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Abstract 

In order to identify sensitive organisms, biological endpoints in vivo and suitable in vitro test 
systems for the biomonitoring of pharmaceuticals, a two-part literature search was conducted. 
In the first part, the database OEKOTOX established by Bergmann et al. (2011) [1] was upgraded 
with effect data published between 2011 and 2013 for 90 pharmaceuticals of high priority. 
From all available data the lowest effect concentrations were identified and the most sensitive 
organisms and effect endpoints were determined. In addition, effect data were assessed with 
respect to their relation to measured environmental concentrations (MECs) in German surface 
waters by calculations of risk quotients MECmax/LOECmin. Publications providing the lowest effect 
data were evaluated with respect to their reliability according to the criteria of Wright-Walters 
et al. (2011) [2]. Out of 72 publications investigated for their reliability, 9 were “reliable”, 49 
“conditionally reliable” and 14 “not reliable” (of which 4 were, in part, conditionally reliable).  
Prior to the reliability check, the analgesics paracetamol, diclofenac and ibuprofen, the ß-
blocker propranolol, the antibiotics sulfamethoxazole and erythromycin and the lipid regulator 
gemfibrozil were identified as environmentally most relevant pharmaceuticals. The relevance 
was defined by MECmax/LOECmin-values >0.1 for a minimum of 3 different biota classes. After 
assessment of publication reliability, however, only for diclofenac MECmax/LOECmin-values >0.1 
were found in more than 3 biota classes. As further important pharmaceuticals propranolol, 
sulfamethoxazole, bezafibrate, 17α-ethinlyestradiol, 17β-estradiol and oxytetracycline were 
identified with MECmax/LOECmin-values >0.1 for 2 biota classes. 
Prior to the reliability assessment, the ciliate Tetrahymena pyriformis, zebrafish (Danio rerio), 
rainbow trout (Oncorhynchus mykiss), medaka (Oryzias latipes), the mussel Elliptio complanata, 
and the mudsnail Potamopyrgus antipodarum were identified as most sensitive organisms for 
pharmaceuticals. The most sensitive effect endpoints were chemotaxis, behavior, vitellogenin 
synthesis, growth rate, reproduction, histopathological alterations, molecular stress biomarkers, 
oxidative stress markers, receptor binding, and gene expression. All extremely low LOECs (in 
the range of pg/L) for chemotaxis alterations in Tetrahymena pyriformis, however, derive from 
only a single publication by Lang & Köhidai (2012) [3], the reliability of which, however, could 
not be proven.  
 
In the second part, a literature search was conducted with the aim to evaluate the state of 
knowledge in the field of in vitro testing of pharmaceutical effects, to discover advantages and 
disadvantages of biochemical and cell-based assays and to suggest possibilities for the 
realisation of cell-based tools for a mode of action-based biomonitoring of pharmaceuticals. 
Promising approaches for ß-adrenoreceptor blockers and cyclooxygenase-inhibitors (analgesics) 
are presented.   

As a future perspective for a biomonitoring of pharmaceuticals, the development of mode of 
action-based in vitro test systems for ß-blockers and NSAIDs are recommended. Their suitability 
to reflect in vivo responses of organisms which have been identified to be sensitive in part 1 of 
this study, or which are relevant for German aquatic ecosystems should be assessed, and they 
should be validated by in vivo studies to be conducted in parallel to their establishment.  
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Kurzbeschreibung 

Mit dem Ziel, sensitive Organismen und organismische Endpunkte sowie geeignete in vitro-
Testsysteme für ein Biomonitoring von Arzneimitteln zu identifizieren, wurde eine zweiteilige 
Literaturstudie durchgeführt.  
Im ersten Teil wurde die von Bergmann et al. (2011) [1] erstellte Datenbank OEKOTOX um 
Wirkdaten für 90 Arzneimittel von hoher Priorität bis 2013 erweitert. Von allen verfügbaren 
Daten wurden die niedrigsten Effektwerte identifiziert und die sensitivsten Organismen bzw. 
Effektendpunkte bestimmt. Darüber hinaus wurden die Effektkonzentrationen zu gemessenen 
Umweltkonzentrationen in Deutschen Oberflächengewässern (MECs) in Beziehung gestellt und 
Risikoquotienten MECmax/LOECmin berechnet. Diejenigen Publikationen, in denen die 
empfindlichsten Endpunkte bzw. Organismen enthalten waren, wurden auf der Basis der von 
Wright-Walters et al. (2011) [2] genannten Kriterien auf Reliabilität geprüft. Von 72 auf 
Reliabilität überprüften Publikationen wurden 9 als „reliabel“, 49 als „bedingt reliabel“ und 14 
als „nicht reliabel“ (von denen 4 in Teilen bedingt reliabel waren) klassifiziert. 
Vor der Reliabilitätsprüfung wurden in der vorliegenden Literaturstudie als Pharmazeutika mit 
höchster Umweltrelevanz die Schmerzmittel Paracetamol, Diclofenac und Ibuprofen, der ß-
Blocker Propranolol, die Antibiotika Sulfamethoxazol und Erythromycin und der Lipidsenker 
Gemfibrozil identifiziert. Die Umweltrelevanz wurde auf der Basis eines Risikoquotienten 
(MECmax/LOECmin) >0.1 für mindestens 3 Organismengruppen) definiert. Nach erfolgter 
Reliabilitätsprüfung zeigten sich MECmax/LOECmin)-Werte >0.1 bei mehr als 3 
Organismengruppen jedoch nur noch für Diclofenac. Als weitere wichtige Pharmazeutika 
wurden Propranolol, Sulfamethoxazol, Bezafibrat, 17α-Ethinlyestradiol, 17β-Estradiol und 
Oxytetrazyclin mit MECmax/LOECmin)-Werten >0.1 bei 2 Organismengruppen identifiziert. 
Als sensitivste Organismen für Arzneimittel hatten sich vor der Reliabilitätsprüfung der Ciliat 
Tetrahymena pyriformis, der Zebrabärbling (Danio rerio), die Regenbogenforelle 
(Oncorhynchus mykiss), Medaka (Oryzias latipes), die Muschel Elliptio complanata und die 
Zwergdeckelschnecke Potamopyrgus antipodarum erwiesen. Die sensitivsten Effektendpunkte 
waren Chemotaxis, Verhalten, Vitellogeninsynthese, Wachstum, Reproduktion, 
histopathologische Veränderungen, molekulare und oxidative Stressmarker, Genexpression und 
Rezeptorbindung. Alle extrem niedrigen LOECs (im Bereich von pg/L) für die Beeinflussung der 
Chemotaxis bei Tetrahymena pyriformis stammen allerdings von einer einzigen Publikation 
von Lang & Köhidai (2012) [3],  die sich in der durchgeführten Reliabilitätsprüfung als „nicht 
reliabel“ erwies, so dass der Zebrabärbling als bedeutendster Testorganismus und das Verhalten 
als sensitivster Wirkendpunkt nachrückt.  

Im zweiten Teil der Studie wurde eine Literaturrecherche durchgeführt, die zum Ziel hatte, den 
Wissensstand im Bereich von in vitro-Verfahren zum Nachweis von Arzneimittel-Effekten zu 
beleuchten, Vor- und Nachteile von biochemischen und zellbasierten Assays herauszuarbeiten 
und Möglichkeiten für die Realisierung von in vitro Testsystemen für ein Wirkmechanismus-
basiertes Biomonitoring von Arzneimitteln vorzuschlagen. Am Ende dieses Teils werden 
vielversprechende Wege zur Etablierung solcher Testsysteme für den Nachweis der Wirkungen 
von ß-Blockern und Cyclooxygenase-Hemmern (Schmerzmitteln) dargestellt.  

Für ein künftiges Biomonitoring von Arzneimitteln wird empfohlen, Wirkstoffklassen-
spezifische in vitro-Testsysteme für ß-Blocker und Schmerzmittel zu entwickeln. Durch parallel 
durchzuführende in vivo Untersuchungen soll überprüft werden, inwieweit diese Testsysteme 
geeignet sind, in vivo-Reaktionen von Organismen abzubilden, die in Teil 1 der vorliegenden 
Studie als sensitiv für Arzneimittel identifiziert wurden, oder die als relevant für deutsche 
Fließgewässer bekannt sind. 
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1 Introduction 

 
Chemical analysis has regularly revealed the presence of human and veterinary 
pharmaceuticals in wastewater and surface water in nanogram to microgram per liter 
concentrations (e.g. Fent et al., 2006 [4], Brauch, 2011 [5]). Decisions on the environmental 
relevance of these substances usually rely on data recorded for current and future consumption 
rates, environmental concentrations, environmental fate and pathways (persistence), and 
ecotoxicological effects recorded in laboratory studies. The problem with this approach is the 
fact that ecotoxicological routine testing mainly focuses on acute or chronic unspecific toxicity, 
whereas pharmaceuticals, according to their envisaged specific action in man (human 
medicine) or companion animals (veterinary drugs) more likely exert specific effects based on 
their mode of action (MOA) (Brausch et al. 2012 [6]). Information on the effects of active 
pharmaceutical ingredient classes, either acting on targets or exerting unwanted adverse side 
effects are, therefore, mandatory prerequisites for an effect-directed monitoring of 
pharmaceuticals in aquatic ecosystems. 
One focus of the present literature review study thus was on the question which organisms 
sensitively respond to pharmaceuticals and which sublethal parameters can be used as warning 
sentinels (biomarkers) to monitor action of pharmaceuticals in a sensitive and specific way.  
In a comprehensive report of Bergmann et al. (2011) [1] a prioritization of human and 
veterinary pharmaceuticals was undertaken on the basis of data on the presence of compounds 
in the aquatic environment, their ecotoxicological effects, and their consumption rates up to 
the year 2011. This report lists analytical data for 274 ingredients and ecotoxicological effect 
data for 251 ingredients, all of them incorporated in both the MEC (Measured Environmental 
Concentrations) and ÖKOTOX (effect data) databases. Bergmann et al. (2011) [1] have outlined 
24 substances with high priority for environmental monitoring programs. However, the 
databases also provide evidence that 31 pharmaceuticals with partially high and steadily 
increasing consumption rates lacked ecotoxicological data until 2009 resulting in a very high 
uncertainty regarding the assessment of their environmental relevance. Supplementary to the 
substances regarded as relevant for further research by Bergmann et al. (2011) [1], the German 
Federal Ministry for the Environment, Nature Conservation and Nuclear Safety has identified 
further substances as to be of high priority for an evaluation with respect to possible 
environmental effects. In the present study, we therefore focused on a set of 90 substances, 
prioritized by Bergmann et al. (2011) [1] and UBA, for which literature was analyzed. 
 
Bergmann et al. (2011) [1] concluded from their research that already the number of substances 
with high priority (24) would exceed the capacity of routine chemical monitoring. They 
therefore suggested having leading substances defined for particular ingredient classes that 
should be included in monitoring programs. The apparent but crucial drawback of such an 
approach, however, lies in the risk of overlooking effective concentrations of non-leading 
substances. In contrast to it, the use of tests that could visualize specific molecular interactions 
of chemicals exhibiting the same mode of action may enable a monitoring of an entire class of 
compounds. Particularly in view of the vast number of pharmaceuticals with increasing 
consumption rates but lacking ecotoxicological effect data, a mode of-action-specific in vitro 
assay is a matter of paramount interest; also because new and future compounds that act in the 
same way on the same molecular target can easily be traced, once such an assay has been 
established. 
In vitro systems using highly sensitive fluorescence detection technologies are already used by 
the pharmaceutical industry to identify compound classes as promising candidates in the 
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development of new pharmaceuticals (Eggeling et al., 2003) [7]. A biomonitoring on the basis 
of such specific mechanisms of action could be possible for e.g. non-steroidal anti-inflammatory 
drugs (NSAIDs) or ß-blockers. For these, the inhibition of the cyclooxygenase and the blocking 
of β-receptors could be used as mode of actions to be targeted. In contrast to Escher et al. 
(2005) [8] who use “in vitro Assessment of Modes of Toxic Action” in that sense that specific 
mode of actions defined by the test system itself are investigated (e.g. photosynthesis inhibition 
of pharmaceuticals by a photosynthesis inhibition assay), we thus favor an approach to use the 
specific target molecules for pharmaceutical classes (responsible for the pharmacological effect 
of the respective substance class) as monitoring tools. In the second part of this study, we 
therefore evaluated different in vitro test systems with respect to their suitability as future test 
systems in routine monitoring of pharmaceutical classes.  
 
In summary, this study reviews (1) the current state of knowledge in effect-directed research 
and analyzes present data with focus on suitable compounds, organisms, and endpoints which 
may be combined in a monitoring approach, and (2) in addition, the state of knowledge for in 
vitro testing of pharmaceuticals as a prerequisite for the development of mode of-action-based 
monitoring tools.  

 

 

2     Materials and Methods 

 
2.1  Literature search and data collection 
 
The literature search is divided into two parts. 
In the first part, effect data for 90 pharmaceuticals defined as relevant according to either 
Bergmann et al. (2011) [1] or UBA were collected for several biota classes (bacteria, protists, 
plants/algae, mollusks, crustaceans, insects, fish, tetrapods, others incl. communities). The list of 
pharmaceuticals and the priority classes are shown in table 1. The prioritization of UBA is 
based on MECs obtained from the German counties, consumption rates (tendencies between 
2002 and 2012), effect values of UBA-internal studies or literature, suspicion to be a PBT 
compound, degradability and metabolism. The prioritization of Bergmann et al. (2011) [1] is 
only based on literature data which resulted in partial differences between the two lists of 
priority substances available.  
 

The search was restricted to literature published between 2011 and 2013, since all earlier 
published data have been analyzed by Bergmann et al. (2011) [1]. For the search, Web of 
Knowledge (including the databases “Web of Science®”, “BIOSIS Citation IndexSM”, “BIOSIS 
Previews®”, “MEDLINE®” and “Journal Citation Reports®”) were used. The following search items 
were defined:  
For Reviews: pharma* AND eco*, limited by “review” 
For single substances: the specific search entry for each pharmaceutical (see table 1) combined 
with the search terms: aqua* OR eco* OR tox* 
 
The following research areas were seen as irrelevant and therefore excluded from the literature 
search:  
Anesthesiology, Anthropology, Biomedical, Social Sciences, Biophysics, Business Economics, 
Communication, Computer Science, Criminology Penology, Critical Care Medicine, Cultural 
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Studies, Demography, Dentist, Oral Surgery Medicine, Dermatology, Education, Educational 
Research, Electrochemistry, Emergency Medicine, Energy Fuels, Engineering, Ethnic Studies, 
Food Science Technology, General Internal Medicine, Genetics Heredity, Geography, Geology, 
Geriatrics, Gerontology, Government, Law, Health Care Sciences, Services, History, Imaging 
Science, Photographic Technology, Infectious Diseases, Information Science, Library Science, 
Instruments Instrumentation, Integrative Complementary Medicine, International Relations, 
Legal Medicine, Materials Science, Mathematical Computational Biology, Mathematics, Medical 
Informatics, Medical Laboratory Technology, Meteorology Atmospheric Sciences, Nursing, 
Nutrition Dietetics, Obstetrics, Gynecology, Oncology, Ophthalmology, Orthopedics, 
Otorhinolaryngology, Parasitology, Pediatrics, Pharmacology, Pharmacy, Physics, Polymer 
Science, Psychiatry, Psychology, Radiology, Nuclear Medicine, Medical Imaging, Rehabilitation, 
Research Experimental Medicine, Respiratory System, Social Issues, Sociology, Sport Sciences, 
Substance Abuse, Surgery, Transplantation, Tropical Medicine, Urology, Nephrology, Virology 
 
In the second part, literature searches were conducted in PubMed using the following search 
items:  
High throughput screening (title) & review (publication type)   
HTS technolog* & review (publication type)   
HTS technolog* (title)  
fluorescence based techni*   
cell based assay* & review (publication type)   
cell based reporter* (title)   
cell based screening & review (publication type) & cell based (title)   
fluorescent biosensor* & review (publication type)   
fluorescent protein* & review (publication type) & reporter*   
signalling dynamics in living cell* & review (publication type)   
  
Data published between 1995 and 2013 were analyzed.   
 
 
Table 1: List of pharmaceuticals with defined priority classes. The prioritization of UBA is based on MECs obtained from the German 

counties, consumption rates (tendencies between 2002 and 2012), effect values of UBA-internal studies or literature, 

suspicion to be a PBT compound, degradability and metabolism. The prioritization of Bergmann et al. (2011) [1] is only based on 

literature data which resulted in partial differences between the two lists of priority substances available.  
P: high priority according to Bergmann et al. (2011) [1] and UBA;  

Pu: high priority according to UBA 

Pb:  high priority according to Bergmann et al. (2011) [1] 
(P): medium priority according to Bergmann et al. (2011) [1] 

?: substances requiring further information 

none: substances without priority according to Bergmann et al. (2011) [1] 

 

Pharmaceutical 
 

Search entry 
 

Priority 
class 
(UBA) 

Priority 
class 
(Bergmann) 

Priority 
class 
(final) 

Class 
 

CAS 
 

Sartanic acid 
 sartan* P  Pu antihypertensive   
14-
Hydroxyclarithromycin hydroxyclarithromycin* P  Pu antibiotic 110671-78-8 
17alpha-Ethinylestradiol ethinyl* estradiol* P P P contraceptive 57-63-6 
17beta-Estradiol 
 

estradiol* AND pharma* 
  P Pb hormone 50-28-2 

4-N-
Methylaminoantipyrin methylaminoantipyrin* P  Pu analgesic 519-98-2 
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Pharmaceutical 
 

Search entry 
 

Priority 
class 
(UBA) 

Priority 
class 
(Bergmann) 

Priority 
class 
(final) 

Class 
 

CAS 
 

6(carboxymethoxy)-4-
(2-chlorophenyl)-5-
(ethoxycarbonyl)-2-
methylpyridine-3-
carboxylic acid 

amlodipin* 
 
 
 
 

P 
 
 
 
  

Pu 
 
 
 
 

antihypertensive 
 
 
 
   

Acetylsalicylic acid acetylsalic*    NSAID 50-78-2 
Aciclovir aciclovir*  ? ? antiviral drug 59277-89-3 

Allopurinol 
allopurinol* 
    

xanthine oxidase 
inhibitor 

315-30-0 
 

AMDOPH AMDOPH  (P) (P) analgesic   
Amlodipine amlodipin* P  Pu antihypertensive 88150-42-9 
Amoxicilline amoxicillin* P P P antibiotic 26787-78-0 
Atenolol/ Atenolol acid atenolol*, tenormin* P  Pu betablocker 29122-68-7 
Azitromycin 
 

azitromycin*, zithromax*, 
azithrocin*, azin*  

P 
  

Pu 
 

antibiotic 
 

83905-01-5 
 

Bezafibrate bezafibrat*  (P) (P) lipid regulator 41859-67-0 
Bisoprolol bisoprolol* P ? Pu betablocker 66722-44-9 
Capecitabin capectiabin*, xeloda* P  Pu cytostatic 15361-50-9 
Carbamazepine carbamazepin* P P P anticonvulsant 298-46-4 
Cefaclor cefaclor* OR cefachlor*  ? ? antibiotic 53994-73-3 
Cefuroxime axetil cefuroxim* axetil*  ? ? antibiotic 64544-07-6 
Chloramphenicole chloramphenicol*  P Pb antibiotic 56-75-7 
Chlortetracycline chlortetracyclin*  P Pb antibiotic 57-62-5 
Ciprofloxacin ciprofloxacin* P P P antibiotic 85721-33-1 
Clarithromycine clarithromycin* P P P antibiotic 81103-11-9 
Clindamycin clindamycin* P ? Pu antibiotic 18323-44-9 
Clopidogrel clopidogrel*  ? ? antiplatelet agent 113665-84-2 
Clotrimazole clotrimazol*  (P) (P) antimycotic 23593-75-1 
Deltamethrin 
 

deltamethrin*, 
decamethrin* 

P 
  

Pu 
 

antiparasitics 
 

52918-63-5 
 

Desflurane desfluran*  ? ? anesthetic 57041-67-5 
Diatrizoic acid 
 

diatriz* OR  iotalam* OR 
amidotriz*  

(P) 
 

(P) 
 

contrast agent 
 

737-31-5 
 

Diazepam 
 

diazepam* 
  

(P) 
 

(P) 
 

antidepressant/ 
antipsychotic 

439-14-5 
 

Diclofenac diclofenac* P P P NSAID 15307-86-5 
Dienogest dienogest*, visanne* P  Pu gestagan 65928-58-7 
Dipyridamole dipyridamol*  ? ? antiplatelet agent 58-32-2 
Doxycycline doxycyclin*  P Pb antibiotic 564-25-0 
Duloxetine 
 

duloxetin*, cymbalta* 
 

P 
  

Pu 
 

antidepressant/ 
antipsychotic 

116539-59-4 
 

Entacapone 
 
 

entacapon* 
 
  

? 
 
 

? 
 
 

catecholamin-O-
Methyltransferase-
Inhibitor 

130929-57-6 
 
 

Eprosartan eprosartan*  ? ? antihypertensive 133040-01-4 
Erythromycin erythromycin*  P Pb antibiotic 114-07-8 
Gabapentin gabapentin* OR neurotin*  ? ? anticonvulsant 60142-96-3 
Gemfibrozil gemfibrozil*, lopid* P  Pu lipid regulator 25812-30-0 
Glutaral 
 

glutaral*  
  

? 
 

? 
 

desinfectant 
(Glutaraldehyd) 

111-30-8 
 

Hydrochlorothiazide hydrochlorothiazid*  ? ? antihypertensive 58-93-5 
Ibuprofen ibuprofen* P (P) P NSAID 15687-27-1 
Imatinib imatinib*, gleevec*, glivec* P  Pu cytostatic 152459-95-5 

Indometacin 
indometacin* OR 
indomethacin*  

(P) 
 

(P) 
 

NSAID 
 

53-86-1 
 

Iohexol iohexol* OR omnipaq* P (P) P contrast agent 66108-95-0 
Iomeprol iomeprol* P (P) P contrast agent 78649-41-9 
Iopamidol iopamidol*  (P) (P) contrast agent 60166-93-0 
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Pharmaceutical 
 

Search entry 
 

Priority 
class 
(UBA) 

Priority 
class 
(Bergmann) 

Priority 
class 
(final) 

Class 
 

CAS 
 

Iopromide iopromid* OR ultravist*  (P) (P) contrast agent 73334-07-3 
Ivermectin ivermectin*, stromectol* P  P antiparasitic 70288-86-7 
Lamotrigin lamotrigin*, lamictal* P  Pu anticonvulsant 84057-84-1 
Levetiracetam levetiracetam*  ? ? anticonvulsant 102767-28-2 
Lincomycin lincomycin*  (P) (P) antibiotic 154-21-2 
Mesalazine mesalazin*  ? ? NSAID 89-57-6 
Mestranol mestranol*  P Pb contraceptive 72-33-3 
Metamizole metamizol* P  Pu analgesic 68-89-3 
Metformin metformin* P  Pu antidiabetic 657-24-9 
Metoprolol metoprolol* P  Pu betablocker 51384-51-1 
Naproxen naproxen* P P P NSAID 22204-53-1 
Norethisterone norethisteron*  P Pb contraceptive 68-22-4 
Opipramol 
 

opipramol* 
  

? 
 

? 
 

antidepressant/ 
antipsychotic 

315-72-0 
 

Oxytetracycline oxytetracyclin*  P Pb antibiotic 79-57-2 
Pantoprazole 
 

pantoprazol* 
  

? 
 

? 
 

proton pump 
inhibitor 

102625-70-7 
 

Paracetamol 
 

paracetamol* OR 
acetaminophen*  

P 
 

Pb 
 

analgesic 
 

103-90-2 
 

Piperacillin piperacillin*  ? ? antibiotic 61477-96-1 
Pregabalin pregabalin*  ? ? anticonvulsant 148553-50-8 
Primidone primidon*  P Pb anticonvulsant 125-33-7 
Propranolol 
 

propanolol* OR 
propranolol*  

(P) 
 

(P) 
 

betablocker 
 

525-66-6 
 

Quetiapine 
 

quetiapin* 
 

P 
 

? 
 

Pu 
 

antidepressant/ 
antipsychotic 

11974-69-7 
 

Ramipril ramipril*  ? ? antihypertensive 87333-19-5 
Roxithromycine roxithromycin*  P Pb antibiotic 80214-83-1 
Sevelamer 
 

sevelamer* 
  

? 
 

? 
 

phosphate binding 
drug 

52757-95-6 
 

Simvastatin simvastatin* P ? Pu lipid regulator 79902-63-9 
Strontium ranelate strontium ranelat*  ? ? osteoporose agent 135459-90-4 
Sulbactam sulbactam*  ? ? antibiotic 68373-14-8 
Sulfadimethoxine sulfadimethoxin*  P Pb antibiotic 122-11-2 
Sulfadimidine 
 

sulfadimidin* OR 
sulfamethazin*  

P 
 

Pb 
 

antibiotic 
 

57-68-1 
 

Sulfamethoxazole sulfamethoxazol* P P P antibiotic 723-46-6 
Tazobactam tazobactam*  ? ? antibiotic 89786-04-9 
Telmisartan telmisartan*  ? ? antihypertensive 144701-48-4 
Tetracycline tetracyclin*  P Pb antibiotic 60-54-8 
Tiamulin tiamulin* P P P antibiotic 55297-95-5 
Tilidine tilidin*  ? ? analgesic 51931-66-9 
Torasemide torasemid* OR torsemid*  ? ? diuretic drug 56211-40-6 
Tramadol tramadol*, ryzolt*, ultram* P  Pu analgesic 27203-92-5 
Valproic acid valpro*  ? ? anticonvulsant 99-66-1 
Valsartan 
 

valsartan* OR angiotan* 
OR diovan* 

P 
 

? 
 

Pu 
 

antihypertensive 
 

137862-53-4 
 

Venlafaxine 
 

venlafaxin* 
  

? 
 

? 
 

antidepressant/ 
antipsychotic 

93413-69-5 
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2.2. Created library and data files 

 
2.2.1 Endnote library 
All references analyzed were included into an Endnote library (“EndNote Library – 
Pharmaceuticals – Literature study part 1 / 2 /3”) in the format “.CIW”.   
The three partners involved in the literature search used the following labels for their citations: 
BER 1-x: GWT Dresden (R-: Review, A-: Additional Information, I-: Irrelevant) 
SCH 1-x: University Tübingen (R-: Review, A-: Additional Information, I-: Irrelevant) 
FRE 1-x: STZ Frey 
The library contains the following folders:  
 
Part 1:  
Tuebingen - relevant studies: Studies on vertebrates, plants, protozoans and bacteria, which 

were directly included into the database. 
Tuebingen - additional information: Studies, mainly reviews, on vertebrates, plants, protozoans 

and bacteria, which were used as help for the general interpretation of the data, but not 
directly included into the database. 

Tuebingen - irrelevant studies: Studies, which were analyzed but were not included into the 
database. 

Tuebingen- evaluation not possible: Studies, for which an evaluation was not possible because 
the full text was not available and the abstract did not contain sufficient information. 

Dresden - relevant studies: Studies on invertebrates, which were directly included into the 
database. 

Dresden - additional information: Studies, mainly reviews, on invertebrates, which were used as 
help for the general interpretation of the data, but not directly included into the 
database. 

Dresden - irrelevant studies: Studies, which were analyzed but were not included into the 
database. 

 
Part 2:  
Mannheim - in vitro techniques: Studies on in vitro techniques, which were used for the second 

part of the literature study. 
 
Part 3:  
Additional literature used for this report 

 

2.2.2 OEKOTOXupgrade 
In part 1 of the study, all publications available for the 90 substances were analyzed and 
evaluated with respect to the following criteria:  
Name of effective substance, investigated form of the substance (salt/conjugate), synonyms, CAS 
number, LogKow, molar mass, substance class, field of application, effective substance or 
medical product, single substance or mixture, test organisms (species), biota group, 
field/lab/mesocosm test, effect endpoint, population relevance yes/no, standard method yes/no, 
test concentration in water (µg/L, mol/L), test concentration in sediment (if necessary), applied 
dose (if necessary), duration of test, acute/chronic/sub-acute, chemical analyses present, 
accumulation data present, bioaccumulation factor, NOEC (µg/L, µmol/L), LOEC (µg/L, µmol/L), 
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EC10 (µg/L, µmol/L), EC50 (µg/L, µmol/L), citation, DOI, full text available, Endnote label, chemical 
present in priority list yes/no, comments, reliability analysis (only for selected publications). 
In case no effect was observed in the study, the highest concentration tested (without effect) 
has been included as „NOEC” without corresponding LOEC. Furthermore, numerous studies 
reported effects already at the lowest tested concentration. These values are recorded as LOECs 
without a corresponding NOEC. It should be kept in mind that there is a possibility that lower 
values than the reported may also cause an effect. 
Besides data for the priority substances defined in table 1, data for several other 
pharmaceuticals is also reported in the database. These effects were reported in the analyzed 
publications besides the ones for the target substances, and therefore included. However, the 
data sets for these substances are not complete, since they are mere “byproducts” of the 
original search.  
All data were included into the database OEKOTOXupgrade   
 
A separate row was created for every chemical, species and endpoint used in each study. Each 
single row was defined as a “database entry”.  
Because many publications report on multiple chemicals, organisms or endpoints, the total 
number of database entries is much higher than the number of publications.  

 

2.2.3. “Evaluation database” for assessment of data   
With the aim to evaluate the collected data with respect to (1) their suitability for the study, (2) 
data number per pharmaceutical and organism group, (3) most sensitive organisms, (4) lowest 
effect concentrations, (5) mixture toxicity, and (6) population relevance, the “evaluation 
database” has been created.  
In data sheet (4) the lowest and second lowest effect data and measured environmental 
concentrations (MECs) obtained either from the MEC database of Bergmann et al. (2011) [1] or 
UBA were included with the aim to assess the environmental relevance of the lowest effect 
data. However, not for all 90 substances both values MECs and LOECs were available. As a 
result, only for 32 substances a risk quotient (MECmax/LOECmin) could be calculated as a proxy for 
their environmental relevance. These substances were: paracetamol, tramadol, amoxicilline, 
chloramphenicole, chlortetracycline, ciprofloxacin, doxycycline, erythromycin, lincomycin, 
oxytetracycline, sulfadimethoxine, sulfadimidine, sulfamethoxazole, carbamazepine, diazepam, 
clotrimazole, ivermectin, atenolol/ atenolol acid, metoprolol, propranolol, 17alpha-
ethinylestradiol, 17beta-estradiol, norethisterone, diatrizoic acid, bezafibrate, gemfibrozil, 
acetyl cysteine, acetylsalicylic acid, diclofenac, ibuprofen, indometacin, naproxen. For 
tetracycline, quetiapine, venlafaxine and deltamethrin no MECs were available.  
With the aim to compare mixture toxicity data with LOECs for isolated substances, the “mixture 
toxicity” datasheet was created. The data sheet “population relevance” has been used as a basis 
to quantify available data with relevance for the population level.  
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3 Results 
  

3.1. Effects of pharmaceuticals in vivo 
 
3.1.1 Number of publications and database entries  
 
Altogether, 452 publications were analyzed for 90 pharmaceuticals. 325 papers contained data 
for vertebrates, plants/algae, protozoa, or bacteria (analyzed by the University of Tübingen), 
179 papers contained data for invertebrates (analyzed by the GWT, TU Dresden) , and 50 of 
them contained data for invertebrates and either vertebrates, plants, protozoa or bacteria 
(analyzed by both, University of Tübingen and GWT TU Dresden). 232 of these publications 
were of relevance for the database, 95 provided additional information, 134 were not relevant, 
and for 6 publications the evaluation was not possible, since the full PDF was either not 
available or did not contain enough information to analyze the study.  
All in all, 1678 entries were included in the database OEKOTOXupgrade (1434 for vertebrates, 
plants, protozoa and bacteria and 244 for invertebrates). Because many studies investigated 
multiple chemicals and endpoints, the number of database entries is much higher than the 
number of studies. 
 
Figs. 1 and 2 show that most of the studies were conducted with antibiotics, followed by 
NSAIDs, anticonvulsants, antiparasitics, ß-blockers and contraceptives, and that the number of 
publications per pharmaceutical class is reflected by the number of database entries.  

 

 
Figure 1:   Number of publications per substance class 
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Figure 2: Number of database entries per substance class 

 

 

3.1.2 Number of publications per organism group 

 
Most publications on effects of pharmaceuticals in biota have been found for fish, followed by 
mollusks, plants/algae, crustaceans, and bacteria (Fig. 3). In general, this distribution pattern 
for the publication number is reflected by the number of database entries per organism group 
(Fig. 4), however, for plants/algae more data were available per publication than for mollusks, 
and for bacteria more database entries have been conducted than for crustaceans. 
  

 
Figure 3: Number of studies per biota group 
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Figure 4: Number of database entries per biota group 

 

3.1.3. Evaluation of data 
 

3.1.3.1 Most sensitive biota classes for pharmaceuticals 
 
In a first step, the lowest and second lowest effect data were analyzed with respect to their 
relation to distinct organism classes (Fig. 5).  
It became evident that most of the lowest plus second lowest effect values were recorded for 
protozoans (represented by only a single test species: Tetrahymena pyriformis). Mollusks were 
shown to be very sensitive for anticonvulsants, antipsychotics, lipid regulators, analgesics (other 
than NSAIDs), hormones and contraceptives. The LOECs were in the range of ng/L – lower µg/L 
values. 
Lowest or second lowest effect values for fish (several species) were determined for hormones, 
mycolytica, anticonvulsants, antiparasitics and lipid regulators. Also for them, the LOECs are in 
the range of ng/L - lower µg/L values. 
Bacteria and plants were shown to be highly sensitive to antibiotics, crustaceans were very 
sensitive to antiparasitics.  
 
In a second step, data were analyzed in a more detailed way by determining the number of 
pharmaceuticals for which defined LOECs (< 0.1, 1 or 10µg/L) were reported for the investigated 
species in order to identify the most sensitive species for pharmaceuticals.   
 
Figure 6 shows that the most sensitive species with LOECs < 0.1 for 2-8 pharmaceuticals were 
the ciliate Tetrahymena pyriformis, zebrafish (Danio rerio), rainbow trout (Oncorhynchus 
mykiss), medaka (Oryzias latipes), the mussel Elliptio complanata and the mudsnail 
Potamopyrgus antipodarum.  
All extremely low LOECs (in the range of pg/L) for Tetrahymena pyriformis derive from only a 
single publication by Lang & Köhidai (2012) [3], the reliability of which, however, could not be 
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proven (chapter 3.1.5). Additionally, the conclusion on the most sensitive species is biased by 
the fact that these species are also among the most frequently used test organisms.  
 
 

 
Figure 5: Number of lowest plus second lowest effect values for 13 pharmaceutical classes  
 
 
 

 
Figure 6: Number of pharmaceuticals with defined LOECs for investigated species 
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3.1.3.2 Most sensitive effect endpoints per substance classes 
 
In order to identify most sensitive effect endpoints for pharmaceuticals, data were analyzed 
with respect to the number of pharmaceuticals with defined LOECs (< 0.1, 1 or 10µg/L) for the 
investigated effect endpoints. Figure 7 makes evident that the most sensitive endpoints with 
LOECs < 0.1 for 3-8 pharmaceuticals were chemotaxis, behavior, vitellogenin induction, growth 
rate, reproduction, histopathological alterations, molecular stress biomarkers, oxidative stress 
markers, receptor binding, and gene expression.  All extremely low LOECs (in the range of 
pg/L) for chemotaxis derive from the above mentioned study of Lang & Köhidai (2012) [3] who 
used Tetrahymena pyriformis as test organism. As mentioned above, the reliability of this study, 
however, could not be proven (shown in chapter 3.1.5).  
 

 
Figure 7: Number of pharmaceuticals with defined LOECs for investigated effect endpoints 
 
 

3.1.3.3 Identification of pharmaceuticals of highest relevance 
 
To identify the risk exerted by chemicals for the aquatic environment, different types of risk 
quotients are calculated in ecological risk assessment (PEC/PNEC ratios for industrial chemicals 
and pharmaceuticals, TER for pesticides). The PEC/PNEC ratio is defined by (1) the PEC, which 
represents the concentration of a chemical supposed to occur in the environment (predicted 
environmental concentration), and (2) the PNEC (predicted no effect concentration) which is 
calculated on the basis of the lowest observed effect concentration in any group of biota 
(LOEC), divided by a safety factor which itself depends on the size and quality of the data for 
different trophic levels. A possible risk for the environment is indicated by a risk quotient 
larger than 1.  
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In the present study, the calculation of the risk quotient slightly differs from this routine 
procedure: For those pharmaceuticals, for which both Measured Environmental Concentrations 
(MECs) (either from Bergmann et al., 2011 [1] or UBA; summarized in data sheet ““MECs & 
LOECs”)”) and LOEC values were available, MEC/LOEC quotients were calculated as a proxy for 
the environmental relevance of LOECs by using the highest available MEC (MECmax) and the 
lowest LOEC (LOECmin). In contrast to the established prospective risk assessment procedure, we 
used LOECs (lowest observed effect concentrations) instead of NOECs. This can be justified by 
the necessity to identify threshold values for effects as a prerequisite for pharmaceutical 
monitoring. A further reason is that our literature survey aims at identifying pharmaceuticals 
of environmental concern retrospectively, and thus had to take into consideration 
concentrations measured in the environment (MECs). Finally, only for 37% of the LOECs 
corresponding NOECs were available. If NOECs were used, the database would have become too 
small for the envisaged analyses. 
For the calculations of MECmax/LOECmin values also data from Bergmann et al. (2011) [1] were 
analysed.  
Figure 8 makes evident that most pharmaceuticals with LOECs leading to risk quotients above 

0.1 were antibiotics and NSAIDs followed by β-blockers and lipid regulators, analgesics different 
from NSAIDs and contraceptives/hormones.  
 
When analyzing data with focus on MECmax/LOECmin values for the respective biota classes (Fig. 
9) it became evident that most pharmaceuticals, for which risk quotients >0.1 were calculated 
were investigated in plants/algae and invertebrates closely followed by vertebrates. For 
bacteria, only few risk quotient > 0.1 were found.   
For the following substances, the risk quotient values were >1 (>0.1):  

Vertebrates: >1: atenolol, carbamazepine, diclofenac, 17α-ethinylestradiol, 17β-estradiol, 
gemfibrozil, ibuprofen, metoprolol, paracetamol, propranolol (>0.1: bezafibrate).  

Invertebrates: >1: bezafibrate, carbamazepine, diclofenac, erythromycin, 17α-ethinylestradiol, 
ibuprofen, ivermectin, oxytetracycline, paracetamol, propranolol, sulfamethoxazole (>0.1: 

ciprofloxacin, gemfibrozil, 17β-estradiol)   
Plant/Protozoa: >1: acetylsalicylic acid, diatrizoic acid, diclofenac, erythromycin, lincomycin, 
metoprolol, naproxen, oxytetracycline, paracetamol, propranolol, sulfadimidine, 
sulfamethoxazole (>0.1: clotrimazole, ibuprofen) 
Bacteria: >1: paracetamol, erythromycin, sulfadimidine, sulfamethoxazole (>0.1: diclofenac, 
gemfibrozil). 
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Figure 8: Number of pharmaceuticals per pharmaceutical class with MECmax/LOECmin values >0.1  
 
 

 
Figure 9: Number of pharmaceuticals with defined MECmax/LOECmin values per organism group 

 
Table 2 makes evident that, according to the calculated risk quotients, the pharmaceuticals of 
highest relevance (with MECmax/LOECmin>0.1) in at least three different biota classes were:  
Paracetamol (analgesic, acetaminophen),  
Diclofenac, ibuprofen (analgesic, NSAIDs - non-steroidal anti-inflammatory drugs) 
Propranolol (ß-blocker) 
Sulfamethoxazole, Erythromycin (antibiotics) 
Gemfibrozil (lipid regulator) 
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Table 2: Priority pharmaceuticals for which MECmax/LOECmin values were >0.1 in 1, 2, 3 or 4 biota groups before reliability evaluation, 

including data from OEKOTOXupgrade and Bergmann et al. (2011) [1] 
 

MECmax/LOECmin>0.1 in 

4 organismic groups 
MECmax/LOECmin>0.1 in 

3 organismic groups 

MECmax/LOECmin>0.1 in 

2 organismic groups 

MECmax/LOECmin>0.1 in 

1 organismic group 
Paracetamol Ibuprofen Bezafibrate Acetylsalicylic acid 

Diclofenac Propranolol Carbamazepine Atenolol 

 Sulfamethoxazole 17β-Estradiol Ciprofloxacin 

 Gemfibrozil 17α-Ethinylestradiol Clotrimazole 

 Erythromycin Metoprolol Diatrizoic acid 

  Oxytetracycline Lincomycin 

  Sulfadimidine Naproxen 

   Ivermectin 

 

 

3.1.3.4 Data for mixtures 

 
In general, only for a few cases, a direct comparison between LOECs for an isolated substance 
and its toxicity in a pharmaceutical mixture could be realized, since data differed with respect 
to species, effect endpoints or test designs. However, for a few substances, such a comparison 
was possible (summarized in Table 3) 
 
The table makes evident that, dependent on - at least - the chemical tested and the effect 
endpoint under investigation, the toxicity of a single pharmaceutical could be lower, higher or 
equal to its toxicity when applied in a mixture with other compounds.    
 
However, since no mode of action-based effect endpoints were investigated in any of these 
studies, the specific contribution of the respective substance to the toxicity of the chemical 
mixture cannot be quantified.    
 
Table 3: Comparison of pharmaceutical effect concentrations applied either isolated or mixture of pharmaceuticals 

 Species Effect LOEC 
single 

Effect conc. 
mixture 

Reference 

Paracetamol Danio rerio reproduction output 10 0,5 Galus et al., 
2013a [9, 10] 

 Danio rerio mortality 0,5 10 Galus et al., 
2013a [9,10] 

Propranolol Mytilus galloprovincialis cAMP-level, PKA activity 0,0003 NOEC 0,0003 Franzellitti et al. 
2011, 2013 [11,12] 

Diclofenac Dreissena polymorpha molecular stress marker 0,3 0,1 Parolini et al, 
2013 [13] 

 

 
3.1.3.5. Data with population relevance  
 
All data collected in the present study were investigated with respect to their population 
relevance. We defined data as being relevant for the population level as containing 
information on effects related to (1) community changes, (2) reproduction, fecundity, fertility, 
embryo development, sex ratio, intersex, imposex (summarized as “reproduction”), (3) behavior 
including mating behavior, (4) growth, and (5) survival / mortality.  
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Altogether, 106 studies and 561 database entries were found to be related to population-
relevant endpoints. Figure 10 shows that most database entries contained information of 
influences of pharmaceuticals on survival and mortality, growth and reproduction. Studies 
related to behavioral and community changes were in the minority. Hormone-like acting 
substances did induce population-relevant effects already in relatively low concentrations.  
 
 

 
Figure 10: Number of database entries with population-relevant endpoints 
 
 

3.1.4 Reliability of publications 
 
For those studies which contained data for the most relevant pharmaceuticals (lowest LOECs) 
and for the most sensitive endpoints and organisms, the reliability was investigated according 
to the criteria of Wright-Walters et al. (2011) [2].  
 
These are the following:    
“1) A thorough description of the experimental design, including exposure regime and 
replication,  
2) Analytical confirmation of test concentrations 
3) Description of ecologically relevant endpoints and all supplemental 

morphological information collected 
4) Use of test procedures that are based, at least generally, on internationally accepted 

procedures and practices. Newly developed test procedures must be able to be repeated, and 
meet all other required criteria 

5) Clear linkage of reported findings with the exact experimental design, and  
6) Sufficient reporting of results, including system performance, toxicity results, and statistical 

methods employed to ascertain how the data support the conclusions that are drawn “ 
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If criteria 1, 2, 3 and 6 were met the study was designated as “reliable”. If only 3 of these 
criteria were met, it was designated as “conditionally reliable”, If less than 3 criteria were met 
or mistakes became obvious, the study was designated to be “not reliable”.  
Consideration was also given to whether the studies were conducted according to GLP and 
whether both NOEC and LOEC values were provided; however, these criteria did not influence 
the decision about reliability. 
 
Taking all together, 72 publications have been checked for reliability. Nine of them were 
reliable, 49 conditionally reliable and 14 not reliable (of which 4 were, in part, conditionally 
reliable). In table 4, the results of the reliability assessment are summarized. For studies which 
were not reliable, further information is given in Table 5. Except for the study of Fairchild et al. 
(2011) [14], none of the investigations were conducted under GLP.  
 

Table 4: Publications checked for reliability, reliability criteria met, and decision on reliability 

Reference Reliability criteria met Reliabilty 
Antunes et al., 2013 [15] 1,3,6 conditionally reliable 

Backhaus et al., 2011 [16] 3, (6) not reliable 

Bajet, 2012[17]  1,3,6 conditionally reliable 

Benstead, 2011 [18] 1,2,3 conditionally reliable 

Boltes et al., 2012 [19] 1,3,6 conditionally reliable 
 

Boonstra et al., 2011 [20] 1,2,3 conditionally reliable 

Chandra et al., 2012 [21] 1,3,6 conditionally reliable 

Chen et al., 2012 [22] 1,3, 6 conditionally reliable 

Claessens et al., 2013 [23] 1,3,6 conditionally reliable 

Contardo-Jara, 2011 [24] 1,2,3 conditionally reliable 

Doyle et al., 2013 [25] 1,3,6 conditionally reliable 

Fairchild et al., 2011 [14] 1,2,3,6 reliable 

Feito et al., 2012 [26] 1,3,(6) conditionally reliable (mitochondrial activity, DNA content), not 

reliable (lipid peroxidation, chlorophyll content) 

Feito et al., 2013 [27] 1,3, (6) conditionally reliable (DNA-content), not reliable (mitochondrial 

activity) 

Finn et al., 2012 [28] 2,3,6 conditionally reliable 

Fong & Hoy, 2012 [29] 1,3,6 conditionally reliable 

Franzellitti et al., 2011 [11] 1,3,6 conditionally reliable 

Franzellitti et al., 2013 [12] 1,3,6 conditionally reliable 

Gagné et al., 2012 [30] 2,3,6 conditionally reliable 

Galus et al., 2013 [10] (1),2,3,(6) not reliable 

Gonzalez-Rey, 2011 [31] 1,3,6 conditionally reliable 

Gust et al., 2012 [32] 1,3,6 conditionally reliable 

Gust et al., 2013 [33] 1,3,6 conditionally reliable 

Hallgren et al., 2011 [34] (1),3,6 conditionally reliable 

Hallgren et al., 2012 [35] 1,2,3,6 reliable 

Hillis et al., 2011 [36] 1,3,6 conditionally reliable 

Hoffmann & Kloas, 2012 [37] 1,3,6 conditionally reliable 

Huynh Thi et al., 2012 [38] 1,2,3,6 reliable 

Ings et al., 2012 [39] 1,3,6 conditionally reliable 

Johns et al. 2011 [40] 1,3,6 conditionally reliable 

Kaptaner et al., 2011 [41] 1,3,6 conditionally reliable 

Lang & Kohidai, 2012 [3] 1,3,(6) not reliable 

Lange et al., 2012 [42] 2,3,6 conditionally reliable 

Lawrence et al., 2012 [43] 1,3,6 conditionally reliable 
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Reference Reliability criteria met Reliabilty 
Lei et al., 2013 [44] 1,3,6 conditionally reliable 

Liu et al., 2011 [45] 1,3,6 conditionally reliable 

Liu et al., 2011 [46] 1,2,3,6 reliable 

Madureira et al., 2011 [47] 1,3,6 conditionally reliable 

Meina et al., 2013 [48] 1,3,6 conditionally reliable 

Notch &Mayer, 2013 [49] 3,(6) not reliable 

Oliveira et al., 2012 [50] 1,3,6 conditionally reliable 

Ozdemir et al., 2011 [51] (1),3,6 conditionally reliable 

Parolini et al., 2011 [52]  3,6 not reliable 

Parolini et al., 2011 [53] 1,3,6 conditionally reliable 

Parolini et al., 2013 [13] 3,6 not reliable 

Ragugnetti et al., 2011 [54] 1,3,6 conditionally reliable 

Reyhanian et al., 2011 [55] 1,3,6 conditionally reliable 

Ribeiro et al., 2012 [56] 1,3,6 conditionally reliable 

Rocco et al., 2012 [57] (3), 6 not reliable 

Rocco et al., 2012 [58] (3), (6) not reliable 

Saravanan et al., 2011 [59] 1,3,6 conditionally reliable 

Sarria et al., 2011 [60] 1,3,(6) conditionally reliable,  

Shen et al., 2012 [61] 1,2,3,6 conditionally reliable 

Shi et al., 2012 [62] 1,3,(6) conditionally reliable (chronic test), not reliable (acute test) 

Silva et al., 2012 [63] 1,2,3,6 reliable 

Skolness et al., 2012 [64] 1,2,3,(6) reliable 

Sponchiado et al. 2011 [65] 3,6 not reliable 

Stange et al., 2012 [66] 1,3,6 conditionally reliable 

Stange et al., 2012 [67] 1,3,(6) cond. reliable (reproduction), not reliable (gene expression) 

Thomas et al., 2012 [68] 1,3,6 conditionally reliable 

Toumi et al., 2013 [69] 1,2,3,6 reliable 

van Leeuwen et al., 2012 [70] (1),3,6 conditionally reliable 

Veach et al., 2012 [71] 1,3,6 conditionally reliable 

Wang & Gunsch, 2012 [72] 1,2,3,6 reliable 

Wang et al., 2011 [73] 1,3,6 conditionally reliable 

Wu et al., 2012 [74] 1,3,6 conditionally reliable 

Yan et al., 2013 [75] 1,2,3,6 reliable 

Yergeau et al., 2012 [76] (1), 6 not reliable 

Yonar et al., 2011 [77] 1,3,6 conditionally reliable 

Zhang & Gong, 2013 [78]  1,3,6 conditionally reliable 

Zhang etal., 2012 [79] 1,3,6 conditionally reliable  

Zhang et al, 2012 [80] 1,3,6 conditionally reliable 
 

Table 5: Further information on pharmaceuticals tested, test organisms, effect endpoints and reasons for lacking reliability 

for not reliable studies 

Reference Pharmaceutical 
tested 

Test organism Effect endpoint Reason for lacking reliability 

Backhaus et al 
2011 [16] 

Fluoxetine 
Propranolol 
Clotrimazole 

Periphyton 
community
  

Inhibition of total 
pigment content 
(biomass) 

Lacking replicates for some test 
substances, but not specified (N= 1 to 
N=5). Results from other studies were 
involved for calculations of some 
concentration-response-curves without 
representing them.  

Feito et al 2012 
[26]  

Diclofenac Danio rerio 
Polystichum 
spicatum  

Lipid peroxidation  
Chlorophyll 
autofluorescence 

Partly not reliable for lipid peroxidation 
in zebrafish and Chlorophyll content in 
Polystichum due to lacking 
concentration-effect relationships. .  
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Reference Pharmaceutical 
tested 

Test organism Effect endpoint Reason for lacking reliability 

Feito et al 2013 
[27] 

Venlafaxine Polystichum 
spicatum 

Mitochondrial activity Partly not reliable for mitochondrial 
activity due to lacking concentration-
effect relationships. 

Galus et al 2013 
[10] 

Paracetamol 
Venlafaxine 
Carbamazepine 
Gemfibrozil 

Danio rerio Reproductive output 
Embryonic mortality 
Developmental 
malformations 
Histopathological 
changes 
Plasma estradiol level 
Blood 11-
Ketotestosterone level 

Experimental mistake obvious with high 
concentrations of pharmaceuticals in 
control treatments, for Gemfibrozil 
higher than the treatment “low”. This 
information can be obtained from the 
“Supplementary data”, and it is 
mentioned in one sentence of the 
discussion. The effective concentrations 
highly differ from the nominal 
concentrations for which results are 
presented. For acetaminophen, e.g., the 
effective concentrations were only about 
10% of the nominal concentrations.   

Láng & Köhidai 
2012 [3] 
 

Acetylsalicylic acid 
Diclofenac 
Fenoprofen 
Ibuprofen 
Naproxen 
Paracetamol 
Erythromycin 
Lincomycin 
Sulfamethoxazole 
Trimethoprim 
Metoprolol 
Propranolol 
Timolol 
Diatrizoic acid 

Tetrahymena 
pyriformis 
 

Growth rate 
Chemotactic behaviour 
 

Calculation of EC50 values for growth 
inhibition unclear; no concentration-
effect relationships for chemotaxis; 
authors recommend themselves to use 
the test system not as a quantitative, but 
a qualitative assay to prove for 
environmental effects of chemicals.   

Notch & Mayer 
2013 [49] 

17alpha-
ethinylestradiol 

Danio rerio Embryonic vitellogenin 
mRNA 
embryonic Cyp1a mRNA 
embryonic XPC mRNA 
(genome repair 
pathway) 
embryonic XPA mRNA 
(genome repair 
pathway) 

Lacking replicates and insufficient 
description of exposition conditions. 
Effects for XPC/XPA-mRNA und CYP1a-
mRNA which only occurred after 24h or 
48 h. The authors wanted to show that 
some effects disappear after longer 
exposure times. Effects for vtg-mRNA 
remained stable for the entire exposure 
time.   

Parolini et al 2011 
a [52] 

Ibuprofen Dreissena 
polymorpha 

Molecular stress 
biomarkers  

Lacking replicates. Chemical analysis 
only in stock solution. 

Parolini et al 2013 
[13] 

Ibuprofen 
Diclofenac 
Paracetamol 

Dreissena 
polymorpha 

Molecular stress 
biomarkers 

Lacking replicates. Chemical analysis 
only in stock solution. 

Rocco et al 2012 a 
[57]   

Gemfibrozil Danio rerio Comet assay 
Diffusion assay 
RAPD-PCR 

Insufficient description of experimental 
design (replica, organisms, test 
concentrations); results from controls 
not presented. 

Rocco et al 2012 b 
[58] 

Lincomycin 
Erythromycin 

Danio rerio 
 

Micronucleus test 
Comet assay  

Insufficient description of experimental 
design (replica, organisms, test 
concentrations); no significant effects. 

Shi et al 2012 
[62] 

Clotrimazole Xenopus laevis Embryo mortality 
Embryo body length 

lacking concentration-effect 
relationships in acute test 

Sponchiado et al 
2011 [65] 
 

17beta-estradiol Oreochromis 
niloticus 

Micronucleus test  
Nucleus abnormalities  
Comet assay 

Lacking replicates. Exposure from 5 to 35 
days, but no renewal of test substances. 

Stange et al 
2012b [67]  

17alpha-
ethinylestradiol
  

Potamopyrgus 
antipodarum 

Gene expression 
(estrogen receptor) 

Effects on gene expression of estrogen 
receptor only occurred after 7 days, but 
not after 28 days, lacking time-effect 
relationship. 
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Reference Pharmaceutical 
tested 

Test organism Effect endpoint Reason for lacking reliability 

Yergeau et al 
2012[76]   

Erythromycin 
Sulfamethoxazole 
Sulfadimidine 
Gemfibrozil 
Erythromycin 
Sulfamethoxazole 
Sulfadimidine 
Gemfibrozil 

Bacterial 
community 

Microbial community 
composition (DNA level) 

Insufficient description of experimental 
design (substances, solvents for stock 
solution, organisms). Exposure time 8 
weeks without renewal of test 
substances. 

 

 3.1.5  Consequences of reliability assessment for the described results 

Our literature study revealed Tetrahymena pyriformis as the most sensitive test organism for 
pharmaceuticals prior to the reliability check of the publications. This assessment, however, is 
based on the fact, that for this protozoan extremely low LOECs are reported for a total of 8 
substances by Láng & Köhidai (2012) [3] who used “chemotaxis” as an effect endpoint. Since the 
reliability assessment could not prove the reliability of this publication, three fish species 
(zebrafish, rainbow trout and medaka) can be identified as most sensitive organisms for 
pharmaceuticals followed by bivalves and snails. The publications which provide the lowest 
LOECs for these species did successfully pass the reliability assessment. Table 6, however, also 
makes evident, that for the three fish species the database was much larger (in total 489 
database entries) than for the mentioned molluskan species (only 8 database entries). Also for 
crustaceans which represent ecologically important species of aquatic ecosystems only few data 
are available compared to fish.        
 
Tab. 6: Assessment of data for most sensitive species with respect to reliability of publications 

 Number of 
publications 

Number of 
database 
entries 

Number of 
database 
entries with 
LOEC ≤0.1 

Number of 
reliable 
database 
entries with 
LOEC ≤0.1 

Lowest 
LOEC 
[µg/L] 

Lowest 
reliable 
LOEC 
[µg/L] 

Tetrahymena 
pyriformis  

1 28 13 -- 1,51E-05 
(Láng & 
Köhidai 2012) 
[3] 

-- 

Zebrafish (Danio 
rerio) 

36 333 36 21 0,0104 
(Lange et al 
2012) [42] 

0,0104 
(Lange et al 
2012) [42] 

Rainbow trout 
(Oncorhynchus 
mykiss) 

18 92 5 5 2,66E-03 
(Ings et al 
2012) [39] 

2,66E-03 
(Ings et al 
2012) [39] 

Medaka (Oryzias 
latipes) 

8 64 12 12 0,001 (Lei et 
al 2013) [44] 

0,001 (Lei et 
al 2013) [44] 

mussel (Elliptio 
complanata) 

2 4 3 3 0,04 (Gust et 
al, 2012) [32] 

0,04 (Gust et 
al, 2012) [32] 

mudsnail 
(Potamopyrgus 
antipodarum) 

2 4 4 3 0,05 (Stange 
et al, 2012a) 
[66]  

0,05 (Stange 
et al, 2012) 
[66] 

Daphnia magna 
 

12 42 2 2 0,011 (Toumi 
et al, 2013) 
[69] 

0,011 (Toumi 
et al, 2013) 
[69] 

Gammarus spec 
 

6 11 0 0 1 (Boonstra 
et al, 2011) 
[20] 

1 (Boonstra 
et al, 2011) 
[20] 
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With respect to the determination of the most important pharmaceuticals for environmental 
effects the reliability assessment had a more important influence on the final result. In chapter 
3.1.4.3 all data available from the OEKOTOX and the OEKOTOXupgrade databases were assessed 
with the result summarized in table 2. Since the publications of the OEKOTOX database 
analyzed by Bergmann et al. (2011) [1], however, were not at our disposal for reliability checks, 
we could only compare the results for the most important pharmaceuticals based on data of 
the OEKOTOXupgrade database prior (table 7) and after reliability assessment (table 8). The results 
of the analyses based on data from OEKOTOXupgrade only before reliability evaluation did not 
differ much from those when the OEKOTOX data were included. . This is due to the fact that 
the original OEKOTOX database mainly reports on EC50 values and includes only a low number 
of LOECs. Only a slight difference becomes obvious for Metoprolol with MECmax/LOECmin>0.1 in 
only 1 organismic group instead of 2. After assessment of publication reliability, however, only 
for diclofenac MECmax/LOECmin-values >0.1 were found in >3 biota classes. As further important 
pharmaceuticals propranolol, sulfamethoxazole, bezafibrate, 17α-ethinlyestradiol, 17β-estradiol 
and oxytetracycline were identified with MECmax/LOECmin-values >0.1 for 2 biota classes. 
 
Table 7: Priority pharmaceuticals before reliability evaluation, only based on data from OEKOTOXupgrade 

MECmax/LOECmin>0.1 in 

4 organismic groups 

MECmax/LOECmin>0.1 in 

3 organismic groups 

MECmax/LOECmin>0.1 in 

2 organismic groups 

MECmax/LOECmin>0.1 in 

1 organismic group 
Paracetamol Ibuprofen Bezafibrate Acetylsalicylic acid 

Diclofenac Propranolol Carbamazepine Atenolol 

 Sulfamethoxazole 17β-Estradiol Ciprofloxacin 

 Gemfibrozil 17α-Ethinylestradiol Clotrimazole 

 Erythromycin Oxytetracycline Diatrizoic acid 

  Sulfadimidine Lincomycin 

   Naproxen 

   Metoprolol 

 

Table 8: Priority pharmaceuticals after reliability evaluation, only based on data from OEKOTOXupgrade 

MECmax/LOECmin>0.1 in 

4 organismic groups 

MECmax/LOECmin>0.1 in 

3 organismic groups 

MECmax/LOECmin>0.1 in 

2 organismic groups 

MECmax/LOECmin>0.1 in 

1 organismic group 
Diclofenac  Propranolol Ibuprofen 

  Sulfamethoxazole Paracetamol 

  Bezafibrate Carbamazepine 

  17α-Ethinlyestradiol Erythromycin 

  17β-Estradiol Gemfibrozil 

  Oxytetracycline Sulfadimidine 

   Atenolol 

   Ciprofloxacin 

 

3.1.6 Summary of part 1 
 

The literature survey conducted in the present project reviewed publications on pharmaceutical 
effects in the environment from 2011- July 2013, and thus completed the database OEKOTOX 
established by Bergmann et al. (2011) [1] with the database OEKOTOXupgrade. An Endnote library 
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was created which contains all publications analyzed. In addition, a data evaluation sheet was 
created as a base for the identification of the most sensitive organisms, the most sensitive effect 
endpoints, and the ecologically most relevant pharmaceuticals.  
 
For data published between 2011 and 2013, the following results were found:  

• Most studies were conducted with antibiotics, followed by NSAIDs, anticonvulsants, 
antiparasitics, ß-blockers and contraceptives.  

• Most of the research data are related to pharmaceutical effects in fish, followed by 
effects in mollusks, plants/algae, crustaceans, and bacteria. 

• After the reliability evaluation three fish species (zebrafish, rainbow trout and medaka) 
were identified as most sensitive organisms for pharmaceuticals followed by bivalves 
and snails. 

• Sensitive effect endpoints were behavior, vitellogenin induction, growth rate, 
reproduction, histopathological alterations, molecular stress biomarkers, oxidative stress 
markers, receptor binding, and gene expression 

In order to evaluate the lowest and the second lowest effect values from both the OEKOTOX 
and the OEKOTOXupgrade database with respect to their ecological relevance, risk quotients were 
calculated as MECmax/LOECmin. Risk quotients >0.1 were defined as to be of ecological 
relevance. The analyses provided the following results:  

• Most pharmaceuticals for which risk quotients >0.1 were calculated were investigated in 
plants/algae and invertebrates closely followed by vertebrates. For bacteria, only few risk 
quotient >0.1 were found.  

• Antibiotics, analgesics (NSAIDs), and ß-Blockers were the pharmaceutical classes for 
which data with the highest ecological relevance were found.  

• After reliability assessment diclofenac was identified as the pharmaceutical of highest 
relevance (with MECmax/LOECmin >0.1 in > 3 biota classes).  For propranolol, 
sulfamethoxazole, bezafibrate, 17α-ethinlyestradiol, 17β-estradiol and oxytetracycline 
MECmax/LOECmin-values >0.1 were calculated for 2 biota classes.   

Only in a few cases, the toxicity of an isolated substance could be compared to its toxicity in a 
pharmaceutical mixture. It could be shown that, at least dependent on the chemical tested and 
the effect endpoint under investigation, the toxicity of a single pharmaceutical can either be 
lower, higher, or equal to its toxicity when applied in a mixture together with other 
compounds. Since no mode of action-based effect endpoints were investigated it was impossible 
to quantify the specific contribution of the respective substance to the toxicity of the chemical 
mixture under investigation.  
 
106 studies and 561 database entries were found to be related to population-relevant endpoints 
with most data on survival/mortality followed by growth and reproduction. Studies related to 
community changes and behavioral endpoints were in the minority. Direct population 
relevance, for example induced changes in the composition of bacterial, protozoan or algal 
communities could only be shown in few studies. 
 
 
From part 1 of this literature review the following shortcomings could be identified: 
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• More studies which fulfill the reliability criteria are necessary, especially more chemical 
analyses should be integrated   

• Only few data for invertebrates are available 

• Data for ecologically relevant crustaceans are lacking 

• Data on sediment toxicity are lacking  

• More population-relevant community data are necessary 

• In order to be able to identify the contribution of isolated pharmaceuticals to chemical 
mixtures, mode of action-based effect endpoints have to be investigated. 

 
 

 

3.2 In vitro test systems 

3.2.1 Introduction  

In vitro assays developed for the monitoring of pharmaceuticals can be broadly categorized 
into biochemical assays and cell-based assays. In biochemical and cell based assays, 
homogeneous assay readouts are preferred over non homogeneous readouts since they do not 
require washing steps. 

Biochemical assays are developed to characterize compounds that interact with an isolated 
target in an artificial environment. Biochemical assays are target-based and historically have 
been the mainstay of substance screening in the pharmaceutical industry. Such in vitro assays 
include the assessment of enzymatic activity (e.g., for kinases [1], proteases [2], transferases [3]), 
receptor-ligand binding (e.g., for G-protein coupled receptors (GPCRs) [4] and nuclear receptors 
[5]) or protein-protein interactions [6]. Biochemical assays are often directed to and specific for 
a recombinant purified target of interest and are conducted in homogeneous reaction media. 
However, not all targets can be purified or prepared suitably for biochemical measurement. For 
example methods that measure ion channel activities across a biological membrane require 
two ionic compartments with different ion concentrations separated by a lipid bilayer in which 
the ion channels reside. Ion channel assays are therefore conducted in cell based assay systems. 
Additionally, the activity of a small molecule in a reconstituted in vitro assay does not always 
translate into the same activity in a cellular context, due to requirements for cellular cofactors, 
issues of membrane permeability and other reasons.  

Cell-based assays have emerged as a more physiological alternative to assays involving purified 
proteins. Cell-based assays interact with regulatory networks and feedback control mechanisms. 
In contrast to biochemical target-based assays, cell-based assays can target an outcome of a 
pathway in the physiological environment of a cell enabling amplification of a specific signal. 
Examples of cell-based assays include functional assays (e.g., second messenger mobilization 
after GPCR activation [7, 8]) and reporter gene assays [9, 10]. Cell-based assays allow for the 
selection of compounds that can cross cellular membranes, a prerequisite for biological activity 
towards multicellular organisms.  

Homogeneous assays can be categorized into radioactive and non-radioactive assays. Although 
radioactive assays are decreasing on the market due to the need of radioactive waste disposal, 
this technology is unlikely to disappear completely. Homogeneous radioactive assay 
technologies include scintillation proximity assay (SPA) (Amersham Pharmacia Biotech) and 
FlashPlates™ (NEN Life Science Products, Boston, MA). With these approaches, the target of 
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interest is immobilized onto a solid support (e.g. SPA beads or FlashPlate™ surface) that 
contains a scintillant [11]. When a radiolabelled molecule binds to the target molecule, the 
radioisotope is brought in close proximity to the solid support, and the energy transfer between 
the emitted beta particle and the scintillant results in the emission of light. Radioisotopes 
which remain unbound to the target and thus free in solution are too distant from the 
scintillant and, consequently, the released beta particles dissipate their energy solely into the 
aqueous environment. SPA has been used in a wide variety of applications and has become a 
standard technique in high throughput screening labs. The technology has been applied to 
kinases [12,13] and other enzymes [14] and is widely used for the detection of ligand-receptor 
interactions [15]. FlashPlate™ technology is similar to SPA but the solid surface is a microtiter 
plate rather than a bead. FlashPlate™ applications include the detection of cAMP levels [16] 
and ligand-receptor interactions [17]. Radiometric assays have the advantage to be relatively 
sensitive but, however, show also numerous disadvantages including limited reagent stability, 
relatively long read-times and waste disposal.  

Most common homogeneous assay readouts are non-radioactive and optical, measuring 
absorbance and luminescence. Luminescence is the emission of light from any substance, and 
occurs from electronically excited states. Luminescence is formally split up into two categories 
(fluorescence and phosphorescence) depending on the nature of the excited state. In excited 
singlet states, the electron in the excited orbital is paired (by opposite spin) to the second 
electron in the ground-state orbital. Return to the ground state is spin-allowed and occurs 
rapidly by emission of a photon. Typical fluorescence lifetimes are around some nanoseconds. 
Many fluorophores display sub-nanosecond lifetimes. Because of the short timescale of 
fluorescence, measurement of the time-resolved emission requires sophisticated optics and 
electronics. In spite of the added complexity, time-resolved fluorescence is widely used because 
of the increased information available from the data, as compared with stationary or steady-
state measurements. Additionally, advances in technology have made time-resolved 
measurements easier, even when using microscopes. Phosphorescence is emission of light from 
triplet excited states, in which the electron in the excited orbital has the same spin orientation 
as the ground-state electron. Transitions to the ground state are forbidden so that 
phosphorescence lifetimes are typically milliseconds to seconds. Transition metal–ligand 
complexes, which contain a metal and one or more organic ligands, display mixed singlet–
triplet states. These transition metal–ligand complexes display intermediate lifetimes of 
hundreds of nanoseconds to several microseconds. These optical properties can be exploited by 
a number of detection methods.  

 

3.2.2 Fluorescence Spectroscopy  

Fluorescence spectroscopy can be applied to a wide range of questions in the chemical and 
biological sciences. The measurements can provide information on a wide range of molecular 
processes, including the interactions of solvent molecules with fluorophores, rotational 
diffusion of biomolecules, distances between sites on biomolecules, conformational changes, 
and binding interactions. Recently, the usefulness of fluorescence has been expanded by 
advances in technology for development of stable cell lines and cellular imaging. These 
advances in technology have been decreasing costs for previously complex in vitro assay 
development. 
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3.2.2.1 Steady-State and Time-Resolved Fluorescence 

Fluorescence measurements can be broadly classified into two types of measurements: steady-
state and time-resolved. Steady-state measurements, the most common type, are those 
performed with constant illumination and observation. Here, the sample is illuminated with a 
continuous beam of light, and the fluorescence intensity or emission spectrum is recorded. The 
second type of measurement is time-resolved, which is used for measuring intensity decays or 
anisotropy decays. For these measurements, the sample is exposed to a pulse of light, where the 
pulse width is typically shorter than the decay time of the sample. Time-resolved measurements 
contain information on the timescale of conformational changes. Time resolved fluorescent 
measurements furthermore enable separation of signals emitted by long-lived transition metal–
ligand complexes from other unspecific signals generated by short-lived intermediates. 

3.2.2.2 Fluorescence Polarization (FP) 

Fluorophores absorb light along a particular direction with respect to the molecular axes. The 
extent to which a fluorophore rotates during the excited-state lifetime determines its 
polarization or anisotropy. The phenomenon of fluorescence polarization can be used to 
measure the apparent volume (or molecular weight) of proteins. This measurement is possible 
because larger proteins (or protein complexes) rotate more slowly than small ones. Hence, if a 
protein binds to another protein, the rotational rate decreases, and the anisotropies increase. 
The application of plane-polarized light in fluorescence polarization can be used to measure a 
probe’s rotational perturbations, thereby enabling simple assay designs dependent on a single 
labelled ligand [18, 19]. For example fluorescein- and rhodamine-labelled small molecules are 
suitable for quantifying the associations with proteins via changes in fluorescence polarization. 

3.2.2.3 Fluorescence Resonance Energy Transfer (FRET) 

FRET is an electrodynamic phenomenon occurring between a donor molecule in the excited 
state and an acceptor molecule in the ground state. The donor molecules typically emit 
radiation at shorter wavelengths that overlap with the absorption spectrum of the acceptor 
(Figure 1). The extent of energy transfer is determined by the distance between the donor and 
acceptor, and the extent of spectral overlap. The distance at which FRET is 50% efficient is 
called the Förster distance, which is typically in the range of 20 to 60 Å. Förster distances 
ranging from 20 to 90 Å are convenient for studies of biological macromolecules. These 
distances are comparable to the size of biomolecules and/or the distance between sites on 
multi-subunit protein complexes. Any condition that affects the D–A distance will affect the 
transfer rate, allowing the change in distance to be quantified. FRET can be used to measure 
the distance between a site on a protein and a membrane surface, the association between 
protein subunits, and the lateral association of membrane-bound proteins. 
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Figure 1: Fluorescence Resonance Energy Transfer (FRET). FRET occurs between a donor in an exited state and an acceptor in the 
ground state. The extent of energy transfer is determined by the distance between the donor and acceptor, and the extent of 
spectral overlap. 

 

3.2.3 Fluorescence Sensing  

There are several observables for fluorescence sensing (Figure 2). The most direct sensing 
method uses changes in the fluorescence intensity of the probe in response to the analyte. 
However, it is often inconvenient to use changes in fluorescence intensity for measurements 
due to the following reasons: Measurements which are independent of fluorophore 
concentration can be accomplished using wavelength-ratiometric probes, which display shifts 
in the absorption or emission spectra upon binding of the analyte. Another ratiometric method 
is fluorescence polarization or anisotropy. In this case the analyte causes a change in the 
anisotropy of the label. Anisotropy measurements are frequently used in competitive 
immunoassays, in which the actual analyte displaces a labeled substitute that is bound to 
specific antibody. This results in a decrease in the anisotropy of the analyte. Anisotropy values 
are calculated using the ratio of polarized intensity measurements. The use of an intensity ratio 
makes the anisotropy measurements independent of fluorophore concentration as long as the 
measurements are not distorted by auto-fluorescence or poor signal-to-noise ratio. Fluorescence 
lifetimes can also be used for sensing. 
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Figure 2:  Spectral observables for fluorescence sensing. Sensing is performed using intensities, intensity ratios, anisotropies and 
time-domain lifetimes [20]. 

3.2.3.1 Low molecular weight Sensors 

Low molecular weight sensors are available for sensing pH, chloride, oxygen, carbon dioxide, 
Ca2+, Mg2+, and other parameters. A survey of the literature revealed that a large number of 
chelate molecules can be used for imaging intracellular concentrations of cations. Calcium 
probes are perhaps the most widely used intracellular indicators. The salt forms of these dyes 
do not diffuse across cell membranes, so that the cells need to be labelled by microinjection or 
electroporation. 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid based chelates are 
also available with esterified carboxy groups, the so-called acetoxymethyl esters. In this form, 
the dyes are less polar, and, hence, passively diffuse across cell membranes. Once being inside 
the cell the acetoxymethyl esters are cleaved by intracellular esterases, and the negatively 
charged probe is trapped in the cells. 

5′, 6′ Dicarboxy-2′,7′-dichlorodihydrofluorescein (CDCFDA) is a fluorogenic probe which is 
oxidized by reactive oxygen species in living cells. The cell-permeable reagent is very weakly 
fluorescent while in a reduced state and upon oxidation exhibits strong fluorogenic signal. 
After uptake into the cell cytoplasmic esterases cleave the esters trapping the resultant charged 
CDCF inside the cell. CDCF is a co-substrate for peroxidases and could be used for sensing of 
peroxidase activities [21]. 

3.2.3.2 Protein Sensors 

The combination of recombinant technologies with chemical cross linking enables manifold 
creation of protein based fluorescent sensors. One example is a MBP (maltose binding protein 
from E. coli) based sensor based on FRET (22). This example also illustrates the increasingly 
sophisticated chemistry of sensors. This maltose sensor is bound to a neutravidin surface by a 
biotinylated linker. MBP is labelled with a non-fluorescent acceptor quenching dye. The donor 
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is a signalling dye, which is also bound to the surface by a specialized linker. This linker 
contains a cyclodextrin that binds to MBP. These components are bound to the surface by a 
biotinylated DNA linker arm that allows changes in rigidity. When the linked cyclodextrin is 
bound to the binding pocket of MBP the donor is quenched because this binding brings the 
donor dye in close proximity to the quenching dye. Addition of maltose displaces cyclodextrin 
from MBP, resulting in increased donor intensity (Figure 3). These results describe a general 
strategy for surface-bound sensors that are adjustable and yield large changes in intensity. This 
approach is likely to be used in sensors for a wide variety of analytes. 

 
Figure 3:  Surface bound maltose sensor. Schematic of a surface-bound maltose sensor based on the maltose-binding protein from 
E. coli and FRET [22]. 

3.2.3.3 Green fluorescent protein (GFP) variants 

A revolution in the field of live cell imaging occurred following the development of genetically 
encodable fluorescent tags to specifically label a protein-of-interest within the cellular milieu. 
This allowed researchers to develop fluorescent biosensors that are able to track signalling 
molecules within their endogenous environment. This “enlightenment” in the field of cell 
biology was sparked by the discovery, and subsequent cloning, of the green fluorescent protein 
(GFP) from the jellyfish Aequorea victoria. For simplifying the emission spectra and improving 
the spectral properties of A. victoria GFP for biosensor applications, the wild-type protein has 
been mutated in several ways. There are several important factors that must be considered 
when employing GFP family members as genetically encodable fluorescent tags. These include 
both physical and biological parameters like protein folding efficiency, stability, intrinsic 
brightness, photo-stability, spectral properties and environmental sensitivity.  

The discovery and development of GFP family members exhibiting either red- or blue-shifted 
excitation/emission spectra allows fluorescence proteins to be used for a number of FRET-based 
applications. If prior excitation of the donor fluorophore is generated as by-product of an 
enzymatic reaction, such as the oxidation of luciferin, this is termed “bioluminescence 
resonance energy transfer” (BRET). These processes represent highly sensitive methods for 
measuring protein-protein interactions and conformational changes within individual proteins. 

Although BRET signals are generally dimmer than those generated by FRET, this approach 
offers several potential advantages over FRET for live cell applications [23]. Because BRET does 
not require excitation of the donor fluorophore for energy transfer to occur, it does not elicit 
cellular auto-fluorescence. As a consequence, BRET exhibit signal-to-noise ratios that are much 
higher than those obtained using FRET. Likewise, the chemiluminescent nature of the 
excitatory light used for BRET simultaneously eliminates two of the primary sources of error 
associated with FRET-based measurements: spectral bleed-through (donor emission into the 
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acceptor channel and excitation of acceptor molecules by the donor excitation wavelength) 
and photobleaching of the donor molecules by excitatory light. Finally, since the donor and 
acceptor molecules used for BRET generate luminescent and fluorescent signals, respectively, 
the expression levels of each component can be measured independently of the other. Thus 
BRET-based probes hold potential for live cell applications, including some unique applications 
in cell based compound screening [24] and in vivo pharmacodynamics studies for drug 
candidates. 

Relatively large fluorescent proteins could be replaced by short peptide sequences designed to 
bind small molecule probes [25]. This can result in restoring activity which was lost due to 
bulky fluorescent protein fusion tags. However the chemical modifying of the peptide 
sequences for generation of fluorescent peptides is laborious and modifying reagents need to 
cross cell membranes. Therefore it is more convenient to use genetically encodable fluorescent 
proteins to build fluorescent biosensors for probing cellular components within their native 
environment. Such biosensors have been used to monitor a multitude of cellular processes, 
offering valuable insights into the dynamic nature of the signalling, metabolic and other 
regulatory networks that govern cell function. The design and application of a series of 
fluorescent biosensors range from relatively simple sensors designed to measure changes in the 
expression to more complex reporter systems designed to probe biochemical processes, such as 
second messenger turnover and enzyme activities within their native cellular environment [26].  

Monitoring Protein Expression 

Fluorescence protein based transcriptional reporters have proven to be valuable tools for 
studying transcriptional activities. One of earliest uses of GFP as a biological probe involved the 
in vivo visualization of promoter activation in the nematode C. elegans. During these studies, 
GFP DNA was placed under the control of a promoter and GFP gene expression was measured 
during different stages of nematode development [27]. During these studies, GFP DNA was 
placed under the control of a promoter and GFP gene expression was measured during 
different stages of nematode development. Over the years, similar studies have been conducted 
in a variety of cellular contexts, offering valuable information about the activation and 
regulation of cellular promoters. The stability of GFP inside the cell (t1/2= ∼1 day) [28] allows 
the activation of weak promoters to be measured. The persistence of GFP molecules long after 
transcription mask transient changes in gene expression. One way to overcome this limitation 
is to fuse a degradation sequence, such as a domain from mouse ornithine decarboxylase, to 
the fluorescence protein indicator [29]. Using this strategy, the fluorescent half-life of an EGFP-
mouse ornithine decarboxylase chimera was reduced nearly 12-fold, to approximately two 
hours. The increased temporal resolution afforded by this probe allowed the observation of 
transient changes in NF-κB-mediated gene expression that could not be observed using longer-
lived EGFP reporters.  

Monitoring Biochemical Changes within Cellular Environment 

Through protein engineering efforts, fluorescent protein can be generated in such a way that 
its spectral properties are altered in response to specific cellular factors. Fluorescent protein 
based reporters that change their spectral properties in response to cellular parameters have 
also been used extensively to study the regulation of many cellular processes. While in some 
cases these types of sensors exploit photophysical properties intrinsic to the fluorescent protein 
tags themselves, in others, the spectral properties of the chromophore are altered by distorting 
the architecture of the fluorescent protein using integrated protein sequences that are sensitive 
to the signalling molecule under study. 
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Engineered molecular switches, which are constructed based on a modular design, consist of a 
“receiver” module that specifically recognizes the small-molecule-of-interest linked to a 
“switching” module that converts the binding event into a conformational change. By 
combining the molecular switch with an appropriate reporter unit (either by grafting it into 
the fluorescence protein itself or by flanking the switch region with complementary FRET pairs) 
small molecule-dependent changes in the sensor unit can be translated into fluorescence 
readout from the reporter unit. Using this basic design, researchers have constructed a diverse 
set of fluorescence protein based biosensors capable of probing a large number of small 
molecule analytes involved in cellular signalling. 

3.2.3.3.1 Single Fluorophore Sensors 

3.2.3.3.1.1 Halide and pH Sensors 

Unlike wild-type A. victoria GFP, whose spectral properties remain relatively unchanged over a 
wide range of physiological conditions, the mutations introduced into many engineered 
fluorescence protein variants often render them sensitive to fluctuations in the cellular 
environment. For example, because of changes in their internal hydrogen bonding networks, 
the chromophores of EGFP and several EYFP family members fluoresce very weakly in the 
protonated state. As a consequence, cellular components that promote protonation, such as 
protons or halide ions, can lead to markedly reduced fluorescence intensities. This intrinsic 
property has been exploited to measure several important cellular parameters, including pH 
and chloride ion concentrations. 

The YFP variant YFP(H148Q) exhibits a dramatic reduction in its fluorescence intensity at 
elevated halide concentrations. This property has been exploited to monitor fluctuations in 
chloride ion concentration in cells overexpressing the chloride transporter cystic fibrosis 
transmembrane regulator. These studies demonstrated that YFP(H148Q) faithfully reports 
chloride flux through the cystic fibrosis transmembrane regulator in response to elevations in 
intracellular cyclic AMP, providing an attractive alternative to chemical halide dyes [30]. While 
EGFP (pKa = 6.15) is well-suited for the detection of pH fluctuations within acidic organelles, 
EYFP (pKa = 7.1) is preferable in more basic environments like the mitochondrial matrix where 
equilibrium pH values are closer to 8.0 [31]. 

3.2.3.3.1.2 Redox Potential Sensors 

Sensor units can be constructed by introducing residues on the surface of a fluorescence 
protein variant that renders it sensitive to a particular cellular parameter. This is the basis for 
redoxsensitive fluorescence protein indicators, termed roGFPs, which use disulfide bond 
formation between pairs of strategically placed cysteine residues on the surface of GFP to alter 
the β-barrel architecture of the protein [32]. In the case of roGFP2, structural analysis suggests 
that the formation of a disulfide bond between the engineered cysteine residues promotes 
reorganization of two β-strands in close proximity to the chromophore, causing subtle 
rearrangements in the residues surrounding the chromophore. These conformational changes 
ultimately shift the equilibrium between the neutral and phenolic states of the chromophore, 
resulting in reciprocal changes in the excitation maxima at 400 and 480 nm in response to 
changes in the redox potential [33]. As genetically encodable and genetically targetable redox 
sensors, roGFP family members as well as the related rxYFPs, have proven to be valuable tools 
for measuring the redox potential of many subcellular compartments, including the cytosol [34] 

44 



Biomonitoring of pharmaceuticals/final report  

3.2.3.3.1.3 Calcium Sensors 

The circularly permutated EGFP-based GCa-MPs [35] are among the most popular genetically 
encodable Ca2+ indicators. These fluorescence proteins were generated by fusing the carboxy 
terminus of calmodulin with the calmodulin binding peptide M13. In these reporters the switch 
is grafted into a single fluorescence protein variant. In the presence of Ca2+, the CaM-M13 
interaction induces conformational changes in the reporter that result in a change in 
fluorescence intensity of the chromophore. Such Ca2+ sensors have been used to measure Ca2+ 
fluxes in a variety of cell types, offering valuable insights into the timing and regulation of Ca2+ 
transients during many cellular processes. 

3.2.3.3.1.4 cGMP Sensors 

A series of fluorescent indicators of cGMP (FlincGs) based on the regulatory domain of protein 
kinase G was developed [36]. These sensors consist of a circularly permutated EGFP variant 
fused to two cGMP binding sites derived from various regions of the protein kinase G 
regulatory domain. To probe changes in cGMP concentration over a wide range of conditions, 
FlincG family members have been engineered to bind cGMP with KD’s ranging from 35 nM to 
1.1 μM. Nucleotide binding induces conformational changes in the protein kinase regulatory 
domain that lead to a corresponding increase in the fluorescence intensity of the reporter. 
Importantly, each of the FlincG probes also exhibits a high degree of selectivity for cGMP 
relative to the chemically similar second messenger cAMP. This specificity for cGMP, coupled 
with their rapid and reversible binding kinetics and relatively good pH stability, makes FlincGs 
well-suited for measuring cGMP inside cells. 

3.2.3.3.1.5 Reactive Oxygen Species Sensor 

A hydroperoxide sensor was generated by inserting circularly permutated EYFP into the 
regulatory domain of a hydroperoxide sensing bacterial protein [37]. This hydroperoxide sensor 
exhibits reciprocal changes in the emission intensity at 520 nm when excited by 405 and 488 
nm light. Using this sensor, fast and reversible changes in the fluorescence intensity of 
circularly permutated EYFP in a cell line after exposure to 50 μM hydroperoxide was observed.  

A circularly permuted yellow fluorescent protein can be used for sensing superoxide radical 
anion, the primal reactive oxygen species generated by the electron transport chain. The 
fluorescence emission (at 515 nm) of purified circularly permutated YFP when excited at 488 
nm is five times brighter under strong oxidizing conditions compared to strong reducing 
conditions, indicative of a large dynamic range. Extensive in vitro experiments revealed the 
superoxide selectivity of circularly permutated YFP over other physiologically relevant oxidants 
and metabolites. Compared to the fully reduced state, circularly permutated YFP fluorescence 
displays a 250% increase by oxygenation and a full 420% increase by the superoxide radical 
anion. The superoxide radical anion associated increase in circularly permutated YFP 
fluorescence is completely reversed by subsequent addition of copper/zinc-superoxide 
dismutase. By contrast, circularly permutated YFP emission is unchanged by hydroxyperoxide 
and peroxynitrite, and is decreased by hydroxyl radical and nitric oxide. Other metabolites 
tested, including physiological levels of Ca2+, ATP, ADP, NAD(P)+, and NAD(P)H, all exert 
negligible or only marginal effects [38]. Unlike GFP-based redox biosensors the fluorescence 
emission of circularly permutated YFP is unaltered when the redox potential varies between -
319 mV and -7.5 mV. The reversibility of circularly permutated YFP permits real-time 
measurements of dynamic changes in superoxide levels in living cells. 
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3.2.3.3.1.6 ATP/ADP ratio sensing 

Perceval, an ATP/ADP indicator is based upon the bacterial ATP-binding protein, GlnK1, and a 
circularly permutated version of Venus [39]. In the presence Mg-ATP, the T-loop is converted 
from an extended structure to a highly compact form that is believed to relieve strain on the 
integrated circularly permutated Venus module. In Perceval, T-loop closure leads to reciprocal 
changes in circularly permutated Venus emission intensity when excited with 405 and 490 nm 
light. Therefore, Perceval offers the advantage of a radiometric readout. Mg-ADP also elicits a 
change in the emission ratio of the probe; however, because of incomplete loop closure, this 
change is only about half that observed upon Mg-ATP binding. As a consequence, Perceval can 
be calibrated to measure the relative ratio of ATP to ADP inside cells based upon competition 
between the two molecules for T-loop binding. As a proof of principle, the authors 
demonstrated that Perceval could detect global metabolic changes caused by the inhibition of 
glycolysis or the modulation of external glucose levels [39]. 

3.2.3.3.1.7 Membrane Potential sensing 

Fluorescence protein based voltage sensors modulate fluorescence intensity of the fluorescence 
protein reporter module by placing it between regions of an ion channel or voltage-sensitive 
protein that undergoes a conformational change in response to changes in the membrane 
potential [40]. A Cerulean-based voltage sensor, that utilizes conformational changes in the 
voltage-sensitive domain of the voltage sensor containing phosphatase from Ciona intestinalis 
to affect the fluorescence intensity of Cerulean [41]. These properties make this voltage sensor 
well-suited to measure the fast neuronal electrical signals often observed during signal 
propagation. 

Beside single fluorophore sensors like the above mentioned, more complex sensor units are 
required to convert changes in other cellular parameters into a fluorescence output. A 
“molecular switch” can be derived from a conformational change intrinsic to an endogenous 
protein or it can be generated via an engineered switch (Figure 4). 

 
 
Figure 4:  Molecular switch. A molecular switch can be generated by either (A) a conformational change intrinsic to a protein 
domain or (B) by an engineered conformational change driven by interactions between a receiver module (grey block) and a 
switching module (green block). In each case, the conformational change is converted to a change in FRET efficiency (blue arrow) 
by altering the distance and/or orientation of the attached fluorescence protein reporter units. 
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3.2.3.3.2 FRET / BRET based Sensors 

FRET-based sensors exist as uni- and bimolecular reporter systems, each of which utilizes a 
molecular switch to convert activity-dependent changes in the reporter into a measurable FRET 
response. In each case the molecular switch is designed to alter the distance or relative 
orientation of a FRET pair in response to specific cellular conditions. For instance, whereas most 
unimolecular sensors rely upon a conformational change to reposition their fluorophores in 
space, bimolecular probes typically bring their FRET pairs into close proximity via protein-
protein interactions. An advantage of a bimolecular design is that the reporter typically 
exhibits a larger dynamic range than its unimolecular counterpart. In the case of bimolecular 
reporter systems the stoichiometries between the donor and acceptor are variable. Therefore 
more sophisticated measures of FRET efficiency, such as donor fluorescence recovery after 
acceptor photo bleaching and fluorescence lifetime imaging, must be used. 

3.2.3.3.2.1 FRET based cAMP Sensor 

Several FRET-based biosensors have been developed to better understand how the 
concentrations of cAMP fluctuate over time and throughout the cell. These include the 
unimolecular reporter system derived from various portions of the guanine nucleotide 
exchange factor, exchange protein directly activated by cAMP (Epac) [42]. Several 
intramolecular cAMP reporters have been developed based upon cAMP effector Epac1 and 
Epac2. These reporters using Epac (ICUE) [43, 44], CFP-Epac (δDEP-CD)-YFP [45], Epac1-camps 
and Epac2-camps [42] all exhibit decreasing FRET following cAMP binding. Presumably, the 
binding of cAMP induces an intrinsic conformational change in Epac isoforms that liberates the 
catalytic domain from intrasubunit allosteric inhibition, thereby altering the distance and 
relative orientation of their flanking CFP/YFP FRET pairs. Furthermore, mutations have been 
introduced to abolish the guanine exchange factor activity of Epac, thereby reducing the effects 
that overexpression of the biosensor may have on cellular signalling pathways. cAMP sensor 
studies have begun to uncover important details about the role of subcellular 
compartmentalization in shaping cAMP dynamics during GPCR activation. 

3.2.3.3.2.2 BRET based cAMP Sensor 

By replacing the CFP donor in Epac-based sensors with luciferase, cAMP reporters were created 
that utilize BRET as the fluorescent readout [46]. Though their emission intensity has prevented 
BRET-based sensors from being used to measure biochemical changes at the subcellular level, 
BRET-based cAMP reporters have proven to be powerful tools for examining drug effects in cell 
populations in a medium- to high-throughput manner and for screening fluorescent 
compounds whose excitation/emission profiles preclude the use of FRET-based probes. For 
instance, using a BRET-based cAMP sensor derived from the second generation ICUE reporter, 
ICUE2, the impact of nine clinically effective antipsychotics on D2 class dopamine receptor 
activity was examined [47]. 

3.2.3.3.2.3 FRET based GPCR activation Sensor 

The GPCR superfamily, which represents the largest family of proteins involved in signal 
transduction, is composed of structurally-similar receptor proteins characterized by seven R-
helical membrane-spanning domains. As the primary upstream activators of many intracellular 
signalling pathways, GPCRs play a key role in converting extracellular stimuli, such as 
hormones and neurotransmitters, into an intracellular response. The deregulation of GPCRs is 
also critical to the etiology of many diseases. In fact, roughly one half of the drugs on the 
market today target GPCRs. For gaining insights into spatial and temporal aspects of GPCR 
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activation and signalling as well as into the mechanistic basis of the signalling process itself, 
several FRET-based sensors have been created to study receptor activation in the context of 
single, living cells [48]. Upon ligand binding, GPCR family members act as guanine nucleotide 
exchange factors that facilitate the exchange of GDP for GTP in the GR subunit of associated 
trimeric G-protein complexes. Nucleotide exchange promotes the dissociation of the GR subunit 
from the Gβγ subunits of the complex which, in turn, leads to the activation of downstream 
effectors, such as phospholipase C and transmembrane adenylate cyclases involved in 
phosphoinositide and cAMP metabolism. To measure activation-induced conformational 
changes in GPCR family members, several groups have fused CFP and YFP color variants to the 
third intracellular loop and the C-termini of the receptor molecule to yield sensitive GPCR 
activation sensors [49]. These sensors, which all exhibit reproducible decreases in emission ratio 
following agonist stimulation, have been used to study GPCR activation kinetics in the presence 
of full agonists, partial and even inverse agonists. In contrast to agonists generating a decrease 
in FRET inverse agonists appear to cause an increase in FRET that may be attributed to distinct 
conformational states of the receptor [50]. Effects of beta blockers bisoprolol, metoprolol and 
carvedilol in inhibition β1-adrenoceptor isoforms in living cells was measured in real time by 
FRET using a cyan fluorescent protein, Cerulean fused to the carboxy terminus of the human 
β1-adrenoceptor and a yellow fluorescent protein inserted into the third intracellular loop [51]. 

3.2.3.3.2.4 FRET based protein kinase activity Sensor 

Protein kinase activity reporters utilize an engineered molecular switch based upon a modular 
design. A consensus phosphorylation site specific for the kinase of interest serves as the 
“receiving segment” while a phosphoamino acid binding domain functions as the “switching 
segment”. These regions are concatenated together by a flexible linker and sandwiched 
between a fluorescence protein FRET pair. Whereas the length of the linker and the choice of 
FRET pairs influence the dynamic range of the reporter, the “receiving and switching 
segments” contribute to its specificity and reversibility. This basic modular design has been 
applied to a number of protein kinases, including protein kinase A. Genetically encoded A-
kinase activity reporters are reversible and targetable reporters allowing real-time imaging of 
protein kinase A activity, and are valuable for analyzing compartmentalized kinase activities 
[52]. 

3.2.3.3.2.5 Coupled FRET based NO Sensor 

A coupled fluorescent indicator system was used for reporting NO release. The FRET based 
cGMP indicator “CGY” exhibits a rapid and reversible decrease in emission ratio in response to 
elevations in cGMP produced by NO-dependent activation of soluble guanylyl cyclase. Since it is 
estimated that a single NO molecule generates nearly 6,000 cGMP molecules/min, this indicator 
system is extremely sensitive to NO release [53]. In fact, this indicator system is able to detect 
NO concentrations in the picomolar range, several orders of magnitude lower than direct NO 
fluorescent indicators. 

3.2.3.3.3 Protein Fragment Complementation Sensor 

Fluorescence based approaches has paralleled the study of GPCR oligomerization. GPCRs are 
the largest family of cell surface receptors and are the targets many clinical drugs (e.g. β-
blockers and antipsychotics). Bimolecular fluorescence complementation relies on the 
generation of a fluorescent signal from two non-fluorescent fragments of a fluorescence protein 
when brought in close proximity by fusion partners. Receptor activation through binding of a 
ligand agonist proceeds by conformational rearrangement within the transmembrane helical 
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domain as the receptor switches from an inactive to an active state, which in turn activates 
heterotrimeric G proteins. Activated G proteins regulate the levels of intracellular second-
messenger molecules (Ca2+, cAMP, phoshoinositides, cGMP), which modulate signalling 
cascades involving kinases such as PKA, PKC and others. The 2012 Nobel Prize in Chemistry was 
awarded to Brian Kobilka and Robert Lefkowitz for their work that was crucial for 
understanding GPCR function.  

Proteins interacting with GPCRs have been shown to modulate receptor expression, membrane 
targeting, and desensitization. Among these, arrestins are well characterized scaffolding 
proteins that are notably involved in receptor internalization after ligand activation. As part of 
a high-content protein fragment complementation assay study based on fluorescence protein 
complementation, interaction between β-arrestins and the β2-adrenoceptor was detected in 
cells treated with β2-adrenoceptor agonists, thus providing a measure of receptor activation 
and internalization [54]. These studies demonstrate the applicability of fluorescent protein 
fragment complementation assays for the detection of drug-induced changes in GPCR 
interactions. Likewise, non-fluorescent protein fragment complementation assays based on β-
galactosidase fragment complementation can also be used for the detection of GPCR-β-arrestin 
interactions. 

 

3.2.4 Immunoassays 

Immunoassays constitute a large and diverse family of assays. The basic idea is to couple the 
association of antibody with antigen to some other event that yields an observable spectral 
change. Various mechanisms are possible, including energy transfer, anisotropy, delayed 
lanthanide emission, or the use of enzymes to amplify the signal. The use of antibodies as 
analytical tools can be traced to the development of radioimmunoassays by Berson and Yalow, 
which resulted in a Nobel Prize. Since then immunoassays have been widely used, but are now 
based mainly on fluorescence detection. 

3.2.4.1 cAMP AlphaScreen® (PerkinElmer) 

The acronym ALPHA stands for Amplified Luminescent Proximity Homogeneous Assay. The 
assay contains two bead types, donor beads and acceptor beads. Both bead types provide 
reactive aldehyde groups for conjugating biomolecules to the bead surface. Donor beads 
contain a photo-sensitizer, phthalocyanine, which converts ambient oxygen to an excited form 
of O2, singlet oxygen, upon illumination at 680 nm. Singlet oxygen has a limited lifetime prior 
to falling back to ground state. Within its 4 μsec half-life, singlet oxygen can diffuse 
approximately 200 nm in solution. If an acceptor bead is within that proximity, energy is 
transferred from the singlet oxygen to thioxene derivatives within the acceptor bead, 
subsequently culminating in light production at 520– 620 nm (Figure 5). In the absence of an 
acceptor bead, singlet oxygen falls to ground state and no signal is produced. 
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Figure 5:  AlphaScreen cAMP assay. Competitive assay type where endogenous cAMP produced in whole cells competes with 
biotinylated cAMP for binding to an anti-cAMP antibody conjugated to the Acceptor beads. 

3.2.4.2 cAMP LANCE® (PerkinElmer) 

LANCE stands for Lanthanide chelate exite. This assay is a homogeneous time-resolved 
fluorescence energy transfer immunoassay designed to measure cAMP produced upon 
modulation of adenylyl cyclase activity. The assay is based on the competition between a 
Europium-labelled cAMP tracer and sample cAMP for binding sites on cAMP-specific antibodies 
labelled with a FRET acceptor dye (ULight). When the ULight anti-cAMP antibody is bound to 
the Eu-cAMP tracer, excitation at 340 nm excites the Europium. The energy is transferred to the 
ULight-labelled antibody. The fluorescence measured at 665 nm will decrease in the presence 
of cAMP from test samples, and resulting signals will be inversely proportional to the cAMP 
concentration of a sample (Figure 6). 

 
Figure 6:  LANCE cAMP assay. Competitive assay type where endogenous cAMP produced in whole cells competes with a cAMP 
antibody complex. 

3.2.4.3 cAMP HTRF (CisBio International) 

HTRF (homogeneous time resolved fluorescence) combines standard FRET technology with 
time-resolved measurement of fluorescence. The cAMP assay is based on a competitive 
immunoassay using cryptate-labelled anti-cAMP antibody and d2-labelled cAMP (Figure 7). 
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Figure 7:  HTRF cAMP assay. Competitive assay type where endogenous cAMP produced in whole cells competes with a cAMP d2 
complex. Donor: Europium cryptates (Eu3+cryptate), Acceptor: d2 ( an organic motif of approximately 1 kDa).  

3.2.4.4 cAMP Screen (Life Technologies) 

The cAMP Screen is a competitive immunoassay. Cell lysates are incubated with a cAMP-AP 
conjugate and an anti-cAMP antibody in the secondary antibody–coated assay plate. The 
resulting immune complexes are captured in the plate. The captured immune complexes are 
washed to remove unbound cAMP-AP, and the resulting signal is measured in a luminometer. 

 

3.2.5 Reporter Assays 

Cell based reporter assays provide a cost effective platform for sensing promoter activities. 
Reporter gene constructs contain a promoter element which regulates the expression of a 
selected reporter protein. Commonly used reporters are enzyme proteins with activities linked 
to colorimetric or luminescent readouts such as luciferase, alkaline phosphatase, β-
galactosidase, β-lactamase or fluorescent proteins such as GFP variants. The advantages of 
reporter gene assays include the wide linearity and sensitivity of the technique and a large 
signal to background ratio, making them suitable for amplification of a single signal induced 
by a receptor agonist.  

GPCR activation is well known to alter gene transcription via responsive elements for second 
messengers including the cAMP response element (CRE), the nuclear factor of activated T-cells 
response element (NFAT-RE), the serum response element (SRE) and the serum response factor 
response element (SRF-RE, a mutant form of SRE), all of which are located within gene 
promoter regions. G-protein-dependent reporter gene assays were developed using second 
messenger responsive elements upstream of a minimal promoter, which in turn regulate the 
expression of a selected reporter protein (Figure 8). 

Reporter gene assays are also easy to set up and can be scaled down to extremely low assay 
volumes. Despite these advantages, some concerns have been raised, such as the requirement 
for long incubation periods, difficulty in antagonist detection due to reporter accumulation 
and the higher potential for false positives because the signal event is distal from receptor 
activation. 

Concerns about the long incubation time and accumulation of reporter have been addressed 
through the use of destabilized reporters. The higher false positive rate due to the distal 
signalling event could be partially resolved with by the co-expression of a constitutively 
expressed internal control, so compounds non-specifically affecting gene transcription could be 
ruled out [55]. 
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Figure 8:  Receptor binding and G-protein-dependent reporter gene assays. Schematic representation of receptor binding and 
major pathways activated by different G proteins. RE symbols a specific second messenger responsive element upstream of a 
minimal promoter, which in turn regulate the expression of a selected reporter protein. 

3.2.6 β-adrenoceptor assays 

Activation of cardiac β-adrenoceptors by endogenous catecholamines plays a key role in the 
regulation of cardiac function. The heart contains at least 2 β-adrenoceptor subtypes, termed 
β1-AR and β2-AR, and may also contain β3-ARs. Stimulation of the β1-AR represents the 
strongest endogenous mechanism for increasing contractility and beating frequency of the 
mammalian heart [56]. In human heart failure, which has become one of the leading causes of 
death and hospitalization, the sympathetic nervous system is chronically activated to overcome 
the loss of cardiac output. While this initially leads to compensation through a short-term 
increase in cardiac function, chronic stimulation of the cardiac β-AR system contributes to 
progression of the disease. These detrimental effects of chronic β-adrenergic signalling are 
attributed to the β1-AR subtype. Consequently, the development of receptor antagonists has 
resulted in the single most effective therapeutic regimen to treat heart failure [57]. Beta 
blockers are part of most commonly prescribed drugs in Germany. 

β-adrenoceptors are a class of GPCRs. The subtype β1-AR is linked to Gs protein which in turn is 
linked to adenylate cyclase (Figure 8). Downstream effectors of cAMP include cAMP response 
element and cAMP-dependent protein kinase, which mediate some of the intracellular events 
following hormone binding.  

Measuring of β-adrenoceptor activity could be done using in vitro assays like tagged-ligand 
binding, GTPγS binding, CRE reporter, cAMP or conformation based FRET assays.  

3.2.6.1 Tagged ligand binding assays 

Tagged ligand binding assays are based on antibodies binding to cAMP. Commercial available 
are several competitive assays like cAMP AlphaScreen (3.2.4.1), cAMP LANCE (3.2.4.2), cAMP 
HTRF (3.2.4.3) or cAMP screen (3.4.4). All assays measure cAMP in cellular extracts, therefore 
cells expressing β-adrenoceptor has to be lysed first. 
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3.2.6.2 cAMP luminescent biosensor assay 

A novel protein biosensor is described, which uses a cAMP-binding domain from PKA coupled 
to a circularly permuted form of Photinus pyralis luciferase. Upon binding of cAMP the 
luciferase undergoes conformational change from an open less reactive to a closed form 
resulting in high luciferase activity (Figure 9) [58]. 

 
Figure 9:  cAMP luciferase assay. Schematic representation of the cAMP luciferase assay 

The real-time cAMP luminescent biosensor assay allows the sensitive detection of GPCR 
mediated signalling through the second messenger cAMP. In contrast to lytic assays with 
multiple samples and procedural steps, cAMP dynamics can be followed from a population of 
living cells with greatly reduced time and labour. When compared to existing biosensor 
designs, this evolved biosensor construct provides increased dynamic range, making it better 
suited to monitor a broad range of receptor behaviours such as treatment with full, partial, or 
inverse agonists. 

3.2.6.3 cAMP CRE reporter assays 

After activation of the β-adrenoceptor adenylyl cyclase is activated by a coupled Gs protein. 
Adenylyl cyclase catalyzes the formation of cAMP which activates PKA. PKA in turn initiates the 
downstream kinase cascade. One of the end steps of this cascade is the phosphorylation of the 
cAMP response element binding protein. The phosphorylated CREB can bind promoter regions 
containing the 5’-TGACGTCA-3’ sequence i.e. the cAMP response element, and in consequence 
induces downstream gene transcription. An externally-introduced reporter gene usually 
contains a specific promoter and a reporter gene DNA. The promoter can be made artificially 
by fusion of CRE elements with a minimal promoter sequence. For real time imaging a CRE- 
EGFP reporter system was developed, which could be used for monitoring real time 
transcription under a fluorescent microscope or by flow cytometry [59]. 

3.2.6.4 Receptor conformation based FRET assay 

Beside FRET based (3.2.3.3.2.1) and BRET based cAMP sensors (3.2.3.3.2.2) a FRET approach is 
described were the human β1-adrenoceptor was fused at the carboxyterminus to a mutant CFP 
(Cerulean) and a YFP inserted into the third intracellular loop (Figure 10). After binding of the 
agonist norepinephrine a conformational shift leads to a decrease of FRET signal. The β-blocker 
bisoprolol, metoprolol, and carvedilol led to an active change of the receptor conformation 
resulting in an increase in the FRET ratio, suggesting inverse agonist behaviour [51]. 
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Figure 10:  Development of a -1 adrenoceptor FRET sensor. After binding of the agonist norepinephrine a conformational shift 
leads to an increase of distance of the two fluorescent proteins resulting in a decreasing FRET effect [51]. 

3.2.6.5 cAMP gated ion channel 

cAMP produced in subcellular compartments near the plasma membrane can be monitored in 
HEK cell lines expressing the rat wild-type (GenBank CAA39135.1) or several mutant olfactory 
CNG channel proteins after recombinant adenovirus infection [60]. Forskolin induced cAMP 
synthesis resulted in Ca2+ influx in the cells. Using the wild-type channel, a forskolin induced 
modest Ca2+ influx could be measured after pre-treatment of the cells with phosphodiesterase 
inhibitors only. Site specific mutations of the wild-type protein resulted in special mutant 
channel proteins with enhanced cAMP sensitivity and specificity [60]. 

3.2.6.6 HCN2 cAMP FRET assay 

A cAMP FRET sensor based on a single cAMP binding domain of the hyperpolarization-
activated cyclic nucleotide-gated channel 2 (HCN2) enabled studies of spatial and temporal 
cAMP dynamics after β1- and β2- adrenoceptor stimulation in freshly isolated adult 
cardiomyocytes [61]. 

 

3.2.7 Cyclooxygenase assays 

Cyclooxygenase-1 and cyclooxygenase-2 are bifunctional enzymes that carry out two sequential 
reactions in spatially distinct but mechanistically coupled active sites: the double dioxygenation 
of arachidonic acid to prostaglandin G2 and the reduction of prostaglandin G2 to 
prostaglandin H2. Arachidonic acid oxygenation occurs in the cyclooxygenase active site, and 
prostaglandin G2 reduction occurs in the peroxidase active site. Prostaglandin H2 diffuses from 
the COX proteins and is transformed by different tissue specific isomerases to prostaglandins 
(PGE2, PGD2, PGF2α, PGI2) and thromboxane A2 (TxA2) 

Although crude and purified preparations of cyclooxygenase isoenzymes have been used in 
characterizing inhibitors, several studies indicate that for unknown reasons the potency and 
selectivity of inhibitors determined using intact cells expressing cyclooxygenase isoenzymes 
differ from values established using cell-free cyclooxygenase preparations. For example, 
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ibuprofen is approximately 10-fold more potent against cyclooxygenase-2 in intact cells than 
against cyclooxygenase-2 activity in broken cells [62]. 

Several functional COX assays using purified or recombinant enzymes have been reported and 
include an oxygen consumption assay, a peroxidase co-substrate oxidation assay, a 
radiolabelled chemical inhibition assay, and an enzyme-linked immunosorbant assay. 

3.2.7.1 Oxygen consumption assay 

COX enzymatic activity was determined by measuring oxygen consumption at 37°C in an 
oxygraph chamber using an YSI Model 53 oxygen monitor [63]. Tests were performed using 
isolated protein. 

3.2.7.2 Peroxidase co-substrate oxidation assay 

Peroxidase activity of the cyclooxygenase could be measured in a peroxidase co-substrate 
oxidation assay using guaiacol, heme and hydroperoxide [64]. Assays were performed with 
recombinant purified protein. 

3.2.7.3 COX Immunoassay 

COX activity in protein solutions can be measured using a commercial Prostaglandin E2 
competitive immunoassay kit. The kit uses a monoclonal antibody to Prostaglandin E2 in a 
competitive manner. Prostaglandin E2 from the sample competes with an alkaline phosphatase 
Prostaglandin E2 fusion molecule (#ADI-901-001 Enzo Life Sciences). 

3.2.7.4 COX fluorescence assay 

During a cellular assay the peroxidase substrate, 5- (and 6)-carboxy-2‘,7’-
dichlorodihydrofluorescein (CDCF) was passively incorporated into cells as the acetoxymethyl 
ester, 5- (and 6)- carboxy-2',7'-dichlorcdihydrofluorescein diacetate (CDCFDA). Following 
partitioning into the cell, cytoplasmic esterases cleave the methyl esters and trap the resultant 
charged CDCF. CDCF serves as a reducing substrate for the peroxidase activities of 
cyclooxygenase-1 and cyclooxygenase-2. PGG2 generated by the cyclooxygenase activity upon 
the addition of arachidonate is reduced to PGH2 by the peroxidase activity with resultant 
oxidation of CDCF to a fluorescent product that can be detected by fluorescence microscopy 
(Figure 11) [65]. 
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Figure 11: COX fluorescence assay. Fluorescence assay for cyclooxygenase activity in living cells. After loading of the cells with 
CDCFDA arachidonate (RH) is added and oxidised. Peroxides are reduced by COX peroxidase activity with resultant oxidation of 
CDCF to a fluorescent product that can be detected by fluorescence.  
 

3.2.8 Sensitivity of in vitro and in vivo assays 

Different sensitivity of substances in in vivo compared to in vitro tests may be related to 
metabolic activities. The metabolic capacity of a living organism could differ from the 
metabolic activity of single cells. Dependent on this difference an in vitro test system could 
have an enhanced sensitivity over the in vivo test system. It is also possible that a metabolite 
from a substance (e.g. the endocrine disrupting chemical flutamide) exert a higher binding 
activity on the mammalian hormone receptor as the substance itself. The binding constant of a 
substance to its biological target molecule influences the lowest observed effect concentration 
in an in vitro assay system. The detection limit of much pharmaceuticals in in vitro assays is in 
the range of nM to µM concentration due to the corresponding IC50 concentrations of 10-6 to 10-

9 mol/L. However, when accumulation occurs in an animal, in vitro test systems can be less 
sensitive. 

3.2.8.1 Comparative in vivo / in vitro analysis of endocrine disrupting chemicals 

Endocrine disrupting chemicals are defined as exogenous agents that interfere with the 
production, release, transport, metabolism, binding, action or elimination of natural hormones 
in the body. A variety of developmental and reproductive disorders observed in wildlife species 
have clearly been linked to the exposure to endocrine disrupting chemicals. The importance of 
identifying potential endocrine disruption has been recognized by regulatory bodies. In order 
to consider potential endocrine disrupting effects the US Environmental Protection Agency 
established the Endocrine Disruptor Screening Program. This program employs an approach 
including a combination of in vitro and in vivo mammalian and ecotoxicological screens for 
identifying and characterizing endocrine effects of pesticides, industrial substances, and 
environmental contaminants. Part of the tier 1 screening is a Fish Short-Term Reproduction test 
and an Amphibian Metamorphosis Assay. These in vivo tests are used to identify potential 
endocrine disrupting chemicals. Because this regulatory approaches focus on screening assays 
that use animals and are several weeks in duration shorter-term in vitro tests that reduce the 
number of animals and time are required.  
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In vitro screening for endocrine disruption could address many different hormone systems, 
such as reproductive hormones (e.g. estrogens, androgens, progesterons), or thyroidal 
hormones, corticosteroids, growth hormone and their associated hypothalamus/pituitary 
releasing and stimulating hormones. To date, most alternative assays for detecting potential 
disruption of estrogen, androgen and thyroid pathway regulation evaluate receptor 
binding/transactivation, receptor mediated gene/protein expression or hormone synthesis.  

For a comparative analysis published in vivo data on reproductive effects and metamorphosis 
were compared with published data of in vitro receptor binding or reporter gene assays [66]. 
For nearly every compound, for which in vivo data were available, some alternative in vitro 
assays showed a sensitivity similar to or greater than these in vivo data. However, the 
correlation to in vivo data was biased by using mainly in vivo data for compounds with affinity 
to the estrogen receptor [66]. Comparative in vivo and in vitro data for substances with other 
mode of actions (e.g. COX-inhibitors, β-adrenoceptor blockers) are still lacking. 

 

3.2.9 Evaluation 

3.2.9.1 Selection of substances with high priority 

There have been many instances in which pharmaceuticals and their metabolites have been 
identified in water effluents. For developing an in vitro assay measuring biological activity of a 
group of pharmaceuticals first a target molecule has to be defined. An assay could then be 
developed where the target molecule itself or a downstream signalling event leads to a signal 
read out after binding of a pharmaceutical to its biological target.  

Pharmaceuticals with high priority according to UBA are the β-blocker Atenolol, Bisoprolol, 
Metoprolol and Propranolol. All this pharmaceuticals as well as metabolites having similar 
biological activity could be measured by an in vitro assay monitoring inhibition of the β-1 
adrenoceptor.  

Another group with high priority according to UBA are analgesic drugs including Diclofenac, 
Ibuprofen, Naproxen, Metamizole and 4-N-Methylaminoantipyrin. All these substances as well 
as the lower priority drugs Indometacin and Mesalazine inhibit the activity of the 
cycloxygenase 1 and/or 2 (Cox1, Cox2). Therefore an in vitro assay measuring inhibition of Cox 
activity could be used for monitoring a biological effect caused by one or more 
pharmaceuticals characterized by this mode of action. 

3.2.9.2 Evaluation of published in vitro assays 

After selection of β-blocker and analgesic drugs for in vitro assay development, corresponding 
published in vitro assays are evaluated in the following chapter. A practicable solution for in 
vitro assay systems is a cell based assay system using a stable transfected cell line expressing its 
recombinant gene of interest in an inducible fashion. In such a case false positive results could 
be excluded by using the non-induced cell line in parallel. Most of the published cell based in 
vitro assays use cell lines expressing the recombinant protein continuously. There are several 
inducing expression systems published and it should be possible to use an inducible expressing 
system for the development of cell line dependent in vitro assay systems.  
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3.2.9.2.1 β-adrenoceptor compatible in vitro assays 

Biosensors for β1-adrenoceptor activation/inactivation are published for direct and coupled 
downstream activities (Table 1.) 

The most specific β-1 adrenoceptor (β1-AR) inhibition assay measures the β1-AR conformation 
change by a conformation based FRET assay (β1-AR sensor, 3.2.6.4). Concentration-response 
curves of β1-AR sensor activation for norepinephrine and isoproterenol yielded half-maximal 
effective concentration (EC50) of 1.800 ± 200 nM and 230 ± 40 nM. Due to a direct 
conformational effect in transiently transfected cells the FRET signal (∆FRET) was only 5%. This 
signal was reversible by addition of the antagonist propranolol (10µM).  

Downstream effects of β-1 AR activation like cAMP generation or gene activation can be 
utilized to monitor β-1 AR inhibition. These assays would have the advantage of higher signal 
read out due to signal amplification. One have to have in mind that levels of intracellular cAMP 
are tightly regulated, with degradation controlled via the cAMP phosphodiesterase enzymes. 
When cAMP is produced it binds to protein kinases within the cell, initiating phosphorylation 
events that regulate target enzymes and transcription factors. There are a variety of cAMP 
phosphodiesterase enzyme isoforms, which are generally activated by cAMP dependent protein 
kinases, thus providing an important negative feedback system on the receptor-mediated 
signalling cascade and regulating the extent of changes in intracellular cAMP concentrations. 

Most sensitive cAMP immunoassays (3.2.4) are competitive assays and share the disadvantage 
that increases in cAMP produce a decrease in signal, making them liable to false positives. 

A very sensitive in vitro assay utilizes reporter genes that contain a cAMP response element 
that regulates the transcription of an enzyme or a fluorescent/bioluminescent protein (3.2.6.3). 
Synthetic promoters made up of multiple copies of these sequences are routinely employed in 
reporter genes and have been extensively used to study GPCRs. The reporter protein needs to 
have a short half-life to minimize basal accumulation of reporter proteins that can restrict the 
sensitivity of the final readout. In the case of GFP, this can be achieved by creating a 
destabilized version of GFP by fusing a degradation domain from mouse ornithine 
decarboxylase to the C-terminal of GFP. As a result of substantial signal amplification between 
ligand binding and the final measured response ligands with partial agonist activity are likely 
to manifest themselves as full agonists in most reporter gene in vitro assays. This results in the 
observation that many β-blockers in common clinical practice produce substantial agonist 
effects at β1- and β2-adrenoceptors when measured at the level of gene expression.  

Kinetic studies of the time course of agonist-stimulated gene expression have been undertaken 
using reporter genes. These studies have shown that a minimum of 30 min of agonist exposure 
is required to detect a measureable change in reporter gene activity and that it is the duration 
of cAMP elevation rather than the total quantity of cAMP produced that is the major 
determinant of the final response. The resulting requirement for sustained stimulation needs to 
be taken into account when designing an inhibitory assay and the potential for receptor 
desensitization with highly efficacious agonists during the time course of the assay means that 
lower efficacy agonists should be employed.  

Direct cAMP detection is possible using firefly luciferase-based biosensors. Genetic 
manipulation of firefly luciferase into a reversible biosensor of cAMP generation (3.2.6.2) 
resulted in broad linearity coupled with high sensitivity of intracellular cAMP concentration 
determination. The firefly luciferase based cAMP biosensor has a pEC50 for cAMP of 6.3 and a 
large signal-to-noise window of approximately 70-fold. When expressed in HEK293 cells, the 
addition of 10 µM forskolin, a direct activator of adenylyl cyclase, can mediate a 25-fold 
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increase in the luminescent signal within 3.5 min. This sensor represents a powerful method to 
detect the kinetics of cAMP generation. This cAMP luminescent biosensor assay is covered by a 
patent application (EP2281046). However, when interpreting kinetics of the luminescent signal, 
consideration must be given towards the potential for a delay between the real-time cAMP 
dynamics and the generation of the active form of firefly luciferase.  

Another assay type for detecting intracellular cAMP concentration uses FRET based cAMP 
sensors (3.2.3.3.2.1.). These sensors are used for investigating the spatial and temporal 
characteristics of cAMP signalling at a single cell level.  

Table 1:  1-adrenoceptor biosensors. Published biosensors for 1-adrenoceptor and coupled downstream activities 

Biosensor Signal Advantages/Disadvantages Ref. 

β1-adrenoceptor FRET Highly specific [51] 

cAMP luminescent 
biosensor 

Luminescence cAMP EC50= 6µM, large signal to noise window / patent 
pending 

[58] 

cyclic nucleotide-
gated channels 
CNGA2 
 
HCN2-camps 

 
 
Ca2+ current 
 
FRET 

 
 
cAMP EC50= 1µM, conversion of cAMP into Ca2+ signal, 
rapid transient signal, complicated read out. 
cAMP EC50= 6µM, good for high basal cellular cAMP  

 
 
[60] 
 
[61] 

PKA based cAMP 
sensor 
R-CFP, C-YFP 
PKA-camps 

 
 
FRET 
FRET 

 
 
cAMP EC50= 0,5-0,9 µM, multimeric 
cAMP EC50= 1,9µM, single chain (faster kinetics) 

 
 
[69] 
[42] 

Epac based cAMP 
sensor 
Epac1/2-camps 
Epac2-camp300 
CFP-Epac-YFP 
ICUE1/2 

 
 
FRET 
FRET 
FRET 
FRET 

 
 
cAMP EC50= 2,4 / 0,9 µM, single chain 
cAMP EC50= 0,3 µM, single chain, high sensitivity 
cAMP EC50= 50 µM, low sensitivity 
cAMP EC50= 10-50µM, low sensitivity 

 
 
[42] 
[70] 
[45] 
[44] 

cAMP Reporter gene 
CRE EGFP 
CRE Luciferase 

 
Fluorescence 
Luminescence 

 
basal CRE signal activity essential for cell viability 
reporter accumulation 

 
[59] 
[59] 

PKA and EPAC-based FRET sensors have a similar affinity for cAMP of approximately 0.3–3 µM 
and a dynamic range of approximately 0.1-10 µM. As a consequence of their relatively high 
sensitivity, these biosensors are likely to be quickly saturated in cell types that have particularly 
high concentrations of cAMP. When expressed in HEK cells, the EPAC-based cAMP probe had a 
uniform, cytosolic distribution. However, the compartmentalization of cAMP responses results 
in cAMP signalling targeted to discrete microcellular domains. Generally, the activation kinetics 
of plasma membrane targeted cAMP sensors are more rapid and of greater amplitude than 
those of their cytosolically distributed equivalents. This may reflect the fact that the plasma 
membrane is the site of cAMP production and/or the restriction of cAMP diffusion within 
microdomains located near the plasma membrane. 

cAMP gated ion channels like the rat oCNG channel (3.2.6.5) can induce a Ca2+ influx as a result 
of local increase of cAMP concentration [60]. The Ca2+ current was measured by patch clamp 
recording and fura-2 fluorescence measurement.  
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3.2.9.2.2 Cyclooxygenase compatible in vitro assays 

From published Cyclooxygenase assays (Table 2) only the COX fluorescence assay is suitable for 
application in a homogeneous assay system without the need of using purified protein 
preparations. 

The cyclooxygenase reaction is part of an enzymatic cycle after generation of a tyrosyl radical 
in the cyclooxygenase active side. This enzymatic reaction converts arachidonic acid into 
prostaglandin G2. The lipid hydroperoxide prostaglandin G2 is then reduced to prostaglandin 
H2 (Figure 13). Leakage of the peroxyl radical from the cyclooxygenase active side leaves the 
enzyme in a catalytically inactive form. Reactivation of the cyclooxygenase activity requires 
reaction of the heme prosthetic group with another molecule of hydroperoxide explaining the 
need for continued presence of hydroperoxide in cyclooxygenase-arachidonic acid reactions 
[67]. The reduction of hydroperoxide prostaglandin G2 to prostaglandin H2 needs a cellular 
electron donor. It is likely that other cellular enzymes take part in the reduction of 
prostaglandin G2. A possible candidate enzyme is thioredoxin reductase. The mammalian 
thioredoxin reductase shows reducing activity towards a variety of substrates. It was shown that 
mammalian thioredoxin reductase reduces arachidonic acid hydroperoxides [68]. Thioredoxins 
are small (Mw 12.000) disulfide-containing redox proteins known to be present in all eukaryotic 
and prokaryotic organisms. Thioredoxins are members of the ubiquitous thiol-disulfide 
oxidoreductase family representing the major ubiquitous disulfide reductases responsible for 
the maintaining proteins in reduced state in the cytoplasm. Thioredoxins are reduced by 
electrons from NADPH via thioredoxin reductase. 

 

Table 2: Cyclooxygenase activity assays. Published biosensors for measuring cyclooxygenase activity activities 

COX assay Signal Advantages/Disadvantages Ref. 

Oxygen consumption 
assay 

I (current) Clark type oxygen electrode, test use purified COX protein [63] 

Peroxidase co-
substrate oxidation 
assay 

Photometric 
(E436) 

Guaiacol oxidation assay with purified COX protein [63] 

COX Immunoassay Photometric 
(E405) 

Competitive PGE2 immunoassay kit, use of purified protein (3.2.7.3) 

COX fluorescence 
assay 

Fluorescence Cellular assay using stable cell lines, light and oxygen 
sensitive reagent 

[65] 

A frequent protein modification as result of oxidative stress is the oxidation of sulfhydryl 
groups. The redox active protein component cystein would be oxidized completely under 
normal atmospheric conditions to form a disulfide bond. An unwanted formation of disulfide 
bonds in the cytoplasm also called “disulfide stress” could be reversed by redox regulation. The 
simplest scheme of modulation redox state is depicted in Figure 12. 

 

60 



Biomonitoring of pharmaceuticals/final report  

 

Figure 12:  Modulation of redox regulation.  

 

 
 

Figure 13: Arachidonic acid metabolism through the COX pathway. COX-1 and COX-2 convert arachidonic acid to the intermediate 
prostaglandin PGG2 and then to PGH2 which either spontaneously decomposes or is converted by other enzymes to form primarily 
PGE2 and PGD2 

It was shown by Kargman et al. [65] that in CHO cell lines stably expressing cyclooxygenase 
isoforms exogenous arachidonic acid was metabolized. Cyclooxygenase activity was measured 
after loading of cells with dichloro-dihydrofluorescein diacetate by fluorescence after 
converting of the ester into the carboxylic acid by cellular esterases (3.2.7.4). Due to instability 
of the reagent ester, inhomogeneities in cellular loading and hydrolysis of the reagent into the 
fluorescent dye, this assay seems to be not convenient for a robust in vitro assay method. 
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3.2.9.3 Suggestion for in vitro assay development 

For development of homogenous in vitro assay systems with high sensitivity and specificity it is 
recommended to engineer β-blocker and NSAID biosensor cell lines. The cell lines should stably 
express their transgenes in an inducible form. The tests should be conducted with induced and 
non-induced cells in parallel, thus enabling test controls excluding false positive signals. β-
blocker biosensor cell lines should monitor the β-adrenoceptor dependent cAMP signal. cAMP 
should be measured by the FRET sensor Epac (3.2.3.3.2.1) and in parallel by the calcium sensor 
GCaMP (3.2.3.3.1.3) after converting the cAMP signal into a Ca2+ current. NSAID biosensor cell 
lines should be based on the detection of lipid peroxides. The cyclooxygenase dependent lipid 
peroxide generation should be monitored by the redox potential sensor roGFP (3.2.3.3.1.2).  

3.2.9.3.1 β-adrenoceptor in vitro assay suggestion 

In a first step, two parallel approaches are recommended:  

1. A FRET based microscopic assay (as described in 3.2.3.3.2.1). This assay enables detection of 
space resolved signals. Although new microtiter plate readers with higher sensitivity are 
commercially available it is not clear whether this sensitivity is sufficient for measuring FRET 
signals without spatial resolution. cAMP is restricted into microdomains located near the 
plasma membrane. This could result in a limited signal range. Because of this uncertainty it is 
suggested to develop a second approach: 

2. An assay system where a membrane located cAMP signal is converted into a cytoplasmic Ca2+ 
signal as described in 3.2.6.5. Such a signal could be measured in a microtiter assay format 
without the need of spatial resolution. This should be possible cloning a mutant of the cAMP 
gated rat olfactory CNG channel [60]. The Ca2+ influx could be measured by a Ca2+ dependent 
fluorescent dye [60] or by a genetically encoded Ca2+ biosensor (3.2.3.3.1.3).  

For development of a homogeneous cell based assay system, a cell line expressing the β-1 
adrenoceptor together with an Epac1/2 cAMP sensor in an inducible form should be developed 
and tested whether the cAMP coupled FRET signal is sufficient for measuring in a microtiter 
plate assay (approach 1). 

In addition, a cell line has to be engineered in such a way that the cell line expresses the β-1 
adrenoceptor, a specific mutant of the cyclic nucleotide gated channel CNGA2 and the Ca2+ 
sensor GCaMP3. All proteins should be expressed stably in an inducible form (approach 2). 

For saving costs it is recommended to prove in principal functionality on a very early 
development step for the two in vitro test systems and to define appropriate milestones. After 
reaching the first milestone it has to be decided on the test system which has to be further 
developed.  

If β-blockers are present in the test sample the inhibition of the β-adrenoceptor leads to a 
reduced cAMP generation and thus to an increase of the Epac FRET signal (approach 1) or a 
decrease of Ca2+ dependent fluorescence (approach 2) both relative to the control. 

3.2.9.3.2 Cyclooxygenase in vitro assays suggestion 

For screening of COX inhibitors, a test based on the detection of redox potential changes 
described in 3.2.3.3.1.2 is recommended. The inducible expression of cyclooxygenase in a 
genetically engineered cell line should result in generation of lipid peroxides after addition of 
arachidonic acid. Due to this inducible peroxide generation the redox state should be 
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influenced resulting in some disulfide stress. This disulfide stress could be monitored by redox 
sensitive fluorescence protein indicators.  

For development of a homogeneous cell based assay system one would have to engineer a cell 
line in such a way that the cell line expresses both, a cyclooxygenase and a redox sensitive 
fluorescent GFP protein variant in parallel. Both proteins should be expressed stably in an 
inducible form. 

If COX inhibitors are present in the test sample, a diminished lipid peroxide generation will 
result in a decreased roGFP fluorescence signal relative to the control.  

 

4. Conclusions 

 
As a basis for the development of an effect-based strategy to biomonitor pharmaceuticals, a 
literature review has been conducted which revealed the necessity to develop mode of action-
based biotests for routine monitoring of distinct pharmaceutical classes. In this context, a 
strategy to monitor entire classes of pharmaceuticals with the same mode of action is given 
preference because a monitoring programme comprising different biotests for each single 
substance would cause unrealistically high costs, and a monitoring programme which focusses 
on just a few lead substances would drastically underestimate the risk exerted by a plethora of 
pharmaceuticals excluded from analysis. Consequently, priority should be given to develop 
effect-oriented in-vitro tests for pharmaceutical classes and, within those, to analgesics, ß-
blockers, and antibiotics. Such in-vitro assays need to be evaluated with in-vivo test systems in 
parallel. In view to incorporate living organisms here, the literature review revealed ciliate, 
fish, and mollusk species to exhibit particular sensitivity to pharmaceuticals. Most sensitive 
endpoints were behavior (chemotaxis), vitellogenin synthesis, growth, reproduction, 
histological responses, biochemical stress markers, changes in gene expression profiles, 
receptor binding, and, with reservation, the heart rate. Numerous pharmaceuticals have also 
been tested for their impact on parameters that directly influence population development: 
reproduction, fecundity, ontogeny, mating patterns. Here, most significance has been assigned 
to pharmaceuticals with endocrine action. In contrast to single substances, effects of mixtures 
of pharmaceuticals can hardly be assessed reliably, since data are not consistent. Consequently, 
mode of action-based biotests are necessary to decipher the contribution of single substances to 
the toxicity exerted by a mixture of pharmaceuticals. Endpoints which may be candidates to 
track mode of action-specific effects of pharmaceuticals are receptor affinity, vitellogenin 
induction (for estrogenic hormones), specific induction of gene expression, specific repression 
of enzymes (e.g. COX) or the formation of biochemical secondary products (e.g. lipid peroxides). 
Overall, the constructed database represents an extensive compilation of recently generated 
data on pharmaceutical effects, which will help researchers orienting in this quickly growing 
field. Besides the identification of certain promising test species and effect endpoints, there is 
growing evidence that several pharmaceuticals bear the potential to exhibit effects at 
environmentally relevant concentrations. They may therefore pose serious risks towards aquatic 
ecosystems and further studies are urgently needed.  
The evaluation also showed that researchers need to put a higher effort into improving the 
reliability of their reported data; this includes a conclusive experimental design as well as a 
comprehensibly documentation and interpretation of the results.   
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5. Identification of shortcomings 
 
The literature review generally revealed a strong heterogeneity of data, frequently resulting in 
just a single dataset for a species. Furthermore, in fish, most studies have been conducted with 
model species or with species of only local relevance. Consequently, single studies providing 
numerous data for a large number of chemicals which have been conducted with a single test 
organism in a single test run will bias the empirical evidence, particularly if the reliability of 
this test or study is in question. 
In view to the relevance of data for Germany, a major shortcoming is the scarcity of data on 
ecologically relevant invertebrates (gammarids or biota of the sediment). Thus, the sensitivity of 
key species of home waters cannot be reliably assessed. Generally, data on sediment toxicity are 
limited in number. Only few publications report on studies that have used the same endpoint 
in the same test organism for different pharmaceuticals, and mode of action-specific endpoints 
are rarely used both in studies on single substances and mixtures. Quite often, chemical 
analytics supplementing biological tests is missing, and only about 70% of publication reviewed 
met the reliability criteria of Wright-Walters et al. (2011) to a sufficient extent. In general, a 
mode of action-based in vitro test for non-hormonal pharmaceuticals does not exist. 
 

6. Future perspectives in the biomonitoring of pharmaceuticals 
 
(1) We suggest to coin biotests that are based on mode of action-specific mechanisms and thus 
are specific for pharmaceutical classes and can be implemented in monitoring programs. 
Advantages of such biotests would be 
- the integration of overall chemicals belonging to an mode of action-specific class of 

pharmaceuticals, irrespective of their accessibility by chemical analytics which can be 
limited by constraints posed by methodological detection limits, laboratory capacities, or 
budgetary limits, 

- a pre-adaptation for the monitoring of future pharmaceuticals that exhibit the same mode 
of action as those the test has been developed for, 

- and the integration of combinatory effects of mixtures of pharmaceuticals. 
(2) Suitable prototypes implementing this idea would be in vitro tests for analgesics, like 
NSAIDs, and in vitro tests for ß-blockers. 
(3) The development of these in vitro biotests must go in line with in vivo experiments on 
ecologically relevant species which represent water and sediment biota in order to validate the 
sensitivity of the novel in vitro tests and to “ecologically calibrate” their signals. In these in vivo 
studies, identical endpoints shall be investigated in the laboratory and in field-relevant 
exposure systems, both for single pharmaceuticals and their mixtures. This strategy will provide 
necessary information regarding 
- the relevance of in vitro test signals for the situation in vivo, 
- the necessity to artificially concentrate water samples, 
- the relevance of laboratory studies for the field situation, 
- the significance of mixture toxicity, and  
- differences in the toxicity of pharmaceuticals to water- and sediment-living biota. 
 
These suggestions are completely in line with the postulations of Ankley et al. (2007) who 
emphasize the impotance of mode of action-based studies for pharmaceutical monitoring, and 
of Brausch et al. (2012) [6] who stress the necessity of  
“…(a) chronic toxicity data for individual pharmaceuticals to benthic invertebrates, 
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including bivalves, and fish is lacking; 
 (b) Effects of pharmaceuticals on threatened or endangered species, which warrant 
protection at the individual level of biological organization; 
 (c) MOA-based studies, in which biochemical and histological alterations are 
investigated or studies in which genetic alterations are monitored in response 
to long-term pharmaceutical exposure; 
 (d) Techniques capable of detecting sensitive endpoints in aquatic organisms, 
such as in vitro and computational toxicology, for prioritizing chemicals and 
pathways for future studies; 
 (e) Data on complex mixtures of pharmaceuticals that found in WWTP effluents” 
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	Abstract

	In order to identify sensitive organisms, biological endpoints in vivo and suitable in vitro test systems for the biomonitoring of pharmaceuticals, a two-part literature search was conducted.
	In the first part, the database OEKOTOX established by Bergmann et al. (2011) [1] was upgraded with effect data published between 2011 and 2013 for 90 pharmaceuticals of high priority. From all available data the lowest effect concentrations were identified and the most sensitive organisms and effect endpoints were determined. In addition, effect data were assessed with respect to their relation to measured environmental concentrations (MECs) in German surface waters by calculations of risk quotients MECmax/LOECmin. Publications providing the lowest effect data were evaluated with respect to their reliability according to the criteria of Wright-Walters et al. (2011) [2]. Out of 72 publications investigated for their reliability, 9 were “reliable”, 49 “conditionally reliable” and 14 “not reliable” (of which 4 were, in part, conditionally reliable). 
	Prior to the reliability check, the analgesics paracetamol, diclofenac and ibuprofen, the ß-blocker propranolol, the antibiotics sulfamethoxazole and erythromycin and the lipid regulator gemfibrozil were identified as environmentally most relevant pharmaceuticals. The relevance was defined by MECmax/LOECmin-values >0.1 for a minimum of 3 different biota classes. After assessment of publication reliability, however, only for diclofenac MECmax/LOECmin-values >0.1 were found in more than 3 biota classes. As further important pharmaceuticals propranolol, sulfamethoxazole, bezafibrate, 17α-ethinlyestradiol, 17β-estradiol and oxytetracycline were identified with MECmax/LOECmin-values >0.1 for 2 biota classes.
	Prior to the reliability assessment, the ciliate Tetrahymena pyriformis, zebrafish (Danio rerio), rainbow trout (Oncorhynchus mykiss), medaka (Oryzias latipes), the mussel Elliptio complanata, and the mudsnail Potamopyrgus antipodarum were identified as most sensitive organisms for pharmaceuticals. The most sensitive effect endpoints were chemotaxis, behavior, vitellogenin synthesis, growth rate, reproduction, histopathological alterations, molecular stress biomarkers, oxidative stress markers, receptor binding, and gene expression. All extremely low LOECs (in the range of pg/L) for chemotaxis alterations in Tetrahymena pyriformis, however, derive from only a single publication by Lang & Köhidai (2012) [3], the reliability of which, however, could not be proven. 
	In the second part, a literature search was conducted with the aim to evaluate the state of knowledge in the field of in vitro testing of pharmaceutical effects, to discover advantages and disadvantages of biochemical and cell-based assays and to suggest possibilities for the realisation of cell-based tools for a mode of action-based biomonitoring of pharmaceuticals. Promising approaches for ß-adrenoreceptor blockers and cyclooxygenase-inhibitors (analgesics) are presented.  
	As a future perspective for a biomonitoring of pharmaceuticals, the development of mode of action-based in vitro test systems for ß-blockers and NSAIDs are recommended. Their suitability to reflect in vivo responses of organisms which have been identified to be sensitive in part 1 of this study, or which are relevant for German aquatic ecosystems should be assessed, and they should be validated by in vivo studies to be conducted in parallel to their establishment. 
	Kurzbeschreibung

	Mit dem Ziel, sensitive Organismen und organismische Endpunkte sowie geeignete in vitro-Testsysteme für ein Biomonitoring von Arzneimitteln zu identifizieren, wurde eine zweiteilige Literaturstudie durchgeführt. 
	Im ersten Teil wurde die von Bergmann et al. (2011) [1] erstellte Datenbank OEKOTOX um Wirkdaten für 90 Arzneimittel von hoher Priorität bis 2013 erweitert. Von allen verfügbaren Daten wurden die niedrigsten Effektwerte identifiziert und die sensitivsten Organismen bzw. Effektendpunkte bestimmt. Darüber hinaus wurden die Effektkonzentrationen zu gemessenen Umweltkonzentrationen in Deutschen Oberflächengewässern (MECs) in Beziehung gestellt und Risikoquotienten MECmax/LOECmin berechnet. Diejenigen Publikationen, in denen die empfindlichsten Endpunkte bzw. Organismen enthalten waren, wurden auf der Basis der von Wright-Walters et al. (2011) [2] genannten Kriterien auf Reliabilität geprüft. Von 72 auf Reliabilität überprüften Publikationen wurden 9 als „reliabel“, 49 als „bedingt reliabel“ und 14 als „nicht reliabel“ (von denen 4 in Teilen bedingt reliabel waren) klassifiziert.
	Vor der Reliabilitätsprüfung wurden in der vorliegenden Literaturstudie als Pharmazeutika mit höchster Umweltrelevanz die Schmerzmittel Paracetamol, Diclofenac und Ibuprofen, der ß-Blocker Propranolol, die Antibiotika Sulfamethoxazol und Erythromycin und der Lipidsenker Gemfibrozil identifiziert. Die Umweltrelevanz wurde auf der Basis eines Risikoquotienten (MECmax/LOECmin) >0.1 für mindestens 3 Organismengruppen) definiert. Nach erfolgter Reliabilitätsprüfung zeigten sich MECmax/LOECmin)-Werte >0.1 bei mehr als 3 Organismengruppen jedoch nur noch für Diclofenac. Als weitere wichtige Pharmazeutika wurden Propranolol, Sulfamethoxazol, Bezafibrat, 17α-Ethinlyestradiol, 17β-Estradiol und Oxytetrazyclin mit MECmax/LOECmin)-Werten >0.1 bei 2 Organismengruppen identifiziert.
	Als sensitivste Organismen für Arzneimittel hatten sich vor der Reliabilitätsprüfung der Ciliat Tetrahymena pyriformis, der Zebrabärbling (Danio rerio), die Regenbogenforelle (Oncorhynchus mykiss), Medaka (Oryzias latipes), die Muschel Elliptio complanata und die Zwergdeckelschnecke Potamopyrgus antipodarum erwiesen. Die sensitivsten Effektendpunkte waren Chemotaxis, Verhalten, Vitellogeninsynthese, Wachstum, Reproduktion, histopathologische Veränderungen, molekulare und oxidative Stressmarker, Genexpression und Rezeptorbindung. Alle extrem niedrigen LOECs (im Bereich von pg/L) für die Beeinflussung der Chemotaxis bei Tetrahymena pyriformis stammen allerdings von einer einzigen Publikation von Lang & Köhidai (2012) [3],  die sich in der durchgeführten Reliabilitätsprüfung als „nicht reliabel“ erwies, so dass der Zebrabärbling als bedeutendster Testorganismus und das Verhalten als sensitivster Wirkendpunkt nachrückt. 
	Im zweiten Teil der Studie wurde eine Literaturrecherche durchgeführt, die zum Ziel hatte, den Wissensstand im Bereich von in vitro-Verfahren zum Nachweis von Arzneimittel-Effekten zu beleuchten, Vor- und Nachteile von biochemischen und zellbasierten Assays herauszuarbeiten und Möglichkeiten für die Realisierung von in vitro Testsystemen für ein Wirkmechanismus-basiertes Biomonitoring von Arzneimitteln vorzuschlagen. Am Ende dieses Teils werden vielversprechende Wege zur Etablierung solcher Testsysteme für den Nachweis der Wirkungen von ß-Blockern und Cyclooxygenase-Hemmern (Schmerzmitteln) dargestellt. 
	Für ein künftiges Biomonitoring von Arzneimitteln wird empfohlen, Wirkstoffklassen-spezifische in vitro-Testsysteme für ß-Blocker und Schmerzmittel zu entwickeln. Durch parallel durchzuführende in vivo Untersuchungen soll überprüft werden, inwieweit diese Testsysteme geeignet sind, in vivo-Reaktionen von Organismen abzubilden, die in Teil 1 der vorliegenden Studie als sensitiv für Arzneimittel identifiziert wurden, oder die als relevant für deutsche Fließgewässer bekannt sind.
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	1 Introduction
	Chemical analysis has regularly revealed the presence of human and veterinary pharmaceuticals in wastewater and surface water in nanogram to microgram per liter concentrations (e.g. Fent et al., 2006 [4], Brauch, 2011 [5]). Decisions on the environmental relevance of these substances usually rely on data recorded for current and future consumption rates, environmental concentrations, environmental fate and pathways (persistence), and ecotoxicological effects recorded in laboratory studies. The problem with this approach is the fact that ecotoxicological routine testing mainly focuses on acute or chronic unspecific toxicity, whereas pharmaceuticals, according to their envisaged specific action in man (human medicine) or companion animals (veterinary drugs) more likely exert specific effects based on their mode of action (MOA) (Brausch et al. 2012 [6]). Information on the effects of active pharmaceutical ingredient classes, either acting on targets or exerting unwanted adverse side effects are, therefore, mandatory prerequisites for an effect-directed monitoring of pharmaceuticals in aquatic ecosystems.
	One focus of the present literature review study thus was on the question which organisms sensitively respond to pharmaceuticals and which sublethal parameters can be used as warning sentinels (biomarkers) to monitor action of pharmaceuticals in a sensitive and specific way. 
	In a comprehensive report of Bergmann et al. (2011) [1] a prioritization of human and veterinary pharmaceuticals was undertaken on the basis of data on the presence of compounds in the aquatic environment, their ecotoxicological effects, and their consumption rates up to the year 2011. This report lists analytical data for 274 ingredients and ecotoxicological effect data for 251 ingredients, all of them incorporated in both the MEC (Measured Environmental Concentrations) and ÖKOTOX (effect data) databases. Bergmann et al. (2011) [1] have outlined 24 substances with high priority for environmental monitoring programs. However, the databases also provide evidence that 31 pharmaceuticals with partially high and steadily increasing consumption rates lacked ecotoxicological data until 2009 resulting in a very high uncertainty regarding the assessment of their environmental relevance. Supplementary to the substances regarded as relevant for further research by Bergmann et al. (2011) [1], the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety has identified further substances as to be of high priority for an evaluation with respect to possible environmental effects. In the present study, we therefore focused on a set of 90 substances, prioritized by Bergmann et al. (2011) [1] and UBA, for which literature was analyzed.
	Bergmann et al. (2011) [1] concluded from their research that already the number of substances with high priority (24) would exceed the capacity of routine chemical monitoring. They therefore suggested having leading substances defined for particular ingredient classes that should be included in monitoring programs. The apparent but crucial drawback of such an approach, however, lies in the risk of overlooking effective concentrations of non-leading substances. In contrast to it, the use of tests that could visualize specific molecular interactions of chemicals exhibiting the same mode of action may enable a monitoring of an entire class of compounds. Particularly in view of the vast number of pharmaceuticals with increasing consumption rates but lacking ecotoxicological effect data, a mode of-action-specific in vitro assay is a matter of paramount interest; also because new and future compounds that act in the same way on the same molecular target can easily be traced, once such an assay has been established.
	In vitro systems using highly sensitive fluorescence detection technologies are already used by the pharmaceutical industry to identify compound classes as promising candidates in the development of new pharmaceuticals (Eggeling et al., 2003) [7]. A biomonitoring on the basis of such specific mechanisms of action could be possible for e.g. non-steroidal anti-inflammatory drugs (NSAIDs) or ß-blockers. For these, the inhibition of the cyclooxygenase and the blocking of β-receptors could be used as mode of actions to be targeted. In contrast to Escher et al. (2005) [8] who use “in vitro Assessment of Modes of Toxic Action” in that sense that specific mode of actions defined by the test system itself are investigated (e.g. photosynthesis inhibition of pharmaceuticals by a photosynthesis inhibition assay), we thus favor an approach to use the specific target molecules for pharmaceutical classes (responsible for the pharmacological effect of the respective substance class) as monitoring tools. In the second part of this study, we therefore evaluated different in vitro test systems with respect to their suitability as future test systems in routine monitoring of pharmaceutical classes. 
	In summary, this study reviews (1) the current state of knowledge in effect-directed research and analyzes present data with focus on suitable compounds, organisms, and endpoints which may be combined in a monitoring approach, and (2) in addition, the state of knowledge for in vitro testing of pharmaceuticals as a prerequisite for the development of mode of-action-based monitoring tools. 
	2     Materials and Methods
	2.1  Literature search and data collection
	The literature search is divided into two parts.
	In the first part, effect data for 90 pharmaceuticals defined as relevant according to either Bergmann et al. (2011) [1] or UBA were collected for several biota classes (bacteria, protists, plants/algae, mollusks, crustaceans, insects, fish, tetrapods, others incl. communities). The list of pharmaceuticals and the priority classes are shown in table 1. The prioritization of UBA is based on MECs obtained from the German counties, consumption rates (tendencies between 2002 and 2012), effect values of UBA-internal studies or literature, suspicion to be a PBT compound, degradability and metabolism. The prioritization of Bergmann et al. (2011) [1] is only based on literature data which resulted in partial differences between the two lists of priority substances available. 
	The search was restricted to literature published between 2011 and 2013, since all earlier published data have been analyzed by Bergmann et al. (2011) [1]. For the search, Web of Knowledge (including the databases “Web of Science®”, “BIOSIS Citation IndexSM”, “BIOSIS Previews®”, “MEDLINE®” and “Journal Citation Reports®”) were used. The following search items were defined: 
	For Reviews: pharma* AND eco*, limited by “review”
	For single substances: the specific search entry for each pharmaceutical (see table 1) combined with the search terms: aqua* OR eco* OR tox*
	The following research areas were seen as irrelevant and therefore excluded from the literature search: 
	Anesthesiology, Anthropology, Biomedical, Social Sciences, Biophysics, Business Economics, Communication, Computer Science, Criminology Penology, Critical Care Medicine, Cultural Studies, Demography, Dentist, Oral Surgery Medicine, Dermatology, Education, Educational Research, Electrochemistry, Emergency Medicine, Energy Fuels, Engineering, Ethnic Studies, Food Science Technology, General Internal Medicine, Genetics Heredity, Geography, Geology, Geriatrics, Gerontology, Government, Law, Health Care Sciences, Services, History, Imaging Science, Photographic Technology, Infectious Diseases, Information Science, Library Science, Instruments Instrumentation, Integrative Complementary Medicine, International Relations, Legal Medicine, Materials Science, Mathematical Computational Biology, Mathematics, Medical Informatics, Medical Laboratory Technology, Meteorology Atmospheric Sciences, Nursing, Nutrition Dietetics, Obstetrics, Gynecology, Oncology, Ophthalmology, Orthopedics, Otorhinolaryngology, Parasitology, Pediatrics, Pharmacology, Pharmacy, Physics, Polymer Science, Psychiatry, Psychology, Radiology, Nuclear Medicine, Medical Imaging, Rehabilitation, Research Experimental Medicine, Respiratory System, Social Issues, Sociology, Sport Sciences, Substance Abuse, Surgery, Transplantation, Tropical Medicine, Urology, Nephrology, Virology
	In the second part, literature searches were conducted in PubMed using the following search items: 
	High throughput screening (title) & review (publication type)  
	HTS technolog* & review (publication type)  
	HTS technolog* (title) 
	fluorescence based techni*  
	cell based assay* & review (publication type)  
	cell based reporter* (title)  
	cell based screening & review (publication type) & cell based (title)  
	fluorescent biosensor* & review (publication type)  
	fluorescent protein* & review (publication type) & reporter*  
	signalling dynamics in living cell* & review (publication type)  
	Data published between 1995 and 2013 were analyzed.  
	Table 1: List of pharmaceuticals with defined priority classes. The prioritization of UBA is based on MECs obtained from the German counties, consumption rates (tendencies between 2002 and 2012), effect values of UBA-internal studies or literature, suspicion to be a PBT compound, degradability and metabolism. The prioritization of Bergmann et al. (2011) [1] is only based on literature data which resulted in partial differences between the two lists of priority substances available. 
	P: high priority according to Bergmann et al. (2011) [1] and UBA; 
	Pu: high priority according to UBA
	Pb:  high priority according to Bergmann et al. (2011) [1]
	(P): medium priority according to Bergmann et al. (2011) [1]
	?: substances requiring further information
	none: substances without priority according to Bergmann et al. (2011) [1]
	2.2. Created library and data files
	2.2.1 Endnote library
	All references analyzed were included into an Endnote library (“EndNote Library – Pharmaceuticals – Literature study part 1 / 2 /3”) in the format “.CIW”.  
	The three partners involved in the literature search used the following labels for their citations:
	BER 1-x: GWT Dresden (R-: Review, A-: Additional Information, I-: Irrelevant)
	SCH 1-x: University Tübingen (R-: Review, A-: Additional Information, I-: Irrelevant)
	FRE 1-x: STZ Frey
	The library contains the following folders: 
	Part 1: 
	Tuebingen - relevant studies: Studies on vertebrates, plants, protozoans and bacteria, which were directly included into the database.
	Tuebingen - additional information: Studies, mainly reviews, on vertebrates, plants, protozoans and bacteria, which were used as help for the general interpretation of the data, but not directly included into the database.
	Tuebingen - irrelevant studies: Studies, which were analyzed but were not included into the database.
	Tuebingen- evaluation not possible: Studies, for which an evaluation was not possible because the full text was not available and the abstract did not contain sufficient information.
	Dresden - relevant studies: Studies on invertebrates, which were directly included into the database.
	Dresden - additional information: Studies, mainly reviews, on invertebrates, which were used as help for the general interpretation of the data, but not directly included into the database.
	Dresden - irrelevant studies: Studies, which were analyzed but were not included into the database.
	Part 2: 
	Mannheim - in vitro techniques: Studies on in vitro techniques, which were used for the second part of the literature study.
	Part 3: 
	Additional literature used for this report
	2.2.2 OEKOTOXupgrade
	In part 1 of the study, all publications available for the 90 substances were analyzed and evaluated with respect to the following criteria: 
	Name of effective substance, investigated form of the substance (salt/conjugate), synonyms, CAS number, LogKow, molar mass, substance class, field of application, effective substance or medical product, single substance or mixture, test organisms (species), biota group, field/lab/mesocosm test, effect endpoint, population relevance yes/no, standard method yes/no, test concentration in water (µg/L, mol/L), test concentration in sediment (if necessary), applied dose (if necessary), duration of test, acute/chronic/sub-acute, chemical analyses present, accumulation data present, bioaccumulation factor, NOEC (µg/L, µmol/L), LOEC (µg/L, µmol/L), EC10 (µg/L, µmol/L), EC50 (µg/L, µmol/L), citation, DOI, full text available, Endnote label, chemical present in priority list yes/no, comments, reliability analysis (only for selected publications).
	In case no effect was observed in the study, the highest concentration tested (without effect) has been included as „NOEC” without corresponding LOEC. Furthermore, numerous studies reported effects already at the lowest tested concentration. These values are recorded as LOECs without a corresponding NOEC. It should be kept in mind that there is a possibility that lower values than the reported may also cause an effect.
	Besides data for the priority substances defined in table 1, data for several other pharmaceuticals is also reported in the database. These effects were reported in the analyzed publications besides the ones for the target substances, and therefore included. However, the data sets for these substances are not complete, since they are mere “byproducts” of the original search. 
	All data were included into the database OEKOTOXupgrade  
	A separate row was created for every chemical, species and endpoint used in each study. Each single row was defined as a “database entry”. 
	Because many publications report on multiple chemicals, organisms or endpoints, the total number of database entries is much higher than the number of publications. 
	2.2.3. “Evaluation database” for assessment of data  
	With the aim to evaluate the collected data with respect to (1) their suitability for the study, (2) data number per pharmaceutical and organism group, (3) most sensitive organisms, (4) lowest effect concentrations, (5) mixture toxicity, and (6) population relevance, the “evaluation database” has been created. 
	In data sheet (4) the lowest and second lowest effect data and measured environmental concentrations (MECs) obtained either from the MEC database of Bergmann et al. (2011) [1] or UBA were included with the aim to assess the environmental relevance of the lowest effect data. However, not for all 90 substances both values MECs and LOECs were available. As a result, only for 32 substances a risk quotient (MECmax/LOECmin) could be calculated as a proxy for their environmental relevance. These substances were: paracetamol, tramadol, amoxicilline, chloramphenicole, chlortetracycline, ciprofloxacin, doxycycline, erythromycin, lincomycin, oxytetracycline, sulfadimethoxine, sulfadimidine, sulfamethoxazole, carbamazepine, diazepam, clotrimazole, ivermectin, atenolol/ atenolol acid, metoprolol, propranolol, 17alpha-ethinylestradiol, 17beta-estradiol, norethisterone, diatrizoic acid, bezafibrate, gemfibrozil, acetyl cysteine, acetylsalicylic acid, diclofenac, ibuprofen, indometacin, naproxen. For tetracycline, quetiapine, venlafaxine and deltamethrin no MECs were available. 
	With the aim to compare mixture toxicity data with LOECs for isolated substances, the “mixture toxicity” datasheet was created. The data sheet “population relevance” has been used as a basis to quantify available data with relevance for the population level. 
	3 Results
	3.1. Effects of pharmaceuticals in vivo
	3.1.1 Number of publications and database entries 
	Altogether, 452 publications were analyzed for 90 pharmaceuticals. 325 papers contained data for vertebrates, plants/algae, protozoa, or bacteria (analyzed by the University of Tübingen), 179 papers contained data for invertebrates (analyzed by the GWT, TU Dresden) , and 50 of them contained data for invertebrates and either vertebrates, plants, protozoa or bacteria (analyzed by both, University of Tübingen and GWT TU Dresden). 232 of these publications were of relevance for the database, 95 provided additional information, 134 were not relevant, and for 6 publications the evaluation was not possible, since the full PDF was either not available or did not contain enough information to analyze the study. 
	All in all, 1678 entries were included in the database OEKOTOXupgrade (1434 for vertebrates, plants, protozoa and bacteria and 244 for invertebrates). Because many studies investigated multiple chemicals and endpoints, the number of database entries is much higher than the number of studies.
	Figs. 1 and 2 show that most of the studies were conducted with antibiotics, followed by NSAIDs, anticonvulsants, antiparasitics, ß-blockers and contraceptives, and that the number of publications per pharmaceutical class is reflected by the number of database entries. 
	/
	Figure 1:   Number of publications per substance class
	/
	Figure 2: Number of database entries per substance class
	3.1.2 Number of publications per organism group
	Most publications on effects of pharmaceuticals in biota have been found for fish, followed by mollusks, plants/algae, crustaceans, and bacteria (Fig. 3). In general, this distribution pattern for the publication number is reflected by the number of database entries per organism group (Fig. 4), however, for plants/algae more data were available per publication than for mollusks, and for bacteria more database entries have been conducted than for crustaceans.
	/
	Figure 3: Number of studies per biota group
	/
	Figure 4: Number of database entries per biota group
	3.1.3. Evaluation of data
	3.1.3.1 Most sensitive biota classes for pharmaceuticals
	In a first step, the lowest and second lowest effect data were analyzed with respect to their relation to distinct organism classes (Fig. 5). 
	It became evident that most of the lowest plus second lowest effect values were recorded for protozoans (represented by only a single test species: Tetrahymena pyriformis). Mollusks were shown to be very sensitive for anticonvulsants, antipsychotics, lipid regulators, analgesics (other than NSAIDs), hormones and contraceptives. The LOECs were in the range of ng/L – lower µg/L values.
	Lowest or second lowest effect values for fish (several species) were determined for hormones, mycolytica, anticonvulsants, antiparasitics and lipid regulators. Also for them, the LOECs are in the range of ng/L - lower µg/L values.
	Bacteria and plants were shown to be highly sensitive to antibiotics, crustaceans were very sensitive to antiparasitics. 
	In a second step, data were analyzed in a more detailed way by determining the number of pharmaceuticals for which defined LOECs (< 0.1, 1 or 10µg/L) were reported for the investigated species in order to identify the most sensitive species for pharmaceuticals.  
	Figure 6 shows that the most sensitive species with LOECs < 0.1 for 2-8 pharmaceuticals were the ciliate Tetrahymena pyriformis, zebrafish (Danio rerio), rainbow trout (Oncorhynchus mykiss), medaka (Oryzias latipes), the mussel Elliptio complanata and the mudsnail Potamopyrgus antipodarum. 
	All extremely low LOECs (in the range of pg/L) for Tetrahymena pyriformis derive from only a single publication by Lang & Köhidai (2012) [3], the reliability of which, however, could not be proven (chapter 3.1.5). Additionally, the conclusion on the most sensitive species is biased by the fact that these species are also among the most frequently used test organisms. 
	/
	Figure 5: Number of lowest plus second lowest effect values for 13 pharmaceutical classes 
	/
	Figure 6: Number of pharmaceuticals with defined LOECs for investigated species
	3.1.3.2 Most sensitive effect endpoints per substance classes
	In order to identify most sensitive effect endpoints for pharmaceuticals, data were analyzed with respect to the number of pharmaceuticals with defined LOECs (< 0.1, 1 or 10µg/L) for the investigated effect endpoints. Figure 7 makes evident that the most sensitive endpoints with LOECs < 0.1 for 3-8 pharmaceuticals were chemotaxis, behavior, vitellogenin induction, growth rate, reproduction, histopathological alterations, molecular stress biomarkers, oxidative stress markers, receptor binding, and gene expression.  All extremely low LOECs (in the range of pg/L) for chemotaxis derive from the above mentioned study of Lang & Köhidai (2012) [3] who used Tetrahymena pyriformis as test organism. As mentioned above, the reliability of this study, however, could not be proven (shown in chapter 3.1.5). 
	/
	Figure 7: Number of pharmaceuticals with defined LOECs for investigated effect endpoints
	3.1.3.3 Identification of pharmaceuticals of highest relevance
	To identify the risk exerted by chemicals for the aquatic environment, different types of risk quotients are calculated in ecological risk assessment (PEC/PNEC ratios for industrial chemicals and pharmaceuticals, TER for pesticides). The PEC/PNEC ratio is defined by (1) the PEC, which represents the concentration of a chemical supposed to occur in the environment (predicted environmental concentration), and (2) the PNEC (predicted no effect concentration) which is calculated on the basis of the lowest observed effect concentration in any group of biota (LOEC), divided by a safety factor which itself depends on the size and quality of the data for different trophic levels. A possible risk for the environment is indicated by a risk quotient larger than 1. 
	In the present study, the calculation of the risk quotient slightly differs from this routine procedure: For those pharmaceuticals, for which both Measured Environmental Concentrations (MECs) (either from Bergmann et al., 2011 [1] or UBA; summarized in data sheet ““MECs & LOECs”)”) and LOEC values were available, MEC/LOEC quotients were calculated as a proxy for the environmental relevance of LOECs by using the highest available MEC (MECmax) and the lowest LOEC (LOECmin). In contrast to the established prospective risk assessment procedure, we used LOECs (lowest observed effect concentrations) instead of NOECs. This can be justified by the necessity to identify threshold values for effects as a prerequisite for pharmaceutical monitoring. A further reason is that our literature survey aims at identifying pharmaceuticals of environmental concern retrospectively, and thus had to take into consideration concentrations measured in the environment (MECs). Finally, only for 37% of the LOECs corresponding NOECs were available. If NOECs were used, the database would have become too small for the envisaged analyses.
	For the calculations of MECmax/LOECmin values also data from Bergmann et al. (2011) [1] were analysed. 
	Figure 8 makes evident that most pharmaceuticals with LOECs leading to risk quotients above 0.1 were antibiotics and NSAIDs followed by (-blockers and lipid regulators, analgesics different from NSAIDs and contraceptives/hormones. 
	When analyzing data with focus on MECmax/LOECmin values for the respective biota classes (Fig. 9) it became evident that most pharmaceuticals, for which risk quotients >0.1 were calculated were investigated in plants/algae and invertebrates closely followed by vertebrates. For bacteria, only few risk quotient > 0.1 were found.  
	For the following substances, the risk quotient values were >1 (>0.1): 
	Vertebrates: >1: atenolol, carbamazepine, diclofenac, 17(-ethinylestradiol, 17(-estradiol, gemfibrozil, ibuprofen, metoprolol, paracetamol, propranolol (>0.1: bezafibrate). 
	Invertebrates: >1: bezafibrate, carbamazepine, diclofenac, erythromycin, 17(-ethinylestradiol, ibuprofen, ivermectin, oxytetracycline, paracetamol, propranolol, sulfamethoxazole (>0.1: ciprofloxacin, gemfibrozil, 17(-estradiol)  
	Plant/Protozoa: >1: acetylsalicylic acid, diatrizoic acid, diclofenac, erythromycin, lincomycin, metoprolol, naproxen, oxytetracycline, paracetamol, propranolol, sulfadimidine, sulfamethoxazole (>0.1: clotrimazole, ibuprofen)
	Bacteria: >1: paracetamol, erythromycin, sulfadimidine, sulfamethoxazole (>0.1: diclofenac, gemfibrozil).
	/
	Figure 8: Number of pharmaceuticals per pharmaceutical class with MECmax/LOECmin values >0.1 
	/
	Figure 9: Number of pharmaceuticals with defined MECmax/LOECmin values per organism group
	Table 2 makes evident that, according to the calculated risk quotients, the pharmaceuticals of highest relevance (with MECmax/LOECmin>0.1) in at least three different biota classes were: 
	Paracetamol (analgesic, acetaminophen), 
	Diclofenac, ibuprofen (analgesic, NSAIDs - non-steroidal anti-inflammatory drugs)
	Propranolol (ß-blocker)
	Sulfamethoxazole, Erythromycin (antibiotics)
	Gemfibrozil (lipid regulator)
	Table 2: Priority pharmaceuticals for which MECmax/LOECmin values were >0.1 in 1, 2, 3 or 4 biota groups before reliability evaluation, including data from OEKOTOXupgrade and Bergmann et al. (2011) [1]
	3.1.3.4 Data for mixtures
	In general, only for a few cases, a direct comparison between LOECs for an isolated substance and its toxicity in a pharmaceutical mixture could be realized, since data differed with respect to species, effect endpoints or test designs. However, for a few substances, such a comparison was possible (summarized in Table 3)
	The table makes evident that, dependent on - at least - the chemical tested and the effect endpoint under investigation, the toxicity of a single pharmaceutical could be lower, higher or equal to its toxicity when applied in a mixture with other compounds.   
	However, since no mode of action-based effect endpoints were investigated in any of these studies, the specific contribution of the respective substance to the toxicity of the chemical mixture cannot be quantified.   
	Table 3: Comparison of pharmaceutical effect concentrations applied either isolated or mixture of pharmaceuticals
	3.1.3.5. Data with population relevance 
	All data collected in the present study were investigated with respect to their population relevance. We defined data as being relevant for the population level as containing information on effects related to (1) community changes, (2) reproduction, fecundity, fertility, embryo development, sex ratio, intersex, imposex (summarized as “reproduction”), (3) behavior including mating behavior, (4) growth, and (5) survival / mortality. 
	Altogether, 106 studies and 561 database entries were found to be related to population-relevant endpoints. Figure 10 shows that most database entries contained information of influences of pharmaceuticals on survival and mortality, growth and reproduction. Studies related to behavioral and community changes were in the minority. Hormone-like acting substances did induce population-relevant effects already in relatively low concentrations. 
	/
	Figure 10: Number of database entries with population-relevant endpoints
	3.1.4 Reliability of publications
	For those studies which contained data for the most relevant pharmaceuticals (lowest LOECs) and for the most sensitive endpoints and organisms, the reliability was investigated according to the criteria of Wright-Walters et al. (2011) [2]. 
	These are the following:   
	“1) A thorough description of the experimental design, including exposure regime and replication, 
	2) Analytical confirmation of test concentrations
	3) Description of ecologically relevant endpoints and all supplemental
	morphological information collected
	4) Use of test procedures that are based, at least generally, on internationally accepted procedures and practices. Newly developed test procedures must be able to be repeated, and meet all other required criteria
	5) Clear linkage of reported findings with the exact experimental design, and 
	6) Sufficient reporting of results, including system performance, toxicity results, and statistical
	methods employed to ascertain how the data support the conclusions that are drawn “
	If criteria 1, 2, 3 and 6 were met the study was designated as “reliable”. If only 3 of these criteria were met, it was designated as “conditionally reliable”, If less than 3 criteria were met or mistakes became obvious, the study was designated to be “not reliable”. 
	Consideration was also given to whether the studies were conducted according to GLP and whether both NOEC and LOEC values were provided; however, these criteria did not influence the decision about reliability.
	Taking all together, 72 publications have been checked for reliability. Nine of them were reliable, 49 conditionally reliable and 14 not reliable (of which 4 were, in part, conditionally reliable). In table 4, the results of the reliability assessment are summarized. For studies which were not reliable, further information is given in Table 5. Except for the study of Fairchild et al. (2011) [14], none of the investigations were conducted under GLP. 
	Table 4: Publications checked for reliability, reliability criteria met, and decision on reliability
	Reference
	Reliability criteria met
	Reliabilty
	Antunes et al., 2013 [15]
	1,3,6
	conditionally reliable
	Backhaus et al., 2011 [16]
	3, (6)
	not reliable
	Bajet, 2012[17] 
	1,3,6
	conditionally reliable
	Benstead, 2011 [18]
	1,2,3
	conditionally reliable
	Boltes et al., 2012 [19]
	1,3,6
	conditionally reliable
	Boonstra et al., 2011 [20]
	1,2,3
	conditionally reliable
	Chandra et al., 2012 [21]
	1,3,6
	conditionally reliable
	Chen et al., 2012 [22]
	1,3, 6
	conditionally reliable
	Claessens et al., 2013 [23]
	1,3,6
	conditionally reliable
	Contardo-Jara, 2011 [24]
	1,2,3
	conditionally reliable
	Doyle et al., 2013 [25]
	1,3,6
	conditionally reliable
	Fairchild et al., 2011 [14]
	1,2,3,6
	reliable
	Feito et al., 2012 [26]
	1,3,(6)
	conditionally reliable (mitochondrial activity, DNA content), not reliable (lipid peroxidation, chlorophyll content)
	Feito et al., 2013 [27]
	1,3, (6)
	conditionally reliable (DNA-content), not reliable (mitochondrial activity)
	Finn et al., 2012 [28]
	2,3,6
	conditionally reliable
	Fong & Hoy, 2012 [29]
	1,3,6
	conditionally reliable
	Franzellitti et al., 2011 [11]
	1,3,6
	conditionally reliable
	Franzellitti et al., 2013 [12]
	1,3,6
	conditionally reliable
	Gagné et al., 2012 [30]
	2,3,6
	conditionally reliable
	Galus et al., 2013 [10]
	(1),2,3,(6)
	not reliable
	Gonzalez-Rey, 2011 [31]
	1,3,6
	conditionally reliable
	Gust et al., 2012 [32]
	1,3,6
	conditionally reliable
	Gust et al., 2013 [33]
	1,3,6
	conditionally reliable
	Hallgren et al., 2011 [34]
	(1),3,6
	conditionally reliable
	Hallgren et al., 2012 [35]
	1,2,3,6
	reliable
	Hillis et al., 2011 [36]
	1,3,6
	conditionally reliable
	Hoffmann & Kloas, 2012 [37]
	1,3,6
	conditionally reliable
	Huynh Thi et al., 2012 [38]
	1,2,3,6
	reliable
	Ings et al., 2012 [39]
	1,3,6
	conditionally reliable
	Johns et al. 2011 [40]
	1,3,6
	conditionally reliable
	Kaptaner et al., 2011 [41]
	1,3,6
	conditionally reliable
	Lang & Kohidai, 2012 [3]
	1,3,(6)
	not reliable
	Lange et al., 2012 [42]
	2,3,6
	conditionally reliable
	Lawrence et al., 2012 [43]
	1,3,6
	conditionally reliable
	Reference
	Reliability criteria met
	Reliabilty
	Lei et al., 2013 [44]
	1,3,6
	conditionally reliable
	Liu et al., 2011 [45]
	1,3,6
	conditionally reliable
	Liu et al., 2011 [46]
	1,2,3,6
	reliable
	Madureira et al., 2011 [47]
	1,3,6
	conditionally reliable
	Meina et al., 2013 [48]
	1,3,6
	conditionally reliable
	Notch &Mayer, 2013 [49]
	3,(6)
	not reliable
	Oliveira et al., 2012 [50]
	1,3,6
	conditionally reliable
	Ozdemir et al., 2011 [51]
	(1),3,6
	conditionally reliable
	Parolini et al., 2011 [52] 
	3,6
	not reliable
	Parolini et al., 2011 [53]
	1,3,6
	conditionally reliable
	Parolini et al., 2013 [13]
	3,6
	not reliable
	Ragugnetti et al., 2011 [54]
	1,3,6
	conditionally reliable
	Reyhanian et al., 2011 [55]
	1,3,6
	conditionally reliable
	Ribeiro et al., 2012 [56]
	1,3,6
	conditionally reliable
	Rocco et al., 2012 [57]
	(3), 6
	not reliable
	Rocco et al., 2012 [58]
	(3), (6)
	not reliable
	Saravanan et al., 2011 [59]
	1,3,6
	conditionally reliable
	Sarria et al., 2011 [60]
	1,3,(6)
	conditionally reliable, 
	Shen et al., 2012 [61]
	1,2,3,6
	conditionally reliable
	Shi et al., 2012 [62]
	1,3,(6)
	conditionally reliable (chronic test), not reliable (acute test)
	Silva et al., 2012 [63]
	1,2,3,6
	reliable
	Skolness et al., 2012 [64]
	1,2,3,(6)
	reliable
	Sponchiado et al. 2011 [65]
	3,6
	not reliable
	Stange et al., 2012 [66]
	1,3,6
	conditionally reliable
	Stange et al., 2012 [67]
	1,3,(6)
	cond. reliable (reproduction), not reliable (gene expression)
	Thomas et al., 2012 [68]
	1,3,6
	conditionally reliable
	Toumi et al., 2013 [69]
	1,2,3,6
	reliable
	van Leeuwen et al., 2012 [70]
	(1),3,6
	conditionally reliable
	Veach et al., 2012 [71]
	1,3,6
	conditionally reliable
	Wang & Gunsch, 2012 [72]
	1,2,3,6
	reliable
	Wang et al., 2011 [73]
	1,3,6
	conditionally reliable
	Wu et al., 2012 [74]
	1,3,6
	conditionally reliable
	Yan et al., 2013 [75]
	1,2,3,6
	reliable
	Yergeau et al., 2012 [76]
	(1), 6
	not reliable
	Yonar et al., 2011 [77]
	1,3,6
	conditionally reliable
	Zhang & Gong, 2013 [78] 
	1,3,6
	conditionally reliable
	Zhang etal., 2012 [79]
	1,3,6
	conditionally reliable 
	Zhang et al, 2012 [80]
	1,3,6
	conditionally reliable
	Table 5: Further information on pharmaceuticals tested, test organisms, effect endpoints and reasons for lacking reliability
	for not reliable studies
	Reference
	Pharmaceutical tested
	Test organism
	Effect endpoint
	Reason for lacking reliability
	Backhaus et al 2011 [16]
	Fluoxetine
	Propranolol
	Clotrimazole
	Periphyton community 
	Inhibition of total pigment content (biomass)
	Lacking replicates for some test substances, but not specified (N= 1 to N=5). Results from other studies were involved for calculations of some concentration-response-curves without representing them. 
	Feito et al 2012 [26] 
	Diclofenac
	Danio rerio
	Polystichum spicatum 
	Lipid peroxidation 
	Chlorophyll autofluorescence
	Partly not reliable for lipid peroxidation in zebrafish and Chlorophyll content in Polystichum due to lacking concentration-effect relationships. . 
	Reference
	Pharmaceutical tested
	Test organism
	Effect endpoint
	Reason for lacking reliability
	Feito et al 2013 [27]
	Venlafaxine
	Polystichum spicatum
	Mitochondrial activity
	Partly not reliable for mitochondrial activity due to lacking concentration-effect relationships.
	Galus et al 2013 [10]
	Paracetamol
	Venlafaxine
	Carbamazepine
	Gemfibrozil
	Danio rerio
	Reproductive output
	Embryonic mortality
	Developmental malformations
	Histopathological changes
	Plasma estradiol level
	Blood 11-Ketotestosterone level
	Experimental mistake obvious with high concentrations of pharmaceuticals in control treatments, for Gemfibrozil higher than the treatment “low”. This information can be obtained from the “Supplementary data”, and it is mentioned in one sentence of the discussion. The effective concentrations highly differ from the nominal concentrations for which results are presented. For acetaminophen, e.g., the effective concentrations were only about 10% of the nominal concentrations.  
	Láng & Köhidai 2012 [3]
	Acetylsalicylic acid
	Diclofenac
	Fenoprofen
	Ibuprofen
	Naproxen
	Paracetamol
	Erythromycin
	Lincomycin
	Sulfamethoxazole
	Trimethoprim
	Metoprolol
	Propranolol
	Timolol
	Diatrizoic acid
	Tetrahymena pyriformis
	Growth rate
	Chemotactic behaviour
	Calculation of EC50 values for growth inhibition unclear; no concentration-effect relationships for chemotaxis; authors recommend themselves to use the test system not as a quantitative, but a qualitative assay to prove for environmental effects of chemicals.  
	Notch & Mayer 2013 [49]
	17alpha-ethinylestradiol
	Danio rerio
	Embryonic vitellogenin mRNA
	embryonic Cyp1a mRNA
	embryonic XPC mRNA (genome repair pathway)
	embryonic XPA mRNA (genome repair pathway)
	Lacking replicates and insufficient description of exposition conditions. Effects for XPC/XPA-mRNA und CYP1a-mRNA which only occurred after 24h or 48 h. The authors wanted to show that some effects disappear after longer exposure times. Effects for vtg-mRNA remained stable for the entire exposure time.  
	Parolini et al 2011 a [52]
	Ibuprofen
	Dreissena polymorpha
	Molecular stress biomarkers 
	Lacking replicates. Chemical analysis only in stock solution.
	Parolini et al 2013 [13]
	Ibuprofen
	Diclofenac
	Paracetamol
	Dreissena polymorpha
	Molecular stress biomarkers
	Lacking replicates. Chemical analysis only in stock solution.
	Rocco et al 2012 a [57]  
	Gemfibrozil
	Danio rerio
	Comet assay
	Diffusion assay
	RAPD-PCR
	Insufficient description of experimental design (replica, organisms, test concentrations); results from controls not presented.
	Rocco et al 2012 b [58]
	Lincomycin
	Erythromycin
	Danio rerio
	Micronucleus test
	Comet assay 
	Insufficient description of experimental design (replica, organisms, test concentrations); no significant effects.
	Shi et al 2012 [62]
	Clotrimazole
	Xenopus laevis
	Embryo mortality
	Embryo body length
	lacking concentration-effect relationships in acute test
	Sponchiado et al 2011 [65]
	17beta-estradiol
	Oreochromis niloticus
	Micronucleus test 
	Nucleus abnormalities 
	Comet assay
	Lacking replicates. Exposure from 5 to 35 days, but no renewal of test substances.
	Stange et al 2012b [67] 
	17alpha-ethinylestradiol 
	Potamopyrgus antipodarum
	Gene expression (estrogen receptor)
	Effects on gene expression of estrogen receptor only occurred after 7 days, but not after 28 days, lacking time-effect relationship.
	Reference
	Pharmaceutical tested
	Test organism
	Effect endpoint
	Reason for lacking reliability
	Yergeau et al 2012[76]  
	Erythromycin
	Sulfamethoxazole
	Sulfadimidine
	Gemfibrozil
	Erythromycin
	Sulfamethoxazole
	Sulfadimidine
	Gemfibrozil
	Bacterial community
	Microbial community composition (DNA level)
	Insufficient description of experimental design (substances, solvents for stock solution, organisms). Exposure time 8 weeks without renewal of test substances.
	 3.1.5  Consequences of reliability assessment for the described results
	Our literature study revealed Tetrahymena pyriformis as the most sensitive test organism for pharmaceuticals prior to the reliability check of the publications. This assessment, however, is based on the fact, that for this protozoan extremely low LOECs are reported for a total of 8 substances by Láng & Köhidai (2012) [3] who used “chemotaxis” as an effect endpoint. Since the reliability assessment could not prove the reliability of this publication, three fish species (zebrafish, rainbow trout and medaka) can be identified as most sensitive organisms for pharmaceuticals followed by bivalves and snails. The publications which provide the lowest LOECs for these species did successfully pass the reliability assessment. Table 6, however, also makes evident, that for the three fish species the database was much larger (in total 489 database entries) than for the mentioned molluskan species (only 8 database entries). Also for crustaceans which represent ecologically important species of aquatic ecosystems only few data are available compared to fish.       
	Tab. 6: Assessment of data for most sensitive species with respect to reliability of publications
	With respect to the determination of the most important pharmaceuticals for environmental effects the reliability assessment had a more important influence on the final result. In chapter 3.1.4.3 all data available from the OEKOTOX and the OEKOTOXupgrade databases were assessed with the result summarized in table 2. Since the publications of the OEKOTOX database analyzed by Bergmann et al. (2011) [1], however, were not at our disposal for reliability checks, we could only compare the results for the most important pharmaceuticals based on data of the OEKOTOXupgrade database prior (table 7) and after reliability assessment (table 8). The results of the analyses based on data from OEKOTOXupgrade only before reliability evaluation did not differ much from those when the OEKOTOX data were included. . This is due to the fact that the original OEKOTOX database mainly reports on EC50 values and includes only a low number of LOECs. Only a slight difference becomes obvious for Metoprolol with MECmax/LOECmin>0.1 in only 1 organismic group instead of 2. After assessment of publication reliability, however, only for diclofenac MECmax/LOECmin-values >0.1 were found in >3 biota classes. As further important pharmaceuticals propranolol, sulfamethoxazole, bezafibrate, 17α-ethinlyestradiol, 17β-estradiol and oxytetracycline were identified with MECmax/LOECmin-values >0.1 for 2 biota classes.
	Table 7: Priority pharmaceuticals before reliability evaluation, only based on data from OEKOTOXupgrade
	Table 8: Priority pharmaceuticals after reliability evaluation, only based on data from OEKOTOXupgrade
	3.1.6 Summary of part 1
	The literature survey conducted in the present project reviewed publications on pharmaceutical effects in the environment from 2011- July 2013, and thus completed the database OEKOTOX established by Bergmann et al. (2011) [1] with the database OEKOTOXupgrade. An Endnote library was created which contains all publications analyzed. In addition, a data evaluation sheet was created as a base for the identification of the most sensitive organisms, the most sensitive effect endpoints, and the ecologically most relevant pharmaceuticals. 
	For data published between 2011 and 2013, the following results were found: 
	 Most studies were conducted with antibiotics, followed by NSAIDs, anticonvulsants, antiparasitics, ß-blockers and contraceptives. 
	 Most of the research data are related to pharmaceutical effects in fish, followed by effects in mollusks, plants/algae, crustaceans, and bacteria.
	 After the reliability evaluation three fish species (zebrafish, rainbow trout and medaka) were identified as most sensitive organisms for pharmaceuticals followed by bivalves and snails.
	 Sensitive effect endpoints were behavior, vitellogenin induction, growth rate, reproduction, histopathological alterations, molecular stress biomarkers, oxidative stress markers, receptor binding, and gene expression
	In order to evaluate the lowest and the second lowest effect values from both the OEKOTOX and the OEKOTOXupgrade database with respect to their ecological relevance, risk quotients were calculated as MECmax/LOECmin. Risk quotients >0.1 were defined as to be of ecological relevance. The analyses provided the following results: 
	 Most pharmaceuticals for which risk quotients >0.1 were calculated were investigated in plants/algae and invertebrates closely followed by vertebrates. For bacteria, only few risk quotient >0.1 were found. 
	 Antibiotics, analgesics (NSAIDs), and ß-Blockers were the pharmaceutical classes for which data with the highest ecological relevance were found. 
	 After reliability assessment diclofenac was identified as the pharmaceutical of highest relevance (with MECmax/LOECmin >0.1 in > 3 biota classes).  For propranolol, sulfamethoxazole, bezafibrate, 17α-ethinlyestradiol, 17β-estradiol and oxytetracycline MECmax/LOECmin-values >0.1 were calculated for 2 biota classes.  
	Only in a few cases, the toxicity of an isolated substance could be compared to its toxicity in a pharmaceutical mixture. It could be shown that, at least dependent on the chemical tested and the effect endpoint under investigation, the toxicity of a single pharmaceutical can either be lower, higher, or equal to its toxicity when applied in a mixture together with other compounds. Since no mode of action-based effect endpoints were investigated it was impossible to quantify the specific contribution of the respective substance to the toxicity of the chemical mixture under investigation. 
	106 studies and 561 database entries were found to be related to population-relevant endpoints with most data on survival/mortality followed by growth and reproduction. Studies related to community changes and behavioral endpoints were in the minority. Direct population relevance, for example induced changes in the composition of bacterial, protozoan or algal communities could only be shown in few studies.
	From part 1 of this literature review the following shortcomings could be identified:
	 More studies which fulfill the reliability criteria are necessary, especially more chemical analyses should be integrated  
	 Only few data for invertebrates are available
	 Data for ecologically relevant crustaceans are lacking
	 Data on sediment toxicity are lacking 
	 More population-relevant community data are necessary
	 In order to be able to identify the contribution of isolated pharmaceuticals to chemical mixtures, mode of action-based effect endpoints have to be investigated.
	3.2 In vitro test systems
	3.2.1 Introduction 
	In vitro assays developed for the monitoring of pharmaceuticals can be broadly categorized into biochemical assays and cell-based assays. In biochemical and cell based assays, homogeneous assay readouts are preferred over non homogeneous readouts since they do not require washing steps.
	Biochemical assays are developed to characterize compounds that interact with an isolated target in an artificial environment. Biochemical assays are target-based and historically have been the mainstay of substance screening in the pharmaceutical industry. Such in vitro assays include the assessment of enzymatic activity (e.g., for kinases [1], proteases [2], transferases [3]), receptor-ligand binding (e.g., for G-protein coupled receptors (GPCRs) [4] and nuclear receptors [5]) or protein-protein interactions [6]. Biochemical assays are often directed to and specific for a recombinant purified target of interest and are conducted in homogeneous reaction media. However, not all targets can be purified or prepared suitably for biochemical measurement. For example methods that measure ion channel activities across a biological membrane require two ionic compartments with different ion concentrations separated by a lipid bilayer in which the ion channels reside. Ion channel assays are therefore conducted in cell based assay systems. Additionally, the activity of a small molecule in a reconstituted in vitro assay does not always translate into the same activity in a cellular context, due to requirements for cellular cofactors, issues of membrane permeability and other reasons. 
	Cell-based assays have emerged as a more physiological alternative to assays involving purified proteins. Cell-based assays interact with regulatory networks and feedback control mechanisms. In contrast to biochemical target-based assays, cell-based assays can target an outcome of a pathway in the physiological environment of a cell enabling amplification of a specific signal. Examples of cell-based assays include functional assays (e.g., second messenger mobilization after GPCR activation [7, 8]) and reporter gene assays [9, 10]. Cell-based assays allow for the selection of compounds that can cross cellular membranes, a prerequisite for biological activity towards multicellular organisms. 
	Homogeneous assays can be categorized into radioactive and non-radioactive assays. Although radioactive assays are decreasing on the market due to the need of radioactive waste disposal, this technology is unlikely to disappear completely. Homogeneous radioactive assay technologies include scintillation proximity assay (SPA) (Amersham Pharmacia Biotech) and FlashPlates™ (NEN Life Science Products, Boston, MA). With these approaches, the target of interest is immobilized onto a solid support (e.g. SPA beads or FlashPlate™ surface) that contains a scintillant [11]. When a radiolabelled molecule binds to the target molecule, the radioisotope is brought in close proximity to the solid support, and the energy transfer between the emitted beta particle and the scintillant results in the emission of light. Radioisotopes which remain unbound to the target and thus free in solution are too distant from the scintillant and, consequently, the released beta particles dissipate their energy solely into the aqueous environment. SPA has been used in a wide variety of applications and has become a standard technique in high throughput screening labs. The technology has been applied to kinases [12,13] and other enzymes [14] and is widely used for the detection of ligand-receptor interactions [15]. FlashPlate™ technology is similar to SPA but the solid surface is a microtiter plate rather than a bead. FlashPlate™ applications include the detection of cAMP levels [16] and ligand-receptor interactions [17]. Radiometric assays have the advantage to be relatively sensitive but, however, show also numerous disadvantages including limited reagent stability, relatively long read-times and waste disposal. 
	Most common homogeneous assay readouts are non-radioactive and optical, measuring absorbance and luminescence. Luminescence is the emission of light from any substance, and occurs from electronically excited states. Luminescence is formally split up into two categories (fluorescence and phosphorescence) depending on the nature of the excited state. In excited singlet states, the electron in the excited orbital is paired (by opposite spin) to the second electron in the ground-state orbital. Return to the ground state is spin-allowed and occurs rapidly by emission of a photon. Typical fluorescence lifetimes are around some nanoseconds. Many fluorophores display sub-nanosecond lifetimes. Because of the short timescale of fluorescence, measurement of the time-resolved emission requires sophisticated optics and electronics. In spite of the added complexity, time-resolved fluorescence is widely used because of the increased information available from the data, as compared with stationary or steady-state measurements. Additionally, advances in technology have made time-resolved measurements easier, even when using microscopes. Phosphorescence is emission of light from triplet excited states, in which the electron in the excited orbital has the same spin orientation as the ground-state electron. Transitions to the ground state are forbidden so that phosphorescence lifetimes are typically milliseconds to seconds. Transition metal–ligand complexes, which contain a metal and one or more organic ligands, display mixed singlet–triplet states. These transition metal–ligand complexes display intermediate lifetimes of hundreds of nanoseconds to several microseconds. These optical properties can be exploited by a number of detection methods. 
	3.2.2 Fluorescence Spectroscopy 
	Fluorescence spectroscopy can be applied to a wide range of questions in the chemical and biological sciences. The measurements can provide information on a wide range of molecular processes, including the interactions of solvent molecules with fluorophores, rotational diffusion of biomolecules, distances between sites on biomolecules, conformational changes, and binding interactions. Recently, the usefulness of fluorescence has been expanded by advances in technology for development of stable cell lines and cellular imaging. These advances in technology have been decreasing costs for previously complex in vitro assay development.
	3.2.2.1 Steady-State and Time-Resolved Fluorescence
	Fluorescence measurements can be broadly classified into two types of measurements: steady-state and time-resolved. Steady-state measurements, the most common type, are those performed with constant illumination and observation. Here, the sample is illuminated with a continuous beam of light, and the fluorescence intensity or emission spectrum is recorded. The second type of measurement is time-resolved, which is used for measuring intensity decays or anisotropy decays. For these measurements, the sample is exposed to a pulse of light, where the pulse width is typically shorter than the decay time of the sample. Time-resolved measurements contain information on the timescale of conformational changes. Time resolved fluorescent measurements furthermore enable separation of signals emitted by long-lived transition metal–ligand complexes from other unspecific signals generated by short-lived intermediates.
	3.2.2.2 Fluorescence Polarization (FP)
	Fluorophores absorb light along a particular direction with respect to the molecular axes. The extent to which a fluorophore rotates during the excited-state lifetime determines its polarization or anisotropy. The phenomenon of fluorescence polarization can be used to measure the apparent volume (or molecular weight) of proteins. This measurement is possible because larger proteins (or protein complexes) rotate more slowly than small ones. Hence, if a protein binds to another protein, the rotational rate decreases, and the anisotropies increase. The application of plane-polarized light in fluorescence polarization can be used to measure a probe’s rotational perturbations, thereby enabling simple assay designs dependent on a single labelled ligand [18, 19]. For example fluorescein- and rhodamine-labelled small molecules are suitable for quantifying the associations with proteins via changes in fluorescence polarization.
	3.2.2.3 Fluorescence Resonance Energy Transfer (FRET)
	FRET is an electrodynamic phenomenon occurring between a donor molecule in the excited state and an acceptor molecule in the ground state. The donor molecules typically emit radiation at shorter wavelengths that overlap with the absorption spectrum of the acceptor (Figure 1). The extent of energy transfer is determined by the distance between the donor and acceptor, and the extent of spectral overlap. The distance at which FRET is 50% efficient is called the Förster distance, which is typically in the range of 20 to 60 Å. Förster distances ranging from 20 to 90 Å are convenient for studies of biological macromolecules. These distances are comparable to the size of biomolecules and/or the distance between sites on multi-subunit protein complexes. Any condition that affects the D–A distance will affect the transfer rate, allowing the change in distance to be quantified. FRET can be used to measure the distance between a site on a protein and a membrane surface, the association between protein subunits, and the lateral association of membrane-bound proteins.
	/
	Figure 1: Fluorescence Resonance Energy Transfer (FRET). FRET occurs between a donor in an exited state and an acceptor in the ground state. The extent of energy transfer is determined by the distance between the donor and acceptor, and the extent of spectral overlap.
	3.2.3 Fluorescence Sensing 
	There are several observables for fluorescence sensing (Figure 2). The most direct sensing method uses changes in the fluorescence intensity of the probe in response to the analyte. However, it is often inconvenient to use changes in fluorescence intensity for measurements due to the following reasons: Measurements which are independent of fluorophore concentration can be accomplished using wavelength-ratiometric probes, which display shifts in the absorption or emission spectra upon binding of the analyte. Another ratiometric method is fluorescence polarization or anisotropy. In this case the analyte causes a change in the anisotropy of the label. Anisotropy measurements are frequently used in competitive immunoassays, in which the actual analyte displaces a labeled substitute that is bound to specific antibody. This results in a decrease in the anisotropy of the analyte. Anisotropy values are calculated using the ratio of polarized intensity measurements. The use of an intensity ratio makes the anisotropy measurements independent of fluorophore concentration as long as the measurements are not distorted by auto-fluorescence or poor signal-to-noise ratio. Fluorescence lifetimes can also be used for sensing.
	/
	Figure 2:  Spectral observables for fluorescence sensing. Sensing is performed using intensities, intensity ratios, anisotropies and time-domain lifetimes [20].
	3.2.3.1 Low molecular weight Sensors
	Low molecular weight sensors are available for sensing pH, chloride, oxygen, carbon dioxide, Ca2+, Mg2+, and other parameters. A survey of the literature revealed that a large number of chelate molecules can be used for imaging intracellular concentrations of cations. Calcium probes are perhaps the most widely used intracellular indicators. The salt forms of these dyes do not diffuse across cell membranes, so that the cells need to be labelled by microinjection or electroporation. 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid based chelates are also available with esterified carboxy groups, the so-called acetoxymethyl esters. In this form, the dyes are less polar, and, hence, passively diffuse across cell membranes. Once being inside the cell the acetoxymethyl esters are cleaved by intracellular esterases, and the negatively charged probe is trapped in the cells.
	5′, 6′ Dicarboxy-2′,7′-dichlorodihydrofluorescein (CDCFDA) is a fluorogenic probe which is oxidized by reactive oxygen species in living cells. The cell-permeable reagent is very weakly fluorescent while in a reduced state and upon oxidation exhibits strong fluorogenic signal. After uptake into the cell cytoplasmic esterases cleave the esters trapping the resultant charged CDCF inside the cell. CDCF is a co-substrate for peroxidases and could be used for sensing of peroxidase activities [21].
	3.2.3.2 Protein Sensors
	The combination of recombinant technologies with chemical cross linking enables manifold creation of protein based fluorescent sensors. One example is a MBP (maltose binding protein from E. coli) based sensor based on FRET (22). This example also illustrates the increasingly sophisticated chemistry of sensors. This maltose sensor is bound to a neutravidin surface by a biotinylated linker. MBP is labelled with a non-fluorescent acceptor quenching dye. The donor is a signalling dye, which is also bound to the surface by a specialized linker. This linker contains a cyclodextrin that binds to MBP. These components are bound to the surface by a biotinylated DNA linker arm that allows changes in rigidity. When the linked cyclodextrin is bound to the binding pocket of MBP the donor is quenched because this binding brings the donor dye in close proximity to the quenching dye. Addition of maltose displaces cyclodextrin from MBP, resulting in increased donor intensity (Figure 3). These results describe a general strategy for surface-bound sensors that are adjustable and yield large changes in intensity. This approach is likely to be used in sensors for a wide variety of analytes.
	/
	Figure 3:  Surface bound maltose sensor. Schematic of a surface-bound maltose sensor based on the maltose-binding protein from E. coli and FRET [22].
	3.2.3.3 Green fluorescent protein (GFP) variants
	A revolution in the field of live cell imaging occurred following the development of genetically encodable fluorescent tags to specifically label a protein-of-interest within the cellular milieu. This allowed researchers to develop fluorescent biosensors that are able to track signalling molecules within their endogenous environment. This “enlightenment” in the field of cell biology was sparked by the discovery, and subsequent cloning, of the green fluorescent protein (GFP) from the jellyfish Aequorea victoria. For simplifying the emission spectra and improving the spectral properties of A. victoria GFP for biosensor applications, the wild-type protein has been mutated in several ways. There are several important factors that must be considered when employing GFP family members as genetically encodable fluorescent tags. These include both physical and biological parameters like protein folding efficiency, stability, intrinsic brightness, photo-stability, spectral properties and environmental sensitivity. 
	The discovery and development of GFP family members exhibiting either red- or blue-shifted excitation/emission spectra allows fluorescence proteins to be used for a number of FRET-based applications. If prior excitation of the donor fluorophore is generated as by-product of an enzymatic reaction, such as the oxidation of luciferin, this is termed “bioluminescence resonance energy transfer” (BRET). These processes represent highly sensitive methods for measuring protein-protein interactions and conformational changes within individual proteins.
	Although BRET signals are generally dimmer than those generated by FRET, this approach offers several potential advantages over FRET for live cell applications [23]. Because BRET does not require excitation of the donor fluorophore for energy transfer to occur, it does not elicit cellular auto-fluorescence. As a consequence, BRET exhibit signal-to-noise ratios that are much higher than those obtained using FRET. Likewise, the chemiluminescent nature of the excitatory light used for BRET simultaneously eliminates two of the primary sources of error associated with FRET-based measurements: spectral bleed-through (donor emission into the acceptor channel and excitation of acceptor molecules by the donor excitation wavelength) and photobleaching of the donor molecules by excitatory light. Finally, since the donor and acceptor molecules used for BRET generate luminescent and fluorescent signals, respectively, the expression levels of each component can be measured independently of the other. Thus BRET-based probes hold potential for live cell applications, including some unique applications in cell based compound screening [24] and in vivo pharmacodynamics studies for drug candidates.
	Relatively large fluorescent proteins could be replaced by short peptide sequences designed to bind small molecule probes [25]. This can result in restoring activity which was lost due to bulky fluorescent protein fusion tags. However the chemical modifying of the peptide sequences for generation of fluorescent peptides is laborious and modifying reagents need to cross cell membranes. Therefore it is more convenient to use genetically encodable fluorescent proteins to build fluorescent biosensors for probing cellular components within their native environment. Such biosensors have been used to monitor a multitude of cellular processes, offering valuable insights into the dynamic nature of the signalling, metabolic and other regulatory networks that govern cell function. The design and application of a series of fluorescent biosensors range from relatively simple sensors designed to measure changes in the expression to more complex reporter systems designed to probe biochemical processes, such as second messenger turnover and enzyme activities within their native cellular environment [26]. 
	Monitoring Protein Expression
	Fluorescence protein based transcriptional reporters have proven to be valuable tools for studying transcriptional activities. One of earliest uses of GFP as a biological probe involved the in vivo visualization of promoter activation in the nematode C. elegans. During these studies, GFP DNA was placed under the control of a promoter and GFP gene expression was measured during different stages of nematode development [27]. During these studies, GFP DNA was placed under the control of a promoter and GFP gene expression was measured during different stages of nematode development. Over the years, similar studies have been conducted in a variety of cellular contexts, offering valuable information about the activation and regulation of cellular promoters. The stability of GFP inside the cell (t1/2= ∼1 day) [28] allows the activation of weak promoters to be measured. The persistence of GFP molecules long after transcription mask transient changes in gene expression. One way to overcome this limitation is to fuse a degradation sequence, such as a domain from mouse ornithine decarboxylase, to the fluorescence protein indicator [29]. Using this strategy, the fluorescent half-life of an EGFP-mouse ornithine decarboxylase chimera was reduced nearly 12-fold, to approximately two hours. The increased temporal resolution afforded by this probe allowed the observation of transient changes in NF-κB-mediated gene expression that could not be observed using longer-lived EGFP reporters. 
	Monitoring Biochemical Changes within Cellular Environment
	Through protein engineering efforts, fluorescent protein can be generated in such a way that its spectral properties are altered in response to specific cellular factors. Fluorescent protein based reporters that change their spectral properties in response to cellular parameters have also been used extensively to study the regulation of many cellular processes. While in some cases these types of sensors exploit photophysical properties intrinsic to the fluorescent protein tags themselves, in others, the spectral properties of the chromophore are altered by distorting the architecture of the fluorescent protein using integrated protein sequences that are sensitive to the signalling molecule under study.
	Engineered molecular switches, which are constructed based on a modular design, consist of a “receiver” module that specifically recognizes the small-molecule-of-interest linked to a “switching” module that converts the binding event into a conformational change. By combining the molecular switch with an appropriate reporter unit (either by grafting it into the fluorescence protein itself or by flanking the switch region with complementary FRET pairs) small molecule-dependent changes in the sensor unit can be translated into fluorescence readout from the reporter unit. Using this basic design, researchers have constructed a diverse set of fluorescence protein based biosensors capable of probing a large number of small molecule analytes involved in cellular signalling.
	3.2.3.3.1 Single Fluorophore Sensors
	3.2.3.3.1.1 Halide and pH Sensors
	Unlike wild-type A. victoria GFP, whose spectral properties remain relatively unchanged over a wide range of physiological conditions, the mutations introduced into many engineered fluorescence protein variants often render them sensitive to fluctuations in the cellular environment. For example, because of changes in their internal hydrogen bonding networks, the chromophores of EGFP and several EYFP family members fluoresce very weakly in the protonated state. As a consequence, cellular components that promote protonation, such as protons or halide ions, can lead to markedly reduced fluorescence intensities. This intrinsic property has been exploited to measure several important cellular parameters, including pH and chloride ion concentrations.
	The YFP variant YFP(H148Q) exhibits a dramatic reduction in its fluorescence intensity at elevated halide concentrations. This property has been exploited to monitor fluctuations in chloride ion concentration in cells overexpressing the chloride transporter cystic fibrosis transmembrane regulator. These studies demonstrated that YFP(H148Q) faithfully reports chloride flux through the cystic fibrosis transmembrane regulator in response to elevations in intracellular cyclic AMP, providing an attractive alternative to chemical halide dyes [30]. While EGFP (pKa = 6.15) is well-suited for the detection of pH fluctuations within acidic organelles, EYFP (pKa = 7.1) is preferable in more basic environments like the mitochondrial matrix where equilibrium pH values are closer to 8.0 [31].
	3.2.3.3.1.2 Redox Potential Sensors
	Sensor units can be constructed by introducing residues on the surface of a fluorescence protein variant that renders it sensitive to a particular cellular parameter. This is the basis for redoxsensitive fluorescence protein indicators, termed roGFPs, which use disulfide bond formation between pairs of strategically placed cysteine residues on the surface of GFP to alter the β-barrel architecture of the protein [32]. In the case of roGFP2, structural analysis suggests that the formation of a disulfide bond between the engineered cysteine residues promotes reorganization of two β-strands in close proximity to the chromophore, causing subtle rearrangements in the residues surrounding the chromophore. These conformational changes ultimately shift the equilibrium between the neutral and phenolic states of the chromophore, resulting in reciprocal changes in the excitation maxima at 400 and 480 nm in response to changes in the redox potential [33]. As genetically encodable and genetically targetable redox sensors, roGFP family members as well as the related rxYFPs, have proven to be valuable tools for measuring the redox potential of many subcellular compartments, including the cytosol [34]
	3.2.3.3.1.3 Calcium Sensors
	The circularly permutated EGFP-based GCa-MPs [35] are among the most popular genetically encodable Ca2+ indicators. These fluorescence proteins were generated by fusing the carboxy terminus of calmodulin with the calmodulin binding peptide M13. In these reporters the switch is grafted into a single fluorescence protein variant. In the presence of Ca2+, the CaM-M13 interaction induces conformational changes in the reporter that result in a change in fluorescence intensity of the chromophore. Such Ca2+ sensors have been used to measure Ca2+ fluxes in a variety of cell types, offering valuable insights into the timing and regulation of Ca2+ transients during many cellular processes.
	3.2.3.3.1.4 cGMP Sensors
	A series of fluorescent indicators of cGMP (FlincGs) based on the regulatory domain of protein kinase G was developed [36]. These sensors consist of a circularly permutated EGFP variant fused to two cGMP binding sites derived from various regions of the protein kinase G regulatory domain. To probe changes in cGMP concentration over a wide range of conditions, FlincG family members have been engineered to bind cGMP with KD’s ranging from 35 nM to 1.1 μM. Nucleotide binding induces conformational changes in the protein kinase regulatory domain that lead to a corresponding increase in the fluorescence intensity of the reporter. Importantly, each of the FlincG probes also exhibits a high degree of selectivity for cGMP relative to the chemically similar second messenger cAMP. This specificity for cGMP, coupled with their rapid and reversible binding kinetics and relatively good pH stability, makes FlincGs well-suited for measuring cGMP inside cells.
	3.2.3.3.1.5 Reactive Oxygen Species Sensor
	A hydroperoxide sensor was generated by inserting circularly permutated EYFP into the regulatory domain of a hydroperoxide sensing bacterial protein [37]. This hydroperoxide sensor exhibits reciprocal changes in the emission intensity at 520 nm when excited by 405 and 488 nm light. Using this sensor, fast and reversible changes in the fluorescence intensity of circularly permutated EYFP in a cell line after exposure to 50 μM hydroperoxide was observed. 
	A circularly permuted yellow fluorescent protein can be used for sensing superoxide radical anion, the primal reactive oxygen species generated by the electron transport chain. The fluorescence emission (at 515 nm) of purified circularly permutated YFP when excited at 488 nm is five times brighter under strong oxidizing conditions compared to strong reducing conditions, indicative of a large dynamic range. Extensive in vitro experiments revealed the superoxide selectivity of circularly permutated YFP over other physiologically relevant oxidants and metabolites. Compared to the fully reduced state, circularly permutated YFP fluorescence displays a 250% increase by oxygenation and a full 420% increase by the superoxide radical anion. The superoxide radical anion associated increase in circularly permutated YFP fluorescence is completely reversed by subsequent addition of copper/zinc-superoxide dismutase. By contrast, circularly permutated YFP emission is unchanged by hydroxyperoxide and peroxynitrite, and is decreased by hydroxyl radical and nitric oxide. Other metabolites tested, including physiological levels of Ca2+, ATP, ADP, NAD(P)+, and NAD(P)H, all exert negligible or only marginal effects [38]. Unlike GFP-based redox biosensors the fluorescence emission of circularly permutated YFP is unaltered when the redox potential varies between -319 mV and -7.5 mV. The reversibility of circularly permutated YFP permits real-time measurements of dynamic changes in superoxide levels in living cells.
	3.2.3.3.1.6 ATP/ADP ratio sensing
	Perceval, an ATP/ADP indicator is based upon the bacterial ATP-binding protein, GlnK1, and a circularly permutated version of Venus [39]. In the presence Mg-ATP, the T-loop is converted from an extended structure to a highly compact form that is believed to relieve strain on the integrated circularly permutated Venus module. In Perceval, T-loop closure leads to reciprocal changes in circularly permutated Venus emission intensity when excited with 405 and 490 nm light. Therefore, Perceval offers the advantage of a radiometric readout. Mg-ADP also elicits a change in the emission ratio of the probe; however, because of incomplete loop closure, this change is only about half that observed upon Mg-ATP binding. As a consequence, Perceval can be calibrated to measure the relative ratio of ATP to ADP inside cells based upon competition between the two molecules for T-loop binding. As a proof of principle, the authors demonstrated that Perceval could detect global metabolic changes caused by the inhibition of glycolysis or the modulation of external glucose levels [39].
	3.2.3.3.1.7 Membrane Potential sensing
	Fluorescence protein based voltage sensors modulate fluorescence intensity of the fluorescence protein reporter module by placing it between regions of an ion channel or voltage-sensitive protein that undergoes a conformational change in response to changes in the membrane potential [40]. A Cerulean-based voltage sensor, that utilizes conformational changes in the voltage-sensitive domain of the voltage sensor containing phosphatase from Ciona intestinalis to affect the fluorescence intensity of Cerulean [41]. These properties make this voltage sensor well-suited to measure the fast neuronal electrical signals often observed during signal propagation.
	Beside single fluorophore sensors like the above mentioned, more complex sensor units are required to convert changes in other cellular parameters into a fluorescence output. A “molecular switch” can be derived from a conformational change intrinsic to an endogenous protein or it can be generated via an engineered switch (Figure 4).
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	Figure 4:  Molecular switch. A molecular switch can be generated by either (A) a conformational change intrinsic to a protein domain or (B) by an engineered conformational change driven by interactions between a receiver module (grey block) and a switching module (green block). In each case, the conformational change is converted to a change in FRET efficiency (blue arrow) by altering the distance and/or orientation of the attached fluorescence protein reporter units.
	3.2.3.3.2 FRET / BRET based Sensors
	FRET-based sensors exist as uni- and bimolecular reporter systems, each of which utilizes a molecular switch to convert activity-dependent changes in the reporter into a measurable FRET response. In each case the molecular switch is designed to alter the distance or relative orientation of a FRET pair in response to specific cellular conditions. For instance, whereas most unimolecular sensors rely upon a conformational change to reposition their fluorophores in space, bimolecular probes typically bring their FRET pairs into close proximity via protein-protein interactions. An advantage of a bimolecular design is that the reporter typically exhibits a larger dynamic range than its unimolecular counterpart. In the case of bimolecular reporter systems the stoichiometries between the donor and acceptor are variable. Therefore more sophisticated measures of FRET efficiency, such as donor fluorescence recovery after acceptor photo bleaching and fluorescence lifetime imaging, must be used.
	3.2.3.3.2.1 FRET based cAMP Sensor
	Several FRET-based biosensors have been developed to better understand how the concentrations of cAMP fluctuate over time and throughout the cell. These include the unimolecular reporter system derived from various portions of the guanine nucleotide exchange factor, exchange protein directly activated by cAMP (Epac) [42]. Several intramolecular cAMP reporters have been developed based upon cAMP effector Epac1 and Epac2. These reporters using Epac (ICUE) [43, 44], CFP-Epac (δDEP-CD)-YFP [45], Epac1-camps and Epac2-camps [42] all exhibit decreasing FRET following cAMP binding. Presumably, the binding of cAMP induces an intrinsic conformational change in Epac isoforms that liberates the catalytic domain from intrasubunit allosteric inhibition, thereby altering the distance and relative orientation of their flanking CFP/YFP FRET pairs. Furthermore, mutations have been introduced to abolish the guanine exchange factor activity of Epac, thereby reducing the effects that overexpression of the biosensor may have on cellular signalling pathways. cAMP sensor studies have begun to uncover important details about the role of subcellular compartmentalization in shaping cAMP dynamics during GPCR activation.
	3.2.3.3.2.2 BRET based cAMP Sensor
	By replacing the CFP donor in Epac-based sensors with luciferase, cAMP reporters were created that utilize BRET as the fluorescent readout [46]. Though their emission intensity has prevented BRET-based sensors from being used to measure biochemical changes at the subcellular level, BRET-based cAMP reporters have proven to be powerful tools for examining drug effects in cell populations in a medium- to high-throughput manner and for screening fluorescent compounds whose excitation/emission profiles preclude the use of FRET-based probes. For instance, using a BRET-based cAMP sensor derived from the second generation ICUE reporter, ICUE2, the impact of nine clinically effective antipsychotics on D2 class dopamine receptor activity was examined [47].
	3.2.3.3.2.3 FRET based GPCR activation Sensor
	The GPCR superfamily, which represents the largest family of proteins involved in signal transduction, is composed of structurally-similar receptor proteins characterized by seven R-helical membrane-spanning domains. As the primary upstream activators of many intracellular signalling pathways, GPCRs play a key role in converting extracellular stimuli, such as hormones and neurotransmitters, into an intracellular response. The deregulation of GPCRs is also critical to the etiology of many diseases. In fact, roughly one half of the drugs on the market today target GPCRs. For gaining insights into spatial and temporal aspects of GPCR activation and signalling as well as into the mechanistic basis of the signalling process itself, several FRET-based sensors have been created to study receptor activation in the context of single, living cells [48]. Upon ligand binding, GPCR family members act as guanine nucleotide exchange factors that facilitate the exchange of GDP for GTP in the GR subunit of associated trimeric G-protein complexes. Nucleotide exchange promotes the dissociation of the GR subunit from the Gβγ subunits of the complex which, in turn, leads to the activation of downstream effectors, such as phospholipase C and transmembrane adenylate cyclases involved in phosphoinositide and cAMP metabolism. To measure activation-induced conformational changes in GPCR family members, several groups have fused CFP and YFP color variants to the third intracellular loop and the C-termini of the receptor molecule to yield sensitive GPCR activation sensors [49]. These sensors, which all exhibit reproducible decreases in emission ratio following agonist stimulation, have been used to study GPCR activation kinetics in the presence of full agonists, partial and even inverse agonists. In contrast to agonists generating a decrease in FRET inverse agonists appear to cause an increase in FRET that may be attributed to distinct conformational states of the receptor [50]. Effects of beta blockers bisoprolol, metoprolol and carvedilol in inhibition β1-adrenoceptor isoforms in living cells was measured in real time by FRET using a cyan fluorescent protein, Cerulean fused to the carboxy terminus of the human β1-adrenoceptor and a yellow fluorescent protein inserted into the third intracellular loop [51].
	3.2.3.3.2.4 FRET based protein kinase activity Sensor
	Protein kinase activity reporters utilize an engineered molecular switch based upon a modular design. A consensus phosphorylation site specific for the kinase of interest serves as the “receiving segment” while a phosphoamino acid binding domain functions as the “switching segment”. These regions are concatenated together by a flexible linker and sandwiched between a fluorescence protein FRET pair. Whereas the length of the linker and the choice of FRET pairs influence the dynamic range of the reporter, the “receiving and switching segments” contribute to its specificity and reversibility. This basic modular design has been applied to a number of protein kinases, including protein kinase A. Genetically encoded A-kinase activity reporters are reversible and targetable reporters allowing real-time imaging of protein kinase A activity, and are valuable for analyzing compartmentalized kinase activities [52].
	3.2.3.3.2.5 Coupled FRET based NO Sensor
	A coupled fluorescent indicator system was used for reporting NO release. The FRET based cGMP indicator “CGY” exhibits a rapid and reversible decrease in emission ratio in response to elevations in cGMP produced by NO-dependent activation of soluble guanylyl cyclase. Since it is estimated that a single NO molecule generates nearly 6,000 cGMP molecules/min, this indicator system is extremely sensitive to NO release [53]. In fact, this indicator system is able to detect NO concentrations in the picomolar range, several orders of magnitude lower than direct NO fluorescent indicators.
	3.2.3.3.3 Protein Fragment Complementation Sensor
	Fluorescence based approaches has paralleled the study of GPCR oligomerization. GPCRs are the largest family of cell surface receptors and are the targets many clinical drugs (e.g. β-blockers and antipsychotics). Bimolecular fluorescence complementation relies on the generation of a fluorescent signal from two non-fluorescent fragments of a fluorescence protein when brought in close proximity by fusion partners. Receptor activation through binding of a ligand agonist proceeds by conformational rearrangement within the transmembrane helical domain as the receptor switches from an inactive to an active state, which in turn activates heterotrimeric G proteins. Activated G proteins regulate the levels of intracellular second-messenger molecules (Ca2+, cAMP, phoshoinositides, cGMP), which modulate signalling cascades involving kinases such as PKA, PKC and others. The 2012 Nobel Prize in Chemistry was awarded to Brian Kobilka and Robert Lefkowitz for their work that was crucial for understanding GPCR function. 
	Proteins interacting with GPCRs have been shown to modulate receptor expression, membrane targeting, and desensitization. Among these, arrestins are well characterized scaffolding proteins that are notably involved in receptor internalization after ligand activation. As part of a high-content protein fragment complementation assay study based on fluorescence protein complementation, interaction between -arrestins and the 2-adrenoceptor was detected in cells treated with 2-adrenoceptor agonists, thus providing a measure of receptor activation and internalization [54]. These studies demonstrate the applicability of fluorescent protein fragment complementation assays for the detection of drug-induced changes in GPCR interactions. Likewise, non-fluorescent protein fragment complementation assays based on -galactosidase fragment complementation can also be used for the detection of GPCR--arrestin interactions.
	3.2.4 Immunoassays
	Immunoassays constitute a large and diverse family of assays. The basic idea is to couple the association of antibody with antigen to some other event that yields an observable spectral change. Various mechanisms are possible, including energy transfer, anisotropy, delayed lanthanide emission, or the use of enzymes to amplify the signal. The use of antibodies as analytical tools can be traced to the development of radioimmunoassays by Berson and Yalow, which resulted in a Nobel Prize. Since then immunoassays have been widely used, but are now based mainly on fluorescence detection.
	3.2.4.1 cAMP AlphaScreen® (PerkinElmer)
	The acronym ALPHA stands for Amplified Luminescent Proximity Homogeneous Assay. The assay contains two bead types, donor beads and acceptor beads. Both bead types provide reactive aldehyde groups for conjugating biomolecules to the bead surface. Donor beads contain a photo-sensitizer, phthalocyanine, which converts ambient oxygen to an excited form of O2, singlet oxygen, upon illumination at 680 nm. Singlet oxygen has a limited lifetime prior to falling back to ground state. Within its 4 μsec half-life, singlet oxygen can diffuse approximately 200 nm in solution. If an acceptor bead is within that proximity, energy is transferred from the singlet oxygen to thioxene derivatives within the acceptor bead, subsequently culminating in light production at 520– 620 nm (Figure 5). In the absence of an acceptor bead, singlet oxygen falls to ground state and no signal is produced.
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	Figure 5:  AlphaScreen cAMP assay. Competitive assay type where endogenous cAMP produced in whole cells competes with biotinylated cAMP for binding to an anti-cAMP antibody conjugated to the Acceptor beads.
	3.2.4.2 cAMP LANCE® (PerkinElmer)
	LANCE stands for Lanthanide chelate exite. This assay is a homogeneous time-resolved fluorescence energy transfer immunoassay designed to measure cAMP produced upon modulation of adenylyl cyclase activity. The assay is based on the competition between a Europium-labelled cAMP tracer and sample cAMP for binding sites on cAMP-specific antibodies labelled with a FRET acceptor dye (ULight). When the ULight anti-cAMP antibody is bound to the Eu-cAMP tracer, excitation at 340 nm excites the Europium. The energy is transferred to the ULight-labelled antibody. The fluorescence measured at 665 nm will decrease in the presence of cAMP from test samples, and resulting signals will be inversely proportional to the cAMP concentration of a sample (Figure 6).
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	Figure 6:  LANCE cAMP assay. Competitive assay type where endogenous cAMP produced in whole cells competes with a cAMP antibody complex.
	3.2.4.3 cAMP HTRF (CisBio International)
	HTRF (homogeneous time resolved fluorescence) combines standard FRET technology with time-resolved measurement of fluorescence. The cAMP assay is based on a competitive immunoassay using cryptate-labelled anti-cAMP antibody and d2-labelled cAMP (Figure 7).
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	Figure 7:  HTRF cAMP assay. Competitive assay type where endogenous cAMP produced in whole cells competes with a cAMP d2 complex. Donor: Europium cryptates (Eu3+cryptate), Acceptor: d2 ( an organic motif of approximately 1 kDa). 
	3.2.4.4 cAMP Screen (Life Technologies)
	The cAMP Screen is a competitive immunoassay. Cell lysates are incubated with a cAMP-AP conjugate and an anti-cAMP antibody in the secondary antibody–coated assay plate. The resulting immune complexes are captured in the plate. The captured immune complexes are washed to remove unbound cAMP-AP, and the resulting signal is measured in a luminometer.
	3.2.5 Reporter Assays
	Cell based reporter assays provide a cost effective platform for sensing promoter activities. Reporter gene constructs contain a promoter element which regulates the expression of a selected reporter protein. Commonly used reporters are enzyme proteins with activities linked to colorimetric or luminescent readouts such as luciferase, alkaline phosphatase, β-galactosidase, β-lactamase or fluorescent proteins such as GFP variants. The advantages of reporter gene assays include the wide linearity and sensitivity of the technique and a large signal to background ratio, making them suitable for amplification of a single signal induced by a receptor agonist. 
	GPCR activation is well known to alter gene transcription via responsive elements for second messengers including the cAMP response element (CRE), the nuclear factor of activated T-cells response element (NFAT-RE), the serum response element (SRE) and the serum response factor response element (SRF-RE, a mutant form of SRE), all of which are located within gene promoter regions. G-protein-dependent reporter gene assays were developed using second messenger responsive elements upstream of a minimal promoter, which in turn regulate the expression of a selected reporter protein (Figure 8).
	Reporter gene assays are also easy to set up and can be scaled down to extremely low assay volumes. Despite these advantages, some concerns have been raised, such as the requirement for long incubation periods, difficulty in antagonist detection due to reporter accumulation and the higher potential for false positives because the signal event is distal from receptor activation.
	Concerns about the long incubation time and accumulation of reporter have been addressed through the use of destabilized reporters. The higher false positive rate due to the distal signalling event could be partially resolved with by the co-expression of a constitutively expressed internal control, so compounds non-specifically affecting gene transcription could be ruled out [55].
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	Figure 8:  Receptor binding and G-protein-dependent reporter gene assays. Schematic representation of receptor binding and major pathways activated by different G proteins. RE symbols a specific second messenger responsive element upstream of a minimal promoter, which in turn regulate the expression of a selected reporter protein.
	3.2.6 -adrenoceptor assays
	Activation of cardiac β-adrenoceptors by endogenous catecholamines plays a key role in the regulation of cardiac function. The heart contains at least 2 β-adrenoceptor subtypes, termed β1-AR and β2-AR, and may also contain β3-ARs. Stimulation of the β1-AR represents the strongest endogenous mechanism for increasing contractility and beating frequency of the mammalian heart [56]. In human heart failure, which has become one of the leading causes of death and hospitalization, the sympathetic nervous system is chronically activated to overcome the loss of cardiac output. While this initially leads to compensation through a short-term increase in cardiac function, chronic stimulation of the cardiac β-AR system contributes to progression of the disease. These detrimental effects of chronic β-adrenergic signalling are attributed to the β1-AR subtype. Consequently, the development of receptor antagonists has resulted in the single most effective therapeutic regimen to treat heart failure [57]. Beta blockers are part of most commonly prescribed drugs in Germany.
	-adrenoceptors are a class of GPCRs. The subtype β1-AR is linked to Gs protein which in turn is linked to adenylate cyclase (Figure 8). Downstream effectors of cAMP include cAMP response element and cAMP-dependent protein kinase, which mediate some of the intracellular events following hormone binding. 
	Measuring of -adrenoceptor activity could be done using in vitro assays like tagged-ligand binding, GTPS binding, CRE reporter, cAMP or conformation based FRET assays. 
	3.2.6.1 Tagged ligand binding assays
	Tagged ligand binding assays are based on antibodies binding to cAMP. Commercial available are several competitive assays like cAMP AlphaScreen (3.2.4.1), cAMP LANCE (3.2.4.2), cAMP HTRF (3.2.4.3) or cAMP screen (3.4.4). All assays measure cAMP in cellular extracts, therefore cells expressing -adrenoceptor has to be lysed first.
	3.2.6.2 cAMP luminescent biosensor assay
	A novel protein biosensor is described, which uses a cAMP-binding domain from PKA coupled to a circularly permuted form of Photinus pyralis luciferase. Upon binding of cAMP the luciferase undergoes conformational change from an open less reactive to a closed form resulting in high luciferase activity (Figure 9) [58].
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	Figure 9:  cAMP luciferase assay. Schematic representation of the cAMP luciferase assay
	The real-time cAMP luminescent biosensor assay allows the sensitive detection of GPCR mediated signalling through the second messenger cAMP. In contrast to lytic assays with multiple samples and procedural steps, cAMP dynamics can be followed from a population of living cells with greatly reduced time and labour. When compared to existing biosensor designs, this evolved biosensor construct provides increased dynamic range, making it better suited to monitor a broad range of receptor behaviours such as treatment with full, partial, or inverse agonists.
	3.2.6.3 cAMP CRE reporter assays
	After activation of the -adrenoceptor adenylyl cyclase is activated by a coupled Gs protein. Adenylyl cyclase catalyzes the formation of cAMP which activates PKA. PKA in turn initiates the downstream kinase cascade. One of the end steps of this cascade is the phosphorylation of the cAMP response element binding protein. The phosphorylated CREB can bind promoter regions containing the 5’-TGACGTCA-3’ sequence i.e. the cAMP response element, and in consequence induces downstream gene transcription. An externally-introduced reporter gene usually contains a specific promoter and a reporter gene DNA. The promoter can be made artificially by fusion of CRE elements with a minimal promoter sequence. For real time imaging a CRE- EGFP reporter system was developed, which could be used for monitoring real time transcription under a fluorescent microscope or by flow cytometry [59].
	3.2.6.4 Receptor conformation based FRET assay
	Beside FRET based (3.2.3.3.2.1) and BRET based cAMP sensors (3.2.3.3.2.2) a FRET approach is described were the human 1-adrenoceptor was fused at the carboxyterminus to a mutant CFP (Cerulean) and a YFP inserted into the third intracellular loop (Figure 10). After binding of the agonist norepinephrine a conformational shift leads to a decrease of FRET signal. The -blocker bisoprolol, metoprolol, and carvedilol led to an active change of the receptor conformation resulting in an increase in the FRET ratio, suggesting inverse agonist behaviour [51].
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	Figure 10:  Development of a -1 adrenoceptor FRET sensor. After binding of the agonist norepinephrine a conformational shift leads to an increase of distance of the two fluorescent proteins resulting in a decreasing FRET effect [51].
	3.2.6.5 cAMP gated ion channel
	cAMP produced in subcellular compartments near the plasma membrane can be monitored in HEK cell lines expressing the rat wild-type (GenBank CAA39135.1) or several mutant olfactory CNG channel proteins after recombinant adenovirus infection [60]. Forskolin induced cAMP synthesis resulted in Ca2+ influx in the cells. Using the wild-type channel, a forskolin induced modest Ca2+ influx could be measured after pre-treatment of the cells with phosphodiesterase inhibitors only. Site specific mutations of the wild-type protein resulted in special mutant channel proteins with enhanced cAMP sensitivity and specificity [60].
	3.2.6.6 HCN2 cAMP FRET assay
	A cAMP FRET sensor based on a single cAMP binding domain of the hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) enabled studies of spatial and temporal cAMP dynamics after 1- and 2- adrenoceptor stimulation in freshly isolated adult cardiomyocytes [61].
	3.2.7 Cyclooxygenase assays
	Cyclooxygenase-1 and cyclooxygenase-2 are bifunctional enzymes that carry out two sequential reactions in spatially distinct but mechanistically coupled active sites: the double dioxygenation of arachidonic acid to prostaglandin G2 and the reduction of prostaglandin G2 to prostaglandin H2. Arachidonic acid oxygenation occurs in the cyclooxygenase active site, and prostaglandin G2 reduction occurs in the peroxidase active site. Prostaglandin H2 diffuses from the COX proteins and is transformed by different tissue specific isomerases to prostaglandins (PGE2, PGD2, PGF2, PGI2) and thromboxane A2 (TxA2)
	Although crude and purified preparations of cyclooxygenase isoenzymes have been used in characterizing inhibitors, several studies indicate that for unknown reasons the potency and selectivity of inhibitors determined using intact cells expressing cyclooxygenase isoenzymes differ from values established using cell-free cyclooxygenase preparations. For example, ibuprofen is approximately 10-fold more potent against cyclooxygenase-2 in intact cells than against cyclooxygenase-2 activity in broken cells [62].
	Several functional COX assays using purified or recombinant enzymes have been reported and include an oxygen consumption assay, a peroxidase co-substrate oxidation assay, a radiolabelled chemical inhibition assay, and an enzyme-linked immunosorbant assay.
	3.2.7.1 Oxygen consumption assay
	COX enzymatic activity was determined by measuring oxygen consumption at 37°C in an oxygraph chamber using an YSI Model 53 oxygen monitor [63]. Tests were performed using isolated protein.
	3.2.7.2 Peroxidase co-substrate oxidation assay
	Peroxidase activity of the cyclooxygenase could be measured in a peroxidase co-substrate oxidation assay using guaiacol, heme and hydroperoxide [64]. Assays were performed with recombinant purified protein.
	3.2.7.3 COX Immunoassay
	COX activity in protein solutions can be measured using a commercial Prostaglandin E2 competitive immunoassay kit. The kit uses a monoclonal antibody to Prostaglandin E2 in a competitive manner. Prostaglandin E2 from the sample competes with an alkaline phosphatase Prostaglandin E2 fusion molecule (#ADI-901-001 Enzo Life Sciences).
	3.2.7.4 COX fluorescence assay
	During a cellular assay the peroxidase substrate, 5- (and 6)-carboxy-2‘,7’-dichlorodihydrofluorescein (CDCF) was passively incorporated into cells as the acetoxymethyl ester, 5- (and 6)- carboxy-2',7'-dichlorcdihydrofluorescein diacetate (CDCFDA). Following partitioning into the cell, cytoplasmic esterases cleave the methyl esters and trap the resultant charged CDCF. CDCF serves as a reducing substrate for the peroxidase activities of cyclooxygenase-1 and cyclooxygenase-2. PGG2 generated by the cyclooxygenase activity upon the addition of arachidonate is reduced to PGH2 by the peroxidase activity with resultant oxidation of CDCF to a fluorescent product that can be detected by fluorescence microscopy (Figure 11) [65].
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	Figure 11: COX fluorescence assay. Fluorescence assay for cyclooxygenase activity in living cells. After loading of the cells with CDCFDA arachidonate (RH) is added and oxidised. Peroxides are reduced by COX peroxidase activity with resultant oxidation of CDCF to a fluorescent product that can be detected by fluorescence. 
	3.2.8 Sensitivity of in vitro and in vivo assays
	Different sensitivity of substances in in vivo compared to in vitro tests may be related to metabolic activities. The metabolic capacity of a living organism could differ from the metabolic activity of single cells. Dependent on this difference an in vitro test system could have an enhanced sensitivity over the in vivo test system. It is also possible that a metabolite from a substance (e.g. the endocrine disrupting chemical flutamide) exert a higher binding activity on the mammalian hormone receptor as the substance itself. The binding constant of a substance to its biological target molecule influences the lowest observed effect concentration in an in vitro assay system. The detection limit of much pharmaceuticals in in vitro assays is in the range of nM to µM concentration due to the corresponding IC50 concentrations of 10-6 to 10-9 mol/L. However, when accumulation occurs in an animal, in vitro test systems can be less sensitive.
	3.2.8.1 Comparative in vivo / in vitro analysis of endocrine disrupting chemicals
	Endocrine disrupting chemicals are defined as exogenous agents that interfere with the production, release, transport, metabolism, binding, action or elimination of natural hormones in the body. A variety of developmental and reproductive disorders observed in wildlife species have clearly been linked to the exposure to endocrine disrupting chemicals. The importance of identifying potential endocrine disruption has been recognized by regulatory bodies. In order to consider potential endocrine disrupting effects the US Environmental Protection Agency established the Endocrine Disruptor Screening Program. This program employs an approach including a combination of in vitro and in vivo mammalian and ecotoxicological screens for identifying and characterizing endocrine effects of pesticides, industrial substances, and environmental contaminants. Part of the tier 1 screening is a Fish Short-Term Reproduction test and an Amphibian Metamorphosis Assay. These in vivo tests are used to identify potential endocrine disrupting chemicals. Because this regulatory approaches focus on screening assays that use animals and are several weeks in duration shorter-term in vitro tests that reduce the number of animals and time are required. 
	In vitro screening for endocrine disruption could address many different hormone systems, such as reproductive hormones (e.g. estrogens, androgens, progesterons), or thyroidal hormones, corticosteroids, growth hormone and their associated hypothalamus/pituitary releasing and stimulating hormones. To date, most alternative assays for detecting potential disruption of estrogen, androgen and thyroid pathway regulation evaluate receptor binding/transactivation, receptor mediated gene/protein expression or hormone synthesis. 
	For a comparative analysis published in vivo data on reproductive effects and metamorphosis were compared with published data of in vitro receptor binding or reporter gene assays [66]. For nearly every compound, for which in vivo data were available, some alternative in vitro assays showed a sensitivity similar to or greater than these in vivo data. However, the correlation to in vivo data was biased by using mainly in vivo data for compounds with affinity to the estrogen receptor [66]. Comparative in vivo and in vitro data for substances with other mode of actions (e.g. COX-inhibitors, -adrenoceptor blockers) are still lacking.
	3.2.9 Evaluation
	3.2.9.1 Selection of substances with high priority
	There have been many instances in which pharmaceuticals and their metabolites have been identified in water effluents. For developing an in vitro assay measuring biological activity of a group of pharmaceuticals first a target molecule has to be defined. An assay could then be developed where the target molecule itself or a downstream signalling event leads to a signal read out after binding of a pharmaceutical to its biological target. 
	Pharmaceuticals with high priority according to UBA are the -blocker Atenolol, Bisoprolol, Metoprolol and Propranolol. All this pharmaceuticals as well as metabolites having similar biological activity could be measured by an in vitro assay monitoring inhibition of the -1 adrenoceptor. 
	Another group with high priority according to UBA are analgesic drugs including Diclofenac, Ibuprofen, Naproxen, Metamizole and 4-N-Methylaminoantipyrin. All these substances as well as the lower priority drugs Indometacin and Mesalazine inhibit the activity of the cycloxygenase 1 and/or 2 (Cox1, Cox2). Therefore an in vitro assay measuring inhibition of Cox activity could be used for monitoring a biological effect caused by one or more pharmaceuticals characterized by this mode of action.
	3.2.9.2 Evaluation of published in vitro assays
	After selection of -blocker and analgesic drugs for in vitro assay development, corresponding published in vitro assays are evaluated in the following chapter. A practicable solution for in vitro assay systems is a cell based assay system using a stable transfected cell line expressing its recombinant gene of interest in an inducible fashion. In such a case false positive results could be excluded by using the non-induced cell line in parallel. Most of the published cell based in vitro assays use cell lines expressing the recombinant protein continuously. There are several inducing expression systems published and it should be possible to use an inducible expressing system for the development of cell line dependent in vitro assay systems. 
	3.2.9.2.1 -adrenoceptor compatible in vitro assays
	Biosensors for 1-adrenoceptor activation/inactivation are published for direct and coupled downstream activities (Table 1.)
	The most specific -1 adrenoceptor (β1-AR) inhibition assay measures the β1-AR conformation change by a conformation based FRET assay (β1-AR sensor, 3.2.6.4). Concentration-response curves of β1-AR sensor activation for norepinephrine and isoproterenol yielded half-maximal effective concentration (EC50) of 1.800 ± 200 nM and 230 ± 40 nM. Due to a direct conformational effect in transiently transfected cells the FRET signal (FRET) was only 5%. This signal was reversible by addition of the antagonist propranolol (10µM). 
	Downstream effects of -1 AR activation like cAMP generation or gene activation can be utilized to monitor -1 AR inhibition. These assays would have the advantage of higher signal read out due to signal amplification. One have to have in mind that levels of intracellular cAMP are tightly regulated, with degradation controlled via the cAMP phosphodiesterase enzymes. When cAMP is produced it binds to protein kinases within the cell, initiating phosphorylation events that regulate target enzymes and transcription factors. There are a variety of cAMP phosphodiesterase enzyme isoforms, which are generally activated by cAMP dependent protein kinases, thus providing an important negative feedback system on the receptor-mediated signalling cascade and regulating the extent of changes in intracellular cAMP concentrations.
	Most sensitive cAMP immunoassays (3.2.4) are competitive assays and share the disadvantage that increases in cAMP produce a decrease in signal, making them liable to false positives.
	A very sensitive in vitro assay utilizes reporter genes that contain a cAMP response element that regulates the transcription of an enzyme or a fluorescent/bioluminescent protein (3.2.6.3). Synthetic promoters made up of multiple copies of these sequences are routinely employed in reporter genes and have been extensively used to study GPCRs. The reporter protein needs to have a short half-life to minimize basal accumulation of reporter proteins that can restrict the sensitivity of the final readout. In the case of GFP, this can be achieved by creating a destabilized version of GFP by fusing a degradation domain from mouse ornithine decarboxylase to the C-terminal of GFP. As a result of substantial signal amplification between ligand binding and the final measured response ligands with partial agonist activity are likely to manifest themselves as full agonists in most reporter gene in vitro assays. This results in the observation that many -blockers in common clinical practice produce substantial agonist effects at 1- and 2-adrenoceptors when measured at the level of gene expression. 
	Kinetic studies of the time course of agonist-stimulated gene expression have been undertaken using reporter genes. These studies have shown that a minimum of 30 min of agonist exposure is required to detect a measureable change in reporter gene activity and that it is the duration of cAMP elevation rather than the total quantity of cAMP produced that is the major determinant of the final response. The resulting requirement for sustained stimulation needs to be taken into account when designing an inhibitory assay and the potential for receptor desensitization with highly efficacious agonists during the time course of the assay means that lower efficacy agonists should be employed. 
	Direct cAMP detection is possible using firefly luciferase-based biosensors. Genetic manipulation of firefly luciferase into a reversible biosensor of cAMP generation (3.2.6.2) resulted in broad linearity coupled with high sensitivity of intracellular cAMP concentration determination. The firefly luciferase based cAMP biosensor has a pEC50 for cAMP of 6.3 and a large signal-to-noise window of approximately 70-fold. When expressed in HEK293 cells, the addition of 10 µM forskolin, a direct activator of adenylyl cyclase, can mediate a 25-fold increase in the luminescent signal within 3.5 min. This sensor represents a powerful method to detect the kinetics of cAMP generation. This cAMP luminescent biosensor assay is covered by a patent application (EP2281046). However, when interpreting kinetics of the luminescent signal, consideration must be given towards the potential for a delay between the real-time cAMP dynamics and the generation of the active form of firefly luciferase. 
	Another assay type for detecting intracellular cAMP concentration uses FRET based cAMP sensors (3.2.3.3.2.1.). These sensors are used for investigating the spatial and temporal characteristics of cAMP signalling at a single cell level. 
	Table 1:  1-adrenoceptor biosensors. Published biosensors for 1-adrenoceptor and coupled downstream activities
	Biosensor
	Signal
	Advantages/Disadvantages
	Ref.
	1-adrenoceptor
	FRET
	Highly specific
	[51]
	cAMP luminescent biosensor
	Luminescence
	cAMP EC50= 6µM, large signal to noise window / patent pending
	[58]
	cyclic nucleotide-gated channels
	CNGA2
	HCN2-camps
	Ca2+ current
	FRET
	cAMP EC50= 1µM, conversion of cAMP into Ca2+ signal, rapid transient signal, complicated read out.
	cAMP EC50= 6µM, good for high basal cellular cAMP 
	[60]
	[61]
	PKA based cAMP sensorR-CFP, C-YFPPKA-camps
	FRETFRET
	cAMP EC50= 0,5-0,9 µM, multimericcAMP EC50= 1,9µM, single chain (faster kinetics)
	[69][42]
	Epac based cAMP sensorEpac1/2-campsEpac2-camp300CFP-Epac-YFPICUE1/2
	FRETFRETFRETFRET
	cAMP EC50= 2,4 / 0,9 µM, single chaincAMP EC50= 0,3 µM, single chain, high sensitivitycAMP EC50= 50 µM, low sensitivitycAMP EC50= 10-50µM, low sensitivity
	[42][70][45][44]
	cAMP Reporter geneCRE EGFPCRE Luciferase
	FluorescenceLuminescence
	basal CRE signal activity essential for cell viabilityreporter accumulation
	[59][59]
	PKA and EPAC-based FRET sensors have a similar affinity for cAMP of approximately 0.3–3 µM and a dynamic range of approximately 0.1-10 µM. As a consequence of their relatively high sensitivity, these biosensors are likely to be quickly saturated in cell types that have particularly high concentrations of cAMP. When expressed in HEK cells, the EPAC-based cAMP probe had a uniform, cytosolic distribution. However, the compartmentalization of cAMP responses results in cAMP signalling targeted to discrete microcellular domains. Generally, the activation kinetics of plasma membrane targeted cAMP sensors are more rapid and of greater amplitude than those of their cytosolically distributed equivalents. This may reflect the fact that the plasma membrane is the site of cAMP production and/or the restriction of cAMP diffusion within microdomains located near the plasma membrane.
	cAMP gated ion channels like the rat oCNG channel (3.2.6.5) can induce a Ca2+ influx as a result of local increase of cAMP concentration [60]. The Ca2+ current was measured by patch clamp recording and fura-2 fluorescence measurement. 
	3.2.9.2.2 Cyclooxygenase compatible in vitro assays
	From published Cyclooxygenase assays (Table 2) only the COX fluorescence assay is suitable for application in a homogeneous assay system without the need of using purified protein preparations.
	The cyclooxygenase reaction is part of an enzymatic cycle after generation of a tyrosyl radical in the cyclooxygenase active side. This enzymatic reaction converts arachidonic acid into prostaglandin G2. The lipid hydroperoxide prostaglandin G2 is then reduced to prostaglandin H2 (Figure 13). Leakage of the peroxyl radical from the cyclooxygenase active side leaves the enzyme in a catalytically inactive form. Reactivation of the cyclooxygenase activity requires reaction of the heme prosthetic group with another molecule of hydroperoxide explaining the need for continued presence of hydroperoxide in cyclooxygenase-arachidonic acid reactions [67]. The reduction of hydroperoxide prostaglandin G2 to prostaglandin H2 needs a cellular electron donor. It is likely that other cellular enzymes take part in the reduction of prostaglandin G2. A possible candidate enzyme is thioredoxin reductase. The mammalian thioredoxin reductase shows reducing activity towards a variety of substrates. It was shown that mammalian thioredoxin reductase reduces arachidonic acid hydroperoxides [68]. Thioredoxins are small (Mw 12.000) disulfide-containing redox proteins known to be present in all eukaryotic and prokaryotic organisms. Thioredoxins are members of the ubiquitous thiol-disulfide oxidoreductase family representing the major ubiquitous disulfide reductases responsible for the maintaining proteins in reduced state in the cytoplasm. Thioredoxins are reduced by electrons from NADPH via thioredoxin reductase.
	Table 2: Cyclooxygenase activity assays. Published biosensors for measuring cyclooxygenase activity activities
	COX assay
	Signal
	Advantages/Disadvantages
	Ref.
	Oxygen consumption assay
	I (current)
	Clark type oxygen electrode, test use purified COX protein
	[63]
	Peroxidase co-substrate oxidation assay
	Photometric (E436)
	Guaiacol oxidation assay with purified COX protein
	[63]
	COX Immunoassay
	Photometric(E405)
	Competitive PGE2 immunoassay kit, use of purified protein
	(3.2.7.3)
	COX fluorescence assay
	Fluorescence
	Cellular assay using stable cell lines, light and oxygen sensitive reagent
	[65]
	A frequent protein modification as result of oxidative stress is the oxidation of sulfhydryl groups. The redox active protein component cystein would be oxidized completely under normal atmospheric conditions to form a disulfide bond. An unwanted formation of disulfide bonds in the cytoplasm also called “disulfide stress” could be reversed by redox regulation. The simplest scheme of modulation redox state is depicted in Figure 12.
	/
	Figure 12:  Modulation of redox regulation. 
	/
	Figure 13: Arachidonic acid metabolism through the COX pathway. COX-1 and COX-2 convert arachidonic acid to the intermediate prostaglandin PGG2 and then to PGH2 which either spontaneously decomposes or is converted by other enzymes to form primarily PGE2 and PGD2
	It was shown by Kargman et al. [65] that in CHO cell lines stably expressing cyclooxygenase isoforms exogenous arachidonic acid was metabolized. Cyclooxygenase activity was measured after loading of cells with dichloro-dihydrofluorescein diacetate by fluorescence after converting of the ester into the carboxylic acid by cellular esterases (3.2.7.4). Due to instability of the reagent ester, inhomogeneities in cellular loading and hydrolysis of the reagent into the fluorescent dye, this assay seems to be not convenient for a robust in vitro assay method.
	3.2.9.3 Suggestion for in vitro assay development
	For development of homogenous in vitro assay systems with high sensitivity and specificity it is recommended to engineer -blocker and NSAID biosensor cell lines. The cell lines should stably express their transgenes in an inducible form. The tests should be conducted with induced and non-induced cells in parallel, thus enabling test controls excluding false positive signals. -blocker biosensor cell lines should monitor the -adrenoceptor dependent cAMP signal. cAMP should be measured by the FRET sensor Epac (3.2.3.3.2.1) and in parallel by the calcium sensor GCaMP (3.2.3.3.1.3) after converting the cAMP signal into a Ca2+ current. NSAID biosensor cell lines should be based on the detection of lipid peroxides. The cyclooxygenase dependent lipid peroxide generation should be monitored by the redox potential sensor roGFP (3.2.3.3.1.2). 
	3.2.9.3.1 -adrenoceptor in vitro assay suggestion
	In a first step, two parallel approaches are recommended: 
	1. A FRET based microscopic assay (as described in 3.2.3.3.2.1). This assay enables detection of space resolved signals. Although new microtiter plate readers with higher sensitivity are commercially available it is not clear whether this sensitivity is sufficient for measuring FRET signals without spatial resolution. cAMP is restricted into microdomains located near the plasma membrane. This could result in a limited signal range. Because of this uncertainty it is suggested to develop a second approach:
	2. An assay system where a membrane located cAMP signal is converted into a cytoplasmic Ca2+ signal as described in 3.2.6.5. Such a signal could be measured in a microtiter assay format without the need of spatial resolution. This should be possible cloning a mutant of the cAMP gated rat olfactory CNG channel [60]. The Ca2+ influx could be measured by a Ca2+ dependent fluorescent dye [60] or by a genetically encoded Ca2+ biosensor (3.2.3.3.1.3). 
	For development of a homogeneous cell based assay system, a cell line expressing the -1 adrenoceptor together with an Epac1/2 cAMP sensor in an inducible form should be developed and tested whether the cAMP coupled FRET signal is sufficient for measuring in a microtiter plate assay (approach 1).
	In addition, a cell line has to be engineered in such a way that the cell line expresses the -1 adrenoceptor, a specific mutant of the cyclic nucleotide gated channel CNGA2 and the Ca2+ sensor GCaMP3. All proteins should be expressed stably in an inducible form (approach 2).
	For saving costs it is recommended to prove in principal functionality on a very early development step for the two in vitro test systems and to define appropriate milestones. After reaching the first milestone it has to be decided on the test system which has to be further developed. 
	If -blockers are present in the test sample the inhibition of the -adrenoceptor leads to a reduced cAMP generation and thus to an increase of the Epac FRET signal (approach 1) or a decrease of Ca2+ dependent fluorescence (approach 2) both relative to the control.
	3.2.9.3.2 Cyclooxygenase in vitro assays suggestion
	For screening of COX inhibitors, a test based on the detection of redox potential changes described in 3.2.3.3.1.2 is recommended. The inducible expression of cyclooxygenase in a genetically engineered cell line should result in generation of lipid peroxides after addition of arachidonic acid. Due to this inducible peroxide generation the redox state should be influenced resulting in some disulfide stress. This disulfide stress could be monitored by redox sensitive fluorescence protein indicators. 
	For development of a homogeneous cell based assay system one would have to engineer a cell line in such a way that the cell line expresses both, a cyclooxygenase and a redox sensitive fluorescent GFP protein variant in parallel. Both proteins should be expressed stably in an inducible form.
	If COX inhibitors are present in the test sample, a diminished lipid peroxide generation will result in a decreased roGFP fluorescence signal relative to the control. 
	4. Conclusions
	As a basis for the development of an effect-based strategy to biomonitor pharmaceuticals, a literature review has been conducted which revealed the necessity to develop mode of action-based biotests for routine monitoring of distinct pharmaceutical classes. In this context, a strategy to monitor entire classes of pharmaceuticals with the same mode of action is given preference because a monitoring programme comprising different biotests for each single substance would cause unrealistically high costs, and a monitoring programme which focusses on just a few lead substances would drastically underestimate the risk exerted by a plethora of pharmaceuticals excluded from analysis. Consequently, priority should be given to develop effect-oriented in-vitro tests for pharmaceutical classes and, within those, to analgesics, ß-blockers, and antibiotics. Such in-vitro assays need to be evaluated with in-vivo test systems in parallel. In view to incorporate living organisms here, the literature review revealed ciliate, fish, and mollusk species to exhibit particular sensitivity to pharmaceuticals. Most sensitive endpoints were behavior (chemotaxis), vitellogenin synthesis, growth, reproduction, histological responses, biochemical stress markers, changes in gene expression profiles, receptor binding, and, with reservation, the heart rate. Numerous pharmaceuticals have also been tested for their impact on parameters that directly influence population development: reproduction, fecundity, ontogeny, mating patterns. Here, most significance has been assigned to pharmaceuticals with endocrine action. In contrast to single substances, effects of mixtures of pharmaceuticals can hardly be assessed reliably, since data are not consistent. Consequently, mode of action-based biotests are necessary to decipher the contribution of single substances to the toxicity exerted by a mixture of pharmaceuticals. Endpoints which may be candidates to track mode of action-specific effects of pharmaceuticals are receptor affinity, vitellogenin induction (for estrogenic hormones), specific induction of gene expression, specific repression of enzymes (e.g. COX) or the formation of biochemical secondary products (e.g. lipid peroxides).
	Overall, the constructed database represents an extensive compilation of recently generated data on pharmaceutical effects, which will help researchers orienting in this quickly growing field. Besides the identification of certain promising test species and effect endpoints, there is growing evidence that several pharmaceuticals bear the potential to exhibit effects at environmentally relevant concentrations. They may therefore pose serious risks towards aquatic ecosystems and further studies are urgently needed. 
	The evaluation also showed that researchers need to put a higher effort into improving the reliability of their reported data; this includes a conclusive experimental design as well as a comprehensibly documentation and interpretation of the results.  
	5. Identification of shortcomings
	The literature review generally revealed a strong heterogeneity of data, frequently resulting in just a single dataset for a species. Furthermore, in fish, most studies have been conducted with model species or with species of only local relevance. Consequently, single studies providing numerous data for a large number of chemicals which have been conducted with a single test organism in a single test run will bias the empirical evidence, particularly if the reliability of this test or study is in question.
	In view to the relevance of data for Germany, a major shortcoming is the scarcity of data on ecologically relevant invertebrates (gammarids or biota of the sediment). Thus, the sensitivity of key species of home waters cannot be reliably assessed. Generally, data on sediment toxicity are limited in number. Only few publications report on studies that have used the same endpoint in the same test organism for different pharmaceuticals, and mode of action-specific endpoints are rarely used both in studies on single substances and mixtures. Quite often, chemical analytics supplementing biological tests is missing, and only about 70% of publication reviewed met the reliability criteria of Wright-Walters et al. (2011) to a sufficient extent. In general, a mode of action-based in vitro test for non-hormonal pharmaceuticals does not exist.
	6. Future perspectives in the biomonitoring of pharmaceuticals
	(1) We suggest to coin biotests that are based on mode of action-specific mechanisms and thus are specific for pharmaceutical classes and can be implemented in monitoring programs. Advantages of such biotests would be
	- the integration of overall chemicals belonging to an mode of action-specific class of pharmaceuticals, irrespective of their accessibility by chemical analytics which can be limited by constraints posed by methodological detection limits, laboratory capacities, or budgetary limits,
	- a pre-adaptation for the monitoring of future pharmaceuticals that exhibit the same mode of action as those the test has been developed for,
	- and the integration of combinatory effects of mixtures of pharmaceuticals.
	(2) Suitable prototypes implementing this idea would be in vitro tests for analgesics, like NSAIDs, and in vitro tests for ß-blockers.
	(3) The development of these in vitro biotests must go in line with in vivo experiments on ecologically relevant species which represent water and sediment biota in order to validate the sensitivity of the novel in vitro tests and to “ecologically calibrate” their signals. In these in vivo studies, identical endpoints shall be investigated in the laboratory and in field-relevant exposure systems, both for single pharmaceuticals and their mixtures. This strategy will provide necessary information regarding
	- the relevance of in vitro test signals for the situation in vivo,
	- the necessity to artificially concentrate water samples,
	- the relevance of laboratory studies for the field situation,
	- the significance of mixture toxicity, and 
	- differences in the toxicity of pharmaceuticals to water- and sediment-living biota.
	These suggestions are completely in line with the postulations of Ankley et al. (2007) who emphasize the impotance of mode of action-based studies for pharmaceutical monitoring, and of Brausch et al. (2012) [6] who stress the necessity of 
	“…(a) chronic toxicity data for individual pharmaceuticals to benthic invertebrates,
	including bivalves, and fish is lacking;
	 (b) Effects of pharmaceuticals on threatened or endangered species, which warrant
	protection at the individual level of biological organization;
	 (c) MOA-based studies, in which biochemical and histological alterations are
	investigated or studies in which genetic alterations are monitored in response
	to long-term pharmaceutical exposure;
	 (d) Techniques capable of detecting sensitive endpoints in aquatic organisms,
	such as in vitro and computational toxicology, for prioritizing chemicals and
	pathways for future studies;
	 (e) Data on complex mixtures of pharmaceuticals that found in WWTP effluents”
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