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Kurzbeschreibung 

Ziel des PROMETHEUS-Projektes ist es, ein Konzept für ein Programm zur Priorisierung von Substan-
zen innerhalb des PBT-Assessments zu entwickeln. Grundlage hierfür sind die Nutzung und die Im-
plementierung einer Vielzahl von in-silico Modellen für P, B und T (in Zusammenarbeit mit dem 
CALEIDOS LIFE Projekt), um in naher Zukunft ein Pilotprogramm für das PBT-Assessment lauffähig 
zur Verfügung stellen zu können. 

Das entwickelte Softwarekonzept beruht auf der Zusammenfassung vielfältiger Modelle, die aus ent-
sprechenden experimentellen Daten ausgewählter Endpunkte algorithmisch erhalten wurden. Das so 
integrierte System wurde schrittweise einer Validierung unterzogen, indem seine Vorhersagefähig-
keit für eine Reihe von Chemikalien überprüft wurde, die entweder von Behörden als PBT eingestuft 
wurden, oder solche die bezüglich PBT in der Literatur als unbedenklich gelten oder zu denen nur zu 
wenigen Eigenschaften Informationen vorliegen. Die Ergebnisse der Validierung des integrierten 
Systems zeigen eine erfolgreiche Identifizierung und Priorisierung von PBT-  und vPvB-
Verbindungen gegenüber entsprechend unbedenklich geltenden Verbindungen. 

 

Abstract 

The aim of the PROMETHEUS project is to create a conceptual scheme suitable for a program for pri-
oritization of substances to be evaluated for PBT-assessment. To do this, it is possible to use and inte-
grate a battery of in silico models for P, B and T (in collaboration with the CALEIDOS-life project), in 
order to implement a pilot program for PBT-assessment in the near future. 

The final software was obtained by the aggregation of models, built on suitable experimental data 
related to the endpoints chosen. Subsequently the system was subjected to a validation test to verify 
its performance on a set of chemicals containing molecules labelled as PBT by Authorities and others 
(non PBT or with information on only a few properties) obtained from the literature. The results of 
validation demonstrated that the integrated model for PBT (vPvB) prioritization separates successful-
ly PBT from non-PBT compounds. 
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Zusammenfassung 

Das Projekt PROMETHEUS hat das Ziel, eine Strategie zur Identifizierung und Priorisierung von für 
Umwelt und menschliche Gesundheit besonders besorgniserregenden Chemikalien zu erarbeiten. Der 
Fokus liegt hierbei auf allen Substanzen, die als PBT (persistent, bioakkumulativ oder toxisch) zu 
identifizieren sind. Dies ist ein komplexes Problem und die Strategie, die PROMETHEUS verfolgt, be-
ginnt mit der Recherche und sorgfältigen Sammlung von Daten. In einer Reihe weiterer, meist zu-
sammenhängender Aktivitäten, wurde nach Wegen gesucht, die Ursachen für die schädlichen Wir-
kungen zu verstehen und vorherzusagen. Ziel war es das Wissen über die Gründe, die zu schädlichen 
Effekten führen, zu erweitern und das PBT-Verhalten neuer Substanzen vorherzusagen. 

Das Projekt wurde aus technologischer Sicht unterstützt durch die Neuentwicklung von konzeptio-
nellen oder implementierten Modellen, die idealerweise zukünftig in einer Plattform integriert wer-
den können. 

Ziel von PROMETHEUS aber war es ein konzeptionelles Schema zur Zusammenfassung verschiedener 
Evaluierungswerkzeuge innerhalb des PBT-Assessments zu entwerfen, auch im Hinblick auf eine 
später zu erfolgende Softwareimplementierung. 

Die Schwerpunkte des PBT-Assessments liegen auf den drei Eigenschaften Persistenz, Bioakkumula-
tion und Toxizität, die alle auch in Kombination mit anderen "Eigenschaften" oder in Form von spezi-
fischen zugehörigen Endpunkten wie DT50 oder Biokonzentrationsfaktor (BCF) auftreten können. So 
kann die Eigenschaft der leichten biologischen Abbaubarkeit zur ersten Prüfung auf Persistenz ver-
wendet werden: eine Verbindung, die als leicht biologisch abbaubar gilt, ist mit Sicherheit nicht per-
sistent. Darüber hinaus wird logKow (der Logarithmus des Octanol-Wasser-Verteilungskoeffizienten) 
in vielen Komponenten der Gesamtstrategie als grundlegende Eigenschaft zur Beurteilung der Bioak-
kumulation verwendet. 

Es liegen keine ausreichenden experimentellen Daten vor, sowohl für bekannte PBT-Chemikalien als 
auch für PBT-unbedenkliche Chemikalien, um basierend auf diesen Daten ein neues Modell für die 
"PBT"-Eigenschaft direkt zu entwickeln. Wir waren daher gezwungen separate Herangehensweisen 
für jede der drei Eigenschaften zu verfolgen und diese Module dann mit Hilfe geeigneter Gewichte in 
ein gemeinsames System zu integrieren. Die begrenzte Anzahl tatsächlich bekannter PBT- und nicht-
PBT-Chemikalien konnte dann dazu verwendet werden, die Korrektheit der gewählten, auf Experten-
schätzungen beruhenden Gewichtung zu überprüfen. 

Es ist anzumerken, dass aus den Daten zu allen Endpunkten (P, logP, BCF und akute Toxizität bei 
Fisch) anorganische Verbindungen und Gemische eliminiert und Salze neutralisiert wurden. Zusam-
menfassend liegen folgende Ergebnisse vor. 

Persistenz 

Für die Überprüfung der Persistenz wird konzeptionell mit der Prüfung auf leichte biologische Ab-
baubarkeit begonnen. Dazu werden ein Klassifizierungsmodell und sein erzeugter kontinuierlicher 
(reeller) Wert verwendet. Ist die Chemikalie biologisch abbaubar, dann ist sie nicht persistent. Im 
anderen Fall, wenn die Chemikalie nicht biologisch abbaubar ist, werden Modelle für die Persistenz 
in Wasser, Boden und Sediment genutzt. Ist die Chemikalie persistent in einem der drei Lebensräu-
me, können wir sie als persistent klassifizieren.  

Im Einzelnen wurden in einem ersten Schritt Daten zur biologischen Abbaubarkeit für jeden Lebens-
raum und aus unterschiedlichen Quellen zusammen getragen. Cheng et al. (2012) stellt kontinuierli-
che Daten hierzu bereit, die wir für unsere Zwecke genutzt haben. Weitere Daten wurden aus dem 
Datensatz des EU-Projektes ANTARES erhalten (Lombardo et al., 2014). In diesem Projekt wurden die 
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mögliche Nutzung und Leistungsfähigkeit alternativer Testverfahren für REACH verifiziert, sowie 
geprüft, welche in silico Modelle bessere Ergebnisse liefern, wenn sie für eine große Anzahl von Sub-
stanzen getestet werden. Letztlich diente die QSAR Toolbox (Version 3.1) als Quelle, aus der relevan-
te Daten extrahiert wurden. Alle diese Daten wurden zu einem einzigen Datensatz mit kontinuierli-
chen experimentellen Werten zur biologischen Abbaubarkeit von 1207 organischen Verbindungen 
zusammengefasst. Zudem wurden Daten mit Halbwertszeit aus verschiedenen Quellen (Gouin et al., 
2004; Gramatica und Papa, 2007) zusammengetragen und so ein Datensatz mit 297 Verbindungen 
für Persistenz in Sedimenten sowie 298 Verbindungen für Persistenz in Boden und Wasser erhalten. 
Diese Daten waren in Kategorien angegeben (in semi-dekadischer logarithmischer Skalierung, aus-
gedrückt in "Stunden"). Für die Persistenz im Boden war eine weitere Datenquelle das United States 
Geological Survey (USGS). Die Verbindungen aus dieser Quelle wurden überprüft und dann zum be-
stehenden Datensatz hinzugefügt, wodurch ein Datensatz von 537 Verbindungen für die Prüfung der 
Persistenz im Boden entstand.  Für die Persistenz in Wasser und Boden war eine weitere Quelle der 
Report des National Institute for Public Health and the Environment (Linders et al., 1994) mit DT50 
Daten zu Pestiziden. Diese Daten wurden ebenfalls geprüft, z.B. bezüglich der Übereinstimmung von 
Strukturen und CAS-Nummern, kategorisiert und zu den bestehenden Datensätzen hinzugefügt, so 
dass am Ende Datensätze mit 351 Verbindungen zur Prüfung der Persistenz in Wasser und 568 Ver-
bindungen für Persistenz im Boden zur Verfügung standen. Um diese Daten nutzen zu können, muss-
ten zunächst die Originalwerte an die unter REACH vorgegebenen Kriterien angepasst werden. Diese 
Anpassung bezog sich nicht auf die Einheiten der Werte, sondern war der Tatsache geschuldet, dass 
unter REACH andere Grenzwerte gelten als die, die von den kanadischen Autoren in ihren Originalda-
ten verwendet wurden. Die unterschiedlichen Kategorien und relativen Grenzwerte erschwerten diese 
Arbeit insofern, dass es hier keine gute Übereinstimmung zwischen der kanadischen und europäi-
schen Kategorisierung gibt. 

Basierend auf den beschriebenen Datensätzen entwickelten wir verschiedene Modelle mit Hilfe un-
terschiedlicher Modellbildungsverfahren. K-NN Modelle (k-Nearest Neighbor) wurden für Persistenz 
in Wasser, Boden und Sediment entwickelt. Der k-NN Algorithmus ist ein ähnlichkeitsbasiertes Ver-
fahren, der das Ergebnis einer zu untersuchenden Verbindung auf der Basis bekannter experimentel-
ler Werte einer Anzahl ihr am meisten ähnlichen Verbindungen eines gegebenen Trainingsdatensat-
zes abschätzt. Hierzu wird der Mittelwert der experimentellen Werte der gesuchten Eigenschaft über 
die erhaltenen k ähnlichen Substanzen ermittelt. Die Anzahl k ähnlicher Substanzen wird durch die 
Software selbst festgelegt, wobei der Nutzer verschiedene Optionen wählen kann. Bei dem von uns 
eingesetzten k-NN Verfahren wird im Gegensatz zu anderen Implementierungen ein den jeweiligen 
Ähnlichkeiten entsprechender gewichteter Mittelwert gebildet. 

Die Ergebnisse dieser Modelle werden dann durch andere Modelle, die mit SARpy und istChemFeat 
erhalten wurden, überprüft. SARpy ist ein Programm, das die chemische Struktur in Fragmente auf-
teilt und dann nach den Fragmenten sucht, die für die gesuchte Aktivität oder Eigenschaft von Rele-
vanz sind. SARpy wird in Abschnitt 2.2.4 näher beschrieben und wurde bereits für die leichte biolo-
gische Abbaubarkeit genutzt. Das Programm istChemFeat wird in Abschnitt 2.2.5 ausführlicher be-
schrieben. Die Ergebnisse dieser zusätzlichen Tools werden dann zu einem Konsensergebnis kombi-
niert, um eine erhöhte Aussagefähigkeit über die Zuverlässigkeit der Vorhersage zu bekommen.  

Bioakkumulation 

Die Prüfung der Aktivität auf Bioakkumulation kann mit den vorhandenen Modellen für den BCF und 
dem Octanol-Wasser-Verteilungsquotienten ausgedrückt als logKow (logP) vorgenommen werden. 
LogKow ist in vielen Modellen enthalten und ist konzeptionell ein wichtiger Faktor für den BCF. Expe-
rimentelle Daten zum logKow von 2482 Chemikalien, die bereits für REACH registriert wurden, konn-
ten aus der ECHA CHEM Datenbank im Projekt CALEIDOS abgerufen werden. CALEIDOS ist das Nach-
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folgeprojekt von ANTARES. Während ANTARES Datensammlungen aus der Literatur verwendet hat, 
um die Resultate von in silico Modelle zu überprüfen, nutzt CALEIDOS Daten über Chemikalien, die 
im Rahmen von REACH bis 2013 offiziell registriert worden sind. Diese Daten wurden dafür genutzt 
um zu überprüfen, ob die in Frage stehenden in silico Modelle in der Lage sind, die von den Regist-
ranten eingereichten Werte vorherzusagen. Ein weiterer Unterschied zwischen diesen beiden Projek-
ten ist z.B., dass sie nicht genau die gleichen Endpunkte untersuchten. PROMETHEUS selbst hat von 
der Arbeit, die in den ANTARES und PROMETHEUS Projekten geleistet wurden insofern profitiert, 
dass es möglich war, die jeweils bessere Datensammlung und das Wissen über die besten Modelle 
nutzen zu können. 

Nach Vorverarbeitung und begrenzender Auswahl enthält der finale Datensatz Daten zu 729 Molekü-
len. Weitere experimentelle Daten von 10.005 Verbindungen sind in der VEGA Datenbank verfügbar. 
Nach entsprechender Prüfung und Konsolidierung dieser Daten, stand ein finaler Datensatz von 
9.961 Chemikalien für das PROMETHEUS Projekt zur Anwendung bereit. Eine Vielzahl von Modellen 
wurde hinsichtlich ihrer logP-Vorhersagekraft geprüft, sowohl individuell als auch in kombinierter 
Form. Die besten von ihnen wurden dann für das PROMETHEUS Schema verwendet. 

851 chemische Verbindungen aus der ANTARES Datenbank bildeten die Grundlage für den Bioak-
kumulations-Endpunkt, wobei auf die implementierten Modelle der VEGA Plattform zurückgegriffen 
wurde.  

Toxizität 

Die Toxizitätskomponente ist komplexer als Persistenz und Bioakkumulation. Sie kann aus mehreren 
Faktoren bestehen, einschließlich dieser fünf: akute und chronische Ökotoxizität, akute und chroni-
sche Toxizität für den Menschen sowie endokrine Störungen. Prinzipiell existieren Modelle für jeden 
dieser Faktoren, allerdings nicht in gleicher und gleichbleibender Qualität. Wir haben uns daher auf 
die akute und chronische Ökotoxizität bei Fischen konzentriert. Diese Beschränkung wurde zu Be-
ginn des PROMETHEUS Projektes mit dem UBA besprochen und basiert im Wesentlichen auf dem 
Umstand, dass die Qualität existierender Modelle für die Toxizität bei wirbellosen Wassertieren und 
Algen als eher schlecht zu bezeichnen ist sowie deren Verfügbarkeit zudem begrenzt ist. Sobald bes-
sere Modelle zur Verfügung stehen, können in der Zukunft Modelle für Daphnia und Algen hinzuge-
fügt werden. 

Experimentelle Daten über die akute Toxizität bei Fischen wurden aus einer Reihe von Quellen abge-
rufen. Auf einen ersten Satz von LC50 Daten bei 96 Stunden bei Fathead Minnow für 567 Verbindun-
gen konnte aus dem ANTARES Projekt zurückgegriffen werden. Diese Daten stammen aus der frei 
zugänglichen Datenbank der U.S. EPA. Innerhalb des Projektes CALEIDOS sind experimentelle Daten 
ausgewählt worden, die aus Registrierungen für REACH stammen, um die Adäquatheit verschiedener 
QSAR Modelle zu evaluieren. Dieser Datensatz umfasst nach entsprechender Konsolidierung 718 
chemische Verbindungen mit insgesamt 1081 Messwerten. Da die Daten teilweise nicht reellwertig 
sind und daher nicht in nachfolgenden Schritten verwendet werden konnten, ergab sich ein effekti-
ver Datensatz von nur 455 Verbindungen. In der neueren Literatur finden sich größere Datensätze, 
wie z.B. von Su et al., erschienen im April 2014. Dieser Datensatz enthält Daten, die aus verschieden 
Studien zu unterschiedlichen Fischarten aus Publikationen, die peer-reviewed wurden, und Online-
datenbanken zusammengetragen wurden. Nach einer ersten Konsolidierung der Daten enthält dieser 
Datensatz 953 Verbindungen zu einer oder mehreren Fischarten und ein Mittelwert wurde daraus zu 
jeder Verbindung ermittelt. Dieser Datensatz bildete die Grundlage für die Entwicklung neuer Model-
le mit der k-NN Methode. 

Innerhalb von PROMETHEUS nutzten wir folgende (Q)SAR-Modelle zur Überprüfung der akuten To-
xizität für Fische: AlogP, MlogP, VEGA KOWWIN, SARpy, istCHEMfeat, ECOSAR, T.E.S.T., VEGA und 
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k-NN. Zusätzlich zur akuten Toxizität wurden mögliche chronische Effekte durch eine Reihe von Re-
geln evaluiert um zu prüfen, inwieweit chronische Toxizität auftreten kann. 

PBT Assessment 

Für das PBT assessment werden unter Anwendung mehrkriterieller Entscheidungsmethoden (MCDM) 
alle Informationen und Modelle, die für jeden der betrachteten Endpunkte erhalten wurden, in ein 
einziges System integriert. In einem ersten Schritt werden Prüf- und Zuverlässigkeitswerte zu einem 
einzigen Wert zusammengefasst. Zuvor werden diese jedoch, wie von der MCDM-Methode gefordert, 
in das Intervall [0, 1] transformiert, wobei der Wert 1 die maximale Ausprägung einer Eigenschaft 
bedeutet. Als optimalen Schwellwert zur Separierung von besorgniserregenden Stoffen (PBT-
Verbindungen) von weniger bedenklichen Stoffen (keine PBT-Verbindungen) wird der Wert 0,5 zu 
Grunde gelegt.  

Für die Persistenz erfolgt diese Transformation (Normierung) wie folgt. Das Ergebnis der Überprü-
fung der Persistenz einer chemischen Substanz ist eine von vier Kategorien: nP, nP/P, P/vP oder vP. 
Jeder dieser Kategorien wird ein definierter numerischer Wert zugeordnet, wobei für die binäre Zu-
ordnung PBT vs. nicht PBT der Wert 0,5 gewählt wurde, der somit auch unbekannten Ergebnissen 
zugewiesen wird (Tabelle Z1). Unbekannte Ergebnisse können entstehen, wenn kein hinreichend 
guter Vorhersagewert berechnet werden kann. 

Tabelle Z1:  Zuordnung von numerischen Werten zu Kategorien der Persistenz.  

Kategorie Wert 
nP 0,3 
nP/P 0,6 
P/vP 0,8 
vP 1,0 
unbekannt 0,5 

 

Die Normierung des Bioakkumulationswertes basiert auf dem logarithmierten Vorhersagewert für 
den BCF der untersuchten chemischen Substanz. Hier sind zwei Werte von speziellem Interesse: 3,3 
als Grenzwert für B und 3,7 als Grenzwert für vB. Die vorhergesagten Bioakkumulationswerte werden 
mit Hilfe folgender logistischen Funktion in einen Score transformiert:𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐵𝐵𝐵𝐵𝐵𝐵 𝑣𝑣𝑁𝑁𝑁𝑁𝑣𝑣𝑁𝑁 =

�
1

1+𝑒𝑒−(𝐵𝐵𝐵𝐵𝐵𝐵−3)  𝑓𝑓𝑁𝑁𝑁𝑁 𝐵𝐵𝐵𝐵𝐵𝐵 < 3.0 𝑁𝑁𝑁𝑁𝑙𝑙 𝑣𝑣𝑢𝑢𝑁𝑁𝑢𝑢𝑢𝑢
1

1+𝑒𝑒−2(𝐵𝐵𝐵𝐵𝐵𝐵−3)  𝑓𝑓𝑁𝑁𝑁𝑁 𝐵𝐵𝐵𝐵𝐵𝐵 ≥ 3.0 𝑁𝑁𝑁𝑁𝑙𝑙 𝑣𝑣𝑢𝑢𝑁𝑁𝑢𝑢𝑢𝑢
� 

 

Für einen BCF-Wert von 3,0 ergibt sich somit ein Score von 0,5 als Schwellwert zwischen B und nB. 
Ebenso wird deutlich, dass für Werte > 3,0 die Transformationskurve einen steileren Anstieg besitzt 
mit dem Ziel, eine klarere Differenzierung zwischen B (3,3) und vB (3,7) Verbindungen zu erhalten. 
Abbildung Z1 zeigt die Transformationskurve für logarithmierte BCF-Werte im Bereich -1 bis 7. 
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Abbildung Z1: Transformationskurve für vorhergesagte BCF-Werte in einen normierten Score. 

 

Der Ausgabewert des Moduls für Toxizität besteht aus der berechneten Toxizität für Fische in mg/l. 
Hierbei handelt es sich im Allgemeinen um akute Toxizität. Zur Berücksichtigung auch chronischer 
Toxizität wird eine Option im entsprechenden Modul zur Verfügung gestellt. 

Für die Toxizität beträgt der Grenzwert von Interesse 0,01 mg/l, unterhalb dessen chemische Verbin-
dungen als toxisch im Rahmen der PBT-Bewertung betrachtet wird. Die berechneten Toxizitätswerte 
werden mit Hilfe folgender logistischen Funktion in einen normierten Score transformiert: 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑇𝑇 𝑣𝑣𝑁𝑁𝑁𝑁𝑣𝑣𝑁𝑁 = 1 − 1

1+𝑒𝑒−(𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇𝑇𝑇𝑇𝑇)+1) 

 

Hier ergibt sich für einen logarithmierten Wert von -1 (0,1 mg/l) der neutrale Score von 0,5. Dieser 
eher konservativ gewählte Wert im Vergleich zum tatsächlichen Grenzwert von -2 (0,01 mg/l) soll die 
vorhandene Unsicherheit von experimentellen, berechneten und Grenzwerten abbilden helfen. Es ist 
bekannt, dass chemische Substanzen bereits mit Toxizitäten um oder unter 0,1 mg/l toxische Effekte 
zeigen, obwohl sie über dem regulatorischen Grenzwert von 0,01 mg/l liegen. 

Abbildung Z2: Transformationskurve für vorhergesagte Toxizitätswerte in einen normierten Score. 

 

Ähnlich wie bei der Normierung der Bioakkumulation zeigt die logistische Funktion eine gute Diffe-
renzierung um den Grenzwert herum, während deutlich höhere (um 0,001 mg/l) bzw. niedrigere (um 
10 mg/l) Toxizitätswerte weniger stark differenziert werden. 
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Abbildung Z2 zeigt die Transformationskurve für Toxizität im Bereich -5 (0,00001 mg/l) bis 4 
(10.000 mg/l). 

Nach diesem ersten Normierungsschritt liegen drei einzelne Scores für P, B und T einschließlich ihrer 
Zuverlässigkeitswerte ebenfalls im Intervall [0, 1] vor, die wiederum mittels MCDM kombiniert wer-
den. Der sich ergebende Index (desirability index DES) stellt dann den endgültigen PBT-Wert der 
bewerteten chemischen Verbindung dar.𝐷𝐷𝐷𝐷𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃0.4 ∙ 𝐵𝐵0.4 ∙ 𝑇𝑇0.2 

 

Hohe Werte (nahe 1) repräsentieren mit hoher Wahrscheinlichkeit (Zuverlässigkeit) besonders be-
sorgniserregende PBT-Verbindungen, während niedrige Werte (nahe 0) mit hoher Wahrscheinlich-
keit weniger bedenkliche PBT-Verbindungen indizieren. Insbesondere für das vPvB Screening wird 
folgender reduzierte Index zur Verfügung gestellt:𝐷𝐷𝐷𝐷𝐷𝐷𝑣𝑣𝑃𝑃𝑣𝑣𝑃𝑃 = 𝑃𝑃0.5 ∙ 𝐵𝐵0.5 

 

Diese Art der Zuordnung stellt sicher, dass hohe PBT bzw. vPvB Scores die am meisten besorgniserre-
genden Verbindungen anzeigen, sowohl bezüglich des Grades ihrer schädigenden Wirkungen als 
auch bezüglich der Zuverlässigkeit ihrer Zuordnung. Das entwickelte Konzept ist hinsichtlich dieser 
beiden Kriterien optimiert worden. 

Nach der Softwareimplementierung des Konzeptes wurden Validierungstests durchgeführt um die 
Vorhersagekraft des Ansatzes bekannte PBT-Verbindungen von Nicht-PBT-Verbindungen zu trennen, 
zu überprüfen. Zu diesem Zweck wurde ein Datensatz von in der Literatur oder von Behörden klassi-
fizierten PBT-Verbindungen zusammengestellt (Tabelle Z2).  

Tabelle Z2: Datenquellen zur Akkumulierung des Validierungsdatensatzes. 

# Endpunkt Quelle 
27 PBT  Candidate List; UBA list  

869 logBCF Read-across dataset  (VEGA)  
351 
297 
568 

Pwater 
Psediment 
Psoil 

Gouin et al., 2004 and Gramatica and Papa, 2007; RIVM 
(Linders et al., 1994); and USGS (Prioritizing Pesticide 
Compounds for Analytical Methods Development, 2012) 

91 Fish Chronic Tox OECD QSAR toolbox (ECOTOX database)  

Unsere Prüfung des entwickelten Konzeptes hat demonstriert, dass das implementierte integrierte 
Modell zur PBT-Priorisierung erfolgreich PBT- von Nicht-PBT-Verbindungen unterscheiden und klas-
sifizieren kann. Die Möglichkeit zur Prüfung auf vPvB-Eigenschaften besteht. 
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Summary 

The project PROMETHEUS is aimed to elaborate a strategy to identify and prioritize chemicals, which 
may be of concern for the environment and the human health using a screening approach. The out-
put of the project is a program, which lists chemicals, and in top of the list there are those assessed as 
most critical. The focus is on all chemicals that can be identified as PBT (persistent, bioaccumulative 
and toxic). The influence on the specific reason for concern, as P, B, or T, is reported by the program. 
The matter is complex and the strategy planned within PROMETHEUS started from an effort to gather 
suitable data, and then continued into a series of activities, parallel in some cases, or closely related 
most commonly, addressing ways to understand and predict the reasons for hazardous effects.  

This project was supported from a technological point of view by the development of models (both 
conceptual and implemented ones), which are integrated into a single innovative program. 

The aim of PROMETHEUS was to obtain a conceptual scheme for integrating different evaluation 
tools within a PBT framework, with a reference to software tools, which may be implemented in an 
integrated platform within a future initiative. 

The key targets of the PBT assessment are the three properties: persistence (P), bioaccumulation (B), 
and toxicity (T). Each of them may be composed of other “properties” or endpoints, such as DT50 and 
bioconcentration factor (BCF). For instance, the ready biodegradability property may be used as first 
assessment for persistence: a compound that is considered ready biodegradable is for sure non-
persistent. Furthermore the logKow (the logarithm of the partition coefficient between octanol and 
water) is a property, which is used in many components of the overall strategy, to drive the assess-
ment on bioaccumulation. 

We do not have sufficient experimental values on a set of known PBT-chemicals and a similar set of 
other chemicals, which are non-PBT, to be used to assess “PBT” as a property itself using these exper-
imental data to build up a new model for the “PBT”-feature. Moreover, there are no individual in sili-
co models, which are error-free in the predictions of the properties of interest. (Here and below we 
refer to model as an in silico model, i.e. a computer program which predicts the property based on the 
chemical structure of the substance). Several studies showed that depending on the chemical of in-
terest one predictive model may be appropriate, but changing the target chemical a different model 
may be more appropriate. This is well-known issue, related to the so-called applicability domain of 
the model. Based on the fact that multiple models may exist for the same endpoint, there have been 
many studies showing that combining them improves the results. Also regulators in several cases 
require application of more than one model, when available. For this reason we tested our specific 
case the results obtained combining the results from multiple models addressing a single endpoint, 
such as P, B and T. Thus, our philosophy has been to rely on separate approaches, which address the 
three properties separately, and then integrate the results of the models using proper weights.  

This overall philosophy, producing the program, which combines the different models, should be 
checked based on chemicals with experimental values. There is no “experimental value” for PBT, but 
there are individual values for the individual endpoints, such as P, B, and T, and actually the reality 
is even more complicated, because the evaluation of the persistence, for instance, is based on a series 
of individual assessment for the behaviour in water, soil and sediment. Thus, we have gathered a 
number of experimental values of chemicals which have been labelled as PBT, or which cannot be 
PBT. We clarify that if a substance is not at the same time P, and B, and T, it is not defined PBT. The 
limited number of officially identified PBT-chemicals has been used to check the correctness of the 
results of our program, and a similar number of chemicals non-PBT has been used to check for nega-
tive results.  
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Below we summarize the results. Please note that for data about all the endpoints (P, logP, BCF and 
fish acute toxicity) inorganic compounds and mixtures were eliminated and salts were neutralised.  

Persistence (P) assessment  

For the P-assessment the conceptual scheme starts with the ready biodegradability (RB) assessment. 
The scheme uses the classifier model, and the continuous value, for further evaluation. If the chemi-
cal is ready biodegradable, the chemical is not B. In the other case, when the chemical is not ready 
biodegradable, the scheme uses the models for the persistence in the different compartments, water, 
soil and sediment. If the chemical is persistent in one of the compartments, we classify the chemical 
as persistent.  

In a first step for each of these compartments and for RB, the first information was collected in the 
following way:  Data on RB were collected considering several sources. Cheng et al. (2012) provides 
continuous data on RB that we used for our purposes. More data were obtained from the dataset used 
in the ANTARES EC Project and already described in Lombardo et al. (2014). This project aimed to 
verify the possible use and performance of the non-testing methods for REACH legislation and to 
check which in silico models provide better results, when tested on large collections of substances. 
Finally the QSAR Toolbox (version 3.1) was used to extract further data. All these datasets were 
merged and we finally obtained a dataset containing 1207 organic compounds with continuous ex-
perimental data on RB.  

For persistence data with half-life (HL) were collected from different sources (Gouin et al., 2004; 
Gramatica and Papa, 2007) to obtain a dataset with 297 compounds for sediment, and 298 for soil 
and water. These data were only available in categories (in a semi-decade log scale basis, expressed 
as “hours”). For soil only, another source was available from the United States Geological Survey 
(USGS). These compounds were checked and then added to the soil dataset, obtaining a dataset of 
537 compounds. For water and soil another source of data for pesticides was the National Institute 
for Public Health and the Environment (RIVM) Report (Linders et al., 1994). Also these compounds 
were checked (e.g. correspondence between structures and CAS numbers), categorized as explained 
before, and added to water and soil datasets obtaining a final datasets of 351 data for water and 568 
for soil. In order to use these data we had to adapt the original values to those used under REACH. 
This does not refer to the units, but to the fact that under REACH the threshold criteria are different 
from those used by the Canadian authors in their original data set. The different categories and rela-
tive thresholds complicated the work, because there is no good correspondence between the sets of 
categories used by the Canadian authors and the REACH criteria. 

Using these data we developed several models. Different methods have been combined. A k-nearest 
neighbour (K-NN) model has been developed for persistence, for the three compartments (in total 
three models). The kNN algorithm is a similarity-based approach and can estimate the outcome of a target 

compound on the basis of the known experimental values of its most similar chemicals present within the training set 
of the model. In practice, this models searches for the most similar compounds and assigns the proper-
ty value of the target compounds based on the average of the property values of the k most similar 
chemicals. The number k is found by the software and the developer checks different possibilities. In 
the particular kNN model we applied, the software is more sophisticated than other kNN models. In-
deed, the property values keeps into account how similar are the most similar compounds, and pro-
vide weights based on this.  

Further check of the results is done using models based on SARpy and istChemFeat. SARpy is a pro-
gram which cuts the chemical structure into fragments, and then searches for fragments which are 
related to the activity or property of interest. SARpy is described in more details in Section 2.2.4. 
SARpy has been already used for predicting RB. istChemFeat is described in more details in Section 
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2.2.5. These additional tools are combined within a consensus approach, to increase or decrease the 
certainty of the result.  

Bioaccumulation (B) assessment 

The B-assessment is done with BCF- and logKow models. LogKow (the logarithm of the partition coeffi-
cient between octanol and water) is present in many models and also conceptually is an important 
factor for BCF. Experimental data on logKow of 2482 chemicals already registered for REACH have 
been retrieved from ECHA CHEM database 
(http://www.echemportal.org/echemportal/participant/participantinfo.action?participantID=140) 
within the CALEIDOS project. CALEIDOS is the project, which continued ANTARES. While ANTARES 
used collections of data from the literature to check the results of the in silico models, CALEIDOS 
started when the REACH regulation was in force, and thus could use the data on chemicals registered 
for REACH until 2013. These data were used to check if the in silico models were able to predict the 
values submitted by registrants. There are other differences between these two projects, and for in-
stance they did not addressed exactly the same endpoints. PROMETHEUS took advantage of the work 
done by ANTARES and CALEIDOS, using the collection of data from one or the other project, and the 
knowledge on the best models to use.  

Experimental data (10,005 compounds) on logKow are available within the VEGA database and they 
have been used also for PROMETHEUS project. VEGA is platform (explained in Section 2.2) with in 
silico tools, and it also includes, as part of the platform, a database with data on many thousands of 
substances, for many endpoints. The set has been processed and cleared from compounds that were 
replicated or that had problems with the provided molecule structure. This final dataset has 9,961 
chemicals. Many models have been checked for their performance for logKow prediction, used alone 
or combined, also using KnowledgeMiner Insights. The best ones have been used within the PROME-
THEUS scheme. 

851 compounds from ANTARES database were used for the bioconcentration factor (BCF). In this 
case the chosen models are those based on VEGA. The final dataset with BCF values from CALEIDOS, 
after processing and pruning, contains data on 729 molecules. 

Toxicity (T) assessment 

The T-assessment is more complex than those of the other two properties as it toxicity includes differ-
ent endpoints, including these five: acute and chronic ecotoxicity, acute and chronic human toxicity, 
and endocrine disruption, which does not fall under the classical chronic endpoints, and is ad-
dressed both for human and environmental endpoints. In principle, for each of them there exist mod-
els, but these are not of homogeneous quality. In this project we limited the evaluation on acute and 
chronic ecotoxicity focused on fish. The focus on fish has been discussed at the beginning of the 
PROMETHEUS project with UBA, and it is mainly based on the fact that the quality of the existing 
models on aquatic invertebrates and algae is quite poor, and the availability of the models also lim-
ited. In the future, when better models will be developed, models for daphnia and algae can be add-
ed. 

Experimental data on fish acute toxicity were retrieved from different sources. A first set of 567 com-
pounds with LC50 data on Fathead Minnow at 96 hours was retrieved from the work done within the 
project ANTARES. Data were obtained from the database freely available on U.S. EPA website. Within 
another project (CALEIDOS) we selected experimental data coming from registrants to evaluate the 
adequacy of different QSAR models. The dataset, after a pruning activity, was composed by 718 
compounds with a total of 1081 data points. Not all the values were continuous ones; in some cases 
the value was referred as greater as or lower than a value and could not be used for the next steps. In 

http://www.echemportal.org/echemportal/participant/participantinfo.action?participantID=140
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view of this, the dataset used in this work is composed of only 455 compounds. In the literature there 
is also a new and larger set of compounds available published by Su et al. (2014). It contains data 
coming from different studies on multiple fish species, taken from peer-reviewed publications and 
online databases. After pruning, the dataset consists of 953 compounds with data on one or more 
species and the average value for each compound was calculated. This set was used to develop new 
models. 

Within PROMETHEUS we used the following models to assess fish acute toxicity: VEGA KOWWIN, 
SARpy, istChemFeat, ECOSAR, T.E.S.T., VEGA and k-NN. In addition to acute toxicity, the possible 
chronic effects have been evaluated, through a series of rules, to assess if excess chronic toxicity may 
appear.  

PBT assessment 

In this work we decided to use multiple criteria decision making (MCDM) methods to integrate in a 
single system all information obtained from the different models used for each endpoint. The MCDM 
approach provides methods where a set of input variables are transformed and aggregated. It will be 
more thoroughly be discussed in Section 3.1. We added a first step, in which assessment and reliabil-
ity values for each endpoint are aggregated into a unique value. Before combining the assessment 
and reliability values, they have to be transformed - as required by MCDM - to obtain a score ranging 
between 0 and 1, where 1 represents the optimum. For each endpoint we decided to keep the trans-
formed value of 0.5 as an ideal threshold to separate assessment values going in the direction of ma-
jor concern (PBT compounds) and of less concern (non PBT). 

After these steps, the result of the overall evaluation consists in three unique scores for P, B and T, 
which have to be combined using a MCDM technique. This index represents the final score used to 
rank compounds, so that high (towards 1) values are related to compounds with a PBT prediction, 
performed with good reliability, and they should be the compounds of major concern. On the other 
side, low (towards 0) values are related to compounds with a non-PBT prediction, performed with 
good reliability. The ranking ensures that the first compounds will be those with more concern PBT 
prediction based on the high “PBT” score joined with the high reliability of the results. The scheme 
was optimized with this goal. 

After the development of the software, we carried out a validation test to check its ability to differen-
tiate compounds labelled as PBT compounds from those are non-PBT. 

For this purpose we built up a set of chemicals with molecules labelled as PBT and non-PBT taken 
from the literature and assessed by regulatory authorities. The results of validation demonstrated that 
the integrated model for PBT prioritization separates successfully PBT vs non-PBT compounds. A 
similar model can evaluate vPvB-substances. 
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1 INTRODUCTION 
The project aimed at developing a new strategy to prioritize those molecules that can be a threat to 
the environment. The purpose is to identify chemicals of higher concern using a fast program which 
can screen a large number of substances; successively, the substances of concern may be manually 
assessed to verify their adverse effects. A related objective is to increase knowledge about the reasons 
that lead to damaging effects and, thanks to these, make predictions about new substances. The rea-
sons for the adverse effects are provided in the form of fragments, associated to the effect. These 
fragments have been obtained through software like SARpy, and can be used to extend the 
knowledge about the causes of the adverse effect, since these fragments can be read and understood 
quite easily by human experts, while this is not always the case when we evaluate the molecular de-
scriptors used in the in silico models. 

Indeed, SARpy works using the experimental data, and not prior information on the mechanism. Ad-
ditional information may be acquired by both study of phenomena and mechanisms of action, using 
also computational methods, to be incorporated in a more general scheme of modelling. The aim is to 
use them to develop a general program for prioritization composed by multiple modules.  

Particular attention is given to those substances that can be identified as PBT (persistent, bioaccumu-
lative and toxic). Each of the three properties persistence, bioaccumulation and toxicity, can be mod-
elled using a series of other parameters. 

To cope with this issue, an integrated strategy is needed, addressing the correct endpoint in a suita-
ble way, and combining different perspectives.  

To reach the goal of a developing a robust program integrating many models and the associated un-
certainty, the overall objective of this project is to use a series of existing and new tools for the evalu-
ation of P, B, and T in a combined assessment framework.  

The framework will provide an innovative weight of evidence architecture for each parameter: P, B, T, 
vP, and vB. Finally, all these tools, generating data and support information, should be integrated 
into a unified framework, which merges the values associated to different properties into a single 
index, suitable to prioritize the chemicals of concern for regulatory activities. This framework in-
cludes a series of workflows for each P, B and T property. These workflows have been implemented 
into programs, which use as inputs the experimental values, or the values predicted by a series of 
models. Finally, the results of the programs implementing each workflow are used as inputs by an-
other program, which integrated the results into the final score. We notice that in this framework we 
always want to have a value for the PBT assignment, even when the experimental value of the P, B or 
T properties are missing, which may be quite frequent. For this purpose, in many cases we have to 
use models, existing or developed within this project. However, these models should have an ac-
ceptable reliability. A critical issue for this is the low availability of reliable models for terrestrial tox-
icity (the one that exist are quite poor, and thus not used in the present project) and for aquatic tox-
icity endpoints. The availability of models of good quality for algae and daphnia is also very limited. 
This reduces the overall assessment of the aquatic toxicity to that on fish, with strong limitations also 
in this case in particular for chronic toxicity. On the basis of these facts, the overall reliability of the T-
component in the framework is lower than the reliability of the other two components, P and B, and 
thus, as we will see, the relevance assigned to T into the combined assessment is lower. 

The complexity of the problem requires a combination of the results of different workflows, one for 
each of the three PBT properties. In addition, we keep into account the uncertainty associated to each 
value, such as the value for P, B, or T. The overall picture surely is complex, but we underline that the 
solution we adopted makes it transparent the identification of the information related to each proper-
ty. In this way we can also imagine an evolution of the program we developed that allows the user to 
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visualize results according to parameters defined by the user, for instance only with an uncertainty 
that is lower than a certain threshold. In any case, even now, the program allows already the visuali-
zation of the results for each individual PBT property, and the uncertainty associated to each value. 
Indeed, this overall evaluation should be transparent enough to allow a clear understanding of the 
cause of concern.  We will show in the results how this can be used for substances with different 
property values and different levels of uncertainty. 

The PROMETHEUS project introduces improvements compared to previous approaches to integrate 
values of heterogenous nature, and is based on the original experience of the partner of the consorti-
um. The key computational strategy to integrate data of heterogeneous nature at the basis of the pre-
sent software refers to studies of the coordinating partner published in the first version in 2010 (Bori-
ani et al., 2010), and from even earlier studies for the algorithm which takes into account the uncer-
tainty of the results (Porcelli et al., 2008). The other partners also provided their original contribu-
tion, referring to tools to integrated results from multiple models within a hybrid strategy (Amoury et 
al., 2007), for instance relative to the collaboration between KnowledgeMiner and the coordinating 
partner. Similarly, Kode exploited its experience on multiple criteria decision making (MCDM) ap-
proach, mainly related to the development of the DART software (Manganaro et al., 2008) which has 
been commissioned by the European Joint Research Centre (JRC) for the specific goal of applying 
such techinques for environmental safety assessment. A few approaches for PBT (or only PB) have 
been presented in the past, for instance from US EPA (http://www.pbtprofiler.net/), from Canada with 
the RAIDAR model (CEMC Report No. 200703, 2007), from the JRC (based on the usage of the above 
mentioned DART software) (Pavan and Worth, 2008) and later from the Dutch authorities (RIVM, 
2011). The main differences with past approaches refer to the introduction of a robust procedure to 
deal with uncertainty of the predicted values, the use of experimental values for PBT as starting 
point, the use of a very large battery of multiple models for the same property, and the more ad-
vanced evaluation of chronic fish toxicity. 

This project is supported from a technological point of view by the development of models (both con-
ceptual and implemented ones), which may be ideally integrated into a single platform. This single 
platform is not part of PROMETHEUS, but a perspective for further development of PROMETHEUS in a 
later project. In other words, the general framework developed within PROMETHEUS is a feasibility 
study, producing already a program for internal use, and not as a user-friendly program. Its imple-
mentation for the general use would need further activities. Thus, PROMETHEUS codified scientific 
concepts, associated to environmental and toxicological properties, into a set of software models, 
which may be implemented in a single platform in a possible future project. 

The overall task of the project was divided into a sequence of subtasks where different models were 
used or new models developed. This was in particular necessary when the existing models proved to 
be not robust enough in order to get a reliable assessment of the chemicals.  

In the following we describe in details the work done. 

Section 2 reports the sources of the data, but also how the data have been processed. In the same 
section we also describe the software used. Some models existed already, specific for a certain end-
point. We also employed programs to develop new models or define categories to be used as interme-
diate steps in the modelling process. 

In Section 3 we present the workflows that have been developed for each property we considered. 
Besides P, B and T we also addressed logKow because this is a useful parameter for successive models. 
Within each workflow several models are used, of different nature, to be applied for all chemicals, or 
for specific cases. 

Finally, in Section 4 we describe how the results of the three workflows have been integrated into a 
single score value, used to list chemicals, and thus to screen substances. This section also shows the 

http://www.pbtprofiler.net/
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results obtained when we applied the overall program to the substances with known PBT label, both 
positive and negative, obtained from the literature and Authorities. 

 

2 SOURCE OF THE DATA AND USED MODELS 
The following sections describe the sources of data of all endpoints chosen and a general description 
of each model used.  

2.1 Data 
2.1.1 The data on persistence 
For persistence the suitable and available data refer to ready biodegradability (RB), which can be 
used only as an initial step in the PBT assessment, and data on persistence for water, soil and sedi-
ment compartments. Indeed, the information about RB is immediately applicable if the substance is 
readily biodegradable, and thus not persistent (nP). 

Data on RB were collected considering several sources. Cheng et al. (2012) provides continuous data 
on ready biodegradability that we used for our purposes. More data were obtained from the dataset 
used in ANTARES EC Project. Finally the QSAR Toolbox (version 3.1) was used to extract further data. 
Many tests are described in the OECD guideline 301 for the assessment of RB of substances. In order 
to have more homogeneous data and obtain more reliable model, we considered only studies that 
followed OECD Guideline 301 C (MITI test) with a duration test of 28 days, because data from ob-
tained with this protocol were more numerous. If a study reported a duration test shorter than 28 
days, the value was retained only if BOD was greater than 60%, otherwise it was deleted from the 
dataset. 

Inorganic compounds and mixtures were eliminated and salts were neutralised. Moreover, com-
pounds with non-concordant experimental data between different sources were deleted. For each 
compound the correspondence between CAS numbers and chemical structures was double-checked 
using ChemID plus (http://chem.sis.nlm.nih.gov/chemidplus/) and Pubchem compound 
(https://pubchem.ncbi.nlm.nih.gov/). All the datasets considered were merged and we finally ob-
tained a dataset containing 1.207 organic compounds with experimental data on ready biodegrada-
bility given as numerical, continuous values, thus not as a category (such as positive or negative).  

After an initial screening using ready biodegradability (Annex XIII, REACH Regulation), for persis-
tence we used data (as half-life (HL)) from these sources. We started from Gouin et al., 2004, which 
contains information on HL, in hours, for 233 organic compounds categorized in 9 classes (in a semi-
decade log scale basis). It covers four environmental compartments: water (not specified if marine or 
freshwater), sediment (not specified if marine or freshwater), soil and air. To each class a mean value 
of half-life has been assigned by authors, that is the only value available for each chemical.  

Another source was the paper by Gramatica and Papa 2007 that contains 250 organic compounds 
with data for the same environments and categorized in the same classes as Gouin et al., 2004. Since 
no thresholds for air are set for PBT assessment, we considered only water, soil and sediment. In par-
ticular, for water and sediment we considered all data as for freshwater environment. All the com-
pounds, in both sources, were double-checked with ChemID plus 
(http://chem.sis.nlm.nih.gov/chemidplus/) and Pubchem (https://pubchem.ncbi.nlm.nih.gov/). Salts, 
mixtures, doubtful compounds and duplicates were eliminated. Also compounds present in both 
datasets but with different values were eliminated. In this way, a dataset with 297 compounds for 
sediment and 298 substances for soil and water was obtained. For soil only, another source was 
available from USGS (Prioritizing Pesticide Compounds for Analytical Methods Development, 2012). 
It contains 318 pesticide compounds with HL for soil. These compounds were checked as explained 

http://chem.sis.nlm.nih.gov/chemidplus/
https://pubchem.ncbi.nlm.nih.gov/
http://chem.sis.nlm.nih.gov/chemidplus/
https://pubchem.ncbi.nlm.nih.gov/
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above: the continuous values were categorized following the same criteria reported in Gouin et al., 
2004 and then added to the soil dataset, obtaining a dataset of 537 compounds. For water and soil 
another source of DT50 data for pesticides was a RIVM Report (Linders et al., 1994). Also these com-
pounds were checked, categorized and added to water and soil datasets, as explained before, obtain-
ing a final datasets of 351 data for water and 568 for soil.  

Each source of data used has problems: RIVM and USGS contain only pesticides, RIVM data are quite 
old, Gouin et al., 2004 and Gramatica and Papa, 2007, contains only categorized data. With catego-
ries only models for classification can be obtained, even though the number of categories is quite 
numerous. Moreover with these categories it is impossible to discriminate P compounds (see table 1 
and 2).  

Thus, there is no univocal, ideal source of data filling the conditions to have continuous values (with 
substances different from pesticides), or values, which are split according to the categories adopted 
under REACH. 

For this reason we adapted the data from Gouin et al., 2004 and Gramatica and Papa, 2007 into the 
classes suitable for the EU regulation: vP, P, nP. Table 1 shows how the original classes have been 
transformed into the REACH vP, P, nP classes. We can see that some classes can be translated into the 
REACH classes, but other classes in the Table 1 appear mixed, because they include substances, 
which may refer to more than one class. The classes according to the REACH regulation are presented 
in Table 2.  

Table 1:  Half-life classes on the basis of the available data 

Class Class range (h) Value as-
signed (h) 

Persis-
tence 
classes 
for soil 

Persis-
tence 
classes 
for fresh-
water 

Persistence 
classes for 
sediment 
(fresh water) 

1 0 - 10 5 

nP 
nP 

nP 

2 10 - 30 17 

3 30 - 100 55 

4 100 - 300 170 

5 300 - 1000 550 nP/P 

6 1000 - 3000 1700 nP/P P/vP nP/P 

7 3000 - 10000 5500 P/vP 

vP 

P/vP 

8 10000 - 30000 17000 

vP vP 
9 30000 - 100000 55000 

10 100000 - 300000 170000 

11 300000 - 1000000 550000 

As a result, some of the so obtained classes contain substances “pure”, relative to a single REACH 
class, but unfortunately, there are some of the classes in Table 1 which cannot be univocally assigned 
to a single class, because we do not have continuous value, but ranges as defined by the authors of 
the studies. The number of original classes, as split by the authors of the original studies, was in 
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some cases even too detailed for the purpose of the REACH classification and thus were merged. Ta-
ble 1 presents the way used to “translate” the original classes into the REACH classes. 

Table 2:  P and vP thresholds considered, both in days and in hours 

We added two categories (10 and 11, see Table 1) since we had a number of data points from the pes-
ticides results (data from RIVM and USGS) with values in a range longer than the values from those in 
Gouin et al., 2004 and Gramatica and Papa, 2007. In this ways, we classify the values in four classes: 
nP compounds (i.e. compounds with values below the P threshold), nP/P compounds (i.e. com-
pounds which cannot be sorted into a single REACH class on the basis of the original range used by 
the Canadian authors, range which includes the P threshold of REACH), P/vP compounds (i.e. com-
pounds in the class range in which are included both P and vP compounds because includes the vP 
threshold) and vP compounds (i.e. compounds above the vP threshold). We recognize that this situa-
tion is not the ideal one, but the splitting of the original data has not been done by us, and there is no 
information about the continuous values. 

Another critical point for model building, for soil and water datasets, is that they are unbalanced, 
with a prevalence of nP compounds. The percentage of compounds included in the four classes (nP, 
nP/P, P/vP, vP) for each compartment is shown in table 3. 

Table 3:  Data distribution in the four classes for the three compartments 

 sediment water soil 
nP 25.2% 50.1% 54.4% 
nP/P 23.2% 22.2% 22.7% 
P/vP 20.8% 13.9% 11.6% 
vP 30.6% 13.6% 11.2% 

 

2.1.2. The data on logKow 
Experimental data on logKow of 2482 chemicals already registered for REACH have been retrieved 
from ECHA CHEM database within the CALEIDOS project (thus, formally this is not part of PROME-
THEUS). 

The dataset has been pruned, considering organic monoconstituents (excluding inorganic chemicals, 
mixtures and UVCBs), studies with reliability 1 and 2 according to the Klimisch score (Klimisch et al., 
1997), the test guidelines recommended by the endpoint specific guidance for the implementation of 
REACH legislation (EC, 2012), the temperature of the experimental test, pH (to be sure that the exper-
imental values of the substances are referred to the non-ionized form) and purity (high purity: > 
80%). Salts have been excluded from the analysis. 

The correspondence among SMILES, structures and CAS numbers has been checked and the chemi-
cals without CAS number nor/or SMILES have been identified. 

Environment P (DT50, d) vP (DT50, d) P (DT50, h) vP (DT50, h) 
Marine water 60 60 1440 1440 
Estuarine or fresh water 40 60 960 1440 
Marine sediment 180 180 4320 4320 
Estuarine or fresh water sediment 120 180 2880 4320 
Soil 120 180 2880 4320 
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The final dataset of CALEIDOS contains data on 729 chemicals. Few of them have more than one ex-
perimental value. In case of multiple experimental data for the same substance, we have calculated 
the arithmetic mean. 

Further experimental data (10,005 compounds) are available within VEGA databases and they have 
been used also for PROMETHEUS project. This dataset has been built merging the data available in 
the OECD QSAR Toolbox and the ones used as training and test set of KOWWIN v1.68 (in EPIsuiteTM). 
The set has been processed and cleared from compounds that were replicated or that had problems 
with the provided molecule structure. The correspondence between CAS number, name and structure 
were automatically checked using several softwares and websites: KOWWIN v1.68, OECD QSAR 
Toolbox, ChemSpider and GChem. In case of multiple values, we have calculated their arithmetic 
mean. Starting from this dataset of 10005 compounds, a new dataset were obtained excluding also 
salts and mixtures. This final dataset has 9,961 chemicals. 

2.1.3. The data on bioconcentration factor (BCF) 
851 compounds with experimental values from ANTARES database were used for this endpoint. 
These experimental data were collected from 3 different sources: Arnot and Gobas, 2006, Dimitrov et 
al., 2005 and CEFIC. 

2.1.4. The data on fish acute toxicity 
Experimental data on fish acute toxicity were retrieved from different sources. 

A first set of 567 compounds with LC50 data on Fathead Minnow at 96 hours was retrieved from the 
work done within the project ANTARES. 

Data were obtained from the database compiled by the MED-Duluth group and freely available in the 
United States Environmental Protection Agency (U.S. EPA) website. MED-Duluth tested a series of 
industrial organic compounds using Fathead minnow (FHM) for the purpose of developing an expert 
system to predict the acute mode of toxic action from chemical structure. The results were also used 
to develop QSAR models. 

We selected compounds that had experimental toxicity values related to FHM and filtered the data-
base as reported in Maran et al. in 2007, and then we eliminated one additional compound because it 
was an isomeric mixture. Thus the final set, derived from the work done within ANTARES project, is 
composed of 567 compounds (Cappelli et al., 2015).  

Within the project CALEIDOS we selected experimental data coming from registrants to evaluate the 
adequacy of different QSAR models. The original dataset contained all data about aquatic toxicity 
extracted from the ECHA CHEM database in the OECD Toolbox version 3.1. A total of 87572 data 
points on aquatic toxicity (only Klimisch score 1 and 2) on about 4000 compounds were retrieved. 
Starting from this huge database, a strict selection of the specific endpoint to address was performed 
(see Table 4). We found a large number of data coming from limit test, whose results are not exact 
values, but only indications that the substance is considered non-toxic because the LC50 is higher 
than a certain concentration (usually 100 mg/L). These values are not continuous and could not be 
used for the next steps. For compounds with more than one data, the geometric mean was calculated. 
The dataset after this pruning activity was composed by 491 compounds.  

These two datasets were used to perform an evaluation of a first approach based on the integration of 
different models according to chemical classes. In particular, for the CALEIDOS dataset only the 455 
compounds were used, with a predicted value for all the three models (ECOSAR v4.1, TerraQSAR™ v. 
1.1, T.E.S.T. v4.0.1 and VEGA v1.0.8). For details on this work see CALEIDOS Deliverable 07 (Report 
on the performance of 16 models), 2014. 
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Then, we found in the literature a new and larger set of compounds published by Su et al. in April 
2014. It contains data coming from different studies on multiple fish species, taken from peer-
reviewed publications and online databases. After a brief pruning (see Table 4), the dataset consists 
of 953 compounds with data on one or more species and the average value for each compound was 
calculated. This set was used to develop new models with the k-NN approach. 

Table 4:  Pruning criteria for the three datasets. 

 Dataset 1* Dataset 2 Dataset 3 
Original source Maran U et al., 2007 ECHA CHEM data-

base in the OECD 
Toolbox version 3.1 

Su et al., 2014 

Original No. of com-
pounds 

568 Ca. 4000 965 

Final No. of data 567 455 948 
Elimination rules 

Mixtures x X - 
Inorganic compounds - X x 
Non exact values 
(e.g. values with < or 
>) 

- X - 

Disconnected com-
pounds (included 
salts) 

- X x 

Selection rules/datum details 
Chemical - Organic and organo-

metallic mono-
constituent 

- 

Endpoint LC50 LC50 LC50 
Effect Mortality Mortality Mortality 
Fresh/salt water Freshwater Freshwater Freshwater 
Duration time 96 hr 96 hr 96 hr 
Species selected Pimephales promelas Species accepted in 

REACH guidance for 
aquatic toxicity 

Poecilia reticulata,  
Oncorhynchus 
mykiss, Pimephales 
promelas, Oryzias 
latipes 

Guideline followed - Only those accepted 
in the REACH guid-
ance for aquatic tox-
icity (OECD 203, US-
EPA, EU method, 
ASTM, DIN, etc.) 

- 

Measure unit mmol/l (log neg) mg/l mmol/l (log neg) 
* This dataset was already pruned. Only one compounds was eliminated because it is an isomeric mixture. 
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2.1.5. The data on fish chronic toxicity for ACR 
A dataset of 91 compounds with both acute and chronic experimental toxicity data for fish was creat-
ed to extract rule for the acute-to-chronic ratio (ACR) calculation. These data were extracted from two 
sources: 

1. OECD QSAR Toolbox v3.2 Aquatic OASIS, Aquatic ECETOC, Aquatic Japan MoE and ECOTOX da-
tabases were checked but only data from ECOTOX database were available. 

2. ECHEM portal. Only experimental values from ECHA registrations were extracted (February 
2013).  

From both the sources only organic compounds were considered. Compounds with dissociated struc-
tures (including salts) were eliminated. 

Firstly chronic data were analysed. To build a homogeneous dataset we decided to consider only data 
obtained according to one test, the OECD 210 (FELS). Detailed criteria of selection are reported in 
Tab. 5. All the data were combined into a unique dataset in which the minimum datum was selected 
in case of multiple data. The toxicity data above water solubility were eliminated. Water solubility 
was extracted from WSKOWWIN v1.42. The experimental values were selected and only if they were 
not available, the predicted value was used. Calculation was performed using CAS number., SMILES 
and SDF file (generated by SMILES). The applicability domain (AD) was manually checked and the 
values considered outside it were eliminated. A dataset with 112 compounds with chronic data were 
obtained. Acute toxicity data for these compounds were searched following the same criteria. A final 
dataset of 91 compounds with both acute and chronic toxicity data for fish were obtained. 

Table 5:  Specific criteria selection for both acute and chronic toxicity endpoint. 

Chronic toxicity data selection Acute toxicity data selection 
NOEC 28 -90 days (depending on fish)  LC50 96h (4 days)  
Fish species: OECD 210 Fish species: OECD 203 
Purity ≥ 80% or not available Purity ≥ 80% or not available 
Initial age/life stage < 48h (eggs, embryos, blas-
tula, gastrula, morula, eyed eggs, eyed embryo, 
larvae) 

Initial age/life stage: juvenile (checked length 
where possible) 

Exposure type: flow-throw, semi-static (renewal) Exposure type: flow-throw, semi-static (re-
newal) 

No. of doses ≥ 5 or not available No. of doses ≥ 5 or not available 
T (depending on fish)  T (depending on fish)  
 Eliminated salt water and field test 

A second dataset was used to confirm the ACR. The source is a list of 222 compounds with both acute 
and chronic toxicity data for daphnia and fish. These data were not used to identify new rules, but 
only to check the existing ones because these dataset contains data for several kind of fish (but not 
defined) and obtained with different test guidelines, (e.g. OECD 210, 215, 212, life cycle). Discon-
nected structures (included salt) and inorganic compounds were eliminated as well as compounds in 
common with the dataset used to generate the structural alerts. A final dataset of 108 compounds 
were obtained. 

2.2 Software 
Within PROMETHEUS we used, optimized and developed some tools, which can be applied to many 
datasets. In general, when models were available and of good quality we used them. We verified the 
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quality of the RB model with a new set of compounds, to increase our reliability on this model. In 
other cases we developed new models, in order to get better predictions. The general strategy has 
been to have available a series of models to be used in a battery. We tried to apply methodologies 
which are based on different strategies, and in particular statistical methods and methods based on 
fragments. This should increase the robustness of the combined approach, because it covers different 
perspectives. For this reason we developed, for instance, a number of models using SARpy, which 
produce fragments related to the property. 

Below we describe the models we tested, both the existing ones and those new, developed within 
PROMETHEUS.  

Within the successive phase of the development of the workflow, we used the models, which provid-
ed better results when integrated. Thus, not all the models described below passed to the successive 
phase of the inclusion into the workflow, because before we did a preliminary phase to check and 
select those preferable. 

Descriptions of the models used for each software is discussed below. 

2.2.1 AlogP v.1.0.0. 
The model provides a quantitative prediction of water/octanol partition coefficient and it is imple-
mented inside the VEGA online platform. It is based on the Ghose-Crippen-Viswanadhan LogP and 
consists of a regression equation based on the hydrophobicity contribution of 120 atom types (A.K. 
Ghose et al. 1986; V.N. Viswanadhan et al., 1993; A.K. Ghose et al. 1998).  

The Applicability Domain (AD) specifies the scope of the QSAR models and defines the model limita-
tions with respect to its structural domain and response space. If an external compound is beyond the 
defined scope of a model, it is considered outside that model’s AD and cannot be associated with a 
reliable prediction.  

Within the VEGA platform, the applicability domain of predictions is assessed using the Applicability 
Domain Index (ADI) that has values from 0 (worst case) to 1 (best case). The ADI is calculated by 
grouping several other indices, each one taking into account a particular issue of the applicability 
domain. Most of the indices are based on the calculation of the most similar compounds found in the 
training and test set of the model, calculated by a similarity index that consider molecule's finger-
print and structural aspects (count of atoms, rings and relevant fragments). 

For each index, including the final ADI, three intervals for its values are defined, such that the first 
interval corresponds to a positive evaluation, the second one corresponds to a suspicious evaluation 
and the last one corresponds to a negative evaluation. 

Below, all applicability domain components are reported along with their explanation and the inter-
vals used. 

▸ Similar molecules with known experimental value. This index takes into account how similar are 
the first two most similar compounds found. Values near 1 mean that the predicted compound is 
well represented in the dataset used to build the model, otherwise the prediction could be an ex-
trapolation. Defined intervals are: 

• 1 ≥ index > 0.9 strongly similar compounds with known experimental value in the training 
set have been found 

• 0.9 ≥ index > 0.75 only moderately similar compounds with known experimental value in 
the training set have been found 

• index ≤ 0.75 no similar compounds with known experimental value in the training set have 
been found 
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▸ Accuracy (average error) of prediction for similar molecules. This index takes into account the 
error in prediction for the two most similar compounds found. Values near 0 mean that the pre-
dicted compounds falls in an area of the model's space where the model gives reliable predic-
tions, otherwise the greater is the value, the worse the model behaves. Defined intervals are: 

• index < 0.5 accuracy of prediction for similar molecules found in the training set is good 

• 0.5 ≤ index < 1.0 accuracy of prediction for similar molecules found in the training set is not 
optimal 

• index > 1.0 accuracy of prediction for similar molecules found in the training set is not ade-
quate 

▸ Concordance with similar molecules (average difference between target compound prediction 
and experimental values of similar molecules). This index takes into account the difference be-
tween the predicted value and the experimental values of the two most similar compounds. Val-
ues near 0 mean that the prediction made disagrees with the values found in the model's space, 
thus the prediction could be unreliable. Defined intervals are: 

• index < 0.5 similar molecules found in the training set have experimental values that agree 
with the target compound predicted value 

• 0.5 ≤ index < 1.0 similar molecules found in the training set have experimental values that 
slightly disagree with the target compound predicted value 

• index > 1.0 similar molecules found in the training set have experimental values that com-
pletely disagree with the target compound predicted value 

▸ Maximum error of prediction among similar molecules. This index takes into account the maxi-
mum error in prediction between the two most similar compounds. Values near 0 means that the 
predicted compounds falls in an area of the model's space where the model gives reliable predic-
tions without any outlier value. Defined intervals are: 

• index < 0.5 the maximum error in prediction of similar molecules found in the training set 
has a low value, considering the experimental variability 

• 0.5 ≤ index < 1.0 the maximum error in prediction of similar molecules found in the training 
set has a moderate value, considering the experimental variability 

• index ≥ 1.0 the maximum error in prediction of similar molecules found in the training set 
has a high value, considering the experimental variability 

▸ Global AD Index. The final global index takes into account all the previous indices, in order to 
give a general global assessment on the applicability domain for the predicted compound. De-
fined intervals are: 

• 1 ≥ index > 0.85 predicted substance is into the Applicability Domain of the model 

• 0.85 ≥ index > 0.75 predicted substance could be out of the Applicability Domain of the 
model 

• index ≤ 0.75 predicted substance is out of the the Applicability Domain of the model 

This scheme is adopted by all the models implemented in VEGA, and thus we illustrate in more detail 
here, but this can be used also for the other models. Please notice, however, that the thresholds to 
define the three intervals above mentioned may vary depending on the model, because they are 
based on the number of compounds. 
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Within the output of VEGA for each molecule, results are organized in sections with the following 
order: 

▸ Prediction summary: reported a depiction of the compound and the final assessment of the predic-
tion. A graphical representation of the evaluation of the prediction and of its reliability is also 
provided, using green for low logKow value (less than 3.0); yellow for high logKow value (more than 
3.0 and less than 8.0) and red for very high logKow value (more than 8.0). The reliability is ex-
pressed with a maximum of three stars for the best case (chemical into the AD) or with a mini-
mum of one star for the worse case (chemical is out of the AD). 

▸ Applicability Domain (Similar compound): report of the list of the six most similar compounds 
found in the training and test set of the model, along with their depiction and relevant infor-
mation (mainly experimental value and predicted value). 

▸ Applicability Domain scores: list of all Applicability Domain scores, starting with the global Ap-
plicability Domain Index (ADI). Note that the final assessment on prediction reliability is given on 
the basis of the value of the ADI. For each index, it is reported its value and a brief explanation of 
the meaning of that value. 

▸ Reasoning (fragments and moieties): If some rare and/or missing Atom Centered Fragments are 
found, they are reported here with a depiction of each fragment. 

The model accepts as input two molecule formats: SDF (multiple MOL file) and SMILES. All molecules 
found as input are pre-processed before the calculation of molecular descriptors, in order to obtain a 
standardized representation of compound. For this reason, some cautions should be taken. 

Results given as PDF file consists of a document containing all the information about the prediction. 

On the pruned training set from EPIsuiteTM KowWin module (9,961 compounds), the logP model has 
the following statistics: test set: n = 9961; R2 = 0.84; RMSE = 0.72. 

In this study, the value of ADI is used as a measure of the reliability of the predictions, such that each 
compound can be ordered in the prioritization process also on the basis of its uncertainty and not 
only on the basis of the (experimental or predicted) value of the property. 

2.2.2  MlogP 1.0.0. 
The model provides a quantitative prediction of water/octanol partition coefficient (logKow). It is im-
plemented inside the VEGA online platform. The model is based on the Moriguchi LogP (MLogP) and 
consists of a regression equation based on 13 structural parameters (I. Moriguchi et al. 1992; I. 
Moriguchi et al. 1994). For the purpose of applicability domain assessment, the training set of the 
Meylan LogP model (9,961 compounds) has been considered, setting all molecules as belonging to 
the test set. The applicability domain of predictions is assessed using an ADI as described above. As 
for the previous model, for each index three intervals for its values are defined, such that the first 
interval corresponds to a positive evaluation, the second one corresponds to a suspicious evaluation 
and the last one corresponds to a poor evaluation.  

The model accepts as input two molecule formats: SDF (multiple MOL file) and SMILES. 

Results given as PDF file consists of a document containing all the information about the prediction. 
For each chemical results are organized in sections in the same way described for the model above 
(AlogP). 

2.2.3 VEGA KOWWIN (Meylan) v. 1.1.3. 
The model provides a quantitative prediction of water/octanol partition coefficient (logKow). It is im-
plemented inside the VEGA online platform. It is based on the Atom/Fragment Contribution (AFC) 
method from the work of Meylan and Howard (Meylan, W.M. and P.H. Howard, 1995). The calculated 
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model has a lower bound of -5.0 log units (all predictions lower than this value are set to -5.0). A da-
taset of compounds with experimental logP values has been built starting from the original dataset 
provided in EPIsuiteTM and, after processing, pruning and cleaning, consists in 9,961 compounds. 

The applicability domain of predictions is assessed using an ADI that has values from 0 to 1 (worst to 
best case). For each index (similarity, accuracy, variability and including the final ADI) three inter-
vals for its values are defined as described for the previous models. 

On the pruned training set from EPIsuiteTM KowWin module (9,961 compounds), the logP model has 
the following statistics: Training set: n = 9961; R2 = 0.86; RMSE = 0.76. 

The model accepts as input two molecule formats: SDF (multiple MOL file) and SMILES. All molecules 
found as input are pre-processed before the calculation of molecular descriptors, in order to obtain a 
standardized representation of compound. 

Results given as PDF file consists of a document containing all the information about the prediction. 
The results are organized in sections and explained in the same way described previously for the oth-
er logKow models.  

This version is an updated version of the original model (1.2.0). Improvements are relative to a more 
robust similarity index, as described in detail in the VEGA website. A further check of structures and 
experimental data has been performed, resulting in the removal of some compounds from the origi-
nal dataset (10,005 compounds), which had inconsistent experimental data. This update can influ-
ence some calculation, in particular similarity evaluation, so there could be some changes in the ap-
plicability domain values produced. 

2.2.4 SARpy  
SARpy, a free program developed by Politecnico di Milano, is able to automatically identify structural 
alerts related to a specific property. The software is described in the literature (Ferrari et al., 2013). 
Briefly, given a training set of molecular structures, with their experimental activity binary labels, 
SARpy generates every substructure in the set and mines correlations between the incidence of a par-
ticular molecular substructure and the activity of the molecules that contain it. In this way it is possi-
ble to extract structural alerts associated to activity or inactivity. In this work it was used to extract 
structural alerts for different endpoints: the rules of the ready biodegradability model, the structural 
alerts used for persistence and to identify high or low acute-to-chronic ratio (ACR). Compared to other 
related programs, SARpy generates fragments with a higher number of atoms, since it starts the 
fragmentation process from the whole molecule, cutting one atom every time. Thus, it generates 
fragments, which often are more specific than other programs. 

This is done in three steps starting just from the structural SMILES notation: 

1. Fragmentation: this novel, recursive algorithm considers every combination of bond breakages 
working directly on the SMILES string. This fast procedure is capable of computing every sub-
structure of the molecular input set. 

3. Evaluation: each substructure is validated as potential SA on the training set. It is a complete 
match against the training structures, aimed at assessing the predictive power of each fragment. 

4. Rule set extraction: from the huge set of substructures collected, a reduced set of rules is extract-
ed in the form: ‘IF contains <SA> THEN <apply activity label>’. 

The advantage of SARpy is that it is highly flexible, and can be applied to a large variety of datasets. 
Based on the chemical structure it extracts fragments, which can be related to the effect but also to 
the lack of effect, which is useful in our case. The threshold to identify the effect can be established 
by the user, and also this is very useful. Compared to other software extracting fragments, it identifies 
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larger fragments, because the algorithm starts from the largest fragment as possible. This means that 
the program identifies fragments, which are quite specific. 

2.2.5 IstChemFeat 
The software istChemFeat 1.0 looks for functional groups of the chemicals in a dataset. It is useful to 
see if a substance contains a functional group and if this group is active or inactive. A chemical that 
belongs to an active class has the value above or below the trigger value. The statistics have been 
described, such as number of components for a certain class, and number of active/inactive com-
pounds. We may obtain classes with chemicals showing property values in a small range, and this is 
useful, in particular if the number of the chemicals is sufficiently high; conversely, if the range of the 
values for the chemicals in a class is spread, the class is not useful, and the chemical feature is not 
related to the property. Thus, the relevance of the class is related on the spread of the range of the 
values, and on the number of chemicals. 

2.2.6 WSKOWWIN v 1.42 
WSKOWWIN is one of the standalone models included in the EPIsuiteTM v4.1. It estimates water solu-
bility of organic compounds on the basis of the logKow and molecular weight (MW). If available, it 
also uses the experimental melting point to estimate water solubility. logKow experimental values, if 
available, are extracted from an internal database of more than 13200 experimental values, other-
wise are calculated through KOWWIN (included in EPIsuiteTM v4.1). It contains also experimental 
water solubility data for 6230 compounds (Meylan, W.M. and P.H. Howard; 1994). 

A training set of 1450 compounds with logKow, water solubility and melting point (Tm) in deg C were 
used to develop the model based on the following equations: 

1. log S (mol/L) = 0.796 - 0.854 log Kow - 0.00728 MW + ΣCorrections  
2. log S (mol/L) = 0.693 - 0.96 log Kow - 0.0092(Tm-25) - 0.00314 MW + ΣCorrections 

If the melting point is known the second equation is used, otherwise the first one is used.  

No automatic evaluation of the applicability domain is available, but compounds outside the range of 
molecular weight, water solubility and/or log Kow should be considered of low reliability. Moreover, 
the compounds should not have functional group(s) or other structural features not represented in 
the training set, and for which no correction factor was developed (US EPA, 2012). 

2.2.7 ECOSAR Class Program v 1.11 
ECOSAR is one of the standalone models included in the EPIsuiteTM v4.1 that is used to predict aquat-
ic toxicity of chemical. It is based on structure similarity using a list of more than 120 chemical clas-
ses. The equations are mostly based on the logP (introduced by user, experimental or automatically 
predicted through KOWWIN v 1.68). The predicted value is compared with the water solubility as 
calculated by WSKOWWIN v 1.42. For each chemical class equations for LC50 for fish 96 hr, LC50 for 
daphnid 48 hr, EC50 for algae 72 or 96 hr, Fish ChV (a chronic value calculated as explained below), 
Daphnid ChV and Algae ChV are available. In some cases also equation for LC50 for fish 96 hr – SW, 
LC50 for mysid shrimp 96 hr – SW, Fish ChV – SW, Mysid shrimp ChV –SW and LC50 for earthworm 
14 d are available. The chronic toxicity values are calculated according to: 

ChV = 10 ([log (LOEC*NOEC)]/2 

There are dedicated models for surfactants and dyes. If no sufficient experimental values are availa-
ble (excess toxicity classes) equations are derived using a log Kow cut-off in addition to a single ex-
perimental toxicity value. If few or no experimental values are available, prediction is done with ACR 
(marked with a “!”) and log Kow cut-off.  
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No automatic evaluation of the applicability domain is available, but compounds outside the range of 
molecular weight and logP should be considered of low reliability. Moreover, the user should check 
each equation used. 

In this work ECOSAR was used to estimate acute fish toxicity only (for details see paragraph 2.2.15). 

2.2.8 T.E.S.T. v 4.1 
The Toxicity Estimation Software Tool (T.E.S.T.) allows a user to estimate 7 toxicity endpoints  (i.e. 
LC50 96h Fathead minnow, LC50 48h Daphnia magna, IGC50 48h Tetrahymena pyriformis, LC50 oral 
rat, Bioaccumulation factor, Developmental toxicity and Ames Mutagenicity) and 7 physicochemical 
properties (i.e. normal boiling point, density, lash point, thermal conductivity, viscosity, surface ten-
sion and water solubility) without requiring any external programs. Toxicity can be estimated using 
one of several advanced QSAR methodologies (i.e. hierarchical method, FDA method, single model 
method, group contribution method, nearest neighbor method, consensus method and random forest 
method (only developmental toxicity)).  All the descriptors used for the estimation are calculated 
automatically.  

The applicability domain of each model is calculated using a combination of three different methods: 
model ellipsoid constraint, Rmax constraint and fragment constraint. For the nearest neighbor, to be 
predicted the compounds must have 3 chemicals with a similarity score (SC) > 0.5. If a method can-
not give a prediction inside the applicability domain, the prediction is not available.  

2.2.9 VEGA v 1.0.8 – Fathead minnow LC50 96 hr (EPA) v 1.0.6 
This is one the models included in the VEGA platform (Benfenati et al., 2013). It estimates the LC50 
96 hr for the fathead minnow (Pimephales promelas). It is a re-implementation of the original model 
developed by Todd Martin inside T.E.S.T. software. It is a linear regression based on 21 molecular 
descriptors, calculated by an in-house software module in which they are implemented as described 
in: Todeschini and Consonni, 2009. 

The applicability domain is automatically calculated through a series of parameters: similar mole-
cules with known experimental value, accuracy (average error) of prediction for similar molecules, 
concordance with similar molecules (average difference between target compound prediction and 
experimental values of similar molecules), maximum error of prediction among similar molecules, 
Atom Centered Fragments similarity check and model descriptors range check. They are summarised 
in the global AD index. A value greater than 0.85 (max value = 1) means that the prediction is in the 
applicability domain, between 0.85 and 0.7 that the prediction could be out of domain, and equal or 
below 0.7 that the prediction is out the applicability domain. (E. Benfenati, A. Manganaro and G. Gi-
ni, VEGA-QSAR Workshop, 2013). 

2.2.10  VEGA v 1.0.8 – Fish LC50 classification v 1.0.1-DEV 
This is the developmental version of a classification model for the acute toxicity for fish (Benfenati et 
al., 2013). It was developed on a dataset of 568 compounds with experimental toxicity data on fat-
head minnow (Pimephales promelas). The predicted classes are 4: < 1 mg/l, between 1 and 10 mg/l, 
between 10 and 100 mg/l and > 100 mg/l. The choice of the classes was done considering the re-
quirements of the Classification, Labelling and Packaging regulation. In this work the predictions of 
the classification model were used only as a confirmation of the continuous value and not alone as a 
classifier. The test set was a set of 351 compounds with toxicity data on Rainbow trout (Oncorhynchus 
mykiss). The model was developed using SARpy to extract rules for each of the three thresholds. 

The applicability domain is automatically calculated through a series of parameters: similar mole-
cules with known experimental value, accuracy (average error) of prediction for similar molecules, 
concordance with similar molecules (average difference between target compound prediction and 
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experimental values of similar molecules) and Atom Centered Fragments similarity check. They are 
summarised in the global AD index. A value greater than 0.8 (max value = 1) means that the predic-
tion is in the applicability domain, between 0.8 and 0.65 that the prediction could be out of domain, 
and equal or below 0.65 that the prediction is out the applicability domain.  

2.2.11 Fish Toxicity k-NN/Read-Across model (In-house/VEGA) 
It is an in-house model, developed using the VEGA libraries (in particular for the algorithm of similar-
ity calculation) and a novel software tool called istKNN. It is a k-Nearest Neighbour based model, 
where the prediction is provided using the k most similar compounds. This models searches for the 
most similar compounds and assigns the property value of the target compound based on the average 
of the property values of the k most similar chemicals. The number k is found by the software and the 
developer checks different possibilities. In the particular kNN model we applied, the software is more 
sophisticated than other kNN models. Indeed, the property values keeps into account how similar are 
the most similar compounds, and provide weights based on this.  

In our case, we used as source of the property values the dataset built from several sources: the data-
base compiled by the MED-Duluth group, the OECD Toolbox, the DEMETRA Project (Rainbow Trout 
toxicity model) and the work of Su et al. (2014). The dataset contains 973 compounds, where the 
toxicity is expressed as the mean value of the experimental data on several different species. 

Under some conditions, the prediction can be performed on less than k molecules, for instance if 
some of the similar molecules have a similarity value under a given threshold. Furthermore, when no 
molecules meet the minimum requirements set for the model, no prediction is provided. 

The in-house model has been built with the following settings: number of molecules (k) = 4, similari-
ty threshold = 0.7 (molecules with similarity lower than 0.7 are not considered), similarity threshold 
for single molecule based prediction = 0.75 (if only one molecule is left for prediction, it is used only 
if it has a similarity value higher than 0.75), enhance factor = 3 (a value used to increase the rele-
vance of the most similar compounds in the prediction, proportionally to their similarity value) and 
experimental range = 3.5 (when the k compounds have an experimental range higher than 3.5, pre-
diction is not provided). 

The model is validated in a leave-one-out approach: for each molecule, of the training set, its predic-
tion is performed using all the other molecules except the target compound itself (as the model would 
find a perfect structure match and provide its experimental value instead of a prediction). With such 
approach, the model yields the following statistics: 

▸ No. of compounds: 973 
▸ Valid predictions: 936 
▸ R2: 0.65 
▸ RMSE: 0.708 
▸ Not predicted compounds: 36 (3.7% of the dataset) 

 

3 RESULTS 
3.1 The workflow of the individual properties. General remark. 
The conceptual approach to get the PBT assessment is to assess separately P, B and T, and then to 
merge the results. Here we describe how the separate assessment of P, B and T has been done, below 
this we will show how the program integrates the results of the separate assessment. 
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Each separate assessment produces a value, and a figure associated, which is a measurement of the 
reliability of the assessment. 

At the basis of each assessment there are the values, obtained from different sources; experimental 
and calculated values are used. Experimental values have a higher reliability. Also experimental val-
ues are of course associated to uncertainty and variability, but the program only checks inconsistent 
values resulting from multiple sources, in case of experimental values. 

In case of predicted values the uncertainty is associated to the output of the individual but also for 
the presence of multiple values, which may be consistent or not. 

Besides the three P, B and T property we also carefully evaluated the logKow value, and developed a 
workflow for this. This value is then used in the B-workflow. 

3.1.1 The workflow for logKow 
Figure 1 shows the workflow for logKow. The first check is the availability of the experimental data of 
the target compound. 

Figure 1:  The LogKow workflow  

 

If more than one experimental value is available and the values are in agreement (threshold 0.35 log 
units), we calculate the arithmetic mean and obtain the maximum reliability (reliability 1). If they are 
in disagreement, we calculate the arithmetic mean with medium reliability (reliability 0.5). 

If one experimental value is available, we take it with high reliability (reliability 0.8). 

In case there are no experimental data, the assessment of the target chemical is based on the predic-
tions with QSAR models, in particular AlogP, MlogP, VEGA KOWWIN, EPA KOWWIN and k-NN.  
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When the chemical does not fall into the applicability domain of at least three models, we calculate 
the arithmetic mean between values from the models in which the chemical falls in the applicability 
domain and a low reliability (reliability 0.2) is assigned. 

In case the chemical falls into the applicability domain of at least three models and the predictions 
are consistent (i.e. the difference between the minimum and the maximum values is lower or equal to 
1 log unit), we calculate the arithmetic mean of the predicted values with high reliability (reliability 
0.8). 

If the condition about the consistence (i.e. the difference between the minimum and the maximum 
values is lower or equal to 1 log unit) of the predictions is not verified, we use fragments founded 
with SARpy and chemical classes to see if they confirmed the predictions or not. If the fragments and 
classes confirm the predictions, we calculate the arithmetic mean among the values of the models in 
which the compound falls into the applicability domain with a mean reliability (reliability 0.5). In 
case the fragments or classes are in disagreement with the predictions or are not found, the arithme-
tic mean is calculated among the values from the models in which the compound is into the applica-
bility domain but with low reliability (reliability 0.2).  

The log Kow estimation is included since it provides a fundamental element for the understanding of 
the profile of each substance. This estimation is not directly used in the ranking score formula, yet it 
is strictly related to the BCF results. Indeed, the models used in the workflow to obtain a joint reliable 
logKow value are the same that play a relevant role in some models used in the B-workflow. In par-
ticular, in the CAESAR BCF model the MLogP value is used as a descriptor (and it plays a key role in 
the model's algorithm); in the Meylan BCF model, the VEGA LogP model estimation of the logKow is 
used as a base value for the calculation of the BCF (followed by several correction given from the 
presence of specific molecular fragments), and also the final reliability is influenced by the reliability 
of the VEGA LogP model.  

3.1.2 The workflow for the bioaccumulation  
The assessment of chemicals for bioaccumulation is in this project solely based on the BCF-factor. 
The workflow is according to the scheme shown in Figure 2. 
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Figure 2:  The BCF workflow  

Reliability scores are established to assign the weights differentiating the cases. Table 6 indicates 
these scores. 

First, the system checks whether experimental data are available for the target compound. If there are 
multiple values and the difference between them is less than 0.5, the higher value of them is reported 
and the reliability score of 1 is assigned. When the difference between the experimental values goes 
from 0.5 to 1, the higher value of them is reported and the reliability score of 0.9 is assigned. The 
same reliability score is assigned when there is a single experimental value. When the difference be-
tween the experimental values is greater than 1, the higher value of them is reported and the reliabil-
ity score of 0.8 is assigned. 

Table 6.  Reliability scores and criteria to assign 

Criteria Reliability score 
Experimental values with Δ ≤ 0.5 1 High reliability 
Experimental values with 0.5 ≤ Δ ≤ 1 0.9 High reliability 
Single experimental value  0.9 High reliability 
Experimental values with Δ > 1 0.8 Medium reliability 
Predicted values with ADI ≥ 0.85 0.85 High reliability 
Single value with ADI ≥ 0.85 0.7 Medium reliability 
Predicted values with ADI < 0.85 0.4 Low reliability 
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For the compounds that do not have experimental values, we check the outputs of the BCF models. It 
is necessary to consider the applicability domain index (ADI). If the target compound has predicted 
values with ADI values less than 0.85, the arithmetic mean value is calculated and the reliability 
score of 0.4 is assigned. On the opposite condition, if the predictions for the compound shows ADI 
values equal or greater than 0.85, the mean value is calculated and the reliability score of 0.85 is 
assigned. If it happens that there is only one predicted value and ADI is greater than 0.85, this value 
is reported and the reliability score of 0.7 is assigned.  

3.1.3 The workflow for persistence  
The assessment of persistence for chemicals was organized as workflow using the different models 
we developed (Figures 3 and 4).  

Since the experimental value is normally considered more reliable compared to the predicted one, the 
first step is to check if an experimental value is available for the target compound within our da-
tasets. In such a case, it is important to consider if the experimental value is available for all three 
compartments or not and in case, if they are in agreement. A further criterion to be considered is if 
the experimental value is nP/P; in this case the reliability of the prediction will be lower because this 
class has a high rate of intrinsic uncertainty. Thus, if the experimental value is available the assess-
ment is done using the experimental value with a different rate of reliability considering the criteria 
described above (experimental value is nP/P, experimental value available for each compartment, 
concordance between experimental values). If the experimental values are available for the three 
compartment and they indicate the same class, the reliability is maximal (1.0), or medium (0.7) in 
case of nP/P class. If the experimental values are available for all compartments but not equal, the 
output is the worst case experimental values with maximum reliability. If experimental values are 
available for only two compartments and indicate the same class the reliability is high (0.9) (or medi-
um, 0.7, in case of nP/P class), otherwise the output is the worst case experimental value with relia-
bility medium (0.7). In case of only one experimental value available, the reliability is medium (0.7), 
or low (0.4) in case of nP/P class.   

After checking the availability of experimental value, a further assessment is done: if the compound 
is recognized to be a perfluorinated, the prediction is P/vP with high reliability. Indeed many studies 
in the literature report that perfluorinated compounds have the capacity to persist in the environment 
and to be transported far from the emission source (Shoeib et al., 2006; Kim and Kannan, 2007; Fujii 
et al., 2007; Bao et al., 2011), so we include this rule to our workflow. If the target compound is not 
perfluorinated, it is evaluated for ready biodegradability property using the model developed by 
Lombardo et al. (2014). Also in this case the first point is to check if an experimental value is provid-
ed or not. In such a case the prediction is nP with maximum reliability (1.0), if not it means that the 
model may provide a prediction.  

As already explained above, ready biodegradability is a screening test for persistence, which means 
that if a compound is readily biodegradable for sure it is not persistent; in the opposite case when the 
substance it is non-readily biodegradable, it is not necessarily persistent. Thus, if the compound is 
predicted by the model as readily biodegradable, the chemical is classified as nP and the reliability of 
the prediction closely depends on the applicability domain index (ADI) provided by the model itself. 
The ADI included in VEGA platform is already explained in Cassano et al. (2010) and if it is higher 
than 0.8 the compound is within the AD of the model (high reliability), if it is between 0.8 and 0.65 
the compound could be outside the model AD (medium reliability) and if it is below 0.65 the com-
pound is out of AD model. In the case the prediction is non-readily biodegradable, possible readily 
biodegradable, no prediction is provided or if it is predicted readily biodegradable but out of AD, the 
compound will enter the second part of the workflow.  



PRioritization Of chemicals: a METHodology Embracing PBT parameters into a Unified Strategy /PROMETHEUS 

 41 

 

 

The following steps have to be done for each compartment (sediment, soil and water) in order to have 
the final assessment. Primarily the k-NN model is considered. If an experimental value is available 
within the k-NN dataset models, it will be used for the assessment with maximal reliability 1.0. How-
ever, considering the high uncertainly of the nP/P class, the reliability will be lower (high reliability, 
0.9) if the experimental value is nP/P compared to the case that the experimental belongs to the other 
three classes. In case an experimental value is not available, the k-NN predictions will be considered.  

The output of the k-NN model can be: nP, nP/P, P/vP, vP or unknown. If the prediction is unknown, it 
will be checked if SARpy fragments and chemical classes are available for the target compound. Since 
we extracted SA and chemical classes only for nP and vP compounds, the output of the SARpy frag-
ments and chemical classes’ models can be only nP, vP or unknown. If this information is available 
and is in agreement to each other (i.e. SARpy fragments and chemical classes extracted for nP are 
available and no fragments or chemical classes for the other category, vP, are provided) the predic-
tion will be nP or vP with low reliability (0.4), otherwise the compound is not predicted. If the predic-
tion of k-NN is available the SARpy fragments and chemical classes will be considered as well.  

Depending on a series of conditions, the reliability of the prediction changes. If both SAs and chemi-
cal classes are available and in agreement with k-NN prediction the output is the k-NN prediction, 
with high reliability (0.9) (or medium, 0.7, in case of nP/P class). If only one between SA and chemi-
cal classes is available and in agreement with k-NN, the output is the k-NN prediction with medium 
reliability (0.7), or low (0.4) in case of nP/P class. In case of disagreement among the three predic-
tions or in case is available only the k-NN prediction, the output is the k-NN prediction with low reli-
ability (or not predicted in case of nP/P class). Once the prediction for each compartment has been 
obtained, the next step is to combine them in order to have a final persistence assessment for the tar-
get compound. Since the overall prediction is conservative, the “worse” class always wins and the 
reliability of the prediction is that of the “worse” class.  

For example:  

▸ In water the prediction is vP and reliability is medium (0.7) 
▸ In soil the prediction is nP and reliability is high (0.9) 
▸ In sediment the prediction is P/vP and reliability is low (0.4) 
▸ The final prediction will be vP with medium reliability (0.7) 

Another example: 

▸ In water the prediction is vP and reliability is medium (0.7) 
▸ In soil the prediction is vP and reliability is high (0.9) 
▸ In sediment the prediction is P/vP and reliability is low (0.4) 
▸ The final prediction will be vP with high reliability (0.9) 
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Figure 3:  The persistence workflow (first part) 

 
 



PRioritization Of chemicals: a METHodology Embracing PBT parameters into a Unified Strategy /PROMETHEUS 

 43 

 

 

Figure 4:  The persistence workflow (second part) 
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3.1.4 The workflow for toxicity 
To prioritize substances for the toxicity (T) assessment only fish toxicity was considered, for the lack 
of reliable in silico models for the other endpoints, as we explained above. The assessment requires 
ideally also chronic toxicity data. Due to the paucity of these data, we decided to start from acute tox-
icity and derive the chronic value using the ACR. For this purpose, we built a dataset containing both 
acute and chronic data, as explained above. Since only few compounds had both the toxicity values 
we decided to split the compounds in two classes: (1) compounds with high ACR and (2) compounds 
with low ACR) and then to extract structural alerts for these two classes. To each class the program 
assigns an ACR that can be used to derive the chronic value from the acute one (either experimental 
or predicted). It is important to underline that a compound with a high ACR not necessarily is a com-
pound with a high toxicity, but only that it is a compound with a high ratio between the acute and the 
chronic value. In the same way, a low ACR does not mean that the compound is not toxic, but only 
that the ratio between acute and chronic values is low. 

3.1.4.1 Structural alerts for ACR 

Since the number of compounds with experimental chronic toxicity values for fish was too low to 
develop a QSAR model (91 compounds), our strategy was to use both acute and chronic values to 
derive the ACR. Then, we verified existing structural alerts and we developed new ones for the esti-
mation of high and low ACR. Existing structural alerts were taken from two sources: Ahlers et al., 
2006 and May and Hahn, 2014. In the first study ACRs for fish, daphnids and algae were obtained. In 
particular for fish Ahlers et al., (2006) found a median ACR of 10.5 that is far below the threshold of 
100 of the Technical Guidance Document (TGD) of European Commission on risk assessment (2003). 
Nevertheless, the threshold of 100 was found not protective for all the chemicals (they reported a 
maximum ACR for fish of 4250). Considering the distribution of their dataset, they used a threshold 
of 30 to distinguish between compounds with high and low ACR. On the basis of this threshold they 
extracted three structural alerts for fish. They also found no correlation between ACR and the log Kow 
or the mode of action. Another source of ACRs was May and Hahn, 2014. In this work they found a 
good correlation between acute and chronic values and they confirmed that the threshold of 100 is 
protective for more than 90 % of the industrial compounds (pesticides were excluded) with a maxi-
mum ACR for fish of 1370 and a median of 12.2. Ten structural alerts associated with high ACR (also 
in this work the threshold considered to discriminate between high and low ACR was of 30) were 
identified, in addition to the pesticides category. Moreover, the relationship between ACR and logKow 
or water solubility was verified and no correlation was found. 

Considering the ACR distribution of our dataset, in which very few compounds had ACR > 30, we 
used a new threshold of 10 to identify high ACR (i.e. ACR > 10) and low ACR (i.e. ACR < 10). This 
threshold is more protective. Indeed, 10 is the suggested factor to derive the chronic from the acute 
toxicity values by Forbes, 2002 that reports the factor suggested by the U.S. Office of Pollution Pre-
vention and Toxics and the Extrapolation (assessment) factors used in the Technical Guidance Doc-
uments for existing and new substances legislation within the European Union (CEC 1996). Using 
SARpy and istChemFeat, new chemical classes/structural alerts were extracted for both high and low 
ACR. They were examined and compared with the existing ones (Ahlers et al., 2006; May and Hahn, 
2014). In some cases, new manually developed structural alerts were added. Finally, 5 structural 
alerts for high ACR and 10 for low ACR were extracted. The structural alerts were checked using the 
dataset supplied by UBA with 108 compounds. Some of the previously identified fragments in the 
literature were confirmed but others not. The not confirmed ones were eliminated: These were 3 
structural alerts for high ACR and 4 for low ACR. Final statistics on the 91 compounds are reported in 
Tab. 7 and 8. In this analysis the two groups of structural alerts were considered separately, with 
high or low ACR. For this reason the compounds identified by the structural alerts were considered 
“positive”, and then compounds are labelled depending on which kind of alerts are found. These 
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structural alerts can be used only to derive the chronic toxicity for fish starting from the acute toxicity 
for fish. To be used for other taxonomic classes new studies would be required. 

Table 7:  Statistics for structural alerts that identify high ACR. Tot Positive represents the 
number of compounds that contains the structural alert, Tot TP the number of true 
positive (i.e. the number of compounds identified by the structural alert that have 
an ACR > 10). 

Structural alerts for high ACR Tot Positive Tot TP 
CCOP(=S)(OCC) 

 

5 5 

C(=C)C(=O)OC 

 

3 3 

c[NH2] 
  

4 3 

A = any atom, including H. (a)C = aromatic carbon. N(H2,A) = aliphatic NH2. 

  

Table 8:  Statistics for structural alerts that identify low ACR. Tot Positive represents the 
number of compounds that contains the structural alert, Tot TP the number of true 
positive (i.e. the number of compounds identified by the structural alert that have 
an ACR < 10). 

Structural alerts for low ACR Tot Positive Tot TP 
c1cc(c(cc1Cl))Cl 

 

6 6 

C(Cl)Cl 

 

5 5 

c1ccc2c(c1)cccc2 

 

4 4 
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c1cc(c(O)c(c1)C) 

 

9 8 

A = any atom, including H. S(A) = aliphatic S.  

3.1.4.2 Scheme for the T evaluation (based only on fish toxicity)  

Using the ACR structural alerts previously described, the scheme to evaluate the toxicity property for 
the PBT assessment was built on the basis of fish toxicity only. The scheme is reported in Fig. 5, 6 and 
7. 

The user of the scheme here described can add experimental acute toxicity values. For each target 
compound without experimental values, QSAR models (T.E.S.T. v 4.1, VEGA v 1.0.8 – Fathead min-
now LC50 96 hr (EPA) v 1.0.6, fish toxicity k-NN/Read-Across model and ECOSAR Class Program v 
1.11) should be run. All these models give fish LC50 96h. Some of them allow the user to retrieve the 
experimental value if available. The k-NN model gives only the experimental value if the target com-
pound is included in the training set.  

The scheme discriminates among many situations that may occur: 

1. Reliable experimental values inserted by user. 
2. No experimental values inserted by user. Two or more experimental values are retrieved by the 

QSAR models and they are in agreement (the values are considered in agreement if the difference 
is below 1 log unit). 

3. No experimental values inserted by user. Two or more experimental values are retrieved by the 
QSAR models but they are not in agreement. 

4. No experimental values inserted by user. Only one experimental value is available. 
5. No experimental values inserted by user or retrieved by QSAR models. Two or more predicted 

values in the applicability domain (AD) are available and in agreement (as before the values are 
considered in agreement if the difference is below 1 log unit). 

6. No experimental values inserted by user or retrieved by QSAR models. Two or more predicted 
values in the AD are available but they are not in agreement. 

7. No experimental values inserted by user or retrieved by QSAR models. Only one predicted value is 
available. 

8. Both predicted and experimental values are not available. 

When more than one reliable experimental value is available and in agreement (situation 1 and 2, 
Figure 5) the scheme uses the minimum and searches for the presence of the ACR fragments de-
scribed in the previous paragraph. Depending on the fragments identified different ACR are applied. 
If only fragments for high ACR are identified the acute toxicity value is divided by a factor of 100. If 
only fragments for low ACR are identified the acute toxicity value is divided by a factor of 10. In the 
other cases (no fragments or both fragments for high and low ACR are identified) the factor used is 
15. The factor of 100 was chosen because this is considered protective for the majority of the com-
pounds (May and Hahn, 2014). Fragments that identify low ACR identify compounds with an ACR 
below 10. To be protective, for these compounds an ACR of 10 was chosen. When no fragments or 
both fragments for high and low ACR are identified, the situation is ambiguous or not defined. For 
this reason we choose a medium ACR of 15. Indeed, in our dataset the medium ACR is of 19.6, but in 
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other datasets it is lower. For instance, a medium ACR of 12.2 is reported in May and Hahn, 2014 and 
the median of the ACR in Ahlers et al., 2006 is of 10.5. Since in this last case the ACR may be not suf-
ficiently protective, the reliability of the prediction (assigned on the basis of three criteria below de-
tailed) is lower than in the other two cases (see Table 9 for the reliability score assignment).  

1. The first criterion is the acute value (above or below the threshold of 0.01 mg/l). For the aquatic 
compartment, compounds with acute values below this threshold can be directly classified as T 
(EC, 2014). Even if the compound can be classified directly as T, the scheme needs a chronic val-
ue for the integrated prioritization. In this case, the fact that the substance is toxic even after a 
short time (acute toxicity) clearly demonstrates that at least the same level of toxicity can be 
achieved in chronic conditions. For this reason the reliability of this classification is higher than 
the one based on acute toxicity values above the threshold.  

2. The second criterion is the ACR factor used. If no fragments are present or if both fragments for 
high and low ACR are identified the reliability of the prediction based on an ACR factor is lower.  

3. The third criterion is the source and number of the experimental values. If the experimental value 
is inserted by the user or there are more experimental values that are in agreement the reliability 
is higher. When only experimental values retrieved by QSAR models are available and they are 
not in agreement (situation 3, Figure 5), the scheme uses the minimum (to be protective) and 
proceeds with the ACR fragments. In this case the reliability (see Table 9) is low due to the low re-
liability of the experimental values used. In the situation 4 (Figure 6), with only one experimental 
value retrieved by the QSAR models, the procedure is identical but with reliability slightly lower 
due to the higher uncertainty of the acute toxicity value.  

Table 9:  How the reliability score are applied.  

 Only fragments for high or 
only fragments for low 

Fragments for both low and 
high or no fragments 

Multiple exp. values in agree-
ment with LC50 < 0.01 

1.0 Very high reliability 0.8 High reliability 

Multiple exp. values in agree-
ment with LC50 ≥ 0.01 

0.9 Very high reliability 0.7 High reliability 

Single exp. value with LC50 < 
0.01 

0.8 High reliability 0.6 Medium-high reliability 

Single exp. value with LC50 ≥ 
0.01 

0.7 High reliability 0.5 Medium reliability 

Multiple exp. values not in 
agreement  

0.4 Medium-low reliability 0.3 Low reliability 

Multiple predicted values in 
agreement 

0.6 Medium-high reliability 0.4 Medium-low reliability 

Single predicted value con-
firmed by VEGA-Class 

0.5 Medium reliability 0.3 Low reliability 

Single predicted value not con-
firmed by VEGA-Class (not 
predicted) 

0.4 Medium-low reliability 0.3 Low reliability 

Multiple predicted values not in 
agreement confirmed by VE-
GA-Class 

0.3 Low reliability 0.2 Low reliability 

Multiple predicted values not in 
agreement not confirmed by 
VEGA-Class (not predicted) 

0.1 Very low reliability 0.0 Very low reliability 
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When no acute experimental values are available, the predicted ones should be used considering 
only the prediction inside the AD of the model. When two or more predicted values are available and 
in agreement (situation 5, Figure 7) the scheme uses the minimum and searches for the ACR frag-
ments. The factors are the same described before and the reliability is assigned following the same 
criteria (reported in Table 9). When the acute predicted values are not in agreement or only one pre-
dicted values is available (situation 6, Figure 7 and situation 7, Figure 6 respectively) the VEGA-Class 
model (VEGA v 1.0.8 – Fish LC50 classification v 1.0.1-DEV) should be run to confirm the prediction. 
This model classifies the compounds into four classes on the basis of the LC50: < 1 mg/l, 1-10 mg/l, 
10-100 mg/l and > 100 mg/l, named respectively T1, T2, T3 and T4. Only the prediction within the 
AD (i.e. global AD index greater than 0.85) should be considered. If the predicted class is not in 
agreement with the predicted value (or the minimum predicted value in case of multiple values) the 
compound cannot be predicted by this scheme. In the other cases the ACR fragments should be 
searched and the corresponding factors applied. The reliability is assigned following Table 9. 

In situation 8 (no experimental and predicted values available, Figure 6) the scheme cannot proceed 
with the assessment. 
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Figure 5:  The toxicity workflow (first part) 
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Figure 6:  The toxicity workflow (second part) 
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Figure 7:  The toxicity workflow (third part) 
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4 INTEGRATION OF THE WORKFLOWS INTO THE PBT SCORE 
This section describes the method used to integrate the predictions (for P, B, and T) of all models 
used. The validation process, with its results, is described at the end. 

4.1 Aggregation process 
The starting variables to be used for building the final ranking score are those returned by each of the 
three workflows, for P, B and T endpoints. 

The multiple criteria decision making (MCDM) approach provides methods where a set of input vari-
ables are transformed and aggregated. In this work, we decided to add a prior step, in which property 
value and reliability values for each endpoint are aggregated into a unique value. The overall evalua-
tion for PBT will be based on both these two components: if the substance has been labelled as per-
sistent, bioaccumulative and toxic, but also if the label is “reliable”, on the basis of the uncertainty 
for each separate label.  

Before combining the property value and reliability values, they have to be transformed as required 
by MCDM in order to obtain a score ranging between 0 and 1, where 1 represents the optimum to be 
intended as the goal of the ranking approach; indeed in our case it represents the direction of major 
concern. This is a relevant step especially for the property values, as decisions based on the 
knowledge of each endpoint and on the considered legal thresholds are part of the choice on how to 
convert values. For each property we decided to keep the transformed value of 0.5 as an ideal thresh-
old to separate property values going in the direction of major concern (PBT compounds) form those 
of less concern (non PBT). 

Thus, each property has been described with the value from 1 to 0, and the thresholds which are spe-
cific for each property have been transferred into the 1 to 0 scale, identifying intermediate values, 
representing for instance, P, or vP substances. Below we describe for each property these specific 
property scores. 

After these steps, the result consists in three unique scores for P, B and T, which have to be combined 
using a MCDM technique. After testing different possible approaches, we decided to implement a 
desirability index, as explained below. 

This index represents the global ranking score used to rank compounds. High values (towards 1) are 
obtained for compounds having a P, B and T assessment performed with good reliability, so they 
should be the compounds of major concern. On the other side, low values (towards 0) are obtained 
for compounds with a non-P, non-B and non-T assessment performed with good reliability. Given the 
algorithm for the calculation of this index, it should be remarked that values falling in the middles of 
the range (around 0.5) could be obtained for different reasons: indeed, such values could be obtained 
from (A) compounds for which the properties have reliable predictions values ranging around the 
thresholds of concerns (for example, B predictions around the 3.3 log units); or (B) compounds with 
some properties values of concern but with a low reliability.  

For an automatic quick evaluation, the 0.5 value of the overall score can be used as a pragmatic 
threshold: chemicals with a value lower than this threshold could be considered safe. 

We notice that the driving factor of the PROMETHEUS project is to tool to prioritize substances, in 
order to identify substances which are (very) likely to be PBT. For this purpose we tuned to system in 
this direction. Other purposes may have produced a different strategy. This refers in particular to the 
fact that substances at the top of the ranking list should very probably have PBT-properties: Wrong 
results of the screening would result in a loss of time and resources, e.g. by requiring experimental 
tests on substances which do not have PBT-properties. 
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Expressed in jargon of the modeller, the software should minimize false positives. We notice that 
when models are developed for other purposes, they can be optimized in other ways. For instance, it 
is common that the in silico model should minimize false negatives (not positives) when used to pre-
dict toxic effects of chemicals to be assessed for regulatory purposes.  

We also notice that this strategy allows anyhow to introduce a kind of flexibility, using the threshold 
of the PBT score, and also relatively to the uncertainty of the predictions. Indeed, if the user wants to 
get a higher number of potential PBT-substances, it can be done proceeding down in the list of the 
order substances. If the user wants to include also potential PBT-chemicals with higher uncertainty, 
in order to avoid false negatives, this is also possible by changing the weights assigned to the uncer-
tainty in the PBT-score. We also notice that the uncertainty of the separate P, B and T properties val-
ues are reported by the program. 

In the future, the software which can be implemented in a user-friendly platform may offer the possi-
bility to tune the output, for instance listing in top the substances also with a high uncertainty, which 
goes in the direction of a conservative strategy.  

Following, the steps used in the program are explained with more details. 

4.1.1 Conversion of the Persistence (P) classes into numerical values  
The output produced by the P workflow consists of four possible classes (nP, nP/P, P/vP and vP). 
These classes have been transformed using values between 0 and 1 to separate them without any 
mathematical function, with the following scheme (table 10): 

Table 10:  Assignment of numerical values to categories of persistence.  

Class Value 
nP 0.3 
nP/P 0.6 
P/vP 0.8 
vP 1.0 
unknown 0.5 

As mentioned, in this conversion of the property class we decided to keep the value of 0.5 as a 
threshold to separate concerning and non-concerning assessments.  

An additional value has been set for the “unknown”, which is the output of the workflow when no 
prediction can be provided. For these missing values, the value of 0.5 has been chosen as it repre-
sents a situation where it is not possible to decide if the P property should be or not of concern. 

4.1.2 Normalization of the Bioaccumulation (B) values  
The output produced by the B workflow consists in the predicted value of BCF expressed in log units. 
For this property, two BCF thresholds are of particular interest: 3.3 (log 2000; threshold for B com-
pounds) and 3.7 (log 5000; threshold for vB compounds). 

The BCF values are transformed into a score with a mathematical function based on a composite sig-
moid (logistic) function, producing an output which is normalized between o and 1: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐵𝐵𝐵𝐵𝐵𝐵 𝑣𝑣𝑁𝑁𝑁𝑁𝑣𝑣𝑁𝑁 = �

1
1 + 𝑁𝑁−(𝑃𝑃𝐵𝐵𝐵𝐵−3)  𝑓𝑓𝑁𝑁𝑁𝑁 𝐵𝐵𝐵𝐵𝐵𝐵 < 3.0 log𝑣𝑣𝑢𝑢𝑁𝑁𝑢𝑢𝑢𝑢

1
1 + 𝑁𝑁−2(𝑃𝑃𝐵𝐵𝐵𝐵−3)  𝑓𝑓𝑁𝑁𝑁𝑁 𝐵𝐵𝐵𝐵𝐵𝐵 ≥ 3.0 log𝑣𝑣𝑢𝑢𝑁𝑁𝑢𝑢𝑢𝑢

� 
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In this case, the value chosen as a threshold is 3.0 log units (which is transformed to the 0.5 normal-
ized value), also keeping in mind the distribution of the substances in the available collections of 
values, which indicate a large prevalence of nB substances. Thus, the distribution of the normalized 
BCF values resulted not too unbalanced towards chemicals with normalized BCF values lower than 
0.5.  

The mathematical function is composed by the two sigmoid functions above presented, which are 
used depending if the BCF original value is above the 3 log units or not. We notice that for BCF values 
higher than the 3.0 threshold the normalized BCF value increases more quickly. This has been done 
to better discriminate between the two 3.3 and 3.7 BCF thresholds, i.e. between B and vB com-
pounds. Indeed, the score value quickly increases for BCF values between 3.0 and 4.0 log units; for 
BCF values higher than 4.0, the score goes quickly towards 1, since there is no particular need of dis-
crimination (all compounds are clearly vB).  

On the other side, BCF-values lower than 3.0 log units correspond to descending normalized BCF-
values. For these substances the normalized BCF value does not decrease as fast as explained before, 
and under a certain threshold (around 1 log units) all BCF values lower than 1 end with a similar 
score, with values near 0, as there is no need of particular discrimination (all compounds are clearly 
nB). Figure 8 shows how this function transforms original BCF-values (with values from -1 to 7 log 
units) to the corresponding normalized BCF value. 

Figure 8: The transformation of the original BCF value into the normalized BCF value for pri-
oritization. 

 

4.1.3 Normalization of the Toxicity (T) values 
The output produced by the T workflow consists in the calculated value of fish toxicity expressed in 
mg/l. This value mainly refers to acute toxicity, but if there is concern for the possible chronic toxici-
ty, the overall toxicity is increased, as presented in the workflow for toxicity. 

For this property, the threshold of interest is 0.01 mg/l (where compounds with a toxicity value lower 
than this threshold are labelled as T). 

The toxicity values are transformed into a normalized T value with a sigmoid (logistic) function 
based: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑇𝑇 𝑣𝑣𝑁𝑁𝑁𝑁𝑣𝑣𝑁𝑁 = 1 −
1

1 + 𝑁𝑁−(log(𝑃𝑃𝑇𝑇𝑇𝑇)+1) 

In this case, the value chosen as a threshold is -1 log units, corresponding to 0.1 mg/l (which is trans-
formed to a 0.5 score). In this way, all the values higher than the score value 0.5 represent substanc-
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es of possible concern, while the threshold at 0.01 corresponds to the score value 0.73. In this case 
the difference between our -1 log units threshold and the threshold of concern (-2 log units) is slight-
ly more remarked, because compounds with toxicity values around, or lower than, 0.1 mg/l show 
anyway a toxicity effect, even if they are over the regulatory threshold of 0.01 mg/l. 

It should be noted that the transformation function has an inverted optimality: lower values of the 
property lead to higher score values (as the lower is the mg/l value, the more toxic is the compound). 
Similarly to the BCF-transformation, the sigmoid function ensures a good discrimination of score 
values around the threshold of interest, while remarkably higher toxicity values (around or lower 
0.001 mg/l) and lower toxicity values (around or higher than 10 mg/l) are not discriminated anymore 
and end with similar score values, respectively near 1 and 0. 

Figure 9 shows how this function transforms toxicity values (with values from -5 to 4 log units, equal 
to a range from 0.00001 to 10,000 mg/l) to the corresponding score: 

Figure 9: The transformation of the T value into the normalized T value for prioritization. 

 

Like the P-workflow, also the T-workflow can provide some missing values (when unable to perform 
a prediction). In this case, the default score value of 0.5 is set, as it represents a situation where it is 
not possible to decide whether the T property should be or not of concern. 

4.1.4  Combination of property normalized values with their reliability 
As already mentioned, each P, B and T value (obtained with the above explained transformations) is 
combined with its reliability value to obtain a unique score for each property.  

Besides the transformations related to the property values, to get a value ranging from 0 to 1, within 
each workflow there is the reliability values associated to the property value; also the reliability value 
ranges from 0 (lowest reliability) to 1 (maximum reliability). 

In practice, what we did is something, which can be closely related to the weigh-of-evidence strategy. 
The weight-of-evidence strategy assesses each value on the basis of the multiple ones, achieving a 
single value for the final assessment, and the uncertainty of each separate value is taken into ac-
count. Typically the weight-of-evidence refers to a single substance and is done manually. The strate-
gy we adopted is very similar, but the main difference is that the assessment is done on many sub-
stances together, and in an automatic way, according to the predefined criteria, which are the numer-
ical values above described. This strategy is implemented with the goal of meeting one of the archi-
tecture objective, i.e. having compounds reliably predicted as PBT in the top part of the ranking, and 
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those reliably predicted as non-PBT in its bottom part. For this reason, the formula to get the score for 
a single property is made of two distinct functions: 

𝑃𝑃𝑁𝑁𝑁𝑁𝑜𝑜𝑁𝑁𝑁𝑁𝑢𝑢𝑜𝑜 𝐷𝐷𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁 = �
𝑃𝑃 + (𝑃𝑃 − 0.5) ∙ (1 − 𝑅𝑅0.5) 𝑓𝑓𝑁𝑁𝑁𝑁 𝑃𝑃 < 0.5
𝑃𝑃 − (0.5 − 𝑃𝑃) ∙ (1 − 𝑅𝑅0.5) 𝑓𝑓𝑁𝑁𝑁𝑁 𝑃𝑃 ≥ 0.5

� 

where P is the normalized property score, calculated as explained in the previous sections, and R is 
the reliability. 

This function acts in a different way depending on the starting value of the property's score. Scores 
above the threshold of 0.5 (thus meaning scores related to compounds of concern) are exponentially 
lowered when the related reliability decreases (and thus uncertainty increases). On the other side, 
scores under 0.5 are exponentially raised when the related reliability decrease. This behaviour is 
consistent with the target of having high scores for certain PBT compounds, and low scores for cer-
tain non-PBT compounds; conversely, all compounds with high level of uncertainty in prediction will 
tend towards the middle threshold of 0.5. This choice has been done, as we explained before, on the 
basis of the specific task assigned to the PROMETHUES project by UBA: to minimize false positives, 
i.e. to be sure as much as possible that the substances in top of the list have PBT-properties. If we 
allow chemicals with higher uncertainty to merge in the list we will increase the number of false posi-
tives. Of course, different choices can be made depending on the specific purpose. In a future plat-
form implementing the program here developed, it is easily feasibility to introduce the possibility for 
the user to assign no influence to the uncertainty, and thus to avoid the use of the reliability filter. 
This solution obeys to a different purpose, to identify all possible PBT substances, which is different 
from the purpose to identify the substances, which “surely” are PBT-substances. We notice that the 
even the current program of the PBT-score is transparent, and the user of the current program can see 
separately the value related to each normalized property, and the value of the uncertainty.  

Figure 10 reports an example of how the final score (on the Y axis) changes depending on the relia-
bility value (X axis) for four example property's value (0.2, 0.4, 0.6 and 0.8). It is clear that with a low 
reliability (and thus with high uncertainty) all values tend to the “grey” area in the middle, towards 
the 0.5 value, while with higher reliability we can distinguish substances on the basis of the property 
value. 
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Figure 10: The representation of the overall PBT score depending on the reliability value; four 
cases are shown. 

 

4.1.5 Calculation of the PBT score 
The final step consists of the combination of the three property scores into a unique ranking score to 
be used for the final ranking. After testing several approaches, coming from MCDM theory, the cho-
sen approach has been what in jargon is call desirability index, and has as general formula: 

𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑥𝑥1
𝑤𝑤1 ∙ 𝑥𝑥2

𝑤𝑤2 ∙ … ∙ 𝑥𝑥𝑅𝑅
𝑤𝑤𝑅𝑅  

where xi represent the i-th input variable, and wi their weights, i = 1, 2, .., R. 

In our architecture, the global desirability has been used with the three global property scores as in-
put, and two weighting scheme has been designed and tested: 

𝐷𝐷𝐷𝐷𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃0.4 ∙ 𝐵𝐵0.4 ∙ 𝑇𝑇0.2 

𝐷𝐷𝐷𝐷𝐷𝐷𝑣𝑣𝑃𝑃𝑣𝑣𝑃𝑃 = 𝑃𝑃0.5 ∙ 𝐵𝐵0.5 

In the first case, the ranking PBT score is calculated taking into account the P, B and T properties 
with different weights: P and B have an equal weight, while T has a lower weight. This choice follows 
the indication from UBA, on the basis of the main interest on the P and B properties, also related to 
the much higher uncertainty associated to the output of the predictive in silico models for aquatic 
toxicity. Indeed, for aquatic toxicity the best models available are those for fish acute toxicity (com-
pared for instance to those for daphnia), and the robustness of models for chronic aquatic toxicity is 
even higher (also for the much lower number of experimental data available). But the quality of the 
best available fish acute toxicity models is still relatively poor. Thus, the T-component in the overall 
PBT-assessment is relatively more uncertain. Our scheme reflect this assigning a lower weight to the 
T-component. In the future, if new models would have better results in prediction, the score can be 
immediately changed. 

In the second case, the toxicity prediction is not considered at all, and only P- and B-properties are 
used, both with an equal weight. This scheme fulfils the request of an alternate ranking system ori-
ented towards vPvB-screening. 
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The PBT- and vPvB-scores are transparent and thus interpretable, as we explained. There is another 
useful characteristic to our strategy: It is flexible. What has been developed is the general framework 
and based on this simpler situations can be easily adopted. A specific sub-case which can be pre-
ferred by the user is the case of the identification of all the possible PBT-substances. This is a special 
sub-case of our more general structure. Indeed, it can be easily implemented avoiding the value asso-
ciated to the reliability. Another possibility is to use specific thresholds for the P-, B- or T-scores as 
desired by the user, for instance the value 3.3 or 3.7 for bioaccumulation. These are single values, 
which can be easily implemented as special case of our strategy again: indeed our strategy uses the 
continuous value (thus all the values) and the specific 3.7 value is a special, limited case in the range 
of the value. We notice that the opposite would not be possible: having a program working on a few 
specific thresholds does not allow to switch to a program able to handle all the values. This flexibility 
allows in the future platform to introduce these special sub-cases, to be chosen by the user through 
buttons. 

4.2 Validation test 
After the integration process, it was necessary to carry out a validation test to check the ability of the 
new platform to differentiate compounds labelled as PBT-compounds from those that are non-PBT. 

For this purpose we built up a set of chemicals that contains molecules labelled as PBT and non-PBT 
obtained from the literature and authorities. 

4.2.1 Validation set 
To test the predicting ability of the model for PBT-prioritization we prepared a dataset for validation, 
extracted from multiple sources of a total of 1875 molecules with experimental data on P, B and / or 
T. The data about bioaccumulation expressed as log BCF (860 compounds) belong to the Read-Across 
dataset of VEGA, while the data about the persistence in all the compartments (Pwater 351, Psediment 
297, Psoil 568 compounds) are derived from multiple sources available in literature [which consist of 
Gouin et al., 2004 and Gramatica and Papa, 2007; RIVM (Linders et al., 1994); and USGS (Prioritiz-
ing Pesticide Compounds for Analytical Methods Development, 2012)]. Data about fish chronic tox-
icity (91 compounds) were extracted from the ECOTOX database of the OECD QSAR toolbox. This 
starting dataset also includes 27 chemicals evaluated as PBT from the REACH Candidate List of ECHA 
and UBA lists. Table 11 summarizes the information about the data and their sources. 

Table 11: Information about sources of the starting dataset 

# Endpoint Source 
27 PBT  Candidate List; UBA list  
869 Log BCF Read-across dataset  (VEGA)  
351 
297 
568 

Pwater 
Psediment 
Psoil 

Gouin et al., 2004 and Gramatica and Papa, 2007; RIVM 
(Linders et al., 1994); and USGS (Prioritizing Pesticide 
Compounds for Analytical Methods Development, 2012) 

91 Fish Chronic Tox OECD QSAR toolbox (ECOTOX database)  

From these 1875 chemicals, we selected a total of 356 molecules in order to obtain a dataset for 
check of the PBT scheme as described below (Figure 11).  
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Figure 11:  The validation dataset 

 

All the compounds evaluated as PBT in the Candidate List (27) were included in this validation set 
and we assigned them the label of PBT. 

Some chemicals of the starting set are surely not PBT; this is because they are not B with a log 
BCF<3.3; not P in any compartment (water, soil or sediment), and not T because their chronic toxicity 
is > 0.01 mg/L. From these compounds, that have a negative feedback for all the endpoints (P, B and 
T) concurrently, we selected 60 with experimental log BCF <1, labelling them as not PBT.  

After the selection because chemicals have experimental values for all P, B and T, we choose chemi-
cals with values of two endpoints only, as described in Table 12. 

Table 12:  Chemicals with data about two endpoints only 

Chemicals Endpoints 
27 P and B 
2 B and T 
0 P and T 

Finally, we also used the chemicals with experimental values related to only one endpoint (P or B or 
T), as described in Table 13: 

Table 13:  Chemicals with data about only one endpoint 

Chemicals Endpoints 
126 P 
100 B 
22 T 

In details, for the endpoint P, we can also differentiate the chemicals in the set as not P, P/vP and vP. 

In conclusion of what has been described above, we summarize the construction of this validation 
dataset for the model for PBT-prioritization in the Table 14: 

Table 14: Construction dataset summary 

Chemicals Features 
27 Fulfil PBT criteria  
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60 Fulfil these conditions simultaneously  
* nPwater;  nPsediment;  nPsoil  
** log BCF < 1 
*** Fish Chronic Tox  > 0,01  

269 Lack of data for one or more endpoints  

 

4.2.2 Results 
The platform is able to assign a ranking close to 1 to all the compounds officially labelled as PBT-
substances. Similarly, it is able to assign a ranking close to zero to all those compounds that are eligi-
ble to be labelled as “surely” non–PBT. Annex 1 contains all the chemicals, with their values.  

Intermediated values of ranking are assigned to those molecules with data lacking for one or will 
more endpoints, defined as “grey-zone”.  

A qualitative analysis of the results of the ranking from the PBT-score has been performed on the val-
idation set. 

Starting from the compounds with highest ranking, it can be seen that the molecules in the top of the 
list share similar chemical features and belong to congeneric classes of well-known chemicals for 
which PBT behaviour is documented. 

Considering the first 30 molecules, they are all polychlorinated aromatic compounds and several of 
them are polychloro-biphenyles (PCBs). In the top ten there are well known chlorinated pesticides 
with condensed rings such as Aldrin, Dieldrin and Chlordane isomers, and with single ring such as 
hexachlorobenzene (HCB), all included in the list of POPs (Persistent Organic Pollutants – Stockholm 
Convention 2001). All of them are experimentally vP in all three compartments. Indeed their P pre-
diction always results vP with maximum reliability. For most of them, the experimental BCF value is 
available, and they are over the vB-threshold. The T-assessment shows different degrees of reliability, 
but always towards values of concern, even though no specific experimental data were available for 
acute aquatic toxicity for these compounds. 

Following these molecules, several other compounds are ranked as substances of concerns and share 
the same chemical features of the above-mentioned chemicals. Examples are CAS number 56348-72-
2, belonging to the polychlorinated-diphenylethers family, and CAS number 33423-92-6 (1,3,6,8-
TCDD) that belongs to the family of tetrachlorodibenzo-p-dioxins. In particular, it is the dioxin with 
the highest ranking among those in our data set. The other chlorinated dioxins are further down in 
the list, for their T values and their very low reliability, such as CAS number 35822-46-9 that is pre-
dicted as vP and B with high reliability (0.9), but the reliability associated to T value is 0.1. 

The first molecule not being polychlorinated is ranked with the 33th position, and it is one of the 
compounds provided by UBA and labelled as PBT/vPvB. It is a PAH, and it is ranked in this position 
because, despite the reliable vP-prediction and the high toxicity prediction, it has a predicted BCF 
value (of high reliability) of 3.56 and an experimental average value of 3.24. Indeed, while it is surely 
ranked as a substance of concern, it is ranked after all the other polychlorinated compounds, which 
clearly show higher BCF-value. 

Also, the other compounds provided by UBA and labelled as PBT/vPvB all belong to the PAH class.  
They are found in different ranking position, even though they all fall in the upper half of the ranking 
list (score > 0.5). Some of these compounds have nevertheless low BCF-predictions that explain why 
they are not in higher positions. For example, the lowest BCF (2.24) is found for the chemical with 
CAS number 218-01-9 (Chrysene). This value is strongly reliable, as it is based on the experimental 
data found in the VEGA CAESAR and Read-Across models. 
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Table 15 shows the molecules labelled as PBT by UBA and their experimental BCF-data, as arithmetic 
mean values, found into the VEGA database, with their related sources, including the EURAS data-
base. 

Table 15: BCF experimental values and their sources for PBTs labelled by UBA 

CAS no. LogBCF 
mean v. 

multiple 
values 

Number of. 
Data 

 Sources 

56-55-3 2.54 2.54 1 Dimitrov* 
207-08-9 3.33  

(predicted) 
2.94 
3.70 
3.35 

3 CAESAR (VEGA) 
MEYLAN (VEGA) 
Read-Across (VEGA) 

191-24-2 2.71 
(predicted) 

2.79 
4.04 
2.64 

3 CAESAR (VEGA) 
MEYLAN (VEGA) 
Read-Across (VEGA) 

50-32-8 2.73 2.68 
2.93 
2.58 
2.73 

4 Dimitrov 
Arnot 
Arnot 
Arnot 

218-01-9 2.24 2.24 1 Dimitrov 
53-70-3 2.80 2.80 1 Dimitrov 
206-44-0 3.24 2.71 

4.17 
2 Dimitrov 

EURAS 
85-01-8 3.40 3.01 

3.21 
2.85 
3.30 
3.71 
3.62 
3.57 
3.52 
3.50 
3.36 
3.30 
3.18 
3.15 
3.11 

14 Dimitrov  
Arnot 
Arnot 
EURAS 
EURAS 
EURAS 
EURAS 
EURAS 
EURAS 
EURAS 
EURAS 
EURAS 
EURAS 
EURAS 

129-00-0 2.83 2.56 
1.72 
1.70 
2.99 
3.41 
3.36 
3.15 
3.08 

8 Dimitrov; 
Arnot 
Arnot 
EURAS 
EURAS 
EURAS 
EURAS 
EURAS 

 

The compounds that have been added from the EC list of possible PBT or vPvB are also mostly cor-
rectly found in the upper half of the ranking list, starting from chemicals CAS number 3846-71-7, 
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120-12-7 and 1163-19-5. All of them belong to the polybrominated-diphenylethers (PBDEs) family 
used as flame retardants and well known for their adverse effects to both humans and environment, 
so restricted under the Stockholm Convention.  

Other compounds from this list do not achieve a high total score, for different reasons. For some 
chemicals, the available models fail to provide a prediction: for CAS number 56-35-9 bis(tributyltin)-
oxide (TBTO), because it is an organo-metal, even if it is considered a severe marine pollutant and 
SVHC (Substance of Very High Concern) for the EU, massively used as marine anti-biofouling agent.  

For CAS number 138257-19-9, 678970-15-5, 138257-18-8, 678970-17-7 and 169102-57-2, repre-
senting part of the well know flame-retardant family of hexa-bromocyclododecanes (HBCDDs) and 
also labelled as POPs, the persistence workflow is not able to provide an assessment. These com-
pounds are not predicted by P models since similar molecules are not present in the kNN model train-
ing sets. Moreover no SAs or chemical classes were identified for this category of compounds. Only 
for sediment, one chemical class (for vP) is available, but, following the workflow criteria, it is not 
enough to generate a final reliable prediction.  

Regarding the compounds that achieved a total ranking around the value of 0.5, thus being in the 
middle of the ranking list, some of them are reported as examples of the meaning of their ranking. 
Indeed, as already mentioned, this ranking can be achieved in two cases: (1) for compounds that 
have a reliable set of predictions, with property values for P, B and T below the thresholds of con-
cerns, but not so low to be classified as “safe” compounds, and (2) for compounds that have one or 
more properties predicted with low reliability, thus they cannot be positioned at the top nor at the 
bottom of the list due to the uncertainty in their evaluation. 

For instance, in the second category there is the compound CAS number 129-43-1, which is 1-
hydroxy anthraquinone. It has a total score of 0.515; in this case, the log BCF-value is 2.37. VEGA 
BCF-models use experimental values, so the value assigned is of the highest reliability. However, it is 
predicted to be vP but with a very low reliability degree. So, unless a further expert-based assessment 
is performed to clearly identify its risk of being persistent, this compound falls in the middle of the 
ranking as it is not possible to determine whether it is a PBT or a surely safe compound. 

In the first category, with chemicals with more reliable property values, there is the compound CAS 
number 292-64-8, an aliphatic cycloalkane. It has a score of 0.505 and its BCF-score and persistence 
prediction have a reasonably good degree of reliability (respectively 0.85 and 0.7), but the respective 
values indicate a low hazard (log BCF = 2.69 and a nP/P classification). Thus, while the predictions 
are reliable, the P and B properties values for this compounds are both far from the thresholds of con-
cern and from the “safe” area, and for this reason this compound falls in the middle of the ranking. 

Coming to the bottom of the ranking list, the compounds that achieved lowest scores are as expected 
those having at least an nP classification or very low BCF values with the highest reliability (which 
means that some experimental values were available, and that these data were concordant between 
them and with the models predictions). Indeed, the definition of a non-PBT compound implies that at 
least it is non-P, non-B or non-T. It should be remarked again that in the final adopted scheme the T-
property has a lower weight than P and B, because the assessment of toxicity is more complex, and 
thus it can be achieved with lower reliability at the moment, as already explained; thus also the 
meaning of low total scores is related mainly only to non-P and non-B. 

For instance the lowest ranked compound is CAS number 920-66-1 hexafluoro-isopropanol (HFIP), 
extremely polar and for this reason it is used as a solvent in polymer industry and more generally in 
organic synthesis. HFIP has one of the lowest BCF-values assessed with reliability equal to 1. This 
high reliability indicates that the compound has experimental values. In fact, all three BCF models 
within VEGA (CAESAR, Meylan, Read-Across) have an experimental value for this compound. The 
Read-Across model has an experimental value equal to log BCF = 0.24 (ADI=0.815). CAESAR and 

https://en.wikipedia.org/wiki/Pollutant
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Meylan models have experimental values, log BCF = 0.3 (ADI=1) and log BCF = 0.4 (ADI=1) respec-
tively.  Thus, even if the nP classification is provided with low degree of reliability, this substance 
achieves an overall PBT-score of 0.161. 

The second lowest ranked compound, CAS number 141-78-6, ethyl acetate ester, has a slightly high-
er score of 0.173, and has a certain nP classification but its BCF prediction of log BCF = 0.38 is not so 
reliable as the one of the previous compound. Esters are widespread in nature and are widely used in 
industry; their main characteristic is the carboxyl center (RO(C=O)R’), with organic group R in substi-
tution of the hydrogen of carboxyl acids. Their electrophilic functional group reacts with nucleo-
philes, while the C-H bonds adjacent to the carboxyl are weakly acidic and undergo deprotonation 
with strong bases. These chemical properties confirm a high reactivity in substitutions, hydrolysis 
and condensations of esters, which explains their nP and nB classification.  

All the compounds that have been added to the validation list with a “non PBT” label (as they had at 
least on experimentally known property needed for such labelling) are correctly found in the lower 
half (score < 0.5) of the ranking list. 

For instance, the whole class of ketones (CAS number 591-78-6, 107-87-9, 96-22-0, 78-93-3, 67-64-
1) are found in the lowest part of the ranking. Ketones are organic compounds that have as character-
istic the carbonyl group (C=O), which is polar as a consequence of the fact that the electronegativity 
of the oxygen is greater than that for carbon. Because the carbonyl group interacts with water by hy-
drogen bonding, ketones are typically more soluble in water than the related methylene compounds. 

As a conclusion, we can say that the integrated model for PBT (vPvB) prioritization separates success-
fully PBT- vs non-PBT compounds. As expected, the best predictions are achieved with chlorinated 
aromatic molecules in the top of the list, and in the end of the list with polar and soluble molecules, 
such as carbonyls, alcohols and esters. These results were obtained thanks to the large number of 
data with good quality related to these chemical classes of molecules, that we used building the 
models. The major problem was the lack of available data on fish toxicity and the related low reliabil-
ity for predicted values. This situation reduces the ranking of same molecules that are possible toxi-
cants. 

This overall performance should be seen as a starting point; the platform can be refined with the in-
tegration of new models and the implementation within VEGA. 

More levels of improvement can be achieved taking into consideration endpoints as endocrine dis-
ruption and human toxicity. Models for endocrine disruption and human toxicity (CMR) are already 
available within VEGA. 

In the future, the implementation work could converge in the creation of a program for prioritization 
of substances to be evaluated for PBT assessment, freely available for the users. 
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