil der Bündel aufgelöst

Durch anschließende Neutronenaktivierung (im FRM-II der TU München) wurde ein Teil der MWCNT-Probe (500mg) mit Co-60 markiert (100 MBq).

Toxikologie von Nanomaterialien, Wirkmechanismen und Kanzerogenität - CNT-Kinetik nach Kurzzeitinhalation

I.3.2 Untersuchung der Suspendierbarkeit

Die Suspendierbarkeit wurde im Dispersionsmedium nach Porter (2008) getestet. Nach Ultraschallbehandlung von 2 x 5 min mit einer Sonotrode (Bandelin, Sonoplus HD 2070, VS 70 T) enthielt die Suspension größtenteils Einzelfasern (siehe Abb. 4).

Abb. 4: Suspension der MWCNT-Probe in Dispersionsmedium nach Ultraschallbehandlung.

I.3.3 Untersuchungen zur Löslichkeit von Kobalt in den MWCNT-Proben

Nach der Herstellung von 5 g MWCNTs wurde eine Untersuchung der Löslichkeit des Co in verschiedenen Medien durchgeführt, die das Milieu in der Lunge simulieren sollen. Es wurde die Gamble Solution bei pH 4.5 und 7.4, eine künstliche lysosomale Flüssigkeit (artificial lysosomal fluid) (pH 4.5) und eine künstliche alveolare Flüssigkeit (artificial alveolar fluid) (pH 7.4) verwendet. Dabei zeigte sich, dass schon nach 15 min in den Medien bei pH 7.4 etwa 6% und in den sauren Medien etwa 11% des Kobalts gelöst war. Nach 24 Stunden war bei pH 7.4 nur ein leichter Anstieg auf etwa 7%, bei den sauren Medien aber ein Anstieg auf etwa 20% lösliches Kobalt zu beobachten. Angestrebt war jedoch, dass höchstens etwa 5% des Kobalts löslich sein sollten.

Aus dem hergestellten MWCNT-Material wurde deshalb im IFW durch Säurebehandlung ein wesentlicher Teil des löslichen Kobalt-Anteils abgetrennt. Eine anschließende Untersuchung in Gamble Solution ergab bei pH 7.4 eine Löslichkeit von 2.5 – 3 % 0,25 Std, 8 Std. und 24 Std nach Suspendierung. In der Gamble Solution bei pH 4.5 lag die gemessene Löslichkeit zwischen 3.5 und 4.7%. Damit war die Bedingung einer Löslichkeit unter 5% für diese Probe erfüllt.

Toxikologie von Nanomaterialien, Wirkmechanismen und Kanzerogenität - CNT-Kinetik nach Kurzzeitinhalation

I.3.4 Exposition der Tiere

Es wurden männliche Wistar-Ratten [Crl:Wi (Han)] von Charles River Deutschland (Sulzfeld) verwendet, die am Expositionstag etwa 9 Wochen alt waren.

Nr.	Gruppe (Expositionsdauer)	Tierzahlen und Sektionstermine								
		0 Tage 1 Tag 14 Tage 28 Tage					Tiernr.			
1	MWCNT1 (Unmarkiert) (6h)	1	5+2		5	10 +2	1101-1112 (1113)			
2	MWCNT1 (Co-60) (4h)	6	6	6	6	24	2101-2124			

Tab. 2: Design der Inhalationsstudie

Die Applikation erfolgte durch Nose-only-Exposition. Insgesamt wurden 24 Tiere (Gruppe 2) mit den Co-60-MWCNTs exponiert. Zusätzlich wurden zuvor 12 Ratten (Gruppe 1) gegenüber unmarkierten MWCNTs exponiert. Die unmarkierten Tiere dienten als Kontrolle. Wenn eine Co-60-Aktivität nach Inhalation mit MWCNT1(Co-60) in den Organen gefunden würde, sollten die Organe der unmarkierten Tiere histopathologisch in einem speziellen Lichtmikroskop (CytoViva) mit Scattered-Light untersucht werden. Außerdem wurde die Methode zur Herstellung des Pleuraabgusses und die erschöpfende Lungenspülung überprüft.

Die Durchführung dieser Inhalationsstudie fand in einem Isotopenlabor unter einem Isotopenabzug innerhalb des Tierhauses im ITEM statt (siehe Abb. 5).

Die Aerosolerzeugung wurde zunächst mit unmarkiertem MWCNT-Material getestet. Zur Aerosolerzeugung wurde die Vernebelung einer wässrigen MWCNT-Suspension mit einer mit Druckluft betriebenen Düse eingesetzt. Dieses Verfahren wurde auch schon in früheren Studien im Fraunhofer ITEM zur Aerosolerzeugung von Nanopartikeln eingesetzt. (Creutzenberg et al. 2012). Alternativ wurde ein Akustik-Aerosolerzeuger nach der Methode von NIOSH (McKinney et al., 2009) erprobt. Mit beiden Methoden wurde ein Faseraerosol erzeugt, das hauptsächlich aus Einzelfasern oder kleinen Faseragglomeraten bestand. Der Nachteil bei der NIOSH-Methode lag in der sehr geringen Ausbeute (weniger als 10% der eingesetzten MWCNTs gelangen ins Aerosol, bei einmaliger Kurzzeit-Inhalation von 6 Std. noch weniger). Dagegen konnte mit der Flüssigkeitsdispergierung eine Ausbeute von etwa 50% des eingesetzten Materials im Aerosol erreicht werden.

Abb. 5: Aufbau der Inhalationsanlage

Gerade für Expositionsversuche mit radioaktivem Material ist eine hohe Ausbeute im Aerosol wichtig. Deshalb wurde in dieser Studie die Flüssigkeitsdispergierung eingesetzt.

Die Suspension der MWCNTs erfolgte in einem speziellen Dispersionsmedium in Anlehnung an ein von Porter et al. (2008) beschriebenes Medium zur Suspendierung von MWCNT-Proben (siehe I.3.2). Das im Fraunhofer ITEM modifizierte Medium für den Inhalationsversuch enthielt 0,099g Glucose, 0,06 g Rinderserum Albumin (BSA), und 0,001 g 1,2-Dipalmitoyl-sn-glycero-3phosphocholin (DPPC) in 100 ml gefiltertem Wasser. Die Konzentration des MWCNT-Materials betrug 2 mg/ml. Diese Suspension wurde durch Ultraschall behandelt (2 x 5 min mit einer Sonotrode (Bandelin, Sonoplus HD 2070, VS 70 T)). Die fertige Suspension wurde dann mit Druckluft in einer Düse vernebelt. Die Flüssigkeitsmenge pro min (ca. 15ml/Std.) wurde so eingestellt, dass die Luftfeuchtigkeit nach Verdunstung der kleinen Tröpfchen in der verwendeten Luftmenge von 20 l/min maximal etwa 80% betrug.

Im Versuch mit nichtaktivierten MWCNTs wurden insgesamt 12 Tiere und im Hauptversuch mit Co-60 MWCNT 24 Tiere exponiert. Zusätzlich wurde ein Tier für einen Vorversuch eingesetzt, um den Erfolg eines Pleuraabgusses nach MWCNT-Exposition sicherzustellen.

I.3.5 Sektion

Nach der Exposition mit Co-60 MWCNTs wurden je 6 Ratten zu den Zeitpunkten 0,5 h, 24 h, 14 Tage und 28 Tage nach Expositionsende schmerzlos getötet, seziert und makroskopisch befundet.

Die inhalierten MWCNTs wurden in folgenden Organen und Körperkompartimenten analysiert:

Lunge (Bestimmung der deponierten Menge), LALN, Leber, Niere, Gehirn, Herz, Milz, Blut, Urin. Bei 3 Tieren pro Sektionstermin wurde ein Pleuraabguss mit Agarose erstellt. Bei den übrigen 3 Tieren wurde eine erschöpfende Lungenspülung durchgeführt. Nach der Lungenspülung wurde die Restlunge, die Spülflüssigkeit und nach einer Zentrifugation das Zell-Sediment und der Überstand auf Co-60 Aktivität überprüft. Außerdem wurde der Restköper (Karkasse) analysiert. Über den gesamten Zeitraum bis zu 28 Tagen wurde weiterhin der Kot der Tiere gesammelt und analysiert.

Untersuchung	Tag nach Exposition	Tiernummern
Lungenspülung	0	2101-2103
	1	2110-2112
	14	2116-2118
	28	2119-2121
Agaroseabguss	0	2104-2106
	1	2107-2109
	14	2113-2115
	28	2222-2224
Analyse der Organe und Körperkompartimente	0	2101-2106
	1	2107-2112
	14	2113-2118
	28	2119-2224

Tab. 3: Untersuchungstermine für verschiedene Parameter nach Co-60-MWCNT Exposition

I.3.6 Untersuchungen nach Exposition mit unmarkierten MWCNTs

Eine Übersicht zu den durchgeführten Untersuchungen nach Inhalation von unmarkierten MWCNTs ist in Tabelle 4 angegeben.

Untersuchung	Tag nach Exposition	Tiernummern
Lungenspülung	0	1113
	1	1103-1105
	28	1108-1110
MWCNT-Retention	1	1111-1112
Histopathologie	1	1101-1102
	28	1106-1107

Tab. 4: Untersuchungstermine für verschiedene Parameter nach Exposition mit unmarkierten MWCNTs

Während der Sektion wurde bei einem Teil der Tiere (1101-1102, 1106-1107) ein Pleuraabguss erstellt. Bei den anderen Tieren (1103-1105,1108-1110) wurde eine Lungenspülung (siehe I.3.5) durchgeführt. Die Lungen der Tiere 1101, 1102, 1106 und 1107 wurden mittels einer Kanüle in die Trachea mit 20 cm Wassersäulendruck gefüllt. Die Organe wurden nicht eingefroren, sondern jeweils ein kleiner Teil von Lunge, LALN, Leber, Niere, Gehirn, Herz, Milz für optionale TEM-Untersuchungen in Glutaraldehyd fixiert und der übrige Anteil der Organe, sowie die Restorgane inklusive Kopf in Formalin fixiert. Für den Sektionstermin Tag 1 wurde der Urin über Nacht gewonnen und eingefroren.

Von der Lungenspülflüssigkeit wurde die Zellfraktion und der Überstand nach Zentrifugation (360g) im Lichtmikroskop und im REM auf MWCNTs (Einzelfasern, Agglomerate) untersucht.

Außerdem wurden Zytozentrifugenpräparate hergestellt und nach einer Pappenheimfärbung eine differentielle Zellzählung vorgenommen (Makrophagen, Granulozyten und Lymphozyten). Diese Präparate wurden auch für eine lichtmikroskopische Untersuchung im CytoViva Hochauflösungs-Mikroskop verwendet (mit und ohne Anfärbung; siehe II. 5)

Die beiden zusätzlich exponierten Tiere der Gruppe 1 (1111-1112) wurden am Tag 1 seziert. Die Lunge sowie die LALN wurden für Faserretentionsmessungen entnommen und eingefroren. Diese Untersuchungen werden im BMBF-Projekt CarboTox durchgeführt.

I.3.7 Quantitative Bestimmung der MWCNTs in den Proben

Durch die Markierung der MWCNTs mit Co-60 war die quantitative Bestimmung durch Messung der gamma-Strahlung möglich. Die biologischen Proben wurden nach der Sektion zunächst gewogen und falls nicht am gleichen Tag gemessen, eingefroren. Die Messung der Gammaaktivität erfolgte dann in zwei sehr empfindlichen Bohrlochdetektoren.

Mit einer Standardprobe aus einer kleinen Menge der zur Aerosolherstellung verwendeten Suspension wurde die Empfindlichkeit der verwendeten Bohrlochdetektoren ermittelt. Außerdem wurde durch Erhöhung des Volumens dieser Standardprobe die unterschiedliche Empfindlichkeit für verschiedene Füllhöhen der im Bohrloch verwendeten Probengefäße ermittelt. Dadurch ließ sich unter Einbeziehung der Volumina (bzw. Gewichte) der verschiedenen Proben eine Korrektur der Messergebnisse für die unterschiedlichen Füllhöhen in den Bohrlochdetektoren durchführen. Die Messung der Karkasse war nur oberhalb des Bohrlochdetektors möglich. Für diese Messungen wurde eine Standardprobe an verschiedenen Positionen etwa im mittleren Abstand der Karkasse von der Oberfläche des Detektors herangezogen. Zur Korrektur der Hintergrundstrahlung wurden die Zählrate der Detektoren über einen Zeitraum von 10 min (Sektionstermine 0 und 1 Tag) oder 15 min. (Sektionstermine 14 und 28 Tage) ermittelt. Zusätzlich wurde bei der Auswertung eine Zerfallskorrektur für den Zerfall von Co-60 mit einer Halbwertszeit von 1925.2 Tagen durchgeführt.

Die bei dieser Messung erreichte Nachweisgrenze wurde nach der von Tschurlovits (1983) beschriebenen Methode bestimmt. Die Gehalte an MWCNT wurden für alle Organe absolut sowie relativ zum Organgewicht angegeben.

I.3.8 Arbeitssicherheitsmaßnahmen

Beim Umgang mit den verwendeten MWCNTs wurden die gleichen Sicherheitsmaßnahmen wie beim Umgang mit Asbest angewendet. Insbesondere musste eine Inhalation der Fasern durch die Mitarbeiter ausgeschlossen werden. Die Arbeiten zur Aerosolerzeugung wurden unter einem Isotopenabzug im Isotopenlabor innerhalb des Tierbereichs durchgeführt. Zusätzlich war die "Tierinhalationsbox" innerhalb des Isotopenabzugs in einer abgeschlossenen Sicherheitsbox untergebracht, in der gegenüber dem Raum ein geringer Unterdruck herrschte. Zum Schutz vor Radioaktivität wurde eine ca. 10 cm dicke Bleimauer um den Versuchsaufbau errichtet (siehe Abb. 5 in I.3.4).

Darüber hinaus wurden von den beteiligten Mitarbeitern während der Expositionszeit und an den ersten 5 Tagen danach in dem Raum Einmaloveralls und eine P3-Staubmaske getragen.

I.4 Wissenschaftlicher und technischer Stand an den angeknüpft wurde

Dispergierung von MWCNTs nach Porter (2008)

Toxikologie von Nanomaterialien, Wirkmechanismen und Kanzerogenität - CNT-Kinetik nach Kurzzeitinhalation

I.5 Zusammenarbeit mit anderen Stellen

Die Herstellung der MWCNTs erfolgte im IFW Dresden.

Die Neutronenaktivierung wurde in der Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II) der TU München in Garching durchgeführt.

II. Ergebnisse

II.1 Klinische Beobachtungen, Nekropsiebefunde, Organgewichte und Körpergewichte

Es liegen keine klinischen Befunde vor, die von Normalbefunden abweichen.

Alle Tiere wurden zum geplanten Sektionstermin getötet.

Die Mittelwerte der Organgewichte sind konstant und sind in Tabelle 5 und die Einzelwerte in Anhang 1 dargestellt.

Die Mittelwerte der Körpergewichte nehmen entsprechend dem Alter der Tiere zu. Sie sind in Tabelle 6 und die Einzelwerte in Anhang 2 aufgelistet.

Organ	Organgewicht [g] Zeitpunkt nach Exposition [Tage]												
	0			1	1			14			28		
	Mean	Std	Ν	Mean	Std	Ν	Mean	Std	N	Mean	Std	N	
Lunge	1,23	0,07	3	1,15	0,09	3	1,47	0,24	3	1,32	0,08	3	
Lunge mit Agarose	2,95	0,16	3	2,59	0,16	3	3,04	0,04	3	3,39	0,21	3	
Diff Lunge+Agarose - Lunge	1,72			1,44			1,57			2,07			
LALN	0,26	0,05	6	0,17	0,04	6	0,34	0,43	6	0,38	0,04	5	
Leber	8,98	0,21	6	9,79	0,88	6	9,60	0,68	6	10,52	1,05	6	
Nieren	1,91	0,07	6	1,87	0,10	6	1,95	0,12	6	2,07	0,12	6	
Gehirn	1,90	0,05	6	1,77	0,21	6	1,83	0,12	6	1,92	0,11	6	
Herz	0,77	0,06	6	0,86	0,10	6	0,94	0,21	6	0,90	0,08	6	
Milz	0,64	0,13	6	0,55	0,06	6	0,67	0,09	6	0,68	0,09	6	

Tab. 5: Organgewichte der Gruppe 2

(Mean= Mittelwert; Std= Standardabweichung; N= Anzahl der Tiere)

Der Mittelwert der Lungen mit Agarose ist vermutlich durch das Anhaften von Agaroseresten an der Lungenoberfläche 1,7 g höher als bei den Lungen ohne Agarose. Deshalb wurde bei der Aktivitätsangabe pro g Lunge für die Tiere mit Agaroseabguss ein Wert von 1,7 g vom Lungengewicht (inklusive Agarose) abgezogen.

Tab. 6: Körpergewichte

Gruppe		Köpergewicht (g)									
		Zeitpunkt nach Exposition [Tage]									
		-16	-13	-8/-6	0	7	14	21	28		
1	Mean	173,38		214,87	246,91	267,42	297,08	316,68	337,46		
	Std	6,88		9,51	8,71	8,84	12,1	10,39	16,43		
	Ν	10		10	10	5	5	5	5		
2	Mean		178,63	216,77	245,99	270,73	285,08	303,4	314,8		
	Std		5,8	8,05	9,25	12,79	17,81	19,13	19,51		
	Ν		24	24	24	12	6	6	6		

(Mean= Mittelwert; Std= Standardabweichung; N= Anzahl der Tiere)

II.2 Erzielte Expositionsbedingungen

Die Aerosolkonzentrationen und die Expositionsbedingungen sind in Tabelle 7 zusammengefasst. Die einzelnen Messdaten sind in Anhang 3 aufgelistet.

Datum	Gravi-	WHO-	Fasern	Expositions-	Exponierte	Körper	Expositions-	MWCNT-
	metrisch	Fasern/m	(L>20µm)/m	dauer [min]	Tiere	gewicht	volumen [l]	Menge
	[mg/m ³]	1	1			[g]		[µg]
14.06.12	8,5	6672	537	360	1101-1112	247	44,6	380
20.06.12	11,9			210	1113	235	25,0	297
26.06.12*	3,73			280	2101-2124	246	34,4	128

Tab. 7: MWCNT-Konzentrationen im Aerosol während der Exposition

* Exposition mit Co-60-MWCNT

Die gravimetrische Konzentration des Aerosols wurde bei den unmarkierten MWCNTs über das Auswiegen von Filterproben und bei den Co-60-MWCNTs über die Messung der Gammaaktivität von Filterproben bestimmt.

Aus dem mittleren Körpergewicht (KG in kg) der Tiere wurde nach der Stahlschen Formel (AMV=0,379 x KG0,8) das Atemminutenvolumen und damit das Volumen der inhalierten Expositionsatmosphäre sowie die inhalierte MWCNT-Menge berechnet (siehe Tabelle 7) (Stahl 1967).

II.3 Bronchoalveoläre Lungenspülung

Die Ergebnisse der differentiellen Zellzählung in der BAL sind in Tabelle 8 dargestellt. Die Einzelergebnisse sind in Anhang 4 aufgelistet. Nur am Sektionstermin 1 Tag nach Exposition wurde eine stark erhöhte Granulozytenzahl (PMN) in der Lungenspülung gemessen.

Zeit nach Inhalation [Tage]	Zellkonzentration [10 ⁶ Zellen/ml]		Makro [9	phagen %]	PI [9	MN %]	Lymphozyten [%]	
	Mean	Std	Mean	Std	Mean	Std	Mean	Std
0	0,25		99,25		0,25		0,00	
1	0,22	0,04	80,00	15,31	19,33	14,55	0,33	0,38
28	0,41	0,25	100,00	0,00	0,00	0,00	0,00	0,00

Tab. 8: Differentielle Zellzählung in der bronchoalveolären Lungenlavage

(Mean= Mittelwert; Std= Standardabweichung; N= Anzahl der Tiere)

II.4 REM-Messungen der Fasern in der BAL und im Urin

Die Fasergrößenverteilung der Fasern in der BAL-Flüssigkeit für Tag 0 und im Überstand nach Zentrifugation der Zellen an Tag 1 sind in Tabelle 9 angeführt. Im Vergleich dazu ist die Größenverteilung im Aerosol und in einer Suspension des MWCNT-Testmaterials (wie für die Aerosolerzeugung verwendet) angegeben.

Probe		Perzen [µm]	Perzentile der Faserlänge [µm]			Perzentile der Faserdurchmesser [µm]			
	n	10%<	50%<	90%<	GML	10%<	50%<	90%<	GMD
MWCNT-Suspension	108	5,4	7,0	10,9	7,2	0,028	0,050	0,089	0,048
Aerosol 14.06.2012	107	5,6	8,2	14,8	8,8	0,028	0,059	0,138	0,063
1113 BAL Flüssigkeit Tag O	53	5,3	6,7	9,6	7,0	0,028	0,050	0,075	0,048
1103 BAL Überstand Tag 1	103	5,5	7,4	12,6	8,0	0,028	0,042	0,071	0,041
1101 Urin Tag 1	5	5,8	6,4	7,4	6,4	0,020	0,031	0,049	0,031

Tab. 9: Fasergrößenverteilung der WHO-Fasern in den MWCNT-Proben von der Ausgangssuspension, Aerosol, BAL und Urin

(GML = geometrischer Mittelwert der Länge; GMD = geometrischer Mittelwert des Durchmessers)

In Anhang 5 sind einige REM-Bilder aus dem Faseraerosol der Inhalationskammer, aus der Lungenspülung sowie aus dem Überstand der Lungenspülung dargestellt.

Außerdem wurde der Urin im REM untersucht (untersuchte Filterfläche= 0,1 mm²) und es wurde eine ganz geringe Anzahl MWCNT-Fasern (berechnete Fasermasse etwa 7 ng) bei Tier 1101 einen Tag nach Exposition gefunden. Bei den anderen Tieren konnten keine Fasern im Urin nachgewiesen werden.

II.5 Untersuchungen im hochauflösenden Lichtmikroskop (Cytoviva)

Eine relativ neue Methode zum empfindlichen Nachweis von MWCNTs im Gewebe wurde 2011 von Mercer et al. (2011) beschrieben:

"Enhanced-Darkfield Light Microscopy Imaging of Nanoparticles:

Carbon nanotubes in sections from exposed lungs were assessed using an enhanced-darkfield optical system. Nanomaterials, such as carbon nanotubes, have dimensions less than the wavelength of light, have closely packed atoms, and typically have a refractive index significantly different from that of biologic tissues and/or mounting medium. These characteristics produce significantly greater scattering of light by nanoparticles than by the surrounding tissues. The enhanced-darkfield optical system images light scattered in the section and, thus, nanomaterials in the section stand-out from the surrounding tissues with high contrast. Using this method of imaging, lung sections can be easily scanned at relatively low magnification to identify MWCNTs that would not be detected by other means. The optical system consisted of high signal-to-noise, darkfield-based illumination optics adapted to an Olympus BX-41 microscope (CytoViva, Auburn, AL 36830)."

Bei Beantragung und Beginn des Projektes war die Untersuchung der histologischen Schnitte im TEM geplant. Die von Mercer beschriebene Analyse von MWCNTs im hochauflösenden Dunkelfeldmikroskop bietet jedoch eine wesentlich höhere Empfindlichkeit bei der Suche nach wenigen MWCNTs im Gewebe, da die Schnittdicke für das TEM nur 0,07 µm, für das Lichtmikroskop aber mit 3-4 µm das 50-fache beträgt. Im Dunkelfeld-LM wurden die MWCNTs zudem schon bei wesentlich kleinerer Vergrößerung erkannt. Ein Bildfeld im Dunkelfeld-LM hat die Größe von etwa 22500 µm² während die Bildfeldgröße im TEM bei 4000-facher Vergrößerung (die zum Erkennen der MWCNTs nötig ist) etwa 140 µm² beträgt.

Dadurch kann verglichen mit der TEM-Untersuchung auf einem Bildfeld im Dunkelfeld-LM etwa das 8000-fache Gewebevolumen untersucht werden. Das Fraunhofer ITEM hat deshalb 2012 für die Untersuchung von MWCNTs und von Nanopartikeln ein solches Dunkelfeldmikroskop der Fa. CytoViva beschafft und es konnte schon in dieser Studie eingesetzt werden.

Zur Kontrolle, ob die nur etwa 40 nm dicken MWCNT-Fasern in diesem hochauflösenden Lichtmikroskop sichtbar sind, wurden Zytozentrifugenpräparate und histologische Lungenschnitte untersucht. Die Bilder in Anhang 6 (Abb. 6-1) zeigen, dass man in vielen Makrophagen Zusammenlagerungen von zahlreichen MWCNTs deutlich erkennen kann. Es sind auch einige Fasern außerhalb von Makrophagen sichtbar.

In den Abb. 6-1 bis 6-5 von Anhang 6 sind einige Beispielbilder aus der Lunge von Tier 1102 (1 Tag nach Exposition) gezeigt. Die MWCNTs sind teilweise im Septum und in den Makrophagen zu sehen.

Die Bilder 6-6 bis 6-12 zeigen einen Lungenschnitt von Tier 1106 (28 Tage nach Exposition). Bild 6-6 zeigt ein MWCNT außerhalb der Lunge, das bei dem ungefärbten Schnitt nicht genau definierbar ist. Das MWCNT muss aber auf jeden Fall die Lunge verlassen haben.

Die Bilder 6-7 und 6-8 zeigen MWCNTs, die aus der Pleura der Lunge in den Pleuraspalt hineinragen. Auf Bild 6-9 ist ein MWCNT in der Pleura der Lunge zu sehen. Bild 6-10 zeigt ein MWCNT auf der Oberfläche der Pleura außerhalb der Lunge. Auf Bild 6-11 sind mehrere MWCNTs unterhalb der Pleura in der Lunge zu sehen. Bild 6-12 zeigt einen mit MWCNTs gefüllten Makrophagen in der Agarose außerhalb der Lunge, d.h. der Makrophage lag vor der Agaroseinjektion im Pleuraspalt.

Bild 6-13 zeigt ein MWCNT im Aortenlymphknoten in der Brusthöhle desselben Tieres.

Diese Beispiele zeigen deutlich, dass MWCNTs in die Pleura und durch die Pleura hindurch in den Pleuraspalt wandern können. Der mit MWCNTs gefüllte Makrophage im Pleuraspalt (Bild 6-12) könnte mit seiner MWCNT-Füllung aus der Lunge dorthin gewandert sein oder ein neu eingewanderter Makrophage hat mehrere MWCNTs im Pleuraspalt phagozytiert.

Auf Bild 6-14 ist ein einzelnes MWCNT im Lebergewebe von Tier 1102 (1 Tag nach Exposition) zu sehen. Auf den Bildern 6-15 bis 6-17 ist jeweils ein MWCNT im Glomerulum in der Niere der Tiere 1101 und 1102 (1 Tag nach Exposition) gezeigt. In der Niere von Tier 1106 (28 Tage nach Exposition) zeigen die Abb. 6-18 ein MWCNT im Glomerulum und die Abb. 6-19 und 6-20 jeweils ein MWCNT in Nierengewebe außerhalb der Glomeruli.

Es konnte also nachgewiesen werden, dass einzelne MWCNTs schon 1 Tag nach Exposition bis in die Niere und in die Leber gewandert sind.

II.6 Untersuchungen nach Exposition mit markierten MWCNTs

II.6.1 Untersuchungen der Gammaaktivität in den biologischen Proben

Die für die Gammaaktivitätsmessungen verwendeten NaI-Bohrlochdetektoren wurden über die Messung von Standardproben aus dem eingesetzten Co-60-MWCNT-Material geeicht. Im folgenden Abschnitt werden die Messergebnisse deshalb in ng MWCNT angegeben.

Die Mittelwerte der in den verschiedenen Proben vorhandenen MWCNT-Mengen sind in Tabelle 9 angegeben, Die MWCNT-Menge ist pro g Probe zusammengefasst. Einzeltierdaten sind in Anhang 7 aufgelistet.

Für die Bestimmung der Nachweisgrenze nach Tschurlovits (1983) ist die Zahl der Backgroundzählereignisse ausschlaggebend. Diese wiederum hängen von konstanten Faktoren wie z.B. Abschirmung des Detektors, Energiebereich des gemessenen Peaks sowie Größe und Form des Detektors ab. Außerdem nimmt die Zahl der Ereignisse linear mit der Messzeit zu. An den Tagen 0 und 1 nach Exposition wurde der Background und die Proben mit geringer Gammaaktivität 10 min gemessen. An den Tagen 14 und 28 wurde die Messzeit auf 15 min erhöht, um die Nachweisgrenze zu verringern und damit die Empfindlichkeit der Messung zu erhöhen. Dabei ergab sich für die 10 min-Messung eine Nachweisgrenze von 10.2 ng MWCNT und für die 15 min-Messung von 8.1 ng MWCNT.

Parameter	MWCNT-M	MWCNT-Menge in ng											
	Sektionstermin [Tage nach Inhalation]												
	0			1	1			14			28		
	Mean	Std	Ν	Mean	Std	Ν	Mean	Std	Ν	Mean	Std	Ν	
Lunge	30651	5803	6	19709	3796	6	12749	2177	6	9929	2247	6	
LALN	34	15	6	35	7	6	8	7	6	14	3	5	
Leber	4212	735	6	2196	491	6	513	82	6	254	175	6	
Nieren	1587	375	6	407	50	6	96	11	6	57	18	6	
Gehirn	19	2	6	15	9	6	4	3	6	3	2	6	
Herz	65	12	6	32	7	6	11	3	6	10	2	6	
Milz	38	18	6	7	2	6	16	3	6	16	2	6	
Blut	601	98	6	44	31	6	5	3	6	3	3	6	
Pleuraabguss	556	245	3	91	7	2	11	5	3	5	4	3	
Karkasse	153528	68238	6	14062	4052	6	1305	245	6	751	150	6	
Summe	191291			36598			14718			11042			
Kopf	8207	1613	6	1313	150	6				160	20	6	
Magen/Darm	121555	33757	6	13667	5114	6							
Karkasse	16047	5710	6	3718	1146	6							
Summe	145809			18698									

Tab. 10: Retinierte MWCNT-Mengen in den biologischen Proben (in ng)

(Mean= Mittelwert; Std= Standardabweichung; N= Anzahl der Tiere)

Rot markiert: Werte unterhalb der Nachweisgrenze

Die Gesamtaktivität im Tier etwa 1 Stunde nach Expositionsende betrug im Mittel 191 μ g. Aus der Konzentration im Aerosol und dem nach der Stahlschen Formel berechneten Atemminutenvolumen betrug die Gesamtaktivität jedoch nur 128 μ g (siehe Tabelle 6). Das

bedeutet, dass das nach der Stahlschen Formel abgeschätzte Atemminutenvolumen deutlich zu gering war.

Ausgehend von einer Gesamtdeposition von 100%, hätte man eine alveoläre Deposition von etwa 10% (Lungendeposition an Tag 1) und eine tracheobronchiale Deposition von etwa 5,7 % (Differenz Lungengehalt von Tag 0 und Tag 1). Die übrigen etwa 84% müssten dann im Bereich von Nase und Rachen deponiert worden sein.

Von Oyabu et al. (2011) wurde eine alveoläre Depositionsrate (Lungenretention 3 Tage nach Expositionsende) von 18 – 20% für MWCNT-Fasern mit einem mittleren Durchmesser von 63 nm mittels einer X-Ray Methode gemessen. In dieser Studie wurden die MWCNTs ebenfalls aus einer wässrigen Suspension mit einer Druckluftdüse in die Inhalationskammer vernebelt mit einer Aerosolkonzentration von 0,37 mg/m³.

Parameter	MWCNT-Menge in ng pro g pro Organ												
	Sektionstermin [Tage nach Inhalation]												
	0			1	1			4			28		
	Mean	Std	N	Mean	Std	Ν	Mean	Std	Ν	Mean	Std	N	
Lunge	24771	4348	6	19384	3053	6	9349	2338	6	6690	1607	6	
LALN	130	48	6	225	98	6	57	54	6	36	7	5	
Leber	469	79	6	227	62	6	53	7	6	25	18	6	
Nieren	832	200	6	218	27	6	49	4	6	28	8	6	
Gehirn	10	1	6	8	4	6	2	2	6	1	1	6	
Herz	84	13	6	37	5	6	13	5	6	11	2	6	
Milz	62	34	6	13	3	6	24	7	6	24	6	6	
Blut	109	22	6	9	7	6	1	0	6	1	1	6	
Karkasse	716	300	6	62	19	6	5	1	6	3	1	6	
Pleuraabguss	72	32	3	14	3	2	2	1	3	1	1	3	
Urin	•			3774	880	6			0	2	1	5	
Kopf	374	88	6	61	7	6				14	3	6	
Magen/Darm	5169	1734	6	483	193	6							

Tab. 11: Retinierte MWCNT-Mengen in den biologischen Proben (in ng pro g)

(Mean= Mittelwert; Std= Standardabweichung; N= Anzahl der Tiere)

Aus dem Nasen- und Rachenbereich gelangen die MWCNT-Fasern durch die Speiseröhre zunächst in den Magen. Im Magen der Ratte liegt der pH-Wert etwa zwischen 3 und 5. Vorversuche haben gezeigt, dass der pH-Wert dramatisch die Löslichkeit beeinflusst. Insgesamt wurde etwa 1 Std. nach Expositionsende im Blut und in den blutreichen Organen (Leber, Nieren, Herz, Milz und Gehirn) eine Gammaaktivitäts-Menge gefunden, die 7,7 µg Co-60-MWCNT entsprach (Dabei wurde die Gammaaktivität im Blut auf eine Gesamtmenge von 16 ml [entsprechend 6,4% eines Körpergewichts von etwa 250 g] (GV SOLAS, 2009) hochgerechnet). Im Magen-Darm-Trakt befand sich zur selben Zeit eine Gammaaktivität, die 122 µg Co-60-MWCNT entsprach. Zusätzlich wurde im Urin, der nach Expositionsende bis zur Sektion an Tag 1 gesammelt wurde, eine Gammaaktivität gemessen, die 19 µg Co-60-MWCNT entsprach. Die Gammaaktivität im Blut und den blutreichen Organen entsprach 1 Tag nach Expositionsende noch 2,8 µg. Es muss deshalb die Co-60-Aktivität von 21,8 µg Co-60-MWCNT in das Blut und von dort in die blutreichen Organe bzw. über die Nieren in den Urin aufgenommen worden sein. 21,8 µg entspricht etwa 18% der Gammaaktivität im Magen-Darm-Trakt 1 Std. nach Expositionsende. Man kann davon ausgehen, dass der größte Teil dieser Gammaaktivität im Darm absorbiert wurde und damit zunächst in das Blut aufgenommen wurde. Ein wesentlich kleinerer Anteil kann auch durch Löslichkeit des Co-60 aus den Co-60-MWCNTs in der Lunge (nach den Untersuchungen etwa 4%, entsprechend 0,8 µg, von den 20 µg im Alveolarbereich der Lunge) und anschließenden Übergang in das Blut herrühren.

Die Absorption von löslichem Co im Darm von Ratten beträgt etwa 30% (Taylor, 1962). Um die Absorption von etwa 18% an löslichem Kobalt aus dem Darm ins Blut zu erklären, müsste im Magen etwa 50% des Co-60 aus den Co-60-MWCNTs herausgelöst worden sein.

Um zu prüfen, ob auch MWCNT-Fasern aus dem Darm oder der Lunge absorbiert wurden, wurde der Urin von einigen Tieren am Tag 1, Tag 10 und Tag 28 nach Exposition über einen Sterilfilter mit 0,2 µm Porenweite filtriert. Dabei war mehr als 99% der Gammaaktivität im Filtrat vorhanden. Das zeigt, dass im Urin >99% der Gammaaktivität von löslichem Co-60 herrührte. Um zu klären, ob geringfügige Mengen von MWCNT-Fasern im Urin vorhanden sind, wurde der Urin von den Tieren aus dem Vorversuch mit unmarkierten MWCNTs im REM untersucht (siehe II.4). Bei diesen Tieren war die inhalierte MWCNT-Menge etwa 3mal so hoch wie bei der Co-60-MWCNT-Inhalation. Die deponierte MWCNT-Menge sollte also auch etwa 3mal höher gewesen sein.

Bei einem Tier wurden 1 Tag nach Exposition einige wenige MWCNT-Fasern gefunden. Aus der Faserzahl-Konzentration und der Geometrie der analysierten Fasern wurde eine Fasermenge von etwa 7 ng im Urin berechnet; das entspricht etwa 0,01% von den hochgerechnet 3 x 19 µg, die aus der Co-60-Aktivität im Urin abgeleitet wurden. Diese äußerst geringe Fasermenge könnte allerdings auch in dem Stoffwechselkäfig durch eine Kontamination mit MWCNT-Fasern aus dem Fell zustande gekommen sein, die sich an den Wänden des Stoffwechselkäfigs abgesetzt haben und vom Urin abgespült wurden. Zur Überprüfung, ob es sich wirklich um eine Kontamination im Urin handelt, wurde auch das Blut bei den Tieren 1 Tag nach Inhalation von unmarkierten MWCNTs genauer auf MWCNT-Fasern untersucht. Dabei konnten keine MWCNT-Fasern im Blut nachgewiesen werden (Nachweisgrenze 3,8 x 3 /5 =2,3 ng/ml Blut).

Bei den Aktivitätsmessungen lagen die Werte im Blut 14 und 28 Tage nach Exposition unter der Nachweisgrenze dieser Messmethode (etwa 8,1 ng MWCNT).

Im Pleuraabguss wurde 1 Std. nach Expositionsende eine Gammaaktivität gemessen, die 0,56 µg MWCNTs entsprach. Einen Tag später war die Gammaaktivität im Pleuraabguss um 0,47 µg geringer. Diese MWCNT-Menge müsste aus dem Pleuraspalt abgewandert sein. In den LALN war keine Erhöhung nachweisbar (jeweils etwa 0,035 µg 1 Std. und 1 Tag nach Exposition). Denkbar wäre eine Translokation in den Blutkreislauf, die durch die Messwerte jedoch nicht bestätigt wurde.

Der Anteil der freien MWCNTs konnte in dieser Studie durch Messung der Gammaaktivität im Überstand und im Sediment nach Zentrifugation der Lungenspülflüssigkeit bestimmt werden. In Tabelle 11 sind die Messungen der Lunge, der Lungenspülung, des Zell-Sediments und des Überstandes der Lungenspülung aufgelistet.

Parameter	MWCNT-Menge in ng												
	Sektionstermin [Tage nach Inhalation]												
	0			1	1			14			28		
	Mean	Std	Ν	Mean	Std	Ν	Mean	Std	Ν	Mean	Std	Ν	
Lunge	30651	5803	6	19709	3796	6	12749	2177	6	9929	2247	6	
Lunge gespült	22621	6307	3	13666	891	2	7019	857	2	5913	572	2	
Diff Lunge	10793	2091	3	5149	2414	2	4264	878	2	3081	260	2	
BAL in % Lunge	33	5	3	27	8	2	38	2	2	34	0	2	
Lavage	9756	2445	3	5059	2593	2	4194	958	2	2954	389	2	
Sediment	5566	984	3	4374	2504	2	3819	838	2	2775	456	2	
Überstand	4180	1446	3	785	86	2	318	31	2	44	7	2	
% im Überstand	42	5	3	18	10	2	8	2	2	2	1	2	

Tab. 12: Retinierte MWCNT-Mengen in der Lunge und in Fraktionen der BAL

(Mean= Mittelwert; Std= Standardabweichung; N= Anzahl der Tiere)

Die Lunge wurde nach der Spülung erneut gemessen und daraus die Differenz der Gammaaktivität vor und nach der Spülung berechnet. Aus diesen Daten wurde der Anteil der durch die intensive Lungenspülung herausspülbaren Gammaaktivität berechnet. Er betrug zwischen 27% und 38% der Gesamtaktivität für alle Sektionstermine. Ähnliche Prozentsätze wurden in früheren Studien am Fraunhofer ITEM nach Kurzzeitinhalation von radioaktiven Fe₂O₃-Partikeln (MMAD etwa 0,3µm) oder Polystyrolpartikeln (MMAD etwa 3,3 µm) (Bellmann et al., 1987; Muhle et al., 1991) beobachtet.

Außerdem wurde die prozentuale Gammaaktivität im Überstand nach Zentrifugation aus der Summe der Gammaaktivität im Sediment und im Überstand berechnet. Der Prozentsatz im Überstand war 1 Std. nach Expositionsende mit 42 % relativ hoch. Vorversuche mit MWCNTs zeigten, dass diese im suspendierten Zustand bei der Zentrifugation nur schwer abzuzentrifugieren waren. Daher ist davon auszugehen, dass auch bei dieser Studie freie MWCNTs bei der Zentrifugation mit etwa 400g nicht abzentrifugiert werden konnten und somit nahezu vollständig im Überstand verblieben. Das Sediment enthält alle Zellen (Makrophagen, Granulozyten und Lymphozyten). Das bedeutet, dass 1 Std. nach Expositionsende 42 % der Co-60-MWCNTs noch frei in den Alveolen vorlagen und 58% der MWCNTs von Makrophagen phagozytiert waren. Einen Tag nach Expositionsende waren schon 82% der MWCNTs phagozytiert, 14 Tage nach Exposition 92% und nach 28 Tagen 98 %.

Da man auch mit einer intensiven Lungen-Spülung mit 10 x 4 ml nur etwa 30 – 35 % der Makrophagen aus der Lunge herauspülen kann, lässt sich mit dieser Methode nicht feststellen, ob MWCNTs in das Interstitium gewandert sind.

Man kann aber an der Gammaaktivität im Pleuraabguss sehen, dass eine Wanderung in den Pleuraspalt stattgefunden hat. Eine Stunde nach Inhalation waren 42% von den etwa 20 µg im Alveolarbereich deponierten MWCNTs (MWCNT-Menge in der Lunge an Tag 1 nach Ende der tracheobronchialen Clearance), also etwa 8,4 µg MWCNT unphagozytiert im Alveolarbereich. Im Pleuraspalt wurden zur selben Zeit der Gammaaktivität entsprechend etwa 0,55 µg MWCNTs gemessen. Wenn es sich wirklich um Co-60-MWCNTs handelt, müssten etwa 7% der frei im Alveolarbereich vorhandenen MWCNTs in der Zeitspanne von Beginn der Exposition bis zum Sektionstermin etwa 6 Std. später aus dem Alveolarbereich in den Pleuraspalt gewandert sein. Ein Tag nach Expositionsende war im Pleuraabguss nur noch die Gammaaktivität von etwa 0,1 µg MWCNTs nachweisbar. Es müsste also der größte Teil der MWCNTs in den Pleuraspalt abgewandert sein. Nach der Hypothese aus der Arbeitsgruppe Donaldson findet eine schnelle Clearance von kleinen Partikeln und Fasern aus dem Pleuraspalt ins Lymphsystem statt (Donaldson et al. 2010). Dabei findet ein Transport durch die Poren statt. Nach seiner Hypothese bleiben nur längere Fasern (> 20 µm) in den Poren hängen.

Der Kot wurde bis Tag 3 täglich, bis Tag 7 alle 2 Tage und anschließend wöchentlich gesammelt. Zusätzlich wurde bei den Tieren, die für die Urinsammlung über Nacht in Stoffwechselkäfigen gehalten wurden, der Kot aus Stoffwechselkäfigen getrennt gemessen. Der Urin wurde über Nacht (14:30 am Vortag bis 6:30 = 16 Std.) vor den Tagen 1, 3, 7, 10, 14, 21 und 28 nach Exposition bei jeweils 6 Tieren gesammelt. Die Ergebnisse der Gammaaktivitäts-Messungen der Kot- und Urin-Proben sind in Tabelle 11 zusammengefasst.

Von Tag	bis Tag	MWCNT-Masse in ng pro Tag und Tier									Urin/Kot
		Kot			Kot über	Kot über Nacht Urin					(%)
		Mean	Std	Ν	Mean	Std	Ν	Mean	Std	Ν	
0	1	43991	8676	12	66605	8675	6	19009	3601	6	28,5
1	2	28450	8022	12	•	•	•				
2	3	16011	5086	12	2695	1261	6	1868	118	6	69,3
3	5	4476	1345	12	•	•	•				
5	7	848	413	12	•	•	•				
6	7							206	74	6	
9	10			•	408	150	6	89	17	5	21,8
7	14	572	182	6		•	•				
13	14							47	7	6	
15	21	377	36	6	•	•	•				
20	21			•	245	39	6	23	4	6	9,4
22	28	291	49	6	•	•	•				
27	28	•	•	•	149	68	6	16	4	5	10,7

Tab. 13: MWCNT-Men	igen im Kot und Urin
--------------------	----------------------

(Mean= Mittelwert; Std= Standardabweichung; N= Anzahl der Tiere)

II.7 Kinetik der MWCNT-Fasern in der Ratte

Zur Interpretation der Ergebnisse wurden mögliche Transportwege in Abb. 6 dargestellt.

Dabei ist zu berücksichtigen, dass die MWCNTs zu einem großen Teil schon im Bereich der Nase abgeschieden werden.

Abb. 6: Transportwege im Körper nach Inhalation

Aus der Untersuchung der BAL konnte der prozentuale Anteil der nicht phagozytierten MWCNTs bestimmt werden.

Lösliche Kobaltsalze werden nach oraler Verabreichung bei der Ratte zu etwa 30% im Darm resorbiert und gehen in den Blutkreislauf über (Taylor, 1962). Der größte Teil vom löslichen Co wird im Urin ausgeschieden. In Leber und Nieren wird ein Teil des löslichen Co nur langsam eliminiert. Die in dieser Studie in Leber (250 ng MWCNT) und Nieren (57 ng MWCNT) gemessenen Gammaaktivitäten können deshalb nicht eindeutig Co-60 MWCNTs zugeordnet werden, es könnte sich auch um lösliches Co-60 handeln.

Daher war es nur durch die Untersuchung mit dem hochauflösenden Dunkelfeldmikroskop (siehe II.5) möglich nachzuweisen, dass MWCNTs nach Inhalation aus der Lunge in Leber und Nieren wandern können. Die Gammaaktivität im Agaroseabguss des Pleuraspalts ist nur schwer durch Eindringen von löslichem Co-60 aus dem Blut zu erklären. Deshalb ist es sehr wahrscheinlich, dass die Gammaaktivität im Pleuraspalt durch eingewanderte Co-60-MWCNTs verursacht ist. Der Nachweis von MWCNTs an Tag 1 und Tag 28 nach Exposition im Dunkelfeldmikroskop erhärtet diese Annahme. An Tag 0 nach Exposition war etwa 1,8% und an Tag 1 war etwa 0,5% der Lungenaktivität im Agaroseabguss zu messen. Der Anteil an der Lungenaktivität verringerte sich dann auf etwa 0,1 % am Tag 14 und auf 0,05 % am Tag 28. Das würde bedeuten, dass die schnellste Wanderung aus der Lunge in den Pleuraspalt an den ersten Tagen nach Exposition erfolgte, evtl. lag zu Anfang noch ein größerer Anteil der im Alveolarbereich deponierten MWCNTs frei auf der Zelloberfläche der Epithelzelle. Schon einen Tag nach Exposition war der größte Teil der MWCNTs von Makrophagen phagozytiert. Die phagozytierten MWCNTs konnten vermutlich nicht mehr in die Pleura und von dort in den Pleuraspalt wandern. Die abnehmende Gammaaktivität im Pleuraspalt zeigt, dass ein relativ schneller Abtransport der MWCNTs aus dem Pleuraspalt stattfindet. Vermutlich können diese MWCNTs dann mit der Zeit über den Blutkreislauf in die Leber und die Nieren wandern, wo sie durch die Untersuchung im Dunkelfeldmikroskop nachgewiesen werden konnten. In diesem Versuch konnten zwar keine MWCNTs im Blut, aber in Niere und Leber nachgewiesen werden. Die Anzahl der MWCNTs in Leber und Nieren war äußerst gering.

II.8 Schlussfolgerung und Diskussion

In einer Kurzzeitinhalationsstudie wurden Ratten gegenüber MWCNTs exponiert. Ziel war es, die Verteilung der MWCNTs im Körper zu erfassen und die Ausscheidungsprozesse sowie mögliche Ablagerungen im Körper zu untersuchen. Im ersten Teil wurde die Exposition mit unmarkierten MWCNT durchgeführt. In einer Lungenlavage konnte 1 Tag nach Exposition eine entzündliche Reaktion nachgewiesen werden, nach 28 Tagen war der Effekt verschwunden. Im hochauflösenden Lichtmikroskop konnten einzelne MWCNTs in Leber und Nieren und im Agaroseabguss des Pleuraspalts nachgewiesen werden.

Im zweiten Teil wurde die Exposition mit Co-60 markierten MWCNTs durchgeführt. Die Gammaaktivität wurde in verschiedenen Organen, Körperflüssigkeiten und Ausscheidungsprodukten gemessen. Durch die Untersuchung der Lungenspülflüssigkeit konnte gezeigt werden, dass schon 1 Tag nach Exposition die meisten MWCNTs von Makrophagen phagozytiert waren. Die Messungen gaben Hinweise auf eine sehr schnelle Wanderung der MWCNTs aus der Lunge in den Pleuraspalt (Tag 0 und 1) und eine anschließende relativ schnelle Abwanderung aus dem Pleuraspalt (Tag 14 und 28). Zudem wurde anhand der Co-60-Aktivität in der Leber 250 ng und in den Nieren 57 ng MWCNT ermittelt. Jedoch konnte nicht genau unterschieden werden, ob die in den Organen gemessene Co-60-Aktivität von dem an den MWCNT gebundenen Kobalt oder vom im Magen gelösten Kobalt stammt. Außerdem muss geklärt werden, ob die gemessene Gammaaktivität durch das Abschlucken der MWCNTs bei der Inhalation oder durch die Inhalation selbst stammt. Daher wäre eine intratracheale Instillation mit ¹⁴C MWCNT in einer weiteren Studie denkbar.

Danksagung

Während dieses Forschungsvorhabens ist unser lieber und sehr geschätzter Kollege Dr. Bernd Bellmann leider verstorben.

Wir verlieren einen engagierten und international anerkannten Forscher.

Seine unaufdringliche, sich nicht in den Vordergrund drängende sowie stets nett-liebenswerte Art werden uns in Erinnerung bleiben.

III. Literatur

- Bellmann B., O. Creutzenberg, C. Dasenbrock, H. Ernst, G. Pohlmann, H. Muhle (2000) Inhalation Tolerance Study for p-Aramid Respirable Fiber-Shaped Particulates (RFP) in Rats. Toxicol. Sci. 54, 237-250
- Bellmann B., H. Muhle, O. Creutzenberg, H. Ernst, R. C. Brown, P. Sébastien (2001) Effects of nonfibrous particles on ceramic fiber (RCF1) toxicity in rats. Inhalation Toxicol.13, 877-901
- Bellmann B., H. Muhle, H. Ernst, G. Pohlmann, P. Sébastien, R. C. Brown (2002) Subchronic studies on man-made vitreous fibres: kinetics of inhaled particles. Ann. Occup.Hyg. 46 (Suppl. 1), 166-169
- Bellmann B, Muhle H, Creutzenberg O, Ernst H, Müller M, Bernstein DM, Riego Sintes JM. (2003) Calibration study on subchronic inhalation toxicity of man-made vitreous fibers in rats. Inhal Toxicol 15: 1147-1177.
- Bellmann B., O Creutzenberg, H Ernst, and H Muhle (2009) Rat inhalation test with particles from biomass combustion and biomass co-firing exhaust. J. Physics: Conference Series 151 012067
- BIA-Report 2/98 Fasern Tests zur Abschätzung der Biopersistenz und zum VerstaubungsverhaltenHauptverband der gewerblichen Berufsgenossenschaften 1998. http://www.dguv.de/ifa/de/pub/rep/pdf/rep02/biar0298/0298.pdf
- Bermudez E. (1994) Recovery of particles from pleural cavity using agarose casts: a novel method for the determination of fiber dose to the rat pleura. Inhal. Toxicol. 6, 115-124
- Brown R. C., B. Bellmann, H. Muhle, H. Ernst, G. Pohlmann, P. Sébastien (2002) Subchronic studies on man-made vitreous fibres: toxicity results. Ann. Occup.Hyg. 46 (Suppl. 1), 102-104
- Creutzenberg O., Bellmann, B., Muhle, H. (1997): Biopersistence and bronchoalveolar lavage investigations in rats after subacute inhalation of various man-made mineral fibres. Ann. Occup. Hyg. 41 (Suppl. 1), 213-218
- Creutzenberg O., Bellmann, B., Muhle, H., Dasenbrock, C., Morrow, P. und Mermelstein, R. (1998) Lung clearance and retention of toner, TiO2 and crystalline silica, utilizing a tracer technique during chronic inhalation exposure in Syrian golden hamsters. Inhalation Toxicol.10, 731-751
- Creutzenberg O., G Pohlmann, T Hansen, S Rittinghausen, F Taugner, C Ziemann (2009) Nano- and microscaled titanium dioxide: Comparative study on the inflammatory and genotoxic effects after a 3week inhalation in rats. Toxicol Lett 189 (Suppl 1): 182
- Creutzenberg O., Bellmann B, Korolewitz R, Koch W, Mangelsdorf I, Tillmann T, Schaudien D. (2012) Change in agglomeration status and toxicokinetic fate of various nanoparticles in vivo following lung exposure in rats. Inhal Toxicol. 24: 821-830.
- Deng X., Jia, G., Wang, H., Sun, H., Wang, X., Yang, S., Wang, T., Liu, Y., (2007). Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon 45, 1419–1424.
- Driscoll KE, Costa DL, Hatch G, Henderson R, Oberdorster G, Salem H, Schlesinger RB. (2000) Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci. 55: 24-35
- Donaldson K., Murphy F, Duffin R, Pohland C (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Fibre Toxicol. 7:5
- Elgrabli, D. Floriani M., Abella-Gallart S., Meunier L., Gamez C., Delalain P, Rogerieux F, Boczkowski J, Lacroix G (2008) Biodistribution and clearance of instilled carbon nanotubes in rat lung. Part. Fibre Toxicol. 5, 20.
- Guo, L., Morris, D.G., Liu, X.Y., Vaslet, C., Hurt, R.H., Kane, A.B., (2007). Iron bioavailability and redox activity in diverse carbon nanotube samples. Chem.Mater. 19, 3472–3478.
- GV-SOLAS (2009): Empfehlung zur Blutentnahme bei Versuchstieren, insbesondere kleinen Versuchstieren
- Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Friend S, Castranova V, Porter DW. (2011) Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part Fibre Toxicol. 8:21.
- Muhle H.; B. Bellmann; O. Creutzenberg; W. Koch; C. Dasenbrock; H. Ernst; U. Mohr; P. Morrow; R. Mermelstein (1998) Pulmonary response to toner, TIO2 and crystalline silica upon chronic inhalation exposure in syrian golden hamsters. Inhalation Toxicol.10, 699-729
- Kamstrup O., Ellehauge A, Bellmann B, Chevalier J, Davis JMG (2004) Subchronic inhalation study of stone wool fibres in rats. Ann Occup Hyg 48: 91-104.
- McDevitt M.R., D. Chattopadhyay, B.J. Kappel1, J.S. Jaggi1, S.R. Schiffman1, C. Antczak1, J.T. Njardarson,
 R. Brentjens1 and D.A. Scheinberg (2007) Tumor targeting with antibody-functionalized, radiolabeled
 carbon nanotubes, J. Nucl. Med. 48, pp. 1180–1189
- McKinney W., Chen B, Frazer D (2009). Computer controlled multi-walled carbon nanotube inhalation exposure system. Inhal Toxicol. 21:1053-1061
- Muller J, Huaux F, Moreau N al. (2005). Respiratory toxicity of multi-wall carbon nanotubes. *Tox Appl Pharm* **207**: 221–231
- Oyabu T., Myojo T, Morimoto Y, Ogami A, Hirohashi M, Yamamoto M, Todoroki M, Mizuguchi Y, Hashiba M, Lee BW, Shimada M, Wang WN, Uchida K, Endoh S, Kobayashi N, Yamamoto K, Fujita K, Mizuno K, Inada M, Nakazato T, Nakanishi J, Tanaka I. (2011) Biopersistence of inhaled MWCNT in rat lungs in a 4-week well-characterized exposure. Inhal Toxicol 23:784-791
- Pauluhn J. (2010) Subchronic 13-week Inhalation Exposure of Rats to Multiwalled Carbon Nanotubes:
 Toxic Effects are determined by Density of Agglomerate Structures, not fibrillar Structures. Toxicol Sci. 113: 226-242
- Poland CA, Duffin R, Kinloch I, Maynard A, Wallace W, Seaton A, Stone V, Brown S, MacNee W, Donaldson K. (2008). Carbon nanotubes introdued into the abdominal cavity of mice show asbestoslike pathogenicity in a pilot study. *Nature Nanotechnology* **3**: 423-428
- Porter, D., Sriram, K., Wolfarth, M., Jefferson, A., Schwegler-Berry, D., Andrew, M.E., Castranova, V., (2008). A biocompatible medium for nanoparticle dispersion. Nanotoxicol. 2: 144–154.
- Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C., Prato, M., Bianco, A., Kostarelos, K., (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc.Natl. Acad. Sci.U.S.A. 103, 3357–3362
- Stahl, W.R. (1966) Scaling of respiratory variables in mammals. J Appl Physiol. 22(3):453-60
- Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, Kitajima S, Kanno J. (2008) Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33: 105-116.

- Tschurlovits M (1983) Messung radioaktiver Stoffe Festlegung der Nachweisgrenze und deren Erfüllbarkeit, Int J Appl Radiat Isot 34: 965-971
- Yang, S.T., Guo,W., Lin, Y., Deng, X.Y., Wang, H.F., Sun, H.F., Liu, Y.F., Wang, X., Wang, W., Chen, M., Huang, Y.P., Sun, Y.P., (2007) Biodistribution of pristine single-walled carbon nanotubes in vivo. J. Phys. Chem. C 111, 17761–17764.
- Yang S.T., X. Wang, G. Jia, et al. (2008) Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice, Toxicol. Lett. 181, pp. 182–189
- Wang, H.F., Wang, J., Deng, X.Y., Sun, H.F., Shi, Z.J., Gu, Z.N., Liu, Y.F., Zhao, Y.L., (2004) Biodistribution of carbon single-wall carbon nanotubes in mice. J. Nanosci. Nanotechnol. 4, 1019–1024.
- Wang J, X Deng, S Yang, H Wang, Y Zhao, Y Liu (2008) Rapid translocation and pharmacokinetics of hydroxylated single-walled carbon nanotubes in mice. Nanotoxicology 228 232
- Windt H, H Kock, F Runge, U Hübel, W Koch (2010) Particle deposition in the lung of the Göttingen minipig. Inhal Toxicol 22: 828-834

Anhang 1: Organgewichte (Einzeltierdaten)

Gruppe 2

Tage	Tiernr.	Organge	Organgewichte [g]									
			Lunge mit									
		Lunge	Agarose	LALN	Leber	Nieren	Gehirn	Herz	Milz			
0	2101	1.16	•	0.20	8.90	1.86	1.95	0.71	0.61			
	2102	1.30	•	0.24	9.13	1.81	1.84	0.73	0.86			
	2103	1.24	•	0.24	8.72	2.00	1.88	0.74	0.70			
	2104	•	3.02	0.25	8.82	1.89	1.85	0.74	0.55			
	2105	•	3.06	0.34	8.98	1.95	1.93	0.80	0.64			
	2106	•	2.77	0.30	9.30	1.96	1.97	0.88	0.47			
	Mean	1.23	2.95	0.26	8.98	1.91	1.90	0.77	0.64			
	Std	0.07	0.16	0.05	0.21	0.07	0.05	0.06	0.13			
	N	3	3	6	6	6	6	6	6			
1	2110	1.15	•	0.16	8.51	1.74	1.72	1.01	0.65			
	2111	1.24	•	0.15	10.90	1.87	1.88	0.85	0.51			
	2112	1.07	•	0.21	9.05	1.98	1.75	0.73	0.58			
	2107		2.76	0.11	10.03	1.98	1.39	0.94	0.49			
	2108		2.59	0.16	10.40	1.80	1.93	0.87	0.51			
	2109		2.44	0.22	9.84	1.85	1.92	0.78	0.55			
	Mean	1.15	2.59	0.17	9.79	1.87	1.77	0.86	0.55			
	Std	0.09	0.16	0.04	0.88	0.10	0.21	0.10	0.06			
	N	3	3	6	6	6	6	6	6			
14	2116	1.20	•	1.20	8.50	1.73	1.69	0.74	0.60			
	2117	1.56	•	0.16	9.62	1.99	1.82	0.77	0.56			
	2118	1.66	•	0.11	10.37	2.02	1.91	0.87	0.74			
	2113	•	3.08	0.09	9.29	1.91	1.97	0.94	0.61			
	2114	•	3.01	0.26	9.59	2.04	1.91	0.98	0.80			
	2115	•	3.03	0.20	10.21	2.00	1.69	1.32	0.70			
	Mean	1.47	3.04	0.34	9.60	1.95	1.83	0.94	0.67			
	Std	0.24	0.04	0.43	0.68	0.12	0.12	0.21	0.09			
	N	3	3	6	6	6	6	6	6			
28	2119	1.40	•	0.39	9.75	1.87	1.87	0.87	0.76			
	2120	1.31	•	0.37	10.81	2.06	1.82	0.84	0.80			
	2121	1.25	•	0.34	9.00	2.07	1.82	0.82	0.58			
	2122	•	3.63	0.46	11.07	2.16	1.97	1.00	0.65			
	2123		3.23		10.50	2.07	1.93	0.89	0.59			
	2124		3.32	0.37	12.01	2.22	2.12	0.99	0.71			
	Mean	1.32	3.39	0.38	10.52	2.07	1.92	0.90	0.68			
	Std	0.08	0.21	0.04	1.05	0.12	0.11	0.08	0.09			
	N	3	3	5	6	6	6	6	6			

Anhang 2: Körpergewichte (Einzeltierdaten)

Gruppe1

Tier-Nr.	Körpergev	wicht (g)					
	Tag relati	v zum Starttag					
	-8	-2	0	7	14	21	28
1101	219.7	248.8	250.7				
1102	226.5	254.6	259.5				
1103	220.1	250.6	255.4				
1104	210.9	234.6	241.4				
1105	216.7	239.8	246.3				
1106	197.6	225.8	230.4	257.7	289.8	312.0	331.9
1107	217.0	241.3	246.4	264.3	287.8	306.3	318.2
1108	227.4	252.0	255.3	280.7	314.5	332.9	362.4
1109	208.2	231.9	239.4	263.2	288.2	311.7	332.1
1110	204.6	236.2	244.3	271.2	305.1	320.5	342.7
Mean	214.9	241.6	246.9	267.4	297.1	316.7	337.5
Std	9.5	9.6	8.7	8.8	12.1	10.4	16.4
N	10	10	10	5	5	5	5

Tier-Nr.	Körpergew	icht (g)				
	Tag relativ	zum Starttag				
	-6	0	7	14	21	27
2101	215.3	248.3				
2102	208.8	241.5				
2103	234.0	265.1				
2104	210.3	241.1				
2105	218.3	248.7				
2106	227.8	259.9				
2107	222.6	257.3				
2108	216.9	247.5				
2109	223.4	247.5				
2110	210.1	243.4				
2111	234.5	258.3				
2112	201.5	229.0				
2113	211.6	243.9	270.3			
2114	220.2	252.7	285.6			
2115	217.6	247.0	276.8			
2116	211.8	239.0	271.6			
2117	209.2	236.7	260.2			
2118	220.1	252.7	290.3			
2119	218.8	243.9	262.5	277.6	291.8	307.3
2120	211.4	237.0	267.8	282.2	305.3	318.0
2121	213.9	237.3	254.7	272.0	284.6	290.1
2122	223.2	256.9	290.7	316.1	334.6	346.2
2123	211.7	234.6	254.4	267.9	288.6	302.7
2124	209.5	234.4	263.8	294.7	315.5	324.5
Mean	216.8	246.0	270.7	285.1	303.4	314.8
Std	8.1	9.3	12.8	17.8	19.1	19.5
Ν	24	24	12	6	6	6

Gruppe2

Anhang 3: Messdaten der Expositionsatmosphäre

Datum	Startzeit	Endzeit	Dauer	Temp.	Feuchte	Fotometer	Zuluft	Abluft	Konz.
14.06.2012	8:05	14:05	360	23.2	69.6	2158	18.1	19.7	8.5
20.06.2012	9:34	13:04	210			2988	18.9	19.9	11.9
26.06.2012	8:22	13:02	280	24.4	76.7	1781	19.7	21.5	3.73

Anhang 4: Differentielle Zellzählung (Einzeltierdaten)

Tag	Tiernr.	Zellkonzenration [10 ⁶ Zellen/ml]	Makrophagen [%]	PMN [%]	Lymphozyten [%]
BAL Tag O	1113	0.25	99.25	0.25	0.00
	Mean	0.25	99.25	0.25	0.00
	STD				
	n	1	1	1	1
BAL Tag 1	1103	0.19	94.50	5.50	0.00
	1104	0.26	64.00	34.50	0.75
	1105	0.20	81.50	18.00	0.25
	Mean	0.22	80.00	19.33	0.33
	STD	0.04	15.31	14.55	0.38
	N	3	3	3	3
BAL Tag 28	1108	0.20	100.00	0.00	0.00
	1109	0.69	100.00	0.00	0.00
	1110	0.34	100.00	0.00	0.00
	Mean	0.41	100.00	0.00	0.00
	STD	0.25	0.00	0.00	0.00
	n	3	3	3	3

Anhang 5: REM-Bilder aus Suspension, Aerosol und Lungenspülung

Abb. 5-1 Suspension der MWCNTs für die Aerosolerzeugung

Abb. 5-2 Aerosolprobe vom 14.06.2012 (Exposition Gruppe 1)

Abb. 5-3 Überstand der BAL von Tier 1103 nach Zentrifugation

Abb. 5-4 REM Aufnahme der BAL von Tier 1103 (Tag 1)

Abb. 5-5 REM Aufnahme der BAL von Tier 1103 (Tag 1)

Anhang 6: Bilder im Cytoviva hochauflösenden Lichtmikroskop

Abb. 6-1 MWCNTs in und außerhalb von Makrophagen in der BAL-Flüssigkeit von Tier 1113 (Tag O).

Abb. 6-2 Beispielbild: MWCNTs in Lunge aus dem Septum herausragend (Tier 1102)

Abb. 6-3 MWCNTs in Lunge mit einem Makrophagen (Tier 1102).

Abb. 6-4 Beispielbild MWCNTs im Septum der Lunge (Tier 1102)

Abb. 6-5 Beispielbild MWCNTs in Lunge, teilweise ins Septum ragend (Tier 1102)

Abb. 6-6 MWCNTs im Gewebe außerhalb der Lunge (Tier 1106)

Abb. 6-7 MWCNT durch die Pleura aus der Lunge herausragend (Tier 1106)

Abb. 6-8 MWCNT durch die Pleura aus der Lunge herausragend (Tier 1106)

Abb. 6-9 MWCNTs in der Pleura der Lunge (Tier 1106)

Abb. 6-10 MWCNTs auf der Pleura außerhalb der Lunge (Tier 1106)

Abb. 6-11 MWCNTs unterhalb der Pleura in der Lunge liegend (Tier 1106)

Abb. 6-12 Makrophage (Pleuraspalt) voller MWCNTs in Agaroseabguss (unterschiedliche Belichtungszeiten).

Abb. 6-13 MWCNTs im Aortenlymphknoten der Brusthöhle (Tier 1106)

Abb. 6-14 MWCNTs in Leberschnitten (Tier 1102) (unterschiedlichen Belichtungszeiten).

Abb. 6-15 MWCNT im Glomerulum der Niere (Tier 1101).

Abb. 6-16 MWCNTs im Glomerulum der Niere (Tier 1102).

Abb. 6-17 MWCNT im Glomerulum der Niere (Tier 1102).

Abb. 6-18 MWCNT in Glomerulum der Niere (Tier 1106).

Abb. 6-19 MWCNT im Nierengewebe (nicht Glomerulum) (Tier 1106).

Abb. 6-20 MWCNT im Nierengewebe (nicht Glomerulum) (Tier 1106).

Anhang 7: Gammaaktivitätsmessungen (Einzeltierdaten)

Gamma-Messungen Organe und Proben (02N12506)

Tag O									
Parameter	MWCNT-	Menge in n	ıg						
	Tier-Nr.								
	2101	2102	2103	2104	2105	2106	Mean	Std	Ν
Lunge	33571	40717	25954	29001	29750	24914	30651	5803	6
Lunge gespült	20854	29623	17386	•	•	•	22621	6307	3
Diff. Lunge	12718	11094	8568	•	•	•	10793	2091	3
BAL in % Lunge	38	27	33	•	•	•	33	5	3
Lavage	10716	11576	6977	•	•	•	9756	2445	3
Sediment	5992	6266	4441	•	•	•	5566	984	3
Überstand	4597	5371	2571	•	•	•	4180	1446	3
% im Überstand	43	46	37	•	•	•	42	5	3
LALN	33	21	18	47	56	30	34	15	6
Leber	3634	3822	4033	5017	3525	5242	4212	735	6
Nieren	1258	1807	1173	1634	1463	2186	1587	375	6
Gehirn	17	20	16	22	21	21	19	2	6
Herz	62	60	44	69	74	79	65	12	6
Milz	27	47	26	70	25	33	38	18	6
Blut	660	704	446	579	541	675	601	98	6
Karkasse	103851	191223	254336	119867	183292	68602	153528	68238	6
Pleuraabguss	•	•		696	700	273	556	245	3

Parameter	MWCNT-	Menge in ng]						
	Tier-Nr.								
	2110	2111	2112	2107	2108	2109	Mean	Std	N
Lunge	21152	24205	16478	20534	21969	13918	19709	3796	6
Lunge gespült	14296	•	13036	•	•	•	13666	891	2
Diff. Lunge	6856		3442	•	•	•	5149	2414	2
BAL in % Lunge	32		21	•		•	27	8	2
Lavage	6892	•	3226	•	•	•	5059	2593	2
Sediment	6145	•	2604	•		•	4374	2504	2
Überstand	724		846	•		•	785	86	2
% im Überstand	11		25	•	•	•	18	10	2
LALN	26	31	31	47	39	37	35	7	6
Leber	2908	2637	1698	2063	1709	2162	2196	491	6
Nieren	400	476	358	461	375	372	407	50	6
Gehirn	11	11	12	10	32	13	15	9	6
Herz	44	25	30	37	29	27	32	7	6
Milz	10	7	10	7	6	5	7	2	6
Blut	67	-4	30	28	74	67	44	31	6
Karkasse	10765	14111	12208	17740	19933	9616	14062	4052	6
Pleuraabguss	•		•	96	86	•	91	7	2
Urin	17906	24357	14321	18132	22057	17279	19009	3601	6

Tag 14

Parameter	MWCNT-	Menge in ng							
	Tier-Nr.								
	2116	2117	2118	2113	2114	2115	Mean	Std	Ν
Lunge	12418	12511	10057	11216	16142	14974	12886	2285	6
Lunge gespült	•	7625	6413	•	•	•	7019	857	2
Diff. Lunge	•	4885	3644	•	•		4264	878	2
BAL in % Lunge	•	39	36	•	•	•	38	2	2
Lavage 2	•	4871	3517	•	•	•	4194	958	2
Sediment 2	•	4411	3226	•	•	•	3819	838	2
Überstand 2	•	296	340	•	•	•	318	31	2
% im Überstand	•	6	10	•	•	•	8	2	2
LALN	-1	15	15	4	2	12	8	7	6
Leber	404	559	514	455	639	507	513	82	6
Nieren	86	110	100	86	105	87	96	11	6
Gehirn	8	7	5	1	4	-0	4	3	6
Herz	9	16	10	12	11	9	11	3	6
Milz	15	20	16	14	12	17	16	3	6
Blut	4	9	7	4	3	3	5	3	6
Karkasse	1037	1339	1620	1084	1561	1186	1305	245	6
Pleuraabguss	•	•	•	6	14	14	11	5	3
Urin	•	•	•	•	•	•	•	•	0

Parameter	MWCNT-	Menge in r	ıg						
	Tier-Nr.								
	2119	2120	2121	2122	2123	2124	Mean	Std	Ν
Lunge	8407	8745	9582	10157	14288	8394	9929	2247	6
Lunge gespült	5509		6317		•	•	5913	572	2
Diff. Lunge	2898	•	3265	•			3081	260	2
BAL in % Lunge	34	•	34	•			34	0	2
Lavage	2679	•	3230	•			2954	389	2
Sediment	2453	•	3098	•			2775	456	2
Überstand	49	•	39	•			44	7	2
% im Überstand	2	•	1				2	1	2
LALN	17	14	14	15		10	14	3	5
Leber	359	334	431	333	32	34	254	175	6
Nieren	53	37	83	42	57	73	57	18	6
Gehirn	1	1	5	1	2	6	3	2	6
Herz	12	8	8	10	9	13	10	2	6
Milz	15	17	16	14	20	16	16	2	6
Blut	0	1	6	2	1	6	3	3	6
Karkasse	567	552	822	831	856	877	751	150	6
Pleuraabguss				10	2	4	5	4	3
Urin	10	13	16	•	20	16	15	4	5
Kopf	132	161	183	156	147	183	160	20	6

Gamma-Messungen Organe und Proben (02N12506)

Tag O									
Parameter	MWCNT-N	lenge in ng	pro g						
	Tier-Nr.		-						
	2101	2102	2103	2104	2105	2106	Mean	Std	Ν
Lunge	29053	31386	20995	22004	21884	23302	24771	4348	6
Lunge gespült	17437	21200	11582	•		•	16740	4847	3
Diff. Lunge	•	•	•	•		•		•	0
BAL in % Lunge	•	•	•		•	•	•	•	0
Lavage	254	370	350		•	•	325	62	3
Sediment	12027	11621	8533		•	•	10727	1911	3
Überstand	96	155	157		•	•	136	34	3
% im Überstand	96	155	157		•	•	136	34	3
LALN	167	89	76	188	165	98	130	48	6
Leber	409	419	462	569	392	564	469	79	6
Nieren	675	997	587	866	751	1116	832	200	6
Gehirn	9	11	9	12	11	11	10	1	6
Herz	88	82	60	93	93	89	84	13	6
Milz	44	55	38	126	39	70	62	34	6
Blut	113	117	72	139	104	111	109	22	6
Karkasse	509	931	1115	577	854	311	716	300	6
Pleuraabguss	•		•	90	93	35	72	32	3

Parameter	MWCNT-N	MWCNT-Menge in ng pro g										
	Tier-Nr.											
	2110	2111	2112	2107	2108	2109	Mean	Std	Ν			
Lunge	18326	19510	15416	19354	24813	18887	19384	3053	6			
Lunge gespuelt	12386		12196	•			12291	135	2			
Diff Lunge	•			•					0			
BAL in % Lunge	•			•					0			
Lavage	170		87		•		129	59	2			
Sediment	•		•		•				0			
Überstand	21		8		•		15	9	2			
% im Überstand	21		8		•		15	9	2			
LALN	166	214	145	410	247	169	225	98	6			
Leber	342	242	188	206	164	220	227	62	6			
Nieren	231	255	181	233	208	201	218	27	6			
Gehirn	7	6	7	8	17	7	8	4	6			
Herz	44	29	41	40	33	35	37	5	6			
Milz	15	14	17	14	12	8	13	3	6			
Blut	15	-2	6	7	13	15	9	7	6			
Karkasse	49	59	58	76	91	41	62	19	6			
Pleuraabguss			•	17	12	•	14	3	2			
Urin	4499	3192	2332	4567	3732	4320	3774	880	6			

Parameter	MWCNT-N	Menge in ng	pro g						
	Tier-Nr.								
	2116	2117	2118	2113	2114	2115	Mean	Std	Ν
Lunge	10382	8032	6060	8102	12283	11233	9349	2338	6
Lunge gespült		4896	3864				4380	729	2
Diff. Lunge									0
BAL in % Lunge									0
Lavage		104	90		•		97	10	2
Sediment									0
Überstand		11	16				14	3	2
% im Überstand		11	16		•	•	14	3	2
LALN	-1	93	143	43	6	61	57	54	6
Leber	48	58	50	49	67	50	53	7	6
Nieren	50	55	49	45	51	44	49	4	6
Gehirn	5	4	3	1	2	-0	2	2	6
Herz	12	21	12	13	12	6	13	5	6
Milz	24	37	21	23	14	24	24	7	6
Blut	1	1	2	1	1	1	1	0	6
Karkasse	4	5	6	4	6	5	5	1	6
Pleuraabguss				1	2	2	2	1	3
Urin									0

Tag 14

Parameter	MWCNT-	Menge in no								
	Tier-Nr.									
	2119	2120	2121	2122	2123	2124	Mean	Std	Ν	
Lunge	6005	6675	7672	5255	9360	5174	6690	1607	6	
Lunge gespült	3935	•	5058	•			4496	794	2	
Diff. Lunge		•							0	
BAL in % Lunge		•							0	
Lavage	64	•	76	•	•		70	9	2	
Sediment		•							0	
Überstand	2	•	1				2	0	2	
% im Überstand	2	•	1	•			2	0	2	
LALN	44	37	40	33		26	36	7	5	
Leber	37	31	48	30	3	3	25	18	6	
Nieren	28	18	40	19	27	33	28	8	6	
Gehirn	1	1	3	0	1	3	1	1	6	
Herz	13	9	10	10	10	13	11	2	6	
Milz	20	21	28	21	35	22	24	6	6	
Blut	0	1	1	0	0	1	1	1	6	
Karkasse	2	2	3	3	3	3	3	1	6	
Pleuraabguss		•		2	0	1	1	1	3	
Urin	2	1	3	•	2	2	2	1	5	
Kopf	10	15	19	14	13	12	14	3	6	

Kot

Von Tag	bis Tag	MWCNT	MWCNT-Masse in ng pro Tag und Tier														
		2113	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	Mean	Std	Ν	
0	1	37889	37889	41514	41514	60354	60354	44633	44633	35946	35946	43610	43610	43991	8273	12	
1	2	35300	35300	33401	33401	25722	25722	23395	23395	36669	36669	16211	16211	28450	7649	12	
2	3	17219	17219	12700	12700	11774	11774	13496	13496	15270	15270	25608	25608	16011	4850	12	
3	5	4932	4932	3679	3679	2247	2247	4566	4566	5436	5436	5994	5994	4476	1282	12	
5	7	658	658	482	482	997	997	757	757	1609	1609	582	582	848	393	12	
7	14	•					•	453	453	482	482	781	781	572	163	6	
15	21	•					•	338	338	382	382	410	410	377	33	6	
22	28	•					•	235	235	327	327	309	309	291	44	6	

Kot über Nacht

Von Tag	/on Tag_bis TagMWCNT-Masse in ng pro Tag und Tier																					
		2107	2108	2109	2110	2111	2112	2113	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	Mean	Std	N
0	1	50285	64859	74426	69593	67942	72524				•	•	•				•			66605	8675	6
2	3	•	•	•		•	•	1034	2533	4310	3901	1645	2749		•	•	•	•	•	2695	1261	6
9	10	•	•	•		•	•	432	294	282	275	628	537		•	•	•	•	•	408	150	6
20	21	•	•		•		•				•	•	•	251	269	282	219	272	180	245	39	6
27	28	•	•	•	•	•	•	•	•	•	•	•	•	156	186	204	33	208	108	149	68	6

Urin

Tag	ag MWCNT-Masse in ng pro Tag und Tier																		
	2107	2108	2109	2110	2111	2112	2113	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	Mean
1	18132	22057	17279	17906	24357	14321				•	•	•		•	•				19009
3	•	•	•	•	•	•	1693	1938	1834	1847	2048	1846		•	•				1868
7	•	•	•	•	•	•	182	346	151	210	144	205		•	•				206
10	•	•	•	•	•	•	83	115	•	75	78	96	•		•	•	•	•	89
14		•	•	•	•	•				•	•	•	33	48	54	46	48	50	47
21		•	•	•	•	•				•	•	•	19	19	22	22	29	27	23
28	•	•	•	•	•	•	•	•	•	•	•	•	11	12	18	•	22	16	16

Probe	MWCN	MWCNT Menge in ng pro ml														
Tag																
	1		10					28								
	2108	Mean	2113	2114	2115	2116	2117	2118	Mean	2119	2120	2121	2123	2124	Mean	
Urin	4142	4142	11	16		9	13	8	12	2	1	3	3	2	2	
Urin filtriert	4115	4115	11	14		8	13	7	11	2	1	3	2	2	2	