TEXTE

25/2015

Prüfung und Validierung der Einsatzmöglichkeiten neuartiger Passivsammler für die Überwachung prioritärer Schadstoffe unter der WRRL, der MSRL und im Rahmen von HELCOM und OSPAR

im Zeitraum 01.01.2010 - 30.10.2012

TEXTE 25/2015

Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit

Forschungskennzahl 3709 22 225 UBA-FB 001938

Prüfung und Validierung der Einsatzmöglichkeiten neuartiger Passivsammler für die Überwachung prioritärer Schadstoffe unter der WRRL, der MSRL und im Rahmen von HELCOM und OSPAR

im Zeitraum 01.01.2010 - 30.10.2012

von

Uta R. Kraus Dr. Norbert Theobald Bundesamt für Seeschifffahrt und Hydrographie (BSH), Referat Chemie des Meeres, Hamburg

Roman Gunold Dr. Albrecht Paschke Helmholtz-Zentrum für Umweltforschung – UFZ, Department Ökologische Chemie, Leipzig

Im Auftrag des Umweltbundesamtes

Impressum

Herausgeber:

Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau Tel: +49 340-2103-0 Fax: +49 340-2103-2285 info@umweltbundesamt.de Internet: www.umweltbundesamt.de

f /umweltbundesamt.de
 /umweltbundesamt

Durchführung der Studie:

Bundesamt für Seeschifffahrt und Hydrographie (BSH) Referat Chemie des Meeres Wüstland 2, 22589 Hamburg

Helmholtz-Zentrum für Umweltforschung – UFZ Department Ökologische Chemie Permoserstraße 15, 04318 Leipzig

Abschlussdatum:

2013

Redaktion:

Fachgebiet II 2.5 Labor für Wasseranalytik Sabine Günther

Publikationen als pdf: http://www.umweltbundesamt.de/publikationen/pruefung-validierung-der-einsatzmoeglichkeiten

ISSN 1862-4804

Dessau-Roßlau, März 2015

Das diesem Bericht zu Grunde liegende Vorhaben wurde mit Mitteln des Bundesministeriums für Umwelt, Naturschutz, Bau und Reaktorsicherheit unter der Forschungskennzahl 3709 22 225 gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autorinnen und Autoren.

Danksagung

Die Autoren bedanken sich sehr herzlich für umfangreiche Hilfestellung und freundliche Unterstützung bei folgenden Institutionen und Personen:

- Landesbetrieb f
 ür Hochwasserschutz und Wasserwirtschaft (LHW), insbesondere Dr. Angelika Mleinek, Dr. Tom Schillings und Bernd Schwanke
- Biologische Anstalt Helgoland (BAH)
- Alfred-Wegener-Institut (AWI), insbesondere AWI Center for Scientific Diving (AWI-CSD)
- Wasser- und Schifffahrtsamt (WSA) L
 übeck sowie der Besatzung des Tonnenlegers "Seeadler" (Heiligenhafen)
- Helmholtz-Zentrum Geesthacht, Institut f
 ür K
 üstenforschung, Abteilung Marine Bioanalytische Chemie
- Foppe Smedes (Deltares, Utrecht, Niederlande)
- Dr. David Alvarez (U. S. Geological Survey, Columbia, MO, USA)
- Prof. Dr. Gerrit Schüürmann, Uwe Schröter und Elke Büttner, Department Ökologische Chemie des Helmholtz-Zentrums für Umweltforschung (UFZ)
- Dagmar Häger, Heidi Gall-Rebe und Helmut Dora, Referat Chemie des Meeres des Bundesamtes f
 ür Seeschifffahrt und Hydrographie (BSH)

Inhaltsverzeichnis

Danksagung	4
Abbildungsverzeichnis	8
Tabellenverzeichnis	12
Abkürzungsverzeichnis	13
1. Einleitung und Zielsetzung des Projektes	15
2. Passivsammler - Prinzip und Entwicklungsstand	17
2.1 Theoretische Grundlagen der passiven Probenahme	17
2.2 Aufbau eines Passivsammlers	19
2.3 Einflussfaktoren auf die Stoffaufnahme eines Passivsammlers	20
2.4 Mechanismen der Substanzbindung (Adsorption/Absorption)	21
2.5 Grundlagen der Passivsammlerkalibrierung	22
2.6 Aktueller Stand des Einsatzes von Passivsammlern zur Gewässerüberwachung	22
3. Material und Methoden	24
3.1. Auswahl von Passivsammler-Typen	24
3.2 Auswahl, Einrichtung und Spezifikation der Probenahmestellen	25
3.2.1 Probenahmestellen in Binnengewässern	25
3.2.2 Probenahmestellen in Übergangs- und Küstengewässern sowie in der Hochsee	.27
3.3 Probenahmekampagnen	28
3.3.1 Binnengewässer (Elbe und Mulde)	29
3.3.2 Probenahmekampagnen in Übergangs- und Küstengewässern sowie auf Hochsee	der 29
3.4 Entwicklung von Ausbringungsvorrichtungen (Körben) und Behandlung Aufwuchsproblemen	von 30
3.4.1 Binnengewässer	30
3.4.2 Übergangs- und Küstengewässer und Hochsee	30
3.5 Begleitparameter und Wasserprobenahme	33
3.6 Kalibrierung der Passivsammler	35
3.6.1 Laborkalibrierung	35

3.6.2 Bestimmung der Fließgeschwindigkeit in situ mit Gipskartuschen	36
3.6.3 Berechnung von <i>In-situ</i> -Sammelraten mit Performance Reference (PRCs)	Compounds 37
3.7 Anwendung der Passivsammler und Analyse der Zielsubstanzen	39
3.7.1 Reinigung und Präparation der Sammler zur Vorbereitung der Probena	ahme39
3.7.2 Ausbringung und Einholung der Sammler	39
3.7.3 Reinigung und Extraktion der Sammelphasen nach der Einholung	41
3.8 Analyse	42
3.8.1 Zielsubstanzen, interne Standards und Performance Reference (PRCs)	Compounds 42
3.8.2 Analytik von aquatischen Stichproben	46
3.8.3 Analysenverfahren von Passivsammlerproben	47
3.8.4 Berechnung zeitgemittelter Durchschnittswerte aus Passivsammlern	47
4. Qualitätssicherung und Validierung	55
4.1 Aspekte der Qualitätssicherung beim Passivsammler-Einsatz	55
4.2 Aspekte der Validierung von passiven Probenahmeverfahren	55
4.3 Abschätzung der Unsicherheit der berechneten Analytkonzentration im Ge Passivsammler-Einsatz	wässer nach 56
4.4 Qualitätssicherung im Projekt	60
4.4.1. Wiederfindung und Geräteperformance	60
4.4.2 Kontrolle von Blindwerten in Feld und Labor	63
4.4.3 Wiederholpräzision in Realproben	63
4.4.4 Teilnahme an Laborvergleichsstudien	64
5. Ergebnisse und Diskussion	69
5.1 Erfahrungen und Erkenntnisse aus der Durchführung des Projekts	69
5.1.1 Arbeitsaufwand im Labor	69
5.1.2 Spezielle Arbeitstechniken	69
5.1.3 Beprobungsorte und Probenahme	70
5.1.4 Logistik	70
5.1.5 Biofouling	71

5.1.6 Arbeitsaufwand und Kosten bei der Probenahme	72
5.2 Charakteristik der Sammelphasen	72
5.2.1 Anreicherungsverhalten und erfasstes Analytspektrum	72
5.2.2 Analytgehalte in unterschiedlichen Sammlertypen gleicher Standorte	78
5.2.3 Analytgehalte in einem einzelnen Sammlertyp an verschiedenen Standorten	80
5.2.4 Leitsubstanzen der einzelnen Sammler und Standorte	80
5.2.5 Vergleich des Anreicherungsverhaltens von Analyten in verschieden Sammelphasen	en 82
5.3 Analytkonzentrationen in klassischen Wasserproben	84
5.3.1 Binnengewässer	84
5.3.2 Übergangs- und Küstengewässer und Hochsee	84
5.4 Zeitgemittelte Durchschnittskonzentrationen aus Passivsammler-Beprobungen	im 85
5.4.1 Binnengewässer	85
5.4.1 Binnengewässer	85 93
5.4.1 Binnengewässer	85 93 97
5.4.1 Binnengewässer	85 93 97 10
 5.4.1 Binnengewässer	85 93 97 10 nd 10
 5.4.1 Binnengewässer 5.4.2 Betrachtung über den Gesamtverlauf der Messkampagnen 5.4.3 Übergangs- und Küstengewässer sowie Hochsee 5.5 Zusammenfassende Diskussion 5.5.1 Vergleich der c_{TWA} verschiedener Sammelphasen bei paralleler Beprobung un Verwendung des gleichen Berechnungsverfahren 5.5.2 Summarischer Vergleich von zeitgemittelten Durchschnitts-konzentrationen un klassisch ermittelten Wasserkonzentrationen 	85 93 97 10 nd 10 nd 12
 5.4.1 Binnengewässer 5.4.2 Betrachtung über den Gesamtverlauf der Messkampagnen 5.4.3 Übergangs- und Küstengewässer sowie Hochsee 5.5 Zusammenfassende Diskussion 5.5.1 Vergleich der c_{TWA} verschiedener Sammelphasen bei paralleler Beprobung un Verwendung des gleichen Berechnungsverfahren 5.5.2 Summarischer Vergleich von zeitgemittelten Durchschnitts-konzentrationen un klassisch ermittelten Wasserkonzentrationen 5.5.3 Bewertung der Validierungsuntersuchungen und -betrachtungen of 	85 93 97 10 nd 10 nd 12 Jer
 5.4.1 Binnengewässer	85 93 97 10 nd 10 nd 12 Jer 18
5.4.1 Binnengewässer	85 93 97 10 nd 10 12 Jer 18 19
 5.4.1 Binnengewässer 5.4.2 Betrachtung über den Gesamtverlauf der Messkampagnen 5.4.3 Übergangs- und Küstengewässer sowie Hochsee 5.5 Zusammenfassende Diskussion 1' 5.5.1 Vergleich der c_{TWA} verschiedener Sammelphasen bei paralleler Beprobung un Verwendung des gleichen Berechnungsverfahren 1' 5.5.2 Summarischer Vergleich von zeitgemittelten Durchschnitts-konzentrationen un klassisch ermittelten Wasserkonzentrationen 5.5.3 Bewertung der Validierungsuntersuchungen und -betrachtungen der Passivsammler 6. Anwendungsempfehlungen 1' 	85 93 97 10 nd 10 12 Jer 18 19 20

- A. Anhang A-1 Methoden
- A-2 Tabellen
- A-3 Abbildungen

Abbildungsverzeichnis

Abbildung 1: Typische Aufnahmekurve eines Passivsammlers mit Arbeitsbereichen von
integrativen und Gleichgewichts-Passivsammler18
Abbildung 2: Konzentrationsverlauf zwischen Wasserphase und Passivsammler19
Abbildung 3: Typische Materialien für die Sammelphase und die Membran von
Passivsammlern
Abbildung 4: Schematischer Aufbau des Durchflussbehälters
Abbildung 5: Durchflussbehälter am Bypass der Messstation. Foto: UFZ26
Abbildung 6: Bestückter modularer Sammlerkorb aus Titan, Helgoland-Design, vor, während
und nach der Exposition32
Abbildung 7: Bestückter modularer Sammlerkorb aus Edelstahl, Ostsee-Design, vor,
während und nach Ausbringung33
Abbildung 8: Kalibrierapparatur
Abbildung 9: Handhabung und Ablauf von Passivsammleranalysen40
Abbildung 10: Reinigen der LDPE-Streifen und Silicone Sheets nach dem Einholen41
Abbildung 11: Schema für die Analysen der verschiedenen Sammlertypen42
Abbildung 12: Abschätzung von k_e anhand einer logistischen Regression
Abbildung 13: Ishikawa-Diagramm für die Unsicherheitsbeiträge zur zeitgemittelten
Konzentration eines Stoffes (c_{TWA}) basierend auf Passivsammlereinsatz57
Abbildung 14: Vergleich der c_{TWA} (ng/L) für Chemcatcher und POCIS für verschiedene
Pestizide und Arzneimittel67
Abbildung 15: Vergleich der c_{TWA} (pg/L) von PBDE 28, 47, 99, 100, 153 und 154 im Auslauf
des Klärwerks in Modřice bei Brno, Tschechien
Abbildung 16: Unterschiedlich starker Aufwuchs auf fixierten Sammlern und im Korb frei
beweglich montierten Sammiern nach Ausbringung im Sommer 2011
Abbildung 17: Anreicherungsfaktor V_A [L/Sammler] für Silicone Sheets und LDPE-Streifen im Binnengewässer
Abbildung 18: Anreicherungsfaktor V_A [L/Sammler] für Silicone Sheets und LDPE-Streifen im
Übergangsgewässer75
Abbildung 19: Anreicherungsfaktor V_A [L/Sammler] für Silicone Sheets und LDPE-Streifen in
marinen Gewässern76
Abbildung 20: Box-Plots mit pro Sammleroberfläche gesammelter Analytmenge, bezogen auf
Silicone Sheets

Abbildung 21: Gesamtmenge der untersuchten Stoffgruppen in Silicone Sheets und LDPE-
Streifen nach Ausbringung in verschiedenen aquatischen Systemen79
Abbildung 22: Gesamtkonzentrationen der untersuchten Stoffgruppen in MESCO und
Silikonstab nach Ausbringung in verschiedenen aquatischen Systemen79
Abbildung 23: Prozentualer Anteil der in Silicone Sheets angereicherten Biozide an
verschiedenen Messstellen zu verschiedenen Jahreszeiten
Abbildung 24: Vergleich der Anteile von Konzentrationen [%] für 19 Stoffe, die in allen
Sammelphasen quantifiziert wurden83
Abbildung 25: Vergleich der c_{TWA} (ng/L) von Phenanthren, Fluoranthen und Chrysen in der
Mulde bei Dessau und der Elbe bei Magdeburg87
Abbildung 26: Vergleich der c_{TWA} (ng/L) der PAK in der Mulde bei Dessau
Abbildung 27: Vergleich der c_{TWA} (ng/L) von PCB 52, 138 und 153 in der Mulde bei Dessau
und der Elbe bei Magdeburg89
Abbildung 28: Vergleich der c_{TWA} (ng/L) der PCB in der Mulde bei Dessau
Abbildung 29: Vergleich der $c_{\scriptscriptstyle ext{TWA}}$ (ng/L) von Irgarol, Atrazin und Terbuthylazin in der Mulde
bei Dessau (links) und in der Elbe bei Magdeburg
Abbildung 30: Vergleich der c_{TWA} (ng/L) verschiedener Passivsammler für Phenanthren,
Fluoranthen und Chrysen in der Mulde bei Dessau von Juni bis August 2011 mit
Ergebnissen klassischer Beprobung94
Abbildung 31: Vergleich der c_{TWA} (ng/L) verschiedener Passivsammler für Phenanthren,
Fluoranthen und Chrysen in der Elbe bei Magdeburg von Mai bis August 2011
mit Ergebnissen klassischer Beprobung95
Abbildung 32: Vergleich der c_{TWA} (ng/L) verschiedener Passivsammler für PCB 52, 138 und
153 in der Mulde bei Dessau von Juni bis August 2011 mit Ergebnissen
klassischer Beprobung96
Abbildung 33: Vergleich von c_{TWA} (ng/L) von ausgewählten PAK in Silicone Sheets aus zwei
Beprobungskampagnen im Übergangsgewässer (Tideelbe, Hamburger Hafen)
berechnet nach verschiedenen Modellen im Vergleich zur mittleren
Wasserkonzentration nach klassischer Probenahme
Abbildung 34: Vergleich von c_{TWA} (ng/L) von ausgewählten PAK in LDPE-Streifen im
Übergangsgewässer (Tideelbe, Hamburger Hafen) berechnet nach
verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach
klassischer Probenahme
Abbildung 35: Vergleich von c_{TWA} (ng/L) von ausgewählten PAK in Silicone Sheets aus zwei
Beprobungskampagnen im Küstengewässer (Fehmarnsund, Ostsee) berechnet

9

nach verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach klassischer Probenahme100 Abbildung 36: Vergleich von c_{TWA} (ng/L) von ausgewählten PAK in LDPE-Streifen im Küstengewässer (Fehmarnsund, Ostsee) berechnet nach verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach klassischer Abbildung 37: Vergleich von c_{TWA} (ng/L) von ausgewählten PAK in Silicone Sheets aus drei Beprobungskampagnen auf der Hochsee (Helgoland, Nordsee) berechnet nach verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach Abbildung 38: Vergleich von c_{TWA} (ng/L) von ausgewählten PCB sowie HCB in Silicone Sheets aus zwei Beprobungskampagnen im Übergangsgewässer (Tideelbe, Hamburger Hafen) berechnet nach verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach klassischer Probenahme......103 Abbildung 39: Vergleich von c_{TWA} (ng/L) von ausgewählten PCB sowie HCB in LDPE-Streifen im Übergangsgewässer (Tideelbe, Hamburger Hafen) berechnet nach verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach klassischer Probenahme104 Abbildung 40: Vergleich von c_{TWA} (ng/L) von ausgewählten PCB sowie HCB in Silicone Sheets aus zwei Beprobungskampagnen im Küstengewässer (Fehmarnsund, Ostsee) berechnet nach verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach klassischer Probenahme105 Abbildung 41: Vergleich von c_{TWA} (ng/L) von ausgewählten PCB sowie HCB in LDPE-Streifen im Küstengewässer (Fehmarnsund, Ostsee) berechnet nach verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach Abbildung 42: Vergleich von c_{TWA} (ng/L) von ausgewählten PCB sowie HCB in LDPE-Streifen aus zwei Beprobungskampagnen auf der Hochsee (Nordsee vor Helgoland) berechnet nach verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach klassischer Probenahme107 Abbildung 43: Vergleich von c_{TWA} (ng/L) von ausgewählten polaren Zielsubstanzen in Silicone Sheets aus zwei Beprobungskampagnen im Übergangsgewässer (Tideelbe, Hamburger Hafen) berechnet nach verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach klassischer Probenahme ...108

Abbildung 44: Vergleich von c_{TWA} (ng/L) von ausgewählten polaren Zielsubstanzen in
Silicone Sheets aus drei Beprobungskampagnen auf der Hochsee (Nordsee vor
Helgoland) berechnet nach verschiedenen Modellen im Vergleich zur mittleren
Wasserkonzentration nach klassischer Probenahme
Abbildung 45: Durchschnittliche Abweichung der c_{TWA} -Werte von MESCO, Silikonstab,
Silicone Sheet und LDPE-Streifen in % des Mittelwerts
Abbildung 46: Zeitgemittelte Durchschnittskonzentrationen c_{TWA} , bezogen auf den
geometrischen Mittelwert der $c_{\scriptscriptstyleTWA}$ aller Sammler in der Mulde bei Dessau und
der Elbe bei Magdeburg112
Abbildung 47: Verhältnis von zeitgemittelter Durchschnittskonzentration log c_{TWA} zu
Mittelwert der gleichzeitigen Wochenmischproben log $c_{\scriptscriptstyle \sf WM}$ in der Mulde bei
Dessau und der Elbe bei Magdeburg113
Abbildung 48: Verhältnis von zeitgemittelter Durchschnittskonzentration log $c_{\scriptscriptstyle {\sf TWA}}$ zu
Mittelwert der gleichzeitigen Schwebstoffproben log $c_{\sf WP}$ in der Mulde bei Dessau
und der Elbe bei Magdeburg114
Abbildung 49: Quotient aus zeitgemittelter Durchschnittskonzentration log $c_{\scriptscriptstyle {\sf TWA}}$ und
Mittelwert der gleichzeitigen Wochenmischproben log $c_{\scriptscriptstyle { m WM}}$ in Abhängigkeit vom
log <i>K</i> _{OW} -Wert115
Abbildung 50: Quotient aus zeitgemittelter Durchschnittskonzentration log $c_{\scriptscriptstyle {\sf TWA}}$ und
Mittelwert der gleichzeitigen Schwebstoffproben log $c_{\sf WP}$. in Abhängigkeit vom log
K _{ow} -Wert
Abbildung 51: Korrelationen von log c_{klass} mit log c_{TWA} in Silicone Sheets (konventionelle
Bererchnung mit PRCs und experimentellen K_{SW} -Werten) von allen Analyten an
der Übergangsgewässer-Stationen KIKA und den marinen Stationen in Nord-
und Ostsee116

Tabellenverzeichnis

Tabelle 1: Messstellen in Übergangs-, Küsten- und Hochseegewässern27
Tabelle 2: Übersicht der Probenahmekampagnen innerhalb des Projektes
Tabelle 3: Zentrale Begleitparameter der Messkampagnen
Tabelle 4: Unpolare Zielsubstanzen und zugeordnete Interne Standards und PRCs44
Tabelle 5: Polare Zielsubstanzen und zugeordnete interne Standards 45
Tabelle 6: Beispiel Berechnung der Eliminierungsraten mit PRCs50
Tabelle 7: Arbeits- und Zeitaufwand für die Analyse unterschiedlicher Sammler69
Tabelle 8: Anzahl der Einzelkomponenten pro Stoffgruppe, die von Silicone Sheets und
LDPE-Streifen an fünf Probenahmepunkten detektiert wurden73
Tabelle 9: Übersicht der Volumen der Sammelphasen und Injektionsvolumen78
Tabelle 10: Korrelationsparameter der linearen Regressionen zwischen log $c_{ m klass}$ und log
$c_{\scriptscriptstyle TWA}$, aufgegliedert nach Stationen, Berechnungsmodellen und Passivsammler-
Typen117
Tabelle 11: Übersicht über Parameter für die Auswahl des passenden Passivsammlers je
nach Anwendungsanspruch119

Abkürzungsverzeichnis

ACN	Acetonitril
BAH	Biologische Anstalt Helgoland
BSB	Biologischer Sauerstoffbedarf
BSH	Bundesamt für Seeschifffahrt und Hydrografie
CA	Celluloseacetat
DDX	zusammenfassender Begriff für DDT und seine Metabolite
DE	Probenahmestelle Dessau
DEHP	Di(2-ethylhexyl)-phthalat
DOC	Dissolved organic carbon
FE	Probenahmestelle Fehmarnsund
FNU	Formazine Nephelometric Units
НСВ	Hexachlorbenzol
HELCOM	Helsinki-Kommission zum Schutz der Meeresumwelt des Ostseeraums
HT	Probenahmestelle Tetrapodenfeld Helgoland (MarGate)
ID	Innendurchmesser
IS	Interner Standard
KI	Probenahmestelle Kirchenpauerkai, Hamburg
LDPE	Low-density polyethylene
LHW	Landesbetrieb für Hochwasserschutz und Wasserwirtschaft
MARNET	Marines Umweltmessnetz
MD	Probenahmestelle Magdeburg
MeOH	Methanol
MESCO	Membrane-enclosed sorptive coating
MSRL	Meeresstrategie-Rahmenrichtlinie
NORMAN	Network of reference laboratories for monitoring emerging environmental
	pollutants
OSPAR	Oslo-Paris-Übereinkommen zum Schutz der Meeresumwelt des
	Nordostatlantiks
PAK	Polyzyklische aromatische Kohlenwasserstoffe
PBDE	Polybromierte Diphenylether
PCB	Polychlorierte Biphenyle
PDMS	Polydimethylsiloxan
PES	Polyethersulfon
PFT	Perfluorierte Tenside
PRC	Performance reference compound

PS	Polysulfon
PSU	Practical Salinity Units
PTFE	Polytetrafluorethylen
SBSE	Stir bar sorptive extraction
SPE	Solid phase extraktion (Festphasenextraktion)
SPMD	Semi-permeable membrane device
SPME	Solid-phase microextraction
UFZ	Helmholtz-Zentrum für Umweltforschung
WRRL	Wasserrahmenrichtlinie
WSA	Wasser- und Schifffahrtsamt

1. Einleitung und Zielsetzung des Projektes

Vielfältige Nutzungsansprüche führen seit Jahrzehnten zu immer höherem Druck auf natürliche Wasservorkommen sowohl im limnischen als auch marinen Bereich und können den Fortbestand von gesunden, produktiven Ökosystemen gefährden. Daher legt heute eine Reihe nationaler, regionaler und europäischer Richtlinien und Konventionen (z. B. WWRL, MSRL, HELCOM- und OSPAR-Konventionen) Mindestansprüche an die Wasserqualität fest. Ein wichtiger Aspekt ist die Überwachung des Eintrags, der Verteilung und des Verbleibs einer ständig wachsenden Zahl von Stoffen, die als gesundheitsschädlich oder umwelttoxisch eingestuft werden. Für diese Überwachung sieht z. B. die WWRL die Untersuchung von mindestens zwölf Einzelproben pro Standort im Jahr vor. In Binnengewässern werden üblicherweise Stich- oder Mischproben von einem Liter entnommen und analysiert. In Übergangs- und Küstengewässern und besonders im Meer, wo seetaugliche Schiffe zur Probenahme zum Einsatz kommen, werden aufgrund der geringen Substanzkonzentrationen Probenvolumina im Bereich von 10 bis 100 Liter genommen. Eine zwölfmalige Probenahme im Jahr ist hier kaum realisierbar. Passivsammler stellen eine interessante Alternative zur üblichen Wasserprobenahme dar. Laut DIN-Norm EN ISO 5667-23:2011 umfasst die passive Probenahme "den Einsatz eines Passivsammlers, welcher einen Diffusionsgradienten nutzt, um Schadstoffe über einen Zeitraum von Tagen bis Wochen anzureichern" [1]. Häufig auch als künstliche Muschel bezeichnet, reichern sie allein aufgrund von Diffusionsprozessen Stoffe aus dem Umgebungsmedium an. Im Gegensatz zu Muscheln oder anderen Organismen, die zum Schadstoffbiomonitoring eingesetzt werden, sind Passivsammler prinzipiell leichter zu handhaben und zu standardisieren, mit geringerem Aufwand für bestimmte Zielvorgaben zu modifizieren sowie auch in stark salinen Gewässern einsetzbar [2]. Ein weiterer Vorteil ist die Möglichkeit der Erfassung von zeitgemittelten Durchschnittskonzentrationen für die Dauer der Ausbringung ("time-weighted average concentrations").

Passivsammler zur Bestimmung von Schadstoffen in Gewässern sind seit etwa 20 Jahren Gegenstand intensiver Forschung und werden heute z. B. im Rahmen der Überwachung nach WRRL als ergänzende Probenahmetechnik diskutiert [3]. Es bestehen jedoch noch erhebliche Unsicherheiten hinsichtlich der Kalibrierung der Sammler und der Validität der Ergebnisse. Deshalb besteht weiterer Forschungsbedarf, insbesondere bezüglich der Einsatzmöglichkeiten und -grenzen von Passivsammlerin bei der Gewässerüberwachung. Ziel dieses Projektes war es, verschiedene Passivsammler für die Bestimmung von prioritären Schadstoffen in Binnen- und marinen Gewässern zu testen. Dazu wurden Beprobungsstellen in Elbe und Mulde sowie Nord- und Ostsee etabliert. Darüber hinaus sollte die Vorbereitung, Ausbringung und Analyse der Sampler für den Routineeinsatz optimiert und das Verfahren einer Validierung unterzogen werden. Die zu bearbeitenden Fragestellungen lauteten im Einzelnen:

- Auswahl geeigneter Passivsammler und Untersuchung der Einsatzmöglichkeiten in Abhängigkeit von stofflichen Eigenschaften und Umweltbedingungen.
- Optimierung der Sammler und der analytischen Verfahren.
- Kalibrierung geeigneter Passivsammler zur Anreicherung von ausgewählten prioritären organischen Schadstoffen
- Etablierung und Einsatz der Passivsammler unter Praxisbedingungen an limnischen und marinen Monitoringstationen sowie Optimierung der Beprobungslogistik
- Vergleich der mittels Passivsammler und klassischer Beprobung ermittelten Stoffkonzentrationen im Gewässer
- Betrachtung der Passivsammler hinsichtlich verbesserter Bestimmungsgrenzen und damit besserer Einsetzbarkeit in Bereichen niedriger Schadstoffkonzentrationen
- Betrachtung der zu erreichenden Kosten- und Zeitersparnis beim Einsatz von Passivsammlern

2. Passivsammler - Prinzip und Entwicklungsstand

2.1 Theoretische Grundlagen der passiven Probenahme

Das Konzept der passiven Probenahme umfasst Beprobungstechniken, bei denen ein Analyt aufgrund der Differenz chemischer Potentiale aus dem beprobten Medium in die Sammelphase eines Anreicherungsmediums diffundiert. Der Stoffübergang folgt dem Diffusionsgradient bis das thermodynamische Gleichgewicht zwischen beiden Phasen erreicht ist (Gleichgewichtssammler) oder der Passivsammler aus dem Medium entfernt wird (kinetischer oder integrativer Sammler) [4, 5].

Die Stoffaufnahme erfolgt durch die Sammelphase, in der die Zielchemikalien angereichert werden. Sammelphasen können aus einem Lösungsmittel, einem nicht-porösen oder einem porösen Polymer bestehen. Ihre spezifische Oberfläche wird häufig mit funktionellen Gruppen modifiziert, um die Anlagerung der Zielchemikalien zu unterstützen [6].

Der Stoffübergang zwischen der Wasser- und der Sammelphase kann als Gleichgewichtsreaktion erster Ordnung beschrieben werden (vgl. hierzu [1, 7]):

$$\frac{m_{\rm s}}{V_{\rm s}} = c_{\rm w} K_{\rm sw} \left[1 - \exp(-\frac{k_{\rm o} t A}{V_{\rm s} K_{\rm sw}}) \right]$$
(1)

 $m_{\rm s}$ - Masse des Analyten in der Sammelphase nach der Expositionszeit t

- $V_{\rm s}$ Volumen der Sammelphase
- $c_{\rm W}$ Analytkonzentration in der Wasserphase
- K_{SW} Sammler-Wasser-Verteilungskoeffizient
- k_{o} Gesamtstoffübergangskoeffizient des Analyten
- t Expositionszeit des Passivsammlers in der Wasserphase
- A Wirksame Oberfläche des Passivsammlers

Abbildung 1 zeigt die Unterschiede zwischen integrativem und Gleichgewichtssammler. Im Gleichgewicht zwischen Passivsammler und Wasserphase vereinfacht sich Gl. 1 zu Gl. 2:

$$\frac{m_{\rm s}(t)}{V_{\rm s}} = c_{\rm w(GG)} K_{\rm sw}$$
⁽²⁾

Abbildung 1: Typische Aufnahmekurve eines Passivsammlers mit Arbeitsbereichen von integrativen und Gleichgewichts-Passivsammler

Ist der Passivsammler im Gleichgewicht mit der Wasserphase, reicht die Kenntnis des Sammler-Wasser-Verteilungskoeffizienten K_{SW} für die Berechnung der Konzentration im Wasser c_W . Allerdings repräsentiert dieser Wert nur die Konzentration zum Zeitpunkt der Entnahme des Sammlers aus dem Wasser (kein zeitgemittelter Wert).

Überschreitet der Passivsammler während der Exposition die Halbwertszeit der Akkumulation nicht, so befindet er sich (näherungsweise) im linearen Bereich der Aufnahmekurve (Abbildung 1), was Gl. 1 wesentlich vereinfacht:

$$m_{\rm s}(t) = c_{\rm w} k_{\rm o} A t \tag{3}$$

Für die praktische Anwendung schreibt, man diese Gleichung folgendermaßen um:

$$m_{\rm s}(t) = c_{\rm w(TWA)} R_{\rm s} t \tag{4}$$

*R*_S - Sammelrate des Passivsammlers

 $c_{W(TWA)}$ – time-weighted average concentration (zeitgemittelte Durchschnittskonzentration)

Die **Sammelrate** R_s wird in Liter pro Tag (L/d) oder Milliliter pro Stunde (mL/h) angegeben und kann als das pro Zeiteinheit durch den Sammler (quantitativ) extrahierte Wasservolumen interpretiert werden. Sie ist für jede Sammelphase und jede Chemikalie spezifisch und wird zudem auch von den an der Probenstelle vorherrschenden Umweltfaktoren wie Wassertemperatur, Fließgeschwindigkeit oder Bewuchs des Passivsammlers beeinflusst. R_s kann durch Kalibrierversuche experimentell bestimmt werden und ist für die meisten Passivsammler unabhängig von der Wasserkonzentration.

2.2 Aufbau eines Passivsammlers

Passivsammlern liegt trotz beträchtlicher Unterschiede in der Konstruktionsweise ein einheitliches Prinzip zugrunde (Abbildung 2). Gelöste Moleküle bewegen sich im Gewässer aufgrund konvektiver Strömung der Wasserphase. In der laminaren Grenzschicht jeder umströmten Oberfläche (z. B. des Passivsammlers) erfolgt der Stofftransport dagegen in erster Näherung durch Diffusion. Die Dicke der Grenzschicht variiert mit den Strömungsverhältnissen am Sammler und liegt zwischen 1 mm in stehenden Gewässern und wenigen Mikrometern unter sehr turbulenten Bedingungen [8]. Biofilm und Aufwuchs auf dem Sammler beeinflussen die Diffusion. Auch eine Membran vor der eigentlichen Sammelphase limitiert die Stoffaufnahme, wodurch Passivsammler für eine gewünschte Ausbringzeit oder bestimmte Zielsubstanzen angepasst werden können (Abbildung 3). In den vergangenen Jahren haben sich zunehmend Passivsammler durchgesetzt, die auf den Einsatz einer Membran verzichten [9] oder eine Membran als Sammelphase nutzen [10].

Abbildung 2: Konzentrationsverlauf zwischen Wasserphase und Passivsammler

Abbildung 3: Typische Materialien für die Sammelphase und die Membran von Passivsammlern

2.3 Einflussfaktoren auf die Stoffaufnahme eines Passivsammlers

Die Geschwindigkeit, mit der ein Molekül von der Wasserphase in die Sammelphase (und zurück) diffundiert, wird mit der Geschwindigkeitskonstante des Stoffübergangs k_o angegeben (siehe Gl. 1). Diese Konstante über den gesamten Stofftransport eines Passivsammlers lässt sich in einzelne Teilschritte untergliedern (der Bewuchs mit einem Biofilm ist bei Oberflächengewässern unausweichlich und hat die - wenn auch unerwünschte - Funktion einer zusätzlichen Membran, soll aber hier vorerst nicht weiter beachtet werden):

$$\frac{1}{k_{\rm o}} = \frac{1}{k_{\rm w}} + \frac{1}{k_{\rm m}K_{\rm mw}} + \frac{1}{k_{\rm s}K_{\rm sw}}$$
(5)

 k_{o} - Geschwindigkeitskonstante des Stoffübergangs k_{WBL} - Geschwindigkeitskonstante der Diffusion durch die Grenzschicht k_{M} - Geschwindigkeitskonstante der Diffusion durch die Membran (wenn vorhanden) K_{MW} - Membran-Wasser-Verteilungskoeffizient K_{S} - Geschwindigkeitskonstante der Diffusion durch die Sammelphase K_{SW} - Sammler-Wasser-Verteilungskoeffizient

Die Geschwindigkeitskonstanten der einzelnen Teilschritte lassen sich in erster Näherung mit folgender Gleichung berechnen:

$$k_{\rm x} = \frac{D_{\rm x}}{\delta_{\rm x}} \tag{6}$$

D_X - Diffusionskoeffizient in der jeweiligen Phase

 δ_{X} - Weglänge der zu durchquerenden Schicht

Der Diffusionskoeffizient D_S und die Affinität zum Material der Sammelphase (K_{SW}) bestimmen den Transport eines Moleküls von der inneren Grenzfläche in die Sammelphase. Bei den meisten Sammlern ist der Diffusionswiderstand der Sammelphase jedoch deutlich geringer als der der Membran ($D_S >> D_M$) daher kann dieser vernachlässigt werden [11]. Die Aufnahmegeschwindigkeit ist somit durch die äußere Grenzschicht ($1/k_{WBL}$) und/oder durch den Membranwiderstand ($1/(k_M. K_{MW})$) determiniert. Welcher der beiden Einflussfaktoren ausschlaggebend ist, wird durch die Eigenschaften der Zielchemikalie (und in geringerem Maße auch der Membran/Sammelphase) bestimmt. Als Faustregel gilt, dass die Aufnahme von hydrophoben Molekülen durch den Widerstand der Grenzschicht bestimmt wird ($1/k_o \approx$ $1/k_{WBL}$). Für die Aufnahme in LDPE-Streifen betrifft dies beispielsweise Substanzen mit einem log $K_{OW} > 4,5$ [12, 13]. Für hydrophobe (unpolare) Substanzen ist die passive Probenahme daher stark von den Strömungsbedingungen am Probenahmeort abhängig [14]. Für polare Moleküle ist der Diffusionswiderstand der Grenzschicht gering und die Stoffaufnahme ist vorrangig durch den Widerstand der Membran respektive der Sammelphase bestimmt [11].

2.4 Mechanismen der Substanzbindung (Adsorption/Absorption)

Substanzen werden in der Sammelphase durch Absorption oder Adsorption gebunden. Hydrophobe Moleküle diffundieren aufgrund ihres chemischen Potentials leicht aus der Wasserphase in eine geeignete Sammelphase, z. B. Silikon oder LDPE, und werden absorbiert. Der Sammler-Wasser-Verteilungskoeffizient K_{sw} korreliert mit dem Oktanol-Wasser-Verteilungskoeffizienten K_{OW} und ist (in Grenzen) unabhängig von der Schadstoffkonzentration in der Sammelphase. Zahlreiche Umweltschadstoffe (zum Beispiel Pestizide, Pharmaka, Zusätze von Pflegeprodukten) sind jedoch polar und reichern sich nur wenig an Passivsammlern an. Zudem dissoziieren viele dieser Stoffe in Wasser und sind daher nur teilweise für die Sammelphase zugänglich. Die Akkumulation polarer Stoffe findet i. d. R. über Adsorption statt, der Konzentrationsverlauf am Adsorbens verläuft entlang der Langmuir-Isotherme. Das bedeutet auch, dass das Verteilungsgleichgewicht von der Konzentration in der Sammelphase abhängig ist [15].

2.5 Grundlagen der Passivsammlerkalibrierung

Das Ziel des Einsatzes von integrativen Passivsammlern ist die Berechnung der zeitgemittelten Durchschnittskonzentration in der Wasserphase anhand der akkumulierten Schadstoffmenge in der Sammelphase. Dies ist durch Umstellung von Gl. 4 möglich, setzt der Sammelrate R_s voraus, jedoch die Kenntnis die insbesondere mit der Fließgeschwindigkeit variiert und aufwändig im Laborversuch ermittelt werden muss. Weitere Einflussfaktoren sind Bioaufwuchs (Biofouling), Temperatur, Salzgehalt (bei polaren Stoffen) sowie POC- und DOC-Gehalt (partikulärer und gelöster organischer Kohlenstoff - bei hydrophoben Stoffen). Es existieren verschiedene statische bis kontinuierliche Laborverfahren zur Passivsammler-Kalibrierung [7], die Anzahl der in der wissenschaftlichen Literatur publizierten Sammelraten nimmt kontinuierlich zu. Die für diese Arbeit relevanten Sammelraten und K_{sw} -Werte sowie andere wichtige physikochemische Parameter wurden in Anhang A-2.1 zusammengestellt. Es ist aufgrund der Komplexität der Fragestellung allerdings schwierig, eine für die jeweilige Probenstelle zutreffende Sammelrate zu finden. Hier können sogenannte Perfomance Reference Compounds (PRCs) weiterhelfen. Indem die Sammelphase vor dem Einsatz mit ²H- oder ¹³C-markierten Referenzsubstanzen dotiert und anschließend deren Eliminierung über den Expositionszeitraum des Sammlers verfolgt wird, können Aufnahmeraten aus Laborversuchen an die konkreten Feldbedingungen angepasst bzw. eine In-situ-Kalibrierung vorgenommen werden [1]. Die eingesetzten PRCs sollten idealerweise mit den Zielsubstanzen vergleichbare Stoffeigenschaften haben, jedoch in der Umwelt nicht in signifikanten Konzentrationen vorhanden sein.

2.6 Aktueller Stand des Einsatzes von Passivsammlern zur Gewässerüberwachung

Erste Arbeiten zum Einsatz des Passivsammlerprinzips zur Bestimmung hydrophober Umweltchemikalien in der aquatischen Umwelt erschienen bereits Ende der 1980er Jahre [16-18]. Huckins und Mitarbeiter entwickelten um 1990 die **SPMD** (Semi-Permeable Membrane Device), die durch ihre Konstruktionsweise (LDPE-Schlauch gefüllt mit Triolein), die Aufnahme von Schadstoffen in das Fettgewebe eines Organismus simulieren [19]. Verschiedene Autoren beschrieben bei Versuchen mit SPMDs, dass deren Verwendung ohne Triolein zu keiner signifikanten Verschlechterung der Sammeleigenschaften führte [13, 20-22]. Heute werden meist ungefüllte LDPE-Streifen als einphasige Passivsammler, bei denen die aufwändige Aufreinigung der Triolein-Phase entfällt, für die passive Probenahme in Gewässern eingesetzt [23]. Ein Passivsammler zur Erfassung polarer Substanzen ist der **POCIS** (Polar Organic Chemical Integrative Sampler) [24-26]. Hier umschließen zwei Membranen ein SPE-Sammelmedium im Inneren des Sammlers (z. B. Oasis HLB von Waters), in dem sich während der Expositionszeit die Analyten anreichern und das anschließend extrahiert wird [24].

Der **Chemcatcher** [27-29] erlaubt den Einsatz verschiedener SPE-Phasen im Format eines Rundfilters (die sogenannten Empore Disks von 3M) als Sammelmedien und somit eine Anpassung der Sammlereigenschaften an spezielle Gruppen von sowohl polaren als auch unpolaren Zielsubstanzen sowie Metallionen.

Während die Verwendung von Polydimethylsiloxan (PDMS) in der Festphasen-Mikroextraktion weit verbreitet ist, scheiterte die Verwendung von günstigen, Silikonpolymeren handelsüblichen als Passivsammler lange Zeit an starken Verunreinigungen des Materials durch Silikonöle und Oligomere. Mit der Entwicklung einer geeigneten Reinigungsmethode im Jahr 2000 [30] wurden die heute als Silicone Sheets bekannten Passivsammler für spurenanalytische Zwecke einsetzbar und finden vielfach Verwendung [9, 31, 32].

Die kombinierte Nutzung von PDMS- und LDPE-Material in einem einzigen Passivsammler wurde mit der Entwicklung des **MESCOs** (membrane-enclosed sorptive coating) umgesetzt. Hier wird ein mit Polydimethylsiloxan (PDMS) beschichtetes Magnetrührstäbchen (Twister von Gerstel, Mühlheim an der Ruhr) in einen luftgefüllten LDPE-Schlauch eingeschweißt [33, 34]. Auch der Einsatz eines Silikonstabs [35] als einphasigem Passivsammler ohne darüber liegende Membran wurde bereits im Feldversuch getestet [36]. Beide Ansätze erlauben eine direkte Probenaufgabe auf eine gaschromatographische Trennsäule mittels Thermodesorption (Abbildung A-3.21).

Einen umfangreichen Überblick über verschiedene Formen von Passivsammlern und ihre Einsatzmöglichkeiten geben Vrana et al. [5] und Zabiegała et al. [37] (vgl. auch [36, 38]). Weitere Details zu den im Projekt genutzten Sammlertypen finden sich in Kapitel 3.1.

3. Material und Methoden

3.1. Auswahl von Passivsammler-Typen

Folgende Passivsammlertypen wurden im Rahmen des FuE-Vorhabens getestet:

- Silicone Sheets
- LDPE-Streifen
- Chemcatcher
- MESCO
- Silikonstab

Eine Kurzbeschreibung der einzelnen Sammlertypen findet sich nachstehend.

Als Material für die **Silicone Sheets** wurde das bereits in Vorversuchen im BSH verwandte Silikonmaterial (AlteSil Laboratory sheet, translucent, TALC-FREE, 0,5 mm; Abbildung A-3.1) der Firma Altec Products Limited (Vereinigtes Königreich) eingesetzt, was einen Vergleich mit Ergebnissen anderer Arbeitsgruppen, die ebenfalls das Silikonpolymer dieses Herstellers verwenden [39-42], erlaubt. Bisher wurden Silicone Sheets insbesondere für die Analyse von PCB, PAK und HCB eingesetzt [9, 31].

Der **Chemcatcher** ist ein aus mehreren Teilen bestehendes Polykarbonat- oder PTFE-Gehäuse. Er bietet die Möglichkeit, die Sammlereigenschaften durch Auswahl der jeweils geeigneten Sammelphase und diffusionslimitierenden Membran auf das gewünschte Zielsubstanzspektrum auszurichten. Innerhalb des Projektes kamen verschiedene Generationen des Chemcatchers zum Einsatz (vgl. Abbildung A-3.2 bis A-3.4). Der unpolare Chemcatcher [29] wurde mit einer Empore C₁₈ Disk von 3M (St. Paul, MN, USA) und einer LDPE-Membran ausgerüstet, wobei der Kontakt zwischen Sammelphase und Membran durch einen Film aus n-Oktanol gewährleistet wurde. Die polare Chemcatcher-Version [43], welche innerhalb einer Laborvergleichsstudie während der Projektlaufzeit zum Einsatz kam, wurde mit einer Empore SDB-RPS Disk von 3M (St.Paul, MN, USA) und einer Supor 200 Polyethersulfon-Membran (PES) von Pall (Dreieich, Deutschland) ausgerüstet.

Für die **MESCO**-Sammler [44] (Abbildung A-3.5; A-3.6) und **LDPE**-Streifen [14, 45] (Abbildung A-3.7) wurden 50 µm- bzw. 100 µm-Membranen der Polymer-Synthese-Werk

GmbH (Rheinberg, Deutschland) verwendet. Der für den MESCO verwendete Silikonstab von Goodfellow (Bad Nauheim, Deutschland) hatte einen Durchmesser von 2 mm. Der MESCO bestand in der für dieses Projektes verwendeten Version [33] aus einem LDPE-Folienschlauch als Membran, der mit einem handelsüblichen Schweißgerät für Kunststoff in Segmente unterteilt wurde. In jedem dieser Segmente befand sich ein 15 mm langer und

2 mm dicker Silikonstab.

Analog zu den Silicone Sheets wurde der beim MESCO verwendete **Silikonstab** [35] (Abbildung A-3.8) bei den Freilandversuchen auch ohne LDPE-Membran ausgebracht. Aus praktischen Erwägungen wurde ein 80 mm langer Stab mit 2 mm Durchmesser ausgebracht.

Silicone Sheets, LDPE-Streifen und Chemcatcher wurden an allen Probenahmestandorten verwendet, MESCO-Sammler und Silikonstäbe wurden dagegen nur im limnischen Bereich eingesetzt, da ihre Sammelphasen sich aufgrund ihrer geringen Kapazität für die langen Ausbringungszeiten im marinen Bereich nicht eignen.

3.2 Auswahl, Einrichtung und Spezifikation der Probenahmestellen

3.2.1 Probenahmestellen in Binnengewässern

Die Passivsammler wurden an zwei Messstellen des Landesamtes für Hochwasserschutz und Wasserbau (LHW), Sachbereich Wasseranalytik (Sachbereich 5.3) ausgebracht. Als Expositionsstellen wurden genutzt (siehe Abbildung A-3.9 – A-3.10):

Dessau an der Mulde (DE)

Koordinaten: (51,832178 N, 12,249975 O) Messstellennummer: ST04 (LAWA) URL: http://undine.bafg.de/servlet/is/13858/

Magdeburg an der Elbe (MD)

Koordinaten: (52,067501 N, 11,679005 O) Messstellennummer: ST02 (LAWA) URL: http://undine.bafg.de/servlet/is/12454/

Die gewählten Passivsammler wurden zunächst an der Messstelle in Magdeburg in der Elbe ausgebracht. Die Messstelle befindet sich auf einem Ponton, an dem die Sammler in Edelstahlkörben flussabwärts mit einem Drahtseil befestigt wurden. Die komplette Installation wurde jedoch kurze Zeit nach der Ausbringung gestohlen. Der Sachschaden betrug ca. 1500 € Da die zweite Messstation in Dessau ebenfalls in der Innenstadt liegt, wurde auf einen weiteren Einsatz der Passivsammler direkt im Fluss verzichtet. Es war aber möglich, die Passivsammler an beiden Messstellen in Durchflussbehältern (Abbildung 4, Abbildung 5) einzusetzen. Neben den Ergebnissen der regelmäßig vom LHW durchgeführten Wasseranalysen erhielt das UFZ zusätzlich einen Teil der in den Messstellen genommenen Wochenmischproben für eigene Analysen (Abbildung A-3.10, A-3.11).

Die in den Messstellen eingesetzten Durchflussbehälter wurden vom UFZ hergestellt und ermöglichten die Exposition der Passivsammler unter konstanten Fließbedingungen, die über den Wasserzulauf eingestellt wurden.

Abbildung 4: Schematischer Aufbau des Durchflussbehälters

Abbildung 5: Durchflussbehälter am Bypass der Messstation. Foto: UFZ

3.2.2 Probenahmestellen in Übergangs- und Küstengewässern sowie in der Hochsee

Die Koordinaten und die Lage der marinen Passivsammler-Messstellen sind Tabelle 1 und Abbildung A-3.12 zu entnehmen.

Als Probenahmepunkt in der **Nordsee** stand ab Sommer 2010 das MarGate zur Verfügung, ein Unterwasser-Experimentalfeld vor *Helgoland (HT)* (54,1903; 7,8807), bestehend aus in ca. 10 m Wassertiefe versenkten Tetrapoden. In Kooperation mit dem Tauchzentrum des Alfred-Wegener-Institutes (AWI-CSD) wurden die Passivsammlerhalterungen an der horizontalen Fläche des Tetrapodenkopfs befestigt. Zur Vorbereitung der Verankerung des Sammlers waren durch ein Tauchteam auszuführende Unterwasserbohrarbeiten nötig, die im Juli 2010 erfolgreich abgeschlossen wurden (Abbildung 6).

ursprünglichen Planung FINO-Entgegen der zu Projektbeginn konnten die Forschungsplattformen 1 (45 km nördlich von Borkum gelegen) und 3 (80 km westlich von Sylt) nicht als Probenahmestellen genutzt werden. Die Nutzung scheiterte trotz intensiver Vorarbeiten an der durch neue Sicherheitsbestimmungen sehr eingeschränkten Transportkapazität der Versorgungshubschrauber sowie der Unvereinbarkeit der vorhandenen Messkettengeometrie mit Anforderungen der Passivsammler-Beprobung. Daher wurde ein Ersatzstandort in der Ostsee genutzt. Mit engagierter Unterstützung des Wasser- und Schifffahrtsamts (WSA) Lübeck war die Ausbringung eines Sammlerkorbes an einer Seezeichentonne im Fehmarnsund (FE) vor Heiligenhafen (54,7494 N; 13,0536 O) möglich. Die Ausbringung erfolgte durch Anbringung eines Sammlerkorbes an der Ankerkette der Tonne in ca. 3,5 m Wassertiefe. Dazu wurde die Tonne mit Kette und Ankerstein mittels Kran an Bord eines Seezeichenmotorschiffs gehoben und nach Befestigung des Korbes wieder versenkt (Abbildung A-3.13). Dieses aufwändige Verfahren wurde mit den Routine-Kontrollen der Seezeichen durch das WSA synchronisiert.

Als Probenahmestelle in Übergangsgewässern wurde die Ponton-Anlage des BSH im Hamburger Hafen am *Kirchenpauerkai (KI)* genutzt (Abbildung A-3.14).

Messstelle	Kürzel
BSH-Hafenanlage Hamburg (Kirchenpauerkai; 53,5347 N;10,0222 O)	KI
Helgoland, MarGate Experimentalfeld (54,1903 N; 7,8807 O)	HT
Seezeichentonne im Fehmarnsund (54,7494 N; 13,0536 O)	FE

Tabelle 1: Messstellen in Übergangs-, Küsten- und Hochseegewässern

3.3 Probenahmekampagnen

Eine Übersicht über die durchgeführten Probenahmekampagnen zeigt Tabelle 2.

Tabelle 2: Übersicht der Probenahmekampagnen innerhalb des Projektes. MD = Magdeburg; DE = Dessau; KI = Kirchenpauerkai, Hamburger Hafen; HT = MarGate, Helgoland; FE = Heiligenhafen, Fehmarnsund

Standort	Ausbringung	Einholung	Dauer	Sammler- typen	Verwendeter Korb		
Binnengewässer							
MD	26/05/2011	23/06/2011	28	SI, LDP, CC, SR	Durchflussbehälter		
MD	23/06/2011	21/07/2011	28	SI, LDP, CC, SR	Durchflussbehälter		
MD	26/05/2011	21/07/2011	56	SI, LDP, CC, SR	Durchflussbehälter		
DE	16/06/2011	14/07/2011	28	SI, LDP, CC, SR	Durchflussbehälter		
DE	14/07/2011	15/08/2011	32	SI, LDP, CC, SR	Durchflussbehälter		
DE	16/06/2011	15/08/2011	60	SI, LDP, CC, SR	Durchflussbehälter		
	Über	gangs-, Küsten	- und marine	e Gewässer			
KI	25/05/2010	27/07/2010	63	SI	Smedes (Edelstahl)		
KI	27/07/2010	18/10/2010	83	SI	Smedes (Edelstahl)		
KI	25/11/2010	13/01/2011	49	SI, LDP, CC	Smedes (Edelstahl)		
FE	22/09/2010	13/12/2010	82	SI, LDP, CC	Ostsee 1. Generation (Edelstahl)		
FE	15/06/2011	28/07/2011	44	SI	Ostsee 1. Generation (Edelstahl)		
HT	08/07/2010	20/08/2010	43	SI, LDP, CC	HT 1. Generation (Titan)		
HT	16/11/2010	17/12/2010	33	SI*, LDP, CC	HT 2. Generation (Titan)		
HT	31/05/2011	18/07/2011	44	SI	HT 2. Generation (Titan)		
HT	18/07/2011	01/09/2011	45	SI	HT 2. Generation (Titan)		

* Verlust der Silicone Sheets nach Einholung

3.3.1 Binnengewässer (Elbe und Mulde)

Im Sommer 2011 wurden in den automatischen Gewässergütermessstationen des Landesamtes für Hochwasserschutz und Wasserwirtschaft (LHW) in Dessau (Mulde), Klein Rosenburg (Saale) und Magdeburg (Elbe) eigens konstruierte Durchflussbehälter aus Edelstahl installiert und an den Bypass der jeweiligen Messstation angeschlossen. Im Zuge des starken Treibeisaufkommens auf der Saale im Winter 2010/11 wurde der Ponton in Klein Rosenburg abgerissen, wodurch es zum Totalausfall der Station kam, so dass Messkampagnen nur an den beiden verbleibenden Standorten durchgeführt werden konnten.

In den Durchflussbehältern wurden alle Passivsammler-Typen installiert, die im Zuge des FuE-Vorhabens untersucht wurden (LDPE-Streifen; unpolarer Chemcatcher; Silicone Sheets; MESCO; Silikonstab). Die Expositionszeit der Passivsammler betrug 2 x 1 Monat und 1 x 2 Monate. In der Station in Magdeburg wurden zusätzlich einen weiteren Monat lang Passivsammler exponiert. Vergleichende Wasserproben wurden direkt am Bypass entnommen sowie als Aliquote der Wochenmischproben des LHW genommen und am UFZ in Leipzig analysiert. Weiterhin wurden vom LHW sämtliche standardmäßig erhobenen Messdaten der Wasserphase sowie Ergebnisse von Schwebstoffanalysen zur Verfügung gestellt. Zusätzlich erfasste Begleitparameter wie Temperatur, Sauerstoffgehalt und Leitfähigkeit sind online abrufbar (<u>http://undine.bafg.de/servlet/is/13858/</u>).

Das Durchflussvolumen der Durchflussbehälter in den Gewässergütemessstationen betrug ca. 5 L/min und wurde vom LHW mindestens einmal wöchentlich überprüft. Die maximale Abweichung vom Durchschnittswert betrug ±1 L/min.

3.3.2 Probenahmekampagnen in Übergangs- und Küstengewässern sowie auf der Hochsee

Es wurden insgesamt vier Kampagnen der Nordsee-Station (HT), drei der Station im Hamburger Hafens (KI) sowie zwei der Messstation in der Ostsee (FE) ausgewertet. Die Expositionszeiten lagen zwischen 33 und 83 Tagen (Tabelle 2).

3.4 Entwicklung von Ausbringungsvorrichtungen (Körben) und Behandlung von Aufwuchsproblemen

3.4.1 Binnengewässer

Die Anbringung der Silicone Sheets erfolgte gemäß [46] an zwei parallelen Stahlstreben, wobei die Silicone Sheets mit Klemmen an den Streben gegen Abrutschen gesichert wurden (Abbildung A-3.1).

Zugeschnittene LDPE-Streifen (Abbildung A-3.7) entsprechen in Länge und Breite etwa dem SPMD-Sammler, so dass eine Ausbringung in kommerziell erhältlichen SPMD-Käfigen möglich war. Die Käfige wurden an einer Boje befestigt und gegen Abdriften gesichert. Durch zusätzliche Beschwerung wurde die Boje unterhalb der Wasseroberfläche gehalten, um Diebstahl oder Zerstörung durch Treibholz vorzubeugen.

Für die kleinen Silikon- und LDPE-Stücke von MESCO und Silikonstab (Abbildung A-3.2 und A-3.6) wurden am UFZ entwickelte Ausbringungsvorrichtungen benutzt, die sich zusammen mit den SPMD-Käfigen exponieren lassen. Diese bestehen aus einem 50 cm langen und 10 cm breiten Edelstahlgitter, das zu einem 25 cm langen Doppelgitter zusammengeklappt wird (Abbildung A-3.6). Auf in früheren Feldversuchen des UFZ verwendete Edelstahlbehälter [47] wurde verzichtet, da sie die Strömungsverhältnisse am Sammler stark beeinflussen und zudem sehr kostenintensiv sind.

Die PTFE-Gehäuse der Chemcatcher (1. bis 3. Generation; Abbildung A-3.2 – A-3.4) werden mit der Membran nach unten im Fluss angebracht, um Sedimentakkumulation in der Vertiefung des Gehäuses auszuschließen. Die Polykarbonat-Gehäuse der 2. Generation (Abbildung A-3.2 und A-3.4) wurden dazu am UFZ mit Ösen aus rostfreiem Draht versehen.

In den Durchflussbehältern in den Messstationen wurden die Sammler ohne Käfig an Metallschienen an der Unterseite des Deckels angebracht (Abbildung 4, Abbildung 5).

3.4.2 Übergangs- und Küstengewässer und Hochsee

Die Ausbringung der Sammler auf den ausgewählten marinen Standorten machte die Entwicklung eines neuartigen Ausbringungskorbes nötig. Die wichtigsten Anforderungen an den Korb waren:

- "All-in-one"-Konstruktion für die Ausbringung aller Sammlertypen mittels einer einzigen Trägerkonstruktion
- Modulare Konstruktion f
 ür einen schnellen, kontaminationsarmen Zusammenbau am Ausbringungsort auch unter schwierigen Bedingungen (Schlauchboot, Schiffsdeck etc.)

- Geringe Anfälligkeit für Biofouling und Aufwuchs
- Robustheit und mechanische Stabilität f
 ür die Ausbringung unter Hochseebedingungen
- Geringes Gewicht und kompakte Ausmaße für den Transport und das Handling durch eine einzelne Person
- Leichte Handhabbarkeit auch für Taucher

Um Biofouling zu reduzieren, wurden offene Konstruktionen gewählt, da bei Systemen, die von engmaschigen Käfigen (Maschenweiten unter 4 cm, mündliche Mitteilung von Prof. Dr. Philipp Fischer, Alfred-Wegener-Institut, Helgoland) geschützt werden, mit massivem Aufwuchs zu rechnen ist. Zudem verstärken enge Wasserdurchtrittsbereiche Jetstream-Effekte, die bei starkem Seegang, besonders beim Aussetzen und Einholen der Sammler zu Schäden an den Sammelphasen führen können.

Um die Widerstandsfähigkeit der Sammelphasen unter Hochseebedingungen zu testen, wurden mit einem Korb-Prototyp Strömungstests vor Helgoland durchgeführt (Abbildung A-3.15), anhand derer gezeigt werden konnte, dass alle ausgebrachten Sammlertypen einer Ausbringung in mariner Umgebung ohne Schutz durch einen Käfig standhalten. Unter Berücksichtigung der anderen Anforderungen wurde ein zylindrischer, ca. 35 cm hoher und 4 kg schwerer Korb aus Titan (Variante aus Edelstahl mit gleichen Abmessungen wiegt ca. 5,5 kg) entwickelt, der auf drei Ebenen die verschiedenen Sammelphasen aufnimmt (Abbildung 6, Abbildung 7).

Der modulare Aufbau des Ausbringungskorbs erlaubt die Anbringung der Sammelphasen an den einzelnen Trägermodulen bereits im Labor unter kontrollierten Bedingungen. Am Probenahmeort werden die vorbereiteten Module lediglich in den Korb eingesetzt und befestigt, was auch an Bord eines Schiffes oder Schlauchbootes problemlos und schnell zu bewerkstelligen ist. Der Zusammenbau erfolgt durch Steckverbindungen, die mit Kabelbindern gegen die Einwirkung der Strömung gesichert werden. Schraubverbindungen wurden getestet und als zu zeitintensiv in der Handhabung verworfen.

Der entwickelte Korbtyp wurde für die Standorte Helgoland und Fehmarnsund verwendet. Die Ausbringung der Sammler im Experimentalfeld MarGate vor Helgoland erfolgte durch Montierung einer Sammlervorrichtung auf der Kopffläche eines Tetrapoden in 10 m Wassertiefe. Bei der Konstruktion der Halterung war die Stabilität gegen Strömungseinflüsse und besonders die sichere Anbringung auf begrenzter Fläche unter Umgehung des Schwerlastbügels am Tetrapodenkopf von Bedeutung (Abbildung 6 und Abbildung A-1.3.15). Dafür wurde der Ausbringungskorb an einem arretierbaren Dorn befestigt, welcher wiederum auf einem fest auf dem Tetrapoden verankerten Fuß montiert wurde.

Für die Ausbringung im Fehmarnsund (Ostsee) wurde der Ausbringungskorb flexibel direkt an der Ankerkette einer Seezeichentonne befestigt (Abbildung 7). Die runde Form reduziert dabei mechanische Belastungen durch Kontakt mit der sich bewegenden Kette.

Zur weiteren Optimierung der Probenahme wurde ein Transportbehälter konstruiert, in dem der im Labor zusammengebaute Korb mit den Sammelphasen unter Schutzgas transportiert werden kann. Ein gasdichter Prototyp aus Aluminium, ausgestattet mit Transportrollen, wurde während des Projekts angefertigt (Abbildung A-3.16).

Anders als an den Hochseestandorten konnte für die Messstelle an der Hafenanlage Hamburg ein bereits existierendes Korbdesign verwendet werden. Es wurde ein Edelstahlkorb nach Vorbild der Arbeitsgruppe von Foppe Smedes (Deltares Geo-Environmental Research Laboratory, Utrecht, Niederlande) eingesetzt, der für die Ausbringung von Silicone Sheets entwickelt wurde. Der Korb ist ausreichend schwer, um auch ohne Ankerstein im tide- und schifffahrtsbeeinflussten Wasser des Hamburger Hafens sicher ausgebracht werden zu können. Gleichzeitig erlaubte die Bestückung des Sammlers direkt am Ponton eine Anbringung von einzelnen Sammlern, so dass der Korb auch für andere Sammlertypen nutzbar war (Abbildung A-3.17).

Abbildung 6: Bestückter modularer Sammlerkorb aus Titan, Helgoland-Design, vor, während und nach der Exposition. Fotos: rechts/links Kraus, BSH; Mitte: AWI-CSD

Abbildung 7: Bestückter modularer Sammlerkorb aus Edelstahl, Ostsee-Design, vor, während und nach Ausbringung. Fotos: Kraus, BSH

3.5 Begleitparameter und Wasserprobenahme

Begleitparameter wie Temperatur, Leitfähigkeit und Strömung werden in ihrem Einfluss auf die Sammelraten von Passivsammlern zum Teil kontrovers diskutiert. Daher wurden diese an den Messstellen soweit möglich wie folgt erfasst (Zusammenstellung zentraler Begleitparameter siehe Tabelle 3):

Messstationen des LHW (Binnengewässer): Es wird auf die standardmäßig vom LHW erhobenen Daten zurückgegriffen. Dabei handelt es sich um folgende Messwerte:

Online-Messungen (direkt abrufbar über Informationsplattform Undine [48]): Erfasst wurde unter anderem Durchfluss, Temperatur Wasser/Luft, pH-Wert, Leitfähigkeit.

Wochenmischproben: Wasserhärte, BSB, TOC, DOC.

Schöpfproben: Erfasst wurden zusätzlich monatlich DDX, Chlor- und Nitrobenzole, Nitrotoluole, Chlorphenole, HCH, vierteljährlich verschiedene Pestizide, Pharmaka und Bisphenol A.

Monatsmischproben der Schwebstoffe: Erfasst wurden monatlich TOC, AOX, Chlorbenzole, HCH, DDX, sechs Indikator-PCB sowie PCB 118, PAK, PBDE, Zinnorganika, DEHP sowie vierteljährlich weitere PCB, Dioxine. Zusätzlich wurden eigene Analysen mit Aliquoten der an den Messstationen entnommenen Mischproben durchgeführt, bei denen alle Zielsubstanzen erfasst wurden, die auch in den Passivsammlern bestimmt wurden. Tabelle 3: Zentrale Begleitparameter der Messkampagnen. Wassertemp [°C], Salzgehalt [psu], Strömung [m/s]; FE: Werte der MARNET-Station Fehmarnbelt; Messtiefe 3 m; HT: Messfahrten des BSH sowie Werte des Feuerschiffes Deutsche Bucht, Messtiefe: 5 - 6 m; KI: Daten der Elbe-Messstationen Seemannshöft und Bunthaus (Institut für Hygiene und Umwelt, Hamburg, [48]); k. A.: keine Angabe

Standort	Ausbringung	Einholung	Dauer	Mittlere Wasser- temp.	Mittlerer Salzgehalt	Mittlere Strömung
MD	26/05/2011	21/07/2011	56	20,05	0,53	0,03**
DE	16/06/2011	15/08/2011	60	20,3	<0,1	0,03**
KI	25/05/2010	27/07/2010	63	12,1	k. A.	k. A.
HT	08/07/2010	20/08/2010	43	18	30	0,34/0,13*
KI	27/07/2010	18/10/2010	83	17,3	k. A.	k. A.
FE	22/09/2010	13/12/2010	82	8,0	12,5	0,1/0,08*
HT	16/11/2010	17/12/2010	33	11	31,22***	0,34/0,13*
KI	25/11/2010	13/01/2011	49	1,4	k. A.	k. A.
HT	31/05/2011	18/07/2011	44	13	31,5***	0,33/0,14*
FE	15/06/2011	28/07/2011	44	1	14,5	0,09/0,07*
HT	18/07/2011	01/09/2011	45	16,5	31,5***	0,35/0,13*

*Strömung West-Ost/Nord-Süd als gemittelte Nettoströmung; **in der Durchflussbox;

***Jahresmittelwert

Elbe (Kirchenpauerkai, Hamburg): Tagesgenaue Temperaturdaten zweier ober- bzw. unterhalb des Kirchenpauerkai gelegenen Messstellen wurden vom Institut für Hygiene und Umwelt, Hamburg zur Verfügung gestellt. Die Strömung sollte mit Hilfe von auskolkenden Gipskartuschen (Kapitel 3.6.2 sowie A-1.1; Abbildung A-3.18, A-3.19) erfasst werden, diese waren bei Einholung der Sammler jedoch in allen Fällen vollständig entleert, da die Ausbringzeit zu lang und/oder die Strömung zu hoch waren (vgl. Kapitel 3.6.2).

Fehmarnsund, Ostsee: Es liegen Strömungsdaten aus Modellierungen des BSH vor. Bei ausgewählten Probenahmekampagnen wurden bei Ausbringung und Einholung der Passivsammler Meerwasser-Stichproben von je 12 Liter für die Analytik von polaren und unpolaren Analyten direkt an der Verankerungsstelle des Passivsammlers mittels Schöpfprobe genommen, ins Labor des BSH verbracht und analysiert.

MarGate, Helgoland: Es stehen kontinuierliche Temperatur- und Salzgehalt-Aufzeichnungen von der BSH-MARNET-Messstation "Deutsche Bucht" (Feuerschiff; 54.1667; 7.4500) zur
Verfügung. Die Erfassung der Strömung mittels Gipskartuschen war auch am Standort Helgoland nicht möglich, jedoch liegen Daten aus Strömungsmodellen des BSH vor.

Bei ausgewählten Probenahmekampagnen wurden bei Ausbringung und Einholung der Passivsammler Meerwasser-Stichproben von je 12 Liter für die Analytik von polaren und unpolaren Analyten durch Taucher vor Ort in 5 m Tiefe direkt an der Verankerungsstelle des Passivsammlers genommen. Diese wurden durch das AWI verschifft, am Festland durch das BSH übernommen, ins Labor verbracht und analysiert.

3.6 Kalibrierung der Passivsammler

Am UFZ lagen zum Zeitpunkt der Untersuchungen bereits eine Vielzahl von im Labor bestimmten Sammelraten vor [49-51]. Darüber hinaus wurden für das FuE-Vorhaben Kalibrierversuche für den unpolaren Chemcatcher, MESCO und 80 mm-Silikonstab durchgeführt, um Sammelraten für verschiedene PAK, PCB, DDX und PBDE zu bestimmen.

3.6.1 Laborkalibrierung

Um die Sammelrate eines Sammlers für einen bestimmten Stoff ermitteln zu können, müssen Kalibrierversuche im Labor durchgeführt werden (Abbildung 8). Auch die Eignung von PRCs (Kapitel 3.6.3) für die Bestimmung von *In-situ*-Sammelraten muss im Labor geprüft werden, bevor im Feldversuch Rückschlüsse auf die Schadstoffkonzentration gezogen werden können. Sammelraten wurden in einem Durchflussgefäß ermittelt, in dem sich die Sammler auf einem Karussell durch das Wasser drehen. Die so simulierte Strömung kann bei der verwendeten Apparatur von 0,1 - 0,5 m/s eingestellt werden. Über zwei Pumpen wird Leitungswasser und die methanolische Analytlösung in das Gefäß gepumpt und erst in der Apparatur vermischt. Die damit erzeugte Konzentration betrug im durchgeführten Versuch ca. 20 ng/L je Analyt. Es wurden verschiedene Versuche über je zwei Wochen durchgeführt, mit Leitungswasser sowie mit künstlich hergestelltem Salzwasser. Während eines Kalibrierversuches wurde täglich ein Sammler entnommen und analysiert. Über die im Sammler akkumulierte Substanzmenge wurde mittels linearer Regression für jeden Stoff eine spezifische Sammelrate *R*s bestimmt, die jedoch nur für die jeweilige Temperatur und Fließgeschwindigkeit gilt.

Laborversuche mit Schadstoffkonzentrationen im Pikogrammbereich, wie sie in Küsten- und Übergangsgewässern sowie im Meer zu erwarten sind, wurden nicht durchgeführt, da aufgrund der starken Adsorption der Zielanalyten an den Oberflächen des Kalibrieraufbaus eine konstante Konzentration in diesen Größenordnungen nicht aufrecht zu erhalten war. Aufgrund der insgesamt limitierten Aussagekraft von Laborkalibrierungen wurde der Fokus im weiteren Verlauf des Projektes auf die *In-situ*-Bestimmung der Sammelraten mit PRCs gelegt.

3.6.2 Bestimmung der Fließgeschwindigkeit in situ mit Gipskartuschen

Um Sammelraten aus einer Laborkalibrierung im Feldversuch anwenden zu können, muss als wichtigster Begleitparameter die durchschnittliche Fließgeschwindigkeit am Passivsammler während der Exposition bestimmt werden. Diese kann mit Hilfe von Gipskartuschen abgeschätzt werden [52]. Es wird dabei ein Plastikzylinder mit einer Mischung aus bidestilliertem Wasser und Dentalgips gefüllt und zum Aushärten gebracht (Abbildung A-3.18, A-3.19). Aus der Abnahme der Gipsmasse während der Ausbringung und der Expositionsdauer wird die durchschnittliche Massenabnahme pro Zeiteinheit ermittelt, woraus sich die durchschnittliche Strömungsgeschwindigkeit im aquatischen System während der Exposition des Passivsammlers berechnen lässt. Die der Literatur entnommene Gleichung zur Berechnung der durchschnittlichen Fließgeschwindigkeit (im Anwendungsbereich 0,034 m/s bis 0,50 m/s) [52, 53] wurde in einem Laborversuch für die in diesem Projekt verwendeten Gipskartuschen validiert. Dabei wurde ein linearer Anstieg der Gipsabnahme im Fließgeschwindigkeitsbereich von 0,21 m/s bis 0,65 m/s bestätigt. Bei der maximalen Geschwindigkeit wird der Gips allerdings bereits innerhalb von 25 Tage komplett ausgewaschen. Die Herstellungsanleitung für die Gipskartuschen befindet sich in Anhang A-1.1.

Abbildung 8: Kalibrierapparatur. Foto: UFZ

3.6.3 Berechnung von *In-situ*-Sammelraten mit Performance Reference Compounds (PRCs)

Ist keine passende Sammelrate für die Berechnung der Wasserkonzentration verfügbar (siehe Kapitel 3.6.1), können alternativ Performance Reference Compounds (PRCs) eingesetzt werden: Dazu wird die Sammelphase vor der Ausbringung mit einer [54] oder mehreren [13, 55] Substanzen dotiert, die im beprobten Gewässer nicht vorkommen, z. B. isotopenmarkierten Substanzen. Über die Abnahme der PRCs während der Ausbringungszeit lässt sich die Eliminierungsrate k_e berechnen (vgl. hierzu [7]).

$$m_{\rm PRC}(t) = m_{\rm PRC}(0) \exp(-k_{\rm e} t) \tag{7}$$

 $m_{PRC}(t)$ - Masse des PRC in der Sammelphase nach der Expositionszeit t $m_{PRC}(0)$ - Masse des in die Sammelphase dotierten PRC k_{e} - Eliminierungsrate des PRC aus der Sammelphase

Unter der Annahme, dass Stoffabgabe und -aufnahme eines Passivsammlers den gleichen Gesetzmäßigkeiten folgen, also isotrop sind, ist die Eliminierungsrate k_e identisch mit der Gesamt-Austauschrate k_o :

$$k_{\rm o} A = k_{\rm e} K_{\rm sw} V_{\rm s} = R_{\rm s}$$
(8)

 k_{o} - Geschwindigkeitskonstante des Stoffübergangs A - Wirksame Oberfläche des Passivsammlers k_{e} - Eliminierungsrate des PRC aus der Sammelphase K_{SW} - Sammler-Wasser-Verteilungskoeffizient V_{s} – Volumen der Sammelphase

Nach Einsetzen in GI. 3 und Umstellen nach c_W ergibt sich bei einer Substanzmenge m_S in einer Sammelphase mit dem Sammler-Wasser-Verteilungskoeffizienten K_{SW} und dem Volumen V_S für die Dauer der Exposition *t* für das beprobte Gewässer die zeitgemittelte Durchschnittskonzentration c_{TWA} :

$$c_{\text{TWA}} = \frac{m_{\text{s}}(t)}{k_{\text{e}}K_{\text{sw}}V_{\text{s}}t}$$
(9)

 c_{TWA} - time-weighted average concentration - zeitgemittelte Durchschnittskonzentration

 $m_{\rm S}(t)$ - Masse des Analyten in der Sammelphase nach der Expositionszeit t

t - Expositionszeit des Passivsammlers in der Wasserphase

Es sollten nur PRCs verwendet werden, deren Abnahme nach der Exposition mindestens 20 % und maximal 80 % vom Ausgangswert beträgt [56-59], damit sich die Meßunsicherheiten bei der PRC-Quantifizierung nicht zu stark auf die zu bestimmenden Eliminierungraten (*In-situ-Sammelraten*) auswirken. Der Ausgangswert wird anhand von Transportblanks bestimmt. Diese werden zusammen mit den auszubringenden Sammlern vorbereitet und dotiert, jedoch nur während der Ausbringung, Einholung und Reinigung der Sammler exponiert, wodurch sie Kontaminationen bei Probenvorbereitung, Ausbringung, Einholung und Probenaufbereitung abdecken.

Da nach diesem Modell berechnete Werte immer noch Unsicherheiten aufweisen können, wurde z. B. für die Silicone Sheets ein optimiertes Rechenmodell entwickelt, welches auch der in diesem Projekt verwendeten Excel-Tabelle zur Berechnung von *In-situ*-Sammelraten zugrunde liegt [60]. Näheres dazu ist in Kapitel 3.8.4 nachzulesen.

Die für die Berechnungen verwendeten Sammler-Wasser-Verteilungskoeffizienten der verschiedenen Sammelphasen wurden entweder selbst bestimmt oder der Literatur entnommen. War beides nicht möglich, wurden sie für die **Silikon**-Sammelphasen mit Hilfe einer Abraham-Gleichung (pp-LFER - poly-parameter linear free energy relationship) für reines PDMS berechnet [61, 62]. Die dafür benötigten Abraham-Parameter wurden mit dem Modul ABSOLV der ACD/ADME Suite Software von ACD Labs berechnet [63]. Aufgrund mangelnder experimenteller Daten lag diese Berechnung den meisten polaren Stoffen zu Grunde.

Für die unpolaren (hydrophoben) **Chemcatcher** wurde der Oktanol-Wasser-Verteilungskoeffizient K_{OW} als Sammler-Wasserverteilungskoeffizient K_{SW} verwendet. Wenn keine Literaturwerte gefunden wurden, erfolgte die Berechnung mit der Software ChemProp [64]. Für polare Chemcatcher ist die PRC-Kalibrierung nicht anwendbar, daher wurde ausschließlich mit experimentellen Sammelraten aus der Literatur gearbeitet.

Für die LDPE-Sammelphase ist bereits eine große Anzahl an experimentellen Sammler-Wasser-Verteilungskoeffizienten K_{SW} in der Literatur verfügbar. Aufgrund der ähnlichen Eigenschaften würde sich für unbekannte Stoffe eine Abschätzung mit Hilfe des Hexadekan-Wasser-Verteilungskoeffizienten $K_{[C16H34]W}$ an [65] anbieten, da es hier experimentelle Daten für eine Vielzahl von Stoffen gibt. Die Berechnung von $K_{[C16H34]W}$ bei fehlenden Literaturdaten mit einer Abraham-Gleichung [66] ist allerdings nur mit experimentellen Abraham-Parametern zu empfehlen [65], die aber nicht für alle Zielsubstanzen verfügbar waren. Daher wurden für die unterschiedlichen Substanzklassen eigene Regressionen von K_{sw} -Werten aus der Literatur [65] mit folgenden berechneten physikochemischen Eigenschaften durchgeführt: Molekülmasse M (PCB und PAK) sowie Wasserlöslichkeit (log S_w subcooled [64]; PBDE und restliche Stoffe).

3.7 Anwendung der Passivsammler und Analyse der Zielsubstanzen

3.7.1 Reinigung und Präparation der Sammler zur Vorbereitung der Probenahme

Der generelle Ablauf der Passivsammler-Probenahme von der Präparation der Sammler bis zum Analysenergebnis ist in Abbildung 9 dargestellt. Nach einem Reinigungsschritt mit organischem Lösungsmittel, der für jeden Sammler-Typ unterschiedlich ist (siehe Anhang A-1.2), werden die Sammler mit PRCs dotiert.

Um Kontaminationen zu vermeiden, wurden bei allen Arbeitsschritten in Labor und Feld, bei denen Sammelphasen direkt oder indirekt berührt wurden, Nitrilhandschuhe getragen und mit Lösungsmittel gespülte Metallwerkzeuge (Pinzetten etc.) benutzt. Die Berührung der Sammelphasen wurde auf ein Minimum reduziert. Alle eingesetzten Glasgeräte wurden vor Gebrauch mit Lösungsmittel gespült und ausgeheizt. Vorbereitete Sammler wurden bis zur Ausbringung in Alufolie eingeschlagen, luftdicht verpackt und tiefgefroren bzw. gekühlt (Chemcatcher) gelagert.

3.7.2 Ausbringung und Einholung der Sammler

Am Ausbringungsort werden die Sammler unmittelbar zur Ausbringung vorbereitet, wobei die Transportblanks im gleichen Rahmen luftexponiert werden wie die Sammler für die Probenahme. Bei der Ausbringung auf See ist darauf zu achten, dass die Sammler nicht in den Einfluss von Abgasfahnen des Schiffes oder Ausbringungsbootes gelangen.

Die gleiche Vorgehensweise gilt für die Einholung. Ist eine Reinigung der Sammler vor Ort nicht möglich, werden sie in Aluminiumfolie oder in mit Lösungsmittel gespülte, ausgeheizte Glasflaschen verpackt und gekühlt ins Labor verbracht. LDPE-Streifen und Silicone Sheets wurden bis zur Aufarbeitung eingefroren, die Chemcatcher wurden bei 4 °C im Kühlschrank gelagert und zeitnah aufgearbeitet, da die Gefahr des Schimmelns besteht, vor allem bei starkem Biofilm-Aufwuchs.

Abbildung 9: Handhabung und Ablauf von Passivsammleranalysen; *mit Ausnahme der polaren Chemcatcher; #mit Ausnahme der MESCO und Silikonstäbe; +LC-MS/MS nur für Silicone Sheets und LDPE-Streifen

3.7.3 Reinigung und Extraktion der Sammelphasen nach der Einholung

Nach Einholung der Sammler wurden diese mechanisch gereinigt (Abbildung 10) und anschließend mit verschiedenen Lösungsmitteln extrahiert, wobei LDPE und Chemcatcher per Ultraschall und Silicone Sheets durch Soxhlet extrahiert wurden. Die angewandten Extraktionsverfahren sind in Anhang A-1.3 ausführlich beschrieben.

Abbildung 10: Reinigen der LDPE-Streifen (oben) und Silicone Sheets (unten) nach dem Einholen. Fotos: Kraus, BSH

3.8 Analyse

Ein Schema zur Aufarbeitung und folgenden Analyse zeigt Abbildung 11:

Abbildung 11: Schema für die Analysen der verschiedenen Sammlertypen

3.8.1 Zielsubstanzen, interne Standards und Performance Reference Compounds (PRCs)

Alle Performance Reference Compounds (PRCs) und internen Standards (IS) wurden zentral vom BSH eingekauft, angesetzt und an das UFZ weitergegeben. Bis dies Ende 2010 vollständig realisiert werden konnte, wurden am UFZ dort vorhandene Substanzen verwendet.

Für die unpolaren Zielsubstanzen wurden IS und PRCs gemäß Tabelle 4 festgelegt. Spezifikationen von Analyten, internen Standards und PRCs sowie eine Erklärung der verwendeten Abkürzungen finden sich in sowie Tabelle A-2.2.1.

Im Verlauf des Projektes wurden vermehrt polare Zielsubstanzen mit in die Analytik einbezogen. Diese und die zugehörigen internen Standards sind in Tabelle 5 sowie Tabelle A-2.2.2 dargestellt. Da die Anwendung polarer PRCs generell als nicht verlässlich angesehen wird, wurden die Eliminierungsraten der eingesetzten PRCs in den polaren Bereich extrapoliert. Aufgrund der relativ langen Ausbringungszeiten waren die meisten polaren Stoffe bereits im Gleichgewicht, die zeitgemittelten Durchschnittskonzentrationen sind daher im limnischen Bereich nur eingeschränkt aussagekräftig.

Detailangaben zu Konzentrationen der verwendeten IS- und PRC-Gemische finden sich in Tabelle A-2.2.3 – A-2.2.5.

Alle verwendeten Substanzen hatten einen Reinheitsgrad von 96% oder höher. Als Lösungsmittel wurden eingesetzt: Aceton, Acetonitril (ACN), Dichlormethan, Ethylacetet, n-Hexan, Isooctan, Methanol (MeOH), n-Oktanol, alle SupraSolv, Merck, Darmstadt, Deutschland bzw. Ultra-resi-analyzed, J. T. Baker, Griesheim, Deutschland.

Die Kalibrierung erfolgte über einen Bereich von 0,02 - 10 pg/µL für LC-MS/MS und 2,5 - 100 pg/µL (CKWs) bzw. 50 - 2000 pg/µL (PAK) für die GC-MS/MS; r^2 lag für alle Messungen über 0,999. Die Quantifizierung erfolgte mittels interner Standards. Die Bestimmungsgrenzen für die verschiedenen Zielsubstanzen sind in Tabelle A-2.2.6 und A-2.2.7 dargestellt.

Zur Qualitätssicherung wurden bei jeder Aufarbeitung zwei bis drei Blindwerte sowie Proben zur Bestimmung der Wiederfindungsrate analysiert. Blindwerte wurden durch das Aufarbeiten von Leerproben, die lediglich mit 1 ml der IS-Lösungen für GC-MS/MS und LC-MS/MS versehen wurden und den gesamten Probendurchlauf oder nur einzelne Abschnitte (z. B. Kieselgel-Clean-up) durchliefen, ermittelt. Wiederfindungsproben wurden zusätzlich zu den IS mit 0,5 ml (LC-MS/MS) oder 1 ml (LC-MS/MS) der Analytlösung (Tabelle A-2.2.8) dotiert.

Analytsubstanz	Abkürzung	IS	PRC
	PCB		
2,4,4'-Trichlorobiphenyl	PCB 28	TCN	PCB 30
2,2',5,5'-Tetrachlorobiphenyl	PCB 52	TCN	PCB 30
2,2',4,5,5'-Pentachlorobiphenyl	PCB 101	TCN	PCB 104
2,3',4,4',5-Pentachlorobiphenyl	PCB 118	TCN	PCB 104
2,2',3,4,4',5'-Hexachlorobiphenyl	PCB 138	CB185	PCB 145
2,2',4,4',5,5'-Hexachlorobiphenyl	PCB 153	CB185	PCB 145/PCB 204
2,2',3,4,4',5,5'-Heptachlorobiphenyl	PCB 180	CB185	PCB 145/PCB 204
	PDBE		
2,4,4'-Tribromodiphenyl Ether	BDE 28	F-PBDE-28	2F-PBDE-47
2,2',4,4'-Tetrabromodiphenyl Ether	BDE 47	F-PBDE-28	2F-PBDE-47
2,2',4,4',5-Pentabromodiphenyl Ether	BDE 99	F-PBDE-100	2F-PBDE-47
2,2',4,4',6-Pentabromodiphenyl Ether	BDE 100	F-PBDE-100	2F-PBDE-47
2,2',4,4',5,5'-Hexabromodiphenyl Ether	BDE 153	F-PBDE-100	PBDE-190
2,2',4,4',5,6'-Hexabromodiphenyl Ether	BDE 154	F-PBDE-100	PBDE-190
	DDX		
1,1-Trichlor-2,2-bis-(p-chlorphenyl)-ethan	DDT	4,4'-DDT D8	4,4'-DDT 13C12
1,1-Dichlor-2,2-bis-(p-chlorphenyl)ethan	DDD	4,4'-DDT D8	4,4'-DDT 13C12
1,1-Dichlor-2,2-bis-(p-chlorphenyl)ethen	DDE	4,4'-DDE D8	4,4'-DDT 13C12
	CKW		
Hexachlorbenzol	HCB	TCN	HCB-13C6
Hexachlorcyclohexan (alpha-, beta-, gamma)	ΗCΗ (α-, β-, γ-)	HCHE	HCHG-13C6-D6
	PAHs		
Acenaphthylen	ACY	ANT-D10	PHEN-D10
Acenaphthen	ACE	ANT-D10	PHEN-D10
Anthracen	ANT	ANT-D10	PHEN-D10
Dibenz[a,h]anthracen	DBAHA	ANT-D10	PHEN-D10
Benz[a]anthracen	BAA	ANT-D10	PHEN-D10
Benzo[a]pyren	BAP	BEP-D12	BAP-D10
Benzo[b]flouranthen	BBF	BEP-D12	BAP-D10
Benzo[k]flouranthen	BBK	BEP-D12	BAP-D10
Benzo[ghi]perylen	BGHIP	BGHIP-D12	I123P-D12
Indeno[1,2,3,-cd]pyren	I123P	BGHIP-D12	I123P-D12
Chrysen/Triphenylen	CHRTR	BGHIP-D12	I123P-D12
Fluoren	FL	FLU-D10	FL-D10
Fluoranthen	FLU	FLU-D10	FL-D10
Phenanthren	PHEN	FLU-D10	FL-D10
Pyren	PYR	FLU-D10	FL-D10

Tabelle 4: Unpolare Zielsubstanzen und zugeordnete Interne Standards und PRCs

Analytsubstanz	Abkürzung	IS		
Alg	izide			
Irgarol	IRGAROL	TERBAZ-D5		
Fun	gizide			
Carbendazim	CARBEND	ATRAZ-D5		
Heri	bizide			
Alachlor	ALACHL	TERBAZ-D5		
Ametryn	AMETRYN	TERBAZ-D5		
Atrazin	ATRAZ	ATRAZ-D5		
Bentazon	BENTAZ	MECOPR-D3		
Chloridazon	CHLORI	ATRAZ-D5		
Chlortoluron	CHLORTUR	DIURON-D6		
Desethylatrazin	DEATRAZ	DEATRAZ-D6		
Dichlorprop	DICHLPR	MECOPR-D3		
Diuron	DIURON	DIURON-D6		
Fenuron	FENUR	ATRAZ-D5		
Hexazinon	HEXAZIN	ATRAZ-D5		
Isoproturon	ISOPRUR	DIURON-D6		
Linuron	LINUR	DIURON-D6		
2-Methyl-4-chlorphenoxyessigsäure	MCPA	PFOS-13C4/MCPA-D3		
Mecoprop	MECOPR	MECOPR-D3		
Metazachlor	METAZCHL	ATRAZ-D5		
Methabenzthiazuron	METHABZT	TERBAZ-D5		
Metolachlor	METOLA	TERBAZ-D5		
Pendimethalin	PENDIMETH	TERBAZ-D5		
Prometryn	PROMETR	TERBAZ-D5		
Propazin	PROPAZ	TERBAZ-D5		
Simazin	SIMAZ	ATRAZ-D5		
Terbuthylazin	TERBAZ	TERBAZ-D5		
Terbutryn	TERBUTR	TERBAZ-D5		
Insektizide				
Azinphosethyl	AZINPH-E	AZINPH-M-D6		
Azinphosmethyl	AZINPH-M	AZINPH-M-D6		
Chlorfenvinphos	CHLORFENV	TERBAZ-D5		
Diazinon	DIAZINON	TERBAZ-D5		
Dimethoat	DIMETH	ATRAZ-D5		
Malathion	MALATH	MALATH-D10		
Pirimicarb	PIRIMIC	ATRAZ-D5		

Tabelle 5: Polare Zielsubstanzen und zugeordnete interne Standards

Industrielle Produktadditive				
Benzotriazol	BENZTRI	DEATRAZ-D6		
a-Hexabromcyclododecan	HBCD-A	HBCD-A-D18		
b+g-Hexabromcyclododecan (Summe)	HBCD-BG	HBCD-A-D18		
2-(Methylthio)benzothiazol	MTBT	TERBAZ-D5		
Tetrabrombisphenol A	TBBPA	TBBPA-13C12		
Pharmaka				
Carbamazepin	CARBAMAZ	ATRAZ-D5		
Clofibrinsäure	CLOFIBRS	MECOPR-D3		
Diclofenac	DICLOF	TERBAZ-D5		
Naproxen	NAPROX	TERBAZ-D5		
Oxazepam	OXAZEP	TERBAZ-D5		
Primidon	PRIMID	DEATRAZ-D6		
PFCs				
Perfluorbutansäure	PFBA	PFOS-13C4		
Perfluorbutansulfonsäure (PFBuS)	PFBS	PFHXS-18O2		
Perfluordecansäure (PFDeA)	PFDEA	PFOS-13C4		
Perfluorheptansäure (PFHpA)	PFHPA	PFOS-13C4		
Perfluorhexansäure (PFHxA)	PFHXA	PFOS-13C5		
Perfluorhexansulfonsäure (PFHxS)	PFHXS	PFHXS-18O2		
Perfluornonansäure (PFNoA)	PFNOA	PFOS-13C4		
Perfluoroctansäure	PFOA	PFOA-13C2		
Perfluoroctansulfonat	PFOS	PFOS-13C4		
Perfluoroctansulfon-säureamid	PFOSA	PFOS-13C4		

3.8.2 Analytik von aquatischen Stichproben

3.8.2.1 Wasseranalytik am BSH (Schöpfproben)

Wie in Kapitel 3.5 beschrieben, wurden während einzelner Beprobungskampagnen bei Ausbringung und Einholung der Passivsammler Meerwasser-Stichproben genommen. Diese wurden nach zügiger Verbringung ins Labor mittels Flüssig-Flüssigextraktion (unpolare Komponenten, GC-MS/MS) bzw. SPE (polare Analyten, LC-MS/MS) aufgearbeitet (vgl. Anhang A-1.4). Im weiteren Verlauf des Projektes wurde auf Daten von Überwachungsseefahrten des BSH zurückgegriffen, bei denen unpolare Substanzen aus 100 L Seewasser und polare Substanzen aus bis zu 5 L Seewasser extrahiert wurden. Die Aufarbeitung ist prinzipiell die gleiche, jedoch wird zur Extraktion von 100 L Seewasser 1 L Pentan eingesetzt.

3.8.2.2 Wasseranalytik am UFZ

Da vom LHW in der Wasserphase nur HCHs und HCB sowie einige Pestizide gemessen wurden, musste die Wasserkonzentration aus der in den Schwebstoffproben detektierten Konzentrationen abgeschätzt werden. Unter Annahme des Gleichgewichtes wird aus der Differenz zwischen Gesamtkohlenstoffgehalt (TOC - total organic carbon, LHW-Daten) und gelöstem Kohlenstoff (DOC - dissolved organic carbon, LHW-Daten) der ungelöste organische Kohlenstoff (POC - particulate organic carbon) berechnet. Mit dem gemessenen Schadstoffgehalt in den Schwebstoffproben die Wasserkonzentration über den jeweiligen $K_{\rm OC}$ (Verteilungskoeffizient zwischen Wasser und ungelöstem organischen Kohlenstoff) der Zielsubstanz ermittelt. Die verwendeten $K_{\rm oc}$ -Werte wurden mit berechneten LSER-Parametern aus dem Programm ACD/ADME Suite [63] nach Kipka und Di Toro (2011a) [67] berechnet.

Daneben wurden die von den LHW-Gewässergütestationen bereitgestellten Wochenmischproben sowie in regelmäßigen Abständen vom UFZ genommene Schöpfproben mittels Twister extrahiert. Details zur Analyse finden sich in Anhang A-1.4.

3.8.3 Analysenverfahren von Passivsammlerproben

Unpolare Analyten der Proben von Chemcatcher, MESCO und Silikonstab sowie der Twister wurden am UFZ mittels verschiedener GC-MS-Systeme analysiert. Die Beschreibung der verwendeten Geräte und eingestellten Parameter ist im Anhang A-1.5 nachzulesen.

Am BSH wurden die Proben der LDPE-Streifen und Silicone Sheets analysiert. Unpolare Analyten wurden mittels GC-MS/MS analysiert (unterschiedliche GC-MS-Systeme für PAK und CKWs, siehe A-1.5). Die Analyse der polaren Substanzen erfolgte mittels LC-MS/MS.

3.8.4 Berechnung zeitgemittelter Durchschnittswerte aus Passivsammlern

Die einfachste Methode, mit Passivsammlern zeitgemittelte Durchschnittskonzentration in der Wasserphase zu ermitteln, ist die Berechnung mit Sammelraten aus Kalibrierversuchen, die unter dem jeweiligen Probenahmepunkt im Freiland ähnlichen Bedingungen (z. B. Fließgeschwindigkeit, Temperatur) durchgeführt wurden. Die zeitgemittelte Durchschnittskonzentration ist unter der Voraussetzung eines quasi-linearen Aufnahmeverhaltens (d. h. bei hinreichend kurzer Exposition) nur von der Sammelrate und der Expositionszeit abhängig. Alternativ können zeitgemittelte Durchschnittskonzentrationen anhand Analytkonzentrationen Sammler, Sammler-Wasserder auf dem dem Verteilungskoeffizienten K_{SW} und der Eliminierungsrate von dotierten Referenzsubstanzen (PRC) berechnet werden (vgl. Kapitel 3.6.3). Neben dem "konventionellen Berechnungsmodell" wird auch eine optimierte Berechnungsgrundlage [60] verwendet, die allerdings bislang nur für die Silicone Sheets verfügbar ist. Dieses Modell bezieht neben der PRC-Abreicherung die Diffusionsgeschwindigkeit der Analyten ein, die über deren Molekülmasse abgeschätzt wird. Ein Vorteil dieses Modells ist, dass nur die K_{sw} -Werte der eingesetzten PRCs bekannt sein müssen, während für die Analyten lediglich die Molekülmassen für die Berechnung benötigt werden.

Es wurden experimentelle und berechnete K_{SW} -Werte verwendet (siehe Kapitel 3.6.3). Da sich das Verteilungsgleichgewicht zwischen Sammelphase und Wasser mit zunehmendem Salzgehalt in Richtung der Sammelphase verschiebt, wurden die K_{SW} -Werte für die Berechnungen Werte für die Küstengewässer- und Hochseestandorte korrigiert nach

$$K_{\rm sw}({\rm Salz}) = K_{\rm sw} \cdot 10^{K^{\rm S} \cdot [{\rm Salz}]}$$
(10)

 K^{δ} - Setschenow-Konstante (mol⁻¹) [Salz] - Salzkonzentration im Gewässer (mol · L⁻¹)

Für die Probenahmestelle im Fehmarnbelt in der Ostsee wurde eine Konzentration von 0,25 mol/L, für die Beprobung auf Helgoland eine Konzentration von 0,5 mol/L angenommen. Die Setschenow-Konstanten für die Zielsubstanzen wurden auf Grundlage des log K_{OW} berechnet nach Ni und Yalkowsky (2003) [68].

Für dissoziierende Zielsubstanzen wurde der K_{SW} -Wert unter Einbeziehung des im Gewässer vorherrschenden pH-Wertes mit der Henderson-Hasselbalch-Gleichung korrigiert, da davon ausgegangen wird, dass nur die undissoziierte Fraktion eines Stoffes vom Passivsammler aufgenommen wird [69]. Bei den Binnengewässer-Kampagnen konnte auf Daten des LHW zurückgegriffen werden, bei den marin beeinflussten Messstellen wurde ein einheitlicher pH-Wert von 8 (Durchschnittswert) gesetzt.

$$D_{\rm SW}^{\rm u} = \frac{K_{\rm SW}}{1+10^{\rm pH-pK_{\rm S}}} \tag{11}$$

 D_{SW}^{u} - Sammler-Wasser-Verteilungskoeffizient der undissoziierten Stofffraktion pK_{s} - negativer dekadischer Logarithmus der Säuredissoziationskonstante

Die Säuredissoziationskonstanten der Zielsubstanzen wurden mit dem Programm ACD/ADME Suite berechnet [70].

Bei allen Sammlern wurde die auf der jeweiligen Feldkontrolle bestimmte Analytkonzentration von der Konzentration im exponierten Sammler abgezogen. Im nächsten Kapitel wird der Weg vom Messwert bis zur zeitgemittelten Durchschnittskonzentration in einer Beispielrechnung anhand eines Sammlers und einer einzelnen Substanz detailliert erläutert.

Für die Berechnung der zeitgemittelten Durchschnittskonzentrationen einiger polarer Analyten, die während der beiden Laborvergleichsstudien bestimmt wurden, wurden Sammelraten aus der Literatur herangezogen. Diese Werte werden gesondert gekennzeichnet und die erforderlichen Rechenschritte ebenfalls nachstehend in einer Beispielrechnung beschrieben.

3.8.4.1 Beispiele für verschiedene Berechnungsmodelle

3.8.4.1.1 Berechnung mit PRCs

Beispiel - Berechnung über Volumen der Sammelphase

Als Beispiel für die Berechnung der zeitgemittelten Durchschnittskonzentration soll die Bestimmung von Atrazin mit dem Silikonstab im Fluss Charente (zweite AQUAREF-Kampagne) dienen. Alle Angaben beziehen sich auf ng je 15 mm-Silikonstab. Die für die AQUAREF-Laborvergleichsstudie verwendeten PRCs unterscheiden sich von denen der restlichen Kampagnen. Die Berechnung erfolgt nach Gl. 9 (vgl. Kapitel 3.6.3):

$$c_{\text{TWA}} = \frac{m_{\text{s}}(t)}{V_{\text{s}}K_{\text{SW}}k_{\text{e}}t}$$
(12)

 c_{TWA} - zeitgemittelte Durchschnittskonzentration m_{s} - Masse der gesuchten Substanz auf der Sammelphase V_{s} - Volumen der Sammelphase K_{SW} - Sammler-Wasser-Verteilungskoeffizient k_{e} -Eliminierungsrate t - Expositionszeit des Passivsammlers im Gewässer

Die Substanzmenge im Silikon beträgt 0,26 ng nach einer Expositionszeit von ca. 14 Tagen, die auf der Feldkontrolle liegt unterhalb der Bestimmungsgrenze von 0,21 ng. Daher wurde für die weitere Berechnung keine Korrektur der Substanzmenge im Silikon vorgenommen.

 $m_{\rm s}(t) = 0,26 \text{ ng}$

t = 14 d 15 min = **336,15 h**

Für den K_{SW} wurde kein experimenteller Wert in der Literatur gefunden, weshalb die Berechnung des K_{SW} mit einer Abrahamgleichung [61] mit berechneten LSER-Parametern durchgeführt wurde [63]:

 $\log K_{SW} = 0,50 \text{ E} - 0,86 \text{ S} - 1,32 \text{ A} - 2,38 \text{ B} + 2,75 \text{ V} + 0,77$

$$\log K_{SW} \text{ (Atrazin)} = 0.50 \cdot 1.26 - 0.86 \cdot 1.24 - 1.32 \cdot 0.36 - 2.38 \cdot 0.89 + 2.75 \cdot 1.62 + 0.77$$

 $\log K_{SW}$ (Atrazin) = 2,19 $\rightarrow K_{SW}$ (Atrazin) = **156**

Das Volumen V_s des zylindrischen 15 mm-Silikonstabs beträgt:

 $V_{\rm s} = \pi \cdot r^2 \cdot h = \pi \cdot (1 \text{ mm})^2 \cdot 15 \text{ mm} = 47,12 \text{ mm}^3 = 4,71 \cdot 10^{-5} \text{ L}$

Der Wert der Eliminierungsrate k_e wird über die Abnahme der PRCs ermittelt, die vor der Ausbringung auf Sammler und Feldkontrolle dotiert wurden:

$$k_{\rm e} = \frac{-\ln(\frac{m_{\rm s}(t)}{m_{\rm s}(0)})}{t}$$
(13)

In Tabelle 6 sind die K_{SW} -Werte und Eliminierungsraten k_e der verwendeten PRCs zusammengestellt.

Tabelle 6: Beispiel Berechnung der Eliminierungsraten mit PRCs

Substanz	$\log K_{\rm ow}^{1}$	$\log K_{\rm SW}^2$	K _{sw}	<i>k</i> _e (d⁻¹)	Bemerkung
Acenaphten-D10	3,92	3,58	3802	0,0129	
Fluoren-D10	4,18	3,67	4677	0,0093	
a-HCH-D6	4,14	3,27	1850	0,0140	$k_{e(max)}$
Phenanthren-D10	4,46	4,06	11482	0,0059	
Pyren-D10	4,88	4,63	42658	0,0028	
Fluoranthen-D10	5,16	4,57	37154	0,0028	
Benz(a)anthracen-D12	5,76	5,32	208930	0,0020	$k_{e(min)}$
HCB-13C6	5,73	5,05	112202	0,0016	

¹ Werte für nichtdeuterierte Substanzen aus Chemprop-Datenbank; 0,05 abgezogen

² experimentelle Werte, siehe Anhang A-2.1

Aus praktischen Gründen kann nicht für jede zu bestimmende Zielsubstanz das isotopendotierte oder deuterierte Äquivalent als PRC eingesetzt werden. Daher wird in diesem Fall der k_e -Wert mit einer logistischen Regression abgeschätzt, für die der maximale und der minimale k_e -Wert als obere bzw. untere Grenze gesetzt werden (siehe Gl. 13 und Abbildung 12):

Abbildung 12: Abschätzung von ke anhand einer logistischen Regression

Durch Einsetzen des K_{SW} -Wertes der gewünschten Zielsubstanz kann die entsprechende Eliminierungskonstante k_e abgeschätzt werden. Für Atrazin (K_{SW} = 156) ergibt die Regressionsgleichung für k_e = 0,014 h⁻¹. Einsetzen in Gl. 9 ergibt:

$$c_{\text{TWA}} = \frac{0,26 \text{ ng}}{4,71 \cdot 10^{-5} \cdot 156 \cdot 0,014 \text{h}^{-1} \cdot 336,25 \text{h}} = 7,52 \text{ ng/L}$$

Sämtliche zeitgemittelten Durchschnittskonzentrationen sind in Anhang A-2.7 und A-2.8 zusammengefasst.

Beispiel - Berechnung über Masse der Sammelphase

Bei Passivsammlern, die nicht kommerziell erhältlich sind, wird die Sammelphase in der Regel per Hand zugeschnitten. Die Angabe des Volumens ist daher mit einer hohen Ungenauigkeit verbunden, während die gravimetrische Bestimmung unproblematisch ist. Daher hat es sich in der wissenschaftlichen Fachliteratur weitgehend durchgesetzt, experimentelle Sammler-Wasser-Verteilungskoeffizienten K_{SW} in der Einheit L/kg anzugeben.

Das Beispiel für eine c_{TWA} -Berechnung mit einem experimentellen K_{SW} -Wert ist die Bestimmung von Fluoranthen mit dem Silikonstab bei der ersten Beprobung an der Mulde bei Dessau. Alle Angaben beziehen sich auf ng je 50 mg Silikonstab, was einer Länge von 15 mm entspricht.

Die Berechnung erfolgt mit der aus Gl. 9 abgeleiteten Gl. 14:

$$c_{\text{TWA}} = \frac{m_{\text{s}}(t)}{m_{\text{Stab}} K_{\text{SW}} k_{\text{e}} t}$$
(15)

c_{TWA} - zeitgemittelte Durchschnittskonzentration

 $m_{\rm s}(t)$ - Masse der gesuchten Substanz auf der Sammelphase zum Zeitpunkt t

m_{Stab} - Masse der Sammelphase

K_{SW} - Sammler-Wasser-Verteilungskoeffizient (kg/L)

 $k_{\rm e}$ - Eliminierungsrate

t - Expositionszeit des Passivsammlers im Gewässer

Die Substanzmenge im Silikon beträgt 2,71 ng (bezogen auf 50 mg) nach einer Expositionszeit von 28 Tagen, die auf der Feldkontrolle liegt unterhalb der Bestimmungsgrenze von 0,05 ng. Daher wurde für die weitere Berechnung keine Korrektur der Substanzmenge im Silikon vorgenommen.

$m_{\rm s}(t) = 2,71 \text{ ng}$

t = **28 d**

Der experimentelle Silikon-Wasser-Verteilungskoeffizient log K_{SW} beträgt 4,62 [71].

 $\log K_{SW}$ (Fluoranthen) = 4,62 $\rightarrow K_{SW}$ (F) = **41400 kg/L**

Die Masse *m*_{Stab} des zylindrischen 15 mm-Silikonstabs beträgt **50 mg.**

Der Wert der Eliminierungsrate k_e wird über die Abnahme der PRCs ermittelt, die vor der Ausbringung auf Sammler und Feldkontrolle dotiert wurden:

$$k_{\rm e} = \frac{-\ln(\frac{m_{\rm s}(t)}{m_{\rm s}(0)})}{t}$$
(16)

Mit einer logistischen Regression wird der benötigte k_e -Wert abgeschätzt, für die der maximale und der minimale k_e -Wert als obere bzw. untere Grenze gesetzt werden:

Für Fluoranthen (K_{SW} = 41400 kg/L) ergibt die Regressionsgleichung für k_e = **0,0725 d**⁻¹. Dabei ist die Einheit der Eliminierungsrate zu beachten, die sich aus der Angabe der Expositionszeit ergibt. Einsetzen in GI. 9 ergibt:

$$c_{\text{TWA}} = \frac{2,71 \text{ ng}}{0,00005 \text{ kg} \cdot 41400 \text{ kgL}^{-1} \cdot 0,0725 \text{ d}^{-1} \cdot 28 \text{ d}} = 1,51 \text{ ng/L}$$

3.8.4.1.2 Berechnung nach Rusina

Die Berechnung der zeitgemittelten Durchschnittskonzentrationen (c_{TWA}) erfolgte auf Grundlage eines Modells von Rusina und Mitarbeitern [60], das wie das Standardmodell auf der Eliminierung von PRCs basiert. Die Abschätzung der *In-situ*-Sammelrate des jeweiligen Analyten erfolgt hier jedoch mit Hilfe der Diffusionsgeschwindigkeit in Wasser, die bei dem verwendeten Modell mit dem Molekülgewicht abgeschätzt wird. Ein weiterer Unterschied zur oben erläuterten Herangehensweise ist, dass jedem Messwert alle PRCs zugrunde liegen, die als sogenannter Standort- oder Umweltfaktor in die Berechnung eingehen. Daher ist die Berechnung für sehr hydrophobe nicht so stark von den hydrophoben PRCs abhängig, deren Abnahme während der Exposition oftmals nicht signifikant ist. Die praktische Anwendbarkeit des Modells ist mit einer frei verfügbaren Excel-Tabelle von Foppe Smedes (Deltares, Utrecht, Niederlande) möglich und wird in Anhang A-1.6 an einem Beispiel erläutert. Die Excel-Tabelle enthält eine kurze Beschreibung, was die Benutzung auch ohne genaue Kenntnis des zugrundeliegenden Modells ermöglicht.

3.8.4.1.3 Berechnung mit Labor- und Literatursammelraten

Wenn für eine Zielsubstanz und die während der Ausbringung vorherrschende durchschnittliche Fließgeschwindigkeit eine experimentelle Sammelrate aus eigener Kalibrierung oder der Literatur zur Verfügung stand, erfolgte die Berechnung der zeitgemittelten Durchschnittskonzentration unter Vernachlässigung der Umweltparameter (Temperatur, Salzgehalt) nach umgestellter GI. 4:

$$c_{\text{TWA}} = \frac{m_{\text{S}}}{R_{\text{S}} t}$$
(18)

 c_{TWA} - zeitgemittelte Durchschnittskonzentration (ng/L)

 $m_{\rm S}$ - Masse der Zielsubstanz auf der Sammelphase (ng)

*R*_S - Sammelrate (L/d)

t - Expositionszeit des Passivsammlers (d)

4. Qualitätssicherung und Validierung

4.1 Aspekte der Qualitätssicherung beim Passivsammler-Einsatz

Maßnahmen zur Qualitätssicherung sind gemäß DIN 5667-23:2011 [1] für den gesamten Prozessablauf beim Gebrauch von Passivsammlern durchzuführen. Dies betrifft im Einzelnen die Herstellung der Sammler, ihre Lagerung und ihren Transport vor und nach der Ausbringung im Gewässer, den Vorgang von Ausbringung und Entnahme selbst sowie die Reinigung, Aufarbeitung und instrumentelle Analytik. Es ist erforderlich, Fabrikations-, Transport- und Feldkontrollproben der einzusetzenden Sammler herzustellen und zu lagern bzw. mitzuführen sowie diese der gleichen Aufarbeitungsprozedur und Analyse zu unterziehen wie den im Feld exponierten Sammlern. Dadurch können Matrixinterferenzen, Hintergrundbelastungen und die Stabilität der vorab in die Sammelphase dotierten Referenzsubstanzen (PRCs) erfasst werden [5]. Die Anzahl der je Beprobungsstelle gleichzeitig auszubringenden Passivsammler eines Typs ist vom Zweck der Probenahme und der dafür erforderlichen Präzision abhängig. Für einen qualitativen bzw. halbquantitativen Standortvergleich reicht es unter Umständen, die Sammler je Standort im Doppel auszubringen. Will man dagegen aus den akkumulierten Stoffmengen die zeitgemittelten Konzentrationen der Schadstoffe im Gewässer bestimmen und hat zudem das Problem, sehr niedrige Konzentrationen zu quantifizieren, kann es notwendig sein, die Anzahl der Replikate der Passivsammler wie auch der Kontrollsammler zu erhöhen (Details siehe DIN 5667-23 [1]).

Da die Aufarbeitung der Sammler i. d. R. eine Reihe von Schritten umfasst, ist die Bestimmung der Wiederfindung der Zielsubstanzen über den gesamten Prozess (von der Extraktion über die Aufkonzentrierung, Umlöseprozesse und Reinigung bis zum Einengen) ein wichtiger Qualitätskontrollparameter und wird zudem für die Korrektur der Feldbefunde benötigt.

Weitere, nicht zu unterschätzende Aspekte für den qualifizierten Passivsammlereinsatz sind die Auswahl der Probenahmestelle, insbesondere ihre Prüfung auf offensichtliche grobe Verschmutzungen (Ölfilme etc.) und die weitgehende Vermeidung von Kontaminationen aus der Umgebungsluft (wie Motorabgase oder Zigarettenrauch).

4.2 Aspekte der Validierung von passiven Probenahmeverfahren

Für die Validierung von Analyseverfahren existieren zahlreiche Leitlinien und Vorgaben [72-74]. Die Validierung eines Verfahrens, welches die Probenahme mit einschließt, ist dabei wesentlich komplexer als die eines Analysenverfahrens. So sind auch

Untersuchungsergebnisse klassischer Wasserproben, obwohl unter Anwendung der etablierten Richtlinien und Standards genommen [38], immer mit Unsicherheiten aus der Probenahme behaftet, die zu berücksichtigen sind [75]. Für die Validierung von neuen Feldprobenahme- und Screening-Verfahren existieren erste Ansätze [76], allerdings bestehen im Falle von Passivsammlern prinzipielle Schwierigkeiten, wodurch das übliche Vorgehen bei der Methodenvalidierung (Bewertung von Richtigkeit, Präzision, Empfindlichkeit, Nachweis-/Bestimmungsgrenze, Arbeitsbereich, Robustheit u. a.) nur bedingt geeignet ist [77]. Ein besonderes, prinzipielles Problem stellt die Richtigkeit der Passivsammler-Ergebnisse dar, denn es ist im Falle des Passivsammlereinsatzes nicht notwendigerweise so, dass die zu erwartenden Messergebnisse mit etablierten Methoden vergleichbar sind. So akkumulieren Passivsammler in der Regel nur die gelöste Schadstofffraktion, die im Allgemeinen nicht mit dem Totalgehalt einer Schöpfprobe übereinstimmt. Auch die Bereitstellung von Referenzmaterial für Vergleichszwecke ist schwierig, so wären für eine Passivsammler-Kalibrierstudie zwischen mehreren Labors beispielsweise einige 100 L dotiertes Wasser erforderlich. Ein Ausweg aus diesen Problemen, der zu belastbaren Leistungsparametern von Passivsammlern führen kann, ist die Durchführung von Vergleichsstudien im Freiland, bei denen die Teilnehmer ihre Sammler gemeinsam an einem gut charakterisierten Standort ausbringen. Da während der Projektlaufzeit zwei derartige Ringversuche stattfanden, nutzte ein Projektpartner (UFZ) diese für eine zusätzliche externe Qualitätssicherung und Validierung (siehe Kapitel 4.4.4).

4.3 Abschätzung der Unsicherheit der berechneten Analytkonzentration im Gewässer nach Passivsammler-Einsatz

Ein modelltheoretischer Ansatz zur Bewertung der Messunsicherheiten von Schadstoffkonzentrationen, die aus dem Passivsammler-Einsatz abgeleitet werden, ergibt sich durch die Abschätzung aller möglichen Unsicherheitsfaktoren und der Berechnung der "Fehler"-Fortpflanzung bis zum Endresultat. Abbildung 13 zeigt die Unsicherheitsfaktoren für die zeitgemittelte Konzentration eines Stoffes in Form eines Ursache-Wirkungs-Diagramms. Die unterschiedlichen Faktoren setzen sich wiederum aus mehreren Beiträgen zusammen. Bei den "Umweltbedingungen" sind dies Beispiel die Temperatur zum und Fließgeschwindigkeit des Wassers sowie Aufwuchsbedingungen für Biofilme. Das Unsicherheitsbudget der "Sammelraten" beinhaltet Beiträge aus den (unterschiedlichen) Kalibrierprozeduren und -bedingungen, der Expositionskonzentration und ihrer Modulation durch gelösten/partikulären Kohlenstoff etc. Das Berechnungsmodell für die zeitgemittelte Durchschnittskonzentration ist ebenfalls mit Unsicherheiten behaftet, die sich zum einen direkt aus der Modellstruktur (linear – nichtlinear – Gleichgewicht) ergeben, zum anderen aus den Eingangsparametern (z. B. Stoffübergangs- und Verteilungskoeffizienten) und den Sammlercharakteristika (Volumen der Sammelphase, Austauschfläche für den Stoffübergang u. a.). In diesem Projekt wird die Gesamtunsicherheit der zeitgemittelten Konzentration an anderer Stelle nach dem Modellansatz exemplarisch berechnet.

Abbildung 13: Ishikawa-Diagramm für die Unsicherheitsbeiträge zur zeitgemittelten Konzentration eines Stoffes (c_{TWA}) basierend auf Passivsammlereinsatz (nach einer Vorlage von I.J. Allan)

<u>1. Fall – Sammler noch im linear-integrativen Anreicherungsmodus¹ (Grenzfall $t < t_{0.5}$)</u> Die zeitgemittelte Konzentration im Wasser werden nach Gl. 4 berechnet:

$$c_{\rm lin}^{\rm TWA} = \frac{m_{\rm S}}{R_{\rm S} t} \tag{19}$$

und ihre Varianz ergibt sich nach Gl. 15:

$$\boldsymbol{s}_{c_{\text{lin}}}^{2} = \left(\frac{\partial \boldsymbol{c}_{\text{lin}}}{\partial \boldsymbol{m}_{\text{t}}} \boldsymbol{s}_{\text{m}_{\text{t}}}\right)^{2} + \left(\frac{\partial \boldsymbol{c}_{\text{lin}}}{\partial \boldsymbol{R}_{\text{s}}} \boldsymbol{s}_{\text{R}_{\text{s}}}\right)^{2} + \left(\frac{\partial \boldsymbol{c}_{\text{lin}}}{\partial \boldsymbol{t}} \boldsymbol{s}_{\text{t}}\right)^{2}$$
(20)

¹ Begriffe & Gleichungen leicht modifiziert nach DIN EN ISO 5667-23:2011

Tabelle A-2.2.16 im Anhang zeigt die Simulation des Einflusses der relativen Unsicherheiten von Masse und Sammelrate (einzeln und kombiniert) auf die relative Standardabweichung der zeitgemittelte Konzentration (linear-integrativer Fall) für einen typischen Parametersatz. Man erkennt darin den dominierenden Beitrag der Sammelraten-Unsicherheit. Dies wird in

der ebenfalls im Anhang befindlichen Tabelle A-2.2.17 mit den prozentualen Anteilen der Einzelvarianzen an der Gesamtvarianz noch deutlicher.

Die Unsicherheit der Sammelrate liefert unter realitätsnahen Annahmen von 50 bis 100 % den größten Anteil an der Gesamtvarianz (86 bzw. 96 %). Eine Unsicherheit der im Sammler quantifizierten Analytmasse von 20 % bringt nur 14 bzw. 4 % Anteil an der Gesamtvarianz.

2. Fall – Sammler schon im nichtlinear-integrativen Modus ($t_{0.5 <} t < t_{0.9}$)

Die zeitgemittelten Konzentration im Wasser wird nach umgestellter Gl. 1 berechnet.

$$c_{\rm nl}^{\rm TWA} = \frac{m_{\rm t}}{V_{\rm S} K_{\rm SW} \left[1 - \exp\left(-\frac{k_{\rm o} A t}{V_{\rm S} K_{\rm SW}}\right) \right]}$$
(21)

Mit $R_{\rm S} = k_{\rm o} A$ ergibt sich daraus:

$$c_{\rm nl}^{\rm TWA} = \frac{m_{\rm t}}{V_{\rm S} K_{\rm SW} \left[1 - \exp\left(-\frac{R_{\rm S} t}{V_{\rm S} K_{\rm SW}}\right) \right]}$$
(22)

und mit $k_e = R_S / (V_S K_{SW})$ dann:

$$c_{\rm nl}^{\rm TWA} = \frac{m_{\rm t}}{V_{\rm S} K_{\rm SW} \left[1 - \exp(-k_{\rm e} t)\right]}$$
(23)

Ausgehend von GI. 3c ergibt sich die Varianz der Konzentration aus GI. 18:

$$s_{c_{\rm nl}}^{2} = \left(\frac{\partial c_{\rm nl}}{\partial m_{\rm t}} s_{m_{\rm t}}\right)^{2} + \left(\frac{\partial c_{\rm nl}}{\partial V_{\rm S}} s_{V_{\rm S}}\right)^{2} + \left(\frac{\partial c_{\rm nl}}{\partial K_{\rm SW}} s_{K_{\rm SW}}\right)^{2} + \left(\frac{\partial c_{\rm nl}}{\partial k_{\rm e}} s_{k_{\rm e}}\right)^{2} + \left(\frac{\partial c_{\rm nl}}{\partial t} s_{t}\right)^{2}$$
(24)

In Tabelle A-2.2.18 wird die Simulation des Einflusses der relativen Unsicherheiten von Masse, Sammler-Wasser-Verteilungskoeffizient und Gesamt-Austauschrate (einzeln und kombiniert) auf die relative Standardabweichung der zeitgemittelte Konzentration im Wasser (nichtlinearer Fall) für einen typischen Parametersatz gezeigt.

Man erkennt die entscheidenden Beiträge der Unsicherheiten von Sammler-Wasser-Verteilungskoeffizient und Gesamt-Austauschrate. Tabelle A-2.2.19 zeigt wieder die prozentualen Anteile der Einzelvarianzen an der Gesamtvarianz.

Bei 20 % Unsicherheit der im Sammler quantifizierten Analytmenge wird der hohe prozentuale Anteil der Unsicherheit von Verteilungskoeffizient und Austauschrate an der Gesamtvarianz der zeitgemittelten Konzentration im Gewässer deutlich.

3. Fall – Sammler im Gleichgewichtsmodus ($t > t_{0,9} \approx t_{eq}$):

Die Konzentration des zum Zeitpunkt der Entnahme des Sammlers im Wasser gelösten Analyten wird nach umgestellter GI. 2 berechnet:

$$c_{\rm eq} = \frac{m_{\rm eq}}{K_{\rm SW} V_S} \tag{25}$$

Die Varianz ergibt sich dann nach Gl. 19:

$$s_{c_{\rm eq}}^{2} = \left(\frac{\partial c_{\rm eq}}{\partial m_{\rm eq}} s_{m_{\rm eq}}\right)^{2} + \left(\frac{\partial c_{\rm eq}}{\partial K_{\rm SW}} s_{K_{\rm SW}}\right)^{2} + \left(\frac{\partial c_{\rm eq}}{\partial V_{\rm S}} s_{V_{\rm S}}\right)^{2}$$
(26)

Tabelle A-2.2.20 im Anhang zeigt, wie sich die einzelnen Unsicherheitskomponenten auf den Gesamtunsicherheit auswirken. Dabei wird der entscheidende Einfluss der Unsicherheit des Verteilungskoeffizienten deutlich (siehe auch Tabelle A-2.2.21).

Zusammenfassend lässt sich feststellen, dass die Unsicherheit der kinetischen Parameter Sammelrate (Fall 1) bzw. Gesamt-Austauschrate (Fall 2) sowie die des Sammler-Wasser-Verteilungskoeffizienten (Fall 2 und 3) von entscheidender Bedeutung für die Gesamtunsicherheit der ermittelten Konzentration im beprobten Gewässer sind.

Die relative Unsicherheit der Sammelrate liegt in der Praxis sicher bei 20 bis 50 %. Die Bestimmung der Gesamt-Austauschrate über die Eliminierungskinetik von PRCs wird in der Regel zu einer noch höheren relativen Unsicherheit von 50 bis 100 % führen. Nimmt man für den K_{SW} eine realistische Ungenauigkeit von 0,3 log-Einheiten an, so ergibt sich daraus eine relative Unsicherheit des Verteilungskoeffizienten von -50 bis +100 %. Die hier simulierten Ergebnisunsicherheiten resultieren aus der Anwendung des Gaußschen Fehlerfortpflanzungsgesetzes auf die oben angeführten Berechnungsformeln. Sicherheitsfaktoren, mit denen man ein Vertrauensintervall annähern kann (z. B. ein Faktor zwei für 95prozentige statistische Sicherheit), wurde noch nicht einbezogen. Abschließend sollte auf ein weiteres, eher grundsätzliches Problem bei der Berechnung der zeitgemittelten Konzentrationen hingewiesen werden: Abhängig davon, ob man mit Sammelraten aus Laborversuchen oder mit Gesamt-Austauschraten auf Basis der PRC-Eliminierung bei der Sammlerexposition vor Ort gerechnet wird, kann man unter Umständen recht unterschiedliche Ergebnisse für die Konzentration erhalten. (siehe Kapitel 5.4). Der Unterschied zwischen den Berechnungen kann, insbesondere in der Nähe von Grenzwerten², bewertungsrelevant werden. Man sollte beachten, dass Sammelraten in Laborversuchen oft nicht unter realitätsnahen Expositionsverhältnissen (Temperatur- und Strömungsverhältnisse) bestimmt werden. Zum anderen sind auch die *In-situ*-Austauschraten oft mit großen Unsicherheiten behaftet. Auf diesem Gebiet besteht also noch erheblicher Forschungsbedarf.

4.4 Qualitätssicherung im Projekt

4.4.1. Wiederfindung und Geräteperformance

4.4.1.1 Passivsammler

Sämtliche Einzelschritte der Aufarbeitungsverfahren wurden zunächst mit reinen Lösungsmittelproben, die mit internen Standards und Analyten dotiert wurden, überprüft. Anschließend wurden die Wiederfindungsraten der Verfahren anhand von aufgereinigten, nicht ausgebrachten Sammelphasen ermittelt, die mit Analyt- und Standardlösungen dotiert wurden, bevor sie die komplette Aufarbeitung des jeweiligen Sammlertyps durchliefen. Wiederfindungsproben für Silicone Sheets und LDPE-Streifen wurden mit 5 ng für LC-MS/MS-gängige, polare Stoffe sowie 25 ng für PCB und DDX und mit 500 ng für PAK beaufschlagt. Im Fall der GC-MS/MS Analytik wurden für die Silikonsammler dabei deutliche Unterschiede zwischen den Wiederfindungsraten für Lösungsmittelproben und für matrixbelastete Proben gefunden, in denen die Wiederfindungsraten wesentlich niedriger waren. Die Tabellen A-2.2.9 und A-2.2.12 im Anhang geben die Wiederfindungsraten über das gesamte Aufarbeitungsverfahren für GC-MS/MS und LC-MS/MS-Analytik wieder. Des Weiteren wurden kritische Einzelschritte der Aufarbeitung wie z. B. C18-Cleanup und Kieselgel-Cleanup durch Wiederfindungsproben überwacht (Tabelle A-2.2.10). Dabei zeigten sich Einbußen in der Wiederfindungsrate durch den Einfluss von Aceton sowie durch das in methanolisch bzw. ACN-geprägter Umgebung erfolgte C₁₈-Cleanup, die auch ursächlich für die geringen Wiederfindungen einiger Substanzen über das Gesamtverfahren sein können.

² Grenzwerte (Environmental Quality Standards) existieren allerdings für Monitoringresultate basierend auf Passivsammlereinsatz noch nicht.

Da in Multikomponentananalysen häufig Substanzen mit stark unterschiedlichen chemischen Eigenschaften erfasst werden, bietet die gewählte Methode mitunter nicht für alle Stoffe ideale Bedingungen. Dies wird jedoch nicht als Problem für eine vertrauenswürdige Bestimmung angesehen, solange andere Messparameter wie niedrige Bestimmungsgrenzen und eine gute Reproduzierbarkeit der Ergebnisse gegeben sind [78]. In der vorliegenden Studie wurde 25 - 150 % relative Wiederfindung in Matrixproben akzeptiert, im Fall von < 60 % und > 120 % jedoch nur bei einer Standardabweichung von < 10 % bei Mehrfachbestimmungen.

Die Wiederfindungsraten von MESCO und Silikonstab wurden mit verschiedenen Konzentrationen von 5 pg bis 40 ng je 15 mm Silikonstab bestimmt. Der Anstieg der Peakflächen mit zunehmender Konzentration auf dem Silikonstab wurde mit dem Anstieg der Kalibriergerade (gleiche Konzentrationen auf Glaswolle) ins Verhältnis gesetzt. Für jede Konzentrationsstufe wurden drei Wiederholungsmessungen durchgeführt.

Für die Berechnung der zeitgemittelten Durchschnittskonzentrationen wurden die ermittelten Analytkonzentrationen um die Wiederfindungsrate korrigiert.

Die Gruppe der HCHs und DDX zeigten für die Wiederfindung über das gesamte Aufarbeitungsverfahren der Silicone Sheets ungenügende Wiederfindungen von 11 % und weniger, sie wurden für die weitere Auswertung nicht berücksichtigt. Aus oben genannten Gründen sowie der komplexen Matrizes, die teilweise zu starken Empfindlichkeitseinbußen in der GC-MS/MS führten, lagen die Wiederfindungsraten häufig insgesamt niedrig, geringe Standardabweichungen der einzelnen Wiederfindungsproben zeigen jedoch eine gute Präzision (s. o.).

Folgende polare Zielanalyten wurden während der Qualitätssicherung nur in Einzelproben der Silikonsammler wiedergefunden und daher für weitere Untersuchungen nicht mehr berücksichtigt: Dimethoat, Azinphosethyl, α-Hexabromcyclododecan, Malathion, Methabenzthiazuron. Des Weiteren wurden folgende Stoffe aufgrund sehr niedriger Wiederfindungsraten bzw. ungenügender Präzision von der Quantifizierung ausgeschlossen: Azinphosmethyl, Pendimethalin, Bentazon, Fenuron, Oxazepam, Linuron, $\beta + \gamma$ -Hexabromcyclododecan (Summenparameter) und Perfluorbutansäure.

Für LDPE-Streifen wiesen die Qualitätssicherungsproben über das Gesamtverfahren mittels GC-MS/MS-Analytik für HCHs zu niedrige bzw. zu hohe Wiederfindungen auf. Acenaphthylen, Acenaphten und Fluoren wurden von der weiteren Quantifizierung ausgenommen, da das gewählte Gesamtverfahren eine niedrige Präzision zeigte. Im Bereich der LC-MS/MS-Analytik ergaben sich für Alachlor, Propazin und Perfluoroctansäure zu niedrige Wiederfindungen bzw. eine ungenügende Präzision. Chloridazon, Dichlorprop, 2-

 $(Methylthio)-benzothiazol, \\ \beta + \gamma-Hexabromcyclododecan, \\ Perfluorbutansulfonsäure wurden bei den Wiederfindungsversuchen nicht detektiert und wurden daher ausgeschlossen. \\ Perfluorbutansulfonsäure wurden bei den Wiederfindungsversuchen nicht detektiert und bei detektiert und bei den Wiederfindungsversuchen nicht detektiert und bei detektiert und$

Während Atrazin, Irgarol und Terbuthylazin in den Proben der Silicone Sheets und LDPE-Streifen mit der LC-MS/MS bestimmt wurden, wurden sie für Proben der MESCOs und Silikonstäbe mittels GC-MS ermittelt. Die Wiederfindungsraten der MESCO- und Silikonstab-Proben (Tabelle A-2.2.9) beziehen sich ausschließlich auf den Vergleich von dotierten 15 mm-Silikonstäben mit direkt auf Glaswolle gegebener Analytlösung, die zur externen Kalibrierung der GC-MS-Messungen verwendet wird. (Die dotierten Silikonstäbe wurden vor der Thermodesorption 24 h bei -18 °C gelagert.)

Alle Analysen erfolgten im Umfeld validierter Laborroutienen. Die Präzision des analytischen Verfahrens, angegeben als relative Standardabweichung der Mehrfachmessung von Standardproben (n = 8), lag mit Ausnahme von HCHA (16 %) unter 10 %.

Die Wiederfindungsraten für die PRCs wurden innerhalb des Projektes nicht bestimmt, da Feldkontrollen, Laborblanks und exponierte Sammler stets zusammen dotiert wurden und lediglich die relative Wiederfindung zwischen exponierten Proben und Blanks ausschlaggebend für die Berechnung ist. Jedoch handelte es sich bei allen verwendeten PRCs um Substanzen, die am BSH in anderem Zusammenhang in validierten Messmethoden als IS eingesetzt werden und damit einer ständigen Kontrolle unterliegen. Die Gerätepräzision lag bei mindestens > 85 %.

4.4.1.2 Wasserproben

Die Bestimmungsgrenzen für die Analytik (siehe Tabelle A2.2.6, A-2.2.7) wurden gemäß dem UBA-Leitfaden zur Methodenvalidierung [74] ermittelt. Die Wiederfindungsraten für Analyten in Seewasserproben, die mittels GC-MS/MS bestimmt wurden, entsprechen den Wiederfindungsraten für den in Tabelle A-2.2.10 beschriebenen Aufarbeitungsschritt des C₁₈- und Kieselgel-Cleanups. Wiederfindungsraten für die LC-MS/MS-Analytik wurden im Rahmen des EN-ISO-17025-zertifizierten Verfahrens des BSH anhand von dotiertem VE-Wasser sowie Seewasserproben bestimmt. Aufgrund zu niedriger Wiederfindungsraten wurden Carbendazim, Alachlor, Azinphos-ethyl, Azinphos-methyl, Chlorfenvinphos, Dimethoat, α -Hexabromcyclododecan, $\beta + \gamma$ -Hexabromcyclododecan, 2-(Methylthio)benzothiazol und Naproxen in Wasserproben nicht quantifiziert.

Die Wiederfindungsraten der mit Twister extrahierten Schöpf- und Wochenmischproben wurden durch externe Kalibrierung mit dotierten Wasserproben bestimmt. Dazu wurden 200 mL destilliertes Wasser und 40 mL Methanol mit elf verschiedenen Konzentrationsstufen (n = 2) der Standardlösung versetzt, wie die Realproben mit dem Twister extrahiert und die Twister im Anschluss mit Thermodesorption gemessen. Weiterhin wurden dieselben Konzentrationsstufen direkt auf Glaswolle gegeben und thermodesorbiert. Die dadurch erhaltenen zwei Kalibriergeraden der Konzentrationsreihen konnten dann direkt miteinander verglichen werden. Die Wiederfindungsrate für jede Substanz wurde aus dem Verhältnis der Kalibriergeraden zueinander Die Anstiege beider ermittelt. SO ermittelten Wiederfindungsraten lagen für die meisten Substanzen zwischen 50 % und 150 %, waren aber alle reproduzierbar und führten daher zu keinem Ausschluss von Analyten bei den weiteren Messungen.

4.4.2 Kontrolle von Blindwerten in Feld und Labor

Zur Kontrolle von Kontaminationen der Feldproben bei Einholung und Ausbringung wurden Transportblanks verwendet (vgl. Kapitel 4.1). Im Fall von auftretenden Kontaminationen wurden diese für die Berechnung der zeitgemittelten Durchschnittskonzentrationen c_{TWA} vom Messwert der ausgebrachten Proben subtrahiert. Tabelle A-2.2.13 zeigt die gefundenen Minimal- und Maximalwerte von Kontaminationen in Transportblanks je Sammler über alle Messkampagnen hinweg. Für keinen Analyt wurden durchgängig hohe Blindwerte gefunden , jedoch zeigten sich für PFC in Einzelproben Blindwerte von über 100 % des Wertes im ausgebrachten Sammler. Im Labor wurden zusätzlich alle Einzelarbeitsschritte (Cleanups, Einengung etc.) durch Blindwertproben überwacht, wo jedoch keine spezielle Kontaminationsquelle gefunden wurde.

4.4.3 Wiederholpräzision in Realproben

Die Wiederholpräzision in Realproben (Tabelle A-2.2.14 und A-2.2.15) wurde ermittelt, indem bei Proben, die zweifach ausgebracht wurden, die prozentuale Abweichung zwischen den beiden Werten berechnet wurde. Im Fall von Probentriplets wurde die prozentuale Standardabweichung des arithmetischen Mittels verwendet. Die mittlere Wiederholpräzision für Silicone Sheets betrug für unpolare Stoffe 8 %, für polare Stoffe 8,75 % Abweichung. Für LDPE-Streifen lag die mittlere Wiederholpräzision bei 14,5 % Abweichung.

4.4.4 Teilnahme an Laborvergleichsstudien

Die Teilnahme des UFZ an den Laborvergleichsstudien diente der externen Qualitätssicherung.

4.4.4.1 AQUAREF

Die Studie AQUAREF wurde 2010 an drei Standorten in Frankreich durchgeführt: **Charente (Fluss im Department Charente-Maritime)** Zielanalyten: Pestizide Ausbringzeit: 27.05.-10.06.2010 **Rhône (in der Nähe von Lyon im Department Rhône)** Zielanalyten: PAK Ausbringzeit: 17.06.-08.07.2010 **Thau (Brackwasser-Lagune im Department Hérault)** Zielanalyten: PAK und Pestizide Ausbringzeit: 27.04.-18.05.2010

Für jede Messkampagne wurden von den Teilnehmern fertig präparierte Passivsammler an die Veranstalter geschickt, welche die Ausbringung, Einholung sowie die Erfassung von Begleitparametern und klassischen Schöpfproben übernahmen. Das UFZ beteiligte sich mit den zu Beginn des FuE-Vorhabens zur Verfügung stehenden Passivsammlern (polarer und unpolarer Chemcatcher, Silikonstab, MESCO). Durch Anwendungsfehler vor Ort wurden jedoch große Teile der Sammler unbrauchbar und konnten nicht analysiert werden, so dass in der ersten Messkampagne lediglich MESCO und Silikonstab ausgewertet werden konnten. Mit dem MESCO wurde mit Atrazin eins der sechs Pestizide gefunden, die in den vom Veranstalter untersuchten Wasserproben quantifiziert wurden. Im Silikonstab wurde zusätzlich Metolachlor und Simazin detektiert. Alle c_{TWA}-Werte von Atrazin und Simazin wurden mit den Passivsammlern im Vergleich zu den Schöpfproben deutlich zu hoch bestimmt. Bei den PAK konnte mit dem MESCO Fluoranthen, mit dem Silikonstab zusätzlich Acenaphten, Acenaphtylen und Pyren bestimmt werden. Fünf weitere in den Wasserproben bestimmte PAK konnten mit den Passivsammlern nicht nachgewiesen werden. Die Ausbringzeit von 21 Tagen ist für beide Passivsammler allerdings sehr kurz gemessen, so dass die fehlenden Stoffe wahrscheinlich nicht ausreichend in den Sammelphasen aufkonzentriert wurden.

64

In der zweiten Kampagne konnten nach 14 Tage Exposition im polaren Chemcatcher Atrazin, im Silikonstab zusätzlich Acetochlor, Metolachlor und Simazin gefunden werden. Im MESCO lagen alle Pestizide unterhalb der Bestimmungs- bzw. der Nachweisgrenze. Bis auf Metolachlor wurde keine der gesuchten Substanzen in den Wasserproben wiedergefunden, in denen zusätzlich Desethylatrazin und Desisopropylatrazin gefunden wurde. Bei diesen beiden Stoffen wird aufgrund ihrer polaren Eigenschaften allerdings auch nicht davon ausgegangen, dass sie im Silikonstab akkumulieren bzw. die LDPE-Membran des MESCO überhaupt passieren.

Während der dritten Kampagne kam es zum Verlust alle MESCO- und Silikonstab-Sammler, so dass lediglich die unpolaren Chemcatcher analysiert werden konnten. Hier konnten alle in den Wasserproben gefundenen PAK nachgewiesen werden, die berechneten c_{TWA} lagen mit Ausnahme von Acenaphtylen im Wertebereich der Wasserproben. Vier weitere PAK konnten mit dem Chemcatcher in Konzentrationen gemessen werden, die unter den Bestimmungsgrenzen der Wasserproben lagen.

Alle Analysenergebnisse der vom UFZ eingesetzten Passivsammler befinden sich im Anhang (A-2.9). Zu der Laborvergleichsstudie ist bereits eine Publikation erschienen [79], weitere mit detaillierten Analysen der einzelnen untersuchten Stoffgruppen sind in Arbeit und werden in Kürze erscheinen.

4.4.4.2 NORMAN

Im von NORMAN organisierten Ringversuch NORMAN–ILS-PS 2011 [80] nahm das UFZ an zwei Kampagnen mit drei Substanzklassen teil: Die Untersuchung von Pharmaka und Pestiziden (1. Kampagne) wurde mit dem polaren Chemcatcher sowie mit vom Veranstalter als Referenz bereitgestellten POCIS-Sammlern [24] durchgeführt. Die Erfassung von PBDE (3. Kampagne) erfolgte mit LDPE-Streifen, unpolaren Chemcatchern, Silicone Sheets (eigene und vom Veranstalter gestellte), MESCOs, Silikonstäben.

Brno (Ablauf Kläranlage, Tschechische Republik)

Zielanalyten: Pestizide und Pharmaka (NORMAN 1) Ausbringzeit: 30.05. - 13.06.2011 Zielanalyten: PBDE (NORMAN 3) Ausbringzeit: 11.07. - 22.08.2011 Die Vorgehensweise entsprach der des AQUAREF-Ringversuchs, jedoch wurden zusätzliche Passivsammler vom Veranstalter ausgebracht und zur Analyse an die teilnehmenden Labore geschickt. Das ermöglichte den Vergleich der berechneten Wasserkonzentrationen eines identischen Passivsammlers, dessen Extraktion, Analyse und Auswertung durch unterschiedliche Labore und Rechenmodelle durchgeführt wurde. Zusätzlich wurden aus den Rohdaten der Teilnehmer die Wasserkonzentrationen durch die Veranstalter nach einem einheitlichen Rechenmodell ermittelt.

In der ersten NORMAN-Messkampagne wurden u. a. über einen Ausbringungszeitraum von 14 Tagen Pestizide und Arzneimittel mit dem polaren Chemcatcher und vom Veranstalter als Referenzsammler bereitgestellten POCIS gemessen. Die Berechnung der zeitgemittelten Durchschnittskonzentrationen erfolgte mit Sammelraten aus der Literatur. Da für die wenigsten gesuchten Substanzen Sammelraten aus der Literatur verfügbar waren, erfolgte eine Abschätzung auf der Basis aller verfügbaren Sammelraten über die Fließgeschwindigkeit. Die Aufarbeitung der POCIS erfolgte nach [25], die Berechnung erfolgte mit Sammelraten aus der Literatur.

Für die Abschätzung der Fließgeschwindigkeit wurden bei jeder Ausbringung drei Gipskartuschen in einem Ausbringungskorb befestigt, mit den Passivsammlern ausgebracht und nach [53] ausgewertet. Die Ergebnisse sind in Tabelle A-2.10.4 dargestellt.

Es ist deutlich zu erkennen, dass die durchschnittliche Fließgeschwindigkeit im Sammlerkorb bei der PBDE-Kampagne trotz geringeren Durchflusses am Klärwerksauslauf höher war als bei der Pestizid- und Arzneimittelkampagne. Das unterstreicht den Vorteil der Gipskartuschen, da die individuelle Lage eines Sammlerkorbes - am Rand oder in der Mitte der Strömung - einen deutlichen Einfluss auf die hydrodynamischen Gegebenheiten an der Sammleroberfläche hat.

In Abbildung 14 sind die c_{TWA} der Pestizide und Arzneimittel zu sehen, die mit den zwei verschiedenen Chemcatcher-Aufarbeitungen sowie dem POCIS ermittelt wurden.

Abbildung 14: Vergleich der c_{TWA} (ng/L) für Chemcatcher (**Blau**: Pestizid-Aufarbeitung; **Grün**: Arzneimittel-Aufarbeitung) und POCIS (**Rot**) für verschiedene Pestizide und Arzneimittel. Alle dargestellten Werte jeweils n positiv/n = 3/3

In einer weiteren Beprobung wurden sechs PBDE über einen Ausbringungszeitraum von 42 Tagen untersucht. Das UFZ hat mit allen während des FuE-Vorhabens getesteten Passivsammlern an der Kampagne teilgenommen. Die Analyse und Berechnung der Passivsammler erfolgte analog zu den limnischen und marinen Freilandkampagnen dieses Projektes. Einzige Ausnahme bildeten die Silicone Sheets, die nicht mit Soxhlet- sondern mit kalter Lösungsmittelextraktion aufgearbeitet wurden (Details dazu siehe Anhang 8 der Studie [81]). Alle Tabellen mit den ng/Sammler- und c_{TWA} -Werten befinden sich in Anhang (A-2.9). In Abbildung 15 sind die c_{TWA} der verschiedenen Sammlertypen für die einzelnen PBDE in der abweichenden Einheit pg/L wiedergegeben. Mit dem ebenfalls eingesetzten unpolaren Chemcatcher konnte keine PBDE nachgewiesen werden, in den folgenden Diagrammen wurde er daher nicht berücksichtigt.

Es wird ersichtlich, dass die LDPE-Streifen der einzige Passivsammler waren, mit dem alle sechs gesuchten PBDE nachgewiesen werden konnten. Gerade hinsichtlich des vergleichsweise geringen Volumens der Sammelphase und der relativ anwenderfreundlichen Handhabung ist dieser Sammler daher die geeignete Wahl für das Monitoring dieser Stoffgruppe. Die beiden Proben der Silicone Sheets sollten erwartungsgemäß identische Ergebnisse liefern, trotz unterschiedlicher auf die Sammelphase dotierter PRCs.Die Analyse der vom Veranstalter gelieferten Charge erwies jedoch als sehr schwierig, da das verwendete Polymer im Vorfeld offenbar nicht ausreichend von Verunreinigungen wie Silikonölen und Oligomeren befreit wurde. Die Quantifizierung der PRCs und Analyten war aufgrund zahlreicher breiter Hintergrundpeaks daher stark eingeschränkt.

Abbildung 15: Vergleich der c_{TWA} (pg/L) von PBDE 28, 47, 99, 100, 153 und 154 im Auslauf des Klärwerks in Modřice bei Brno, Tschechien bei Verwendung verschiedener Passivsammler (Expositionszeit: 42 Tage, Juli-August 2011) berechnet nach verschiedenen Berechnungsmodellen. **Rot**: MESCO; **Grün**: Silikonstab; Gelb: Silicone Sheets (UFZ); Braun: Silicone Sheets (NORMAN) Blau: LDPE-Streifen. EXP: Experimenteller K_{SW} für Silikon aus [82] bzw. für LDPE aus [83]; LSER: Berechneter K_{SW} aus [61] (Berechnung für reines Polydimethylsiloxan [PDMS]); *Berechnungsmodell nach [60].

Die relativ schlechten Ergebnisse von MESCO und Silikonstab zeigen die Problematik der Probenaufgabe mittels Thermodesorption auf, bei der sich hochsiedende, große Moleküle schlecht aus dem Silikonpolymer herauslösen lassen. Weitere Einschränkungen begründen sich in den vergleichsweise kleinen Sammelphasen dieser Passivsammler. Das wichtigste Ergebnis der Studie ist jedoch, dass sich auch stark hydrophobe Stoffe außerhalb des allgemein anerkannten Geltungsbereiches der PRCs (ungefähr log K_{OW} 4 - 6) mit dieser Methode quantitativ bestimmen lassen. Details zu den Analysen und alle Einzelwerte können im Bericht der NORMAN-Studie nachgelesen werden [81].

5. Ergebnisse und Diskussion

5.1 Erfahrungen und Erkenntnisse aus der Durchführung des Projekts

5.1.1 Arbeitsaufwand im Labor

Der zeitliche und arbeitstechnische Aufwand zur Vorbereitung, Aufarbeitung und Analyse der verschiedenen Passivsammler unterscheidet sich z. T. erheblich. Silicone Sheets bedürfen einer einwöchigen Aufreinigung in organischem Lösungsmittel, um ausreichend sauber zu sein für die gewünschten Analysen, während das LDPE-Material vor dem Einsatz lediglich 24 Stunden gereinigt werden müssen. Auch die der Ausbringung folgende Laborroutine ist für die Silikonsammler wesentlich aufwändiger und teurer, wie Tabelle 7 verdeutlicht.

Aufacho	Beanspruchte Arbeitszeit			
Augabe	SI	LDPE	Silikonstab	MESCO
Zuschnitt des Sammlermaterials (Batch)	30 min	1 h	15 min	1 h
Arbeit während Vorextraktion	3 h	1 h	1 h	2 h
Dotierung (PRC)	1 h	1 h	1 h	1 h
Bestücken der Sammlerkörbe	15 min	30 min	30 min	30 min
Reinigung nach der Ausbringung	30 min	30 min	15 min	
Extraktion	6 h	1 (4 x 0,25) h		
C ₁₈ -Cleanup der Extrakte und Umlösung auf GC-MS/MS- taugliches Lösungsmittel	1 - 2 d			
Silicagel-Cleanup	gleich	gleich		
Erhöhter Zeitaufwand für Reinigung der Laborglasware	1,5 - 2 d			
Differenz	> 3 Tage* zwischen SI und LDPF			

Tabelle 7: Arbeits- und Zeitaufwand für die Analyse unterschiedlicher Sammler

*bezogen auf die Laborarbeiten einer zusammen bearbeitbaren Probenanzahl (Batch) bis zur Analyse

5.1.2 Spezielle Arbeitstechniken

Die Anwendung von Passivsammlern erfordert z. T. sehr spezielle Arbeitstechniken. Die Notwendigkeit zum Training des unter Umständen auch nur an Teilen der Probenahmekampagne beteiligten Personals wurde anhand der Ergebnisse der ersten marinen Messkampagne deutlich, deren Ergebnisse nicht zu verwenden waren. Neben der praktischen Handhabung der Sammler zeigte sich in der Startphase des Projektes das Dotieren der Sammler mit PRCs als besonders kritisch.

5.1.3 Beprobungsorte und Probenahme

Die Auswahl der Beprobungsorte erwies sich als kompliziert. Allen Stellen gemeinsam war das Problem, dass die Passivsammler als zusätzliche "Gäste" in ein bestehendes System eingepflegt werden mussten, was eine hohe Flexibilität und Kompromissfähigkeit erforderte.

Bei limnischen Stellen erwies sich eine zu gute Zugänglichkeit z. T. als nachteilig, weil dadurch auch die Diebstahlgefahr wuchs (Verlust mehrerer Sammlerkörbe im Wert von je 1500 €).

Bei marinen Stellen ist andererseits die erschwerte Zugänglichkeit ein besonderes logistisches Problem, ferner sind die örtlichen Gegebenheiten nur sehr bedingt flexibel.

Nach Einholung und Analyse der Passivsammler kam es zum Komplettausfall bei der Analyse der unpolaren Chemcatcherproben für sämtliche untersuchten Probenahmestellen: Das auf die C₁₈ Empore Disks zusätzlich als Sammelphase aufgegebene Oktanol wurde während der Exposition komplett aus den Chemcatcher-Gehäusen der dritten Generation gewaschen. Im Extrakt der aufgearbeiteten C₁₈-Sammelphasen konnten nur sporadisch Zielanalyten und wenige PRCs nachgewiesen werden, der unpolare Chemcatcher wurde daher nachfolgend nicht mehr berücksichtigt. Der polare Chemcatcher wurde nach Vortests von weiteren Untersuchungen aufgrund der Anfälligkeit der Polyethersulfon-Membran, die die Ausbringungszeiträume nicht unbeschädigt überstand und somit keine gleichbleibenden Beprobungsbedingungen ermöglichte, ebenfalls ausgenommen.

5.1.4 Logistik

Die Ausbringung und Einholung der Passivsammler auf See erwies sich als anspruchsvoll und war nur mit hohem persönlichen Engagement und großer Flexibilität erfolgreich, da sehr viele äußere Faktoren (z.B. Verfügbarkeit von Schiff/Schlauchboot und Besatzung, freie Plätze für Gastwissenschaftler) Einfluss haben und Beprobungen immer wetterabhängig sind und kurzfristig den Wetterbedingungen angepasst werden mussten. Zur Erleichterung der Logistik wurden im Rahmen des Projektes leicht handhabbare Sammlerkörbe und Transportbehälter entwickelt, die die marinen Probenahmen sehr vereinfachten. Die genannten äußeren Gegebenheiten führten zu stark unterschiedlichen Ausbringungsdauern der Passivsammler auf See.

Im limnischen Bereich musste die Logistik mit den Mitarbeitern der Gewässergütestationen abgestimmt werden, um den Zugang zu ermöglichen. Das war aufgrund der hervorragenden Kooperation mit den Mitarbeitern des LHW als unproblematisch.
5.1.5 Biofouling

Objekte, die über längere Zeit im Wasser verbleiben, werden unweigerlich von Biofilm überzogen. Dieser wird in seiner Auswirkung auf die Eigenschaften der Passivsammler kontrovers diskutiert [84], [39], [85]. Zum möglichen Einfluss auf die Sammelraten konnten in diesem Projekt keine Untersuchungen durchgeführt werden. Offensichtliche Auffälligkeiten (z. B. Ausreißer bei besonders starkem Bewuchs) wurden jedoch nicht beobachtet. Der Bioaufwuchs wurde allerdings als ein bedeutendes Problem bei der Reinigung der Sammler nach der Ausbringung auf See identifiziert. Die langen Ausbringungszeiten im marinen Mileu führten vor allem in den Sommermonaten zu sehr ausgeprägtem Aufwuchs, der schwer zu entfernen ist. Erhöhte Reinigungszeiten beanspruchen nicht nur zusätzliche Arbeitszeit, sondern erhöhen auch die Fehlermöglichkeit des Ergebnisses, da die Sammler länger an der Luft exponiert sind. Tests ergaben reduzierte Aufwuchsraten für sich frei bewegende Oberflächen, so dass bei der Konstruktion des Sammlerkorbs soweit möglich eine "flattrige" Halterung für die Passivsammler realisiert wurde. Der Unterschied zwischen Aufwuchs an frei beweglichen und fixierten Flächen ist in Abbildung 16 dargestellt.

Abbildung 16: Unterschiedlich starker Aufwuchs auf fixierten Sammlern (oben) und im Korb frei beweglich montierten Sammlern nach Ausbringung im Sommer 2011. Fotos: Kraus, BSH

Die Passivsammler in den limnischen Gewässergütestationen zeigten trotz lichtgeschützter Ausbringung ebenfalls Bioaufwuchs, der sich allerdings mit relativ geringem Aufwand entfernen ließ.

5.1.6 Arbeitsaufwand und Kosten bei der Probenahme

In Bezug auf Kosten sind Passivsammler zunächst deutlich günstiger als z. B. eine 100-L-Glaskugel, die zur Probenahme im marinen Monitoring des BSH eingesetzt wird (Wert ca. 1500 Euro). Auch können die Schiffszeiten von entsprechend ausgerüsteten Spezialschiffen, wie sie bisher im Monitoring gebraucht werden (Kosten eines Schifftages ca. 30000 Euro), verringert werden. Da entsprechend optimierte Passivsammler an Bord weniger personalund arbeitsintensiv sind, können evtl. auch kleinere Schiffe genutzt werden. Dem wurde im Projekt durch die Entwicklung eines kleinen Sammlerkorbs für die Ausbringung unterschiedlicher Passivsammlertypen auf kleinstem Raum sowie eines Transportbehälters Rechnung getragen, so dass der Transport des gesamten nötigen Equipments und der Probenahme durch lediglich eine Person möglich war.

Im limnischen Bereich steht der Passivsammler in Bezug auf Kosten in Konkurrenz zu automatischen Probennehmern, die wöchentlich vom Personal frequentiert werden müssen. Bei einer Ausbringung von vier Wochen wäre die Anwesenheit der Mitarbeiter seltener erforderlich; dagegen nimmt die Ausbringung und Einholung der Passivsammler mehr Zeit in Anspruch. Dem stehen ein weitaus geringerer Wartungsbedarf des Durchflusssystems sowie der Wegfall des für die Wasserproben benötigten Kühlsystems gegenüber. Die oftmals propagierte Arbeitszeitersparnis Analysenlabor aufgrund des Weqfalls im der Festphasenextraktion muss für die Passivsammler im Routinebetrieb erst noch bestätigt werden.

5.2 Charakteristik der Sammelphasen

5.2.1 Anreicherungsverhalten und erfasstes Analytspektrum

Zum Anreicherungsverhalten der Sammelphasen kann bereits auf ausführliche Literatur zurückgegriffen werden, z. B. der Übersichtsartikel zu LDPE von Lohmann [65] oder die sehr detaillierte Arbeit von Smedes et al. [71]. Im hydrophoben Analytbereich korreliert demnach der K_{sw} -Wert bei Silikon sowie bei LDPE weitestgehend mit dem log K_{ow} -Wert und dem Molekulargewicht. Eine Feldstudie [86] zeigte dabei für Silicone Sheets eine Analytanreicherung über ein breiteres log K_{ow} -Spektrum als für LDPE-Sammler.

Die in der vorgelegten Studie untersuchten Sammler zeigten ebenfalls ein unterschiedliches Spektrum in der Anreicherung der untersuchten Substanzen. Die Einzelergebnisse können dem Anhang (A-3.2) entnommen werden.

			PCB & HCB (8*)	PAK (11*)	Biozide (21*)	industrielle Produkt- additive (3*)	Pharmaka (6*)	PFC (8*)
Blindwerte*** SI LDPE		SI	2	3	7	2	1	6
		LDPE	1	0	1	0	0	0
DE	Positivfund*	SI	8	10	18	2	3	3
		LDPE	8	n. a.	13	3	3	6
	übereinstimmend		8	-	13	2	2	2
	exklusiv	SI	0	-	5	0	1	1
		LDPE	0	-	0	1	1	4
MD	Positivfund**	SI	8	10	19	2	4	6
		LDPE	8	n. a.	12	2	3	6
	übereinstimmend			-	12	2	2	5
	exklusiv	SI	0	-	7	0	3	1
		LDPE	0	-	0	0	1	1
KI	Positivfund**	SI	8	10	18	2	1	6
		LDPE	8	9	3	0	0	0
	übereinstimmend		8	9	3	0	0	0
	exklusiv	SI	0	1	15	2	1	6
		LDPE	0	0	0	0	0	0
ΗT	Positivfund**	SI	8	10	21	3	4	8
		LDPE	6	8	3	0	0	0
	übereinstimmend		6	8	3	0	0	0
	exklusiv	SI	2	2	18	3	4	4
		LDPE	0	0	0	0	0	0
FE	Positivfund**	SI	8	10	19	3	2	6
		LDPE	6	9	2	0	0	0
	übereinstimmend		6	9	2	0	0	0
	exklusiv	SI	2	1	17	3	2	6
		LDPE	0	0	0	0	0	0

Tabelle 8: Anzahl der Einzelkomponenten pro Stoffgruppe, die von Silicone Sheets und LDPE-Streifen an fünf Probenahmepunkten detektiert wurden

* Gesamtanalytzahl pro Stoffgruppe (es wurden nur Komponenten berücksichtigt, die in beiden Sammlern validiert wurden); **Anzahl der qualitätsgesichert über BG nachgewiesenen Analyten; *** für alle Standorte zusammen; n. a. – nicht analysiert

Zunächst wird hier die Anzahl der positiv nachgewiesenen Analyten für die zwei an allen Probenahmepunkten eingesetzten Sammler (Silicone Sheets und LDPE-Streifen) betrachtet (Tabelle 8).

In der Tide-Elbe wurden PCB und HCB übereinstimmend von beiden Sammlern detektiert. Das gleiche gilt für PAK, die bis auf eine Substanz ebenfalls in beiden Sammlern gefunden wurden, was mit früher veröffentlichten Studien übereinstimmt [39, 41]. Es wurden lediglich drei Biozide in beiden Sammelphasen gefunden, während 15 weitere mit Silicone Sheets erfasst wurden. Produktadditive, Pharmaka und PFC wurden ausschließlich mit den Silikon-Sammlern detektiert. Dieses Verteilungsmuster mit großen Überschneidungen bei den Stoffgruppen PCB und PAK und einem weitgehenden Ausfall des LDPE-Materials bei der Erfassung von Bioziden, Pharmaka, Industriestoffen und PFC wiederholte sich in ähnlicher Form auf den marinen Probenahmestationen. In keinem Fall wurde in LDPE-Streifen ein Stoff detektiert, der in Silicone Sheets nicht gefunden wurde. Im Hinblick auf eine möglichst große Anzahl an Stoffen, die durch einen Sammlertyp erfasst werden, ist der Silikonsammler also deutlich leistungsfähiger.

Die Anreicherungsmuster je Sammler lassen sich einerseits durch die unterschiedlich großen Sammelphasen, andererseits durch die zugrundeliegenden physiko-chemischen Eigenschaften der Sammlermaterialien erklären.

Die oben genannte Abhängigkeit vom log K_{OW} -Wert zeigt sich an Daten der vorliegenden Untersuchung in Abbildung 17 bis Abbildung 19. Hier sind die Anreicherungsfaktoren V_A der verschiedenen Analyten für die beiden Sammelphasen zusammengefasst und nach aufsteigendem log K_{OW} -Wert angeordnet dargestellt. Dabei wurde V_A für die drei Beprobungsgebiete nach

$$V_{A} = \frac{\text{Stoffmenge im Sammler (ng \cdot Sammler}^{-1})}{\text{Wasserkonzentration (ng \cdot L}^{-1})}$$

berechnet.

Mit aufsteigendem log Kow-Wert der Zielsubstanz ging für beide Passivsammlertypen tendenziell eine Zunahme der Anreicherung im Sammler einher, wobei Silicone Sheets auch im niedrigen log Kow-Bereich Zielsubstanzen noch anreicherten. Bei LDPE-Streifen konnte nur für wenige besonders hoch konzentrierte Einzelsubstanzen im Bereich der Binnengewässer eine Anreicherung beobachtet werden. [39] beschreibt bei Substanzen mit einem log K_{OW} über 4,5 ein vergleichbares Anreicherungsverfahren zwischen Silicone Sheets und LDPE, was sich in den Daten der vorliegenden Studie nur teilweise zeigte. Die Abhängigkeit der Anreicherung vom log K_{OW} ist nicht durchgängig. Dies zeigt, dass der log Kow lediglich als einer von mehreren Parametern für die Voraussage des Anreicherungsverhaltens dienen kann, was die Untersuchungen anderer Autoren bestätigen ([86]). In Binnengewässern wurden die höchsten Anreicherungsfaktoren je Stoff durchgängig in LDPE-Streifen erzielt, wobei zu beachten ist, dass PAK in LDPE-Streifen nicht bestimmt wurden. Die höchste Anreicherung bezogen auf die Wasserkonzentration fanden sich für PCB 101 (1308 L/Sammler). In Übergangs- und marinen Gewässern zeigten sich dagegen die größten Anreicherungen ausschließlich in Silicone Sheets, im Übergangsgewässer liegt V_A bei maximal 313 L/Sammler für PCB 28, in marinen Proben bei 1245 L/Sammler für PCB 52. Eine Erklärung für das unterschiedliche Verhalten konnte bisher nicht gefunden werden.

Es ist zu beachten, dass die absoluten Werte von V_A zwischen den einzelnen Standorten (Binnengewässer, Übergangs- und marine Gewässer) nicht direkt verglichen werden können, da Anzahl, Dauer und Zeitpunkt der zugrundeliegenden Probenahmekampagnen voneinander abweichen. Außerdem wurden die klassischen Wasserwerte unterschiedlich bestimmt: während sie in den Binnenwasserproben den frei gelösten Analytkonzentrationen nahe kommen, entsprechen die Wasserkonzentrationen der Übergangsgewässerproben und der marinen Proben der Gesamtwasserkonzentration einschließlich des Schwebstoffgebundenen Anteils. Dies erklärt die relativ niedrigen Anreicherungsfaktoren der Übergangsgewässerproben (hoher Schwebstoffanteil).

Abbildung 17: Anreicherungsfaktor V_A [L/Sammler] für Silicone Sheets und LDPE-Streifen im Binnengewässer. Auftragung der Zielsubstanzen nach aufsteigendem log *K*ow-Wert (unter Substanzkürzel abgebildet). Für eine bestmögliche Vergleichbarkeit werden nur Substanzen abgebildet, die für beide Sammler validiert werden konnten. PAK wurden in Proben von LDPE-Streifen in Binnengewässern nicht bestimmt.

Abbildung 18: Anreicherungsfaktor V_A [L/Sammler] für Silicone Sheets und LDPE-Streifen im Übergangsgewässer. Auftragung der Zielsubstanzen nach aufsteigendem log Kow-Wert (unter Substanzkürzel abgebildet). Für eine bestmögliche Vergleichbarkeit werden nur Substanzen abgebildet, die für beide Sammler validiert werden konnten.

Abbildung 19: Anreicherungsfaktor V_A [L/Sammler] für Silicone Sheets und LDPE-Streifen in marinen Gewässern. Auftragung der Zielsubstanzen nach aufsteigendem log *K*ow-Wert (unter Substanzkürzel abgebildet). Für eine bestmögliche Vergleichbarkeit werden nur Substanzen abgebildet, die für beide Sammler validiert werden konnten.

In Abbildung 20 ist die pro Sammleroberfläche gesammelte Analytmenge im Verhältnis zu der von den Silicone Sheets gesammelten Analytmenge als Box-Whisker-Plot wiedergegeben. In der linken Grafik (A) sind zunächst alle mit GC-MS (bzw. GC-MS/MS) gemessenen, also mehrheitlich hydrophoben Analyten dargestellt. In der rechten Abbildung (B) sind sämtliche Zielanalyten des Forschungsvorhabens berücksichtigt worden (also einschließlich der auf LC-MS gemessen Zielanalyten).

In der linken Grafik (A) ist zunächst die relativ geringe Anzahl an Zielsubstanzen ersichtlich, die mit dem MESCO quantifiziert werden konnten. Die Oberfläche (der LDPE-Membran des MESCO) ist zwar sehr groß, aber offenbar ist nur ein geringer Teil der Analyten während der Ausbringung in den Silikonstab diffundiert.

Bezogen auf die Oberfläche konnten mit dem Silikonstab – vermutlich aufgrund der abweichenden Geometrie des Sammlers - die meisten Analyten erfasst und auch die höchste Anreicherung pro Volumeneinheit erreicht werden.

Die geringe Anzahl Analyten auf den LDPE-Streifen beruht in erster Linie darauf, dass die PAK auf diesen Proben nicht bestimmt wurden. Die Ergebnisse aus den Übergangs- und marinen Probestellen zeigen aber gute Sammeleigenschaften des LDPE-Materials für PAK. Unabhängig davon zeigen die LDPE-Streifen ein fast identisches Anreicherungsverhalten wie die Silicone Sheets, wenn nur die mit Gaschromatographie bestimmten Analyten betrachtet werden.

In der rechten Grafik (B) sind zusätzlich alle LC-Stoffe in die Betrachtung einbezogen worden. Die LDPE-Streifen zeigen nun ein deutlich schlechteres Anreicherungsverhalten, was die Aussage von Allan et al. untermauert [86]. Die weiterhin starke Anreicherung des

Silikonstabs basiert auf nur drei Substanzen (Irgarol, Atrazin, Terbuthylazin), die allerdings in sehr hohen Konzentrationen auf dem Silikonstab gefunden wurden.

Neben der Gesamtmengen, die auf den einzelnen Phasen angereichert werden, ist für die Beurteilung Gesamtleistungsfähigkeit der einzelnen Sammler eine weitere Größe von Bedeutung, nämlich der Mengenanteil der Probe, der tatsächlich für die Analyse verwendet wird. Dazu ist in Tabelle 9 aufgeschlüsselt, wie viel Sammelphasenvolumen einem GC- bzw. LC-Lauf entsprechen.

Aus Tabelle 9 ist erkennbar, dass die Silicon Sheets und LDPE-Streifen zwar über wesentlich größere Sammelvolumina verfügen, diesen Vorteil jedoch dadurch einbüßen, dass nur ca. 1/100-stel des Probenextrakts analysiert wurden. Hier ist theoretisch noch ein deutliches Optimierungspotential vorhanden. Als weitere Einflussgrößen sind wahrscheinlich auch geometrische und chemische Faktoren von Bedeutung. Dadurch zeigen beispielsweise die LDPE-Streifen trotz des kleinsten fiktiven Sammelphasenvolumens in der Praxis eine bessere Performance und niedrigere Bestimmungsgrenzen als die Silikonstäbe oder MESCO Sammler (vgl. auch Kap. 5.2.2). Die Gründe hierfür können auch in den Eigenschaften des verwendeten Silikonpolymers oder in der Probenaufgabe durch Thermodesorption liegen.

Abbildung 20: Box-Plots mit pro Sammleroberfläche gesammelter Analytmenge, bezogen auf Silicone Sheets. Ziffern in der Grafik geben die Anzahl der Messwerte an, für die ein Vergleich mit den Silicone Sheets möglich war (auf beiden Sammlern quantifizierbar); **A**: Nur mit GC bestimmte Analyten; **B**: Alle Analyten; Kästen markieren unteres bzw. oberes Quartil, Querstrich in den Kästen den Median, Antennen die Ausreißer, Quadrate den Mittelwert, Punkte das Maximum bzw. Minimum.

Passivsammler- Typ	Ausgebrachtes Sammelphasen- volumen in mL	Volumen des Messextraktes in mL (GC/LC)	Pro GC-/LC-Lauf gemessenes Proben- volumen in mL	Zurückgerechnetes gemessenes Sammelphasen- volumen des ausgebrachten PS pro GC-/LC-Lauf in mL
MESCO	0,047	0,047*	0,047*	0,047*
Silikonstab	0,25	0,25*	0,25*	0,047**
Silicone Sheets	14,2	0,2/0,5	0,002/0,004	0,071/0,057
LDPE-Streifen	2,2	0,2/0,5	0,002/0,004	0,011/0,009

Tabelle 9: Übersicht der Volumen der Sammelphasen und Injektionsvolumen.

* Die Sammelphase wurde direkt thermodesorbiert und analysiert

5.2.2 Analytgehalte in unterschiedlichen Sammlertypen gleicher Standorte

Im Folgenden werden Silicone Sheets und LDPE-Streifen miteinander verglichen, die zeitgleich an denselben Standorten bzw. im gleichen aquatischen Milieu exponiert wurden. Dadurch sind gleiche Aufnahmebedingungen und Umgebungskonzentrationen gegeben, Unterschiede im Analytspektrum und in der Analytmenge zwischen den Sammlertypen sind daher ausschließlich durch die Sammler bedingt.

Wie Abbildung 21 zeigt, sind die Gesamtstoffmengen, die pro Sammler angereichert wurden, bei Silicone Sheets (6 x 5,5 cm x 9 cm 500 µm) in allen Fällen deutlich höher ist als bei LDPE-Streifen (1 m x 2,8 cm 100 µm). So übersteigt die Gesamtmenge in den Silicone Sheets (Übergang: 4049 ng/∑Sammler; marin: 1384 ng/∑Sammler) in Übergangs- und marinen Gewässern die der LDPE-Streifen (Übergang: 1203 ng/∑Sammler; marin: 392 ng/∑Sammler) um mehr als das Dreifache (Faktor 3,4 bzw. 3,5). Die Massen der jeweiligen Sammlerphasen betrugen 17 g (Silikon) und 2 g (LDPE), was einem Verhältnis von 8,5 entspricht.

Die Stoffgruppe mit dem größten Anteil an der Gesamtkonzentration ist in allen Fällen die der PAK. Da diese in den Proben von LDPE-Streifen aus Binnengewässern aufgrund von Analysenproblemen nicht erfasst werden konnten, zeigt dieser Standorttyp ("LDPE Binnen") ein abweichendes Muster.

Die wesentlich kleineren Sammlertypen MESCO und Silikonstab (jeweils 50 mg) wurden nur in Binnen- und Übergangsgewässern ausgebracht und mit einem gegenüber Silicone Sheets und LDPE-Streifen abweichenden Messprogramm analysiert, weswegen eine vergleichende Beschreibung des Anreicherungsverhaltens nur bedingt möglich ist. Um eine grundsätzliche Vergleichbarkeit mit den Proben von LDPE-Streifen und Silicone Sheets zu gestatten, werden die detektierten Stoffe nachstehend zu den gleichen Stoffgruppen zusammengefasst (Abbildung 22), diese umfassen jedoch eine z. T. abweichende Anzahl einzelner Analyten. Die Summe der Stoffe lag in den Silikonstäben zwischen 15 und 20 ng pro Sammler und bei den MESCO-Proben zwischen 5 und 7 ng pro Sammler. Trotz gleicher Sammlermasse reicherten die Silikonstäbe dreimal so viel an wie die MESCOs, da vermutlich ein Großteil der Analyten von der (nicht untersuchten) LDPE-Membran des MESCO zurückgehalten wurde. Verglichen mit den Silicone Sheets und den LDPE-Streifen waren die angereicherten Mengen ca. 270 bis 580-fach geringer bei 40 bis 140-mal geringeren Massen der Sammlerphasen, was auf eine etwa fünffach schwächere Anreicherung bezogen auf die Sammlermasse schließen lässt.

Besonders die Gruppe der Biozide ist bei den UFZ-Proben deutlich kleiner mit nur vier Stoffen (Irgarol, Atrazin, Terbuthylazin, Trifluralin). Daneben wurden in MESCO und Silikonstabproben abweichend zu Silicone Sheets und LDPE-Streifen PBDE analysiert, (aus Vergleichbarkeitsgründen in Abbildung 22 nicht berücksichtigt).

Abbildung 21: Gesamtmenge der untersuchten Stoffgruppen in Silicone Sheets und LDPE-Streifen nach Ausbringung in verschiedenen aquatischen Systemen (bezogen auf die Summe der Mediane aller an einem Standort genommenen Probenkonzentrationen eines Sammlertyps). Erläuterungen siehe Text.

Abbildung 22: Gesamtkonzentrationen der untersuchten Stoffgruppen in MESCO und Silikonstab nach Ausbringung in verschiedenen aquatischen Systemen (bezogen auf die Summe der Mediane aller an einem Standort genommenen Probenkonzentrationen eines Sammlertyps). Erläuterungen siehe Text

Abbildung 23: Prozentualer Anteil der in Silicone Sheets angereicherten Biozide an verschiedenen Messstellen zu verschiedenen Jahreszeiten.

5.2.3 Analytgehalte in einem einzelnen Sammlertyp an verschiedenen Standorten

Am Beispiel der Silicone Sheets und der Stoffgruppe der Biozide in Abbildung 23 wird deutlich, wie sich ein einzelner Sammlertyp für Abschätzungen von räumlichen und zeitlichen Trends einsetzen lässt. Aufgrund des großen durch sie abgedeckten Stoffspektrums (s. o.) eignen sich Silicone Sheets besonders für diese Form des Trendmonitorings. Mit ihrer Hilfe lässt sich das periodische Auftreten höherer Belastungen von Einzelstoffen erfassen, die mitunter ubiquitär in der aquatischen Umwelt vorhanden sind, aber zu bestimmten Zeiten deutlich verstärkt eingetragen werden (z. B. Auftreten von Metazachlor im Hamburger Hafen oder die stark erhöhten Gehalte von Metolachlor in Proben von Helgoland im Sommer 2010).

5.2.4 Leitsubstanzen der einzelnen Sammler und Standorte

5.2.4.1 Silicone Sheets

In *Binnengewässern* wurden in Silicone Sheets die Stoffe Terbuthylazin, 2-(Methylthio)benzothiazol, Pyren, Fluoranthen und Metolachlor mit den (bezogen auf den Median) höchsten Gehalten gefunden, wobei der Terbuthylazin-Gehalt mit 772 ng/Sammler

80

deutlich höher lag als der der restlichen vier Stoffe (MTBT: 456 ng/Sammler; PYR: 436 ng/Sammler; FLU: 416 ng/Sammler; METOLA: 414 ng/Sammler).

Im Übergangsgewässer des Hamburger Hafens waren die PAK Fluoranthen, Pyren, Phenanthren, Fluoren und Chrysen die höchstkonzentrierten Stoffe, wobei der am stärksten vertretene Stoff, Fluoranthen etwa zehnfach höher konzentriert war als der fünststärkste Chrysen (FLU 1200 ng/Sammler, CHRTR 176 ng/Sammler).

Ein ähnliches Stoffspektrum wie im Übergangsgewässer fand sich im *Meer* (gemittelte Werte von Nord- und Ostsee), wo die PAK Fluoranthen, Phenanthren, Pyren, Fluoren und Chrysen in den höchsten Konzentrationen in Silicone Sheets auftraten. Hier war jedoch die Spanne zwischen den fünf höchstkonzentrierten Stoffen mit 397 ng/Sammler (FLU) bis 102 ng/Sammler (CHRTR) deutlich geringer.

5.2.4.2 LDPE-Streifen

In allen Proben von LDPE-Streifen, die in *Binnengewässern* ausgebracht wurden, konnten PAK aufgrund von lagerungsbedingten Verunreinigungen der Messextrakte nicht bestimmt werden. Daher unterschied sich das Muster der am höchsten konzentrierten Stoffe in diesen Proben von anderen LDPE-Proben. Am höchsten konzentriert fanden sich hier in absteigenden Gehalten p,p'-DDE (326 ng/Sammler), HCB (298 ng/Sammler), p,p'-DDT (198 ng/Sammler) sowie PCB 101 (31 ng/Sammler) und PCB 153 (22 ng/Sammler).

In LDPE-Proben aus *Übergangsgewässern* fanden sich die Maximalkonzentrationen bei den PAK Pyren, Fluoranthen, Chrysen und Phenanthren, gefolgt von p,p⁻-DDE, wobei die höchsten Gehalte von Pyren und Fluoranthen mit über 450 ng/Sammler deutlich höher lagen als die der anderen Stoffe (Chrysen 56 ng/Sammler, Phenanthren 30 ng/Sammler, p,p⁻-DDE 27 ng/Sammler).

In *marinen Proben* wurden die maximalen Konzentrationen (Median) für die PAK Fluoranthen, Pyren, Phenanthren, Chrysen und Benzo[*b*]fluoranthen gefunden; die Gehalte waren mit einem Höchstwert von 152 ng/Sammler (Fluoranthen) deutlich niedriger als in Übergangsgewässern.

5.2.4.3 MESCO

In MESCO-Proben aus *Binnengewässern* waren die höchstkonzentrierten Stoffe PBDE 100 (0,85 ng/15 mm), Fluoren (0,761 ng/15 mm), HCB (0,674 ng/15 mm) sowie Pyren (0,521 ng/15 mm) und Phenanthren (0,510 ng/15 mm) mit einer relativ homogenen Konzentrationsverteilung. Aufgrund der hohen Konzentrationen für PBDE 100 muss eine Kontamination der Sammler vermutet werden, da die anderen gewöhnlich in der Umwelt vorkommenden PBDE – wenn überhaupt - in deutlich geringerer Konzentration auf den Sammlern detektiert wurden.

Im Übergangsgewässer wurden hauptsächlich PAK nachgewiesen: Phenanthren, Fluoren, Fluoranthen und Pyren lagen zwischen 0,5 und 1,56 ng/15 mm. Die Konzentrationen der anderen Stoffe lagen alle nahe oder unter der Bestimmungsgrenze.

5.2.4.4 Silikonstab

In den *Binnenwasserproben* von Silikonstäben wurde Terbuthylazin mit 47 % der Gesamtanalytkonzentration die Hauptkomponente (11,1 ng/15 mm), gefolgt von Fluoranthen, Pyren, Phenanthren und PBDE 99 mit Konzentrationen zwischen 0,88 - 2 ng/15 mm Silikonstab.

Im Übergangsgewässer waren ebenfalls die PAK Fluoranthen, Pyren, Fluoren am höchsten konzentriert (1,69 – 3,61 ng/15 mm), gefolgt von Terbuthylazin (1,00 ng/15 mm) und γ -HCH (1,26 ng/15 mm), wobei die Konzentrationen insgesamt niedriger waren als in den Binnengewässern.

5.2.5 Vergleich des Anreicherungsverhaltens von Analyten in verschiedenen Sammelphasen

Da, wie oben beschrieben, Unterschiede in den Messprogrammen der einzelnen Passivsammler bestanden. wird abschließend zur weiteren Betrachtung der Sammlereigenschaften ein reduzierter Satz von 19 Analyten genutzt, der in allen untersuchten Sammelphasen (Silicone Sheet, LDPE-Streifen, MESCO, Silikonstab) sowie in den Wasserproben quantifiziert werden konnte: PCB 28, PCB 52, PCB 101, PCB 138, PCB 153, HCB, Anthracen, Benzo[a]anthracen, Benzo[ghi]perylen, Benzo[a]pyren, Chrysen, Dibenzo[a,h]anthracen, Fluoranthen, Indeno[1,2,3,-cd]pyren, Phenanthren, Pyren, Irgarol, Atrazin, Terbuthylazin. Abbildung 24 zeigt eine weitreichende Dominanz der Stoffe Fluoranthen, Phenanthren und Pyren in den meisten Sammlern in allen drei untersuchten aquatischen Milieus. Deutlich abweichende Verteilungen finden sich in Silikonstabproben und MESCOs der Binnengewässer, wo Terbuthylazin etwa 40 % der betrachteten Stoffgesamtkonzentration ausmachte bzw. ein deutlich heterogeneres Stoffspektrum auftrat. Der Anteil der PCB war insgesamt niedrig, die Anteile der polaren Komponenten schwankten dagegen zwischen verschiedenen Probentypen und Standorten deutlich, waren jedoch stets geringer als in den Wasserproben.

Abbildung 24: Vergleich der Anteile von Konzentrationen [%] für 19 Stoffe, die in allen Sammelphasen quantifiziert wurden, für alle Sammelphasen sowie Wasserproben.

5.3 Analytkonzentrationen in klassischen Wasserproben

Als Maßstab zur Bewertung der Ergebnisse der Passivsammler-Beprobungen werden oft "klassisch", z.B. anhand von Schöpfproben, ermittelte Wasserkonzentrationen herangezogen. Nachstehend erfolgt daher zunächst ein Überblick über die an den Beprobungsstellen ermittelten klassischen Wasserkonzentrationen.

Die für Binnengewässer ermittelten Konzentrationen beziehen sich nur auf die gelösten Stoffanteile, im Gegensatz dazu sind in den marinen Wasserproben und im Übergangsgewässer die Gesamtkonzentrationen (gelöst und schwebstoffgebunden) erfasst. Insbesondere im Übergangsbereich ist ein hoher Schwebstoffgehalt zu beachten.

5.3.1 Binnengewässer

Die Analysen der Wasserphase wurden mit unfiltrierten Schöpf- und Wochenmischproben durchgeführt, bei der Extraktion mit dem Twister durch stir bar sorptive extraction (SBSE) wird allerdings nur die gelöste Phase erfasst. Da nicht davon ausgegangen wird, dass die Analyten während des Extraktionsvorgangs von den Schwebstoffen signifikant desorbieren und in die abgereicherte Wasserphase übergehen, werden diese Wasserproben als filtriert betrachtet. Alle Einzelwerte finden sich in Anhang A-2 in den Tabellen A-2.6.1 bis A-2.6.4.

Die Ergebnisse aus den Schwebstoff-Daten des LHW deckten sich größtenteils mit den vom UFZ mittels SBSE und GC-MS analysierten Schöpfproben. Allgemein lagen die Konzentrationen von einigen wenigen Substanzen weit über denen der übrigen. Maximalkonzentrationen (Mittelwerte). In der Elbe wurden für Terbuthylazin (max. 267 ng/L), Phenanthren (196 ng/L), HCHB (128 ng/L) sowie Irgarol (88 ng/L) die höchste Werte gefunden. In der Mulde gemessene Maximalwerte (Mittelwerte) lagen mit 181 ng/L (Terbuthylazin), 86 ng/L (HCHB), 21 ng/L (Irgarol) sowie 15 ng/L (HCHA) tendenziell niedriger. Die durchschnittlichen Phenanthrengehalte waren deutlich niedriger als in der Elbe (max. 6,5 ng/L).

5.3.2 Übergangs- und Küstengewässer und Hochsee

Die während der Probenahmen 2011 bei Ausbringung und Einholung der Sammler genommenen Stichproben aus der Wasserphase von maximal je 2-10 Liter (vgl. Kapitel 3.5 und 3.8.2) konnten für die Schadstoffanalytik nicht verwendet werden, da die Analytkonzentrationen selbst in Küstennähe meist zu niedrig waren, um in diesem Volumen detektiert zu werden. Daher wurde für die Auswertung auf Messergebnisse von möglichst dichtgelegenen Probenahmestellen von vier Monitoring-Seefahrten des BSH im Zeitraum Mai 2010 bis August 2011 (Helgoland; tidebeeinflusste Elbe) sowie zwei Seereisen zwischen Januar 2009 und Februar 2010 (Ostsee) zurückgegriffen, bei denen größere Wasservolumina (z.B. 100 L für GC-MS/MS) beprobt wurden. Die Aufarbeitung ist in Kapitel A-1.4.1 beschriebenen. Alle Einzelwerte der Messungen finden sich in Tabelle A-2.6.5 bis A-2.6.7.

Die höchstkonzentrierten Analyten im tidebeeinflussten Übergangsgewässer, bezogen auf den Median, waren Benzotriazol (108 ng/l), Carbamazepin (76 ng/L), Diclofenac (50 ng/L), Primidon (37 ng/L) und Terbuthylazin (20 ng/L). Im Küstengewässer (Fehmarnsund, Ostsee) zeigte sich eine sehr gleichmäßige Substanzverteilung mit wenig abweichenden Höchstkonzentrationen (medianbezogen) von 1,7 – 2,6 ng/L für die Stoffe Diclofenac, Atrazin, Simazin, Chloridazon, Carbamazepin, Benzotriazol und Primidon. In Wasserproben der Hochsee (Helgoland, Nordsee) wurde, bezogen auf den Median, Benzotriazol in der höchsten Konzentration gemessen (18 ng/L), gefolgt von den Arzneistoffen Carbamazepin (7 ng/L), Primidon (7 ng/L) und Oxazepam (3 ng/L) sowie dem Biozid Diuron (2 ng/L). Die Werte von einzelnen PAK lagen bei maximal 6 ng/L im Übergangsgewässer und 0,9 ng/L im Meer; die PCB lagen noch mind. eine Größenordnung darunter.

5.4 Zeitgemittelte Durchschnittskonzentrationen aus Passivsammler-Beprobungen im Vergleich zu klassisch ermittelten Konzentrationen

Die Vergleichbarkeit von Ergebnissen "klassischer" Wasserproben und solchen aus Passivsammlerbeprobungen wird nachstehend untersucht. Dabei ist zu berücksichtigen, dass im Fall der Passivsammler die gelöste Fraktion, bei den meisten Wasserproben (Details zu Wasserproben siehe Kapitel 5.3) dagegen die Gesamtkonzentration von Analyten erfasst wird. Für die Bestimmung zeitgemittelter Durchschnittskonzentrationen sind darüber hinaus die Berechnungsverfahren und die diesen zugrunde liegenden Sammler-Wasser-Verteilungskoeffizienten von Bedeutung. Da sämtliche Berechnungen Vor- und Nachteile haben (vgl. Kapitel 3.6 und 3.8.4), werden im Folgenden bis zu drei Berechnungssmodelle denen sowohl experimentelle wie berechnete verglichen, Sammler-Wasser-Verteilungskoeffizienten zugrunde gelegt wurden. Somit bietet sich die Möglichkeit zum Vergleich von bis zu fünf verschiedenen Berechnungsvarianten für zeitgemittelte Durchschnittskonzentrationen.

5.4.1 Binnengewässer

Der Vergleich der berechneten zeitgemittelten Durchschnittswerte für Binnengewässer erfolgt mit Ergebnissen aus Wasserbeprobungen sowie mit Werten aus Schwebstoffanalysen (siehe Kapitel 3.8.2.2).

5.4.1.1 Polyzyklische aromatische Kohlenwasserstoffe (PAK)

Abbildung 25 zeigt die aus verschiedenen Berechnungsverfahren resultierenden c_{TWA} von MESCO, Silikonstab und Silicone Sheets für ausgewählte PAK in Mulde und Elbe nach einer Expositionszeit von 28 Tagen (die LDPE-Extrakte wurden nicht auf PAK untersucht). Die Angaben unter der Abszissenbeschriftung beziehen sich auf positive Ergebnisse je Gesamtzahl der Messungen, also auf die Anzahl der eingesetzten Passivsammler bzw. analysierten Schöpfproben. Die mit Gipskartuschen abgeschätzte durchschnittliche Fließgeschwindigkeit in den Durchflussbehältern betrug $v_m = 0,0114 \pm 0,0014$ m/s . Die c_{TWA} -Berechnung mit Sammelraten aus Laborkalibrierungen erfolgte für MESCO und Silikonstab (und LDPE-Streifen, siehe PCB) mit Sammelraten, die bei Fließgeschwindigkeit von $v_m = 0,004$ m/s generiert wurden. Die der Literatur entnommenen Sammelraten für Silicone Sheets [87] wurden mit $v_m = 0,04$ m/s ermittelt. Die dort verwendeten Sheets hatten die Maße 25 cm x 9,3 cm (A = 465 cm²), die Sammelraten wurden auf das in diesem Projekt verwendete Format (A = 592 cm²) umgerechnet (alle Werte siehe Anhang A-2.6).

Deutlich erkennbar sind die teilweise hohen Abweichungen der aus kalibrierten Sammelraten resultierenden c_{TWA} . Diese schienen keinem Trend zu folgen, obwohl für die einzelnen Sammler dieselben Kalibrierversuche zugrunde liegen. Es ist zu vermuten, dass die hydrodynamischen Bedingungen direkt an der Oberfläche des Passivsammlers bei jeder Ausbringung so verschieden waren und der Einfluss des gelösten und partikulären organischen Kohlenstoffs (DOC bzw. POC) im realen Gewässer so stark war, dass Sammelraten aus Laborkalibrierungen (Rs) nur für eine grobe Schätzung der c_{TWA} verwendet werden können. Die mit MESCO und Silikonstab ermittelten Werte sind durchgehend geringer als die aus den Silicone Sheets.

In Abbildung 26 ist zu erkennen, dass auch bei den anderen PAK sowohl die Gesamtmassen als auch die Massenverhältnisse der einzelnen Substanzen untereinander von den Passivsammlern im Vergleich zu den klassischen Wasserproben relativ gut wiedergegeben wurden. Die fünf Substanzen, die vom MESCO nicht detektiert wurden (5- und 6-Ring-PAK), wiesen in den Schöpf- und "Schwebstoffproben" die geringsten Konzentrationen auf.

Abbildung 25: Vergleich der c_{TWA} (ng/L) von Phenanthren, Fluoranthen und Chrysen in der Mulde bei Dessau (links) und der Elbe bei Magdeburg (rechts) bei Verwendung verschiedener Passivsammler (Expositionszeit: 28 Tage, Juni-Juli 2011) berechnet nach verschiedenen Berechnungsmodellen und der nach klassischer Beprobung bestimmten Konzentration. Rot: MESCO; Grün: Silikonstab; Gelb: Silicone Sheets. EXP: Experimenteller K_{SW} aus [71]; LSER: K_{SW} berechnet nach [61] (Berechnung für reines Polydimethylsiloxan [PDMS]); aus [60]; **R**_s: Berechnet mit Berechnungsmodell Sammelrate aus Kalibrierversuch (Fließgeschwindigkeit abweichend); WM: Wochenmischproben aus automatischem Probennehmer; WS: Schöpfproben von Beginn und Ende der Beprobung; WP: Abgeschätzt von POC-Gehalt und Schadstoffkonzentration im Schwebstoff.

Abbildung 26: Vergleich der c_{TWA} (ng/L) der PAK in der Mulde bei Dessau bei Verwendung verschiedener Passivsammler (Expositionszeit: 28 Tage, Juni-Juli 2011, berechnet mit experimentellen K_{SW} aus [71]) und der nach klassischer Beprobung bestimmten Konzentration. **ME**: MESCO; **SR**: Silikonstab; **SS**: Silicone Sheets; **WM**: Wochenmischproben aus automatischem Probennehmer; **WS**: Schöpfproben von Beginn und Ende der Beprobung; **WP**: Abgeschätzt von POC-Gehalt und Schadstoffkonzentration im Schwebstoff.

Bei der Ausbringung an der Elbe bei Magdeburg (Abbildung 25 rechts) zeigte sich ein insgesamt sehr ähnliches Muster: Eine Überbestimmung der c_{TWA} aus kalibrierten Sammelraten (R_s) und geringere Werte mit MESCO und Silikonstab. Da die c_{TWA} für beide Sammler mit experimentellen K_{SW} -Werten der Silicone Sheets (Altesil) sowie berechneten Werten für reines PDMS ermittelt wurden, ist anzunehmen, dass die abweichenden c_{TWA} auf geringere K_{SW} -Werte der verwendeten Silikonschnur (Goodfellow) zurückzuführen sind.

5.4.1.2 Polychlorierte Biphenyle (PCB)

In Abbildung 27 sind die c_{TWA} der Haupt-PCB aus demselben Ausbringungszeitraum wiedergegeben. In den MESCOs lagen alle untersuchten PCB unterhalb der Bestimmungsgrenze, daher wird dieser Sammler in den Diagrammen nicht dargestellt.

In den Wochenmischproben (WM) lagen die Konzentrationen der PCB unterhalb der Bestimmungsgrenze, während die nach derselben Methode bestimmten Schöpfproben (WS) zum Teil auffällig hohe Werte zeigten. Daher sollten die Ergebnisse der Beprobung der Wasserphase für die PCB in diesem Fall als semi-quantitativ angesehen werden. Als Vergleichswerte können die Mittelwerte zwischen Schöpfproben und Konzentrationen aus Schwebstoffbeprobungen (WP) herangezogen werden.

Abbildung 27: Vergleich der c_{TWA} (ng/L) von PCB 52, 138 und 153 in der Mulde bei Dessau und der Elbe bei Magdeburg bei Verwendung verschiedener Passivsammler (Expositionszeit: 28 Tage, Juni-Juli 2011) berechnet nach verschiedenen Berechnungsmodellen und der nach klassischer Beprobung bestimmten Konzentration. Grün: Silikonstab; Gelb: Silicone Sheets; Blau: LDPE-Streifen. EXP: Experimenteller K_{SW} für Silikon aus [71] bzw. für LDPE aus [65]; LSER: K_{SW} berechnet nach [61] (Berechnung für reines Polydimethylsiloxan [PDMS]); REG: K_{SW} berechnet nach [65]; *: Berechnungsmodell aus [60]; R_{s} : Berechnet mit Sammelrate aus Kalibrierversuch (Fließgeschwindigkeit abweichend); WM: Wochenmischproben aus automatischem Probennehmer; WS: Schöpfproben von Beginn und Ende der Beprobung; WP: Abgeschätzt von POC-Gehalt und Schadstoffkonzentration im Schwebstoff.

In Abbildung 28 sind die Konzentrationen aller sieben bestimmten PCB zusammengefasst. Während in der Wasserphase nur die Hauptkomponenten (PCB 52, PCB 138 und PCB 153) oberhalb der Bestimmungsgrenze auftraten, ließen sich in den Schwebstoffen und den Passivsammlern bis zu sieben Kongenere erfassen. Die Konzentrationen in den beiden Silikon- und LDPE-Sammlern lagen in der gleichen Größenordnung wie die Werte von WP und WS. Die gegenüber den PAK deutlich geringeren Wasserkonzentrationen der PCB wurden somit von diesen Passivsammlertypen gut abgebildet.

In Proben der Elbe bei Magdeburg ergibt sich ein ähnliches Bild. Hier lagen die Werte in den Schöpfproben unterhalb der Bestimmungsgrenze, während die Analyten in den Wochenmischproben quantifiziert werden konnten. Mit den MESCOs konnten keine PCB quantifiziert werden, während der Silikonstab alle drei Substanzen ausreichend anreicherte, was in der höheren PCB-Konzentration in der Elbe begründet sein kann.

Es ist bemerkenswert, dass die c_{TWA} der verschiedenen Berechnungsverfahren sich zum Teil um mehr als eine Größenordnung unterschieden. Die beiden ersten Berechnungsmodelle (EXP und LSER) lieferten bei allen Sammelphasen für alle Substanzen die beste Übereinstimmung mit den Werten der klassischen Beprobungen. Eine genauere Beurteilung der Entsprechung zwischen Passivsammler- und Wasserprobenergbenissen ist in diesem Fall aufgrund hoher Abweichungen zwischen den WM- und WP-Werten schwierig, welche vermutlich auf den sehr geringen Analytkonzentrationen nahe der Bestimmungsgrenze beruht.

Die Ergebnisse weiterer PAK und PCB sowie der ebenfalls untersuchten Stoffgruppen DDX, HCHs und HCB, PBDE befinden sich im Anhang (A-2.7).

Abbildung 28: Vergleich der c_{TWA} (ng/L) der PCB in der Mulde bei Dessau bei Verwendung verschiedener Passivsammler (Expositionszeit: 28 Tage, Juni-Juli 2011, berechnet mit experimentellen K_{SW} aus [71]) und der nach klassischer Beprobung bestimmten Konzentration. **WM**: Wochenmischproben aus automatischem Probennehmer; **WS**: Schöpfproben von Beginn und Ende der Beprobung; **WP**: Abgeschätzt von POC-Gehalt und Schadstoffkonzentration im Schwebstoff.

5.4.1.3 Polare Stoffe (Biozide und andere)

Wasserproben sowie Proben von MESCO und Silikonstab wurden mittels GC-MS auf die drei Biozide Irgarol, Atrazin und Terbuthylazin untersucht (Abbildung 29). Auffallend sind die teilweise sehr hohen Differenzen sowohl zwischen Ergebnissen verschiedener Sammler als auch unterschiedlicher Berechnungsverfahren, wodurch eine Interpretation und Bewertung erschwert wird. Insbesondere bei den Silikonstäben lieferte die Berechnung extrem hohe Werte für Atrazin und Terbuthylazin, die weit über den Maximalwerten lagen, welche in Oberflächengewässern in Deutschland in früheren Untersuchungen gefunden wurden.

Die großen Unterschiede der Ergebnisse bei Verwendung experimenteller und berechneter K_{SW} -Werte zeigen die begrenzte Anwendbarkeit des LSER-Modells, wenn die Strukturen der betrachteten Substanzen zu stark von denen des "Trainingsdatensatzes" abweichen, der zur Erstellung der Modellgleichung herangezogen wurde. In den gezeigten Beispielen führten diese Berechnungen zu viel zu hohen Werten. Als bemerkenswertes Ergebnis ist festzuhalten, dass Silikonstab und Silicone Sheets wiederum zu sehr unterschiedlichen c_{TWA} führten, was durch unterschiedlichen Materialeigenschaften erklärt werden kann, da dem Silikonstab von Goodfellow TiO₂ zugesetzt ist, was bei den AlteSil Silicone Sheets nicht der Fall ist.

Die Extrakte der Silicone Sheets und LDPE-Streifen wurden mit der LC-MS/MS auf weitere schwach hydrophobe bis polare Umweltschadstoffe untersucht; diese Werte finden sich im Anhang. (A-2.7).

Abbildung 29: Vergleich der c_{TWA} (ng/L) von Irgarol, Atrazin und Terbuthylazin in der Mulde bei Dessau (links) und in der Elbe bei Magdeburg bei Verwendung verschiedener Passivsammler

(Expositionszeit: 28 Tage, Juni-Juli 2011) berechnet nach verschiedenen Berechnungsmodellen und der nach klassischer Beprobung bestimmten Konzentration. **Rot**: MESCO; **Grün**: Silikonstab; **Gelb**: Silicone Sheets; **Blau**: LDPE-Streifen. **EXP**: Experimenteller K_{SW} aus [71]; **LSER**: K_{SW} berechnet nach [61] (Berechnung für reines Polydimethylsiloxan [PDMS]); **REG**: K_{SW} berechnet nach [65]; *: Berechnungsmodell aus [60]; **WM**: Wochenmischproben aus automatischem Probennehmer; **WS**: Schöpfproben von Beginn und Ende der Beprobung. Bei den Proben von Dessau sind die Ausreißerwerte des Silikonstabs für Atrazin (EXP: 27,1 ng/L; LSER: 135,7 ng/L) und Terbuthylazin (EXP: 326,9 ng/L; LSER: 1833,5 ng/L) sind nicht skaliert dargestellt. Bei den Proben von Magdeburg ist der Wert der Schöpfprobe für Irgarol (WS: 57,8 ng/L) sowie die auf berechneten K_{SW} -Werten beruhenden c_{TWA} von Atrazin (LSER: 70,6 ng/L) und Terbuthylazin (LSER: 1066 ng/L) nicht skaliert dargestellt.

5.4.2 Betrachtung über den Gesamtverlauf der Messkampagnen

Durch die kontinuierliche Begleitung der Passivsammlerkampagnen durch klassische Probenahmen boten die Ergebnisse der Binnengewässer-Untersuchungen die Möglichkeit für einen höher aufgelösten Langzeitvergleich zwischen den Methoden. Während der Beprobungen wurden die Passivsammler hintereinander für die Dauer von jeweils 28 Tagen und parallel dazu über den gesamten Zeitraum von 56 Tagen ausgebracht. Um den Verlauf der zeitgemittelten Durchschnittskonzentrationen und die klassischen Beprobungen in eine Übersicht zu bringen, wurde eine veränderte Darstellung gewählt. Die c_{TWA} in den folgenden Abbildungen wurden mit experimentellen K_{SW} -Werten mit dem PRC-Modell [71] berechnet (siehe Beispiel 2 in Kapitel 3.8.4.1).

5.4.2.1 Polyzyklische aromatische Kohlenwasserstoffe (PAK)

In Abbildung 30 ist der Verlauf der Wasserkonzentrationen der Vergleichsmessungen sowie die c_{TWA} der ausgebrachten Passivsammler über den zeitlichen Verlauf der Messkampagne in Dessau dargestellt. In Abbildung 31 sind analog die drei PAK über den Zeitraum der Beprobung an der Elbe bei Magdeburg zu sehen.

Es zeigt sich ein äußerst komplexes Bild mit variierenden Verhältnissen der verschiedenen c_{TWA} -Werte zueinander von Zeitpunkt zu Zeitpunkt (siehe auch Anhang A-2.6), was im Gegensatz zu den absoluten Analytkonzentrationen auf den Sammlern steht, die meist deutlich geringere Schwankungen zwischen einzelnen Probenahmekampagnen zeigten (siehe Anhang A-2.4). Dieses Ergebnis lässt sich durch den großen Einfluss der PRC-Eliminierung auf die Berechnung der zeitgemittelten Durchschnittskonzentration erklären, wo bereits geringe Ungenauigkeiten bei der Quantifizierung der PRCs zu großen Unterschieden führen (vgl. Kapitel 3.6.3). Die teilweise erheblichen Schwankungen zwischen Ergebnissen klassischen Wasserproben innerhalb einer Beprobungsmethode (Faktor zwei bis acht) können auf natürliche, z.B. niederschlag- und pegelabhängige Schwankung von Schadstoffen in Flüssen beruhen. Insgesamt lagen die meisten Werte aber innerhalb einer Größenordnung. Allgemein ergaben sich anhand der Silicone Sheets höhere c_{TWA} -Werte als im Fall der kleinvolumigen Silikonstäbe und MESCOs.

MESCO: 3/3 Silikonstab: 3/3 SHEETS: 1/1 LDPE: n. a. WM: 8/9 WS: 2/3 WP: 3/3

MESCO: 3/3 Silikonstab: 3/3 SHEETS: 1/1 LDPE: n. a. WM: 9/9 WS: 3/3 WP: 3/3

MESCO: 3/3 Silikonstab: 3/3 SHEETS: 1/1 LDPE: n. a. WM: 8/9 WS: 3/3 WP: 3/3

Abbildung 30: Vergleich der c_{TWA} (ng/L) verschiedener Passivsammler für Phenanthren, Fluoranthen und Chrysen in der Mulde bei Dessau von Juni bis August 2011 mit Ergebnissen klassischer Beprobung. Alle c_{TWA} berechnet mit K_{SW} aus [71]. **Rot**: MESCO; **Grün**: Silikonstab; **Gelb**: Silicone Sheets. Die Ziffern links vom Bruchstrich kennzeichnen die Anzahl der Sammler mit Messwert>BG, rechts Anzahl eingesetzter Sammler. WM (blaue Treppen): Wochenmischproben aus automatischem Probennehmer; WS (blaue Punkte): Schöpfproben von Beginn, Mitte und Ende der Kampagne; WP (braune Punkte): c_{TWA} Abgeschätzt von POC-Gehalt und Schadstoffkonzentration im Schwebstoff.

MESCO: 5/5 Silikonstab: 3/4 SHEETS: 3/3 LDPE: n. a. WM: 11/11 WS: 4/4 WP: 4/4

MESCO: 5/5 Silikonstab: 4/4 SHEETS: 3/3 LDPE: n. a. WM: 11/11 WS: 4/4 WP: 4/4

MESCO: 3/5 Silikonstab: 4/4 SHEETS: 3/3 LDPE: n. a. WM: 11/11 WS: 4/4 WP: 4/4

Abbildung 31: Vergleich der c_{TWA} (ng/L) verschiedener Passivsammler für Phenanthren, Fluoranthen und Chrysen in der Elbe bei Magdeburg von Mai bis August 2011 mit Ergebnissen klassischer Beprobung. Alle c_{TWA} berechnet mit K_{SW} aus [71]. **Rot**: MESCO; **Grün**: Silikonstab; **Gelb**: Silicone Sheets. Die Ziffern links vom Bruchstrich kennzeichnen die Anzahl der Sammler mit Messwert>BG, rechts Anzahl eingesetzter Sammler. **WM** (blaue Treppen): Wochenmischproben aus automatischem Probennehmer; **WS** (blaue Punkte): Schöpfproben von Beginn, Mitte und Ende der Kampagne; **WP** (braune Punkte): c_{TWA} Abgeschätzt von POC-Gehalt und Schadstoffkonzentration im Schwebstoff.

MESCO: 3/3 Silikonstab: 3/3 SHEETS: 1/1 LDPE: 3/3 WM: 0/9 WS: 1/3 WP: 1/3

MESCO: 1/3 Silikonstab: 1/3 SHEETS: 1/1 LDPE: 3/3 WM: 1/9 WS: 1/3 WP: 3/3

MESCO: 1/3 Silikonstab: 2/3 SHEETS: 1/1 LDPE: 3/3 WM: 2/9 WS: 1/3 WP: 3/3

Abbildung 32: Vergleich der c_{TWA} (ng/L) verschiedener Passivsammler für PCB 52, 138 und 153 in der Mulde bei Dessau von Juni bis August 2011 mit Ergebnissen klassischer Beprobung. Alle c_{TWA} berechnet mit experimentellen K_{SW} für Silikon aus [71] bzw. für LDPE aus [65]. **Rot**: MESCO; **Grün**: Silikonstab; **Gelb**: Silicone Sheets; **Schwarz**: LDPE-Streifen. Die Ziffern links vom Bruchstrich kennzeichnen die Anzahl der Sammler mit Messwert>BG, rechts Anzahl eingesetzter Sammler. **WM** (blaue Treppen): Wochenmischproben aus automatischem Probennehmer; **WS** (blaue Punkte): Schöpfproben von Beginn, Mitte und Ende der Kampagne; **WP** (braune Punkte): c_{TWA} Abgeschätzt von POC-Gehalt und Schadstoffkonzentration im Schwebstoff.

5.4.2.2 Polychlorierte Biphenyle (PCB)

Entsprechende zeitliche Betrachtungen wurden auch für drei PCB-Kongenere an den Stationen Dessau (Abbildung 32) und Magdeburg (ohne Abbildung) durchgeführt. Aufgrund des großen Wertebereiches wurde eine logarithmische Darstellung gewählt. Bei beiden Standorten war ein Vergleich mit Wochenmisch- und Schöpfproben schwierig, da die meisten Ergebnisse unterhalb der Bestimmungsgrenze lagen. Die aus dem Schwebstoff abgeleiteten Schadstoffkonzentrationen waren meist quantifizierbar, lagen aber fast durchgängig niedriger als die Werte aus der Passivsammler-Beprobung. Innerhalb der Ergebnisse eines einzelnen Sammlers traten ähnliche Varianzen auf wie bei den PAK. Zwischen den Sammlern waren dagegen Unterschiede von zwei bis drei Größenordnungen zu beobachten.

5.4.3 Übergangs- und Küstengewässer sowie Hochsee

5.4.3.1 Polyzyklische aromatische Kohlenwasserstoffe (PAK)

Nachfolgend werden die gemittelten Durchschnittskonzentrationen ausgewählter PAK für Proben von Silicone Sheets und LDPE-Streifen aus Beprobungskampagnen im Übergangsgewässer, Küstengewässer sowie auf der Hochsee mit einem gemittelten Vergleichswert aus klassischer Wasserprobenahme verglichen.

Die Ausbringung im Übergangsgewässer (Tideelbe, Hamburger Hafen, Abbildung 33) erfolgte im Sommer/Herbst 2010 für 83 Tage sowie im Winter 2010/2011 für 49 Tage. Insgesamt zeigte sich für die mittels **Silicone Sheets** erfassten PAK ein uneinheitliches Bild (Abbildung 33). Für die meisten Stoffe ergab die Berechnung der c_{TWA} mittels experimenteller K_{SW} -Werte (EXP) [71] die beste Übereinstimmung mit den durch klassische Beprobung ermittelten Analytkonzentrationen. Weitgehende Übereinstimmungen wurden daneben bei der Anwendung der Berechnungsmodells nach Rusina [60] für experimentelle K_{SW} -Werte (EXP*) erreicht. Berechnete K_{SW} -Werte (LSER [61] sowie LSER* bei Anwendung des Berechnungsmodells nach [60]) ergaben meist die schlechtesten Ergebnisse. Abweichungen wurden für Chrysen und Phenanthren bei der Winterbeprobung beobachtet: Im Fall von Chrysen zeigten alle Berechnungsmodelle deutlich niedrigere Werte, während sich für Phenanthren entweder deutlich überhöhte oder deutlich zu geringe Werte zeigten.

Auf der Beprobung mit **LDPE-Streifen** basierende c_{TWA} -Werte im Übergangsgwässer (Winter 2010/2011, Expositionszeit 49 Tage, Abbildung 34) zeigten im Vergleich zur klassischer Wasserbeprobung wie bei den Silicone Sheets für alle Berechnungsmodelle eine

deutliche Unterschätzung der Chrysenkonzentration, während die berechneten Durchschnittwerte für Fluoranthen, Phenantren und Pyren recht gute Übereinstimmungen mit klassischen Wasserproben ergaben. Die auf experimentellen (EXP) sowie auf berechneten K_{sw} -Werten (REG) (beide nach [65]) beruhenden Werte zeigten dabei immer zueinander ähnliche, höhere Werte als das auf kalibrierten Sammelraten beruhende Modell (R_s), das deutlich zu niedrige Werte lieferte.

Abbildung 33: Vergleich von c_{TWA} (ng/L) von ausgewählten PAK in Silicone Sheets aus zwei Beprobungskampagnen im Übergangsgewässer (Tideelbe, Hamburger Hafen) berechnet nach verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach klassischer Probenahme (A: Juli - Oktober 2010, Expositionszeit: 83 Tage, n = 2; B: November 2010 – Januar 2011, Expositionszeit: 49 Tage, n = 2; C: arithmetisches Mittel aus klassischer Probenahme auf Monitoring-Seefahrten des BSH, Mai 2010 - Mai 2011; n = 4). **EXP**: Experimenteller K_{SW} aus [71]; **LSER**: Berechneter K_{SW} aus [61] (Berechnung für reines Polydimethylsiloxan [PDMS]); *Berechnungsmodell nach [60]; R_s : Berechnet mit Sammelrate aus Kalibrierversuch (Fließgeschwindigkeit abweichend); **WP**: klassischer Wasserprobe.

Abbildung 34: Vergleich von c_{TWA} (ng/L) von ausgewählten PAK in LDPE-Streifen im Übergangsgewässer (Tideelbe, Hamburger Hafen) berechnet nach verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach klassischer Probenahme (A: November 2010 – Januar 2011, Expositionszeit: 49 Tage, n = 2; B: arithmetisches Mittel aus klassischer Probenahme auf Monitoring-Seefahrten des BSH, Mai 2010 - Mai 2011; n = 4). **EXP**: experimenteller K_{SW} aus [65]; **REG**: K_{SW} berechnet nach [65]; **R**_s: Berechnet mit Sammelrate aus Kalibrierversuch (Fließgeschwindigkeit abweichend); **WP**: klassische Wasserprobe.

Im Küstengewässer (Fehmarnsund, Ostsee) zeigten sich für Silicone Sheets (Abbildung 35) insgesamt deutlich überhöhte c_{TWA}-Werte der ersten Beprobungskampagne in (Herbst/Winter 2010, 82 Tage Expositionszeit). Die relativ beste Übereinstimmung mit den Werten aus klassischer Beprobung ergab sich hier aus der Anwendung des Rusina-Modell [60] unter Verwendung der experimentellen K_{SW} -Werte von [71] (EXP*). Für die zweite Beprobung (Sommer 2011, 44 Tage Expositionszeit) war die Übereinstimmung mit der Wasserprobe für alle Modelle wesentlich besser. Hier zeigten die EXP*-Werte konträr zur ersten Beprobung die höchste Abweichung, während die anderen drei Berechnungsmodelle besonders für Fluoranthen und Pyren ähnliche c_{TWA} -Werte lieferten. Die im Winter beobachteten höheren Konzentrationen gegenüber eines gemittelten Mehr-Jahres-Durchschnittswertes sind plausibel, da die PAK-Konzentrationen aufgrund höherer Einträge in der Heizperiode und geringerer Abbauraten bekanntermaßen dann höher sind.

99

Abbildung 35: Vergleich von c_{TWA} (ng/L) von ausgewählten PAK in Silicone Sheets aus zwei Beprobungskampagnen im Küstengewässer (Fehmarnsund, Ostsee) berechnet nach verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach klassischer Probenahme (A: September – Dezember 2010, Expositionszeit: 82 Tage; B: Juni – Juli 2011, Expositionszeit: 44 Tage; C: arithmetisches Mittel aus klassischer Probenahme auf Monitoring-Seefahrten des BSH 2009 bis 2011; n = 6). **EXP**: Experimenteller K_{SW} aus [71]; **LSER**: Berechneter K_{SW} aus [61] (Berechnung für reines Polydimethylsiloxan [PDMS]); *Berechnungsmodell nach [60]; R_{s} : Berechnet mit Sammelrate aus Kalibrierversuch (Fließgeschwindigkeit abweichend); **WP**: Schöpfprobe.

Im Fall der **LDPE-Streifen** (Abbildung 36) waren die mit kalibrierten Sammelraten berechneten Werte (R_s) deutlich niedriger als sowohl die experimentellen wie die berechneten K_{SW} -Werten nach [65]. Im Fall von Phenanthren zeigte die kalibrierte Sammelrate (R_s) allerdings die beste Übereinstimmung mit dem klassischen Wasserwert. Insgesamt lagen die Werte in einem recht engen Bereich und die Übereinstimmungen waren für alle Berechnungsarten zufriedenstellend.

Auf der *Hochsee* (Helgoland, Nordsee) wurden drei Beprobungskampagnen mit **Silicone Sheets** durchgeführt, allerdings werden hier nur die zweite und dritte Beprobung betrachtet (Abbildung 37). Die Daten der ersten Kampagne im Frühsommer 2010 (Expositionszeit: 43 Tage) konnten durch Probleme beim Dotieren der Sammler mit PRCs nicht sinnvoll ausgewertet werden und werden daher nicht berücksichtigt. Die zweite und dritte Beprobung mit 43 bzw. 44 Tagen Expositionszeit erfolgten in den Sommermonaten 2010 bzw. 2011. Für

100

alle Proben (mit Ausnahme von Phenantren im Sommer 2010) zeigten sich wiederum gute Überreinstimmungen mit den Ergebnissen klassischer Beprobung für die mittels experimenteller K_{SW} -Werte berechneten c_{TWA} -Werte. Modelle, die berechnete K_{SW} -Werte zugrunde legen, überschätzten dagegen die Wasserkonzentration. Für alle Substanzen zeigte sich die beste Übereinstimmung mit der klassisch ermittelten Wasserkonzentration für Werte nach dem Berechnungsmodell von [60].

Abbildung 36: Vergleich von c_{TWA} (ng/L) von ausgewählten PAK in LDPE-Streifen im Küstengewässer (Fehmarnsund, Ostsee) berechnet nach verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach klassischer Probenahme (Wasserproben der Monitoring-Seefahrten des BSH 2009 bis 2011; n = 6). **EXP**: experimenteller K_{SW} aus [65]; **REG**: K_{SW} berechnet nach [65]; **R**: Berechnet mit Sammelrate aus Kalibrierversuch (Fließgeschwindigkeit abweichend); **WP**: klassische Wasserprobe

Abbildung 37: Vergleich von c_{TWA} (ng/L) von ausgewählten PAK in Silicone Sheets aus drei Beprobungskampagnen auf der Hochsee (Helgoland, Nordsee) berechnet nach verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach klassischer Probenahme (A: Mai – Juli 2011, Expositionszeit: 44 Tage; B: Juli – September 2011, Expositionszeit: 43 Tage; C: arithmetisches Mittel aus klassischer Probenahme auf Monitoring-Seefahrten des BSH, Mai 2010 bis Mai 2011; n = 4). **EXP**: Experimenteller K_{SW} aus [71]; **LSER**: Berechneter K_{SW} aus [61] (Berechnung für reines Polydimethylsiloxan [PDMS]); *Berechnungsmodell nach [60]; R_{s} : Berechnet mit Sammelrate aus Kalibrierversuch (Fließgeschwindigkeit abweichend); **WP**: klassische Wasserprobe

5.4.3.2 Polychlorierte Biphenyle (PCB)

Die c_{TWA} -Werte von PCB und HCB für Proben von Silicone Sheets und LDPE-Streifen aus Beprobungskampagnen im Übergangsgewässer, im Küstengewässer sowie auf der Hochsee werden nachstehend einem gemittelten Vergleichswert aus klassischer Wasserprobenahme gegenüber gestellt (vgl. Kapitel 5.3.2)

102

Abbildung 38: Vergleich von c_{TWA} (ng/L) von ausgewählten PCB sowie HCB in Silicone Sheets aus zwei Beprobungskampagnen im Übergangsgewässer (Tideelbe, Hamburger Hafen) berechnet nach verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach klassischer Probenahme (Wasserproben der Monitoring-Seefahrten des BSH, Mai 2010 bis Mai 2011; n = 4). **EXP**: Experimenteller K_{SW} aus [71]; **LSER**: Berechneter K_{SW} aus [61] (Berechnung für reines Polydimethylsiloxan [PDMS]); *Berechnungsmodell nach [60]; R_{s} : Berechnet mit Sammelrate aus Kalibrierversuch (Fließgeschwindigkeit abweichend); **WP:** klassische Wasserprobe

Im *Ubergangsgewässer* der Tideelbe (Hamburger Hafen, Abbildung 38) lieferte die Berechnung von c_{TWA} -Werten anhand von **Silicone Sheets** für PCB 52 und 138 sowie für HCB sowohl für den ersten (Sommer/Herbst 2010, Expositionszeit: 83 Tage) wie auch den zweiten Beprobungszeitraum (Winter 2010/2011, Expositionszeit: 49 Tage) entweder keine Ergebnisse oder deutlich zu niedrige c_{TWA} -Werte. Dagegen wurde PCB 153 anhand aller vier getesteten Modelle zu beiden Beprobungszeiten abgebildet. Wie Abbildung 38 zeigt, waren die c_{TWA} -Werte dieser Stoffgruppe im Allgemeinen deutlich kleiner als die Konzentrationen in klassischen Wasserproben.

Für **LDPE-Streifen** (Abbildung 39) zeigten sich mit Ausnahme der auf [65] beruhenden c_{TWA} -Werte für HCB sehr niedrige c_{TWA} -Werte im Vergleich zur klassischen Wasserprobe.

103

Abbildung 39: Vergleich von c_{TWA} (ng/L) von ausgewählten PCB sowie HCB in LDPE-Streifen im Übergangsgewässer (Tideelbe, Hamburger Hafen) berechnet nach verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach klassischer Probenahme (A: November 2010 – Januar 2011, Expositionszeit: 49 Tage, n = 2; C: arithmetisches Mittel aus klassischer Probenahme auf Monitoring-Seefahrten des BSH, Mai 2010 bis Mai 2011; n = 4). **EXP**: experimenteller K_{SW} aus [65]; **REG**: K_{SW} berechnet nach [65]; **R**_s: Berechnet mit Sammelrate aus Kalibrierversuch (Fließgeschwindigkeit abweichend); **WP**: klassische Wasserprobe

Allgemein konnten die sehr niedrige c_{TWA} -Werte im Vergleich mit den klassisch ermittelten Wasserkonzentrationen, die sowohl bei Silicone Sheets als auch bei LDPE-Streifen auftraten, zumindest teilweise auf die hohen Schwebstoffgehalte im Hamburger Hafen zurückgeführt werden. An diesem Probenahmeort ist eine deutliche Differenz zwischen Gesamtgehalt und Gehalt der gelösten Fraktion durchaus zu erwarten.

Bei zwei Probenahmekampagnen mit **Silicone Sheets** im *Küstengewässer* der Ostsee (Abbildung 40) zeigten sich für die Ausbringung im Herbst/Winter 2010 (Expositionszeit: 82 Tage) für PCB und HCB generell extremere Abweichungen der c_{TWA} -Werte vom klassisch ermittelten Wasserwert als für die zweite Beprobung im Sommer 2011 (Expositionszeit 44 Tage). c_{TWA} -Werte, die auf Berechnung mittels experimenteller [71] oder berechneter K_{SW} -Werte nach Arp [61] beruhten, zeigten in der zweiten Kampagne für PCB 52 eine hohe Übereinstimmung mit den Werten der klassischen Beprobung. Für PCB 138 und PCB 153 traf dies auch für die erste Kampagne zu, während in der zweiten die beiden Modelle der experimentellen K_{SW} -Werten nach Smedes ([71]) und dem Berechnungsmodell von [60]

bessere Übereinstimmungen zeigten. Für HCB zeigten die mittels experimenteller K_{SW} -Werte nach Smedes [71] sowie die mit Hilfe von berechneten K_{SW} -Werten [61] ermittelten c_{TWA} -Werte in der zweiten Kampagne sehr gute Übereinstimmungen mit dem Wasserwert. Insgesamt zeigte das Modell mit experimentellen K_{SW} -Werten [71] die besten Übereinstimmungen mit den Referenz-Wasserwerten.

Mittels **LDPE-Streifen** ermittelte c_{TWA} für PCB im Küstengewässer (Abbildung 41) wiesen wie im Fall des Übergangsgewässers deutlich niedrigere Werte auf als in der klassisch bestimmten Wasserprobe. Auch hier bildeten die nach [65] berechneten Werte für HCB die Ausnahme mit einer deutlich höheren c_{TWA} .

Abbildung 40: Vergleich von c_{TWA} (ng/L) von ausgewählten PCB sowie HCB in Silicone Sheets aus zwei Beprobungskampagnen im Küstengewässer (Fehmarnsund, Ostsee) berechnet nach verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach klassischer Probenahme (A: September – Dezember 2010, Expositionszeit: 82 Tage; B: Juni – Juli 2011, Expositionszeit: 44 Tage; C: arithmetisches Mittel aus klassischer Probenahme auf Monitoring-Seefahrten des BSH 2009 bis 2011, n= 6). **EXP**: Experimenteller K_{SW} aus [71]; **LSER**: Berechneter K_{SW} aus [61] (Berechnung für reines Polydimethylsiloxan [PDMS]); *Berechnungsmodell nach [60]; **R**_s: Berechnet mit Sammelrate aus Kalibrierversuch (Fließgeschwindigkeit abweichend); WP: klassische Wasserprobe

Abbildung 41: Vergleich von c_{TWA} (ng/L) von ausgewählten PCB sowie HCB in LDPE-Streifen im Küstengewässer (Fehmarnsund, Ostsee) berechnet nach verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach klassischer Probenahme (Wasserproben der Monitoring-Seefahrten des BSH 2009 bis 2011, n= 6). **EXP**: experimenteller K_{SW} aus [65]; **REG**: K_{SW} berechnet nach [65]; **R**: Berechnet mit Sammelrate aus Kalibrierversuch (Fließgeschwindigkeit abweichend); **WP**: klassische Wasserprobe.

Die **Sillicone-Sheet**-Proben der *Hochsee* (ohne Abbildung) zeigten ein komplexes Bild und trotz vergleichbarer Ausbringungszeiträume und -saisons zwischen den Kampagnen keine eindeutigen Muster, jedoch war eine Tendenz zu erkennen, dass die auf berechneten K_{SW} -Werten beruhenden Modelle häufiger deutlich zu hohe c_{TWA} -Werte lieferten, während die mit Hilfe von experimentellen K_{SW} -Werten berechneten c_{TWA} eher mit den Werten der klassischen Wasseranalytik übereinstimmten. Darin ähnelten sie den Ergebnissen der Silicone Sheets in der Ostsee.

Die Ergebnisse von LDPE-Streifen, die in zwei Kampagnen in der Hochsee (Abbildung 42) ausgebracht wurden, entsprachen denen der Küstengewässer sehr stark: Auch hier lagen die PCB-Werte der Passivsammler-Beprobungen grundsätzlich deutlich unter den Werten der klassischen Wasserrobe, während die nach [65] ermittelten HCB-Werte deutlich höher als die der klassischen Probe waren. Die Ausreißer für Werte von PCB 138 und 153 in der ersten Kampagne könnten mit Problemen beim Dotieren und einer nicht perfekten Auswahl von PRCs begründet werden.

106
Zusammenfassend läßt sich festhalten, dass die die c_{TWA} -Werte von PAK und PCB, die mittels experimentell ermittelten K_{SW} -Werten berechnet wurden, allgemein die besten Ähnlichkeiten zu den klassisch ermittelten Wasserwerten aufwiesen. Dass c_{TWA} -Werte meist kleinere Werte lieferten als die klassisch bestimmten Wasserkonzentrationen ist nachvollziehbar, da die ersteren die frei gelösten Konzentrationen der Wasserphase repräsentieren, während letztere die Gesamtphase einschließlich der am Schwebstoff adsorbierten Anteile erfassen.

Abbildung 42: Vergleich von c_{TWA} (ng/L) von ausgewählten PCB sowie HCB in LDPE-Streifen aus zwei Beprobungskampagnen auf der Hochsee (Nordsee vor Helgoland) berechnet nach verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach klassischer Probenahme (Wasserproben der Monitoring-Seefahrten des BSH, Mai 2010 bis Mai 2011; n = 4). **EXP**: experimenteller K_{SW} aus [65]; **REG**: K_{SW} berechnet nach [65]; **R**_s: Berechnet mit Sammelrate aus Kalibrierversuch (Fließgeschwindigkeit abweichend); **WP**: klassische Wasserprobe.

5.4.3.3 Polare Stoffe (Biozide und andere)

In Silicone Sheets wurden neben den unpolaren auch polare Analyten erfasst. Nachfolgend sind für ausgewählte Biozide sowie für das Antiepiliptikum Carbamazepin die nach verschiedenen Modellen berechneten c_{TWA} -Werte für unterschiedliche Standorte dargestellt. Dabei ist zu beachten, dass diese (polaren) Stoffe theoretisch außerhalb des Anwendungsspektrums des Berechnungsmodells nach [60] liegen. Abbildung 43 und Abbildung 44 zeigen die c_{TWA} -Werte der Beprobungskampagnen im Vergleich zu gemittelten Vergleichswerten aus klassischer Wasserprobenahme (vgl. Kapitel 5.4.3).

Für die Beprobung im Übergangsgewässer (Tideelbe, Hamburger Hafen, Abbildung 43) zeigte sich für die vier dargestellten Analyten Irgarol, Atrazin, Terbuthylazin und Carbamazepin die Nichtanwendbarkeit der c_{TWA} -Berechnung nach Rusina [60] in deutlich zu niedrigen c_{TWA} -Werten sowohl für experimentelle als auch berechnete K_{SW} -Werte.

Abbildung 43: Vergleich von c_{TWA} (ng/L) von ausgewählten polaren Zielsubstanzen in Silicone Sheets aus zwei Beprobungskampagnen im Übergangsgewässer (Tideelbe, Hamburger Hafen) berechnet nach verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach klassischer Probenahme (Wasserproben der Monitoring-Seefahrten des BSH, Mai 2010 bis Mai 2011; n = 4). **EXP**: Experimenteller K_{SW} aus [71]; **LSER**: Berechneter K_{SW} aus [61] (Berechnung für reines Polydimethylsiloxan [PDMS]); *Berechnungsmodell nach [60]; R_s : Berechnet mit Sammelrate aus Kalibrierversuch (Fließgeschwindigkeit abweichend); **WP**: klassische Wasserprobe.

Für Atrazin und Terbuthylazin zeigte sich die beste Übereinstimmung mit klassischen Wasserproben für c_{TWA} mit berechneten K_{SW} -Werten nach [61], während für Irgarol und Carbamazepin die mit experimentellen K_{SW} -Werten [71] berechneten c_{TWA} die größte Übereinstimmung lieferten.

In Proben des *Küstengewässers* (Fehmarnsund) zeigte sich ein ähnliches Bild. Die Berechnung aus dem konventionellen Modell mittels experimentellen K_{SW} -Werten [71] lieferte die besten Übereinstimmungen mit den Ergebnissen klassischer Wasseranalytik (ohne Abbildung).

Auf der *Hochsee* (Helgoland, Nordsee; Abbildung 44) zeigten sich wie an den anderen Standorten allgemein die besten Übereinstimmungen zwischen klassischen Wasserproben und c_{TWA} aus experimentellen K_{SW} -Werten (in der ersten Kampagne wurden Irgarol und Terbuthylazin nicht bestimmt). Dagegen ergaben die mit Hilfe von experimentellen und berechneten K_{SW} -Werten nach dem Modell von Rusina [60] bestimmten c_{TWA} (EXP* und LSER*) wiederum Unterschreitungen der Referenzkonzentrationen um ein bis drei Größenordnungen.

Zusammenfassend zeigt sich für die verschiedenen Stoffgruppen, Messstationen und Bild. Berechnungsverfahren ein vielschichtiges Die durch verschiedene Berechnungsmethoden abgeleiteten zeitgemittelten Durchschnittswerte zeigten eine hohe Streubreite zu den langjährigen Mittelwerten der klassischen Wasserproben, die im Kontrast dazu über mehrere Jahre hinweg eine deutlich geringere Variabilität aufwiesen. Die starken Schwankungen der anhand von Passivsammlern gewonnenen Daten könnten, wie in Kapitel 4 dargelegt, in den Berechnungsmodellen begründet sein. Insgesamt ließ sich dabei erkennen, dass Modelle, die auf experimentellen K_{SW} -Werte beruhen, robustere Ergebnisse und besser vergleichbare Konzentrationen erzielten als Werte die berechnete K_{SW}-Werte einsetzen.

Abbildung 44: Vergleich von c_{TWA} (ng/L) von ausgewählten polaren Zielsubstanzen in Silicone Sheets aus drei Beprobungskampagnen auf der Hochsee (Nordsee vor Helgoland) berechnet nach verschiedenen Modellen im Vergleich zur mittleren Wasserkonzentration nach klassischer Probenahme (Wasserproben der Monitoring-Seefahrten des BSH, Mai 2010 bis Mai 2011; n = 4). **EXP**: Experimenteller K_{SW} aus [71]; **LSER**: Berechneter K_{SW} aus [61] (Berechnung für reines Polydimethylsiloxan [PDMS]); *Berechnungsmodell nach [60]; R_s : Berechnet mit Sammelrate aus Kalibrierversuch (Fließgeschwindigkeit abweichend); **WP:** klassische Wasserprobe

5.5 Zusammenfassende Diskussion

5.5.1 Vergleich der c_{TWA} verschiedener Sammelphasen bei paralleler Beprobung und Verwendung des gleichen Berechnungsverfahren

Im Folgenden werden die vier in den Binnengewässern eingesetzten Passivsammler auf die Vergleichbarkeit der erzielten c_{TWA} untersucht. Den Berechnungen wurden das Verfahren nach [71] (EXP) sowie das Model nach [61] (LSER) zugrunde gelegt. Als Maß für die Vergleichbarkeit der mittels unterschiedlicher Passivsammler (MESCO, Silikonstab, Silicone Sheets und LDPE-Streifen) ermittelten c_{TWA} wurden die prozentualen Standardabweichungen betrachtet, die für die untersuchten Stoffe im Anhang in Tabelle A-2.11.1 zusammengefasst sind.

Die relativen Standardabweichungen variierten zwischen ca. 20 und 200 %. Da keine ortsoder zeitspezifischen Charakteristika für einzelne Beprobungen gefunden wurden, wurde

110

über alle Kampagnen gemittelt, so dass eine Abschätzung der zu erwartenden Unsicherheit unabhängig von Sammlermodell, Probenstandort und Ausbringungszeit erfolgte. Polare Analyten aus LC-MS/MS-Untersuchungen wurden nicht berücksichtigt, da diese nur in LDPE-Streifen und Silicone Sheets umfassend analysiert wurden.

Ein Vergleich der Ergebnisse der beiden Berechnungsverfahren zeigte, dass die Wahl der Sammler-Wasser-Verteilungskoeffizienten K_{SW} einen signifikanten Einfluss auf die durchschnittliche Standardabweichung hat (gepaarter Stichproben t-Test: t = 2,445; DF = 31; 95 % Vertrauensintervall). Eine Korrelation der durchschnittlichen Standardabweichung mit Sammler-Wasser-Verteilungskoeffizienten oder dem K_{SW} dem Oktanol-Wasser-Verteilungskoeffizienten K_{OW} konnte nicht beobachtet werden. Allerdings zeigte sich bei der grafischen Darstellung (siehe Abbildung 45) zwischen log Kow 3,5 - 5,5 ein Bereich mit deutlich reduzierter Streuung. Eine mögliche Erklärung ist, dass hier die PRC am besten funktionierten und dass außerhalb dieses Fensters die PRCs entweder zu stark an die Sammelphase gebunden oder im Laufe der Exposition vollständig eliminiert wurden, was in beiden Fällen die Unsicherheit der c_{TWA} -Berechnung erhöht.

Für alle unpolaren Analyten und Passivsammler betrachtet, wurden mit dem MESCO die geringsten c_{TWA} ermittelt, mit den Silicone Sheets die höchsten (siehe Abbildung 46). Wenn davon ausgegangen wird, dass die mit Passivsammlern ermittelten Wasserkonzentrationen meist unterbestimmt sind, liefern die Silicone Sheets stimmigere Ergebnisse.

Abbildung 45: Durchschnittliche Abweichung der c_{TWA} -Werte von MESCO, Silikonstab, Silicone Sheet und LDPE-Streifen in % des Mittelwerts, aufgetragen über dem Oktanol-Wasser-Verteilungskoeffizienten log K_{OW} .

Abbildung 46: Zeitgemittelte Durchschnittskonzentrationen c_{TWA} , bezogen auf den geometrischen Mittelwert der c_{TWA} aller Sammler (MESCO, Silikonstab, Silicone Sheets und LDPE-Streifen) in der Mulde bei Dessau und der Elbe bei Magdeburg (Expositionszeiten: 28 & 56 Tage, Mai-August 2011, konventionelle Berechnung mit PRCs und experimentellen K_{SW} -Werten).

5.5.2 Summarischer Vergleich von zeitgemittelten Durchschnittskonzentrationen und klassisch ermittelten Wasserkonzentrationen

Im Folgenden werden die Ergebnisse aller Kampagnen und aller Substanzen zusammenfassend betrachtet, um generelle Prinzipien aufzuzeigen.

Zunächst wurden die berechneten c_{TWA} -Werte den Ergebnissen der im UFZ analysierten Wochenmischproben (c_{WM}) gegenübergestellt (Abbildung 47). Die Ergebnisse von allen **Binnengewässer**-Standorten sind in den im Anhang A-2.11 zusammengefasst.

Es ist eine deutliche Streuung um die $c_{TWA} = c_{WM}$ -Linie mit vereinzelten Abweichungen von mehr als einer Zehnerpotenz zu beobachten. Alle Passivsammler unterschätzen niedrige Konzentrationen in den Wochenmischproben. Insgesamt bilden die Sammler zwar ein Trend ab, eine verlässliche Abschätzung von klassischen Wasserproben mit Passivsammlern wäre angesichts dieser Korrelationen jedoch mit einer sehr hohen Fehlererwartung verbunden. In Abbildung 48 sind die zeitgemittelten Durchschnittskonzentrationen der Passivsammler über den von den Schwebstoffanalysen abgeschätzten Konzentrationen c_{WP} aufgetragen (zur Berechnung siehe Kapitel 5.4.1).

Abbildung 47: Verhältnis von zeitgemittelter Durchschnittskonzentration log c_{TWA} zu Mittelwert der gleichzeitigen Wochenmischproben log c_{WM} in der Mulde bei Dessau und der Elbe bei Magdeburg (Expositionszeiten: 28 & 56 Tage, Mai-August 2011, konventionelle Berechnung mit experimentellen K_{sw} -Werten). Die fette durchgezogene Linie stellt die $c_{\text{TWA}} = c_{\text{WM}}$ -Linie dar, die dünnen Linien geben deren negative bzw. positive log(10)-Abweichung an.

Wie bei dem Vergleich mit den Wasserproben ist eine deutliche Streuung um die $c_{TWA} = c_{WP}$ -Linie auszumachen, allerdings werden niedrige c_{WP} -Werte von den Passivsammlern eher zu hoch dargestellt. Bis auf den MESCO beschreiben alle Sammler die Schwebstoffproben etwas besser als die Wochenmischproben, ein Ersatz der Schwebstoffprobenahme durch den Einsatz von Passivsammlern kann bislang aber noch nicht uneingeschränkt empfohlen werden.

Um eine Abhängigkeit der zeitgemittelten Durchschnittswerte von physikalisch-chemischen Eigenschaften der Analyten zu erfassen, wurden in Abbildung 49 die Quotienten log $c_{\text{TWA}}/c_{\text{WM}}$ aller Passivsammler gegen die log K_{OW} -Werte der Analyten aufgetragen. Bei allen Sammlern ist eine Tendenz dahingehend zu beobachten, dass diese Quotienten mit zunehmender Lipophilie der Analyten kleiner werden und unter den Idealwert von 0 wandern, d.h. die c_{TWA} -Werte zeigen dafür deutlich geringere Werte an als die klassischen Konzentrationen (um 1 bis 3 Größenordnungen). Bemerkenswert ist dabei, dass die MESCO die größten und die Silikonstäbe die geringsten Streuungen aufweisen.

Abbildung 48: Verhältnis von zeitgemittelter Durchschnittskonzentration log c_{TWA} zu Mittelwert der gleichzeitigen Schwebstoffproben log c_{WP} in der Mulde bei Dessau und der Elbe bei Magdeburg (Expositionszeiten: 28 & 56 Tage, Mai-August 2011, konventionelle Berechnung mit experimentellen K_{sw} -Werten). Die fette durchgezogene Linie stellt die $c_{TWA} = c_{WP}$ -Linie dar, die dünnen Linien geben deren negative bzw. positive log(10)-Abweichung an.

In Abbildung 50 wird der Vergleich mit klassischen Wasserkonzentrationen durchgeführt, die aus den Schwebstoffproben berechnet wurden. Auch hier zeigt sich eine große Streubreite, allerdings sind hier kaum eine Abhängigkeiten zu den log K_{OW} -Werten zu beobachten. Dies macht deutlich, dass diese Art des Verglecihs nicht nur von den "Fehlern" der c_{TWA} abhängen sondern auch von denen der klassischen Wasserkonzentrationsbestimmungen.

Die teilweise sehr starken Abweichungen der Werte vom erwarteten Wert $[log(c_{TWA}/c_{WP}) \approx 0]$ in positiver und negativer Richtung zeigen einmal mehr die geringe Robustheit des Verfahrens.

Abbildung 49: Quotient aus zeitgemittelter Durchschnittskonzentration log c_{TWA} und Mittelwert der gleichzeitigen Wochenmischproben log c_{WM} in Abhängigkeit vom log K_{OW} -Wert. Übersicht über alle Binnengewässerproben (alle Sammler: R2 = 0,145, n = 393).

Abbildung 50: Quotient aus zeitgemittelter Durchschnittskonzentration log c_{TWA} und Mittelwert der gleichzeitigen Schwebstoffproben log c_{WP} . in Abhängigkeit vom log K_{OW} -Wert. Übersicht über alle Binnengewässerproben (alle Sammler: $R^2 = 0,175$, n = 382).

Abbildung 51: Korrelationen von log c_{klass} mit log c_{TWA} in Silicone Sheets (konventionelle Bererchnung mit PRCs und experimentellen K_{SW} -Werten) von allen Analyten an der Übergangsgewässer-Stationen KIKA (links) und den marinen Stationen in Nord- und Ostsee (rechts)

Für die marinen Proben wird im Folgenden eine analoge summarische Betrachtung aller Analyt-Konzentrationen durchgeführt wie für die Binnenwasserproben (s.o.). Dabei bestätigten sich generell die Ergebnisse von Kapitel 5.4 mit hohen Abweichungen und Unsicherheiten zwischen den c_{TWA} und den klassisch ermittelten Wasserkonzentrationen. In Abbildung 51 sind exemplarisch c_{konv} gegen c_{TWA} von Silicon-Sheet-Proben als Regression mit doppelt logarithmischer Skalierung dargestellt; dabei wurden alle erfassten Analyten berücksichtigt. Die Berechnung der c_{TWA} erfolgte mittels konventionelle Berechnung mit PRCs und experimentellen K_{sw}-Werten [71]. Trotz der logarithmischen Darstellung sind wie bei den Binnenwasserproben – die Korrelationen mäßig. Positiv kann gewertet werden, Steigungen der Geraden nahe bei 1 liegen, allerdings zeigen die dass die Korrelationskoeffizienten (R²) von 0,3 bei der Station KIKA (Übergangsgewässer) und 0,5 bzw. 0,6 bei den marinen Proben aus der Nord- bzw. Ostsee (Helgoland, Fehmarn) eine große Schwankungsbreite an.

In Tabelle 10 sind Korrelationsparameter weiterer Probenvergleiche zusammengefasst: Untersucht wurden an den drei Standorten die verschiedenen Berechnungsverfahren entsprechend den Verfahren EXP, LSER, EXP* und LSER* (vgl. Kap. 5.4) und die beiden Passivsammlerphasen LDPE-Streifen und Silicon-Sheet, wobei bei letzteren zwischen allen Stoffen (GC+LC) und den unpolaren Stoffen (GC) weiter unterschieden wurde.

Wenn man als Qualitätsparameter a) eine Geradensteigung nahe 1, b) eine möglichst geringe Konstante nahe 0 und möglichst mit negativem Vorzeichen und c) einen möglichst hohen Korrelationskoeffizienten anstrebt, so lassen die Parameter aus Tabelle 10 folgende Aussagen zu:

116

- Die Daten aus dem Hamburger Hafen (Übergangsgewässer, KI) zeigen generell die schlechtesten Übereinstimmungen. Wahrscheinlich ist dies zum einen in den hohen Schwebstoffgehalten der Wasserproben begründet (die klassisch bestimmten Wasserkonzentrationen wurden aus der Gesamtwasserphase ermittelt); ferner ist die natürliche Schwankungsbreite an dieser Station weitaus größer als im marinen Bereich, wo die Wassermassen deutlich "träger" sind.
- Die marinen Proben aus Nord- und Ostsee (HT, FE) korrelieren deutlich besser und sind untereinander gut vergleichbar.
- Die Berechnungsverfahren nach Rusina (EXP* und LSER*) lieferten meist schlechtere Ergebnisse als die beiden anderen Verfahren (EXP und LSER).
- Für polare Stoffe sind die Rusina Verfahren nicht zu verwenden.
- Insgesamt zeigt das Berechnungsmodel EXP die besten Ergebnisse

Tabelle 10: Korrelationsparameter der linearen Regressionen zwischen log c_{klass} und log c_{TWA} , aufgegliedert nach Stationen, Berechnungsmodellen und Passivsammler-Typen (weitere Einzelheiten s. Text)

Modell	Silicon Sheets (GC+LC)	Silicon Sheets (GC)			LDPE Streifen (GC)		
	Geradengleichung	R ²	Geradengleichung	R²	Geradengleichung	R ²	
			KI				
EXP	1,05x - 0,18	0,317	1,01x - 0,23	0,201	0,72x - 0,99	0,190	
LSER	0,83x + 0,21	0,348	0,75x + 0,01	0,163			
EXP*	-0,01x - 1,46	0,000	0,84x - 1,13	0,162			
			FE				
EXP	0,99x + 0,29	0,607	1,13x + 0,68	0,728	1,03x - 0,34	0,724	
LSER	0,96x + 0,57	0,650	1,14x + 0,91	0,725			
EXP*	0,11x - 1,51	0,015	0,63x - 0,35	0,512			
			HT				
EXP	1,02x - 0,10	0,539	0,90x - 0,15	0,410	0,94x - 0,82	0,606	
LSER	0,75x + 0,15	0,520	0,75x + 0,12	0,428	0,91x - 0,77	0,545	
EXP*	0,05x - 1,44	0,003	0,65x - 0,45	0,592	0,90x - 1,09	0,527	
LSER*	-0,02x - 1,16	0,001	0,65x - 0,10	0,619			

5.5.3 Bewertung der Validierungsuntersuchungen und -betrachtungen der Passivsammler

Die analytisch-chemischen Validierungskriterien (Blindwerte, Reproduzierbarkeit, Bestimmungsgrenzen etc., vgl. Kapitel 4.4) können im Allgemeinen als gut bis zufriedenstellend bewertet werden. Die analytischen Unsicherheiten sind meist deutlich geringer als die Unterschiede in den berechneten zeitgemittelten Durchschnittskonzentrationen. Im Folgenden werden die Parameter Richtigkeit und Robustheit betrachtet

5.5.4.1 Richtigkeit

Die Richtigkeit der zeitgemittelten c_{TWA} -Werte wurde anhand verschiedener klassischer Wasserkonzentrationen betrachtet (Kapitel 5.4). Hierbei zeigten sich zum Teil recht gute Übereinstimmungen und meist plausible Ergebnisse (PAK-Winterwerte > Sommerwerte, c_{TWA} -Werte < Gesamtwasserkonzentrationen). Es traten aber auch häufiger erhebliche Abweichungen auf. Einige dieser Abweichungen haben analytische Ursachen (z. B. Messfehler, Blindwerte). Gravierender sind allerdings die großen Unterschiede (ein bis zwei Größenordnungen), die bei der Anwendung verschiedener Berechnungsverfahren auftraten, die meist keinem definierten Muster folgten. Insgesamt zeigte sich jedoch eine bessere und häufigere Übereinstimmung bei der Berechnung mit experimentell bestimmten K_{SW} -Werten als mit berechneten.

5.5.4.2 Robustheit

Die hohe Variabilität der Ergebnisse bedeutet, dass die Bestimmung von c_{TWA} -Werte mittels Passivsammler insgesamt noch nicht sehr robust ist. Für die Bestimmung der c_{TWA} -Werte scheinen Einflussgrößen eine Rolle zu spielen, die für den vorliegenden Datensatz nicht differenziert werden konnten.

Allerdings muss berücksichtigt werden, dass das sehr breit aufgestellte Untersuchungsprogramm (limnische marine Wasserkörper, Sommerund und Winterbeprobungen, breite Stoffvielfalt) sehr ambitioniert war. Dadurch und durch die Tatsache, dass viele Analysen in der Nähe der analytischen Bestimmungsgrenzen lagen, ist der Datensatz selbst nicht unproblematisch und mit einer größeren Unsicherheit versehen. Dies verhindert auch eine noch detailliertere Auswertung und Interpretation der Ergebnisse.

Es sei an dieser Stelle noch einmal auf die diesbezüglichen theoretischen Betrachtungen und Modellrechnungen (Kapitel 4.3) hingewiesen, die unter realistischen Annahmen, aber noch ohne einen Sicherheitsfaktor (von z. B. 2) einzubeziehen, für die c_{TWA} relative Unsicherheiten zwischen 50 und 150% abschätzen.

6. Anwendungsempfehlungen

Von den untersuchten Passivsammlertypen eignen sich die Silicone Sheets am besten als Screening-Tool, da sie eine sehr hohe Stoffvielfalt detektieren können (max. wurden 69 Stoffe auf Silicone Sheets gefunden). Sie bieten sich daher besonders für Untersuchungen an, die eine grobe Unterscheidung von belasteten und unbelasteten Gewässerräumen zum Ziel haben (Suche nach Belastungsschwerpunkten). Sollen ausschließlich hydrophobe Schadstoffe (mit log $K_{OW} > 4$) untersucht werden, sind LDPE-Sammler vorzuziehen, da diese bedeutend anwenderfreundlicher als Silicone Sheets sind. Die Sammler mit kleiner Oberfläche (MESCO, Silikonstab) können in Gewässern mit zu erwartend hohen Analytkonzentrationen (stark belastete limnische Bereiche, Abwässer etc.) eingesetzt werden (Tabelle 11).

Für quantitative Untersuchungen können Passivsammler bei Vorhandensein von verlässlichen Sammelraten oder mit Sammler-Wasser-Verteilungskoeffizienten unter Zuhilfenahme von geeigneten PRCs eingesetzt werden. Die Anwendung in Binnengewässern im Kontext der WRRL ist ergänzend zu Wasserproben möglich, jedoch bilden Passivsammler nicht, wie in der WRRL derzeit gefordert, den gesamten Schadstoffgehalt einer Wasserprobe ab, sondern liefern ausschließlich den gelösten Anteil.

Im Hinblick auf aufzuwendende Arbeitszeit und Verbrauchsmittelkosten sind verschiedene Passivsammler wie oben genannt unterschiedlich zu bewerten. Im Vergleich zu Biota- oder Sedimentproben, die im Monitoring ebenfalls zur Überwachung organischer Schadstoffe eingesetzt werden, sind sie vergleichbar oder sogar weniger aufwändig. Die Unterschiede im Analytspektrum bieten jedoch auch die Möglichkeit, den je nach Fragestellung für das jeweilige Monitoring passenden Sammlertyp auszuwählen.

Tabelle 11: Übersicht über Parameter für die Auswahl des passenden Passivsammlers je nach Anwendungsanspruch

	Silicone Sheets	LDPE-Streifen	Silikonstab	MESCO
unpolare Substanzen	ја	ја	ја	ja
polare Substanzen	ја	nein	nein*	nein
Arbeitswand im Labor	sehr hoch	mittel	sehr niedrig	sehr niedrig
Energie- und Lösungsmittelaufwand	(sehr) hoch	niedrig	niedrig	niedrig
niedrige BG	ја	nein/mittel**	nein	nein

* Probenaufgabe mittels Thermodesorption nur für GC-MS möglich; ** bei Verwendung der Standardmasse von 2 g LDPE

7. Zusammenfassung

In dem Projekt wurden verschiedene Passivsammlertypen hinsichtlich ihrer Einsatzmöglichkeiten für das Gewässermonitoring im limnischen und marinen Milieu getestet. Dazu wurden die Sammler an Probenahmestellen in den Flüssen Elbe und Mulde sowie in der Nord- und Ostsee exponiert. Die Betrachtung sollte sowohl eine Validierung der Verfahren wie auch explizit die praktische Umsetzbarkeit der Passivsammlernutzung unter Einbeziehung der Kostenfrage umfassen.

Es wurden Verfahrensprotokolle (SOPs) für die Ausbringung, Beprobung, Logistik und Analytik der Passivsammler auf limnischen und marinen Stationen entwickelt, wobei besonders auf die Entwicklung eines Verfahrens zur Bestimmung von polaren und unpolaren Substanzen aus der gleichen Passivsammlerprobe Wert gelegt wurde, was sowohl das untersuchbare Analytspektrum deutlich vergrößert als auch erhebliche Zeitersparnisse mit sich bringt.

Die praktische und logistische Durchführung der Passivsammler-Beprobung erwies sich als aufwändiger als ursprünglich gedacht.

Es wurden erfolgreich Sammelkörbe und Transportbehälter entwickelt, die auch unter den besonderen Bedingungen des Einsatzes auf dem Meer genutzt werden können.

Die Ergebnisse zeigen, dass Passivsammler in der Lage sind, organische Schadstoffe einer breiten Stoffpalette aus der Wasserphase zu extrahieren und anzureichern. Die beiden eingesetzten Polymerphasen – Silikon und LDPE – sind generell für sowohl den limnischen als auch den marinen Bereich geeignet, verhalten sich aber unterschiedlich:

LDPE reichert hauptsächlich unpolare Stoffe mit einem log $K_{OW} > 4$ an; es ist in der praktischen Handhabung (Aufreinigung, Matrixbestandteile des LDPE-Materials und Extraktion) unproblematisch. Silikon reichert dagegen neben unpolaren auch mittelpolare Stoffe an und erfasst somit ein weiteres Stoffspektrum. Es ist allerdings in der praktischen Handhabung erheblich problematischer und arbeitsaufwändiger, da oligomere Matrix-Bestandteile die Analytik beeinflussen und Analytikgeräte zerstören können.

MESCO- und Silikonstabsammler zeigten ein Anreicherungsverhalten, das den LDPE-Streifen bzw. Silicone Sheets ähnelt. Aufgrund der kleinen Abmessungen ist das Anreicherungsvermögen allerdings geringer, so dass der Einsatz auf höher belastete limnische Gewässer beschränkt ist. Dort macht die einfache Analytik (GC-MS-Analyse mit lösungsmittelfreier Probenaufgabe durch Thermodesorption) den Einsatz allerdings sehr attraktiv.

Die Bestimmung von zeitgemittelten Durchschnittskonzentrationen wurde anhand mehrerer Kalibrier- und Berechnungsverfahren durchgeführt. Die Ergebnisse streuten erheblich und waren weder einheitlich noch eindeutig. Die verschiedenen Verfahren lieferten bei identischen Rohdaten berechnete Unterschiede von zum Teil ein bis zwei Größenordnungen. Kein Verfahren erwies sich als durchgängig überlegen und allgemein anwendbar; die Verfahren zeigten keine Parallelität.

Der Vergleich mit "klassisch" ermittelten Wasserkonzentrationen war schwierig. Obwohl in einigen Fällen recht gut vergleichbare Werte zwischen berechneten zeitgemittelten und "klassischen" Wasserproben gefunden wurden, zeigte die Auswertung aller Daten selbst bei doppellogarithmischer Darstellung sehr mäßige Korrelationen. Die beste Übereinstimmung mit klassisch ermittelten Wasserkonzentrationen konnte mit experimentellen Wasser-Verteilungskoeffizienten unter Verwendung von PRCs unter Verwendung des für die Silicone Sheets entwickelten Rechenmodell [60] erreicht werden. Hier lagen die Abweichungen innerhalb einer Größenordnung und mit unterschiedlichen Ausbringungszeiten (28 und 56 Tage) wurden reproduzierbare Ergebnisse erzielt. Die Adaption des Modells für andere Passivsammler stellt daher eine zentrale Aufgabe für zukünftige Forschungsvorhaben dar.

Passivsammler werden immer wieder als wesentlich kostengünstigere Alternative zur klassischen Wasserprobenahme genannt. Im Rahmen dieses Projektes wurden tatsächliche Kostenersparnisse hinsichtlich der marinen Probenahme bestätiat. da sich Passivsammlerbeprobungen, besonders im Fall von Sammelphasen, die lange im linearen Bereich der Stoffaufnahme verbleiben ohne den Gleichgewichtszustand zu erreichen (z.B. Silicone Sheets), mit anderen Monitoringaktivitäten kombinieren lassen und so Transportund Personalkosten erheblich minimiert werden können. Im limnischen Bereich ist es vor allem der niedrigere Betreuungsaufwand für die strom- und techniklos agierenden Passivsammler, der zur Kostensenkung beiträgt. Kosteneinsparnisse bei der Analyse der Sammler sind im Falle der per Thermodesorption extrahierbaren Sammler (MESCO/Silikonstab) gegeben. Dagegen verursachen vor allem die Silicone Sheets einen vergleichsweise hohen Kosten- und Arbeitsaufwand bei der Analyse. Dieser wird jedoch durch das große erfassbare Stoffspektrum teilweise wieder relativiert, so dass eine Kosten-Nutzen-Analyse für diesen Sammlertyp nur bedarfsorientiert und ausgerichtet auf die jeweilige Monitoringanforderung sinnvoll sein kann.

Zusammenfassend ist festzustellen, dass die Passivsammler derzeit für qualitative und halbquantitative Fragestellungen wie zum Beispiel für Trendmonitoring interessante Probenahmeoptionen bieten. Besonders aufgrund der Vielzahl der erfassbaren Stoffe und des hohen Anreicherungsvermögens, das zu niedrigeren Bestimmungsgrenzen und zu einer besseren Nachweisstärke führt, sind sie hier klassischen Probenahmen überlegen. Für quantitative, belastbare Konzentrationsaussagen zum Beispiel zur Grenzwertüberwachung sind die Verfahren gegenwärtig noch nicht robust und präzise genug. Neben weiteren

121

Forschungstätigkeiten besteht die Notwendigkeit der Vereinheitlichung von Rechenmodellen, SOPs und anderen Einflussgrößen.

8. Literaturverzeichnis

- 1. Deutsches_Institut_für_Normung, *Wasserbeschaffenheit Probenahme*, in *Teil 23: Anleitung zur Anwendung von Passivsammlern in Oberflächengewässern (ISO 5667-23:2011); Deutsche Fassung EN ISO 5667-23:2011*. 2011, Beuth Verlag: Berlin. p. 34.
- 2. Rüdel, H., et al., *Positionspapier zum stoffbezogenen Umweltmonitoring. Tl.* 1. 2007.
- 3. European_Commission, *Guidance Document No. 19: Guidance on surface water chemical monitoring under the water framework directive*, in *Common Implementation Strategy for the Water Framework Directive (2000/60/EC)*, G. Hanke, P. Lepom, and P. Quevauviller, Editors. 2009, Office for Official Publications of the European Communities: Luxemburg. p. 132.
- 4. Gorecki, T. and J. Namiesnik, *Passive sampling.* Trac-Trends in Analytical Chemistry, 2002. **21**(4): p. 276-291.
- 5. Vrana, B., et al., *Passive sampling techniques for monitoring pollutants in water.* TrAC - Trends in Analytical Chemistry, 2005. **24**(10): p. 845-868.
- 6. Berrueta, L., B. Gallo, and F. Vicente, *A review of solid phase extraction: Basic principles and new developments.* Chromatographia, 1995. **40**(7): p. 474-483.
- 7. Booij, K., B. Vrana, and J.N. Huckins, *Theory, modelling and calibration of passive samplers used in water monitoring*, in *Comprehensive Analytical Chemistry*, R. Greenwood, G. Mills, and B. Vrana, Editors. 2007. p. 141-169.
- 8. Huckins, J.N., J.D. Petty, and K. Booij, *Monitors of Organic Chemicals in the Environment Semipermeable Membrane Devices*. 2006: Springer. 223.
- 9. Smedes, F., Chapter 19 Monitoring of chlorinated biphenyls and polycyclic aromatic hydrocarbons by passive sampling in concert with deployed mussels, in Comprehensive Analytical Chemistry, R. Greenwood, G. Mills, and B. Vrana, Editors. 2007, Elsevier. p. 407-448.
- Adams, R.G., et al., Polyethylene Devices: Passive Samplers for Measuring Dissolved Hydrophobic Organic Compounds in Aquatic Environments. Environmental Science & Technology, 2007. 41(4): p. 1317-1323.
- 11. Vrana, B. and G. Schüürmann, *Calibrating the uptake kinetics of semipermeable membrane devices in water: Impact of hydrodynamics.* Environmental Science and Technology, 2002. **36**(2): p. 290-296.
- Huckins, J.N., et al., Determination of Uptake Kinetics (Sampling Rates) by Lipid-Containing Semipermeable Membrane Devices (SPMDs) for Polycyclic Aromatic Hydrocarbons (PAHs) in Water. Environmental Science & Technology, 1999. 33(21): p. 3918-3923.
- Booij, K., H.M. Sleiderink, and F. Smedes, Calibrating the uptake kinetics of semipermeable membrane devices using exposure standards. Environmental Toxicology And Chemistry, 1998. 17(7): p. 1236-1245.
- 14. Booij, K., et al., *Temperature-Dependent Uptake Rates of Nonpolar Organic Compounds by Semipermeable Membrane Devices and Low-Density Polyethylene Membranes.* Environmental Science & Technology, 2002. **37**(2): p. 361-366.
- 15. Mills, G.A., et al., *Trends in monitoring pharmaceuticals and personal-care products in the aquatic environment by use of passive sampling devices.* Analytical And Bioanalytical Chemistry, 2007. **387**(4): p. 1153-1157.
- 16. Soedergren, A., Solvent-filled dialysis membranes simulate uptake of pollutants by aquatic organisms. Environmental Science & Technology, 1987. **21**(9): p. 855-859.
- 17. R.P., B. and J. Pawliszyn, *The application of chemically modified fused silica fibers in the extraction of organics from water matrix samples and their rapid transfer to capillary columns.* Water Quality Research Journal of Canada, 1989. **24**(1): p. 179-191.

- 18. Arthur, C.L. and J. Pawliszyn, *Solid phase microextraction with thermal desorption using fused silica optical fibers.* Analytical Chemistry, 1990. **62**(19): p. 2145-2148.
- 19. Huckins, J.N., J.D. Petty, and K. Booij, *Monitors of Organic Chemicals in the Environment*. 2006. 223.
- 20. Hofelt, C.S., Use of Artificial Substrates to Monitor Organic Contaminants in the Aquatic Environment. 1998: North Carolina State University.
- 21. Booij, K., et al., *Passive sampling of organic contaminants in the water phase*. Report from the Netherlands Institute for Sea Research: NIOZ. Vol. 5. 2000: Report from the Netherlands Institute for Sea Research: NIOZ. 2000-5.
- 22. Lefkovitz L, C.E., McElroy N, in *Poster at 17th Annual Meeting of the Society of Environmental Toxicology and Chemistry*. 1996: Washington, DC, USA.
- Müller, J., et al., Partitioning of polycyclic aromatic hydrocarbons in the polyethylene/water system. Fresenius' Journal of Analytical Chemistry, 2001. 371(6): p. 816-822.
- 24. Alvarez, D.A., et al., Environ. Toxicol. Chem., 2004. 23: p. 1640.
- 25. Alvarez, D.A., Guidelines for the use of the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS) in environmental monitoring studies, in Water Quality Book 1, Collection of Water Data by Direct Measurement. 2010, U.S. Geological Survey. p. 28.
- 26. Li, H., P.A. Helm, and C.D. Metcalfe, Sampling in the Great Lakes for pharmaceuticals, personal care products, and endocrine-disrupting substances using the passive polar organic chemical integrative sampler. Environmental Toxicology And Chemistry, 2010. **29**(4): p. 751-762.
- 27. University_of_Portsmouth. *Chemcatcher-Homepage*. 2011 [cited 2012 17.04.2012]; Available from: <u>http://www.port.ac.uk/research/chemcatcher</u>.
- 28. Kingston, J.K., et al., *Development of a novel passive sampling system for the timeaveraged measurement of a range of organic pollutants in aquatic environments.* Journal of Environmental Monitoring, 2000. **2**(5): p. 487-495.
- 29. Vrana, B., et al., Performance optimisation of a passive sampler for monitoring hydrophobic organic pollutants in water. Journal of Environmental Monitoring, 2005.
 7(6): p. 612-620.
- 30. Gruber, A.D., et al., *Exhaustive soxhlet extraction for the complete removal of residual compounds to provide a nonleaching silicone elastomer.* Journal of Biomedical Materials Research, 2000. **53**(5): p. 445-448.
- 31. Schäfer, R.B., et al., Using silicone passive samplers to detect polycyclic aromatic hydrocarbons from wildfires in streams and potential acute effects for invertebrate communities. Water Research, 2010. **44**(15): p. 4590-4600.
- 32. Bauer, U., et al. *Comparison of PDMS passive samplers and fish tissue extraction to determine pesticide concentrations in water.* 2008: Department of Environment & Climate Change NSW.
- 33. Wennrich, L., et al., *Development of an integrative passive sampler for the monitoring of organic water pollutants.* Journal of Environmental Monitoring, 2003. **5**(5): p. 813-822.
- 34. Popp, P., et al., *Passivsammler zur membrankontrollierten Extraktion gelöster* organischer Substanzen im Wasser, D.P.-u. Markenamt, Editor. 2003: Deutschland.
- 35. van Pinxteren, M., A. Paschke, and P. Popp, *Silicone rod and silicone tube sorptive extraction.* Journal of Chromatography A, 2010. **1217**(16): p. 2589-2598.
- Allan, I.J., et al., *Field Performance of Seven Passive Sampling Devices for Monitoring of Hydrophobic Substances.* Environmental Science & Technology, 2009.
 43(14): p. 5383-5390.
- 37. Zabiegała, B., et al., *Passive sampling as a tool for obtaining reliable analytical information in environmental quality monitoring.* Analytical and Bioanalytical Chemistry, 2010. **396**(1): p. 273-296.
- 38. Schulze, T., G. Streck, and P. A., *Sampling and Conservation*, in *Treatise on Water Science*, P. Wilderer, Editor. 2011, Academic Press: Oxford. p. 132-152.

- 39. Allan, I.J., et al., *Effect of sampler material on the uptake of PAHs into passive sampling devices.* Chemosphere, 2010. **79**(4): p. 470-475.
- 40. Rusina, T.P., et al., *Polymer selection for passive sampling: A comparison of critical properties.* Chemosphere, 2007. **68**(7): p. 1344-1351.
- 41. Prokeš, R., B. Vrana, and J. Klánová, *Levels and distribution of dissolved* hydrophobic organic contaminants in the Morava river in Zlín district, Czech Republic as derived from their accumulation in silicone rubber passive samplers. Environmental Pollution, 2012. **166**(0): p. 157-166.
- 42. Yates, K., et al., *Passive sampling: partition coefficients for a silicone rubber reference phase.* Journal of Environmental Monitoring, 2007. **9**(10): p. 1116-1121.
- 43. Stephens, B.S., et al., *Aquatic passive sampling of herbicides on naked particle loaded membranes: Accelerated measurement and empirical estimation of kinetic parameters.* Environmental Science and Technology, 2005. **39**(22): p. 8891-8897.
- 44. Vrana, B., A. Paschke, and P. Popp, *Calibration and field performance of membraneenclosed sorptive coating for integrative passive sampling of persistent organic pollutants in water.* Environmental Pollution, 2006. **144**(1): p. 296-307.
- 45. Mueller, J., et al., *Partitioning of polycyclic aromatic hydrocarbons in the polyethylene/water system.* Fresenius' Journal of Analytical Chemistry, 2001. **371**(6): p. 816-822.
- 46. Smedes, F. Video that shows how to mount sheets on the sampler 2006 [cited 2012 18.04.2012]; Available from:
 - http://www.passivesampling.net/Movie%20PSTS_0001.wmv.
- 47. Paschke, A., et al., *Rapid semi-continuous calibration and field test of membraneenclosed silicone collector as passive water sampler.* Journal of Chromatography A, 2006. **1124**(1-2): p. 187-195.
- 48. Bundesanstalt_für_Gewässerkunde. *Informationsplattform Undine*. 2007; Available from: undine.bafg.de.
- 49. Petersen, J., Passivsammler zur zeitintegrierten Analyse von organischen Wasserinhaltsstoffen, in Institut für Chemie, Lebensmittelchemie und Umweltchemie.
 2010, Martin-Luther-Universität Halle-Wittenberg: Halle. p. 120.
- 50. Schröder, A., *Silikonmaterial als Passivsammler dür polybromierte Diphenylether in Gewässern*, in *Institut für Organische Chemie*. 2009, Technische Universität Bergakademie Freiberg: Freiberg. p. 135.
- 51. Gunold, R., et al., *Calibration of MESCO and bare Silicone Rod passive samplers for the determination of organic contaminants in water.* in preparation, 2013.
- 52. O'Brien, D.S., B. Chiswell, and J.F. Mueller, *A novel method for the in situ calibration of flow effects on a phosphate passive sampler.* Journal of Environmental Monitoring, 2009. **11**(1): p. 212-219.
- 53. O'Brien, D., M. Bartkow, and J.F. Mueller, *Determination of deployment specific chemical uptake rates for SDB-RPD Empore disk using a passive flow monitor (PFM).* Chemosphere, 2011. **83**(9): p. 1290-1295.
- 54. Mazzella, N., et al., *Evaluation of the Use of Performance Reference Compounds in an Oasis-HLB Adsorbent Based Passive Sampler for Improving Water Concentration Estimates of Polar Herbicides in Freshwater.* Environmental Science & Technology, 2010. **44**(5): p. 1713-1719.
- 55. Huckins, J.N., et al., *Lipid-containing semipermeable membrane devices for monitoring organic contaminants in water.* Environmental Science & Technology, 1993. **27**(12): p. 2489-2496.
- 56. Söderström, H.S. and P.-A. Bergqvist, *Passive Air Sampling Using Semipermeable Membrane Devices at Different Wind-Speeds in Situ Calibrated by Performance Reference Compounds.* Environmental Science & Technology, 2004. **38**(18): p. 4828-4834.
- 57. Gouin, T., et al., *Passive and Active Air Samplers as Complementary Methods for Investigating Persistent Organic Pollutants in the Great Lakes Basin.* Environmental Science & Technology, 2005. **39**(23): p. 9115-9122.

- 58. Booij, K., et al., *Air–water distribution of hexachlorobenzene and 4,4'-DDE along a North–South Atlantic transect.* Marine Pollution Bulletin, 2007. **54**(6): p. 814-819.
- 59. Huckins, J.N., *Guide for the use of SPMDs as samplers of waterborne hydrophobic organic contaminants*, in *API Publication 4690*. 2002, American Petroleum Institute: Washington, DC.
- 60. Rusina, T.P., et al., *Calibration of Silicone Rubber Passive Samplers: Experimental and Modeled Relations between Sampling Rate and Compound Properties.* Environmental Science & Technology, 2010. **44**(1): p. 362-367.
- 61. Arp, H.P.H., S. Endo, and K.-U. Goss, *Comment on "Assessment of PDMS-Water Partition Coefficients: Implications for Passive Environmental Sampling of Hydrophobic Compounds".* Environmental Science & Technology, 2010. **44**(22): p. 8787-8788.
- 62. Sprunger, L., et al., J. Chromatogr., A, 2007. **1175**(2): p. 162.
- 63. (ACD/Labs), A.C.D., et al., ACD/ADME Suite, ABSOLV Module. 1996-2012.
- 64. Chemistry, U.D.o.E. *ChemProp 5.2.4.* 2011; Available from: <u>http://www.ufz.de/index.php?en=6738</u>.
- 65. Lohmann, R., *Critical Review of Low-Density Polyethylene Partitioning and Diffusion Coefficients for Trace Organic Contaminants and Implications for Its Use As a Passive Sampler.* Environmental Science & Technology, 2011. **46**(2): p. 606-618.
- 66. Abraham, M.H., A. Ibrahim, and A.M. Zissimos, *Determination of sets of solute descriptors from chromatographic measurements.* Journal of Chromatography A, 2004. **1037**(1-2): p. 29-47.
- 67. Kipka, U. and D.M. Di Toro, A linear solvation energy relationship model of organic chemical partitioning to particulate organic carbon in soils and sediments. Environmental Toxicology And Chemistry, 2011. **30**(9): p. 2013-2022.
- 68. Ni, N. and S.H. Yalkowsky, *Prediction of Setschenow constants*. International Journal of Pharmaceutics, 2003. **254**(2): p. 167-172.
- 69. Paschke, A., J. Brümmer, and G. Schüürmann, *Silicone rod extraction of pharmaceuticals from water*. Analytical and Bioanalytical Chemistry, 2007. **387**: p. 1417-1421.
- 70. (ACD/Labs), A.C.D., et al., ACD/ADME Suite, pKa Module. 1996-2012.
- 71. Smedes, F., et al., *Polymer-Water Partition Coefficients of Hydrophobic Compounds for Passive Sampling: Application of Cosolvent Models for Validation.* Environmental Science & Technology, 2009. **43**(18): p. 7047-7054.
- 72. Steck, W., *Harmonisierter Leitfaden für die Validierung von Analysenmethoden durch Einzellaboratorien.* Angewandte Chemie, 2006. **118**(12): p. 2019-2034.
- 73. Taverniers, I., M. De Loose, and E. Van Bockstaele, *Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance.* TrAC Trends in Analytical Chemistry, 2004. **23**(8): p. 535-552.
- 74. Wellmitz, J. and M. Gluschke, *Leitlinie zur Methodenvalidierung*, in *UBA-Text*. 2005: Dessau-Roßlau. p. 51.
- 75. Ramsey, M.H. and S.L. Ellison, *Eurachem/EUROLAB/CITAC/Nordtest/AMC Guide: Measurement uncertainty arising from sampling: a guide to methods and approaches,* in *Eurachem.* 2007.
- 76. Gonzalez, C., et al., *Validation procedure for existing and emerging screening methods.* TrAC Trends in Analytical Chemistry, 2007. **26**(4): p. 315-322.
- 77. Allan, I.J., et al., A "toolbox" for biological and chemical monitoring requirements for the European Union's Water Framework Directive. Talanta, 2006. **69**(2): p. 302-322.
- 78. Gros, M., M. Petrović, and D. Barceló, *Development of a multi-residue analytical methodology based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters.* Talanta, 2006. **70**(4): p. 678-690.
- 79. Miège, C., et al., An in situ intercomparison exercise on passive samplers for monitoring metals, polycyclic aromatic hydrocarbons and pesticides in surface waters. TrAC Trends in Analytical Chemistry, 2012. **36**(0): p. 128-143.

- 80. RECETOX, R.C.f.T.C.i.t.E.-. Application of passive sampling techniques for monitoring pollutants in the aquatic environment. 2012 19.06.2012]; Available from: http://www.recetox.muni.cz/index-en.php?pg=news&aid=241.
- 81. Vrana, B., et al., *NORMAN Interlaboratory study (ILS) on passive sampling of emerging pollutants*. 2012, NORMAN Network of reference laboratories and related organisations for monitoring and bio-monitoring of emerging environmental pollutants.
- 82. ter Laak, T.L., F.J.M. Busser, and J.L.M. Hermens, *Poly(dimethylsiloxane) as Passive* Sampler Material for Hydrophobic Chemicals: Effect of Chemical Properties and Sampler Characteristics on Partitioning and Equilibration Times. Analytical Chemistry, 2008. **80**(10): p. 3859-3866.
- 83. Bao, L.-J., J. You, and E.Y. Zeng, *Sorption of PBDE in low-density polyethylene film: Implications for bioavailability of BDE-209.* Environmental Toxicology And Chemistry, 2011. **30**(8): p. 1731-1738.
- 84. Booij, K., et al., *Little effect of excessive biofouling on the uptake of organic contaminants by semipermeable membrane devices.* Chemosphere, 2006. **65**(11): p. 2485-2492.
- 85. Vrana, B., et al., *Field performance of the Chemcatcher passive sampler for monitoring hydrophobic organic pollutants in surface water.* Journal of Environmental Monitoring, 2010. **12**(4): p. 863-872.
- 86. Allan, I.J., et al., *Passive sampling for target and nontarget analyses of moderately polar and nonpolar substances in water.* Environmental Toxicology And Chemistry, 2013. **32**(8): p. 1718-1726.
- 87. Prokeš, R., et al., *Calibration of passive samplers of hydrophobic organic compounds in water: assessment of critical issues in experimental design, data interpretation and field application.* Fresenius Environmental Bulletin, 2010. **19**(12): p. 2812-2822.

A. Anhang

- A-1. Methoden
 - A-1.1 Anleitung zur Herstellung von Gipskartuschen zur Erfassung der in-situ-

Fließgeschwindigkeit

- A-1.2 Arbeitsanleitungen zu Reinigung und Präparation der Sammler vor der Ausbringung
 - A-1.2.1 LDPE-Streifen
 - A-1.2.2 Silicone Sheets
 - A-1.2.3 Apolare Chemcatcher-Konfiguration
 - A-1.2.4 MESCO
 - A-1.2.5 Silikonstab
 - A-1.2.6 Polare Chemcatcher-Konfiguration
- A-1.3 Arbeitsanleitungen zu Clean-up und Extraktion der Sammelphasen
 - A-1.3.1 LDPE-Streifen
 - A-1.3.2 Silicone Sheets
 - A-1.3.3 Apolare Chemcatcher-Konfiguration
 - A-1.3.4 Polare Chemcatcher-Konfiguration
- A-1.4 Analytik von aquatischen Stichproben
 - A-1.4.1 Wasseranalytik am BSH
 - A-1.4.2 Wasseranalytik mit dem PDMS-Twister® am UFZ
- A-1.5 Eingesetzte Analyseverfahren
 - A-1.5.1 GC/MS-Verfahren am UFZ
 - A-1.5.2 LC-MS-Verfahren am UFZ
 - A-1.5.3 GC-MS/MS-Verfahren am BSH
 - A-1.5.4 LC-MS/MS-Verfahren am BSH
- A-1.6 c_{TWA} -Berechnung nach Rucina
- A-2. Tabellen

A-2.1 Tabellen physiko-chemische Parameter, K_{sw} -Werte und Sammelraten

Tabelle A-2.1.1: Verwendete Abrahamparameter (LSER-Parameter) der Zielanalyten, der internen Standards (IS) und PRC

Tabelle A-2.1.2: Physikochemische Parameter der Zielanalyten, der internen Standards (IS) und der PRC

Tabelle A-2.1.3:ExperimentelleSilikon-Wasser-Verteilungskoeffizienten K_{sw} derZielsubstanzen und PRC in kg/L

Tabelle A-2.1.4: Berechnete Silikon-Wasser-Verteilungskoeffizienten der Zielsubstanzen und PRC in kg/L

Tabelle A-2.1.5: Experimentelle LDPE-Wasser-Verteilungskoeffizienten der Zielsubstanzen und PRCs in kg/L

Tabelle A-2.1.6: Berechnete LDPE-Wasser-Verteilungskoeffizienten der Zielsubstanzen und PRCs in kg/L

Tabelle A-2.1.7: verwendete Sammelraten R_s ausgewählter Zielanalyten aus Kalibrierversuchen in L/d für MESCO und Silikonstab

Tabelle A-2.1.8:VerwendeteSammelraten R_s ausgewählterZielanalytenausunterschiedlichen Quellen für polaren Chemcatcher

Tabelle A-2.1.9: Verwendete Sammelraten R_s ausgewählter Zielanalyten aus verschiedenen Quellen für POCIS

A-2.2 Zielsubstanzen, Standardlösungen, Bestimmungsgrenzen

Tabelle A-2.2.1: Abkürzungen und Herkunftsangaben der unpolaren Zielsubstanzen, IS und PRCs

Tab. A-2.2.2: Abkürzungen und Herkunftsangaben der polaren Zielsubstanzenund zugeordneten IS

Tabelle A-2.2.3: Zusammensetzung der IS-Lösung für unpolare Analyten (GC-MS/MS-Analytik)

Tabelle A-2.2.4: Zusammensetzung der IS-Lösung für polare Analyten (LC-MS/MS-Analytik)

Tabelle A-2.2.5: Zusammensetzung der PRC-Lösung für unpolare Stoffe (GC-MS/MS-Analytik)

Tabelle A-2.2.6: Bestimmungsgrenzen für GC-MS/MS (Silicone Sheets und LDPE-Streifen) bezogen auf den Mess-Extrakt (Kalibriergeradenmethode; DIN 32645)

Tabelle A-2.2.7: Bestimmungsgrenzen für LC-MS/MS bezogen auf den Mess-Extrakt

Tabelle A-2.2.8: Zusammensetzung der Dotierlösung für unpolare Analyten (GC-MS/MS-Analytik) und für polare Analyten (LC-MS/MS-Analytik)

Tabelle A-2.2.9: relative Wiederfindungsraten in Prozent in dotierten Matrix-Proben für die GC-MS/MS-Analytik für Silicone Sheets und LDPE-Streifen sowie MESCO und Silikonstab über das gesamte Aufarbeitungsverfahren.

Tabelle A-2.2.10: relative Wiederfindungsraten in für die GC-MS/MS Analytik für die Aufarbeitungsschritte a) Umlösung mittels Parallelverdamper sowie b) für die C₁₈- und Kieselgel-Cleanups

Tabelle A-2.2.11: relative Wiederfindungsraten (WFR) in dotierten Matrix-Proben für die LC-MS/MS Analytik für Silikonsammler und LDPE-Streifen über das gesamte Aufarbeitungsverfahren Tabelle A-2.2.12: relative Wiederfindungsraten (WFR) in dotierten Wasserproben für die GC-MS Analytik mit Probenaufgabe durch Thermodesorption

Tabelle A-2.2.13: Minimale und maximale Zielstoffwerte (%) im Verhältnis zu exponierten Sammlern in Transportblank-Proben verschiedener Sammlertypen

Tabelle A-2.2.14: Wiederhopräzision der Silicone Sheets.

Tabelle A-2.2.15: Wiederhopräzision der LDPE-Streifen.

Tabelle A-2.2.16: Simulation des Einflusses der relativen Unsicherheiten von Masse und Sammelrate auf die relative Standardabweichung der zeitgemittelte Konzentration

Tabelle A-2.2.17: Prozentuale Anteile der Einzelvarianzen an der Gesamtvarianz der zeitgemittelte Konzentration (linear-integrativer Fall)

Tabelle A-2.2.18: Simulation des Einflusses der relativen Unsicherheiten von Masse, Sammler-Wasser-Verteilungskoeffizient und Gesamt-Austauschrate (einzeln und kombiniert) auf die relative Standardabweichung der zeitgemittelte Konzentration im Wasser

Tabelle A-2.2.19: Prozentuale Anteile der Einzelvarianzen an der Gesamtvarianz der zeitgemittelten Durchschnittskonzentration im Wasser (nicht-linearer Fall)

Tabelle A-2.2.20: Simulation des Einflusses der relativen Unsicherheiten von Masse und Sammler-Wasser-Verteilungskoeffizient (auf die relative Standardabweichung der Gleichgewichtskonzentration im Wasser für einen typischen Parametersatz.

Tabelle A-2.2.21: Prozentuale Anteile der Einzelvarianzen an der Gesamtvarianz der Gleichgewichtskonzentration im Wasser

A-2.3: Zusammenfassung der Analytkonzentrationen in den verschiedenen Sammlertypen

Tabelle A-2.3.1: Binnengewässer – Zusammenfassung der Analytkonzentrationen in ng/15 mm Silikonstab – MESCO

Tabelle A-2.3.2: Übergangsgewässer – Zusammenfassung der Analytkonzentrationen in ng/15 mm Silikonstab – MESCO

Tabelle A-2.3.3: Binnengewässer – Zusammenfassung der Analytkonzentrationen in ng/15 mm Silikonstab – Silikonstab

Tabelle A-2.3.4: Übergangsgewässer – Zusammenfassung der Analytkonzentrationen in ng/15 mm Silikonstab – Silikonstab

Tabelle A-2.3.5: Binnengewässer – Zusammenfassung der Analytkonzentrationen in ng je 6 x 5,5 cm x 9 cm x 500 μ m Silicone Sheets

Tabelle A-2.3.6: Übergangsgewässer – Zusammenfassung der Analytkonzentrationen in ng je 6 x 5,5 cm x 9 cm x 500 µm Silicone Sheets

Tabelle A-2.3.7: Marine Gewässer – Zusammenfassung der Analytkonzentrationen in ng je 6 x 5,5 cm x 9 cm x 500 µm Silicone Sheets

Tabelle A-2.3.8: Binnengewässer – Zusammenfassung der Analytkonzentrationen in ng je 100 mm x 2,8 cm x 100 µm LDPE-Streifen Tabelle A-2.3.9: Übergangsgewässer – Zusammenfassung der Analytkonzentrationen in ng je 100 mm x 2,8 cm x 100 µm LDPE-Streifen

Tabelle A-2.3.10: Marine Gewässer – Zusammenfassung der Analytkonzentrationen in ng je 100 mm x 2,8 cm x 100 µm LDPE-Streifen

A-2.4 Analytkonzentrationen in den verschiedenen Sammlertypen – Binnengewässer

Tabelle A-2.4.1: Dessau (Mulde) – Analytkonzentrationen in ng je 15 mm Siliconezylinder (normalisiert auf 50 mg) – MESCO

Tabelle A-2.4.2: Dessau (Mulde) – Analytkonzentrationen in ng je 15 mm Silikonstab (normalisiert auf 50 mg) – Silikonstab

Tabelle A-2.4.3: Dessau (Mulde) – Analytkonzentrationen in ng je 6 x 5,5 cm x 9 cm x 500 μ m Silicone Sheets.

Tabelle A-2.4.4: Dessau (Mulde) – Analytkonzentrationen in ng je 100 mm x 2,8 cm x 100 µm LDPE-

Tabelle A-2.4.5: Magdeburg (Elbe) – Analytkonzentrationen in ng je 15 mm Silikonstab (normalisiert auf 50 mg) – MESCO

Tabelle A-2.4.6: Magdeburg (Elbe) – Analytkonzentrationen in ng je 15 mm Silikonstab (normalisiert auf 50 mg) – Silikonstab

Tabelle A-2.4.7: Magdeburg (Elbe) – Analytkonzentrationen in ng je 6 x 5,5 cm x 9 cm x 500 μ m Silicone Sheets

Tabelle A-2.4.8: Magdeburg (Elbe) – Analytkonzentrationen in ng je 100 mm x 2,8 cm x 100 µm LDPE-Streifen

A-2.5 Analytkonzentrationen in den verschiedenen Sammlertypen – Übergangs-, Küstengewässer und Hochsee

Tabelle A-2.5.1: Hamburg (Elbe) – Analytkonzentrationen in ng je 15 mm Silikonstab (normalisiert auf 50 mg) – MESCO/Silikonstab

Tabelle A-2.5.2: Hamburg (Elbe) – Analytkonzentrationen in ng je 6 x 5,5 cm x 9 cm x 500 μ m Silicone Sheets

Tabelle A-2.5.3: Hamburg (Elbe) – Analytkonzentrationen in ng je 100 mm x 2,8 cm x 100 μ m LDPE-Streifen

Tabelle A-2.5.4: Fehmarnsund (Ostsee) - Analytkonzentrationen in ng je 6 x 5,5 cm x 9 cm x 500 μ m Silicone Sheets

Tabelle A-2.5.5: Fehmarnsund (Ostsee) – Analytkonzentrationen in ng je 100 mm x 2,8 cm x 100 µm LDPE-Streifen (

Tabelle A-2.5.6: Helgoland (Nordsee) - Analytkonzentrationen in ng je 6 x 5,5 cm x 9 cm x 500 μ m Silicone Sheets

Tabelle A-2.5.7: Helgoland (Nordsee) – Analytkonzentrationen in ng je 100 mm x 2,8 cm x 100 µm LDPE-Streifen

A-2.6: Analytkonzentrationen in den Wasserproben Tabelle A-2.6.1: Dessau (Mulde) – Analytkonzentrationen in den Wochenmischproben Tabelle A-2.6.2: Dessau (Mulde) – Analytkonzentrationen in den Schöpfproben Tabelle A-2.6.3: Magdeburg (Elbe) – Analytkonzentrationen in den Wochenmischproben. Tabelle A-2.6.4: Magdeburg (Elbe) – Analytkonzentrationen in den Schöpfproben Tabelle A-2.6.5: Übergangsgewässer, Elbe bei Hamburg) – Zusammenfassung der Analytkonzentrationen in den Wasserproben (Untersuchungszeitraum 2010-2011 Tabelle A-2.6.6: Küstengewässer (Fehmarnsund, Ostsee) – Zusammenfassung der Analytkonzentrationen in den Wasserproben (Untersuchungszeitraum 2009-2011) Tabelle A-2.6.7: Hochsee (Helgoland, Nordsee) Zusammenfassung der Analytkonzentrationen in den Wasserproben (Untersuchungszeitraum: 2010-2011) A-2.7: Berechnete zeitgemittelte Durchschnittskonzentrationen – Binnengewässer Tabelle A-2.7.1: Dessau (Mulde) - zeitgemittelte Durchschnittskonzentrationen **C**_{TWA} unterschiedlicher Berechnungsmodelle MESCO Tabelle A-2.7.2: Dessau (Mulde) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle Silikonstab Tabelle A-2.7.3: Dessau (Mulde) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle Silicone Sheets Tabelle A-2.7.4: Dessau (Mulde) - zeitgemittelte Durchschnittskonzentrationen **C**TWA unterschiedlicher Berechnungsmodelle LDPE-Streifen Tabelle A-2.7.5: Magdeburg (Elbe) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle MESCO Tabelle A-2.7.6: Magdeburg (Elbe) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle Silikonstab Tabelle A-2.7.7: Magdeburg (Elbe) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle Silicone Sheets Tabelle A-2.7.8: Magdeburg (Elbe) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle LDPE-Streifen A-2.8: Berechnete zeitgemittelte Durchschnittskonzentrationen Übergangs-, Küstengewässer und Hochsee Tabelle A-2.8.1: Hamburg (Elbe) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle MESCO und Silikonstab Tabelle A-2.8.2: Hamburg (Elbe) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle Silicone Sheets Tabelle A-2.8.3: Kirchenpauerkai zeitgemittelte Hamburg (Elbe) Durchschnittskonzentrationen cTWA unterschiedlicher Berechnungsmodelle LDPE-Streifen

Tabelle A-2.8.4: Fehmarnsund (Ostsee) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle Silicone Sheets

A-2.8.5: Fehmarnsund (Ostsee) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle LDPE

Tabelle A-2.8.6: Helgoland (Nordsee) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle Silicone Sheets

Tabelle A-2.8.7: Helgoland (Nordsee) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle LDPE

A-2.9: Laborvergleichsstudien – Analytkonzentrationen in den verschiedenen Sammlertypen

Tabelle A-2.9.1: AQUA-REF 1 - Pestizide und PAK auf MESCO und Silikonstab in ng/Sammler

Tabelle A-2.9.2: AQUA-REF 2 - Pestizide auf MESCO, Silikonstab (beide ng/15 mm Silikonstab) und polare Chemcatcher (ng/ SDB-RPS Empore disk)

Tabelle A-2.9.3: AQUA-REF 3 - PAK auf unpolare Chemcatcher

Tabelle A-2.9.4: NORMAN 1 - Pharmaka und Pestizide auf polare Chemcatcher

Tabelle A-2.9.5: NORMAN 3 – PBDE auf MESCO, Silikonstab (ng/15 mm Silikonstab), eigene und vom Veranstalter bereitgestellte Silicone Sheets (ng/3 Sheets), LDPE (ng/100 mm LDPE) und Chemcatcher (ng/C₁₈ Empore disk)

A-2.10: Laborvergleichsstudien – Zeitgemittelte Durchschnittswerte der Wasserkonzentrationen

Tabelle A-2.10.1: Zeitgemittelte Durchschnittskonzentrationen c_{TWA} in ng/L und Vergleich mit Schöpfproben

Tabelle A-2.10.2: Zeitgemittelte Durchschnittskonzentrationen c_{TWA} in ng/L und Vergleich mit Schöpfproben

Tabelle A-2.10.3: Zeitgemittelte Durchschnittskonzentrationen c_{TWA} in ng/L und Vergleich mit Schöpfproben

Tabelle A-2.10.4: Mit Gipskartuschen abgeschätzte durchschnittliche Fließgeschwindigkeit v_{PFM} (cm/s)

Tabelle A-2.10.5: NORMAN 1 - Zeitgemittelte Durchschnittskonzentrationen c_{TWA} in ng/L (mit PFM ermittelte durchschnittliche Fließgeschwindigkeit v_{PFM} = 2,61 cm/s)

Tabelle A-2.10.6:NORMAN3-ZeitgemittelteDurchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle der verschiedenen Sammler (pg/L)

A-2.11: Diskussion der Ergebnisse

Tabelle A-2.11.1: Durchschnittliche Standardabweichung der c_{TWA} -Werte (konventionelles Berechnungsmodell) von MESCO, Silikonstab, Silicone Sheet und LDPE-Streifen

Tabelle A-2.11.2: Durchschnittliche Abweichung zwischen auf experimenteller (EXP) und berechneter (LSER/REG) Sammelrate basierender c_{TWA} in %

Tabelle A-2.11.3: Quotienten von c_{TWA} aus Passivsammler (ohne 0 ng/L), berechnet mit experimentellen Sammelraten (EXP), und Mittelwert der zeitgleichen Wochenmischproben c_{WM}

Tabelle A-2.11.4: Quotienten von c_{TWA} aus Passivsammler (ohne 0 ng/L), berechnet mit berechneten Sammelraten (LSER/REG), und Mittelwert der zeitgleichen Wochenmischproben c_{WM}

Tabelle A-2.11.5: Quotient von c_{TWA} aus Passivsammler, berechnet mit experimentellen Sammelraten (EXP), und Mittelwert der zeitgleichen Schwebstoffproben c_{WP}

Tabelle A-2.11.6: Quotient von c_{TWA} aus Passivsammler, berechnet mit berechneten Sammelraten (LSER/REG), und Mittelwert der zeitgleichen Schwebstoffproben c_{WP}

A-3. Abbildungen

Abbildung A-3.1: Silikonplatten in Halterung.

Abbildung A-3.2: MESCO Gitter mit Chemcatcher (2. Generation).

Abbildung A-3.3: Chemcatcher (3. Generation) vor und nach der Ausbringung.

Abbildung A-3.4: Chemcatcher in SPMD-Käfig.

Abbildung A-3.5: Ausbringungsbereiter MESCO sowie schematische Darstellung des

MESCOs Abbildung A-3.6: Geöffnetes Gitter mit MESCO und Silikonstab.

Abbildung A-3.7: LDPE-Membran zugeschnitten und in Sammlervorrichtung.

Abbildung A-3.8: Rohmaterial LDPE-Schlauch und Silikonstab.

Abbildung A-3.9: Probenahmestellen Binnengewässer

Abbildung A-3.10: Mischprobennehmer.

Abbildung A-3.11: Extraktion von Wasserproben mit Twister®.

Abbildung A-3.12: Lage der Messstellen an Übergangs- und Küstengewässern sowie in der Hochsee.

Abbildung A-3.13: Heben der Seezeichentonne Fehmarnsund 3 mit Kette und Ankerstein mittels Kran.

Abbildung A-3.14: Probenahmestelle Kirchenpauerkai, Hamburger Hafen.

Abbildung A-3.15: Prototyp eines hochseetauglichen Sammlerkorbs für Strömungstests vor Helgoland.

Abbildung A-3.16: Gasdichter Transportbehälter für Passivsammlerkorb (Prototyp).

Abbildung A-3.17: Edelstahlkorb nach Vorbild der Arbeitsgruppe von F. Smedes.

Abbildung A-3.18: Gipskartuschen zur Ermittlung der Fließgeschwindigkeit vor dem Ausbringen.

Abbildung A-3.19: Gipskartuschen nach der Verwendung.

Abbildung A-3.20: Glasrohr zur Trocknung der LDPE-Schlauchstücke.

Abbildung A-3.21: Konditionierofen zum Ausheizen von Twister® und Silikonstäben.

A-1 Methoden

A-1.1 Anleitung zur Herstellung von Gipskartuschen zur Erfassung der in-situ-Fließgeschwindigkeit

Gipskartuschen werden folgendermaßen hergestellt [1]:

160 g KFO-Dentalgips 30:100 (Walter Stöber, Gotha, Deutschland) wird in 80 mL bidestilliertes Wasser eingerührt und sofort in einen 120 mL-Plastikzylinder (Maße: 42x105 mm; Sarstedt AG & CO., Nürnbrecht, Deutschland) gegossen. Der Plastikzylinder wird sofort verschlossen und an seiner Rückseite mit einer Schlaufe zur Befestigung am Probenort versehen (Abbildung A-3.18). Der ausgewogene Zylinder wird erst am Probenort geöffnet und sofort nach seiner Einholung wieder verschraubt (um weiteren Gewichtsverlust durch Austrocknen zu verhindern) und im Labor gewogen. Die errechnete Durchschnittsgeschwindigkeit ermöglicht zusammen mit der Temperatur die Wahl der geeigneten Sammelrate.

A-1.2 Arbeitsanleitungen zu Reinigung und Präparation der Sammler vor der Ausbringung

A-1.2.1 LDPE-Streifen

Bei der Aufreinigung und Präparation der LDPE-Streifen wurde eine Vorschrift von Ian Allan (Norwegian Institute for Water Research, Oslo, Norwegen; persönliche Mitteilung) zugrundegelegt. Das LDPE-Material für die LDPE-Streifen (LDPE-Schlauch; 100 µm dick, 2,8 cm breit; Polymersynthesewerk Rheinberg, Rheinberg, Deutschland) wird dabei in 1 m lange Abschnitte geteilt. Danach wird beidseits der Schlauchkante 1 mm Material mit einem Skalpell abgeschnitten, so dass zwei einlagige Einzelstücke mit den Maßen 1 m x 2,5 cm entstehen. Beide Enden der so erhaltenen Membranen werden zur späteren Befestigung zu Schlaufen verschweißt, so dass zwischen den Schweißnähten ein Abstand von 91,4 cm bleibt. Diese Maße entsprechen der durch SPMDs etablierten Standardgröße (1 Yard = 3 Fuß = 36 Zoll = 91,4 cm), die häufig Anwendung findet und die Exposition im Freiland mit vorhandenen SPMD-Käfigen erlaubt. Die zugeschnittenen Streifen werden gewogen. Alle LDPE-Streifen einer Charge sollten die gleiche Länge, Breite und das gleiche Gewicht haben.

Zur Aufreinigung werden die LDPE-Streifen mit Cyclohexan bedeckt und 12 h bei Zimmertemperatur stehengelassen, danach wird das Cyclohexan erneuert und wieder 12 h stehengelassen. Die gereinigten LDPE-Streifen werden im Stickstoffstrom getrocknet, bis keine Lösungsmittelreste mehr vorhanden sind.

Zum Dotieren der LDPE-Streifen mit PRCs wird eine Vorschrift nach Smedes angewendet [2]. Dazu werden 20 LDPE-Streifen übereinandergelegt und locker zusammengerollt, die

entstehende "LDPE-Schnecke" wird dann in eine braune Steilbrustflasche gegeben und mit 125 mL MeOH und 11 mL der PRC-Lösung übergossen. Dann wird vorsichtig für mindestens eine Minute geschwenkt und danach mit 125 mL Milli-Q-Wasser übergossen. Die geschlossene Flasche kommt nun für mindestens 100 h auf einen Orbitalschüttler. Da für die sehr hydrophoben PRCs das Gleichgewicht zwischen Sammlern und Lösung auch nach 100 h wahrscheinlich noch nicht erreicht ist, müssen alle LDPE Streifen einer Messkampagne exakt dieselbe Zeit auf dem Orbitalschüttler verbleiben. Nach dem Dotieren werden sämtliche LDPE-Streifen entnommen und bis zur Ausbringung bei -18°C aufbewahrt.

A-1.2.2 Silicone Sheets

Zuschnitt und Aufreinigung der Silikonsammelphasen wurden in Anlehnung an die "Guidelines for passive sampling of hydrophobic contaminants in water using silicone strip samplers" von Foppe Smedes und Kees Booij (ICES MCWG REPORT 2009) durchgeführt. Für die Sammler werden 30 x 30 cm große Platten Polydimethylsiloxan (PDMS) mit einer Dicke von 0,5 mm benutzt (AlteSilTM Silicone Sheets, translucent, TALC-FREE, 300 x 300 mm; Altec Products Limited, Bude, United Kingdom). Diese werden mit einem Skalpell in 5,5 x 9 cm große Stücke geschnitten und mittels eines Teflon-Edelstahllochers an einem Ende mit einer doppelten Lochung zur Befestigung versehen. Je sechs dieser Stücke ergeben später eine Probe (Sammelphasen-Design übernommen von der Arbeitsgruppe Foppe Smedes (vormals: National Institute for Costal and Marine Management, Netherlands, heute: Deltares Geo-environmental Research Laboratory, Utrecht). Die geschnittenen, gelochten Silikonstücke werden für 7 Tage mit Ethylacetet in Soxhlet-Apparaturen gereinigt, um Verunreinigungen, Rückstände sowie im Silikon vorhandene Oligomere vor der Ausbringung zu entfernen. Letztere können später die Analysenergebnisse beeinträchtigen und zu Schäden an den Analysegeräten führen.

Gereinigte Sheets werden in MeOH überführt und in diesem gelagert.

Zur Dotierung mit PRCs wurden innerhalb des Projektes zwei Verfahren verwandt. Zum einen wurden die Silikon-Sammler mit der entsprechenden Menge der PRC-Lösung in einer Mischung von 50:50 (v/v) MeOH:Milli-Q-Wasser für mindestens 100 h ausgeschüttelt. Daneben wurde eine ältere Dotierungsmethode verwendet, bei der ein entsprechendes Aliquot der PRC-Lösung mittels Hamilton-Spritze direkt auf jedes einzelne Sheet aufgegeben wird. Dieses Vorgehen erlaubt die kurzfristige Herstellung von ausbringungsfertigen Sammlern ohne lange Vorlaufzeiten und ohne lange Lagerungszeiten der dotierten Sammelphasen.

Die dotierten Sammler werden je nach Standort und Trägerkonstruktion im Labor auf Träger montiert oder direkt verpackt. Träger oder Sammelphasen werden in Aluminiumfolie gewickelt, in LDPE-Beutel luftdicht verpackt und so bald wie möglich ausgebracht bzw. bis zur Ausbringung bei -18°C gelagert.

A-1.2.3 Apolare Chemcatcher-Konfiguration

Der Chemcatcher in apolarer Konfiguaration ist mit einer C18 Empore[™] Disk als Sammelphase und einer LDPE-Membran ausgestattet. Im Einzelnen erfolgt der Zusammenbau des Sammlers folgendermaßen [3]:

- 1. Reinigung der Teflon-Einzelteile des Chemcatcher-Gehäuses in der Spülmaschine, danach über Nacht in Aceton einlegen.
- 2. Benötigte Menge C18 Empore[™] Disks über Nacht in MeOH einlegen.
- 3. Je 1 Disk auf 1 Chemcatcher-Unterteil legen.
- Jede Disk tröpfchenweise mit 1 mL Dotierlösung (45:55 n-Oktanol:Aceton mit PRC-Konzentration 0,5 μg/mL) beschicken, darauf achten, dass keine Lösung überläuft; Aceton abdampfen lassen.
- 5. Vorgeschnittene und für 24 h in n-Hexan gereinigte LDPE-Membranen auflegen und Oberteil des Chemcatchers aufschrauben (sicherstellen, dass keine Lufteinschlüsse zurückbleiben).
- 6. Transportdeckel auf den zusammengebauten Sammler setzen und nur leicht anziehen, damit er im Gelände leicht wieder abgeht.
- Sammler in Aluminiumfolie einwickeln und bis zur Ausbringung luftdicht verpackt bei -18°C lagern.

A-1.2.4 MESCO

Für die MESCOs wird ein chemisch gleiches, aber dünneres LDPE-Material als für die LDPE-Streifen verwendet (50 μm dick, 4,5 cm breit; Polymersynthesewerk Rheinberg, Rheinberg, Deutschland). Der LDPE-Schlauch wird in 14 cm lange Stücke geschnitten und die Schlauchstücke genauso wie die LDPE-Streifen für zwei mal 12 h mit frischem Hexan auf einem Orbitalschüttler belassen. Die gereinigten LDPE-Schlauchstücke werden in ein Glasrohr gelegt und im Stickstoffstrom getrocknet, bis keine Lösungsmittelreste mehr vorhanden sind (Abbildung A-3.20).

Beim MESCO werden nur die Silikonstäbe mit PRCs dotiert. Dazu wird das Silikonmaterial (Silikon-Elastomer; Durchmesser: 2 mm; Goodfellow, Bad Nauheim, Deutschland) in 15 mm lange Stücke geschnitten und 3 x 15 min in einem MeOH:Dichlormethan-Gemisch (1:1) im Ultraschallbad gewaschen. Die gewaschenen Silikonstäbe werden dann in einem Konditionierofen von Gerstel bei 280°C im Stickstoffstrom 12 h ausgeheizt. Die ausgeheizten

und im Stickstoffstrom abgekühlten Silikonstäbe werden einzeln in braune 250 µL-Glasvials gelegt, zu denen jeweils 100 µL MeOH hinzugefügt werden. Danach werden 10 µL der PRC-Lösung hinzugegeben, 1 min geschwenkt und danach 100 µL Milli-Q-Wasser. Die Vials werden verschlossen und in einem geeigneten Tray für mindestens 100 h auf einen Orbitalschüttler gestellt. Es ist darauf zu achten, dass alle Silikonstäbe einer Messkampagne über exakt dieselbe Zeitspanne dotiert werden, da die sehr hydrophoben PRCs wahrscheinlich noch kein Gleichgewicht zwischen Silikonpolymer und Dotierlösung erreicht haben.

Bei der Herstellung der MESCOs werden die vorbereiteten LDPE-Schlauchstücke an einem Ende im Abstand von mindestens 1 cm mit einem Haushaltsschweißgerät verschweißt. Danach wird ein dotierter Silikonstab mit einer sauberen Pinzette in den Schlauch geführt und mit einer zweiten Schweißnaht im Abstand von 2 cm (Innenabstand zwischen den Schweißnähten) eingeschlossen. Danach folgt im gleichen Abstand eine nächste Schweißnaht, wobei der Zwischenraum nur mit Luft gefüllt ist. Das Ganze wird wiederholt, bis drei Silikonstäbe in dem LDPE-Schlauchstück verteilt sind (siehe Schema in Abbildung A-3.5).

Der fertig präparierte MESCO wird zwischen beiden Hälften eines geeigneten Ausbringungsgitters gelegt und an den Enden zusätzlich mit Draht gesichert. Das Gitter wird mit Draht oder Kabelbinder verschlossen und bis zur Ausbringung in Alufolie eingeschlagen, luftdicht verpackt und bei -18°C gelagert.

A-1.2.5 Silikonstab

Für den Silikonstab-Passivsammler wird das gleiche Material verwendet wie für den MESCO (Silikon-Elastomer; Durchmesser: 2 mm; Goodfellow, Bad Nauheim, Deutschland), aber in Stücke zu je 80 mm geschnitten und 3 x 15 min in einem MeOH:Dichlormethan-Gemisch (1:1) im Ultraschallbad gewaschen. Die gewaschenen Silikonstäbe werden dann in einem Konditionierofen von Gerstel bei 280°C im Stickstoffstrom 12 h ausgeheizt. Die ausgeheizten Stickstoffstrom abgekühlten Silikonstäbe werden einzeln in und im braune 15 mL-Schraubvials gelegt und 6 mL MeOH zupipettiert. Danach werden 50 µL der PRC-Lösung hinzugegeben, 1 min geschwenkt und danach 6 mL Milli-Q-Wasser. Die Vials werden zugeschraubt für mindestens 100 h auf einen Orbitalschüttler gestellt. Es ist darauf zu achten, dass alle Silikonstäbe einer Messkampagne exakt dieselbe Zeit dotiert werden.

Die Silikonstäbe können in den gleichen Gittern befestigt werden wie die MESCOs, bei gleichzeitiger Ausbringung und Einholung auch nebeneinander in denselben Gittern. Zur zusätzlichen Befestigung werden die Silikonstäbe an beiden Enden mit dünnem Draht durchstochen, welcher am Gitter verknotet wird.

A-1.12

A-1.2.6 Polare Chemcatcher-Konfiguration

Der Chemcatcher in polarer Konfiguration ist mit einer SDB-RPS Empore[™] Disk als Sammelphase und einer Polyethersulfon(PES)-Membran (Pall Supor 200, 0,2 µm dick) ausgestattet. Die Aufreinigung der Sammelphase und der Zusammenbau des Sammlers erfolgt in veränderter Form nach dem Handling protocol ,The polar Chemcatcher® sampling device' der University of Portsmouth, UK [4]:

- 1. Reinigung der Teflon-Sammlerteile in der Spülmaschine, danach über Nacht in Aceton einlegen
- 2. Zuschneiden und Einlegen der PES-Membranen in MeOH für 12 h, danach für 6 h in Milli-Q-Wasser
- 3. SDB-RPS Empore[™] Disks auf das Vakuum-Manifold (3M Empore six station vacuum manifold) legen; Manifold zusammensetzen.
- 4. Je Disk 10 mL Aceton zugeben und mit ca. 3-4 mL/min durch die Disk saugen, danach Disk mittels Vakuum trocken.
- 5. Je Disk 10 mL 2-Propanol zugeben und mit ca. 3-4 mL/min durch die Disk saugen, danach Disk mittels Vakuum trocknen.
- Je Disk 10 mL MeOH zugeben und mit ca. 3-4 mL/min durch die Disk saugen, danach Disk nicht trockensaugen.
- Je Disk 2x10 mL Milli-Q-Wasser zugeben und mit ca. 3-4 mL/min durch die Disk saugen, danach Disk nicht trockensaugen.
- 8. Je 1 Disk auf 1 Chemcatcher-Unterteil aufziehen.
- 9. PES-Membranen ohne Lufteinschluss auf SDB-RPS Empore[™] Disk auflegen und Oberteil des Chemcatchers aufschrauben.
- 10. Transportdeckel auf den zusammengebauten Sammler setzen und locker anziehen.
- 11. Sammler in Aluminiumfolie einwickeln und bis zur Ausbringung luftdicht verpackt bei 4°C im Kühlschrank lagern.

Die polaren Sammelphasen werden nicht mit PRC-Lösungen dotiert.

A-1.3 Arbeitsanleitungen zu Clean-up und Extraktion der Sammelphasen

A-1.3.1 LDPE-Streifen

Auf Basis verschiedener Literaturnachweise sowie den Erfahrungen am UFZ und BSH wurde folgende Vorschrift für die LDPE-Streifen entwickelt:

 LDPE-Streifen aus der Halterung ausbauen. Wenn möglich vor Ort, ansonsten im Labor, unter Zuhilfenahme der stumpfen Rückseite einer Edelstahl-Skalpellklinge vorsichtig reinigen. Dafür wird wenn möglich Wasser des Probenahmeortes verwendet. Die Sammelphasen werden danach mit Kimtech-Tüchern (Kimtech Science, Kimberly-Clark, Reigate, UK) vorsichtig trockengetupft. Die zur Probe gehörenden Transportblanks sind während der Reinigung am gleichen Ort zu exponieren.

- 2. Die LDPE-Membran in kleine Stücke schneiden und mit sauberen Edelstahlpinzetten in eine 500-mL-Steilbrustflasche überführen.
- 100 mL Cyclohexan/Aceton (40:60) sowie den internen Standard f
 ür GC/MS (1 mL) und LC/MS (1 mL) zugeben (Zusammensetzung der Standards siehe Tabelle 5 und Tabelle
 6) und 15 min im Ultraschallbad extrahieren.
- 4. Das Lösungsmittel in eine weitere, saubere 500-mL-Steilbrustflasche dekantieren und Schritt 2 wiederholen.
- 5. Nachspülen des kleingeschnittenen LDPE-Streifens mit weiteren 30 mL Cyclohexan.
- 6. Zum kleingeschnittenen LDPE-Streifen 100 mL MeOH/Aceton (10:90) zugeben und im Ultraschallbad 15 min extrahieren.
- 7. Das Lösungsmittel in die 500-mL-Steilbrustflasche aus Schritt 3 dekantieren und Schritt 5 wiederholen. Den Extrakt ebenfalls in die Steilbrustflasche füllen.
- 8. Nachspülen des kleingeschnittenen LDPE-Streifens mit weiteren 30 mL MeOH/Aceton-Gemisch. LDPE-Streifen danach verwerfen.
- Vereinigte Extrakte 1:1 aliquotieren (f
 ür GC-MS/MS und LC-MS/MS) und beide Aliquote am B
 üchi-Parallel-Verdampfer bis auf ca. 1 mL einengen. B
 üchi-Einstellungen:

Heizplatte: 40°C Umlaufkühlung: 20°C Temperatur des Kühlwassers: 10°C Rotation: 160 U/min Laufzeit gesamt: 105 min

Programmschritte:

Schritt	Absolute Zeit [min]	Druck [mbar]	
1	0	1000	
2	2	500	
3	5	400	
4	40	270	
5	60	250	
6	105	250	

Die weitere Aufarbeitung unterscheidet sich für GC-MS/MS- und LC-MS/MS-Aliquote.

A) GC-MS/MS-Aliquot

A-10. Büchi-Glas mit 40 mL Hexan nachspülen und erneut bis ca. 1 mL einengen.

Büchi-Einstellungen:

Heizplatte: 40°C

Umlaufkühlung: 22°C

Temperatur des Kühlwassers: 10°C

Rotation: 160 U/min

Laufzeit gesamt: 86 min

Programmschritte:

Schritt	Absolute Zeit [min]	Druck [mbar]
1	0	1000
2	12	500
3	25	350
4	41	170
5	86	170

A-11. Extrakt in 1,5-mL-Vial überführen, Spitze des Büchi-Glases mit 0,2 mL Hexan nachspülen und Spüllösung mit dem Extrakt vereinigen.

A-12. Zentrifugieren des Extraktes bei 3000 U/min für 3 min und Überstand abnehmen

A-13. Kieselgel-Clean-up: Zunächst wird das Kieselgel (Chromabond, Machery&Nagel, Düren, Deutschland) bei 150°C für 2 h ausgeheizt, danach mit 6 % Milli-Q-Wasser versetzt und 1 h auf dem Orbitalschüttler homogenisiert. Direkt vor dem Clean-up werden Glaskartuschen MN CHROMABOND (3 mL) mit MN CHROMABOND Glasfaser-Filtern für 3 mL-Glassäulen (Glasfaserfritte) und je 500 mg Kieselgel bestückt. Die Kartuschen werden mittels einer Baker-Vakuum-Einheit (J. T. Baker, Griesheim, Deutschland) vorgereinigt. Dabei wird jede Kartusche mit 30 mL Dichlormethan und 30 mL n-Hexan gespült. Die Kartusche darf dabei <u>nicht</u> trocken laufen, bevor die Aufgabe des Probenextrakts erfolgt.
Nach Einsickern der Probe wird die Kartusche mit 2 x 2,5 mL eines Dichlormethan:n-Hexan-Gemisches (30:70, v/v) eluiert und das Eluat in einem entsprechend dimensionierten Vial (z.B. Rollrandgläschen, 10 mL) aufgefangen.

A-14. Die Extrakte des Kieselgel-Clean-up (ca. 5-7 mL) unter Stickstoff einengen, in ausgewogene Spitzvials überführen und auf ca. 0,3 mL einengen. Vial mit ca. 0,2 mL Isooctan auffüllen. Abschließend auf 0,2 mL einengen (Gewichtskontrolle). Proben bis zum Messen bei 4°C im Dunkeln lagern.

B) LC-MS/MS-Aliquot

B-10. Büchi-Glas mit 40 mL MeOH nachspülen und erneut bis auf ca. 1 mL einengen.

Büchi-Einstellungen: Heizplatte: 45°C Umlaufkühlung: 22°C Temperatur des Kühlwassers: 10°C Rotation: 170 U/min Laufzeit gesamt: 90 min Programmschritte:

Schritt	Absolute Zeit [min]	Druck [mbar]
1	0	1000
2	8	500
3	16	350
4	30	160
5	90	160

B-11. Extrakt in 1,5-mL-Vial überführen, Spitze des Büchi-Glas mit 0,2 mL MeOH nachspülen und Spüllösung mit dem Extrakt vereinigen.

B-12. Zentrifugieren des Extraktes bei 3000 U/min für 3 min und Überstand abnehmen.

B-13. Überführen der Probe in ein ausgewogenes 0,5 mL-Vial und Extrakt unter N_2 auf 0,5 mL einengen.

B-14. Proben bis zum Messen bei 4°C im Dunkeln lagern.

A-1.3.2 Silicone Sheets

Das Verfahren für das Clean-up und die Extraktion der Silicone Sheets wurde in Anlehnung an Smedes und Booij ([5]) entwickelt.

1. Reinigung

Die Silicone Sheets werden aus der Trägerkonstruktion ausgebaut und, wenn möglich vor Ort, ansonsten im Labor, unter Zuhilfenahme der stumpfen Rückseite einer Skalpellklinge vorsichtig gereinigt. Dafür wird wenn möglich Wasser des Probenahmeortes verwendet. Die Sammelphasen werden danach mit Kimtech-Tüchern (Kimtech Science, Kimberly-Clark, Reigate, UK) vorsichtig trockengetupft. Die zur Probe gehörenden Transportblanks sind während der Reinigung am gleichen Ort zu exponieren.

2. Soxhlet-Extraktion

Die Proben (6 Platten je Probe) werden in 300 mL-Soxhlet-Extraktoren mit 400 mL ACN:MeOH (2:1 v/v) für 6 h extrahiert. Vor der Extraktion werden je 1 mL des IS-Gemisches für GC-MS/MS und LC-MS/MS zugegeben.

Die gewonnenen Extrakte werden aliquotiert (ca. 210 mL pro Aliquot), jedes Aliquot wird in ein 500 mL-Büchi-Glas überführt und mit dem Büchi-Parallel-Verdampfer auf 1 mL eingeengt.

Büchi-Einstellungen: Heizplatte: 45°C Umlaufkühlung: 20°C Temperatur des Kühlwassers: 10°C Rotation: 165 U/min Laufzeit gesamt: 150 min

Programmschritte:

Schritt	Absolute Zeit [min]	Druck [mbar]
1	0	1010
2	7	500
3	13	350
4	21	160
5	150	160

Nach Ende der Extraktion werden die Extrakte in 1,5 mL-Vials überführt, die Nase des Büchiglases mit 0,2 mL Solvent nachgespült und die Spüllösung mit dem Extrakt vereinigt. Die Extrakte werden bis zur möglichst zeitnah erfolgenden Weiterverarbeitung im Kühlschrank bei 4°C gelagert.

3. C18-Clean-up

Das C18-Clean-up erfolgt mittels Glassäulen MN CHROMABOND, 3 mL, MN CHROMABOND Glasfaser-Filtern für 3 mL-Glassäulen (Glasfaserfritte, Macherey-Nagel, Düren, Deutschland) und C18-Material Strata C18-E (55µm, 70A, Phenomenex, Aschaffenburg, Deutschland). Beim Zusammenbau der Kartuschen wird zunächst eine Fritte in die mit Lösungsmittel gereinigte und ausgeheizte Glassäule eingesetzt, bevor 500 mg des C18-Materials eingewogen und die Kartusche mit einer weiteren Glasfaserfritte verschlossen wird. Befüllte Kartuschen können bei sauberer, trockener Lagerung für ca. 3 Monate aufbewahrt werden.

Die Kartuschen werden mittels einer Baker-Vakuum-Einheit (J. T. Baker, Griesheim, Deutschland) vorgereinigt. Dabei wird jede Kartusche mit 10 mL Dichlormethan gespült und danach vollständig trockengesaugt.

Zum Konditionieren der C18-Kartuschen wird jede Kartusche mit 3 mL ACN beschickt und dieses langsam durch die Kartusche gesaugt. Danach werden zu jeder Kartusche 10 mL MeOH gegeben und dieses langsam durch das Absorbens saugen. Nach dem MeOH-Schritt Säule NICHT TROCKENFALLEN LASSEN!

Danach werden die konditionierten Säulen von der Baker-Vakuumkammer in eine Extraktionseinheit überführt. Den Soxhlet-Extrakt (ca. 1,5 mL) mit einer sauberen Pasteurpipette aufgeben (Vial nachspülen!) und langsam in die Kartusche sickern lassen. Im Anschluss werden die Kartuschen mit 10 mL MeOH/ACN (1:2) eluiert.

Die weitere Aufarbeitung unterscheidet sich für GC-MS/MS- und LC-MS/MS-Aliquote.

A) GC-MS/MS-Aliquot

A-4. Umlösen der Extrakte des C18-Clean-up in zwei Schritten Extrakt in 120 mL-Büchiglas überführen, 40 mL Aceton zugeben und mit Büchi-Parallel-Verdampfer auf ca. 1 mL einengen: Büchi-Einstellungen:

Heizplatte: 45°C Umlaufkühlung: 22°C Temperatur des Kühlwassers: 10°C Rotation: ca. 190 U/min Laufzeit gesamt: 78 min

Schritt	Absolute Zeit [min]	Druck [mbar]
1	0	1000
2	8	500
3	13	350
4	18	250
5	78	250

Programmschritte:

Nach Ende von Schritt 1 40 mL Hexan zu Extrakt zugeben und erneut auf 1 mL einengen: Büchi-Einstellungen:

Heizplatte: 40°C

Umlaufkühlung: 22°C

Temperatur des Kühlwassers: 10°C

Rotation: ca. 160 U/min

Laufzeit gesamt: 86 min

Programmschritte:

Schritt	Absolute Zeit [min]	Druck [mbar]
1	0	1000
2	12	500
3	25	350
4	41	170
5	86	170

A-5. Kieselgel-Clean-up

Zunächst wird das Kieselgel (Chromabond, Macherey-Nagel, Düren, Deutschland) bei 150°C für 2 h ausgeheizt, danach mit 6 % Milli-Q-Wasser versetzt und 1 h auf dem Orbitalschüttler homogenisiert. Direkt vor dem Clean-up werden Glaskartuschen MN CHROMABOND mit 3 mL mit MN CHROMABOND Glasfaser-Filtern für 3 mL-Glassäulen (Glasfaserfritte, Macherey-Nagel, Düren, Deutschland) und je 500 mg Kieselgel bestückt (Zusammenbau entspricht dem für das C18-Clean-up beschriebenen Vorgehen). Die Kartuschen werden mittels einer Baker-Vakuum-Einheit (J. T. Baker, Griesheim, Deutschland) vorgereinigt. Dabei wird jede Kartusche mit 1. 30 mL Dichlormethan und 2. 30 mL n-Hexan gespült. Die Kartusche darf dabei <u>nicht</u> trocken laufen, bevor die Aufgabe des Probenextrakts erfolgt. Nach Einsickern der Probe wird die Kartusche mit 2 x 2,5 mL eines Dichlormethan:n-Hexan-Gemisches (30:70, v/v) eluiert und das Eluat in einem entsprechend dimensionierten Vial (z.B. Rollrandgläschen, 10 mL) aufgefangen.

A-6. Einengen und Zugabe des Wiederfindungsstandards

Die Extrakte des Kieselgel-Clean-up (ca. 5 - 7 mL) unter Stickstoff einengen, in ausgewogene Spitzvials überführen, auf ca. 0,3 mL einengen. Vial mit ca. 0,2 mL Isooctan auffüllen. Abschließend auf 0,2 mL einengen (Gewichtskontrolle).

B) LC-MS/MS-Aliquot

B-4. Einengen des C18-Extraktes

Überführen des Extraktes aus dem C18-Clean-up in ein 120 mL-Büchiglas, 20 mL ACN/MeOH (2:1) zugeben und mit dem Büchi-Parallelverdampfer auf ca. 1 mL einengen. Büchi-Einstellungen:

Heizplatte: 45°C Umlaufkühlung: 22°C Temperatur des Kühlwassers: 10°C Rotation: ca. 170 U/min Laufzeit gesamt: 90 min Programmschritte:

Schritt	Absolute Zeit [min]	Druck [mbar]
1	0	1000
2	8	500
3	16	350
4	30	160
5	90	160

Probe in ausgewogene, saubere Spitzvials überführen (Büchiglas mit MeOH nachspülen), Einengen auf 0,5 mL (= 396 mg). Proben bis zum Messen bei 4°C im Dunkeln lagern.

A-1.3.3 Apolare Chemcatcher-Konfiguration

Für die Aufarbeitung der apolaren Chemcatcher wurde eine nach der Originalvorschrift (hydrophober Chemcatcher) der University of Portsmouth [4] leicht abgewandelte Vorschrift verwendet:

- 1. Chemcatcher wenn möglich am Probenort mit Probenwasser, sonst mit Milli-Q-Wasser abspülen
- 2. Deckel und Oberteil des Chemcatchers in sauberer Umgebung abschrauben
- LDPE-Membran mit einer Edelstahlpinzette aufnehmen und mit 5 mL Aceton spülen (Aceton in 25 mL-Schliffkolben auffangen) um noch anhaftendes n-Oktanol nicht zu verlieren

- 4. 0,05 mL einer 10 ng/μL Lösung des Einengstandards D10-Anthracen in 2-Propanol zugeben.
- 5. C18-Disk in denselben 25 mL-Schliffkolben überführen
- 5 mL Aceton zugeben und 15 min ins Ultraschallbad stellen. Dabei darauf achten, dass der Stopfen nur locker aufsitzt und nicht durch den Dampfdruck des Acetons herausgedrückt wird!
- 7. Eine Trocknungskartusche mit Natriumsulfat (500 mg; p.A.; Merck, Darmstadt, Deutschland) vorbereiten und einen Spritzenfilter daran befestigen (0,45 μm Celluloseacetat-Filter; Sartorius, Göttingen, Deutschland). Ein sauberes Evaporationsgefäß (Einengfinger) darunter stellen
- 8. Den 25 mL-Schliffkolben aus dem Ultraschallbad nehmen, Außenseite abtrocknen und Extrakt in die vorbereitete Trocknungskartusche überführen.
- 5 mL eines Isooctan:Ethylacetat-Gemisches (1:1) in den 25 mL-Schliffkolben mit der C18-Disk geben und 15 min ins Ultraschallbad stellen
- 10. Diesen Extrakt durch die gleiche Trocknungskartusche geben wie den Aceton-Extrakt, den 25 mL-Schliffkolben wieder mit 5 mL der 1:1-Mischung aus Punkt 9 füllen und erneut 15 min ins Ultraschallbad stellen.
- 11. Extrakt ebenfalls in die Trocknungskartusche geben und 25 mL-Schliffkolben (mit der C18-Disk) mit 5 mL des Gemisches spülen und ebenfalls in die Trocknungskartusche geben
- 12. Sollte noch Wasser im vereinigten Extrakt enthalten sein, Trocknungsschritt mit neuer Kartusche wiederholen.
- 13. Extrakt im Stickstoffstrom auf ca. 0,45 mL einengen, bis nur noch n-Oktanol übrig bleibt.
- 14. 0,05 mL einer 10 ng/μL Lösung des internen Standards 13C6-HCB (in n-Oktanol) zugeben und durch Zugabe von n-Oktanol auf 0,5 mL auffüllen. Mit Pasteurpipette homogenisieren und den Extrakt in ein geeignetes GC-Vial überführen.

A-1.3.4 Polare Chemcatcher-Konfiguration

Für die Aufarbeitung der polaren Chemcatcher wurde eine nach der Originalvorschrift (Pestizid-Chemcatcher) der University of Portsmouth [4] leicht abgewandelte Vorschrift verwendet:

- 1. Chemcatcher wenn möglich am Probenort mit Probenwasser, sonst mit Milli-Q-Wasser abspülen
- 2. Deckel und Oberteil des Chemcatchers in sauberer Umgebung abschrauben
- 3. PES-Membran mit einer Edelstahlpinzette aufnehmen und verwerfen

- 4. SDB-RPS-Disk in 25 mL-Schliffkolben überführen, 5 mL Aceton hinzugeben und 15 min ins Ultraschallbad stellen. Dabei darauf achten, dass der Stopfen nur locker aufsitzt und nicht durch den Dampfdruck des Acetons herausgedrückt wird!
- Eine Trocknungskartusche mit Natriumsulfat (500 mg; p.A.; Merck, Darmstadt, Deutschland) vorbereiten und einen Spritzenfilter daran befestigen (0,45 μm Celluloseacetat-Filter; Sartorius, Göttingen, Deutschland). Ein sauberes Evaporationsgefäß (Einengfinger) darunterstellen
- 6. Den 25 mL-Schliffkolben aus dem Ultraschallbad nehmen, Außenseite abtrocknen und Extrakt in die vorbereitete Trocknungskartusche überführen.
- 5 mL MeOH in den 25 mL-Schliffkolben mit der SDB-RPS-Disk geben und 15 min ins Ultraschallbad stellen
- Diesen Extrakt durch die gleiche Trocknungskartusche geben wie den Aceton-Extrakt, den 25 mL-Schliffkolben mit 5 mL eines MeOH-Aceton-gemisches (1:1) füllen und erneut 15 min ins Ultraschallbad stellen.
- Extrakt ebenfalls in die Trocknungskartusche geben und 25 mL-Schliffkolben (mit der SDB RPS-Disk) mit 5 mL des Gemisches spülen und ebenfalls in die Trocknungskartusche geben
- 10. Extrakt im Stickstoffstrom auf ca. 0,45 mL einengen, dabei den Rand des Evaporationsgefäßes mit MeOH spülen
- 11. 0,05 mL einer 10 ng/μL Lösung des internen Standards D13-Alachlor (in MeOH) zugeben, mit Pasteurpipette homogenisieren und den Extrakt in ein geeignetes LC-Vial überführen.

A-1.4 Analytik von aquatischen Stichproben

A-1.4.1 Wasseranalytik am BSH (marine Schöpfproben)

Für die **GC-MS/MS-Analyse** werden 100 Liter Seewasser mittels eines Glaskugelschöpfers (Eigenkonstruktion des BSH) aus der entsprechenden Wassertiefe (Oberflächenproben: 5 m) entnommen, mit 1 L Pentahn (SupraSolv, Merck) überschichtet und eine von der erwarteten Analyt-Konzentration abhängige Menge IS zugegeben. Mittels eines Propellerrührers (ca. 500 U/min) wird die vollständige Vermischung von organischer Phase und Wasserprobe für 20 min gewährleistet, die folgende Standzeit zur Entmischung der Phasen beträgt 2 h. Die organische Phase wird danach über eine Abtrennvorrichtung abgenommen und in eine 2 L-Steilbrustflache überführt. Der Extrakt wird mit ca. 10 g Natriumsulfat (Na₂SO₄) versetzt, um Wasserrückstände im Lösungsmittel zu eliminieren.

Die weitere Aufarbeitung der Probe entspricht der für die Silicone Sheets (GC-Aliquot) beschriebenen (siehe Kapitel A-1.3.2) ab dem zweiten Einengschritt unter Punkt A-4.

Für die **LC-MS/MS-Analyse** werden 2,5 bzw. 5 Liter der Stichprobe mit 1 mL IS versetzt und danach mit einer Geschwindigkeit von ca. 70 mL/min über eine Chromabond-HR-P-Kartusche gesaugt (1,7 g Absorbens; 12 mL-Kartusche; Macherey-Nagel, Düren, Deutschland). Die Kartusche wird nach der Probenaufgabe unter Stickstoff vollständig getrocknet und mit 60 mL MeOH mit 5mMol/L Essigsäure und 5 mMol/L Ammoniumacetat (Fluss ca. 5 mL/min) eluiert. Die weitere Aufarbeitung entspricht der der Silicone Sheets (LC-Aliquot, siehe A-5.2) ab B-4.

A-1.4.2 Wasseranalytik mit dem PDMS-Twister® am UFZ (limnische Schöpf- und Wochenmischproben)

Die von den Gewässergütestationen des LHW in Magdeburg und Dessau bereitgestellten Wochenmischproben sowie in regelmäßigen Abständen vom UFZ genommene Schöpfproben wurden nach folgender Vorschrift mittels des Twisters® extrahiert:

- Benötigte Anzahl Twister 3 x 15 min in einem MeOH:Dichlormethan-Gemisch (1:1) im Ultraschallbad waschen
- Twister 12 h bei 280°C im Stickstoffstrom in einem Gerstel Konditionierofen ausheizen und danach bis zur Abkühlung auf Zimmertemperatur im Stickstoffstrom belassen
- 3. 200 mL ungefilterte Wasserprobe in einen 250 mL-Schliffkolben gegeben
- 4. 40 mL MeOH und einen ausgeheizten Twister hinzugeben

- 5. Mit Glasstopfen verschließen und Gefäß mit Aluminiumfolie einwickeln (oder Braunglaskolben verwenden)
- 6. Auf Rührplatte bei Zimmertemperatur mit 600 U/min eine Woche rühren lassen.
- 7. Twister entnehmen, abtupfen und bis zur Analyse bei -18°C in 1,5 mL-Vials aufbewahren
- 8. Kalibrierung erfolgt nach derselben Vorschrift mit entsprechenden Konzentrationsstufen in dotierten, bidestillierten Wasser

Die ursprünglich am UFZ etablierte Extraktionsvorschrift sieht eine Rührzeit von 24 h vor, die für die Anreicherung von PAK und den meisten PCB aus limnischen Wasserproben in der Regel ausreichend ist. Um auch PCB und PBDE mit einem hohen Chlorierungs- bzw. Bromierungsgrad möglichst quantitativ anreichern zu können, wurde die Rührzeit während des Forschungsvorhabens auf 1 Woche erhöht.

A-1.5 Eingesetzte Analyseverfahren

A-1.5.1 GC/MS-Verfahren am UFZ

Die Analyse der **Oktanolproben** erfolgte mittels eines 7890C Gaschromatographen auf einer HP-5 MS UltraInert-Säule mit einer Länge von 30 m, 0,25 mm Innendurchmesser und einer Filmdicke von 0,25 µm, angeschlossen an einen 5975C Massenspektrometer (beides Agilent, Waldbronn, Deutschland). Als Trägergas wurde Helium mit einem konstanten Fluss von 1 mL/min eingesetzt, die Probenaufgabe erfolgte im Pulsed Splitless Mode.

Zur Auftrennung der Analyten wurde die Starttemperatur von 140°C 2 min lang gehalten, dann mit 2°C/min auf 170°C erhöht und weiter mit 15°C/min auf 320°C angehoben und 20 min lang gehalten. Die Gesamtdauer des Temperaturprogramms betrug 49 min.

Das Massenspektrometer wurde im SIM-Modus mit einer Transferline-Temperatur von 320°C, einer Quadrupol-Temperatur von 200°C und 300°C Ionenquellentemperatur betrieben.

Die Quantifizierung der Analyten erfolgte mittels externer Kalibrierung, die Auswertung wurde mit der Software Agilent ChemStation A.06.03 durchgeführt.

Die Analyse der Silikonstäbe aus **MESCO** und **Silikonstab-Passivsammler** sowie der **Twister**® der Schöpf- und Wochenmischproben erfolgte an einem 6890N Gaschromatographen auf einer HP-5 MS UltraInert-Säule mit einer Länge von 30 m, 0,25 mm Innendurchmesser und einer Filmdicke von 0,25 µm, angeschlossen an einen 5973 Massenspektrometer (beides Agilent, Waldbronn, Deutschland). Als Trägergas wurde Helium mit einem konstanten Fluss von 43,9 mL/min eingesetzt. Die Probenaufgabe erfolgte

A-1.24

lösungsmittelfrei durch direkte Thermodesorption der Twister® bzw. Silikonstäbe in einer Twister® Desorption Unit (TDU; Gerstel, Mühlheim/Ruhr, Deutschland) mit Kaltaufgabesystem. Das Temperaturprogramm der TDU wurde im Splitless Mode betrieben und wurde von 30°C Starttemperatur mit 720°C/min auf 300°C geheizt und 5 min bei der Temperatur gehalten. Das Kaltaufgabesystem startete bei 0°C und wurde mit 12°C/s auf 310°C geheizt, wobei diese Temperatur wieder für 5 min konstant gehalten wurde.

Das Temperaturprogramm der Trennsäule startete mit 60°C, was für 5 min gehalten wurde. Dann wurde mit 15°C/min auf 180°C, dann mit 2°C/min auf 220°C und weiter mit 10°C/min auf 310°C geheizt, die Endtemperatur wurde 4 min gehalten. Die Gesamtlaufzeit des GC-Programms betrug 46 min. Das Massenspektrometer wurde im SIM-Modus mit einer Transferline-Temperatur von 280°C, einer Quadrupol-Temperatur von 200°C und einer Ionenquelletemperatur von 250°C betrieben.

Die Quantifizierung der Analyten erfolgte für die Twister® mit direkter Kalibrierung. Dafür wurden Wasserproben in verschiedenen Konzentrationsstufen hergestellt und wie die Realproben extrahiert. Die Kalibrierung der Silikonstäbe erfolgte indirekt durch Aufspritzen definierter Stoffmengen auf Glaswolle mit anschließender Thermodesorption. Zur Bestimmung der Wiederfindungsrate des Silikons wurde die Analytlösung in einem gesonderten Versuch direkt auf die Silikonstäbe gegeben und mit den Peakhöhen der Glaswolle verglichen.

A-1.5.2 LC-MS-Verfahren am UFZ

Die Analyse der polaren Pestizide und Arzneistoffe in den Passivsammler-Extrakten (polare Chemcatcher-Version und POCIS) und den Instrumentenkontrollproben im Rahmen der "NORMAN Interlaboratory Study 2011 on Passive Sampling of Emerging Pollutants" erfolgte mit einem LC-MS-System der Fa. Agilent Technologies (Waldbronn). Das System ist wie folgt aufgebaut: HPLC Agilent 1200 mit Degasser, binärer Pumpe, Säulenofen, Autosampler, variablem UV/Vis-Wellenlängendetektor, Elektrospray-Ionisierungsquelle (ESI mit Jet-Stream Technologie) und einem Triple-Quadrupol 6460 als massenselektivem Detektor. Die chromatographische Vortrennung erfolgte über eine Zorbax Eclipse XDB-C8, 4,6 x 150 mm, 5 µm Partikelgröße (Agilent Technologies) unter folgenden Bedingungen:

Eluentenfluss 0,6 mL/min, Eluent A bidestilliertes Wasser mit 5 mmol/L Ammoniumformiat, Eluent B Acetonitril, Säulenofentemperatur 25°C. Es wurde mit dem in Tabelle A-1.1 beschriebenen Gradienten der mobilen Phase gearbeitet.

Gradient:	Zeit [min]	Flussrate [mL/min]	Eluent A [%]	Eluent B [%]
	0	0,6	90	10
	5	0,6	90	10
	10	0,6	60	40
	45	0,6	0	100
	55	0,6	90	10

Tabelle A-1.1: Gradientenprogramm zur Flüssigchromatographie polarer Analyten am UFZ

Die Nachlaufzeit betrug 5 min und das Probeninjektionsvolumen 2 μ L.

Zur Datenaufnahme und –auswertung wurde die MassHunter Software (Agilent Technologies) benutzt. Die massenspektrometrischen Parameter waren wie folgt:

Gastemperatur 300°C, Gasfluss 10 L/min, Nebulizer 40 psi, Capillary Voltage 4000 V (positive lonisierung) bzw. 3500 V (negative lonisierung), Cell Voltage 7 V.

Zur eindeutige Substanzidentifizierung und –quantifizierung wurde unter optimierten Bedingungen mit Multiple-Reaction-Monitoring (MRM) gearbeitet und dafür die in Tabelle A-1.2 aufgeführten Massenübergänge und Geräteparameter genutzt.

Tabelle A-1.2: Substanzspezifischer ESI Modus sowie optimierte Massenübergänge und Geräteparameter am Agilent Triple-Quadrupol 6460; p = positiv; n = negativ.

Analyt	ESI Modus	Vorläufer Ion [m/z]	Produkt Ion [m/z]	Fragmentor- spannung [V]	Collisions- energie [V]
Terbutylazine	р	230,01	174,1	91	12
Desethylatrazine	р	188,01	146,1	94	16
Desethylterbutylazine	р	202,01	146,1	79	12
Atrazine	р	216,01	174,1	103	12
Carbendazime	р	192,01	160,1	85	16
S-Metolachlor	р	284,01	252,2	82	8
Diuron	р	233,01	72,1	88	20
Carbamazepine	р	237,01	194,2	113	16
Diclofenac	n	293,99	250,1	69	0
Ibuprofen	n	204,99	161,2	63	0
Naproxen	n	228,99	170,1	57	4
Diazepam	р	285,01	193,1	131	32
Ketoprofen	n	252,99	209,1	66	0
Atenolol	р	267,01	145,1	97	24
Atrazine-desisopropyl-D5	р	179,01	69,1	116	28
Pirimicarb-D6	р	245,01	78,1	88	20
Atrazine-D5	р	221,01	179,1	103	16
Alachlor-D13	р	283,01	251,2	82	8
Carbamazepine-D10	р	247,01	204,2	113	20
Diuron-D6	р	239,01	78,2	88	20

A-1.5.3 GC-MS/MS-Verfahren am BSH

Die Analyse der <u>PAK</u> erfolgte mittels eines Gaschromatographs CP-3800, gekoppelt mit einem Varian 1200 Quadrupol MSMS (beide Varian Associates, Sunnyvale, USA), ausgestattet mit einem Autosampler CTC GC PAL (CTC Analytics AG, Zwingen, Schweiz). Als Trennsäule wurde eine Varian Factor Four Capillary Column VF-5ms mit 30 m Länge, 0,25 mm ID und 0,25 µm Filmdicke (Varian Associates, Sunnyvale, USA) verwendet. Das Trägergas war Helium 5.0 (Linde, Hamburg, Germany), die Flußrate betrug 1 mL/min. Die Injektion erfolgte split/splitlos (Split geöffnet nach 3 min), das Injektionsvolumen betrug 2 µL. Die chromatografische Trennung begann mit einer Temperatur von 60°C für 0,2 min, bevor sie mit einer Geschwindigkeit von 5 °C/min auf 100°C erhöht und für 0,1 min konstant gehalten. Der letzte Schritt war eine Temperaturerhöhung auf 320°C mit einer Rate von 3,5°C/min und einer abschließend konstant gehaltenen Temperatur für 4 min . Das GC-Temperatur-Programm umfasste 75,16 min, die Datenaufnahme endete nach 68 min. Die Injektion erfolgte mittels Kaltaufgabesystem mit einer Starttemperatur von 60°C, gefolgt von einem Anstieg mit 10°C/s auf 280°C. Diese Temperatur wurde bis zum Ende der Datenaufnahme gehalten. Die Temperaturen von Transfer-Line, Ionenquelle und Quadrupol waren wie folgt: Transfer-Line: 275°C; Ionenquelle: 250 °C; Quadrupol: 40°C. Die Quantifizierung der Analyten erfolgte mittels interner Standards. Die Systemsteuerung erfolgte über die Software Varian Workstation 6.91. Die MS-Parameter sind in Tabelle A-1.3 aufgeführt.

Tabelle A-1.3: Massenspektrometische Parameter zur Bestimmung von PAK mittels GC-MS/MS (weitere Details siehe Text)

Analyt	Vorläufer- Ion [m/z]	Produkt-lon [m/z]	Dwell Time [sec]	Kollisions- energie [V]
ACY	152,3	152,3	0,200	20
ACE	153,8	152,0	0,100	20
ANT	178,0	178,0	0,133	20
BAA	228,0	228,0	0,100	20
BBF	252,0	252,0	0,100	20
BGHIP	276,0	276,0	0,133	20
BAP	252,0	252,0	0,100	20
CHRTR	228,0	228,0	0,100	20
DBAHA	278,0	278,0	0,133	20
FLU	201,9	201,9	0,070	20
FL	166,2	165,0	0,100	20
I123P	276,0	276,0	0,133	20
PHEN	178,0	178,0	0,133	20
PYR	201,9	201,9	0,070	20
ACE-D10	164,0	162,1	0,100	20
ANT-D10	188,1	188,1	0,133	20
BEP-D12	264,1	264,1	0,100	20
BGHIP-D12	288,1	288,1	0,133	20
FLU-D10	212,0	212,0	0,070	20

Die Analyse der <u>CKW</u> erfolgte mittels eines GC CP3800, gekoppelt mit Massenspektrometer Saturn 2000 (beide Varian Associates, Sunnyvale, USA), ausgestattet mit einem Autosampler CTC GC PAL (CTC Analytics AG, Zwingen, Schweiz). Als Trennsäule wurde eine HT 8 mit 0,22 mm ID, 25 m Länge und 0,22 µm Filmdicke (SGE Analytical Science, Milton Keynes, UK) verwendet, der eine unbelegte, desaktivierte Vorsäule von 2-5 m Länge mit 0,53 mm ID (Agilent, Waldbronn, Deutschland) vorgeschaltet wurde. Das Trägergas war Helium 5.0 (Linde, Hamburg, Germany), die Flussrate betrug 1.3 mL/min. Die Injektion erfolgte split/splitlos (Splitöffnung nach 3 min), das Injektionsvolumen betrug 2 µL. Die chromatografische Trennung begann mit einer Temperatur von 90°C für 1 min, bevor sie zunächst mit einer Geschwindigkeit von 10 °C/min auf 170°C erhöht wurde, um dann mit 3°C/min auf 290°C zu steigen. Die Endtemperatur wurde für 40 min konstant gehalten. Das GC-Temperatur-Programm umfasste 89 min, die Datenaufnahme endete nach 40 min. Die Injektion erfolgte mittels Kaltaufgabesystem mit einer Starttemperatur von 90°C, gefolgt von einem Anstieg mit 5°C/s auf 250°C. Diese Temperatur wurde bis zum Ende der Datenaufnahme gehalten. Die Trap-Temperatur betrug 200°C, die Manifold-Temperatur 80°C und die Transfer-Line-Temperatur 280°C. Die axiale Modulation der Ion-Trap betrug 4,1 V.

Die Quantifizierung der Analyten erfolgte mittels interner Standards. Die Systemsteuerung erfolgte über die Software Varian Workstation 6.91. Die MS-Parameter sind in Tabelle A-1.4 aufgeführt.

Tabelle A-1.4: Massenspektrometische	Parameter z	ur Bestimmung	von CKW,	DDX und	HCH I	mittels
GC-MS/MS (weitere Details siehe Text)						

Analyt	Vorläufer- Ion [m/z]	Produkt-Ion [m/z]	Excitation Storage Level [m/z]	Dissoz Energie [V]	Scan- Bereich [m/z - m/z]
PCB 28	256,0	186,0	100	0,7	182-187
PCB 52	292,0	256,9	100	0,5	256-258
PCB 101	325,9	291,0	150	0,7	290-374
PCB 118	325,9	256,0	150	0,9	255-257
PCB 138	360,0	325,0	150	0,6	199-326
PCB 153	360,0	325,0	150	0,6	199-326
PCB 180	394,0	358,9	175	0,6	358-360
DDT	235,0	200,0	100	0,5	199-326
DDD	235,0	200,0	100	0,5	199-326
DDE	318,0	246,1	140	0,5	245-278
HCB	283,8	213,9	125	1,1	182-250
HCHA	218,8	182,8	100	0,4	182-250
HCHB	218,8	182,8	100	0,4	182-187
HCHG	218,8	182,8	100	0,4	182-187
TCN	266,0	231,0	120	1,2	230-232
HCHE	218,8	182,8	100	0,4	182-187
CB185	394,0	358,9	150	0,6	358-360
DDT-D8	243,1	208,0	100	0,5	199-326

A-1.5.4 LC-MS/MS-Verfahren am BSH

Die Analyse der polaren Substanzen erfolgte mittels LC-MS/MS. Zum Einsatz kam eine HPLC vom Typ Agilent 1100 (Agilent, Waldbronn, Deutschland) ausgestattet mit binärer Pumpe, Vakuum-Entgaser, thermostatischem Säulenofen und Autosampler sowie ein Massenspektrometer AB Sciex QTrap® 5500 mit Turbo Ion Spray (AB Sciex, Darmstadt, Deutschland). Zur chromatographischen Trennung wurden zwei Trennsäulen (Synergi Hydro RP, 80 Å Porengröße, 4 µm Partikelgröße, 75 mm x 2 mm und Synergi Polar RP, 80 Å, 4 µm, 50 mm x 2 mm) hintereinander geschaltet, geschützt durch eine Vorsäule (Aqua C18, 125 Å, 4 mm x 2 mm, alle Säulen von Phenomenex, Aschaffenburg, Deutschland). Systemsteuerung und – kontrolle erfolgten über die Software Analyst 1.5.

Die Chromatographie wurde mit einem Fluss von 0,3 mL/min durchgeführt. Als Eluenten wurden Milli-Q-Wasser mit 5 mMol/L Essigsäure und 5 mMol/L Ammoniumacetat (A) und MeOH mit 5 mMol/L Essigsäure und 5 mMol/L Ammoniumacetat (B) verwendet. Der chromatographische Lauf startete mit 85% A, isokratisch für 0,1 min, gefolgt von einem Gradienten mit 60% A bei 0,3 min und 5% bei 22 min, wiederum für 6 min isokratisch gehalten. Danach wurde der Ausgangswert hergestellt und das System vor der nächsten Injektion für 7 min equilibriert. Das Injektionsvolumen betrug 4 μ L, die Säulentemperatur 29°C.

Die massenspektrometrischen Parameter der Elektrospray-Ionisation (ESI) bei positiver Ionisation waren wie folgt (abweichende Angaben für negative Ionisation kursiv): Temperatur: 400°C; Curtain gas: 25 psi; Collision gas: medium; Ion source gas 1: 50 psi; Ion source gas 2: 35 psi; Ion spray voltage 5500 V (-4500 V); Entrance potential: 10 V (-10 V); Collision cell exit potential: 12 V (-12 V). Die MS/MS-Parameter zeigt Tabelle A-1.5.

Analyt	ESI- Modus	Vorläufer- Ion [m/z]	Produkt-lon [m/z]	Fragmentor- spannung [V]	Collisions- energie [V]
IRGAROL	р	254,2	198,1	60	26
CARBEND	р	192,1	160,0	60	25
ALACHL	р	270,1	238,1	60	15
AMETRYN	р	228,1	186,1	kA*	kA
ATRAZ	р	216,1	174,1	60	25
BENTAZ	n	239,1	131,7	-60	-35
CHLORI	р	222,1	104,1	60	30
CHLORTUR	р	213,1	72,1	40	24
DEATRAZ	р	188,1	146,0	40	24
DICHLPR	n	233,1	160,9	-40	-21
DIURON	р	233,1	72,1	60	23
FENUR	р	165,1	72,0	40	22
HEXAZIN	р	253,2	170,9	60	23
ISOPRUR	р	207,2	72,1	40	23
LINUR	р	249,1	160,2	60	26
MCPA	n	199,1	141,0	-40	-19
MECOPR	n	213,2	141,0	-40	-21

Tabelle A-1.5: Massenspektrometische Parameter zur Bestimmung von polaren Analyten mittels LC-MS/MS (weitere Details siehe Text); p = positiv; n = negativ.

METAZCHL	р	278,2	134,0	40	32
METHABZT	р	222,1	165,1	60	24
METOLA	р	284,2	252,1	60	21
PENDIMETH	р	282,2	212,1	40	14
PROMETR	р	242,2	158,1	60	33
PROPAZ	р	230,3	188,1	60	24
SIMAZ	р	202,1	132,2	60	26
TERBAZ	р	230,3	174,1	60	23
TERBUTR	р	242,2	186,1	60	26
AZINPH-E	р	346,2	132,2	60	23
AZINPH-M	р	318,1	132,1	60	21
CHLORFENV	р	361,0	155,0	60	17
DIAZINON	р	305,2	169,2	60	35
DIMETH	р	230,1	199,0	40	13
MALATH	р	331,2	127,0	60	16
PIRIMIC	р	239,2	182,2	60	22
BENZTRI	р	120,0	65,1	60	30
HBCD-A	n	640,5	78,8	-50	-50
HBCD-BG	n	640,6	80,9	kA	kA
MTBT	р	182,0	166,9	kA	kA
TBBPA	р	542,6	78,8	kA	kA
CARBAMAZ	р	237,1	194,1	60	28
CLOFIBRS	n	213,2	127,1	-40	-21
DICLOF	р	296,1	214,1	60	50
NAPROX	р	231,1	185,1	60	22
OXAZEP	р	287,1	241,1	60	31
PRIMID	р	219,1	162,1	60	18
PFBS	n	299,00	79,90	-45	-65
PFDA	n	513,0	469,0	-40	-17
PFHPA	n	363,2	318,9	-40	-14
PFHXA	n	313,2	268,9	-40	-13
PFHXS	n	399,1	80,0	-85	-85
PFNA	n	463,1	419,0	-40	-16
PFOA	n	413,1	368,9	-40	-14
PFOSA	n	498,0	77,9	-85	-83

*keine Angabe

A-1.6 c_{TWA}-Berechnung nach Rusina

Die Berechnung der zeitgemittelten Wasserkonzentrationen (c_{TWA}) erfolgte hier auf Grundlage eines Modells von Rusina und Mitarbeitern [6], das wie das Standardmodell auf der Eliminierung von PRCs basiert. Die Abschätzung der in-situ-Sammelrate des jeweiligen Analyten erfolgt hier jedoch mit Hilfe der Diffusionsgeschwindigkeit in Wasser, die bei dem verwendeten Modell mit dem Molekülgewicht abgeschätzt wird. Die praktische Anwendbarkeit des Modells ist durch eine frei verfügbare Excel-Tabelle von Foppe Smedes (Deltares, Utrecht, Niederlande) möglich. Eine genaue Kenntnis des zugrundeliegenden Modells ist daher für den Anwender nicht notwendig. In der Tabelle ist eine kurze Beschreibung enthalten, die hier der Verständlichkeit wegen um eine Beispielrechnung mit Daten des vorliegenden Projektes ergänzt wird:

Abbildung A-1.1: Übersicht über die Frontseite des Excel-Berechnungstools

Beim Öffnen der Datei ist der in Abbildung A-1.1 dargestellte Bildschirminhalt zu sehen, für den Anwender sind zunächst nur die blau hinterlegten Felder von Belang.

Ein Klick auf den zweiten Reiter (SR_Kpw) zeigt die Liste der K_{SW} -Werte, auf die die Tabelle zugreift (Abbildung A-1.2). Diese Liste kann verändert (beispielsweise bei der Verwendung eines anderen Silikon-Polymers mit abweichenden Eigenschaften) oder bei Verwendung zusätzlicher PRCs erweitert werden.

A	A	B	С	D	E	F	G	
1	Kpw s fron	n						
2								
3			Altesil					S
4	par	Log KOW		sAltesil10	Mw			R
5	BiP-D10	4,05	3,63	0,03	164	biphenyl-dl	BiP-D10	
6	PCB001	4,46	4,22	0,03	189	PCB 1 (PRC	PCB001	
7	PCB002	4,69	4,41	0,03	189	PCB-2 (PRC	PCB002	
8	PCB003	4,69	4,36	0,03	189	PCB-3 (PRC	PCB003	
9	HCB	5,50	5,05	0,02	285	11 A A A A		
10	NAP	3,37	3,03	0,03	128			
11	NAP-D8	3,33	3,02	0,03	136			
12	ACY	4.00	3,26	0,03	152			
13	ACE-D10	3,88	3,58	0,02	166			
14	ACE	3.92	3.62	0,02	154			
15	FLE-D10	4,14	3,67	0,06	176			
16	FLE	4,18	3,79	0,02	166			
17	FEN-D10	4,53	4,06	0,01	190			
18	FEN	4,57	4,11	0,01	178			
19	ANT-D10	4,50	4,19	0,01	190			
20	ANT	4,54	4,21	0,01	178			
21	FLU-D10	5,18	4,56	0,01	212			
22	FLU	5,22	4,62	0,02	202			
23	PYR-D10	5,14	4,64	0,02	212			
24	PYR	5,18	4,68	0,02	202			
25	CHR-D12	5,82	5,21	0,01	240			
26	CHR	5,86	5,25	0,02	228			
27	BAA	5,91	5,32	0,03	228			
28	Pe-D12	6,20	5,49	0,02	264			
29	BEP-D12	6.00	5 58	0.02	264			

Abbildung A-1.2: Liste der im Berechnungstool hinterlegten Sammler-Wasserverteilungskoeffizienten

Für die Eingabe von Messdaten wird zunächst der erste Reiter ausgewählt (MED Rs calc Altesil MW). In der ersten Zeile des blauen Eingabebereiches sind die einzelnen Sammler durchnummeriert, in den folgenden Zeilen wird zunächst die Masse (in Gramm) der Sammler und dann die Ausbringungszeit (in Tagen) eingetragen. Die genaue Probenbezeichnung kann anstelle der Nummerierung in die erste Zeile geschrieben werden, während des Projektes wurde allerdings darauf verzichtet und die Probenbezeichnung in die darüberliegende Freizeile eingetragen. In die erste Spalte werden ab Zeile 5 des blauen Bereiches die Namen der verwendeten PRCs geschrieben. Dabei ist zu beachten, dass die Bezeichnungen der Substanzen genau denen in der Liste mit den Sammler-Wasser-Verteilungskoeffizienten KSW im zweiten Reiter entsprechen. Die Verteilungskoeffizienten und Molekülgewichte erscheinen automatisch im hellgrünen Bereich auf der linken Seite. Dann wird für jedes PRC der nach der Exposition verbliebene Anteil (NICHT die Eliminierungsrate ke!) für jeden verwendeten Sammler eingetragen. Mit dem Drop-Down-Menu im Feld J24 kann jeder einzelne Sammler ausgewählt und die verbliebenen Anteile der jeweiligen PRCs im darüberliegenden Diagramm angezeigt werden (in der in Abbildung A-1.4 dargestellten Bildschirmansicht wird Sammler 1 [FE/150611-SI-1GC] angezeigt). Das jeweils ausgewählte Diagramm greift auf die Daten im grauen Bereich in Spalte A zu, die dort hinterlegten Formeln müssen bei der Verwendung einer deutschen Excel-Version allerdings modifiziert werden (statt "r" für row: "z" für Zeile; statt "c" für column: "s" für Spalte).

A-1.32

Abbildung A-1.3: Weitere Bearbeitungsschritte, Details sieht Text.

Jetzt befinden sich alle benötigten Daten für die Berechnung der in-situ-Sammelraten in der Tabelle, mit denen die c_{TWA} ermittelt werden. Zunächst wird mit dem Solver eine nichtlineare Regression der PRCs erstellt. In der Praxis hat es sich bewährt, zu Beginn alle Einstellungen zurückzusetzen (reset all), und danach die Zielzelle (D29) und die variablen Zellen (F26:Z26) neu zu definieren. Der gewünschte Wert der Zielzelle wird auf Minimum gesetzt und die Berechnung mit Lösen (Solve) gestartet (Abbildung A-1.5).

Abbildung A-1.4: Weitere Bearbeitungsschritte, Details sieht Text.

Nach erfolgreicher Berechnung wird für jede Passivsammlerprobe eine Regressionskurve der PRCs gezeichnet und in den Zellen F32:Z32 die entsprechende in-situ-Sammelrate (in L/d) für eine Modell-Zielsubstanz mit der Molekülmasse 300 angezeigt (Abbildung A-1.6).

Abbildung A-1.5: Darstellung der berechneten Regressionskurve der PRCs einer Probe und der entsprechenden in-situ-Sammelrate (in L/d), Details siehe Text.

Die Berechnung der Sammelrate für die gesuchte Zielsubstanz erfolgt über das Verhältnis zur Molekülmasse der Modell-Zielsubstanz und kann in die Liste im zweiten Reiter integriert werden. Das folgende Beispiel zeigt die in-situ-Sammelrate der ersten Passivsammlerprobe für die Zielsubstanz Acenaphtylen.

	v											Tormattin	ig as lable	- styles -	- 12. S	
	Clipboard	Fa.		Font		Fa	Alig	Inment	15	Numb	er 🖓		Styles		Cel	lls
	H12	• (*	fx	='MED Rs	calc Alte	sil MW (2)"F	\$32*(<mark>300/</mark> E	12)								
. A	A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	
1	Kpw s from	1								Kpw fr	om :	13 7047	7054 200	0		1
3			Altesil					SampleID 1	SampleID 2	Alsos	es this nane	r for full n	-7034, 200	5.		
4	par	Log_KOW		sAltesil10	Mw			Rs (L/day)	Rs (L/day)	Data f	or PCB 1. 2	3 and bin	henvl from	Smedes et	al in	
5	BiP-D10	4,05	3,63	0,03	164	biphenyl-dl	BiP-D10	52,76974283	53,83694	prepara	ation					
6	PCB001	4,46	4,22	0,03	189	PCB 1 (PRC	PCB001	45,91107599	46,83957							
7	PCB002	4,69	4,41	0,03	189	PCB-2 (PRC	PCB002	45,91107599	46,83957	8	-		-		-	_
8	PCB003	4,69	4,36	0,03	189	PCB-3 (PRC	PCB003	45,91107599	46,83957							
9	HCB	5,50	5,05	0,02	285			30,36574675	30,97985							
10	NAP	3,37	3,03	0,03	128			67,611233	68,97858							
11	NAP-D8	3,33	3,02	0,03	136			63,63410165	64,92102							
12	ACY	4,00	3,26	0,03	152			56,86398438	58,01398							
13	ACE-D10	3,88	3,58	0,02	166			52,13396279	53,1883							
14	ACE	3,92	3,62	0,02	154			56,12062311	57,25559							
15	FLE-D10	4,14	3,67	0,06	176			49,17180582	50,16624							
16	FLE	4,18	3,79	0,02	166			52,06543089	53,11839							
17	FEN-D10	4,53	4,06	0,01	190			45,54862013	46,46978							
18	FEN	4,57	4,11	0,01	178			48,55678993	49,53879							
19	ANT-D10	4,50	4,19	0,01	190			45,54862013	46,46978							
20	ANT	4,54	4,21	0,01	178			48,55678993	49,53879							
21	FLU-D10	5,18	4,56	0,01	212			40,82187653	41,64745							
22	FLU	5,22	4,62	0,02	202			42,78967689	43,65504							

Abbildung A-1.6: Kalkulierte in-situ-Sammelrate einer ausgewählten Probe für die Substanz Acenaphtylen.

A-1.33

Literatur:

- 1. O'Brien, D.S., Chiswell, B., and Mueller, J.F., *A novel method for the in situ calibration of flow effects on a phosphate passive sampler.* Journal of Environmental Monitoring, 2009. **11**(1): p. 212-219.
- 2. Booij, K., Smedes, F., and van Weerlee, E.M., Spiking of performance reference compounds in low density polyethylene and silicone passive water samplers. Chemosphere, 2002. **46**(8): p. 1157-1161.
- 3. Vrana, B., Mills, G., Greenwood, R., Knutsson, J., Svensson, K., and Morrison, G., *Performance optimisation of a passive sampler for monitoring hydrophobic organic pollutants in water.* Journal of Environmental Monitoring, 2005. **7**(6): p. 612-620.
- 4. University of Portsmouth. *Chemcatcher-Homepage*. 2011 [cited 2012 17.04.2012]; Available from: <u>http://www.port.ac.uk/research/chemcatcher</u>.
- 5. Smedes, F. and Booij, K., *Guidelines for passive sampling of hydrophobic contaminants in water using silicone rubber samplers.* ICES Techniques in Marine Environmental Sciences, 2012(52).
- Rusina, T.P., Smedes, F., Koblizkova, M., and Klanova, J., Calibration of Silicone Rubber Passive Samplers: Experimental and Modeled Relations between Sampling Rate and Compound Properties. Environmental Science & Technology, 2010. 44(1): p. 362-367.

A-2.1 Tabellen physiko-chemische Parameter, K_{sw}-Werte und Sammelraten

Tabelle A-2.1.1: Verwendete Abrahamparameter (LSER-Parameter) der Zielanalyten, der internen Standards (IS) und PRC (berechnet mit Software ACD/Absolv [1]; für deuterierte und fluorierte Substanzen wurden die Parameter der nichtdeuterierten bzw. nichtfluorierten Ursprungssubstanzen verwendet; Parameter: E = Exzess-Molrefraktion, S = effektive Polarität und Polarisierbarkeit, A = Wasserstoffbrückenbindungsacidität, B = Wasserstoffbrückenbindungsbasizität, V = charakteristisches McGowan-Volumen (cm³mol⁻¹/100)

Substanz	Abkürzung	CAS-Nummer	Ε	S	Α	В	V
			GC-Ana	alyten			
2,4,4'-Trichlorobiphenyl	PCB 28	7012-37-5	1,81	1,39	0,00	0,15	1,69
2,2',5,5'-Tetrachlorobiphenyl	PCB 52	35693-99-3	1,98	1,54	0,00	0,18	1,81
2,2',4,5,5'-Pentachlorobiphenyl	PCB 101	37680-73-2	2,09	1,61	0,00	0,11	1,94
2,3',4,4',5-Pentachlorobiphenyl	PCB 118	31508-00-6	2,07	1,59	0,00	0,11	1,94
2,2',3,4,4',5'-Hexachlorobiphenyl	PCB 138	35065-28-2	2,18	1,65	0,00	0,05	2,06
2,2',4,4',5,5'-Hexachlorobiphenyl	PCB 153	35065-27-1	2,20	1,68	0,00	0,04	2,06
2,2',3,4,4',5,5'-Heptachlorobiphenyl	PCB 180	35065-29-3	2,30	1,75	0,00	0,00	2,18
1-Chlor-2-(2,2,2-trichlor-1-(4- chlorphenyl) ethyl)benzol	DDTOP	789-02-6	1,76	1,51	0,00	0,22	2,21
1,1,1-Trichlor-2,2-bis-(p-chlorphenyl)- ethan	DDTPP	50-29-3	1,76	1,51	0,00	0,22	2,21
1-Chlor-4-[2,2-Dichlor-1-(2- Chlorphenyl)ethyl]benzol	DDDOP	53-19-0	1,67	1,44	0,09	0,22	2,10
1,1-Dichlor-2,2-bis-(p-chlorphenyl)ethan	DDDPP	72-54-8	1,67	1,44	0,09	0,22	2,10
1-Chlor-2-[2,2-Dichlor-1-(4- Chlorphenyl)vinyl]benzol	DDEOP	3424-82-6	1,80	1,53	0,00	0,30	2,05
1,1-Dichlor-2,2-bis-(p-chlorphenyl)ethen	DDEPP	72-55-9	1,80	1,53	0,00	0,30	2,05
Hexachlorbenzol	HCB	118-74-1	1,33	1,23	0,00	0,00	1,45
α-Hexachlorcyclohexan (Alpha-HCH)	HCHA	319-84-6	1,38	1,10	0,00	0,40	1,58
β-Hexachlorcyclohexan (Beta-HCH)	HCHB	319-85-7	1,38	1,10	0,00	0,40	1,58
γ-Hexachlorcyclohexan (Gamma-HCH)	HCHG	58-89-9	1,38	1,10	0,00	0,40	1,58
Acenaphthen	ACE	83-32-9	1,53	0,99	0,00	0,15	1,26
Acenaphthylen	ACY	208-96-8	1,69	1,09	0,00	0,21	1,22
Anthracen	ANT	120-12-7	1,99	1,34	0,00	0,23	1,45
Benz-a-anthracen	BAA	56-55-3	2,71	1,66	0,00	0,29	1,82
Benzo[a]pyren	BAP	50-32-8	3,32	1,84	0,00	0,31	1,95
Benzo[b]fluoranthen	BBF	205-99-2	3,32	1,84	0,00	0,31	1,95
Benzo[ghi]perylen	BGHIP	191-24-2	3,92	2,02	0,00	0,33	2,08
Chrysen/Triphenylen	CHRTR	218-01-9	2.71	1.66	0.00	0.29	1.82
Dibenz-a.h-anthracen	DBAHA	53-70-3	3.43	1.99	0.00	0.35	2.19
Fluoranthen	FLU	206-44-0	2,60	1.52	0.00	0.25	1.59
Fluoren	FL	86-73-7	1.65	1.13	0.00	0.19	1.36
Indeno[1,2,3,-cd]pyren	1123P	193-39-5	3,92	2.02	0.00	0.33	2.08
Phenanthren	PHEN	85-01-8	1.99	1.34	0.00	0.23	1.45
Pvren	PYR	129-00-0	2,60	1.52	0.00	0.25	1.58
2 4 4'-Tribromodiphenyl Ether	BDF 28	41318-75-6	2.15	1.78	0.00	0.32	1,90
2 2' 4 4'-Tetrabromodinhenvl Ether	BDF 47	5436-43-1	2 4 5	1 93	0,00	0.26	2.08
2 2' 4 4' 5-Pentabromodinhenvl Ether	BDE 99	60348-60-9	2,10	2 11	0,00	0,20	2,00
2 2' 4 4' 6-Pentabromodinhenyl Ether	BDE 100	189084-64-8	2 76	2.08	0,00	0.22	2,26
2 2' 4 4' 5 5'-Heyabromodinbenyl Ether	BDE 100	68631_40_2	3 04	2,00	0,00	0,22	2,20
2 2' 4 4' 5 6'-Heyabromodiphenyl Ether	BDE 153	207122-15-4	3.05	2,30	0,00	0,11	2,43
Trifluralin		1582-09-8	0,00	1.84	0,00	0,14	2,40
Thirdian		1002 00 0	U,SU	1,04	0,00	0,00	2,20
1.1.1-Trichlor-2.2-bis-(p-chlorphenyl)-							
ethan 13C12	p,p'-DDT 13C12	104215-84-1	1,76	1,51	0,00	0,22	2,22
Anthracen-d10	ANT-D10	1719-06-8	1,99	1,34	0,00	0,23	1,45
Benz-e-pyren-d12	BEP-D12	205440-82-0	3,32	1,84	0,00	0,31	1,95
Benz-g,h,i-perylen-d12	BGHIP-D12	93951-66-7	3,92	2,02	0,00	0,33	2,08
2,2',3,4,5,5',6-Heptachlorobiphenyl	PCB185	52712-05-7	2,33	1,79	0,00	0,00	2,81

Substanz	Abkürzung	CAS-Nummer	E	S	Α	В	V
Fluoranthen-d10	FLU-D10	93951-69-0	1,65	1,13	0,00	0,19	1,58
2'-Fluoro-2,4,4'-Tribromdiphenylether	F-PBDE-28	863314-86-7	2,15	1,78	0,00	0,32	1,91
3-Fluoro-2,2',4,4',6-	F-PBDF-100	887401-80-1	2 76	2.08	0.00	0 22	2 26
Pentabromdiphenylether			2,70	2,00	0,00	0,22	2,20
E-Hexachlorcyclohexan	HCHE	6108-10-7	1,38	1,10	0,00	0,40	1,58
1,2,3,4-I etrachiornaphthalin	TCN	20020-02-4	1,79	1,34	0,00	0,02	1,58
	DOD 40	00440 45 4		,	0.00	0.45	4 57
2,0-Dichlorobiphenyl		33140-45-1	1,00	1,31	0,00	0,15	1,57
2,2,4,0-11101000phenyl		56558-16-8	1,00	1,30	0,00	0,12	1,09
2 2' 3 4 6 6'-Hexachlorobinhenvl	PCB 145	74472-40-5	2,07	1,55	0,00	0,00	2.06
2,2',3,4,4',5,6,6'-Octachlorobiphenyl	PCB 204	74472-52-9	2.44	1,81	0.00	0.00	2,30
6-Fluoro-2,2',4,4'-		070040 00 4	0.45	1.00	0,00	0.00	2,00
Tetrabromdiphenylether	0F-PBDE-47	876310-23-4	2,45	1,93	0,00	0,26	2,08
2,3,3',4,4',5,6-Heptabromodiphenyl Ether	PBDE-190	189084-68-2	3,32	2,45	0,00	0,04	2,61
1,1,1-Trichlor-2,2-bis-(p-chlorphenyl)-	p,p'-DDE-D8	93952-19-3	1,80	1,53	0,00	0,30	2,05
ethan-D8 Heyachlerebenzene 13C6		02052 14 8	1 22	1.22	0.00	0.00	1 45
Lindane 13C6 D6		93932-14-0 k A	1,33	1,23	0,00	0,00	1,45
Phenanthren-d10	PHEN-D10	1517-22-2	1,50	1,10	0,00	0,40	1,50
Fluoren-D10	FL-D10	81103-79-9	1,00	1,04	0,00	0,20	1,40
Benz-a-pyren-D10	BAP-D10	63466-71-7	3.32	1,84	0.00	0.31	1,95
1,2,3 Indenopyren-D12	I123P-D12	203578-33-0	3,92	2,02	0,00	0,33	2,08
			LC-Ana	lyten			·
Irgarol	IRGAROL	28159-98-0	1,69	1,30	0,26	1,09	1,97
Carbendazim	CARBEND	10605-21-7	1,64	1,86	0,71	0,99	1,36
Alachlor	ALACHL	15972-60-8	1,11	1,63	0,00	0,94	2,14
Ametryn	AMETRYN	834-12-8	1,50	1,27	0,26	1,07	1,80
Atrazin	ATRAZ	1912-24-9	1,26	1,24	0,36	0,89	1,62
Bentazon	BENTAZ	25057-89-0	1,75	2,24	0,31	1,26	1,67
Chloridazon/Pyrazon		1698-60-8	1,80	1,80	0,21	1,36	1,52
		15545-48-9	1,16	1,49	0,38	0,79	1,62
Desetinyiatiazin		120 36 5	1,34	1,42	0,40	0,91	1,34
Diuron		330-54-1	1,05	1,40	0,57	0,01	1,52
Fenuron	FENUR	101-42-8	1 01	1,00	0,44	0.85	1,00
Hexazinon	HEXAZIN	51235-04-2	1.33	1,10	0.00	1.60	1,97
Isoproturon	ISOPRUR	34123-59-6	1,04	1,42	0.31	0,88	1,78
Linuron	LINUR	330-55-2	1,31	1,82	0,44	0,98	1,66
Methyl-4-chlorphenoxyessigsäure (2-)	MCPA	94-74-6	0,96	1,29	0,57	0,65	1,39
Mecoprop	MECOPR	93-65-2	0,97	1,28	0,57	0,68	1,54
Metazachlor	METAZCHL	67129-08-2	1,78	2,19	0,00	1,08	2,09
Methabenzthiazuron	METHABZT	18691-97-9	1,81	1,93	0,16	0,99	1,61
Metolachlor	METOLA	51218-45-2	1,12	1,62	0,00	0,98	2,28
Pendimethalin	PENDIMETH	40487-42-1	1,42	1,59	0,05	0,57	2,15
Prometryn		120/02	1,51	1,20	0,20	1,10	1,94
Simazin	SIMAZ	122-34-0	1,27	1,25	0,30	0,92	1,70
Terbuthylazin	TERBA7	5915-41-3	1,23	1,25	0,36	0,00	1,40
Terbutryn	TERBUTR	886-50-0	1.47	1,10	0.26	1.08	1,94
Azinphosethyl	AZINPH-E	2642-71-9	2,28	1,71	0,00	1,65	2,37
Azinphosmethyl	AZINPH-M	86-50-0	2,28	1,70	0,00	1,64	2,09
Chlorfenvinphos	CHLORFENV	470-90-6	1,37	1,49	0,00	1,33	2,33
Diazinon	DIAZINON	333-41-5	1,31	1,10	0,00	1,38	2,31
Dimethoat	DIMETH	60-51-5	1,22	1,44	0,26	1,32	1,58
Malathion	MALATH	121-75-5	1,04	1,37	0,00	1,46	2,32
Pirimicarb	PIRIMIC	23103-98-2	1,22	1,54	0,00	1,27	1,89
Benzotriazol	BENZTRI	95-14-7	1,38	1,34	0,53	0,61	0,86
Hexabromcyclododecan (a-)	HBCD-A	25637-99-4	2,46	1,62	0,00	0,42	2,74
Methylthic benzethiozel (2)	NALDL HRCD-RG	20031-99-4	∠,40 1.70	1,0Z	0,00	0,4Z	∠,/4 1.07
Tetrahromhishenol A		70_04.7	2.61	1,50	0,00 0 40	0,40 0 40	1, <i>21</i> 2.56
	I DDI A	19-94-1	2,01	1,00	0,79	0,40	2,00

А	-2.	3

Substanz	Abkürzung	CAS-Nummer	Ε	S	Α	В	V
Carbamazepin	CARBAMAZ	298-46-4	2,12	2,06	0,39	0,92	1,81
Clofibrinsäure	CLOFIBRS	882-09-7	0,92	1,29	0,57	0,69	1,54
Diclofenac	DICLOF	15307-79-6	1,81	1,95	0,70	0,67	3,03
Naproxen	NAPROX	22204-53-1	1,54	1,49	0,57	0,75	1,78
Oxazepam	OXAZEP	604-75-1	2,23	1,75	0,64	1,29	1,99
Primidon	PRIMID	125-33-7	1,51	2,08	0,51	1,45	1,68
Perfluorbutansäure	PFBA	375-22-4	-0,27	0,16	0,84	0,33	0,87
Perfluorbutansulfonsäure (PFBuS)	PFBS	375-73-5	-0,31	0,74	0,31	0,76	1,17
Perfluordecansäure (PFDeA)	PFDEA	335-76-2	-1,21	-0,58	0,84	0,26	1,93
Perfluorheptansäure (PFHpA)	PFHPA	375-85-9	-0,74	-0,21	0,84	0,30	1,40
Perfluorhexansäure (PFHxA)	PFHXA	307-24-4	-0,59	-0,09	0,84	0,31	1,22
Perfluorhexansulfonsäure (PFHxS)	PFHXS	355-46-4	-0,63	0,49	0,31	0,74	1,52
Perfluornonansäure (PFNoA)	PFNOA	375-95-1	-1,06	-0,46	0,84	0,27	1,75
Perfluoroctansäure	PFOA	335-67-1	-0,90	-0,34	0,84	0,29	1,58
Perfluoroctansulfonat	PFOS	1763-23-1	-0,94	0,24	0,31	0,71	1,88
Perfluoroctansulfon-säureamid	PFOSA	754-91-6	-0,65	0,01	0,44	0,71	1,92

Tabelle A-2.1.2: Physikochemische Parameter der Zielanalyten, der internen Standards (IS) und der PRC (K_{ow} = Oktanol-Wasser-Verteilungskoeffizient aus Chemprop-Datenbank [außer kursive Werte: berechnet mit "class-based model"], S_{Sub} = Löslichkeit (als untergekühlte Flüssigkeit) berechnet mit Chemprop [class-based model], K^{s} = Setschenow-Konstante (Aussalzkonstante) berechnet mit log K^{s} = 0,04 · log K_{ow} + 0,114 [2], p K_{s} berechnet mit Software ACD/pKa DB, K_{OC} = Bodensorptionskoeffizient, berechnet mit log K_{OC} = 0,67 + 1,075*E* - 0,277*S* - 0,363*A* - 1,697*B* + 1,468*V* [3], K_{DOC} = Sorptionskoeffizient DOC/Wasser berechnet mit log K_{DOC} = 3,058 + 0,829*E* - 0,818*S* - 3,482*A* + 0,041*B* + 0,562*V* [4]

Abkürzung	MW	log K _{ow}	log S _{Sub} (mol/m³)	K°	р <i>К</i> _s	log K _{oc}	log K _{DOC}
				GC-Analyten			
PCB 28	257,55	5,62	-2,51	0,34		4,46	4,38
PCB 52	291,99	6,09	-3,07	0,36		4,73	4,47
PCB 101	326,44	6,80	-3,86	0,39		5,13	4,57
PCB 118	326,44	7,12	-4,17	0,40		5,11	4,57
PCB 138	360,88	7,44	-4,58	0,41		5,49	4,68
PCB 153	360,88	7,75	-4,88	0,42		5,52	4,67
PCB 180	395,33	7,20	-4,46	0,40		5,86	4,76
DDTOP	354,49	6,36	-4,11	0,37		5,03	4,54
DDTPP	354,49	6,91	-4,05	0,39		5,03	4,54
DDDOP	320,05	6,05	-3,12	0,36		4,74	4,14
DDDPP	320,05	6,02	-3,09	0,35		4,74	4,14
DDEOP	318,03	6,20	-3,26	0,36		4,69	4,47
DDEPP	318,03	6,51	-3,56	0,37		4,69	4,47
HCB	284,78	5,73	-2,70	0,34		3,89	3,97
HCHA	290,83	4,14	-1,19	0,28		3,49	4,21
HCHB	290,83	4,14	-1,19	0,28		3,49	4,21
HCHG	290,83	4,14	-1,19	0,28		3,49	4,21
ACE	154,21	3,92	-0,55	0,27		3,63	4,23
ACY	152,20	3,94	-0,57	0,27		3,61	4,26
ANT	178,23	4,45	-1,14	0,29		4,18	4,44
BAA	228,29	5,76	-2,55	0,34		5,31	4,99
BAP	252,32	5,97	-2,83	0,35		6,07	5,42
BBF	252,32	5,78	-2,65	0,35		6,07	5,42
BGHIP	276,34	6,63	-3,54	0,38		6,82	5,84
CHRTR	228,29	5,50	-2,30	0,33		5,31	4,99
DBAHA	278,35	6,75	-3,66	0,38		6,43	5,52
FLU	202,26	5,16	-1,90	0,32		4,95	4,87
FL	166,22	4,18	-0,84	0,28		3,80	4,27
I123P	276,34	7,66	-4,53	0,42		6,82	5,84

Abkürzung	MW	log K _{ow}	log S _{Sub} (mol/m³)	K°	p <i>K</i> ₅	log K _{oc}	log K _{DOC}
PHEN	178,23	4,46	-1,42	0,29		4,18	4,44
PYR	202,26	4,88	-1,63	0,31		4,95	4,87
BDE 28	406,92	6,24	-2,88	0,36		4,75	4,47
BDE 47	485,82	6,80	-3,90	0,39		5,39	4,69
BDE 99	564,72	7,38	-4,88	0,41		6,04	4,88
BDE 100	564,72	7,09	-4,87	0,40		6,00	4,92
BDE 153	643,62	7,86	-5,90	0,43		6,69	5,07
BDE 154	643,62	7,62	-5,89	0,42		6,65	5,10
TRFLURALI	335,29	5,34	-2,49	0,33		3,53	3,64
				IS			
p,p'-DDT 13C12	354,49	6,91	-4,05	0,39		5,03	4,54
ANT-D10	178,23	4,45	-1,14	0,29		4,18	4,44
BEP-D12	252,32	6,44	-3,28	0,37		6,07	5,42
BGHIP-D12	276,34	6,63	-3,54	0,38		6,82	5,84
PCB185	395,33	8,17	-5,39	0,44		5,88	4,75
FLU-D10	202,26	5,16	-1,90	0,32		4,13	4,40
F-PBDE-28	406,92	5,52	-2,88	0,33		4,75	4,47
F-PBDE-100	564,72	7,08	-4,87	0,40		6,00	4,92
HCHE	290,83	3,94	-1,00	0,27		3,49	4,21
TCN	265,95	5,75	-2,66	0,34		4,50	4,33
	-			PRC			
PCB 10	223,10	4,84	-1,79	0,31		4,14	4,25
PCB 30	257,55	5,47	-2,37	0,33		4,50	4,38
PCB 104	326,44	5,81	-2,91	0,35		5,21	4,61
PCB 145	360,88	6,25	-4,63	0,36		5,54	4,69
PCB 204	429,77	7,30	-6,15	0,41		6,17	4,89
6F-PBDE-47	485,82	6,80	-3,90	0,39		5,39	4,69
PBDE-190	722,52	8,61	-6,96	0,46		7,32	5,28
p,p'-DDE-D8	318,03	6,51	-4,05	0,37		4,69	4,47
HCB-13C6	284,78	5,73	-2,70	0,34		3,89	3,97
HCHG-13C6-D6	290,83	4,14	-1,19	0,28		3,49	4,21
PHEN-D10	178,23	4,46	-1,15	0,29		4,18	4,44
FL-D10	166,22	4,18	-0,84	0,28		3,80	4,27
BAP-D10	252,32	5,97	-2,83	0,35		6,07	5,42
I123P-D12	276,34	7,66	-4,53	0,42		6,82	5,84
				LC-Analyte	n		
IRGAROL	253,38	3,38	0,16	0,25		3,08	3,65
CARBEND	191,19	1,52	1,63	0,17	11,62	1,98	1,23
ALACHL	269,77	3,52	-0,53	0,25		2,96	3,89
AMETRYN	227,34	2,98	0,12	0,23		2,67	3,41
ATRAZ	215,69	2,61	0,51	0,22		2,42	2,78
BENTAZ	240,28	2,34	0,69	0,21	3,28	2,13	2,59
CHLORI	221,65	1,14	1,90	0,16		1,96	3,26
CHLORTUR	212,68	2,41	0,71	0,21	14,43	2,40	2,42
DEATRAZ	187,64	1,51	2,12	0,17		1,97	2,20
DICHLPR	235,07	3,43	0,31	0,25	3,03	2,40	1,68
DIURON	233,10	2,68	0,39	0,22	13,55	2,46	2,15
FENUR	164,21	0,98	2,24	0,15	15,09	1,78	2,40
HEXAZIN	252,32	1,36	3,10	0,17		1,85	4,07
ISOPRUR	206,29	2,87	0,29	0,23	15,06	2,40	2,71
LINUR	249,10	3,20	-0,16	0,24	12,13	2,19	2,10
MCPA	200,62	3,25	0,59	0,24	3,14	2,08	1,62
MECOPR	214,65	3,13	0,66	0,24	3,19	2,25	1,72
METAZCHL	277,76	2,13	0,89	0,20	1	3,21	3,96
METHABZT	221,29	2,64	0,73	0,22	12,83	2,70	3,37
METOLA	283,80	3,13	-0,20	0,24		3,11	3,98
PENDIMETH	281,32	5,18	-2,16	0,32		3,93	3,99
PROMETR	241,37	3,51	-0,43	0,25		2,83	3,51
PROPAZ	229,72	2,93	0,16	0,23		2,59	2,88
SIMAZ	201,67	2,18	0,97	0,20		2,25	2,69
TERBAZ	229,72	3.06	0.03	0,24		2.59	2.88

Abkürzung	MW	log K _{ow}	log S _{Sub} (mol/m ³)	K°	р <i>К</i> s	log K _{oc}	log K _{DOC}
TERBUTR	241,37	3,74	-0,66	0,26		2,84	3,51
AZINPH-E	345,38	3,40	-0,66	0,25		3,33	4,95
AZINPH-M	317,33	2,75	0,06	0,22		2,94	4,80
CHLORFENV	359,57	3,81	-1,09	0,27		2,89	4,34
DIAZINON	304,35	3,81	-0,92	0,27		2,82	4,60
DIMETH	229,26	0,78	2,22	0,15	14,4	1,56	2,93
MALATH	330,36	2,36	0,39	0,21		2,33	4,16
PIRIMIC	238,29	1,70	1,31	0,18		2,18	3,93
BENZTRI	119,13	1,44	1,94	0,17	8,38	1,82	1,77
HBCD-A	641,74	5,94	-4,03	0,35		6,18	5,33
HBCD-BG	641,74	5,94	-4,03	0,35		6,18	5,33
MTBT	181,28	2,98	0,10	0,23		3,19	4,14
TBBPA	543,90	4,54	-3,95	0,30	8,5	5,93	3,62
CARBAMAZ	236,28	2,30	0,96	0,21	13,94	3,33	2,83
CLOFIBRS	214,65	2,57	0,96	0,22	3,18	2,18	1,67
DICLOF	411,33	1,17	-1,70	0,16	4,5	5,13	2,26
NAPROX	230,26	3,18	0,57	0,24	4,84	3,05	2,16
OXAZEP	286,72	2,24	0,64	0,20	10,94	3,08	2,42
PRIMID	218,26	0,91	2,13	0,15	12,26	1,54	1,84
PFBA	214,04	1,98	1,77	0,19	0,37	0,75	0,28
PFBS	300,10	1,67	1,14	0,18	-3,57	0,45	1,81
PFDEA	514,08	6,00	-3,03	0,35	0,52	1,61	0,70
PFHPA	364,06	3,99	-0,63	0,27	0,47	1,17	0,49
PFHXA	314,05	3,32	0,17	0,25	0,42	1,03	0,42
PFHXS	400,11	3,02	-0,46	0,23	-3,34	0,73	1,94
PFNOA	464,07	5,33	-2,23	0,33	0,52	1,47	0,63
PFOA	414,06	4,66	-1,43	0,30	0,5	1,31	0,56
PFOS	500,12	4,36	-2,06	0,29	-3,27	1,03	2,09
PFOSA	499,14	4,64	-2,33	0,30	7,01	1,42	2,08

Tabelle A-2.1.3: Experimentelle Silikon-Wasser-Verteilungskoeffizienten K_{sw} der Zielsubstanzen und PRC in kg/L (außer kursive Werte: Berechnung log $K_{sw} = 0.83$ log $K_{ow} + 0.07$ [5]; * = für deuterierte/fluorierte Substanzen ohne experimentellen Wert wurde vom log K_{sw} Wert der Ursprungssubstanz 0.05 abgezogen; ** = Wert bestimmt mit PDMS-beschichteter SPME-Faser; K_{sw} korrigiert = berechnet auf undissoziierte Form bei angenommenen pH 6 im Versuchsaufbau [dest. Wasser] mit Henderson-Hasselbalch-Gleichung nach K_{sw} korrigiert = $K_{sw} / (1 / (1 + 10pH - pK_a)); K_{sw}$ [1,7% Salz] und K_{sw} [3,5% Salz] = berechnet auf Salzgehalt von Ostsee [1,7%] sowie Nordsee [3,5%] mit K_{sw} [Salz] = $K_{sw} \cdot 10^{K_{s} \cdot [Salz]}$

Abkürzung	log <i>K</i> _{sw}	Referenz	log <i>K</i> _{sw} korrigiert	log <i>K</i> _{sw} [1,7% Salz]	log <i>K</i> _{sw} [3,5% Salz]	
			GC-Analy	ten		
PCB 28	5,53	[6]	5,53	5,61	5,70	
PCB 52	5,80	[6]	5,80	5,89	5,98	
PCB 101	6,28	[6]	6,28	6,37	6,47	
PCB 118	6,42	[6]	6,42	6,52	6,62	
PCB 138	6,77	[6]	6,77	6,87	6,97	
PCB 153	6,72	[6]	6,72	6,82	6,93	
PCB 180	6,99	[6]	6,99	7,09	7,19	
DDTOP	6,27	[7]	6,27	6,36	6,45	
DDTPP	6,14	[7]	6,14	6,24	6,34	
DDDOP	5,52	[7]	5,52	5,61	5,70	
DDDPP	5,41	[7]	5,41	5,50	5,58	
DDEOP	6,16	[7]	6,16	6,25	6,34	
DDEPP	6,26	[7]	6,26	6,36	6,45	
HCB	5,05	[6]	5,05	5,14	5,22	
HCHA	3,28	[7]	3,28	3,35	3,42	
HCHB	2,29	[7]	2,29	2,36	2,43	
HCHG	3,34	[7]	3,34	3,41	3,48	

Abkürzung	log <i>K</i> sw	Referenz	log <i>K</i> sw korrigiert	log <i>K</i> _{sw} [1,7% Salz]	log <i>K</i> _{sw} [3 5% Salz]
ACE	3.62	[6]	3.62	3 69	3 76
ACY	3.26	[0]	3 26	3 33	3 40
	4 21	[0]	4 21	4.28	4 35
	4,21	[0]	4,21	4,20	4,55
BAA	5,32	[6]	5,32	5,40	5,49
BAP	5,69	[6]	5,69	5,78	5,87
BBF	5,74	[6]	5,74	5,82	5,91
BGHIP	6,02	[6]	6,02	6,11	6,21
CHRTR	5,25	[6]	5,25	5,33	5,42
DBAHA	6,24	[6]	6,24	6,33	6,43
FLU	4,62	[6]	4,62	4,70	4,78
FL	3,79	[6]	3,79	3,86	3,93
I123P	6,06	[6]	6.06	6,16	6,27
PHEN	4.11	[6]	4.11	4.18	4.25
PYR	4.68	[6]	4.68	4.75	4.83
BDE 28	4 65	[5]	4 65	4 74	4 83
BDE 47	6.09	[0]	6.09	6 19	6.28
	6,56	[0]	6,65	6,66	6.77
BDE 39	5.04	[0] [5]	0,50 5.04	0,00	6.14
BDE 100	5,94	[5]	5,94	0,04	0,14
BDE 153	6,86	[8]	6,86	6,97	7,08
BDE 154	6,53	[5]	6,53	6,64	6,74
TRFLURALI	5,37	[7]	5,37	5,45	5,54
			PRC		
PCB 10	4,58	[6]	4,58	4,66	4,73
PCB 30	5,22	[6]	5,22	5,30	5,38
PCB 104	6,15	[6]	6,15	6,24	6,32
PCB 145	6.62	[6]	6.62	6.72	6.81
PCB 204	7.59	[6]	7.59	7.69	7,79
6F-PBDF-47	6.04	*[8]	6.04	6 14	6.23
	7 14	[0]	7 14	7 25	7 37
	6.21	[J] *[7]	6.21	6 30	6.40
	0,21 5.05	[7]	0,21	5 14	5.22
	5,05	[0] *(7)	5,05	5,14	0,22
HCHG-13C0-D0	3,29	[7]	3,29	3,30	3,43
PHEN-D10	4,06	[6]	4,06	4,13	4,21
FL-D10	3,67	[6]	3,67	3,74	3,81
BAP-D10	5,64	*[6]	5,64	5,73	5,82
I123P-D12	6,01	*[6]	6,01	6,12	6,22
			LC-Anal	yten	
IRGAROL	3,08	**[9]	3,08	3,14	3,20
CARBEND	0,91	**[10]	0,91	0,95	1,00
ALACHL	2,40	**[11]	2,40	2,46	2,53
AMETRYN	4.33	**[12]	4.33	4.39	4.45
ATRA7	2 82	[13]	2 82	2 87	2 93
BENTAZ	_,=_	[]	_,•_	_,• ·	_,
	-0.10	[13]	-0.10	-0.06	-0.02
	-0,10	[13]	-0,10	-0,00	-0,02
	4.00	[40]	4.07	0.00	0.40
DICHLPR	-1,00	[13]	1,97	2,03	2,10
DIURON	2,14	[13]	2,14	2,20	2,25
FENUR					
HEXAZIN	2,48	**[14]	2,48	2,52	2,56
ISOPRUR	2,07	[13]	2,07	2,13	2,19
LINUR					
MCPA					
MECOPR					
METAZCHI					
METHAR7T					
	3 40	[12]	3 40	3 46	3 50
	3,40 4 20	[I] **[1/1]	3,40 4 20	3, 4 0 4 20	J,JZ A AG
	4,30	[14] **[40]	4,30	4,38	4,40
PROMETR	4,44	"[IZ]	4,44	4,50	4,57
			LC-An	aiyten	
PROPAZ	3,60	**[12]	3,60	3,66	3,72

Α	-2	7

Abkürzung	log <i>K</i> sw	Referenz	log <i>K</i> _{sw} korrigiert	log <i>K</i> _{sw} [1,7% Salz]	log <i>K</i> _{sw} [3,5% Salz]
SIMAZ	2,05	[13]	2,05	2,10	2,15
TERBAZ	3,26	[13]	3,26	3,31	3,37
TERBUTR	2,66	**[15]	2,66	2,73	2,79
AZINPH-E					
AZINPH-M	2,54	**[16]	2,54	2,60	2,65
CHLORFENV	3,38	**[17]	3,38	3,45	3,51
DIAZINON	2,84	**[18]	2,84	2,91	2,98
DIMETH	-0,35	[13]	-0,35	-0,31	-0,27
MALATH	2,64	**[18]	2,64	2,69	2,75
PIRIMIC	2,55	[13]	2,55	2,60	2,64
BENZTRI					
HBCD-A					
HBCD-BG					
MTBT					
TBBPA					
CARBAMAZ	1,49	[13]	1,49	1,54	1,59
CLOFIBRS	-1,10	[13]	1,72	1,78	1,83
DICLOF	1,20	[13]	2,71	2,75	2,79
NAPROX					
OXAZEP					
PRIMID					
PFBA					
PFBS					
PFDEA					
PFHPA					
PFHXA					
PFHXS					
PENOA					
PFOA					
PFOS					
PFOSA					

Tabelle A-2.1.4: Berechnete Silikon-Wasser-Verteilungskoeffizienten der Zielsubstanzen und PRC in kg/L (K_{sw} (L/L) = berechnet mit log K_{sw} = 0,50*E* - 0,86*S* - 1,32*A* - 2,38*B* + 2,75*V* + 0,77 [19], K_{sw} = umgerechnet in kg/L mit $\rho_{Silikon}$ = 1,2 g/cm³, K_{sw} [1,7% Salz] und K_{sw} [3,5% Salz] = berechnet auf Salzgehalt von Ostsee [1,7%] sowie Nordsee [3,5%] mit K_{sw} [Salz] = $K_{sw} \cdot 10^{K_{s} \cdot [Salz]}$

Abkürzung	log K _{sw} (L/L) log K _{sw}		log <i>K</i> _{sw} [1,7% Salz]	log <i>K</i> _{sw} [3,5% Salz]
		GC	-Analyten	
PCB 28	4,77	4,69	4,78	4,86
PCB 52	5,00	4,92	5,01	5,09
PCB 101	5,49	5,41	5,51	5,61
PCB 118	5,50	5,42	5,52	5,62
PCB 138	5,98	5,90	6,01	6,11
PCB 153	5,99	5,91	6,02	6,12
PCB 180	6,41	6,33	6,43	6,53
DDTOP	5,93	5,85	5,94	6,03
DDTPP	5,93	5,85	5,95	6,04
DDDOP	5,49	5,41	5,50	5,59
DDDPP	5,49	5,41	5,50	5,59
DDEOP	5,28	5,21	5,30	5,39
DDEPP	5,28	5,21	5,30	5,39
HCB	4,37	4,29	4,37	4,46
HCHA	3,91	3,83	3,90	3,97
HCHB	3,91	3,83	3,90	3,97
HCHG	3,91	3,83	3,90	3,97
ACY	3,52	3,44	3,51	3,58
ACE	3,79	3,71	3,78	3,84

Abkürzung	log <i>K</i> _{sw} (L/L)	log <i>K</i> sw	log <i>K</i> _{sw} [1,7%	log K _{sw}
	4.06	3 00		[3,5% Saiz]
RΔΔ	-+,00 5 02	1 QA	-+,00 5.03	- 1 ,15 5 11
BAD	5,02	-,3- 5 40	5,00	5,58
BRE	5,48	5,40	5,49	5,50
BGHIP	5 94	5 86	5,45	6.05
CHRTR	5.02	2,00 4 94	5,03	5 11
	5,02	5 89	5,00	6.08
FILI	4 53	4 45	4 53	4 61
FI	3.90	3.82	3,89	3,96
 I123P	5.94	5.86	5.96	6.07
PHEN	4.06	3.99	4.06	4.13
PYR	4,53	4,45	4,52	4,60
BDE 28	4,80	4,72	4,81	4,90
BDE 47	5,44	5,37	5,46	5,56
BDE 99	6,11	6,03	6,13	6,23
BDE 100	6,05	5,97	6,07	6,17
BDE 153	6,74	6,66	6,77	6,88
BDE 154	6,70	6,62	6,73	6,83
TRFLURALI	4,43	4,36	4,44	4,52
		PRC		
PCB 10	4,43	4,35	4,43	4,51
PCB 30	4,85	4,77	4,85	4,94
PCB 104	5,67	5,59	5,68	5,76
PCB 145	6,04	5,97	6,06	6,15
PCB 204	6,76	6,68	6,78	6,88
	5,39	5,3∠ 7.20	5,4 I 7,4 2	5,5 I 7 FF
	7,40	7,3Z	7,43	7,55
	5,23	5,10	0,20 4 27	5,34 4.46
	4,37	4,29	4,37	4,40
	3,00 4,01	3,70	3,05 4 01	3,92 4 08
	3 85	3 77	3.84	3 91
BAP-D10	5 43	5 35	5 44	5 53
I123P-D12	5,89	5,81	5,91	6,02
		LC-Analy	ten	
IRGAROL	2,99	2,91	2,97	3,04
CARBEND	0,44	0,36	0,41	0,45
ALACHL	3,57	3,49	3,56	3,62
AMETRYN	2,49	2,41	2,47	2,53
ATRAZ	2,19	2,11	2,17	2,22
BENTAZ	0,90	0,82	0,87	0,92
	0,80	0,72	0,76	0,80
	2,14	2,00	2,11	2,10
	1,12	1,00	1,09	1,13 2 10
	2,00	1,90	∠,04 1.04	∠, IU 1 00
FENLID	1,90	1,00	1,54	1,99
	1,29	1,22	1,20 1 60	1,29
ISOPRUR	2 45	2 37	1,00 2.43	240
LINUR	2,75	1 43	2, 4 0 1 40	2,70
MCPA	1 68	1 60	1 66	1 72
MECOPR	2.01	1,00	1,99	2.05
METAZCHI	2,94	2.86	2,91	2,96
METHAB7T	1.87	1.79	1.84	1,90
METOLA	3.88	3.80	3.86	3.92
PENDIMETH	4.60	4.53	4.61	4.69
PROMETR	2,82	2,74	2,81	2,87
PROPAZ	2,52	2,44	2,50	2,56
SIMAZ	1,86	1,79	1,84	1,89
TERBAZ	2,59	2,51	2,57	2,62
TERBUTR	2,88	2,80	2,87	2,94

2,94

TERBUTR

2,88

2,80

2,87

|--|

Abkürzung	log <i>K</i> _{sw} (L/L)	log K _{sw}	log <i>K</i> _{sw} [1,7% Salz]	log <i>K</i> _{sw} [3,5% Salz]
AZINPH-E	3,04	2,96	3,03	3,09
AZINPH-M	2,30	2,22	2,28	2,33
CHLORFENV	3,40	3,32	3,39	3,46
DIAZINON	3,54	3,46	3,52	3,59
DIMETH	1,00	0,92	0,95	0,99
MALATH	3,00	2,93	2,98	3,03
PIRIMIC	2,24	2,16	2,21	2,25
BENZTRI	0,53	0,45	0,50	0,54
HBCD-A	7,14	7,07	7,15	7,24
HBCD-BG	7,14	7,07	7,15	7,24
MTBT	2,86	2,78	2,84	2,90
TBBPA	6,11	6,03	6,10	6,18
CARBAMAZ	2,33	2,25	2,31	2,36
CLOFIBRS	1,95	1,87	1,92	1,98
DICLOF	5,81	5,73	5,77	5,81
NAPROX	2,62	2,54	2,60	2,66
OXAZEP	1,94	1,86	1,91	1,96
PRIMID	0,24	0,16	0,20	0,24
PFBA	1,00	0,92	0,97	1,01
PFBS	0,98	0,90	0,95	0,99
PFDEA	4,24	4,16	4,25	4,34
PFHPA	2,61	2,53	2,60	2,66
PFHXA	2,07	1,99	2,05	2,11
PFHXS	2,05	1,97	2,03	2,09
PFNOA	3,70	3,62	3,70	3,79
PFOA	3,15	3,07	3,14	3,22
PFOS	3,15	3,08	3,15	3,22
PFOSA	3,44	3,36	3,43	3,51

Tabelle A-2.1.5: Experimentelle LDPE-Wasser-Verteilungskoeffizienten der Zielsubstanzen und PRCs in kg/L (* = für deuterierte/fluorierte Substanzen ohne experimentellen Wert wurde log K_{pew} der Ursprungssubstanz um 0,05 abgezogen, K_{pew} [1,7% Salz] und K_{pew} [3,5% Salz] = berechnet auf Salzgehalt von Ostsee [1,7%] sowie Nordsee [3,5%] mit K_{pew} [Salz] = $K_{pew} \cdot 10^{Ks \cdot [Salz]}$

Abkürzung	log <i>K</i> _{pew}	w Referenz log <i>K</i> _{pew} [1,7% Salz]		log <i>K</i> _{pew} [3,5% Salz]			
	GC-Analyten						
PCB 28	5,40	[6]	5,48	5,57			
PCB 52	5,60	[6]	5,69	5,78			
PCB 101	6,20	[6]	6,30	6,39			
PCB 118	6,50	[6]	6,60	6,70			
PCB 138	6,80	[6]	6,90	7,01			
PCB 153	6,80	[6]	6,91	7,01			
PCB 180	7,20	[6]	7,30	7,40			
DDTOP	6,00	[20]	6,09	6,18			
DDTPP	5,82	[20]	5,92	6,02			
DDDOP	5,27	[20]	5,36	5,45			
DDDPP	5,08	[20]	5,17	5,26			
DDEOP	5,94	[20]	6,03	6,12			
DDEPP	6,20	[20]	6,29	6,39			
HCB	5,40	[6]	5,49	5,57			
HCHA	2,80	[21]	2,87	2,94			
HCHB	2,60	[21]	2,67	2,74			
HCHG	2,70	[21]	2,77	2,84			
ACE	3,60	[6]	3,67	3,74			
ACY	3,20	[21]	3,27	3,34			

ANT	4,30	[6]	4,37	4,45
BAA	5,70	[6]	5,79	5,87
BAP	6,80	[6]	6,89	6,98
BBF	6,70	[6]	6,79	6,87
BGHIP	7,36	[20]	7,45	7,55
CHRTR	5,80	[6]	5,88	5,97
DBAHA	7,20	[20]	7,30	7,39
FLU	4,90	[6]	4,98	5,06
FL	3,80	[6]	3,87	3,94
I123P	7,04	[20]	7,15	7,25
PHEN	4,20	[6]	4,27	4,35
PYR	5,10	[6]	5,18	5,25
BDE 28	5,73	[22]	5,82	5,91
BDE 47	6,29	[22]	6,39	6,48
BDE 99	6,92	[22]	7,02	7,12
BDE 100	6,86	[22]	6,96	7,06
BDE 153	7,42	[22]	7,53	7,63
BDE 154	7,40	[22]	7,50	7,61
TRFLURALI				
		PF	RC	-
PCB 10	4,20	[6]	4,28	4,35
PCB 30	5,10	[6]	5,18	5,27
PCB 104	6,00	[6]	6,09	6,17
PCB 145	6,50	[6]	6,59	6,68
PCB 204	7,80	[6]	7,90	8,00
6F-PBDE-47	6,24	*[22]	6,34	6,43
PBDE-190	7,12	[22]	7,23	7,35
p,p'-DDE-D8	6,15	*[20]	5,59	5,69
HCB-13C6	5,40	[6]	5,49	5,57
HCHG-13C6-D6	2,65	*[23]	2,72	2,79
PHEN-D10	4,15	*[6]	4,22	4,30
FL-D10	3,75	*[6]	3,82	3,89
BAF-DIU	6,75	*[6]	6,84	6,93

Tabelle A-2.1.6: Berechnete LDPE-Wasser-Verteilungskoeffizienten der Zielsubstanzen und PRCs in kg/L (eigene Regressionen von experimentellen K_{pew} -Werten (Datensatz aus [24]) über physikochemische Parameter (experimentelle und berechnete Werte aus [25]): log $K_{pew} = 0,015 \cdot MW + 1,24$ [PCB], log $K_{pew} = 0,028 \cdot MW - 0,602$ [PAK], log $K_{pew} = -0,701 \cdot S_w + 3,473$ [PBDE], log $K_{pew} = -0,874 S_w + 2,266$ [restliche Substanzen], * = für deuterierte/fluorierte Substanzen ohne experimentellen Wert wurde log K_{pew} der Ursprungssubstanz um 0,05 abgezogen, K_{pew} [1,7% Salz] und K_{pew} [3,5% Salz] = berechnet auf Salzgehalt von Ostsee [1,7%] sowie Nordsee [3,5%] mit K_{pew} [Salz] = $K_{pew} \cdot 10^{Ks \cdot [Salz]}$

Abkürzung	log K _{pew}	Regressions- parameter	log <i>K</i> _{pew} [1,7% Salz]	log <i>K</i> _{pew} [3,5% Salz]
		GC-Analyten		
PCB 28	5,15	MW	5,23	5,32
PCB 52	5,67	MW	5,76	5,85
PCB 101	6,19	MW	6,29	6,38
PCB 118	6,19	MW	6,29	6,39
PCB 138	6,71	MW	6,82	6,92
PCB 153	6,71	MW	6,82	6,92
PCB 180	7,23	MW	7,34	7,44
DDTOP	5,86	Sw	5,95	6,04
DDTPP	5,81	Sw	5,91	6,01
DDDOP	4,99	Sw	5,08	5,17
DDDPP	4,97	Sw	5,06	5,15

Abkürzung	log K _{pew}	Regressions- parameter	log <i>K</i> _{pew} [1,7% Salz]	log <i>K</i> _{pew} [3,5 <u>% S</u> alz]
DDEOP	5,11	Sw	5,20	5,29
DDEPP	5,37	Sw	5,47	5,56
HCB	4,63	Sw	4,71	4,80
НСНА	3.31	Sw	3.38	3.45
НСНВ	3.31	S _w	3.38	3.45
HCHG	3.31	S _w	3.38	3.45
ACE	3 65	MW	3 72	3 78
ACY	3 59	MW	3.66	3 73
ANT	4 31	MW	4 38	4 46
BAA	5,69	MW	5,78	5.86
BAP	6,35	MW	6 44	6.53
BBE	6.35	MW	6 44	6 53
BGHIP	7 02	MW	7 11	7 21
CHRTR	5.69	MW	5 78	5.86
	7.07	Μ\Λ/	7 17	7 26
FLU	4 97	MW	5.05	5 13
FI	3 98	Μ\Λ/	4.05	4 12
1 L 1123P	7.02	Μ\Λ/	7 12	7.23
PHEN	4 31	Μ\Λ/	4 38	4 46
PVR	4,01	Μ\Λ/	5.05	-,0 5 13
	5.40	S	5,05	5,15
	5,49 6 2 1	Sw	5,50	5,00
	6.80	Sw	6,00	7.00
	0,09	Sw	0,99	7,09
BDE 100	0,09	Sw	0,99	7,09
	7,00	Sw	7,71	7,02
	7,00	Sw	1,11	7,01
INFLUNALI	4,44		4,52	4,00
	4.62	M\W	4 70	1 78
PCB 30	4,02 5 15		+,70 5.23	4,70 5 31
PCB 104	6 10		6.29	5,51
PCB 104	6.71		6.80	0,30
PCB 145	7.76		7.86	0,09
	6.21	10100	7,00	7,90
	0,21	Sw	0,30	0,40
	0,33 5 9 1	Sw ★C	0,40 5.00	0,00 6 00
	5,61	Sw	5,90	0,00
	4,03	Sw *C	4,71	4,00
	3,31	"S _W	3,38	3,45
	4,31	IVI V V *N // A/	4,30	4,40
FL-DI0	3,90	PRC	4,05	4,12
BAP-D10	6,35	*MW	6,44	6,53
I123P-D12	7,02	*MW	7,12	7,23
		LC-Analyten		-
IRGAROL	2,13	Sw	2,19	2,25
CARBEND	0,84	Sw	0,88	0,93
ALACHL	2,73	Sw	2,80	2,86
AMETRYN	2,16	Sw	2,22	2,28
ATRAZ	1,82	Sw	1,87	1,93
BENTAZ	1,66	Sw	1,71	1,77
CHLORI	0,60	Sw	0,64	0,68
CHLORTUR	1,64	Sw	1,70	1,75
DEATRAZ	0.41	Sw	0.45	0.50
DICHLPR	1.99	S _w	2.06	2.12
DIURON	1.93	S _w	1.98	2.04
FENUR	0.31	S.,,	0.35	0.39
HEXAZIN	-0.44	S _w	-0.40	-0.36
ISOPRUR	2.01		2.07	2.13
LINUR	2.41	S _w	2.47	2.53
MCPA	1.75	S.,,	1.81	1.87
MECOPR	1,69	Sw	1,75	1,81

Abkürzung	log K _{pew}	Regressions- parameter	log <i>K</i> _{pew} [1,7% Salz]	log <i>K</i> _{pew} [3,5% Salz]
METAZCHL	1,49	Sw	1,54	1,59
METHABZT	1,63	Sw	1,69	1,74
METOLA	2,44	Sw	2,50	2,56
PENDIMETH	4,16	Sw	4,24	4,32
PROMETR	2,65	Sw	2,71	2,77
PROPAZ	2,13	Sw	2,19	2,24
SIMAZ	1,42	Sw	1,47	1,52
TERBAZ	2,24	Sw	2,30	2,35
TERBUTR	2,84	Sw	2,91	2,97
AZINPH-E	2,84	Sw	2,90	2,96
AZINPH-M	2,22	Sw	2,27	2,33
CHLORFENV	3,22	Sw	3,29	3,36
DIAZINON	3,07	Sw	3,14	3,20
DIMETH	0,32	Sw	0,36	0,39
MALATH	1,93	Sw	1,98	2,03
PIRIMIC	1,12	Sw	1,16	1,21
BENZTRI	0,57	Sw	0,62	0,66
HBCD-A	5,79	Sw	5,88	5,96
HBCD-BG	5,79	Sw	5,88	5,96
MTBT	2,18	Sw	2,24	2,30
TBBPA	5,72	Sw	5,79	5,87
CARBAMAZ	1,43	Sw	1,48	1,53
CLOFIBRS	1,43	Sw	1,48	1,54
DICLOF	3,75	Sw	3,79	3,83
NAPROX	1,77	Sw	1,83	1,89
OXAZEP	1,70	Sw	1,76	1,81
PRIMID	0,40	Sw	0,44	0,48
PFBA	0,72	Sw	0,76	0,81
PFBS	1,27	Sw	1,31	1,36
PFDEA	4,92	Sw	5,01	5,10
PFHPA	2,82	Sw	2,89	2,95
PFHXA	2,12	Sw	2,18	2,24
PFHXS	2,67	Sw	2,73	2,78
PFNOA	4,22	Sw	4,30	4,38
PFOA	3,52	Sw	3,59	3,67
PFOS	4,07	Sw	4,14	4,21
PFOSA	4,30	Sw	4,38	4,45

Tabelle A-2.1.7: verwendete Sammelraten R_s ausgewählter Zielanalyten aus Kalibrierversuchen in L/d für MESCO und Silikonstab (beide 2 mm \cdot 15 mm Silikonstab [26]), LDPE (100 cm x 28 mm x 0,1 mm [26]) und Silicone Sheets (6 x 55 mm x 90 mm x 0,5 mm [27])

Abkürzung	<i>R</i> s MESCO	<i>R</i> ₅ MESCO	<i>R</i> ₅ Silikon- stab	<i>R</i> ₅ Silikon- stab	<i>R</i> s LDPE	<i>R</i> s LDPE	<i>R</i> s Silicone Sheets
Temperatur (°C)	20		20		20		22
Fließgeschwindigkeit (cm/s)	0,4	40	0,4	40	0,4	40	4
PCB 28	0,014	0,136	0,019	0,119	3,56	40,27	2,29
PCB 52	0,011	0,116	0,018	0,114	6,18	46,49	2,41
PCB 101	0,003	0,067	0,012	0,111	3,73	73,71	2,12
PCB 118					6,27		
PCB 138	0,001	0,031	0,007	0,104	5,97	71,71	2,24
PCB 153	0,001	0,032	0,007	0,104	9,18	74,43	1,75
PCB 180							1,81
DDTOP	0,001	0,031	0,005	0,094	4,09	57,31	

DDTPP		0,025		0,086		58,28	0,68
DDDOP	0,002	0,030	0,008	0,096		26,54	
DDDPP	0,001	0,022	0,006	0,097	4,75	22,18	1,94
DDEOP	0,006	0,081	0,012	0,115		66,87	
DDEPP	0,003	0,108	0,009	0,198	4,29	134,54	2,45
HCB	0,051	0,138	0,066	0,091	4,08	39,43	
HCHA	0,000	0,002	0,001	0,025	0,22	-0,04	1,11
HCHB							
HCHG	0,001		0,004		0,02		1,07
ACE		0,034		0,041		0,46	
ACY							
ANT	0,017	0,049	0,017	0,126	2,90	3,23	1,95
BAA		0,023	0,025	0,126	4,87	55,36	0,61
BAP		0,013		0,180	4,62	73,55	0,72
BBF		0,010		0,096		61,62	1,05
BGHIP		0,003		0,080		56,37	0,42
CHRTR		0,020	0,027	0,112	5,79	54,56	1,46
DBAHA		0,005		0,068		52,64	0,15
FLU	0,004	0,039	0,004	0,078	2,37	19,20	1,56
FL	0,017	0,047	0,011	0,062	0,42	0,61	1,25
I123P		0,003		0,077		53,33	0,45
PHEN	0,021	0,034	0,015	0,081	1,90	1,65	6,17
PYR	0,003	0,040	0,010	0,085	2,68	27,37	2,12
BDE 28		0,024		0,124			
BDE 47		0,018		0,097		68,43	
BDE 99		0,010		0,078			
BDE 100		0,008		0,085		48,84	
BDE 153		0,004		0,052		63,20	
BDE 154		0,003		0,055			
TRELURAL I							

Tabelle A-2.1.8: Verwendete Sammelraten R_s ausgewählter Zielanalyten aus unterschiedlichen Quellen für polaren Chemcatcher (Empore SDB-RPS disk mit Polyethersulfon-Membran)

Substanz	Abkürzung	R _s (Cc)	v	Т	Referenz
		L/d	cm/s	°C	
Ametryn	AMETRYN	0,140	14	21,4	[28]
Ametryn	AMETRYN	0,140	14	22	[29]
Atrazine	ATRAZ	0,013	0	16,2	[30]
Atrazine	ATRAZ	0,023	0,004	23	[31]
Atrazine	ATRAZ	0,041	3,4	16,5	[30]
Atrazine	ATRAZ	0,072	8	18,5	[30]
Atrazine	ATRAZ	0,120	13	18,8	[32]
Atrazine	ATRAZ	0,140	14	21,4	[28]
Atrazine	ATRAZ	0,170	14	22	[29]
Atrazine	ATRAZ	0,124	16,1	19,3	[30]
Atrazine	ATRAZ	0,136	24,1	22	[30]
Atrazine	ATRAZ	0,177	30	20	[33]
Atrazine-DEA	DEA	0,100	13	18,8	[32]
Carbendazim	CARBEND	0,100	13	18,8	[32]
Diazinon	DIAZINON	0,060	13	18,8	[32]
Diclofenac	DICLOF	0,080	13	18,8	[32]
Diuron	DIURON	0,026	0,004	23	[31]
Diuron	DIURON	0,030	13	18,8	[32]
Diuron	DIURON	0,080	14	21,4	[28]
Diuron	DIURON	0,070	14	22	[29]
Diuron	DIURON	0,153	30	20	[33]
Fipronil	FIPRONIL	0,160	14	21,4	[28]
Hexazinone	HEXAZIN	0,100	14	21,4	[28]
Hexazinone	HEXAZIN	0,140	14	22	[29]

Irgarol	IRGAROL	0,130	13	18,8	[32]
Isoproturon	ISOPRUR	0,100	13	18,8	[32]
Mecoprop	MECOPR	0,070	13	18,8	[32]
Metolachlor	METOLA	0,021	0,004	23	[31]
Metolachlor	METOLA	0,210	14	21,4	[28]
Prometryn	PROMETR	0,009	0	16,2	[30]
Prometryn	PROMETR	0,032	3,4	16,5	[30]
Prometryn	PROMETR	0,060	8	18,5	[30]
Prometryn	PROMETR	0,107	16,1	19,3	[30]
Prometryn	PROMETR	0,126	24,1	22	[30]
Simazine	SIMAZ	0,024	0,004	23	[31]
Simazine	SIMAZ	0,140	14	21,4	[28]
Simazine	SIMAZ	0,160	14	22	[29]
Simazine	SIMAZ	0,183	30	20	[33]
Sulfamethoxazole	SMZ	0,090	13	18,8	[32]
Tebuthiuron	TEBU	0,110	14	21,4	[28]
Tebuthiuron	TEBU	0,160	14	22	[29]
Terbutryn	TERBUTR	0,110	13	18,8	[32]
Terbutylazin	TERBAZ	0,130	13	18,8	[32]
Thiacloprid	THI	0,035	10	21,7	[34]

Tabelle A-2.1.9: Verwendete Sammelraten R_s ausgewählter Zielanalyten aus verschiedenen Quellen für POCIS (41 cm² Oberfläche; nach Absprache mit David Alvarez erfolgt die Unterscheidung der Fließgeschwindigkeiten nur zwischen stationärer/laminarer und turbulenter Strömung)

Substanz	<i>R</i> _s (stationär) <i>R</i> _s (turbulent)		Deferenz	
	L/d	L/d	Reierenz	
Atenolol	0,037	0,040	[35]	
Atenolol	0,073	0,094	[36]	
Atrazin	0,114	0,547	[37]	
Desethyl-Atrazin		0,162	[38]	
Azithromycin	0,048	0,273	[39]	
Bisphenol A	0,482	0,835	[36]	
Carbamazepin	0,112	0,348	[35]	
Carbamazepin	0,235	0,561	[36]	
Celecoxib	0,169	0,669	[35]	
Citalopram	0,314	0,758	[36]	
Desmethyl-Citalopram	0,355	0,707	[36]	
Clarithromycin	0,090	0,668	[35]	
Codein	0,090	0,329	[35]	
Diazepam		0,320	[40]	
Diazinon	0,128	0,424	[37]	
Diclofenac	0,092	0,166	[35]	
Diuron	0,011	0,103	[39]	
Erythromycin	0,183	0,911	[35]	
17b-Estradiol	0,334	0,693	[36]	
Estron	0,363	0,699	[36]	
17a-Ethynylestradiol	0,159	0,688	[37]	
17a-Ethynylestradiol	0,379	0,853	[36]	
Fenoprofen	0,167	0,230	[35]	
Fluoxetin	0,027	0,196	[39]	
Fluoxetin	0,223	1,370	[35]	
Fluoxetin	0,433	0,974	[36]	
Gemfibrozil	0,112	0,192	[35]	
Gemfibrozil	0,222	0,350	[36]	
Hydrochlorothiazid	0,016	0,053	[35]	
Ibuprofen	0,197	0,348	[36]	
Isoproturon	0,034	0,196	[39]	
Ketoprofen	0,083	0,135	[35]	
Levothyroxin	0,021	0,121	[39]	

A-2.14

Substanz	<i>R</i> s (stationär)	<i>R</i> s (turbulent)	Referenz
	L/d	L/d	
S-Metolachlor		0,230	[38]
Metoprolol	0,097	0,599	[35]
Metoprolol	0,156	0,465	[36]
Nadolol	0,309	0,447	[36]
Naproxen	0,083	0,116	[35]
Naproxen	0,200	0,392	[36]
4-Nonylphenol	0,923	2,459	[36]
Omeprazol	0,016	0,068	[39]
Paroxetin	0,605	0,987	[36]
Propranolol	0,147	0,980	[35]
Propranolol	0,271	0,917	[36]
Roxithromycin	0,134	0,723	[35]
Sertralin	0,471	0,868	[36]
Desmethyl-Sertralin	0,477	0,962	[36]
Sotalol	0,099	0,151	[36]
Suflapyridin	0,041	0,051	[35]
Suflapyridin	0,201	0,462	[36]
Sulfasoxazol	0,536	0,536	[35]
Terbutylazine		0,251	[41]
Temazepam	0,128	0,421	[35]
Triclosan	0,184	1,920	[35]
Triclosan	0,753	1,929	[36]
Trimethoprim	0,090	0,360	[35]
Trimethoprim	0,215	0,436	[36]
Venlafaxin	0,104	0,521	[36]
N-Desmethyl-Venlafaxin	0,187	0,408	[36]
O-Desmethyl-Venlafaxin	0,179	0,396	[36]

A-2.2 Zielsubstanzen, Standardlösungen, Bestimmungsgrenzen

Tabelle A-2.2.1: Abkürzungen und Herkunftsangaben der unpolaren Zielsubstanzen, IS und PRCs (Hersteller: CA = Cambridge Isotope Laboratories, Andover, UK; CI = Chiron AS, Trondheim, Norwegen; E = Dr. Ehrenstorfer, Augsburg, Deutschland; P = Promochem, Wesel, Deutschland; S = Sigma-Aldrich, Steinheim, Deutschland; W = Wellington Laboratories Inc., Guelph, Canada)

Substanz	Abkürzung (Hersteller)	Zugeordneter IS	Zugeordneter PRC		
Analyten					
2,4,4'-Trichlorobiphenyl	PCB 28 (E)	TCN	CB104		
2,2',5,5'-Tetrachlorobiphenyl	PCB 52 (E)	TCN	CB104		
2,2',4,5,5'-Pentachlorobiphenyl	PCB 101 (E)	TCN	CB104		
2,3',4,4',5-Pentachlorobiphenyl	PCB 118 (E)	PCB 185	CB104		
2,2',3,4,4',5'-Hexachlorobiphenyl	PCB 138 (E)	PCB 185	CB145		
2,2',4,4',5,5'-Hexachlorobiphenyl	PCB 153 (E)	PCB 185	CB145		
2,2',3,4,4',5,5'-Heptachlorobiphenyl	PCB 180 (E)	PCB 185	CB145		
2,4,4'-Tribromodiphenyl Ether	BDE 28 (CI)	F-PBDE-28	6F-PBDE-47		
2,2',4,4'-Tetrabromodiphenyl Ether	BDE 47 (CI)	F-PBDE-28	6F-PBDE-47		
2,2',4,4',5-Pentabromodiphenyl Ether	BDE 99(CI)	F-PBDE-100	6F-PBDE-47		
2,2',4,4',6-Pentabromodiphenyl Ether	BDE 100 (CI)	F-PBDE-100	6F-PBDE-47		
2,2',4,4',5,5'-Hexabromodiphenyl Ether	BDE 153 (CI)	F-PBDE-100	6F-PBDE-47		
2,2',4,4',5,6'-Hexabromodiphenyl Ether	BDE 154 (CI)	F-PBDE-100	6F-PBDE-47		
1,1,1-Trichlor-2,2-bis-(p-chlorphenyl)-ethan	DDTPP (CI)	DDTPP-D8	DDTPP-13C12 (CI)		
1-Chlor-2-(2,2,2-trichlor-1-(4-chlorphenyl) ethyl)benzol	DDTOP (CI)		DDTPP-13C12 (CI)		
1,1-Dichlor-2,2-bis-(p-chlorphenyl)ethan	DDDPP (CI)	DDTPP-D8	DDTPP-13C12 (CI)		

1,1-Dichlor-2,2-bis-(p-chlorphenyl)ethen	DDEPP (CI)	TCN	
Hexachlorbenzol	HCB (S)	TCN	HCB13C6
α-Hexachlorcyclohexan (Alpha-HCH)	HCHA (S)	HCHE	HCHG-13C6-D6
β-Hexachlorcyclohexan (Beta-HCH)	HCHB (S)	HCHE	HCHG-13C6-D6
y-Hexachlorcyclohexan (Gamma-HCH)	HCHG (S)	HCHE	HCHG-13C6-D6
Acenaphthylen	ACY (E)	ACE-D10	FL-D10
Acenaphthen	ACE (E)	ACE-D10	FL-D10
Anthracen	ANT (E)	ANT-D10	PHEN-D10
Dibenz-a,h-anthracen	DBAHA (S)	BGHIP-D12	I123P-D12
Benz-a-anthracen	BAA (E)	BEP-D12	BAP-D10
Benzo[a]pyren	BAP (E)	BEP-D12	BAP-D10
Benzo[b]fluoranthen	BBF (E)	BEP-D12	BAP-D10
Benzo[ghi]perylen	BGHIP (E)	BGHIP-D12	I123P-D12
Indeno[1,2,3,-cd]pyren	1123P (E)	BGHIP-D12	I123P-D12
Chrysen/Triphenylen	CHRTR (É)	BEP-D12	BAP-D10
Fluoren	FL (E)	ACE-D10	FL-D10
Fluoranthen	FLU (E)	FLU-D10	FL-D10
Phenanthren	PHEN (E)	FLU-D10	PHEN-D10
Phenanthren, 3-Methyl	PHEN-M3 (E)	FLU-D10	PHEN-D10
Phenanthren, 3,6-Dimethyl	PHEN-DM36	FLU-D10	PHEN-D10
Phenanthren, 1,2,8-Trimethyl-	PHEN-TM128	FLU-D10	PHEN-D10
Pyren	PYR (E)	FLU-D10	FL-D10/PHEN-D10
	PRC		
2.4.6-Trichlorobiphenyl	PCB 30 (P/E)	TCN	
2.2'.4.6.6'-Pentachlorobiphenvl	PCB 104 (P/E)	TCN	
2,2',3,4,6,6'-Hexachlorobiphenyl	PCB 145 (P/E)	PCB 185	
2,2',3,4,4',5,6,6'-Octachlorobiphenyl	PCB 204 (P/E)	PCB 185	
6-Fluoro-2,2',4,4'-Tetrabromdiphenylether	6F-PBDE-47 (CI)	F-PBDE-100	
2,3,3',4,4',5,6-Heptabromodiphenyl Ether	PBDE-190 (CI)		
1,1,1-Trichlor-2,2-bis-(p-chlorphenyl)-ethan 13C12	DDTPP-13C12 (CI)	DDTPP-D8	
Hexachlorobenzene 13C6	HCB-13C6 (CI)	TCN	
Lindane13C6-D6	HCHG-13C6-D6 (E)	HCHE	
Phenanthren-d10	PHEN-D10 (CI)	FLU-D10	
Fluoren-D10	FL-D10 (E)	ACE-D10	
Benz-a-pyren-D10	BAP-D10 (CI)	BEP-D12	
1,2,3 Indenopyren-D12	I123P-D12 (CI)	BGHIP-D12	
	IS		
1,1,1-Trichlor-2,2-bis-(p-chlorphenyl)-ethan-d10	DDTPP-D8 (CI)		
Anthracen-d10	ANT-D10 (CA)		
Benz-e-pyren-d12	BEP-D12 (CI)		
Benz-g,h,i-perylen-d12	BGHIP-D12 (CI)		
2,2',3,4,5,5',6-Heptachlorobiphenyl	PCB185 (P)		
Fluoranthen-d10	FLU-D10 (CI)		
2'-Fluoro-2,4,4'-Tribromdiphenylether	F-PBDE-28 (CI)		
3-Fluoro-2,2',4,4',6-Pentabromdiphenylether	F-PBDE-100 (CI)		
ε-Hexachlorcyclohexan	HCHE (E)		
1,2,3,4-Tetrachlornaphthalin	TCN (E)		
Tab. A-2.2.2: Abkürzungen und Herkunftsangaben der polaren Zielsubstanzenund zugeordneten IS (Hersteller: E = Dr. Ehrenstorfer, Augsburg, Deutschland; CI = Chiron AS, Trondheim, Norwegen; W = Wellington Laboratories Inc., Guelph, Canada).

Analytsubstanz	Abkürzung	IS		
, and y to abota in 1	(Hersteller)	(Hersteller)		
Irgarol	IRGAROL (E)	TERBAZ-D5 (E)		
Carbendazim	CARBEND (E)	ATRAZ-D5 (E)		
Alachlor	ALACHL (E)	TERBAZ-D5 (E)		
Ametryn	AMETRYN (E)	TERBAZ-D5 (E)		
Atrazin	ATRAZ (E)	ATRAZ-D5 (E)		
Bentazon	BENTAZ (E)	MECOPR-D3 (E)		
Chloridazon	CHLORI (E)	ATRAZ-D5 (E)		
Chlortoluron	CHLORTUR (E)	DIURON-D6 (E)		
Desethylatrazin	DEATRAZ (E)	DEATRAZ-D6 (E)		
Dichlorprop	DICHLPR (E)	MECOPR-D3 (E)		
Diuron	DIURON (E)	DIURON-D6 (E)		
Fenuron	FENUR (E)	ATRAZ-D5 (E)		
Hexazinon	HEXAZIN (E)	ATRAZ-D5 (E)		
Isoproturon	ISOPRUR (E)	DIURON-D6 (E)		
Linuron	LINUR (E)	DIURON-D6 (E)		
2-Methyl-4-chlorphenoxyessigsäure	MCPA (E)	PFOS-13C4/MCPA-D3 (CI/E)		
Mecoprop	MECOPR (E)	MECOPR-D3 (E)		
Metazachlor	METAZCHL (É)	ATRAZ-D5 (E)		
Methabenzthiazuron	METHABZT (E)	TERBAZ-D5 (E)		
Metolachlor	METOLA (E)	TERBAZ-D5 (E)		
Pendimethalin	PENDIMETH (E)	TERBAZ-D5 (E)		
Prometryn	PROMETR (È)	TERBAZ-D5 (E)		
Propazin	PROPAZ (E)	TERBAZ-D5 (E)		
Simazin	SIMAZ (E)	ATRAZ-D5 (E)		
Terbuthylazin	TERBAZ (E)	TERBAZ-D5 (E)		
Terbutryn	TERBUTR (E)	TERBAZ-D5 (E)		
Azinphosethyl	AZINPH-F (F)	AZINPH-M-D6 (F)		
Azinphosmethyl	$\Delta Z INPH_M (E)$	AZINPH-M-D6 (E)		
Chlorfenvinnhos		TERBA7-D5(E)		
Diazinon		TERBAZ-D5(E)		
Dimethoat		$\Delta TR \Delta 7 D5 (E)$		
Malathion				
Dirimicarb				
Renzotriazol				
a-riexabromcyclododocan (Summo)				
2 (Mothylthio)bonzothiazol				
		TERDA 13012 (E)		
Corbomozonin				
Clofibringäuro				
Dielefenae		TERRAZ DE (E)		
Nerroven		TERBAZ-D5 (E)		
Overen		TERBAZ-D5 (E)		
Drizeiden				
Primidon				
		PFUS-13C4 (CI)		
Perfluorbutansultonsaure (PFBuS)		PFHX5-1802 (CI)		
Perfluordecansaure (PFDeA)	PFDEA (VV)	PFUS-13C4 (CI)		
		PFUS-13C4 (CI)		
Periluornexansaure (PFHXA)		PFUS-13C5 (CI)		
Pertluorhexansultonsäure (PFHxS)	PFHXS (W)	PFHXS-18O2 (CI)		
Periluornonansaure (PFNoA)		PFOS-13C4 (CI)		
Perfluoroctansäure	PFOA (W)	PFOA-13C2 (CI)		
Perfluoroctansulfonat	PFOS (W)	PFOS-13C4 (CI)		
Perfluoroctansulfon-säureamid	PFOSA (W)	PFOS-13C4 (CI)		

Tabelle A-2.2.3: Zusammensetzung der IS-Lösung für unpolare Analyten (GC-MS/MS-Analytik)

Analyt	Konzentration [ng/ml]
PHEN-D10	1000
FL-D10	1000
BAP-D10	1000
I123P-D12	1000
CB10	200
CB30	200
CB104	200
CB145	200
CB204	200
6F-PBDE-47	250
PBDE-190	250
HCB13C6	250
HCHG-13C6-D6	345
DDEPP-D8	200

Tabelle A-2.2.4: Zusammensetzung der IS-Lösung für polare Analyten (LC-MS/MS-Analytik)

Analyt	Konzentration [ng/ml]
PFOS-13C4	10
PFOA-13C2	9,8
PFHXS-18O2	10
PFBA-13C4	10
TBBPA-13C12	10
HBCD-A-D18	10
Desethylatrazin-D6	10
2,4-Dibromphenol 3,5,6-D3	54,1
Sodiumdodecyl-sulfat-D25	10,1
Diuron-D6	9,2
Mecoprop-D3	10,3
Malathion-D10	10,2
Atrazin-D5	10,3
Terbuthylazin-D5	10
Dichlorvos-D6	27,0
MCPA-D3	10
Azinphos-methyl-D6	10,0

Tabelle A-2.2.5: Zusammensetzung der PRC-Lösung für unpolare Stoffe (GC-MS/MS-Analytik)

Analyt	Konzentration [ng/ml]
PHEN-D10	1000
FL-D10	1000
BAP-D10	1000
I123P-D12	1000
CB10	200
CB30	200
CB104	200
CB145	200
CB204	200
6F-PBDE-47	250
PBDE-190	250
HCB13C6	250
HCHG-13C6-D6	345
DDEPP-D8	200

	NG	EG	BG	ng/mL	NG	EG	BG
CB28	0,504	1,009	1,239	BGHIP	6,76	13,51	18,14
CB52	0,116	0,232	0,297	I123P	41,56	83,11	107,94
CB101	0,569	1,139	1,390	CHRTR	9,55	19,09	25,55
CB118	0,374	0,748	0,931	FL	22,27	44,53	58,83
CB138	0,230	0,459	0,581	FLU	14,07	28,15	37,49
CB153	0,750	1,500	1,804	PHEN-M3	56,79	113,59	147,31
CB180	0,647	1,294	1,568	PHEN	12,92	25,84	34,46
DDTPP	0,980	1,961	2,320	PHEN-DM36	36,61	73,22	95,63
DDDPP	0,904	1,808	2,149	PHEN-TM128	11,81	23,63	29,47
DDEPP	0,241	0,482	0,608	PYR	26,29	52,58	69,20
HCB	0,294	0,589	0,739				
HCHA	1,404	2,808	3,259				
HCHB	0,667	1,334	1,614				
HCHG	0,512	1,023	1,256				
ACY	21,43	42,85	56,66				
ACE	26,65	53,30	70,13				
ANT	15,43	30,86	41,05				
DBAHA	36,15	72,29	94,31				
BAA	38,14	76,27	99,34				
BAP	44,06	88,11	114,20				
BBF	38,20	76,40	99,50				

Tabelle A-2.2.6: Bestimmungsgrenzen für GC-MS/MS (Silicone Sheets und LDPE-Streifen) bezogen auf den Mess-Extrakt (Kalibriergeradenmethode; DIN 32645)

BG	ng/ml
ALACHL	0,50
AMETRYN	0,03
ATRAZ	0,10
AZINPH-E	0.10
AZINPH-M	0.50
BENTAZ	0.03
BEN7TDI	0,00
	0,00
	0,03
	0,03
CHLORFENV	0,10
CHLORI	0,50
CHLORTUR	0,10
CLOFIBRS	0,10
DEATRAZ	0,10
DIAZINON	0,10
DICHLPR	0,10
DICLOF	0,50
DIMETH	0,10
DIURON	0,10
FENUR	0,09
HBCD-A	0,50
HBCD-BG	0,03
HEXAZIN	0,03
IRGAROL	0,03
ISOPRUR	0,05
LINUR	0,50
MALATH	0,10
MCPA	0,10
MECOPR	0,10
METAZCHL	0,05
METHABZT	0,05
METOLA	0,03
MTBT	1,00
NAPROX	0,50
OXAZEP	0,50
PFDEA	0,10
PFNOA	0,05
PFBA	0,4
PFBS	0,03
PFHPA	0,03
PFHXA	0,03
PFHXS	0,03
PFOA	0,03
PFOS	0,03
PFOSA	0,03
PENDIMETH	0,10
PIRIMIC	0,05
PRIMID	0,50
PROMETR	0,03
PROPAZ	0,10
SIMAZ	0,10
TBBPA	1,00
TERBAZ	0,03
TERBUTR	0,03

Tabelle A-2.2.7: Bestimmungsgrenzen für LC-MS/MS bezogen auf den Mess-Extrakt

Tabelle A-2.2.8: Zusammensetzung der Dotierlösung für unpolare Analyten (GC-MS/MS-Analytik, links) und für polare Analyten (LC-MS/MS-Analytik, rechts)

Δnalvt	Konzentration	Analyt	Konzentration
Analyt	[ng/ml]	Analyt	[ng/ml]
CB28	25	HBCD-B	10
CB31	25	HEXAZIN	12,74
CB52	25	IRGAROL	11,5
CB101	25	ISOPRUR	11
CB105	25	LINUR	11,46
CB118	25	MALATH	12.16
CB138	25	MCPA	9.93
CB153	25	MECOPR	9,76
CB156	25	METAZCHI	10.18
CB180	25	METHABZT	10
	25		10
	25	METOLA	0 011
	25	NAPPOY	10 024
	25		0.2
	25		9,2
	20	PFDEA	9,93
DIELD	25	PFNOA	10,01
HCHA	25	PFBS	9,042
НСНВ	25	PEHPA	10,98
HCHG	25	PFHXA	10,19
HCB	25	PFHXS	10
ACE	500	PFOA	11,02
ACY	500	PFOS	9,72
ANT	500	PFOSA	7,5
BAA	500	PENDIMETH	10,92
BAP	500	PIRIMIC	10,308
BBF	500	PRIMID	10,094
BGHIP	500	PROMETR	11,5
CHR	500	PROPAZ	9,86
DBAHA	500	SIMAZ	9,84
FLU	500	TBBPA	10
FL	500	TERBAZ	13
I123P	500	TERBUTR	9,68
PHEN	500		,
PYR	500		
ALACHL	16.34		
AMETRYN	12 32		
ATRAZ	10.62		
AZINPH-F	10.1		
AZINPH-M	10.7		
BENTAZ	11 78		
BENZTRI	10.328		
CARBAMAZ	10,106		
CARBEND	10		
	12 12		
CHLORI	10		
CHLORTUR	10.4		
CLOFIBRS	18.23		
DEATRAZ	14 4		
	14, 4 11 Q		
	10.5		
	10.286		
DIMETH	12 78		
	10.09		
	10,90		
	11,12		
	10		
HBCD-G	10		

Tabelle A-2.2.9: relative Wiederfindungsraten in Prozent in dotierten Matrix-Proben für die GC-MS/MS-Analytik für Silicone Sheets und LDPE-Streifen sowie MESCO und Silikonstab über das gesamte Aufarbeitungsverfahren. Stoffe, die aufgrund der Wiederfindungsraten von der weiteren Quantifizierung ausgeschlossen wurden, sind kursiv und unterstrichen dargestellt. n.a. = nicht analysiert.

	WFR in %								
Substanz	SI Ges	samtverfał (n=2)	nren	LDPE	Gesamtver (n=2)	fahren	MESCO	und Siliko (n=3)	nstab
	MW	Median	S	MW	Median	S	MW	Median	S
CB028	46	46	5	67	67	1	76	77	3
CB052	64	65	5	72	72	5	75	77	3
CB101	104	105	7	93	93	11	74	75	3
CB118	31	32	8	64	64	4	n.a.	n.a.	n.a.
CB153	36	36	8	70	70	5	69	69	3
CB138	46	47	9	63	63	4	71	72	3
CB180	46	47	8	74	74	3	71	72	2
DDTOP	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	58	59	3
DDTPP	<u>0</u>	<u>0</u>	<u>0</u>	73	73	11	55	57	3
DDDOP	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	71	72	3
DDDPP	<u>0</u>	<u>0</u>		95	95	20	70	71	2
DDEOP	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	76	78	3
DDEPP	<u>169</u>	<u>190</u>	<u>51</u>	130	130	2	74	75	3
HCB	17	17	3	42	42	7	69	70	3
HCHA	<u>0</u>	<u>0</u>		<u>21</u>	<u>21</u>	<u>16</u>	83	83	3
HCHB	<u>11</u>	<u>11</u>		185	<u>185</u>	109	74	74	3
HCHG	<u>11</u>	<u>11</u>		<u>33</u>	<u>33</u>	18	79	79	3
ACE	50	51	2	<u>77</u>	<u>77</u>	<u>27</u>	83	84	5
ACY	67	59	17	<u>54</u>	<u>54</u>	76	n.a.	n.a.	n.a.
ANT	48	49	2	80	80	1	85	86	4
BAA	40	42	5	82	82	3	91	93	8
BAP	46	46	3	79	79	2	96	98	8
BBF	48	49	2	81	81	2	92	94	4
BGHIP	48	48	1	81	81	0	81	85	12
CHRTR	40	41	3	80	80	2	89	93	9
DBAHA	47	48	2	83	83	2	86	90	14
FL	60	60	2	126	<u>126</u>	39	82	84	4
FLU	46	47	3	82	82	0	90	92	6
I123P	49	50	2	84	84	4	85	89	14
PHEN	19	19	1	52	52	11	83	84	4
PYR	50	52	3	84	84	1	91	94	6
BDE028	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	70	71	2
BDE047	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	70	70	3
BDE099	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	68	66	6
BDE100	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	71	69	5
BDE153	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	57	55	8
BDE154	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	63	60	7
ATRAZIN	Bes L	timmung po .C-MS/MS	er	Be	Bestimmung per LC-MS/MS			73	2
IRGAROL	Bes L	timmung po .C-MS/MS	er	Bestimmung per LC-MS/MS			50	49	2
TERBUAZI	Bes L	timmung po .C-MS/MS	er	Be	estimmung p LC-MS/MS	ber	77	77	3
TRIFLURALI							71	71	3

Tabelle A-2.2.10:	relative	Wiederfindungsrater	in	für	die	GC-MS/MS	Analytik	für	die
Aufarbeitungsschr	itte a) Um	lösung mittels Paralle	elvero	lampe	er sov	wie b) für die	C ₁₈ - und	Kiese	lgel-
Cleanups (Wieder	findung üt	per beide Cleanups er	mitte	lt).					

	WFR in %									
Substanz	Umlösung auf Aceton (n=8)			Umlös	ung auf He (n=5)	xan	C18 (C18- und Kieselgel- Cleanup (n=5)		
	MW	Median	s	MW	Median	S	MW	Median	S	
CB028	67	67	4	75	75	2	86	85	4	
CB052	77	77	5	80	80	1	102	100	5	
CB101	101	99	5	80	80	1	120	121	5	
CB118	62	62	6	69	70	3	57	57	1	
CB138	74	76	3	77	77	2	69	68	3	
CB153	64	64	3	67	67	2	64	64	3	
CB180	80	81	4	74	76	4	76	77	6	
DDTPP	91	92	5	93	94	5	70	70	13	
DDDPP	100	99	5	95	97	4	90	89	15	
DDEPP	139	141	15	103	105	3	148	147	19	
HCB	58	57	6	74	72	2	79	80	5	
HCHA	45	44	7	73	72	4	65	66	8	
HCHB	91	89	10	81	81	9	114	119	13	
HCHG	52	52	4	70	72	6	114	119	13	
ACE	80	79	2	80	80	0	106	99	17	
ACY	92	91	2	86	86	1	106	101	11	
ANT	82	81	0	81	81	0	106	105	10	
BAA	77	77	1	83	83	1	76	76	3	
BAP	79	79	1	82	82	0	86	87	3	
BBF	81	81	1	82	81	1	87	88	4	
BGHIP	82	82	1	82	82	0	94	94	3	
CHRTR	77	77	1	81	81	1	77	77	2	
DBAHA	83	83	1	83	83	0	98	96	5	
FL	87	86	3	82	82	0	107	104	12	
FLU	80	81	1	81	80	0	94	95	9	
I123P	82	82	1	82	82	0	96	96	2	
PHEN	53	54	5	76	76	2	65	65	2	
PYR	83	83	1	82	82	0	103	107	10	

Tabelle A-2.2.11: relative Wiederfindungsraten (WFR) in dotierten Matrix-Proben für die LC-MS/MS Analytik für Silikonsammler und LDPE-Streifen über das gesamte Aufarbeitungsverfahren (n.a.: nicht analysiert; ---: nur in Einzelproben detektiert worden, nicht berücksichtigt; <BG: unter Bestimmungsgrenze) sowie die WFR für das C₁₈-Cleanup.

	WFR in %									
Substanz	SI Gesamtverfahren (n=4)			LDPE Gesamtverfahren (n=2)			WFR C ₁₈ -Cleanup (n=2)			
	MW	Median	S	MW	Median	S	MW	Median	S	
IRGAROL	91	89	6	120	120	8	97	97	3	
CARBEND	43	45	13	56	56	12	99	99	1	
ALACHL	62	63	8	<u>0</u>	<u>0</u>		94	94	0	
AMETRYN	98	99	7	77	77	2	91	91	0	
ATRAZIN	94	94	1	50	50	0	97	97	1	
BENTAZ	245	220	82	53	53	2	108	108	10	
CHLORI	92	91	4	n.a.	n.a.	n.a.	99	99	3	
CHLORTUR	64	62	6	49	49	2	98	98	1	
DEATRAZ	97	98	3	51	51	1	98	98	1	
DICHLPR	64	63	1	n.a.	n.a.	n.a.	100	100	5	
DIURON	89	89	2	50	50	2	98	98	1	
FENUR	22	20	5	62	62	8	95	95	1	
HEXAZIN	89	87	4	57	57	6	102	102	1	
ISOPRUR	50	47	7	49	49	2	95	95	0	

	WFR in %								
Substanz	SI Ges	amtverfahi	ren (n=4)	LDPE	Gesamtverf	ahren	WFR C ₁₈	3-Cleanup (I	า=2)
	MW	Median	S	MW	Median	S	MW	Median	S
LINUR	154	161	16	32	32	1	92	92	1
MCPA	95	96	3	56	56	1	97	97	2
MECOPR	89	89	1	54	54	0	98	98	0
METAZCHL	84	86	11	73	73	7	99	99	2
METHABZT				121	121	5	98	98	0
METOLA	84	85	4	102	102	10	94	94	2
PENDIMETH	36	28	35	90	90	7	87	87	1
PROMETR	96	97	7	102	102	7	93	93	2
PROPAZ	91	92	9	29	29	17	81	81	14
SIMAZ	95	95	1	50	50	2	97	97	2
TERBUAZI	96	96	5	69	69	1	94	94	1
TERBUTR	92	92	5	108	108	6	93	93	0
MALATH				147	147	6	105	105	0
AZINPH-M	84	45	89	125	125	6	100	100	1
CHLORFENV	65	70	20	79	79	1	93	93	4
DIAZINON	76	80	11	80	80	15	90	90	1
DIMETH				54	54	4	90	90	7
MALATH				51	51	1	98	98	1
PIRIMIC	98	98	1	58	58	2	95	95	2
BENZTRI	113	115	11	72	72	3	99	99	11
HBCD-A				45	45	3	99	99	4
HBCD-BG	195	195	151	n.a.	n.a.	n.a.	95	95	24
MTBT	103	105	9	n.a.	n.a.	n.a.	92	92	4
TBBPA	95	94	4	48	48	2	91	91	2
CARBAMAZ	88	94	14	49	49	0	101	101	1
CLOFIBRS	109	107	6	26	26	1	107	107	2
DICLOF	62	62	30	39	39	0	101	101	1
NAPROX	105	106	5	46	46	1	101	101	4
OXAZEP	<bg< td=""><td><bg< td=""><td>-</td><td>39</td><td>39</td><td>1</td><td>90</td><td>90</td><td>12</td></bg<></td></bg<>	<bg< td=""><td>-</td><td>39</td><td>39</td><td>1</td><td>90</td><td>90</td><td>12</td></bg<>	-	39	39	1	90	90	12
PRIMID	122	124	8	75	75	6	103	103	2
PFBA	743	597	470	n.a.	n.a.	n.a.	141	141	95
PFBS	134	136	6	n.a.	n.a.	n.a.	113	113	4
PFDEA	75	75	4	59	59	4	20	20	3
PFHPA	95	97	8	55	55	2	20	20	4
PFHXA	112	117	12	56	56	3	23	23	4
PFHXS	102	102	1	53	53	0	101	101	1
PFNOA	89	89	4	62	62	5	28	28	5
PFOA	98	98	1	316	316	0 0	105	105	4
PFOS	100	100	1	54	54	<u>0</u>	98	98	0
PFOSA	85	85	2	52	52	Ō	n.a.	n.a.	n.a.

Tabelle A-2.2.12: relative Wiederfindungsraten (WFR) in dotierten Wasserproben für die GC-MS Analytik mit Probenaufgabe durch Thermodesorption (n.a.: nicht analysiert)

	WFR in %		WFR in %		WFR in %
Substanz	Wasserproben (Twister)	Substanz	Wasserproben (Twister)	Substanz	Wasserproben (Twister)
CB028	125	HCHA	12	I123P	163
CB052	129	HCHB	1	PHEN	40
CB101	135	HCHG	13	PYR	67
CB118	n.a.	ACE	20	BDE028	118
CB138	138	ACY	12	BDE047	157
CB153	137	ANT	45	BDE099	149
CB180	n.a.	BAA	104	BDE100	144
DDTOP	95	BAP	133	BDE153	109
DDTPP	87	BBF	124	BDE154	127
DDDOP	117	BGHIP	146	ATRAZIN	136

	WFR in %			WFR in %		WFR in %
Substanz	Wasserproben (Twister)		Substanz	Wasserproben (Twister)	Substanz	Wasserproben (Twister)
DDDPP	110		CHRTR	101	IRGAROL	5
DDEOP	135		DBAHA	150	TERBUAZI	1
DDEPP	117		FL	21	TRIFLURALI	59
HCB	104		FLU	98		

Tabelle A-2.2.13: Minimale und maximale Zielstoffwerte (%) im Verhältnis zu exponierten Sammlern in Transportblank-Proben verschiedener Sammlertypen (Werte bezogen auf alle Kampagnen). n.a = nicht analysiert; <BG: unter Bestimmungsgrenze.

		e Sheets		LDPE-Streifen				
	MIN		MAX	X	MIN		MAX	
	ng/ Sammler	%	ng/ Sammler	%	ng/ Sammler	%	ng/ Sammler	%
CB028	<bg< td=""><td></td><td>0.5</td><td>18.9</td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>		0.5	18.9	<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>	
CB052	<bg< td=""><td></td><td>0.0</td><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>		0.0		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>	
CB101	<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>	
CB118	<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>	
CB138	<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>	
CB153	<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>	
CB180	<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>	
DDTPP	n.a.	n.a.	n.a.	n.a.	<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>	
DDDPP	n.a.	n.a.	n.a.	n.a.	<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>	
DDEPP	n.a.	n.a.	n.a.	n.a.	<bg< td=""><td></td><td>0,000</td><td>16,0</td></bg<>		0,000	16,0
HCB	<bg< td=""><td></td><td>0,2</td><td>3,8</td><td><bg< td=""><td></td><td>0,000</td><td>1,6</td></bg<></td></bg<>		0,2	3,8	<bg< td=""><td></td><td>0,000</td><td>1,6</td></bg<>		0,000	1,6
HCHA	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
HCHB	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
HCHG	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
ACY	<bg< td=""><td></td><td><bg< td=""><td></td><td>n.a.</td><td>n.a.</td><td>n.a.</td><td>n.a.</td></bg<></td></bg<>		<bg< td=""><td></td><td>n.a.</td><td>n.a.</td><td>n.a.</td><td>n.a.</td></bg<>		n.a.	n.a.	n.a.	n.a.
ACE	<bg< td=""><td></td><td><bg< td=""><td></td><td>n.a.</td><td>n.a.</td><td>n.a.</td><td>n.a.</td></bg<></td></bg<>		<bg< td=""><td></td><td>n.a.</td><td>n.a.</td><td>n.a.</td><td>n.a.</td></bg<>		n.a.	n.a.	n.a.	n.a.
ANT	<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>	
BAA	<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>	
BBF	<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>	
BGHIP	<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>	
BAP	<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>	
	<bg< td=""><td></td><td>5,3</td><td>6,8</td><td><bc< td=""><td></td><td><bg< td=""><td></td></bg<></td></bc<></td></bg<>		5,3	6,8	<bc< td=""><td></td><td><bg< td=""><td></td></bg<></td></bc<>		<bg< td=""><td></td></bg<>	
DBAHA	<bg< td=""><td></td><td><bg< td=""><td></td><td><bc< td=""><td></td><td><bg< td=""><td></td></bg<></td></bc<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bc< td=""><td></td><td><bg< td=""><td></td></bg<></td></bc<></td></bg<>		<bc< td=""><td></td><td><bg< td=""><td></td></bg<></td></bc<>		<bg< td=""><td></td></bg<>	
FLU			<вG 7 7	 5 2	 BG		 BG	
	<bg< td=""><td></td><td></td><td>5,5</td><td></td><td>n.a.</td><td></td><td>11.a.</td></bg<>			5,5		n.a.		11.a.
DHEN	<bg< td=""><td></td><td>80</td><td>1.8</td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>		80	1.8	<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>	
	<bg< td=""><td></td><td><bg< td=""><td>1,0</td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<>		<bg< td=""><td>1,0</td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>	1,0	<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>	
			100		100		100	
IRGAROL	<bg< td=""><td></td><td><bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<>					
CARBEND	<bg< td=""><td></td><td><bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<>					
ALACHL	<bg< td=""><td></td><td>6,3</td><td>146,3</td><td></td><td></td><td></td><td></td></bg<>		6,3	146,3				
AMETRYN	<bg< td=""><td></td><td><bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<>					
ATRAZIN	<bg< td=""><td></td><td><bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<>					
BENTAZ	n.a.	n.a.	n.a.	n.a.				
CHLORI	<bg< td=""><td></td><td><bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<>					
CHLORIUR	<bg< td=""><td></td><td><bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<>					
	<bg< td=""><td></td><td><bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<>					
	<bg< td=""><td></td><td><bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<>					
	<8G		<bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<>					
	n.a.	n.a.		n.a.				
	<u> </u>	 n o	<u> </u>	 n 2				
MCPA	11.a. <rg< td=""><td>11.d.</td><td>11.a. <bc< td=""><td>11.d.</td><td></td><td></td><td></td><td></td></bc<></td></rg<>	11.d.	11.a. <bc< td=""><td>11.d.</td><td></td><td></td><td></td><td></td></bc<>	11.d.				
	.50							

A٠	-2.	.26

	Silicone Sheets				LDPE-Streifen			
	MIN		MAX	X	MIN		MAX	
	ng/ Sammler	%	ng/ Sammler	%	ng/ Sammler	%	ng/ Sammler	%
MECOPR	<bg< td=""><td></td><td>0,1</td><td>72,6</td><td></td><td></td><td></td><td></td></bg<>		0,1	72,6				
METAZCHL	<bg< td=""><td></td><td>0,0</td><td>0,3</td><td></td><td></td><td></td><td></td></bg<>		0,0	0,3				
METHABZT	n.a.	n.a.	n.a.	n.a.				
METOLA	<bg< td=""><td></td><td>0,0</td><td>0,2</td><td></td><td></td><td></td><td></td></bg<>		0,0	0,2				
PENDIMETH	n.a.	n.a.	n.a.	n.a.				
PROMETR	<bg< td=""><td></td><td>0,0</td><td>0,1</td><td></td><td></td><td></td><td></td></bg<>		0,0	0,1				
PROPAZ	<bg< td=""><td></td><td><bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<>					
SIMAZ	<bg< td=""><td></td><td><bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<>					
TERBUAZI	<bg< td=""><td></td><td>0,4</td><td>0,6</td><td></td><td></td><td></td><td></td></bg<>		0,4	0,6				
TERBUTR	<bg< td=""><td></td><td>0,0</td><td>0,1</td><td></td><td></td><td></td><td></td></bg<>		0,0	0,1				
CHLORFENV	<bg< td=""><td></td><td><bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<>					
DIAZINON	<bg< td=""><td></td><td><bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<>					
DIMETH	n.a.	n.a.	n.a.	n.a.				
MALATH	n.a.	n.a.	n.a.	n.a.				
PIRIMIC	<bg< td=""><td></td><td><bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<>					
BENZTRI	<bg< td=""><td></td><td>1,0</td><td>96,1</td><td></td><td></td><td></td><td></td></bg<>		1,0	96,1				
HBCD-A	n.a.	n.a.	n.a.	n.a.				
HBCD-BG	n.a.	n.a.	n.a.	n.a.				
MTBT	<bg< td=""><td></td><td>1,1</td><td>3,4</td><td></td><td></td><td></td><td></td></bg<>		1,1	3,4				
TBBPA	<bg< td=""><td></td><td><bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<>					
CARBAMAZ	<bg< td=""><td></td><td><bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<>					
CLOFIBRS	<bg< td=""><td></td><td>0,1</td><td></td><td></td><td></td><td></td><td></td></bg<>		0,1					
DICLOF	<bg< td=""><td></td><td><bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<>					
NAPROX	<bg< td=""><td></td><td><bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<>					
OXAZEP	n.a.	n.a.	n.a.	n.a.				
PRIMID	<bg< td=""><td></td><td><bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<>					
PFBS	<bg< td=""><td></td><td>5,8</td><td>170,5</td><td></td><td></td><td></td><td></td></bg<>		5,8	170,5				
PFDEA	<bg< td=""><td></td><td>0,1</td><td>164,4</td><td></td><td></td><td></td><td></td></bg<>		0,1	164,4				
PFHPA	<bg< td=""><td></td><td>0,0</td><td>91,0</td><td></td><td></td><td></td><td></td></bg<>		0,0	91,0				
PFHXA	<bg< td=""><td></td><td><bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<>					
PFHXS	<bg< td=""><td></td><td>0,0</td><td>112,3</td><td></td><td></td><td></td><td></td></bg<>		0,0	112,3				
PFNOA	<bg< td=""><td></td><td>0,5</td><td>243,1</td><td></td><td></td><td></td><td></td></bg<>		0,5	243,1				
PFOA	<bg< td=""><td></td><td>0,2</td><td>162,9</td><td></td><td></td><td></td><td></td></bg<>		0,2	162,9				
PFOS	<bg< td=""><td></td><td>0,0</td><td>139,6</td><td></td><td></td><td></td><td></td></bg<>		0,0	139,6				
PFOSA	<bg< td=""><td></td><td><bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td></td><td></td><td></td><td></td></bg<>					

Tabelle A-2.2.14: Wiederhopräzision der Silicone Sheets. Wenn einer der Werte eines Wertepaares unter BG lag, keine Berechnung der Wiederholungspräzision.

				Wiederho	lpräzision*			
	FE/	FE/	HT/	HT/	HT/	KI/	KI/	KI/
	150611	220910	310511	180711	080710	250510	270710	251110
				n=	=2			
CB 28	7	1	16	9	10	2		1
CB 52	14	3	6	4	3	0		11
CB 101	27	9	0	10	13	7		11
CB 118	7	7	5	6	73	7		
CB 138	6	16	2	10	11	0		
CB 153	25	20	8	15	20	5		
CB 180	9		6	17		4		
HCB	8	5	13	17	6			14
ACY		35	89	80		37	42	10
ACE	18	6	27	5		1	1	7
ANT	33	1	19	15	66	5	6	63
BAA								
BBF	24	6	7	10		1	7	3

				Wiederho	olpräzision*			
	FE/	FE/	HT/	HT/	HT/	KI/	KI/	KI/
	150611	220910	310511	180711	080710	250510	270710	251110
				n	=2			
BGHIP	11	2		3		1	4	12
BAP	14	6	24	5		1	3	3
CHRTR	8	2	4	2		3	3	15
DBAHA	5	20	19	2		2	3	10
FLU	15	8	6	2		0	7	37
FL	15	19	31	17	30	14	2	96
I123P	8	12	9	4	49	3	3	47
PHEN	4	12	6	2		9	0	74
PYR	15	10	11	3		2	4	36
IRGAROL	3			24				4
CARBEND		160		6	25	0	1	4
ALACHL	28	33			60	21	52	14
AMETRYN	16	11	3	25	21	2	19	29
ATRAZ	0	2	6	2	11	2	14	26
CHLORI								
CHLORTUR	1	16	7	14	22	1	5	9
DEATRAZ	63	52	82		35	9	19	0
DICHLPR								
DIURON	28	8	2	4	19	10	6	7
HEXAZIN	20					6	6	19
ISOPRUR	50	34	13	20	4	8	0	6
MCPA								
MECOPR		17	0	46				
METAZCHL	5	6	10	25	13	39	22	10
METOLA	9	0	1	3	11			1
PROMETR	2	3	1	11	39			1
PROPAZ	8	2	11	24	57	2	3	1
SIMAZ	3	6	3	1	7	4	6	16
TERBAZ	17	0	1	6				8
TERBUTR		8	1	1				11
CHLORFENV		-	113			16	23	9
DIAZINON	102	6	2	25	1	26	7	6
MALATH	2							
PIRIMIC	2			8	37	3	1	5
BENZTRI	2	9	33	41	11	3	21	6
MTBT			21	20				
TBBPA		9						13
CARBAMAZ	7		1	4	8	0	3	3
CLOFIBRS		0						
DICLOF	4							
NAPROX	69		168	730				
OXAZEP	10							
PRIMID	5							
PFBS	38	25	6	3				
PFDEA	9					58		
PFHPA			31			49		52
PFHXA			28					
PFHXS		0	2	6				
PFNOA			45		10		34	14
PFOA		4	66	29	18	62	21	36
PFOS		7	24	26	21	1	45	243
PFOSA			15	17	4	8	14	21

		Wiederh	olpräzision	
	FE/220910	HT/080710	HT/161110	KI/251110
	n=2*	n=2*	n=3**	n=3**
CB 28				42
CB 52	10	6	5	17
CB 101	12	28	2	34
CB 118	17	3	8	4
CB 138	19	15	8	9
CB 153	15	31	7	19
CB 180				19
DDTPP	13		11	47
DDDPP				32
DDEPP				14
HCB	14	15	6	33
ANT				1
BAA				
BBF	14	19	1	24
BGHIP	19			26
BAP	19	22	2	20
CHRTR	19	24	9	36
DBAHA	19	22		
FLU	12	13	1	17
I123P	10	2	5	13
PHEN	10		11	76
PYR	11	2	5	8

Dreifachbeprobung [%]

Tabelle A-2.2.16: Simulation des Einflusses der relativen Unsicherheiten von Masse und Sammelrate (einzeln und kombiniert) auf die relative Standardabweichung der zeitgemittelte Konzentration (linear-integrativer Fall) für einen typischen Parametersatz (nach Gl. 15; graue Zeilen sind jeweils Startwerte, rote Zahlen die Variationen; in den gelb markierten Zeilen die realitätsnächsten Annahmen). Mit $V_s/L = 0,015$; $s_{Vs}/V_s = 0,05$; $s_t = 3 h = 3/24 d$; $A/dm^2 = 6$; $s_A/A = 0,05$

lfd. Nr.	<i>m</i> _t ∕ng	s _{mt} /m _t	<i>R</i> s/[L/d]	s _{Rs} / R s	t/d	s₁/t	c ^{TWA} /[ng/L]	s _c ^{twa} /c ^{twa}
1	100	0,05	0,100	0,10	21	0,006	47,6	0,11
2	100	0,10	0,100	0,10	21	0,006	47,6	0,14
3	100	0,20	0,100	0,10	21	0,006	47,6	0,22
4	100	0,50	0,100	0,10	21	0,006	47,6	0,51
5	100	1,00	0,100	0,10	21	0,006	47,6	1,01
6	100	0,05	0,100	0,10	21	0,006	47,6	0,11
7	100	0,05	0,100	0,20	21	0,006	47,6	0,21
8	100	0,05	0,100	0,50	21	0,006	47,6	0,50
9	100	0,05	0,100	1,00	21	0,006	47,6	1,00
10	100	0,05	0,100	0,10	21	0,006	47,6	0,11
11	100	0,10	0,100	0,20	21	0,006	47,6	0,22
12	100	0,10	0,100	0,50	21	0,006	47,6	0,51
13	100	0,10	0,100	1,00	21	0,006	47,6	1,01
14	100	0,05	0,100	0,10	21	0,006	47,6	0,11
15	100	0,20	0,100	0,20	21	0,006	47,6	0,28

16	100	0,20	0,100	0,50	21	0,006	47,6	0,54
17	100	0,20	0,100	1,00	21	0,006	47,6	1,02
18	100	0,05	0,100	0,10	21	0,006	47,6	0,11
19	100	0,50	0,100	0,20	21	0,006	47,6	0,54
20	100	0,50	0,100	0,50	21	0,006	47,6	0,71
21	100	0,50	0,100	1,00	21	0,006	47,6	1,12

Tabelle A-2.2.17: Prozentuale Anteile der Einzelvarianzen an der Gesamtvarianz der zeitgemittelte Konzentration (linear-integrativer Fall) (Parameter wie in entsprechender Zeile von Tabelle A-2.2.16; lfd. Nr. identisch; graue Zeilen sind jeweils Startwerte, rote Zahlen die Variationen; in den gelb markierten Zeilen die realitätsnächsten Annahmen).

lfd. Nr.	%-Anteil von	%-Anteil von	%-Anteil von
	[∂c/∂mt*smt]²	[∂c/∂Rs*sRs]²	[∂c/∂t*st]²
1	20	80	0,28
2	50	50	0,18
3	80	20	0,07
4	96	4	0,01
5	99	1	0,00
6	20	80	0,28
7	6	94	0,08
8	1	99	0,01
9	0.2	100	0,00
10	20	80	0,28
11	20	80	0,07
12	4	96	0,01
13	1	99	0,00
14	20	80	0,28
15	50	50	0,04
16	14	86	0,01
17	4	96	0,00
18	20	80	0,28
19	86	14	0,01
20	50	50	0,01
21	20	80	0,00

Tabelle A-2.2.18: Simulation des Einflusses der relativen Unsicherheiten von Masse, Sammler-Wasser-Verteilungskoeffizient und Gesamt-Austauschrate (einzeln und kombiniert) auf die relative Standardabweichung der zeitgemittelte Konzentration im Wasser (nichtlinearer Fall) für einen typischen Parametersatz. Mit $V_s/[L] = 0.015$; $s_{Vs}/V_s = 0.05$; $s_t = 3 h = 3/24 d$; $A/[dm^2] = 6$; $s_A/A = 0.05$. Graue Zeilen sind jeweils Startwerte, rote Zahlen die Variationen; in den gelb markierten Zeilen die realitätsnächsten Annahmen.

lfd. Nr.	<i>m</i> _t /ng	S _{mt} / m t	K _{sw}	s _{Ksw} /K _{sw}	<i>k</i> e*d	s _{ke} / k _e	<i>t</i> /d	s₊/t	c ^{TWA} /[ng/L]	sc ^{twa} /c ^{twa}
1	100	0,05	1,00E+05	0,1	6,67E-05	0,1	21	0,006	47,7	0,16
2	100	0,10	1,00E+05	0,1	6,67E-05	0,1	21	0,006	47,7	0,18
3	100	0,20	1,00E+05	0,1	6,67E-05	0,1	21	0,006	47,7	0,25
4	100	0,50	1,00E+05	0,1	6,67E-05	0,1	21	0,006	47,7	0,52
5	100	1,00	1,00E+05	0,1	6,67E-05	0,1	21	0,006	47,7	1,01
6	100	0,05	1,00E+05	0,1	6,67E-05	0,1	21	0,006	47,7	0,16
7	100	0,05	1,00E+05	0,2	6,67E-05	0,1	21	0,006	47,7	0,23
8	100	0,05	1,00E+05	0,5	6,67E-05	0,1	21	0,006	47,7	0,51
9	100	0,05	1,00E+05	1,0	6,67E-05	0,1	21	0,006	47,7	1,01
10	100	0,05	1,00E+05	0,1	6,67E-05	0,1	21	0,006	47,7	0,16
11	100	0,05	1,00E+05	0,1	6,67E-05	0,2	21	0,006	47,7	0,23
12	100	0,05	1,00E+05	0,1	6,67E-05	0,5	21	0,006	47,7	0,52
13	100	0,05	1,00E+05	0,1	6,67E-05	1,0	21	0,006	47,7	1,01
14	100	0,05	1,00E+05	0,1	6,67E-05	0,1	21	0,006	47,7	0,16
15	100	0,10	1,00E+05	0,2	6,67E-05	0,2	21	0,006	47,7	0,30
16	100	0,10	1,00E+05	0,2	6,67E-05	0,5	21	0,006	47,7	0,55
17	100	0,10	1,00E+05	0,2	6,67E-05	1,0	21	0,006	47,7	1,03
18	100	0,05	1,00E+05	0,1	6,67E-05	0,1	21	0,006	47,7	0,16
19	100	0,20	1,00E+05	0,5	6,67E-05	0,2	21	0,006	47,7	0,58
20	100	0,20	1,00E+05	0,5	6,67E-05	0,5	21	0,006	47,7	0,74
21	100	0,20	1,00E+05	0,5	6,67E-05	1,0	21	0,006	47,7	1,14
22	100	0,05	1,00E+05	0,1	6,67E-05	0,1	21	0,006	47,7	0,16
23	100	0,50	1,00E+05	1,0	6,67E-05	0,2	21	0,006	47,7	1,14
24	100	0,50	1,00E+05	1,0	6,67E-05	0,5	21	0,006	47,7	1,23
25	100	0,50	1,00E+05	1,0	6,67E-05	1,0	21	0,006	47,7	1,50

Tabelle A-2.2.19: Prozentuale Anteile der Einzelvarianzen an der Gesamtvarianz der zeitgemittelten Durchschnittskonzentration im Wasser (nichtlinearer Fall) (Parameter wie in entsprechender Zeile von Tabelle A-2.2.18; lfd. Nr. identisch; graue Zeilen sind jeweils Startwerte, rote Zahlen die Variationen; in den gelb markierten Zeilen die realitätsnächsten Annahmen)

lfd. Nr.	%-Anteil von	%-Anteil von	%-Anteil von	%-Anteil von	%-Anteil von
	$[\partial \mathbf{c}/\partial m_t^* \mathbf{s}_{mt}]^2$	$[\partial c / \partial V_{\rm s} * s_{V \rm s}]^2$	[∂c/∂ <i>K</i> sw*s _{Ksw}]²	[∂ <i>c</i> /∂ <i>k</i> e* <i>s</i> ke]²	[∂ <i>c</i> /∂ <i>t</i> *s _t]²
1	10	10,0	40	40	0,142
2	31	7,7	31	31	0,109
3	64	4,0	16	16	0,057
4	92	0,9	4	4	0,013
5	98	0,2	1	1	0,003
6	10	10,0	40	40	0,142
7	5	4,5	73	18	0,064
8	1	0,9	94	4	0,013
9	0,2	0,2	99	1	0,003
10	10	10,0	40	40	0,142
11	5	4,5	18	73	0,064
12	1	0,9	4	94	0,013
13	0,2	0,2	1	99	0,003
14	10	10,0	40	40	0,142
15	11	2,7	43	43	0,038
16	3	0,8	13	83	0,012
17	1	0,2	4	95	0,003
18	10	10,0	40	40	0,142
19	12	0,8	75	12	0,011
20	7	0,5	46	46	0,007
21	3	0,2	19	77	0,003
22	10	10,0	40	40	0,142
23	19	0,2	77	3	0,003
24	17	0,2	67	17	0,002
25	11	0,1	44	44	0,002

Tabelle A-2.2.20: Simulation des Einflusses der relativen Unsicherheiten von Masse und Sammler-Wasser-Verteilungskoeffizient (einzeln und kombiniert) auf die relative Standardabweichung der Gleichgewichtskonzentration im Wasser für einen typischen Parametersatz. Mit $V_s/L = 0,015$; $s_{Vs}/V_s = 0,05$; $A/dm^2 = 6$; $s_A/A = 0,05$. Graue Zeilen sind jeweils Startwerte, rote Zahlen die Variationen; in den gelb markierten Zeilen die realitätsnächsten Annahmen.

lfd. Nr.	<i>m</i> _t /ng	s _{mt} /m _t	K _{sw}	s _{Ksw} /K _{sw}	c _{eq.} /[ng/L]	s _c /c _{eq}
1	100	0,05	1,00E+05	0,1	0,1	0,12
2	100	0,1	1,00E+05	0,1	0,1	0,15
3	100	0,2	1,00E+05	0,1	0,1	0,23
4	100	0,5	1,00E+05	0,1	0,1	0,51
5	100	1	1,00E+05	0,1	0,1	1,01
6	100	0,05	1,00E+05	0,1	0,1	0,12
7	100	0,05	1,00E+05	0,2	0,1	0,21
8	100	0,05	1,00E+05	0,5	0,1	0,5

16.1

A	١-	-2	.3	2
			-	

9	100	0,05	1,00E+05	1	0,1	1
10	100	0,05	1,00E+05	0,1	0,1	0,12
11	100	0,1	1,00E+05	0,2	0,1	0,23
12	100	0,1	1,00E+05	0,5	0,1	0,51
13	100	0,1	1,00E+05	1	0,1	1,01
14	100	0,05	1,00E+05	0,1	0,1	0,12
15	100	0,2	1,00E+05	0,2	0,1	0,29
16	100	0,2	1,00E+05	0,5	0,1	0,54
17	100	0,2	1,00E+05	1	0,1	1,02
18	100	0,05	1,00E+05	0,1	0,1	0,12
19	100	0,5	1,00E+05	0,2	0,1	0,54
20	100	0,5	1,00E+05	0,5	0,1	0,71
21	100	0,5	1,00E+05	1	0,1	1,12

Tabelle A-2.2.21: Prozentuale Anteile der Einzelvarianzen an der Gesamtvarianz der Gleichgewichtskonzentration im Wasser (Parameter wie in entsprechender Zeile von Tabelle A-2.2.20; lfd. Nr. identisch; graue Zeilen sind jeweils Startwerte, rote Zahlen die Variationen; in den gelb markierten Zeilen die realitätsnächsten Annahmen)

lfd. Nr.	%-Anteil von	%-Anteil von	%-Anteil von
	$[\partial \mathbf{c}/\partial m_t^* \mathbf{s}_{mt}]^2$	$[\partial c / \partial K_{sw} * s_{Ksw}]^2$	$[\partial c / \partial V_{\rm s} * s_{V \rm s}]^2$
1	16,7	66,7	16,7
2	44,4	44,4	11,1
3	76,2	19	4,8
4	95,2	3,8	1
5	98,8	1	0,2
6	16,7	66,7	16,7
7	5,6	88,9	5,6
8	1	98	1
9	0,2	99,5	0,2
10	16,7	66,7	16,7
11	19	76,2	4,8
12	3,8	95,2	1
13	1	98,8	0,2
14	16,7	66,7	16,7
15	48,5	48,5	3
16	13,7	85,5	0,9
17	3,8	95,9	0,2
18	16,7	66,7	16,7
19	85,5	13,7	0,9
20	49,8	49,8	0,5
21	20	79,8	0,2

A-2.3: Zusammenfassung der Analytkonzentrationen in den verschiedenen Sammlertypen

Tabelle A-2.3.1: Binnengewässer – Zusammenfassung der Analytkonzentrationen in ng/15 mm Silikonstab – **MESCO**; Fett gedruckt sind die fünf höchstkonzentrierten Stoffe (bezogen auf den Medianwert); Einzelproben <BG wurden in Kalkulationen nicht berücksichtigt. BG: Bestimmungsgrenze; min: Minimalwert; max: Maximalwert; n.a.: nicht analysiert; leere Zellen: Wert <BG.

Substanz	BG	min	max	median	90er quantil	n positiv	gesamt
CB028	0,005	0,021	0,055	0,028	0,049	3	8
CB052	0,003	0,012	0,042	0,028	0,039	4	8
CB101	0,004	0,011	0,016	0,014	0,016	2	8
CB118		n.a.	n.a.	n.a.	n.a.		
CB138	0,004	0,017	0,017	0,017		1	8
CB153	0,003	0,013	0,014	0,013	0,014	2	8
CB180		n.a.	n.a.	n.a.	n.a.		
DDTOP	0,013	0,001	0,032	0,015	0,029	3	8
DDTPP	0,023	0,112	0,112	0,112	0,112	1	8
DDDOP	0,054	0,079	0,945	0,229	0,803	6	8
DDDPP	0,038	0,056	0,520	0,133	0,353	6	8
DDEOP	0,045	n.a.	n.a.	n.a.	n.a.	0	8
DDEPP	0,052	0,071	0,226	0,107	0,195	4	8
НСВ	0,036	0,271	3,556	0,674	1,653	8	8
HCHA	0,014	0,060	2,959	0,142	1,402	8	8
HCHB	0,029	0,042	0,278	0,084	0,230	4	8
HCHG	0,033	0,051	0,580	0,146	0,373	8	8
ACE	0,032	0,085	0,182	0,133	0,172	2	8
ACY		n.a.	n.a.	n.a.	n.a.		
ANT	0,035	0,061	0,183	0,082	0,154	5	8
BAA	0,039	0,054	0,197	0,065	0,160	4	8
BAP	0,022	0,045	0,045	0,045	0,045	1	8
BBF+BKF	0,049	0,020	0,037	0,010	0,032	2	8
BGHIP	0,021	0,002	0,523	0,090	0,419	3	8
CHRTR	0,029	0,005	0,233	0,071	0,161	6	8
DBAHA	0,011	0,001	0,252	0,048	0,205	3	8
FL	0,043	0,055	0,411	0,081	0,315	4	8
FLU	0,048	0,112	1,503	0,761	1,218	8	8
I123P	0,017	0,248	0,286	0,248	0,278	2	8
PHEN	0,014	0,047	2,787	0,510	1,827	8	8
PYR	0,055	0,064	0,634	0,521	0,621	7	8
BDE028	0,058	0,093	0,309	0,114	0,270	3	8
BDE047	0,069					0	8
BDE099	0,065	0,446	0,472	0,459	0,470	2	8
BDE100	0,116	0,327	1,381	0,854	1,276	2	8
BDE153	0,114					0	8
BDE154	0,018					0	8
ATRAZIN	0,024	0,347	0,347	0,347	0,347	1	8
IRGAROL	0,026					0	8
TERBUAZI	0,015	0,012	0,160	0,036	0,147	4	8
TRIFLURALI	0,028	0,007	0,007			1	8

Tabelle A-2.3.2: Übergangsgewässer – Zusammenfassung der Analytkonzentrationen in ng/15 mm Silikonstab – **MESCO.** Fett gedruckt sind die fünf höchstkonzentrierten Stoffe (bezogen auf den Medianwert); Einzelproben <BG wurden in Kalkulationen nicht berücksichtigt. BG: Bestimmungsgrenze; min: Minimalwert; max: Maximalwert; n.a.: nicht analysiert; leere Zellen: Wert <BG.

Substanz	BG	min	max	median	90er quantil	N positiv	gesamt
CB028	0,005	0,0081	0,0081	0,0081		1	3
CB052	0,003					0	3
CB101	0,004					0	3
CB118		n.a.	n.a.	n.a.	n.a.		
CB138	0,004					0	3
CB153	0,003					0	3
CB180		n.a.	n.a.	n.a.	n.a.		
DDTOP	0,013	0,1770	0,1770	0,1770		1	3
DDTPP	0,023	0,0800	0,3990	0,3990	0,3352	3	3
DDDOP	0,054					0	3
DDDPP	0,038	0,0761	0,0761	0,0761		1	3
DDEOP	0,045	,	,	,		0	3
DDEPP	0,052					0	3
НСВ	0,036	0,0942	0,2561	0,2561	0,2527	3	3
HCHA	0,014	,	,	,	,	0	3
НСНВ	0,029	0,0748	0,0836	0,0836	0,0828	2	3
HCHG	0,033	0,0969	0,2106	0,2106	0,2083	3	3
ACE	0.032	0.2300	0.4237	0.4237	0.4153	3	3
ACY	,	n.a.	n.a.	n.a.	n.a.		
ANT	0,035	0,0506	0,1128	0,1128	0,1114	3	3
BAA	0,049	0,0479	0,1381	0,1381	0,1228	3	3
BAP	0,021	0,0341	0,0401	0,0401	0,0400	3	3
BBF+BKF	0,022	,	,	,		0	3
BGHIP	0,029					0	3
CHRTR	0,048	0,0810	0,0810	0,0810		1	3
DBAHA	0,039	0,0245	0,0245	0,0245	0,0245	3	3
FL	0,043	0,4641	0,9625	0,9625	0,9346	3	3
FLU	0,017	0,3167	0,8532	0,8532	0,8112	3	3
I123P	0,011			,	·	0	3
PHEN	0,014	0,8156	2,1766	2,1766	2,0535	3	3
PYR	0,055	0,3028	0,6984	0,6984	0,6589	3	3
BDE028	0,058		·	,	·	0	3
BDE047	0,069					0	3
BDE099	0,065	0,1584	0,2856	0,2856	0,2729	2	3
BDE100	0,116	4,7152	23,4147	23,4147	21,5448	2	3
BDE153	0,114	0,3768	0,3768	0,3768		1	3
BDE154	0,018	0,3337	0,3337	0,3337		1	3
IRGAROL	0,024		·	-		0	3
ATRAZIN	0,026					0	3
TERBUAZI	0,015					0	3
TRIFLURALI	0,028					0	3

Tabelle A-2.3.3: Binnengewässer – Zusammenfassung der Analytkonzentrationen in ng/15 mm Silikonstab – **Silikonstab.** Fett gedruckt sind die fünf höchstkonzentrierten Stoffe (bezogen auf den Medianwert); Einzelproben <BG wurden in Kalkulationen nicht berücksichtigt. BG: Bestimmungsgrenze; min: Minimalwert; max: Maximalwert; n.a.: nicht analysiert; leere Zellen: Wert <BG.

Substanz	BG	min	max	median	90er quantil	N positiv	gesamt
CB028	0,0050	0,007	0,165	0,027	0,094	11	21
CB052	0,0030	0,026	0,060	0,033	0,057	8	21
CB101	0,0040	0,007	0,035	0,023	0,031	6	21
CB118		n.a.	n.a.	n.a.	n.a.	0	21
CB138	0,0040	0,020	0,021	0,021	0,021	2	21
CB153	0,0030	0,006	0,083	0,020	0,067	7	21
CB180		n.a.	n.a.	n.a.	n.a.		
DDTOP	0,0131	0,034	2,443	0,121	1,305	6	21
DDTPP	0,0235	0,102	1,190	0,190	0,879	11	21
DDDOP	0,0543	0,130	2,122	0,851	1,749	21	21
DDDPP	0,0382	0,210	1,987	0,718	1,659	21	21
DDEOP	0,0452	0,063	0,136	0,092	0,127	3	21
DDEPP	0,0520	0,131	0,618	0,286	0,503	14	21
HCB	0,0364	0,268	5,309	0,546	2,478	21	21
HCHA	0,0139	0,041	4,398	0,368	3,506	21	21
HCHB	0,0290	0,040	0,664	0,299	0,613	7	21
HCHG	0,0329	0,141	2,353	0,514	1,197	21	21
ACE	0,0324	0,060	0,251	0,132	0,195	10	21
ACY		n.a.	n.a.	n.a.	n.a.		
ANT	0,0345	0,050	0,699	0,350	0,569	18	21
BAA	0,0390	0,077	0,725	0,281	0,499	17	21
BAP	0,0220	0,034	0,295	0,162	0,292	4	21
BBF+BKF	0,0489	0,057	0,427	0,088	0,384	15	21
BGHIP	0,0213	0,005	0,440	0,050	0,286	14	21
CHRTR	0,0290	0,061	1,304	0,366	0,530	21	21
DBAHA	0,0113	0,020	0,437	0,034	0,243	12	21
FL	0,0430	0,063	0,680	0,181	0,503	17	21
FLU	0,0477	0,284	4,262	1,999	3,577	21	21
I123P	0,0169	0,009	0,480	0,037	0,171	16	21
PHEN	0,0145	0,560	3,340	1,057	2,768	17	21
PYR	0,0550	0,209	3,525	1,228	1,990	21	21
BDE028	0,0577	0,121	2,519	0,437	1,280	11	21
BDE047	0,0695	0,104	0,555	0,173	0,450	6	21
BDE099	0,0649	0,421	2,795	0,877	1,931	9	21
BDE100	0,1162	0,248	16,656	0,364	11,262	6	21
BDE153	0,1138	0,223	0,223	0,223		1	21
BDE154	0,0183	0,032	0,042	0,037	0,041	2	21
IRGAROL	0,0260	0,021	0,837	0,142	0,664	13	21
ATRAZIN	0,0242	0,021	0,862	0,342	0,790	8	21
TERBUAZI	0,0148	2,640	33,337	11,183	24,182	21	21
TRIFLURALI	0,0284	0,046	0,046	0,046		1	21

Tabelle A-2.3.4: Übergangsgewässer – Zusammenfassung der Analytkonzentrationen in ng/15 mm Silikonstab – **Silikonstab.** Fett gedruckt sind die fünf höchstkonzentrierten Stoffe (bezogen auf den Medianwert); Einzelproben <BG wurden in Kalkulationen nicht berücksichtigt. BG: Bestimmungsgrenze; min: Minimalwert; max: Maximalwert; n.a.: nicht analysiert; leere Zellen: Wert <BG.

Substanz	BG	min	max	median	90er quantil	N positiv	gesamt
CB028	0,005	0,017	0,043	0,030	0,041	2	3
CB052	0,003					0	3
CB101	0,004					0	3
CB118		n.a.	n.a.	n.a.	n.a.		
CB138	0,004					0	3
CB153	0,003					0	3
CB180		n.a.	n.a.	n.a.	n.a.		
DDTOP	0,013	0,723	1,022	0,979	1,014	3	3
DDTPP	0,023	0,125	0,242	0,236	0,241	3	3
DDDOP	0,054	0,141	0,208	0,203	0,207	3	3
DDDPP	0,038	0,271	0,409	0,386	0,405	3	3
DDEOP	0,045					0	3
DDEPP	0,052	0,086	0,096	0,091	0,095	2	3
HCB	0,036	0,426	0,772	0,686	0,755	3	3
HCHA	0,014	0,266	0,547	0,397	0,517	3	3
HCHB	0,029	0,184	0,245	0,191	0,234	3	3
HCHG	0,033	1,136	1,297	1,264	1,290	3	3
ACE	0,032	0,363	0,690	0,517	0,655	3	3
ACY		n.a.	n.a.	n.a.	n.a.		
ANT	0,035	0,382	0,585	0,501	0,568	3	3
BAA	0,049	0,275	0,341	0,336	0,340	3	3
BAP	0,021	0,046	0,132	0,094	0,124	3	3
BBF+BKF	0,022	0,066	0,094	0,080	0,091	2	3
BGHIP	0,029					0	3
CHRTR	0,048	0,413	0,582	0,558	0,577	3	3
DBAHA	0,039	0,025	0,128	0,025	0,107	3	3
FL	0,043	0,966	1,837	1,689	1,808	3	3
FLU	0,017	2,664	4,121	3,606	4,018	3	3
I123P	0,011					0	3
PHEN	0,014	0,184	0,544	0,333	0,502	3	3
PYR	0,055	2,313	3,492	3,091	3,412	3	3
BDE028	0,058					0	3
BDE047	0,069					0	3
BDE099	0,065					0	3
BDE100	0,116	0,770	0,770	0,770	0,770	1	3
BDE153	0,114					0	3
BDE154	0,018	0,044	0,044	0,044	0,044	1	3
IRGAROL	0,024					0	3
ATRAZIN	0,026					0	3
TERBUAZI	0,015	0,503	1,192	0,995	1,153	3	3
TRIFLURALI	0.028					0	3

Tabelle A-2.3.5: Binnengewässer – Zusammenfassung der Analytkonzentrationen in ng je 6 x 5,5 cm x 9 cm x 500 μ m **Silicone Sheets.** Fett gedruckt sind die fünf höchstkonzentrierten Stoffe (bezogen auf den Medianwert); Einzelproben <BG wurden in Kalkulationen nicht berücksichtigt. BG: Bestimmungsgrenze; min: Minimalwert; max: Maximalwert; n.a.: nicht analysiert; leere Zellen: Wert <BG.

Substanz	BG	min	may	modian	90er	N nositiv	aesamt
Substanz	6		Шах	meulan	quantil	N positiv	gesam
CB028	0,248	2,2	12	4,69	10,98	6	6
CB052	0.059	3.65	12.94	5.98	12.63	6	6
CB101	0 278	3 94	11 1	4 83	10.68	6	6
CB118	0.186	1 09	3 16	1 36	3.06	6	6
CB138	0,100	1 98	7 34	3 26	69	6	6
CD150	0,110	1,30	1,04	1 70	10.77	6	6
CD100	0,301	2,1	11,94	4,70	10,77	0	0
CB180	0,314	0,77	4,89	1,50	4,43	0	0
DDTOP		n.a.	n.a.	n.a.	n.a.		
DDTPP		n.a.	n.a.	n.a.	n.a.		
DDDPP		n.a.	n.a.	n.a.	n.a.		
DDEPP		n.a.	n.a.	n.a.	n.a.		
HCB		n.a.	n.a.	n.a.	n.a.		
HCHA		n.a.	n.a.	n.a.	n.a.		
HCHB		n.a.	n.a.	n.a.	n.a.		
HCHG		n.a.	n.a.	n.a.	n.a.		
ACE	7	31,28	96,41	54,55	80,36	6	6
ACY	7	11,31	68,9	38,22	55,38	6	6
ANT	4	23.9	56.61	44,13	54.88	6	6
RAA	46	28 94	178 76	70.69	139 18	5	6
BRE	5	18 76	109,15	30.87	105,10	5	6
RCHID	2	0.46	36 13	23.04	31 75	5	6
	2	9,40	50,15	25,94	42 20	5	6
	4,4	0,13	52,9	20,45	43,39	5	0
	5,11	86,01	411,50	108,57	322,53	5	0
DBAHA	18,862					0	6
FLU	7,497	335,75	619,76	416,16	602,43	6	6
FL	7	71,26	174,2	138,76	172,75	6	6
I123P	3,8	6,11	22,76	15,63	22,68	4	6
PHEN	6,8	180,01	527,18	330,36	464,21	6	6
PYR	13,84	206,61	545,39	435,53	537,81	6	6
BDE028		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
BDE047		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
BDE099		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
BDE100		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
BDE153		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
BDF154		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
		-	-	LC-Analyter	<u> </u>	-	-
	0.015	11 54	31.65	20.32	31.1	6	6
	0,015	3 93	7 10	5 66	6 61	6	6
	0.25	1 74	2 4 4	1 01	2 22	4	6
	0,25	1,74	2,44	1,91	2,32	4	6
	0,015	10,0	113,40	23,90	70,31	0	0
	0,05	10,14	24,77	23,24	24,23	0	0
BENTAZ	0,015	n.a.	n.a.	n.a.	n.a.		
CHLORI	0,25	0,26	0,49	0,43	0,48	3	6
CHLORTUR	0,05	8,53	36,6	19,04	30,11	6	6
DEATRAZ	0,05	0,26	0,69	0,6	0,69	6	6
DICHLPR	0,05	0,09	0,09	0,09	0,09	1	6
DIURON	0,05	29,65	62,86	43,39	62,51	6	6
FENUR	0,045	n.a.	n.a.	n.a.	n.a.		
HEXAZIN	0,015	0,31	1,05	0,91	1,04	6	6
ISOPRUR	0,025	23.66	43.22	29.97	43.11	6	6
LINUR	,	n.a.	n.a.	n.a.	n.a.	-	-
MCPA	0.05					0	6
MECOPR	0.05	0.05	0 09	0.07	0.09	2	6
METAZCHI	0.025	16 83	103	83.03	96 44	6	6
METHAR7T	0,020	n a	na	n a	n a	0	0
		n.a.	n.a.	n.a.	n.a.		

METOLA	0,015	376,16	592,15	414,39	562,89	6	6
PENDIMETH		n.a.	n.a.	n.a.	n.a.		
PROMETR	0,015	48,67	292,99	71,86	198,38	6	6
PROPAZ	0,05	6,886	12,714	7,952	10,4961	6	6
SIMAZ	0,05	6,65	11,64	8,84	10,76	6	6
TERBUAZI	0,015	556,54	940,72	771,58	889,3	6	6
TERBUTR	0,015	96,04	254,59	177,32	243,32	6	6
AZINPH-E		n.a.	n.a.	n.a.	n.a.		
AZINPH-M		n.a.	n.a.	n.a.	n.a.		
CHLORFENV	0,05	0,17	1,07	0,61	1,04	6	6
DIAZINON	0,05	18,72	43,37	27,54	41,59	6	6
DIMETH		n.a.	n.a.	n.a.	n.a.		
MALATH		n.a.	n.a.	n.a.	n.a.		
PIRIMIC	0,025	5,35	19,52	7,96	14,15	6	6
BENZTRI	0,4	8,35	12,3	9,73	11,39	6	6
HBCD-A		n.a.	n.a.	n.a.	n.a.		
HBCD-BG		n.a.	n.a.	n.a.	n.a.		
MTBT	0,5	273,03	806,07	455,84	703,48	6	6
TBBPA	0,5					0	6
CARBAMAZ	0,015	58,62	96,93	71,54	86,57	6	6
CLOFIBRS	0,05					0	6
DICLOF	0,25	0,3	0,41	0,36	0,4	2	6
NAPROX	0,25	1,16	7,12	3,28	5,68	6	6
OXAZEP	0,25	n.a.	n.a.	n.a.	n.a.		
PRIMID	0,25	0,26	0,36	0,28	0,35	6	6
PFBA	0,2	n.a.	n.a.	n.a.	n.a.		
PFBS	0,015	0,02	0,13	0,02	0,08	6	6
PFDeA	0,05					0	6
PFHPA	0,015	0,02	0,08	0,04	0,07	3	6
PFHXA	0,015	0,03	0,04	0,03	0,04	2	6
PFHXS	0,015	0,02	0,05	0,03	0,04	6	6
PFNoA	0,025	0,19	0,2	0,2	0,2	2	6
PFOA	0,015	0,02	0,38	0,08	0,28	6	6
PFOS	0,015	0,02	0,09	0,03	0,08	6	6
PFOSA	0,015	0,07	0,72	0,25	0,67	6	6

Tabelle A-2.3.6: Übergangsgewässer – Zusammenfassung der Analytkonzentrationen in ng je 6 x 5,5 cm x 9 cm x 500 µm **Silicone Sheets.** Fett gedruckt sind die fünf höchstkonzentrierten Stoffe (bezogen auf den Medianwert); Einzelproben <BG wurden in Kalkulationen nicht berücksichtigt. BG: Bestimmungsgrenze; min: Minimalwert; max: Maximalwert; n.a.: nicht analysiert; leere Zellen: Wert <BG.

Substanz	BG	min	max	median	90er quantil	n positiv	gesamt
CB028	0,248	5,21	13,46	11,97	12,97	5	6
CB052	0,059	6,36	19,08	13,06	19,07	4	6
CB101	0,278	5,19	18,65	13,85	18,15	5	6
CB118	0,186	1,34	4,61	3,6	4,52	4	6
CB138	0,116	2,45	107,95	7,75	68,02	5	6
CB153	0,361	4,17	11,16	11,12	11,15	3	6
CB180	0,314	1,03	4,66	3,59	4,61	4	6
DDTOP		n.a.	n.a.	n.a.	n.a.		
DDTPP		n.a.	n.a.	n.a.	n.a.		
DDDPP		n.a.	n.a.	n.a.	n.a.		
DDEPP		n.a.	n.a.	n.a.	n.a.		
HCB	0,148	0,25	94,3	78,87	91,22	4	6
HCHA		n.a.	n.a.	n.a.	n.a.		
HCHB		n.a.	n.a.	n.a.	n.a.		
HCHG		n.a.	n.a.	n.a.	n.a.		
ACE	7	60,74	210,88	157,1	203,09	6	6
ACY	7	32,84	266,76	71,54	254,19	6	6
ANT	4	101,2	167,33	133,36	166,13	6	6

Substanz	BG	min	max	median	90er quantil	n positiv	gesamt
BAA	4,6	20,79	200,03	67,48	193,33	6	6
BBF	5	19.4	205.55	49.69	201.97	6	6
BGHIP	2	9,28	40,7	30,03	40,02	6	6
BAP	4.4	6.75	54.95	16.67	53.96	6	6
CHRTR	5.11	38.29	528.41	176.18	510.07	6	6
DBAHA	18.862	,	,	,	,	0	6
FLU	7.497	315.32	1647.59	1200.82	1620.82	6	6
FI	7	224.45	1396.65	330.83	1053.84	6	6
1123P	3.8	9.89	36.66	25.96	36.18	6	6
PHEN	6.8	176.27	2347.44	449.14	1850.08	6	6
PYR	13.84	250.85	1330.54	1045.61	1307.08	6	6
BDE028	- , -	n.a.	n.a.	n.a.	n.a.		
BDE047		n.a.	n.a.	n.a.	n.a.		
BDE099		n.a.	n.a.	n.a.	n.a.		
BDE100		n.a.	n.a.	n.a.	n.a.		
BDE153		n.a.	n.a.	n.a.	n.a.		
BDE154		n.a.	n.a.	n.a.	n.a.		
			LC-An	alyten	•	<u>.</u>	
IRGAROL	0.015	44.72	59.22	51.21	58.54	4	6
CARBEND	0.015	1.76	4.46	3.08	4.43	6	6
ALACHL	0.25	4.33	13.06	7.37	12.27	6	6
AMETRYN	0.015	9.06	14.05	11.67	13.25	6	6
ATRAZIN	0.05	10.45	17.4	12.14	15.33	6	6
BENTAZ	-,	n.a.	n.a.	n.a.	n.a.	-	-
CHLORI	0.25					0	6
CHLORTUR	0.05	6.97	56.55	9.63	54.14	6	6
DFATRAZ	0.05	0.26	0.66	0.44	0.66	6	6
DICHI PR	0.05	0,20	0,00	0,11	0,00	0	6
DIURON	0.05	12.07	17.69	15.14	16.79	6	6
FFNUR	0.045	n.a.	n.a.	n.a.	n.a.	·	C
HEXAZIN	0.015	0.21	0.8	0.75	0.8	6	6
ISOPRUR	0.025	18.1	102.51	33.88	99.83	6	6
LINUR	0,010	n.a.	n.a.	n.a.	n.a.	·	C
MCPA	0.05	ind.	ind.	ind.		0	6
MECOPR	0.05					0	6
METAZCHL	0.025	19.1	298.06	105.14	265	6	6
METHABZT	-,	n.a.	n.a.	n.a.	n.a.		
METOLA	0.015	117.25	126.85	123.46	126.6	4	6
PENDIMETH	-,	n.a.	n.a.	n.a.	n.a.		
PROMETR	0.015	72.89	78.75	75.48	78.47	4	6
PROPAZ	0.05	2.64	4.92	3.02	4.88	6	6
SIMAZ	0.05	3.45	5.24	3.63	4.83	6	6
TERBUAZI	0.015	71.78	116.35	90.4	113.71	4	6
TERBUTR	0.015	41.92	68.05	52.87	66.09	4	6
AZINPH-E	0,010	n.a.	n.a.	n.a.	n.a.		C
AZINPH-M		n.a.	n.a.	n.a.	n.a.		
CHLORFENV	0.05	0.14	0.56	0.42	0.54	6	6
DIAZINON	0.05	40.34	77.38	61.06	74.84	6	6
DIMETH	-,	n.a.	n.a.	n.a.	n.a.	-	-
MALATH		n.a.	n.a.	n.a.	n.a.		
PIRIMIC	0.025	1.65	2.8	1.91	2.79	6	6
BENZTRI	0.4	2.43	8.06	4.74	7.84	6	6
HBCD-A	-,-	n.a.	n.a.	n.a.	n.a.	-	-
HBCD-BG		n.a.	n.a.	n.a.	n.a.		
MTBT	0.5					0	6
TBBPA	0.5	0.56	0.73	0.64	0.71	3	6
CARBAMAZ	0.015	22.78	44.6	42.9	44.58	6	6
CLOFIBRS	0.05	,: c	,=	,=	,	0	6
DICLOF	0.25					0	6
NAPROX	0,25					0	6
OXAZEP	, -	n.a.	n.a.	n.a.	n.a.	-	
	-						

Substanz	BG	min	max	median	90er quantil	n positiv	gesamt
PRIMID	0,25					0	6
PFBA		n.a.	n.a.	n.a.	n.a.		
PFBS	0,015	0,02	0,02	0,02	0,02	1	6
PFDEA	0,05	0,05	0,15	0,12	0,15	3	6
PFHpA	0,015	0,02	0,05	0,03	0,04	5	6
PFHXA	0,015					0	6
PFHXS	0,015					0	6
PFNOA	0,025	0,2	0,64	0,36	0,61	5	6
PFOA	0,015	0,15	0,5	0,28	0,43	6	6
PFOS	0,015	0,02	0,23	0,13	0,23	6	6
PFOSA	0,015	0,2	0,57	0,37	0,51	6	6

Tabelle A-2.3.7: Marine Gewässer – Zusammenfassung der Analytkonzentrationen in ng je 6 x 5,5 cm x 9 cm x 500 µm **Silicone Sheets.** Fett gedruckt sind die fünf höchstkonzentrierten Stoffe (bezogen auf den Medianwert); Einzelproben <BG wurden in Kalkulationen nicht berücksichtigt. BG: Bestimmungsgrenze; min: Minimalwert; max: Maximalwert; n.a.: nicht analysiert; leere Zellen: Wert <BG.

Substanz	BG	min	max	median	90er quantil	n positiv	gesamt
			GC	-Analyten			
CB028	0,248	0,66	5,41	2,58	5,33	12	12
CB052	0,059	1,03	6,88	2,80	5,07	12	12
CB101	0,278	2,93	11,81	4,27	7,47	12	12
CB118	0,186	0,41	2,84	1,64	2,63	12	12
CB138	0,116	1,13	6,59	2,61	4,52	12	12
CB153	0,361	2,20	10,39	4,76	7,23	12	12
CB180	0,314	0,35	1,23	0,52	0,75	10	12
DDTOP		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
DDTPP		n.a.	n.a.	n.a.	n.a.		
DDDPP		n.a.	n.a.	n.a.	n.a.		
DDEPP		n.a.	n.a.	n.a.	n.a.		
HCB	0,148	2,38	28,76	5,92	25,62	12	12
HCHA		n.a.	n.a.	n.a.	n.a.		
НСНВ		n.a.	n.a.	n.a.	n.a.		
HCHG		n.a.	n.a.	n.a.	n.a.		
ACE	7,000	9,90	74,29	14,77	71,19	11	12
ACY	7,000	10,49	316,81	79,22	234,85	11	12
ANT	4,000	4,07	40,50	12,12	37,55	12	12
BAA	4,600	5,44	74,65	24,50	70,37	11	12
BBF	5,000	6,40	161,11	74,27	151,31	11	12
BGHIP	2,000	6,80	21,00	12,00	20,63	11	12
BAP	4,400	4,71	16,72	9,98	16,39	9	12
CHRTR	5,110	7,59	245,39	102,28	226,60	11	12
DBAHA	18,862					0	12
FLU	7,497	11,52	1729,90	396,91	1444,04	12	12
FL	7,000	58,29	1135,04	149,39	861,53	12	12
I123P	3,800	8,66	26,54	15,87	22,18	11	12
PHEN	6,800	11,60	2416,11	263,36	2119,08	11	12
PYR	13,840	15,62	869,62	188,72	782,05	11	12
BDE028		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
BDE047		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
BDE099		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
BDE100		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
BDE153		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
BDE154		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	-		LC-	Analyten			
IRGAROL	0,015	24,33	36,18	33,27	35,87	7	12
CARBEND	0,015	0,03	1,32	0,36	0,92	7	12
ALACHL	0,250	0,42	5,55	2,34	4,51	8	12

A-2.41

Substanz	BG	min	max	median	90er quantil	n positiv	gesamt
			L	C-Analyten	•		
AMETRYN	0,015	1,96	4,51	3,38	4,47	12	12
ATRAZIN	0,050	5,35	15,05	8,40	14,45	12	12
BENTAZ		n.a.	n.a.	n.a.	n.a.		
CHLORI	0,250					0	12
CHLORTUR	0,050	0,48	9,21	4,03	7,23	12	12
DEATRAZ	0,050	0,07	14,52	0,21	2,62	11	12
DICHLPR	0,050					0	12
DIURON	0,050	3,32	14,21	7,19	12,44	12	12
FENUR		n.a.	n.a.	n.a.	n.a.		
HEXAZIN	0,015	0,02	0,08	0,02	0,06	5	12
ISOPRUR	0,025	0,31	8,57	5,65	8,16	12	12
LINUR		n.a.	n.a.	n.a.	n.a.		
MCPA	0,050	0,24	0,24	0,24	0,24	1	12
MECOPR	0,050	0,05	0,30	0,10	0,21	7	12
METAZCHL	0,025	1,82	10,71	4,40	9,99	12	12
METHABZT		n.a.	n.a.	n.a.	n.a.		
METOLA	0,015	17,21	52,88	31,35	52,13	12	12
PENDIMETH		n.a.	n.a.	n.a.	n.a.		
PROMETR	0,015	4,76	41,14	8,46	39,34	12	12
PROPAZ	0,050	0,64	3,27	1,11	3,17	12	12
SIMAZ	0,050	0,52	5,94	1,00	5,46	12	12
TERBUAZI	0,015	42,09	88,25	65,83	87,39	10	12
TERBUTR	0,015	17,37	65,40	30,09	65,09	10	12
AZINPH-E		n.a.	n.a.	n.a.	n.a.		
AZINPH-M		n.a.	n.a.	n.a.	n.a.		
CHLORFENV	0,050	0,11	0,41	0,19	0,37	3	12
DIAZINON	0,050	2,96	14,36	7,76	13,95	12	12
DIMETH	0,050	0,053	0,113	0,077	0,11	4	12
MALATH		n.a.	n.a.	n.a.	n.a.		
PIRIMIC	0,025	0,03	0,15	0,03	0,09	7	12
BENZTRI	0,400	0,74	2,02	1,08	1,56	12	12
HBCD-A		n.a.	n.a.	n.a.	n.a.		
HBCD-BG		n.a.	n.a.	n.a.	n.a.		
MTBT	0,500	28,35	51,49	36,41	47,68	9	12
TBBPA	0,500	1,18	5,20	2,45	4,39	4	12
CARBAMAZ	0,015	1,66	12,39	3,44	5,53	12	12
CLOFIBRS	0,050	0,15	0,15	0,15	0,15	1	12
DICLOF	0,250					0	12
NAPROX	0,250	0,36	4,17	1,55	3,69	5	12
OXAZEP		n.a.	n.a.	n.a.	n.a.		
PRIMID	0,250					0	12
PFBA		n.a.	n.a.	n.a.	n.a.		
PFBS	0,015	0,02	0,04	0,02	0,03	9	12
PFDEA	0,050	0,06	0,06	0,06	0,06	1	12
PFHpA	0,015	0,02	0,07	0,05	0,06	6	12
PFHXA	0,015	0,02	0,06	0,04	0,06	5	12
PFHXS	0,015	0,02	0,06	0,02	0,04	9	12
PFNOA	0,025	0,29	0,50	0,34	0,49	8	12
PFOA	0,015	0,04	0,74	0,21	0,47	12	12
PFOS	0,015	0,04	0,26	0,06	0,20	12	12
PFOSA	0,015	0,02	0,11	0,07	0,10	7	12

Tabelle A-2.3.8: Binnengewässer – Zusammenfassung der Analytkonzentrationen in ng je 100 mm x 2,8 cm x 100 μ m **LDPE-Streifen.** Fett gedruckt sind die fünf höchstkonzentrierten Stoffe (bezogen auf den Medianwert); Einzelproben <BG wurden in Kalkulationen nicht berücksichtigt. BG: Bestimmungsgrenze; min: Minimalwert; max: Maximalwert; n.a.: nicht analysiert; leere Zellen: Wert <BG.

Substanz	BG	min	max	median	90er quantil	n positiv	gesamt
CB28	0,248	1,33	8,76	3,11	6,27	16	18
CB52	0,059	2,67	9,01	5,22	6,96	18	18
CB101	0,278	3,76	11,26	6,90	11,12	18	18
CB118	0,186	1,24	14,44	2,22	3,51	16	18
CB153	0,361	2,68	23,44	5,80	11,41	16	18
CB138	0,116	2,29	19,90	4,89	7,71	16	18
CB180	0,314	0,84	4,45	2,02	4,11	14	18
DDTOP	-	n.a.	n.a.	n.a.	n.a.		
DDTPP	0,464	24,11	64,32	39,64	58,35	11	18
DDDPP	0,430					0	18
DDEPP	0,122	25,41	139,84	65,14	117,04	18	18
HCB	0,148	22,25	116,44	73,14	105,07	18	18
HCHA		n.a.	n.a.	n.a.	n.a.		
HCHB		n.a.	n.a.	n.a.	n.a.		
HCHG		n.a.	n.a.	n.a.	n.a.		
ACE		n.a.	n.a.	n.a.	n.a.		
ACY		n.a.	n.a.	n.a.	n.a.		
ANT		n.a.	n.a.	n.a.	n.a.		
BAA		n.a.	n.a.	n.a.	n.a.		
BAP		n.a.	n.a.	n.a.	n.a.		
BBF		n.a.	n.a.	n.a.	n.a.		
BGHIP		n.a.	n.a.	n.a.	n.a.		
CHRTR		n.a.	n.a.	n.a.	n.a.		
DBAHA		n.a.	n.a.	n.a.	n.a.		
FL		n.a.	n.a.	n.a.	n.a.		
FLU		n.a.	n.a.	n.a.	n.a.		
I123P		n.a.	n.a.	n.a.	n.a.		
PHEN		n.a.	n.a.	n.a.	n.a.		
PYR		n.a.	n.a.	n.a.	n.a.		
BDE 28		n.a.	n.a.	n.a.	n.a.		
BDE 47		n.a.	n.a.	n.a.	n.a.		
BDE 99		n.a.	n.a.	n.a.	n.a.		
BDE 100		n.a.	n.a.	n.a.	n.a.		
BDE 153		n.a.	n.a.	n.a.	n.a.		
BDE 154		n.a.	n.a.	n.a.	n.a.		
			LC	C-Stoffe			
IRGAROL	0,015	0,03	0,12	0,04	0,06	15	19
CARBEND	0,015					0	19
ALACHL		n.a.	n.a.	n.a.	n.a.		
AMETRYN	0,015	0,05	0,09	0,07	0,08	8	19
ATRAZ	0,050	0,06	1,99	0,25	1,19	6	19
BENTAZ	0,015					0	19
CHLORI		n.a.	n.a.	n.a.	n.a.		
CHLORTUR	0,050					0	19
DEATRAZ	0,050					0	19
DICHLPR		n.a.	n.a.	n.a.	n.a.		
DIURON	0,050	0,05	0,34	0,11	0,25	16	19
FENUR	0,045					0	19
HEXAZIN	0,015	0.01	0.07	0.00	0.07	0	19
ISOPRUR	0,025	0,04	0,07	0,06	0,07	12	19
LINUR	0,250					0	19
MCPA	0,050					0	19
MECOPR	0,050	0.00	0.00	0.45	0.04	U	19
METAZCHL	0,025	0,03	0,22	0,15	0,21	ð C	19
	0,025	0.00	0 4 4	0.07	0.74	U 10	19
WEIGLA	0,015	0,00	∠, ⊟	0,27	0,74	IŎ	19

A-2.43

Substanz	BG	min	max	median	90er quantil	n positiv	gesamt
PENDIMETH	0,050	0,08	3,51	1,34	2,55	19	19
PROMETR	0,015	0,02	0,51	0,14	0,35	17	19
PROPAZ		n.a.	n.a.	n.a.	n.a.		
SIMAZ	0,050	0,09	0,85	0,21	0,60	11	19
TERBAZ	0,015	0,06	3,13	0,85	1,51	19	19,000
TERBUTR	0,015	0,08	1,12	0,50	0,85	19	19,000
AZINPH-E	0,050					0	19
AZINPH-M	0,500					0	19
CHLORFENV	0,050					0	19
DIAZINON	0,050	0,05	14,18	0,07	14,08	9	19
DIMETH	0,050					0	19
MALATH	0,050	0,07	0,25	0,11	0,21	12	19
PIRIMIC	0,025	1,02	1,02	1,02	1,02	1	19
BENZTRI	0,400	0,42	1,52	0,62	1,14	8	19
HBCD-A	0,250	0,25	0,78	0,35	0,61	5	19
HBCD-BG		n.a.	n.a.	n.a.	n.a.		
MTBT	0,500	0,84	7,48	3,31	5,94	17	19
TBBPA	0,500	0,63	1,82	1,40	1,77	4	19
CARBAMAZ	0,015	0,02	0,51	0,07	0,29	19	19
CLOFIBRS	0,050	0,07	0,15	0,08	0,13	10	19
DICLOF	0,250	0,55	0,55	0,55	0,55	1	19
NAPROX	0,250	0,27	0,27	0,27	0,27	1	19
OXAZEP	0,250					0	19
PRIMID	0,250					0	19
PFBA		n.a.	n.a.	n.a.	n.a.		
PFBS		n.a.	n.a.	n.a.	n.a.		
PFDeA	0,050	0,06	0,26	0,09	0,14	10	19
PFHPA	0,015	0,50	11,24	0,98	2,13	19	19
PFHXA	0,015	0,04	1,26	0,07	0,31	19	19
PFHXS	0,015					0	19
PFNoA	0,025	0,03	0,08	0,05	0,06	12	19
PFOA		n.a.	n.a.	n.a.	n.a.		
PFOS-1	0,015	0,04	0,63	0,09	0,30	15	19
PFOSA-1	0,015	0,02	0,02	0,02	0,02	5	19

Tabelle A-2.3.9: Übergangsgewässer – Zusammenfassung der Analytkonzentrationen in ng je 100 mm x 2,8 cm x 100 µm **LDPE-Streifen.** Fett gedruckt sind die fünf höchstkonzentrierten Stoffe (bezogen auf den Medianwert); Einzelproben <BG wurden in Kalkulationen nicht berücksichtigt. BG: Bestimmungsgrenze; min: Minimalwert; max: Maximalwert; n.a.: nicht analysiert; leere Zellen: Wert <BG.

Substanz	BG	min	max	median	90er quantil	n positiv	gesamt		
	GC-Analyten								
CB028	0,248	0,76	1,71	1,03	1,57	3	3		
CB052	0,059	2,31	3,10	2,34	2,95	3	3		
CB101	0,278	2,41	4,98	3,89	4,76	3	3		
CB118	0,186	0,61	0,66	0,65	0,66	3	3		
CB138	0,116	1,00	1,46	1,25	1,42	3	3		
CB153	0,361	1,61	1,92	1,83	1,90	3	3		
CB180	0,314	0,44	0,65	0,54	0,63	3	3		
DDTOP		n.a.	n.a.	n.a.	n.a.				
DDTPP	0,464	5,62	8,88	7,25	8,56	2	3		
DDDPP	0,430	5,16	6,26	5,71	6,15	2	3		
DDEPP	0,122	13,49	37,97	26,57	35,69	3	3		
HCB	0,148	10,20	19,86	19,52	19,80	3	3		
HCHA		n.a.	n.a.	n.a.	n.a.				
HCHB		n.a.	n.a.	n.a.	n.a.				
HCHG		n.a.	n.a.	n.a.	n.a.				
ACE		n.a.	n.a.	n.a.	n.a.				
ACY		n.a.	n.a.	n.a.	n.a.				

Substanz	BG	min	max	median	90er quantil	n positiv	gesamt
ANT	4,000	6,53	6,61	6,57	6,60	2	3
BAA	4.600	20.04	31.89	24.29	30.37	3	3
BAP	4,400	4.89	7.05	5.97	6.83	2	3
BBE	5 000	17.97	25.89	19.64	24 64	3	3
BGHIP	2,000	2 04	3 41	2 73	3.28	2	3
CHRTR	5 110	51 89	71 57	55 71	68 40	3	3
	18 862	01,00	11,01	00,71	00,40	0	3
	10,002	n 0	no	n 0	na	0	5
	7 407	11.a.	11.a.	11.a.	11.d.	2	2
	2 900	427,49	555,00	402,49	554,95	3	3
DUEN	3,000 6 800	20.20	00 52	20.22	95.67	2	3 2
	6,000	29,39	99,55	30,22	05,07	3	3
	13,040	535,00	027,50	564,03	014,07	3	3
BDE028		n.a.	n.a.	n.a.	n.a.		
BDE047		n.a.	n.a.	n.a.	n.a.		
BDE099		n.a.	n.a.	n.a.	n.a.		
BDE100		n.a.	n.a.	n.a.	n.a.		
BDE153		n.a.	n.a.	n.a.	n.a.		
BDE154		n.a.	n.a.	n.a.	n.a.		
				LC-Analy	ten		-
IRGAROL	0,015	0,02	0,05	0,03	0,05	2	3
CARBEND	0,015					0	3
ALACHL		n.a.	n.a.	n.a.	n.a.		
AMETRYN	0,015					0	3
ATRAZIN	0,050					0	3
BENTAZ	0,015					0	3
CHLORI		n.a.	n.a.	n.a.	n.a.		
CHLORTUR	0,050					0	3
DEATRAZ	0,050					0	3
DICHLPR		n.a.	n.a.	n.a.	n.a.		
DIURON	0,050					0	3
FENUR	0,045					0	3
HEXAZIN	0,015					0	3
ISOPRUR	0,025					0	3
LINUR	0,250					0	3
MCPA	0,050					0	3
MECOPR	0,050					0	3
METAZCHL	0.025					0	3
METHABZT	0.025					0	3
METOLA	0.015					0	3
PENDIMETH	0.050	12.40	13.60	12.46	13.37	3	3
PROMETR	0.015	,	,	,	,	0	3
PROPAZ	0,010	na	na	na	na	Ū	U
SIMAZ	0.050	ma	ind.	mai	ind.	0	3
	0.015	0 13	0.18	0 15	0.18	3	3
TERBUTR	0,015	0,10	0,10	0.16	0,10	3	3
AZINPH-F	0,010	0,10	0,17	0,10	0,17	0	3
	0,000					0	3
	0,000					0	3
	0,050					0	3
	0,050					0	3
	0,050					0	2
	0,050					0	3
	0,025					0	3
	0,400					0	3
	0,250	· -	· -		. -	U	3
HBCD-BG	0.500	n.a.	n.a.	n.a.	n.a.	0	<u>^</u>
MIBI	0,500					U	3
IBBPA	0,500					U	3
CARBAMAZ	0,015					U	3
CLOFIBRS	0,050					0	3
DICLOF	0,250					0	3
NAPROX	0,250					0	3
OXAZEP	0,250					0	3

A-2.45

Substanz	BG	min	max	median	90er quantil	n positiv	gesamt
PRIMID	0,250					0	3
PFBA		n.a.	n.a.	n.a.	n.a.		
PFBS		n.a.	n.a.	n.a.	n.a.		
PFDEA	0,050					0	3
PFHpA	0,015					0	3
PFHXA	0,015					0	3
PFHXS	0,015					0	3
PFNOA	0,025					0	3
PFOA		n.a.	n.a.	n.a.	n.a.		
PFOS	0,015					0	3
PFOSA	0,015					0	3

Tabelle A-2.3.10: Marine Gewässer – Zusammenfassung der Analytkonzentrationen in ng je 100 mm x 2,8 cm x 100 µm **LDPE-Streifen.** Fett gedruckt sind die fünf höchstkonzentrierten Stoffe (bezogen auf den Medianwert); Einzelproben <BG wurden in Kalkulationen nicht berücksichtigt. BG: Bestimmungsgrenze; min: Minimalwert; max: Maximalwert; n.a.: nicht analysiert; leere Zellen: Wert <BG.

Substanz	BG	min	max	median 90er guantil		n positiv	gesamt
			GC-Analy	rten	•		
CB028	0,248					0	7
CB052	0,059	0,21	0,47	0,38	0,45	7	7
CB101	0,278	0,90	1,56	1,22	1,47	7	7
CB118	0,186	0,28	0,79	0,49	0,71	7	7
CB138	0,116	0,43	1,37	0,69	1,25	7	7
CB153	0,361	0,90	2,76	1,29	2,45	7	7
CB180	0,314					0	7
DDTOP		n.a.	n.a.	n.a.	n.a.		
DDTPP	0,464	0,51	0,54	0,52	0,53	2	7
DDDPP	0,430	0,51	0,61	0,56	0,60	3	7
DDEPP	0,122	0,87	4,45	1,16	4,21	6	7
HCB	0,148	0,79	2,34	1,04	2,14	7	7
HCHA		n.a.	n.a.	n.a.	n.a.		
HCHB		n.a.	n.a.	n.a.	n.a.		
HCHG		n.a.	n.a.	n.a.	n.a.		
ACE		n.a.	n.a.	n.a.	n.a.		
ACY		n.a.	n.a.	n.a.	n.a.		
ANT	4,000					0	7
BAA	4,600	4,98	29,71	10,29	27,14	7	7
BAP	4,400	10,82	13,35	12,08	13,09	2	7
BBF	5,000	18,58	92,60	19,68	81,77	7	7
BGHIP	2,000	2,35	12,50	2,81	11,06	7	7
CHRTR	5,110	17,31	86,11	28,74	79,89	7	7
DBAHA	18,862					0	7
FL		n.a.	n.a.	n.a.	n.a.		
FLU	7,497	26,87	243,58	151,85	229,28	7	7
I123P	3,800	3,86	15,86	8,74	14,94	4	7
PHEN	6,800	29,54	80,21	36,75	77,08	5	7
PYR	13,840	19,42	163,28	116,05	152,60	7	7
BDE028		n.a.	n.a.	n.a.	n.a.		
BDE047		n.a.	n.a.	n.a.	n.a.		
BDE099		n.a.	n.a.	n.a.	n.a.		
BDE100		n.a.	n.a.	n.a.	n.a.		
BDE153		n.a.	n.a.	n.a.	n.a.		
BDE154		n.a.	n.a.	n.a.	n.a.		
			LC-Analy	ten			
IRGAROL	0,015	0,02	0,13	0,09	0,11	7	7
CARBEND	0,015					0	7
ALACHL		n.a.	n.a.	n.a.	n.a.		
AMETRYN	0,015					0	7

Substanz	BG	min	max	median	90er quantil	n positiv	gesamt
ATRAZIN	0.050					0	7
BENTAZ	0.015					0	7
CHLORI	-,	n.a.	n.a.	n.a.	n.a.		
CHLORTUR	0.050					0	7
DFATRAZ	0.050					0	7
DICHI PR	0,000	na	na	na	na	Ū	
DIURON	0.050	ind.	ind.	ind.	mai	0	7
FENLIR	0.045					0 0	7
HEXAZIN	0,040					0	7
ISOPRUR	0.025					0	7
	0,020					0	7
MCPA	0,200					0	7
	0,050					0	7
METAZCHI	0,030					0	7
	0,025					0	7
	0,025					0	7
	0,015	0.24	15 14	10 50	14 70	7	7
	0,050	0,34	15,44	12,55	14,79	7	7
	0,015					0	1
PROPAZ	0.050	n.a.	n.a.	n.a.	n.a.	0	7
SIMAZ	0,050	0.04	0.00	0.05	0.00	0	7
TERBUAZI	0,015	0,04	0,09	0,05	0,08	7	7
TERBUIR	0,015	0,02	0,06	0,02	0,06	5	7
AZINPH-E	0,050					0	<u>/</u>
AZINPH-M	0,500					0	<u>/</u>
CHLORFENV	0,050					0	7
DIAZINON	0,050					0	7
DIMETH	0,050					0	7
MALATH	0,050					0	7
PIRIMIC	0,025					0	7
BENZTRI	0,400					0	7
HBCD-A	0,250					0	7
HBCD-BG		n.a.	n.a.	n.a.	n.a.		
MTBT	0,500					0	7
TBBPA	0,500					0	7
CARBAMAZ	0,015					0	7
CLOFIBRS	0,050					0	7
DICLOF	0,250					0	7
NAPROX	0,250					0	7
OXAZEP	0,250					0	7
PRIMID	0,250					0	7
PFBA		n.a.	n.a.	n.a.	n.a.		
PFBS		n.a.	n.a.	n.a.	n.a.		
PFDEA	0,050					0	7
PFHpA	0,015					0	7
PFHXA	0,015					0	7
PFHXS	0,015					0	7
PFNOA	0,025					0	7
PFOA		n.a.	n.a.	n.a.	n.a.		
PFOS	0,015					0	7
PFOSA	0,015					0	7

A-2.4 Analytkonzentrationen in den verschiedenen Sammlertypen -

Binnengewässer

Tabelle A-2.4.1: Dessau (Mulde) – Analytkonzentrationen in ng je 15 mm Siliconezylinder (normalisiert auf 50 mg) – **MESCO** (n=1 je Ausbringung); n.a = nicht analysiert;.<BG: unter Bestimmungsgrenze.

LHW-Station		Trip	1 Monat	1 Monat	2 Monate	
Dessau	BG	Transportblank	Juni/Juli	Juli/August	Juni-August	
(Mulde)	ng	ng	ng	ng	ng	
CB028	0,01			0,02	<bg< td=""></bg<>	
CB052	0,01			0,01	0,02	
CB101	0,01			0,01		
CB118			n.a.			
CB138	0,01			0,01		
CB153	0,01			0,01		
CB180			n.a.			
DDTOP	0,01	0,02	0,02			
DDTPP	0,02				0,06	
DDDOP	0,05	<bg< td=""><td>0,67</td><td>0,24</td><td>0,47</td></bg<>	0,67	0,24	0,47	
DDDPP	0,04	<bg< td=""><td>0,13</td><td>0,11</td><td>0,37</td></bg<>	0,13	0,11	0,37	
DDEOP	0,05	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""></bg<></td></bg<>	<bg< td=""></bg<>	
DDEPP	0,05		0,09	0,07	0,17	
HCB	0,04		2,45	0,19	0,46	
HCHA	0,01	<bg< td=""><td>2,45</td><td>0,49</td><td>0,61</td></bg<>	2,45	0,49	0,61	
НСНВ	0,03	<bg< td=""><td>0,21</td><td>0,09</td><td>0,03</td></bg<>	0,21	0,09	0,03	
HCHG	0,03	<bg< td=""><td>0,46</td><td>0,08</td><td>0,19</td></bg<>	0,46	0,08	0,19	
ACY			n.a.			
ACE	0,03		0,15	0,07	<bg< td=""></bg<>	
ANI	0,03	5.0	0,09	0,07	0,16	
DBAHA	0,01	<bg< td=""><td>0,04</td><td>0,13</td><td></td></bg<>	0,04	0,13		
BAA	0,04	<bg< td=""><td>0,05</td><td>0,07</td><td>0,18</td></bg<>	0,05	0,07	0,18	
BAP	0,02		0.44	0,04		
BBF	0,05	<bg< td=""><td>0,11</td><td>0,05</td><td></td></bg<>	0,11	0,05		
BGHIP	0,02	<bg< td=""><td>0,02</td><td>0,17</td><td></td></bg<>	0,02	0,17		
1123P	0,02	0,03	0,06	0,31	0.01	
	0,03	<bg< td=""><td>0,08</td><td>0,03</td><td>0,21</td></bg<>	0,08	0,03	0,21	
FL	0,04		0,34	0,06	0,07	
	0,05	<bg< td=""><td>1,36</td><td>0,68</td><td>0,99</td></bg<>	1,36	0,68	0,99	
	0,01	0,02	2,34	1,20	0,79	
	0,00		0,40	0,23	0,55	
	0,00			0,22	0,00	
	0,07	~ BG		 	~ BG	
	0,00			0,32		
BDE100	0,12		~BG	~BG		
BDE153 BDE154	0,11					
	0,02			0.26		
	0,02			0,20 <bc< td=""><td></td></bc<>		
	0,03	0.14	0.24		0.02	
	0,01	U, 14	0,24		0,02	
IRIFLUKALI	0,03	^BG		~BG		

Tabelle A-2.4.2: Dessau (Mulde) – Analytkonzentrationen in ng je 15 mm Silikonstab (normalisiert auf 50 mg) – **Silikonstab** (n=3 je Ausbringung); n.a. = nicht analysiert; <BG – alle Replikate unter Bestimmungsgrenze

LHW-Station		Trip		1 Monat	t		1 Mo	onat	2 Monate		
Dessau	BG	Transportblank	-	Juni/J	uli	·	Juli/Au	gust		Juni-Aug	just
(Mulde)	ng	ng	ng	S	n positiv	ng	S	n positiv	ng	S	n positiv
CB028	0,01		0,02	0,00	2	0,02	0,00	3	0,01		1
CB052	0,01				0			0	0,02	0,00	3
CB101	0,01		0,01	0,00	2			0			0
CB118						n.a.					
CB138	0,01				0			0			0
CB153	0,01		0,01	0,00	2	0,00		1			0
CB180		1				n.a.					
DDTOP	0,01		0,06		1			0			0
DDTPP	0,02		0,57	0,13	2	0,28	0,19	3	0,06	0,00	3
DDDOP	0,05		1,33	0,16	3	1,17	0,09	3	0,70	0,10	3
DDDPP	0,04	5.0	0,93	0,37	3	0,83	0,04	3	0,65	0,07	3
DDEOP	0,05	<bg< td=""><td>0,05</td><td></td><td>1</td><td></td><td></td><td>0</td><td></td><td></td><td>0</td></bg<>	0,05		1			0			0
DDEPP	0,05		0,18	0,03	3	0,23	0,01	3	0,22	0,04	3
HCB	0,04	0,04	1,82	1,64	3	0,31	0,01	3	0,28	0,05	3
HCHA	0,01	0,06	3,27	0,39	3	1,60	0,04	3	0,43	0,06	3
HCHB	0,03		0,07		1	0,22		1			0
HCHG	0,03		1,26	0,52	3	0,84	0,08	3	0,25	0,02	3
ACY	0.00	50	0.40			n.a.					
ACE	0,03	<bg< td=""><td>0,13</td><td>0,03</td><td>3</td><td>0,14</td><td>0,06</td><td>3</td><td>0,05</td><td>0.05</td><td>1</td></bg<>	0,13	0,03	3	0,14	0,06	3	0,05	0.05	1
ANI	0,03	50	0,48	0,11	3	0,47	0,04	3	0,28	0,05	3
DBAHA	0,01	<bg< td=""><td>0,03</td><td>0,01</td><td>3</td><td>0,02</td><td>0.00</td><td>1</td><td>0.00</td><td>0.04</td><td>0</td></bg<>	0,03	0,01	3	0,02	0.00	1	0.00	0.04	0
BAA	0,04		0,22	0,14	3	0,24	0,03	3	0,28	0,04	3
BAP	0,02		0.10	0.10	0	<bg< td=""><td>0.01</td><td>0</td><td>0.00</td><td></td><td>0</td></bg<>	0.01	0	0.00		0
	0,05		0,10	0,19	3	0,11	0,01	3	0,08		1
BGHIP	0,02	<bg< td=""><td>0,04</td><td>0,01</td><td>3</td><td>0,05</td><td>0,02</td><td>3</td><td></td><td></td><td>0</td></bg<>	0,04	0,01	3	0,05	0,02	3			0
CUDTD	0,02	 BG	0,05	0,02	3	0,04	0,02	2	0.24	0.01	0
	0,03		0,37	0,09	3	0,41	0,04	3	0,34	0,01	3
	0,04		0,40	0,00	3	0,19	0,01	3	0,00	0,01	3
	0,05		2,20	0,10	3	3,22	0,20	3	1,11	0,14	3
	0,01	-00	0.88	0,50	3	1.64	0,12	3	0,50	0,04	3
BDE028	0,00		0,00	0,12	2	0.30	0,10	3	0,00	0,03	2
BDE020	0,00		0,47	0,20	1	0,50	0,15	1	0,13	0,14	2
BDE047	0,07		0,10	0.23	2	0,00	0 09	3			0
BDE100	0,00		0, 4 0 4 19	0,20	1	0,00	0,03	0			0
BDE153	0,12		4,10		0			0			0
BDE154	0.02		0.02		1			0			0
ATRAZIN	0.02		0.60	0.05	2			0 0			0
IRGAROI	0.03	0.06	0.18	0.03	2	0.12	0.01	3	0.07	0.02	2
TERBUAZI	0.01	0,00	20.66	4 36	3	7 61	0.54	3	2 38	0.30	3
TRIFI URALI	0.03		20,00	.,00	0 0	<bg< td=""><td>0,01</td><td>õ</td><td>2,00</td><td>0,00</td><td>0</td></bg<>	0,01	õ	2,00	0,00	0
	5,00	l	l		U	1.00		0	l		U

Tabelle A-2.4.3: Dessau (Mulde) – Analytkonzentrationen in ng je 6 x 5,5 cm x 9 cm x 500 µm Silicone
Sheets (n=1 je Ausbringung); kursiv: aufgrund der Ergebnisse der Qualitätssicherung nicht für weitere
Berechnungen verwendet; n.a. = nicht analysiert; <bg: bestimmungsgrenze.<="" td="" unter=""></bg:>

LHW- Station Dessau	Trip	1 Monat	LHW- Station Dessau	Trip	1 Monat	LHW- Station Dessau	Trip	1 Mona t
(Mulde)	Transport -blank	Juni/Juli	(Mulde)	Transport -blank	Juni/Juli	(Mulde)	Transport -blank	Juni/Juli
	ng	ng		ng	ng		ng	ng
CB028	0,14	2,20	PHEN		359,38	AZINPH-M		
CB052	0,04	3,65	PYR		206,61	CHLORFENV		0,49
CB101		3,94	IRGAROL		28,84	DIAZINON		24,80
CB118		1,22	CARBEND	0,01	5,67	DIMETH		0,15
CB138		2,70	ALACHL			MALATH	1,95	
CB153		1,98	AMETRYN		113,46	PIRIMIC		19,52
CB180		0,77	ATRAZ		10,14	BENZTRI	0,23	10,48
DDTOP	n.a	l.	BENTAZ		0,02	HBCD-A		1,96
DDTPP			CHLORI		<bg< td=""><td>HBCD-BG</td><td></td><td>0,05</td></bg<>	HBCD-BG		0,05
DDDOP	n.a	l.	CHLORTUR		8,53	MTBT	2,40	806,07
DDDPP			DEATRAZ		0,26	TBBPA		<bg< td=""></bg<>
DDEOP	n.a	l.	DICHLPR		0,09	CARBAMAZ	0,01	76,20
DDEPP	0,85	66,64	DIURON	0,03	29,65	CLOFIBRS		
HCB	0,61	108,70	FENUR		0,14	DICLOF		<bg< td=""></bg<>
HCHA		34,07	HEXAZIN		0,31	NAPROX		7,12
HCHB		88,63	ISOPRUR		28,24	OXAZEP		0,76
HCHG		88,63	LINUR		90,16	PRIMID		0,27
ACY		40,73	MCPA			PFBA	2,85	2,81
ACE		64,32	MECOPR	0,05	<bg< td=""><td>PFBS</td><td>0,02</td><td>0,02</td></bg<>	PFBS	0,02	0,02
ANT		32,75	METAZCHL	0,01	35,47	PFDEA		
DBAHA		<bg< td=""><td>METHABZT</td><td></td><td>1,50</td><td>PFHPA</td><td>0,03</td><td><bg< td=""></bg<></td></bg<>	METHABZT		1,50	PFHPA	0,03	<bg< td=""></bg<>
BAA		28,94	METOLA		383,12	PFHXA		<bg< td=""></bg<>
BAP		8,13	PENDIMETH	0,03	31,70	PFHXS	0,02	0,02
BBF		39,17	PROMETR	0,02	292,99	PFNOA		
BGHIP		9,46	PROPAZ		12,71	PFOA	0,06	0,04
I123P		8,77	SIMAZ		11,64	PFOS		0,03
CHRTR		86,01	TERBAZ	0,15	556,54	PFOSA		0,72
FL	3,54	150,23	TERBUTR	0,23	254,59			
FLU		352,55	AZINPH-E		0,61			

Tabelle A-2.4.4: Dessau (Mulde) – Analytkonzentrationen in ng je 100 mm x 2,8 cm x 100 µm **LDPE-Streifen** (n=3 je Ausbringung); *kursiv*: aufgrund der Ergebnisse der Qualitätssicherung nicht für weitere Berechnungen verwendet; n.a. = nicht analysiert; <BG: alle Replikate unter Bestimmungsgrenze.

LHW-Station	Trip	Trip 1 Monat					at	2 Monate		
Dessau	Transportblank	insportblank Juni/Juli				Juli/Aug	ust	Juni-August		
(Mulde)	ng	ng	S	n positiv	ng	S	n positiv	ng	S	n positiv
CB028	0,58	1,88	0,70	3	2,94	0,31	3	2,75	0,57	3
CB052	0,56	3,27	0,81	3	4,72	1,17	3	4,78	0,81	3
CB101	0,28	4,50	1,13	3	6,80	1,82	3	9,08	2,93	3
CB118		1,52	0,35	3	2,25	1,17	3	2,30	0,83	3
CB138		3,37	0,94	3	5,18	3,08	3	5,45	2,07	3
CB153	0,05	2,80	0,60	3	3,81	1,83	3	4,71	1,91	3
CB180		1,21	0,17	3	1,56	0,93	3	2,08	0,47	3
DDTOP		_			n.a.					
DDTPP		34,12	14,16	2	45,46	11,17	3	52,75	12,37	3
DDDOP					n.a.					
DDDPP				0			0			0
DDEOP					n.a.					
DDEPP	1,11	77,26	13,80	3	95,06	16,97	3	117,27	29,71	3
HCB	1,79	67,10	8,57	3	68,97	12,43	3	65,53	14,44	3
HCHA		15,68	5,12	3	6,23	1,42	3	5,95	0,74	3

LHW-Station	Trip	1 Mona	1 Monat			1 Monat			2 Monate	
Dessau	Transportblank		Juni/Ju	ıli		Juli/Aug	ust		Juni-Augi	ust
(Mulde)	ng	ng	S	n positiv	ng	S	n positiv	ng	S	n positiv
HCHB HCHG	1,50 1,49	6,99 7,00	1,40 1,40	3 3	4,96 4,91	1,20 1,28	3 3	5,84 5,90	1,94 1,87	3 3
ACY ACE ANT DBAHA BAA BBF BGHIP I123P CHRTR FL FLU PHEN DVP					n.a.					
FIR				L C-Stot	ffo					
	0,02	0,05	0,01	2	0,04	0,00	3	0,04	0,00	3
ALACHL AMETRYN ATRAZ BENTAZ CHLORI	0,45	0,07 0,06 <bg< td=""><td>0,03</td><td>0 2 1 0 0</td><td>0,07 0,12 <bg< td=""><td>0,00</td><td>0 3 1 0 0</td><td>0,07 <bg <bg< td=""><td>0,01</td><td>0 3 0 0 0</td></bg<></bg </td></bg<></td></bg<>	0,03	0 2 1 0 0	0,07 0,12 <bg< td=""><td>0,00</td><td>0 3 1 0 0</td><td>0,07 <bg <bg< td=""><td>0,01</td><td>0 3 0 0 0</td></bg<></bg </td></bg<>	0,00	0 3 1 0 0	0,07 <bg <bg< td=""><td>0,01</td><td>0 3 0 0 0</td></bg<></bg 	0,01	0 3 0 0 0
CHLORTUR DEATRAZ DICHLPR DIURON FENUR	0,06 <bg< td=""><td>0,10</td><td>0,02</td><td>0 0 3 0</td><td>0,23 <bg< td=""><td>0,11</td><td>0 0 3 0</td><td>0,12 <bg< td=""><td>0,01</td><td>0 0 3 0</td></bg<></td></bg<></td></bg<>	0,10	0,02	0 0 3 0	0,23 <bg< td=""><td>0,11</td><td>0 0 3 0</td><td>0,12 <bg< td=""><td>0,01</td><td>0 0 3 0</td></bg<></td></bg<>	0,11	0 0 3 0	0,12 <bg< td=""><td>0,01</td><td>0 0 3 0</td></bg<>	0,01	0 0 3 0
ISOPRUR LINUR MCPA MECOPR	0,02 <bg< td=""><td>0,06</td><td>0,00</td><td>0 3 0 0 0</td><td>0,06 <bg <bg< td=""><td>0,00</td><td>0 3 0 0 0</td><td>0,05 <bg< td=""><td>0,01</td><td>0 3 0 0 0</td></bg<></td></bg<></bg </td></bg<>	0,06	0,00	0 3 0 0 0	0,06 <bg <bg< td=""><td>0,00</td><td>0 3 0 0 0</td><td>0,05 <bg< td=""><td>0,01</td><td>0 3 0 0 0</td></bg<></td></bg<></bg 	0,00	0 3 0 0 0	0,05 <bg< td=""><td>0,01</td><td>0 3 0 0 0</td></bg<>	0,01	0 3 0 0 0
METAZCHL METHABZT METOLA PENDIMETH PROMETR PROPAZ SIMAZ	0,16 0,71 0,03 0.09	0,03 <bg 0,21 2,18 0,32 <<i>BG</i> 0,17</bg 	0,13 1,84 0,11 0.03	1 0 3 2 0 3	0,20 <bg 0,29 1,66 0,31 <<i>BG</i> <bg< td=""><td>0,03 0,02 0,27 0,01</td><td>3 0 3 3 3 0 0</td><td>0,15 <bg 0,24 1,77 0,36 <<i>BG</i> 0,09</bg </td><td>0,00 0,03 0,61 0,14</td><td>2 0 3 3 3 0 1</td></bg<></bg 	0,03 0,02 0,27 0,01	3 0 3 3 3 0 0	0,15 <bg 0,24 1,77 0,36 <<i>BG</i> 0,09</bg 	0,00 0,03 0,61 0,14	2 0 3 3 3 0 1
TERBAZ TERBUTR AZINPH-E AZINPH-M CHLORFENV	0,62 0,23	0,75 0,65	0,62 0,53	3 3 0 0 0	1,00 0,74 <bg< td=""><td>0,02 0,10</td><td>3 3 0 0 0</td><td>0,83 0,83</td><td>0,02 0,08</td><td>3 3 0 0 0</td></bg<>	0,02 0,10	3 3 0 0 0	0,83 0,83	0,02 0,08	3 3 0 0 0
DIAZINON DIMETH MALATH PIRIMIC BENZTPI	59,43 1,30 0,06 0,01	0,07 <bg 0,07 1,02</bg 	0,01 0,01	2 0 2 1	0,06 <bg 0,21</bg 	0,01	3 0 1 0 3	0,05 <bg 0,09</bg 	0,02	1 0 2 0 3
HBCD-A HBCD-BG MTBT TBBPA	0,14 0,32 2,74	<bg 0,08 4,96 1,14</bg 	<i>0,05</i> 3,44 0,50	0 3 3 3	0,46 <i>0,4</i> 7 2,76	0,28 0,40 0,74	3 3 3 0	<bg 0,18 3,23 1,82</bg 	0,03 0,37	0 3 3 1
CARBAMAZ CLOFIBRS DICLOF NAPROX OXAZEP	0,04	0,04 0,08 <bg 0,27</bg 	0,02	3 1 0 1 0	0,16 0,10 <bg< td=""><td>0,12 0,04</td><td>3 3 0 0 0</td><td>0,09 0,08 <bg< td=""><td>0,00 0,00</td><td>3 3 0 0 0</td></bg<></td></bg<>	0,12 0,04	3 3 0 0 0	0,09 0,08 <bg< td=""><td>0,00 0,00</td><td>3 3 0 0 0</td></bg<>	0,00 0,00	3 3 0 0 0

LHW-Station	Trip		1 Mona	at	1 Monat			2 Monate		
Dessau	Transportblank	Juni/Juli			Juli/August			Juni-August		
(Mulde)	ng	ng	S	n positiv	ng	S	n positiv	ng	S	n positiv
PRIMID				0			0			0
PFBA	29,95	1,08	0,30	3	3,33	1,89	3	1,32	0,24	3
PFBS	0,03	0,24	0,01	2	<bg< td=""><td></td><td>0</td><td></td><td></td><td>0</td></bg<>		0			0
PFDEA	0,06	0,07	0,02	2	0,08	0,02	3	0,14	0,11	3
PFHPA	1,69	0,75	0,18	3	1,96	0,37	3	1,04	0,26	3
PFHXA	0,07	0,06	0,01	3	0,23	0,16	3	0,09	0,02	3
PFHXS		<bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<></td></bg<>		0	<bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<>		0	<bg< td=""><td></td><td>0</td></bg<>		0
PFNOA	0,04	0,04	0,00	2	0,05	0,00	3	0,05	0,01	3
PFOA	0,49	0,44	0,13	3	0,89	0,46	3	0,81	0,36	3
PFOS	0,12	0,15	0,03	2	0,08	0,03	3	0,26	0,32	3
PFOSA	0,01	<bg< td=""><td></td><td>0</td><td>0,02</td><td>0,00</td><td>2</td><td>0,02</td><td></td><td>1</td></bg<>		0	0,02	0,00	2	0,02		1

Tabelle A-2.4.5: Magdeburg (Elbe) – Analytkonzentrationen in ng je 15 mm Silikonstab (normalisiert auf 50 mg) – **MESCO** (n=1 je Ausbringung); n.a. = nicht analysiert; <BG: unter Bestimmungsgrenze

LHW-Station		Trip	1 Monat	1 Monat	2 Monate	1 Monat A	1 Monat B
Magdeburg	BG	Transportblank	Mai/Juni	Juni/Juli	Mai-August	Juli/August	Juli/August
(Elbe)	ng	ng	ng	ng	ng	ng	ng
CB028	0,01					0,04	0,02
CB052	0,01					0,03	0,02
CB101	0,01					0,01	<bg< td=""></bg<>
CB118				n.a.			
CB138	0,01						
CB153	0,01					0,01	
CB180				n.a.		1	
DDTOP	0,01	0,06	0,02	0,04	0,06		
DDTPP	0,02						
DDDOP	0,05		<bg< td=""><td><bg< td=""><td>0,06</td><td>0,08</td><td>0,06</td></bg<></td></bg<>	<bg< td=""><td>0,06</td><td>0,08</td><td>0,06</td></bg<>	0,06	0,08	0,06
DDDPP	0,04		<bg< td=""><td><bg< td=""><td>0,08</td><td>0,04</td><td>0,05</td></bg<></td></bg<>	<bg< td=""><td>0,08</td><td>0,04</td><td>0,05</td></bg<>	0,08	0,04	0,05
DDEOP	0,05		<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td></td></bg<></td></bg<>	<bg< td=""><td></td></bg<>	
DDEPP	0,05		0.40	0.40	0.47	0,05	<bg< td=""></bg<>
HCB	0,04		0,48	0,19	0,47	0,58	0,39
	0,01		0,13	0,05	0,11	0,08	0,05
	0,03		 		0,04	0.07	0.04
ACY	0,03		0,22	0,05 n a	0,15	0,07	0,04
ACE	0.03		1	n.a.		<bg< td=""><td></td></bg<>	
ANT	0,00					0.06	0.05
DBAHA	0,00	0.02	0.02	0.01	0.02	0.24	0,00
BAA	0.04	0,02	<bg< td=""><td><bg< td=""><td><bg< td=""><td><bg< td=""><td>0.05</td></bg<></td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td><bg< td=""><td>0.05</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>0.05</td></bg<></td></bg<>	<bg< td=""><td>0.05</td></bg<>	0.05
BAP	0.02	0.03	<bg< td=""><td></td><td><bg< td=""><td></td><td>0,00</td></bg<></td></bg<>		<bg< td=""><td></td><td>0,00</td></bg<>		0,00
BBF	0.05	0,05	<bg< td=""><td><bg< td=""><td><bg< td=""><td>0,08</td><td>0,07</td></bg<></td></bg<></td></bg<>	<bg< td=""><td><bg< td=""><td>0,08</td><td>0,07</td></bg<></td></bg<>	<bg< td=""><td>0,08</td><td>0,07</td></bg<>	0,08	0,07
BGHIP	0,02	0,03	0,03	0,03	0,03	0,46	,
I123P	0,02	0,04	0,04	0,03	0,03	0,25	
CHRTR	0,03		<bg< td=""><td><bg< td=""><td>0,04</td><td>0,06</td><td>0,06</td></bg<></td></bg<>	<bg< td=""><td>0,04</td><td>0,06</td><td>0,06</td></bg<>	0,04	0,06	0,06
FL	0,04		<bg< td=""><td></td><td></td><td>0,05</td><td><bg< td=""></bg<></td></bg<>			0,05	<bg< td=""></bg<>
FLU	0,05		0,15	0,10	0,21	0,69	0,73
PHEN	0,01	0,03	0,09	0,07	0,08	0,47	0,44
PYR	0,06		0,06	<bg< td=""><td>0,12</td><td>0,56</td><td>0,58</td></bg<>	0,12	0,56	0,58
BDE028	0,06					0,07	
BDE047	0,07		<bg< td=""><td></td><td><bg< td=""><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>		<bg< td=""><td><bg< td=""><td></td></bg<></td></bg<>	<bg< td=""><td></td></bg<>	
BDE099	0,06					0,30	
BDE100	0,12		0,41		<bg< td=""><td>0,99</td><td>0,23</td></bg<>	0,99	0,23
BDE153	0,11						
BDE154	0,02						
ATRAZIN	0,02						
	0,03	0.40	0.40	0.40	0.00	<rc< td=""><td><bg< td=""></bg<></td></rc<>	<bg< td=""></bg<>
TERBUAZI	0,01	0,12	0,12	0,16	0,26		

LHW-Station		Trip	1 Monat	1 Monat	2 Monate	1 Monat A	1 Monat B							
Magdeburg	BG	Transportblank	Mai/Juni	Juni/Juli	Mai-August	Juli/August	Juli/August							
(Elbe)	ng	ng	ng	ng	ng	ng	ng							
TRIFLURALI	0,03	0,03	0,04	<bg< th=""><th><bg< th=""><th><bg< th=""><th><bg< th=""></bg<></th></bg<></th></bg<></th></bg<>	<bg< th=""><th><bg< th=""><th><bg< th=""></bg<></th></bg<></th></bg<>	<bg< th=""><th><bg< th=""></bg<></th></bg<>	<bg< th=""></bg<>							
LHW-Station	Trip 1 Monat		1 Monat		2 Monate			1 Monat						
-------------	--------------	----------------	---	--------	-----------	------	---------	-----------	--	---------	-----------	--------------------------------------	----------	-----------
Magdeburg	BG	Transportblank		Mai/Ju	ıni		Juni/Ju	ıli		Mai-Aug	ust		Juli/Aug	lust
(Elbe)	ng	ng	ng	S	n positiv	ng	S	n positiv	ng	S	n positiv	ng	S	n positiv
CB028	0,01				0	0,10	0,04	2			0	0,03	0,01	3
CB052	0,01				0	0,03	0,01	2			0	0,03	0,01	3
CB101	0,01				0	0,02	0,00	2			0	0,02	0,01	2
CB118							n.a	а.						
CB138	0,01				0	0,01	0,00	2			0			0
CB153	0,01	0,01			0	0,05	0,01	2			0	0,03	0,01	2
CB180			_			_	n.a	a.						
DDTOP	0,01	0,03	0,11	0,02	3	0,75	0,99	2			0			0
DDTPP	0,02				0	0,15	0,07	2			0	0,06		1
DDDOP	0,05		0,10	0,01	3	0,65	0,45	3	0,12	0,02	3	0,28	0,07	3
DDDPP	0,04		0,17	0,02	3	0,98	0,61	3	0,24	0,05	3	0,29	0,02	3
DDEOP	0,05		<bg< td=""><td></td><td>0</td><td>0,09</td><td>0,02</td><td>2</td><td></td><td></td><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<>		0	0,09	0,02	2			0	<bg< td=""><td></td><td>0</td></bg<>		0
DDEPP	0,05	0,07			0	0,44	0,03	2			0	0,11	0,02	3
HCB	0,04		0,32	0,02	3	1,34	0,94	3	0,54	0,09	3	0,46	0,07	3
HCHA	0,01	0,04	0,19	0,03	3	0,67	0,52	3	0,19	0,03	3	0,22	0,05	3
HCHB	0,03		0,03		1	0,18		1	0,44	0,05	3			0
HCHG	0,03		0,50	0,08	3	0,66	0,48	3	0,35	0,05	3	0,26	0,02	3
ACY							n.a	а.						
ACE	0,03	0,11			0	0,05		1	0,04		1	0,09	0,03	2
ANT	0,03		<bg< td=""><td></td><td>0</td><td>0,29</td><td>0,22</td><td>3</td><td>0,15</td><td>0,03</td><td>3</td><td>0,19</td><td>0,03</td><td>3</td></bg<>		0	0,29	0,22	3	0,15	0,03	3	0,19	0,03	3
DBAHA	0,01	0,01	0,03	0,00	3	0,18	0,07	2	<bg< td=""><td></td><td>0</td><td>0,19</td><td>0,18</td><td>3</td></bg<>		0	0,19	0,18	3
BAA	0,04		0,07	0,01	3	0,61	0,06	2			0	0,29	0,04	3
BAP	0,02	0,04	0,04	0,00	2	0,32	0,01	2			0			0
BBF	0,05	0,07	0,06	0,01	3	0,35	0,02	2			0	0,15	0,02	3
BGHIP	0,02	0,02	0,04	0,00	3	0,26	0,00	2	0,03		1	0,23	0,18	2
I123P	0,02	0,05	0,04	0,00	3	0,17	0,09	3	0,09	0,00	3	0,25	0,22	3
CHRTR	0,03	0,04	0,11	0,02	3	0,78	0,54	3	0,14	0,02	3	0,31	0,09	3
FL	0,04		<bg< td=""><td></td><td>0</td><td>0,24</td><td>0,11</td><td>2</td><td>0,13</td><td>0,02</td><td>3</td><td>0,06</td><td>0,01</td><td>3</td></bg<>		0	0,24	0,11	2	0,13	0,02	3	0,06	0,01	3
FLU	0,05		0,30	0,04	3	2,64	1,60	3	1,72	0,25	3	1,61	0,38	3
PHEN	0,01	0,10	0,11	0,01	3	1,08	0,24	2	0,95	0,22	3	0,61	0,06	3
PYR	0,06		0,22	0,03	3	2,22	1,31	3	1,27	0,20	3	1,49	0,16	3
BDE028	0,06	0,34			0	1,33	0,61	2			0	0,44	0,37	3
BDE047	0,07		<bg< td=""><td></td><td>0</td><td>0,32</td><td>0,10</td><td>2</td><td></td><td></td><td>0</td><td>0,11</td><td>0,05</td><td>2</td></bg<>		0	0,32	0,10	2			0	0,11	0,05	2
BDE099	0,06	0,34			0	1,46	0,62	2			0	1,10	0,48	2
BDE100	0,12	0,48			0	4,11	6,74	3			0	0,23	0,04	2
BDE153	0,11				0	0,13		1			0			0

Tabelle A-2.4.6: Magdeburg (Elbe) – Analytkonzentrationen in ng je 15 mm Silikonstab (normalisiert auf 50 mg) – **Silikonstab** (n=3 je Ausbringung); n.a. = nicht analysiert; <BG: alle Replikate unter Bestimmungsgrenze

BDE154	0,02				0	0,03		1			0			0
ATRAZIN	0,02	0,09			0	0,34	0,21	3	0,15	0,05	3			0
IRGAROL	0,03	0,06			0	0,40	0,03	2	0,08	0,01	3	0,11	0,01	2
TERBUAZI	0,01	0,06	9,61	0,79	3	13,26	7,37	3	12,53	0,69	3	4,23	0,13	3
TRIFLURALI	0,03		0,03		1			0			0			0

Tabelle A-2.4.7: Magdeburg (Elbe) – Analytkonzentrationen in ng je 6 x 5,5 cm x 9 cm x 500 μ m **Silicone Sheets**; *kursiv*: aufgrund der Ergebnisse der Qualitätssicherung nicht für weitere Berechnungen verwendet; n.a. = nicht analysiert; <BG: alle Replikate befinden sich unterhalb der Bestimmungsgrenze.

LHW-Station	Trip	1 Monat			1 Monat				2 Monate		
Magdeburg	Transportblank		Mai/J	uni			Juni/Juli		Juni-August		
(Elbe)	ng	ng	S	n positiv	ng	S	n positiv	ng	S	n positiv	
				GC-Analyte	n						
CB028	0,10	4,55	0,76	2	7,12	4,00	2	12,00		1	
CB052	0.09	5.66	0.72	2	9.06	4.61	2	12.94		1	
CB101	-,	4.24	0.24	2	7,76	3.55	2	11.10		1	
CB118		1,19	0.14	2	2.30	1.23	2	2.95		1	
CB138		4 03	0.55	2	8 54	4 81	2	9.61		1	
CB153		2.88	0.29	2	5,39	2 76	2	6.45		1	
CB180		1.31	0.04	2	3,33	2 20	2	3.96		1	
DDTOP		1,01	0,01	-	n a	2,20	-	0,00			
DDTPP		38.99		1	<bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<>		0	<bg< td=""><td></td><td>0</td></bg<>		0	
DDDOP		00,00		•	na		Ŭ	.50		U	
		0.86		1	<bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>٥</td></bg<></td></bg<>		0	<bg< td=""><td></td><td>٥</td></bg<>		٥	
DDEOP		0,00		1	na		U	100		U	
	0.86	31.63	5 51	2	70.58	24 51	2	89.50		1	
	0,00	150 11	25.81	2	160.84	103.63	2	207 74		1	
	0,00	-BC	25,01	2	-PC	105,05	2	201,14 ~PC		0	
				0	20.59		1	24.26		1	
				0	29,50		1	24,20		1	
			9.70	0	29,09	21 61	ו ס	34,55 69.00		1	
ACT		29,55	0,70	2	20,09	21,01	2	44.90		1	
ACE		78,24	25,69	2	40,15	12,55	2	44,89		1	
ANT		44,93	11,62	2	37,72	19,55	2	56,61		1	
DBAHA		<bg< td=""><td></td><td>0</td><td><bg< td=""><td>00.00</td><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<></td></bg<>		0	<bg< td=""><td>00.00</td><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<>	00.00	0	<bg< td=""><td></td><td>0</td></bg<>		0	
BAA		70,69		1	129,29	69,96	2	69,50		1	
BAP		23,51		1	41,02	16,81	2	26,45		1	
BBF		39,87		1	63,96	63,92	2	100,56		1	
BGHIP		19,09		1	30,65	7,75	2	23,94		1	
1123P		6,11		1	22,76	457.00	1	22,49		1	
		157,47		1	300,27	157,38	2	168,57		1	
FL	3,63	144,74	37,55	2	122,73	72,79	2	127,29		1	
FLU		416,16	56,39	2	477,75	200,83	2	585,11		1	
PHEN	5,97	464,21	89,05	2	240,67	85,79	2	286,86		1	
PYR		422,33	117,65	2	455,46	127,18	2	530,22		1	
		a (a)		LC-Analyter	1						
IRGAROL		21,59	14,22	2	25,03	6,75	2	26,16	6,20	2	
CARBEND		4,31	0,54	2	6,42	1,09	2	5,58	0,63	2	
ALACHL		1,76	0,03	2	2,44		1	2,03		1	
AMETRYN		18,62	2,58	2	25,28	2,65	2	24,93	0,60	2	
ATRAZ		24,23	0,77	2	23,24	0,59	2	21,76	3,43	2	
BENTAZ		0,02		1	0,03	0,01	2	0,02	0,00	2	
CHLORI		0,46	0,04	2	0,26		1	0,26		1	
CHLORTUR		30,11	9,18	2	19,04	2,37	2	19,27	3,91	2	
DEATRAZ		0,57	0,01	2	0,65	0,04	2	0,67	0,02	2	
DICHLPR				0			0			0	
DIURON	0,02	35,49	0,44	2	62,51	0,50	2	63,78	18,09	2	
FENUR		0,13	0,08	2	0,12	0,08	2	0,12	0,01	2	
HEXAZIN		1,03	0,03	2	0,69	0,17	2	0,77	0,37	2	
ISOPRUR		33,70	13,14	2	33,44	13,83	2	31,69	0,01	2	
LINUR		132,30	22,95	2	110,27	34,06	2	82,05	11,06	2	
MCPA				0			0			0	
MECOPR	0,12	<bg< td=""><td></td><td>0</td><td>0,09</td><td></td><td>1</td><td>0,06</td><td>0,01</td><td>2</td></bg<>		0	0,09		1	0,06	0,01	2	
METAZCHL		47,01	42,68	2	95,93	9,99	2	107,44	24,84	2	
METHABZT		2,40	0,09	2	1,10		1	0,89	0,03	2	
METOLA	0,01	497,47	133,90	2	479,80	76,11	2	450,69	105,40	2	
PENDIMETH	0,13	21,00	10,42	2	28,83	3,43	2	47,52	17,01	2	
PROMETR	0,01	59,31	15,04	2	86,30	24,70	2	76,93	4,46	2	
PROPAZ		7,49	0,72	2	8,09	0,26	2	7,83	1,33	2	

LHW-Station	Trip		1 Moi	nat			1 Monat		2 Mo	nate	
Magdeburg	Transportblank		Mai/J	uni			Juni/Juli		Juni-August		
(Elbe)	ng	ng	S	n positiv	ng	S	n positiv	ng	S	n positiv	
SIMAZ		9,80	0,12	2	7,65	0,44	2	7,20	0,79	2	
TERBAZ	0,09	879,20	87,00	2	781,68	79,49	2	739,81	179,71	2	
TERBUTR	0,16	113,61	24,85	2	202,20	42,21	2	193,65	16,07	2	
AZINPH-E		0,08		1	2,16		1	1,22	0,06	2	
AZINPH-M	0,22	<bg< td=""><td></td><td>0</td><td>5,53</td><td>1,25</td><td>2</td><td>4,92</td><td>1,90</td><td>2</td></bg<>		0	5,53	1,25	2	4,92	1,90	2	
CHLORFENV		0,26	0,13	2	0,87	0,19	2	0,95	0,17	2	
DIAZINON		24,49	8,17	2	32,09	10,91	2	35,06	11,76	2	
DIMETH	0,03	0,11	0,05	2	0,14		1	0,11	0,03	2	
MALATH	10,78	0,81		1	69,55	69,78	2	94,35		1	
PIRIMIC		6,69	1,90	2	8,33	0,63	2	7,71	1,07	2	
BENZTRI	0,31	9,11	0,40	2	10,33	2,79	2	10,17	0,15	2	
HBCD-A		0,64	0,52	2			0			0	
HBCD-BG	0,97	0,08	0,08	2			0			0	
MTBT	2,42	567,40	47,37	2	325,40	74,07	2	313,13	8,13	2	
TBBPA		<bg< td=""><td></td><td>0</td><td></td><td></td><td>0</td><td></td><td></td><td>0</td></bg<>		0			0			0	
CARBAMAZ	0,01	66,85	5,55	2	77,78	27,09	2	66,55	8,14	2	
CLOFIBRS				0			0			0	
DICLOF		0,36	0,08	2	<bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<>		0	<bg< td=""><td></td><td>0</td></bg<>		0	
NAPROX		3,96	0,41	2	1,34	0,25	2	2,23	0,96	2	
OXAZEP		1,30	0,11	2			0			0	
PRIMID		0,26	0,01	2	0,35	0,02	2	0,27	0,03	2	
PFBA	2,55	5,71	1,17	2	4,37	1,49	2	2,89	1,13	2	
PFBS	0,02	0,08	0,07	2	0,02	0,00	2	0,02	0,00	2	
PFDEA		<bg< td=""><td></td><td>0</td><td></td><td></td><td>0</td><td></td><td></td><td>0</td></bg<>		0			0			0	
PFHPA	0,03	0,06	0,02	2	<bg< td=""><td></td><td>0</td><td>0,02</td><td></td><td>1</td></bg<>		0	0,02		1	
PFHXA		0,03	0,01	2	<bg< td=""><td></td><td>0</td><td>0,02</td><td></td><td>1</td></bg<>		0	0,02		1	
PFHXS	0,02	0,03	0,01	2	0,04	0,02	2	0,02	0,00	2	
PFNOA		0,20	0,01	2			0			0	
PFOA	0,04	0,28	0,14	2	0,07	0,07	2	0,03	0,00	2	
PFOS		0,08	0,02	2	0,03	0,00	2	0,03	0,00	2	
PFOSA		0,46	0,22	2	0,13	0,09	2	0,10	0,03	2	

Tabelle A-2.4.8: Magdeburg (Elbe) – Analytkonzentrationen in ng je 100 mm x 2,8 cm x 100 µm **LDPE-Streifen**; *kursiv*: aufgrund der Ergebnisse der Qualitätssicherung nicht für weitere Berechnungen verwendet; n.a. = nicht analysiert; <BG: alle Replikate unter Bestimmungsgrenze.

LHW-	Trip	1 Monat (n=	=2)	11	Monat (r	i=3)	2 Monat	te (n=2)	2 N	Ionate	(n=3)
Station	Transportblank	Mai/Juni			Juni/Jul	i	Mai-	Juli		luli-Aug	ust
(Elbe)	ng	ng	s	ng	S	n positiv	ng	S	ng	S	n positiv
				GC-Anal	yten						
CB028	0,77	4,82		1,98		1	4,53	0,12	7,10	2,01	3
CB052	0,97	5,31		5,16	0,88	3	6,65	0,02	7,25	2,00	3
CB101	0,41	5,43		9,77	2,53	3	8,78	1,05	6,34	1,42	3
CB118		1,97		14,44		1	3,35	0,20	2,20	0,73	3
CB138	0,15	5,55		23,44		1	11,41	0,65	7,59	2,86	3
CB153	0,45	4,38		19,90		1	7,71	0,11	5,43	1,81	3
CB180	0,07	2,26				0	4,41	0,05	2,68	1,19	2
DDTOP					n	.a.					
DDTPP				25,44	0,20	3					0
DDDOP					n	.a.					
DDDPP						0					0
DDEOP				_	n	.a.			_		
DDEPP	1,89	33,40		42,01	9,58	3	58,20	6,75	40,65	14,05	3
HCB	3,30	103,04		25,95	3,80	3	97,62	1,31	97,08	27,97	3
HCHA	0,13	1,77		1,08		1	1,22	0,30	1,83	1,00	2
HCHB	0,24	5,03		1,68	0,22	3	3,89	0,98	2,16	1,00	3
HCHG	0,24	5,09		1,77	0,38	3	3,89	0,98	2,16	1,00	3

LHW-	Trip	1 Monat	(n=2)	1	Monat (r	=3)	2 Mona	te (n=2)	2 N	Ionate	(n=3)
Station	Transportblank	Mai/J	uni		Juni/Jul	i	Mai	-Juli		Juli-Aug	just
Magdeburg (Elbe)	ng	ng	s	ng	s	n positiv	ng	s	ng	s	n positiv
ACY ACE ANT DBAHA BAA BAP BBF BGHIP I123P CHRTR FL FLU PHEN PYR					nalvten	.a.					
IRGAROL		0,06	0,00	<bg< td=""><td></td><td>0</td><td>0,05</td><td>0,00</td><td>0,06</td><td>0,05</td><td>3</td></bg<>		0	0,05	0,00	0,06	0,05	3
CARBEND ALACHL AMETRYN ATRAZ BENTAZ CHLORI CHLORTUR	<i>0,23</i> 0,01	<bg <bg <bg< td=""><td>0,00</td><td><bg 0,92 <bg< td=""><td>0,93</td><td>0 0 3 0 0</td><td><bg <bg <bg< td=""><td>0,00</td><td><bg 0,11 <bg <<i>B</i>G</bg </bg </td><td>0,00</td><td>0 0 1 0 0</td></bg<></bg </bg </td></bg<></bg </td></bg<></bg </bg 	0,00	<bg 0,92 <bg< td=""><td>0,93</td><td>0 0 3 0 0</td><td><bg <bg <bg< td=""><td>0,00</td><td><bg 0,11 <bg <<i>B</i>G</bg </bg </td><td>0,00</td><td>0 0 1 0 0</td></bg<></bg </bg </td></bg<></bg 	0,93	0 0 3 0 0	<bg <bg <bg< td=""><td>0,00</td><td><bg 0,11 <bg <<i>B</i>G</bg </bg </td><td>0,00</td><td>0 0 1 0 0</td></bg<></bg </bg 	0,00	<bg 0,11 <bg <<i>B</i>G</bg </bg 	0,00	0 0 1 0 0
DEATRAZ DICHLPR DIURON FENUR HEXAZIN	0,22 0,02	<bg <bg 0,22</bg </bg 	0,08	<bg 0,05</bg 		0 <i>0</i> 1 0 0	<bg <bg 0,10 <bg< td=""><td>0,00</td><td><bg 0,16</bg </td><td>0,08</td><td>0 0 2 0 0</td></bg<></bg </bg 	0,00	<bg 0,16</bg 	0,08	0 0 2 0 0
ISOPRUR LINUR MCPA MECOPR	0.01	<bg <bg <bg< td=""><td></td><td>0,04 <bg <bg< td=""><td></td><td>1 0 0 0</td><td>0,06 <bg <bg< td=""><td>0,00</td><td><bg <bg <bg< td=""><td></td><td>0 0 0 0</td></bg<></bg </bg </td></bg<></bg </td></bg<></bg </td></bg<></bg </bg 		0,04 <bg <bg< td=""><td></td><td>1 0 0 0</td><td>0,06 <bg <bg< td=""><td>0,00</td><td><bg <bg <bg< td=""><td></td><td>0 0 0 0</td></bg<></bg </bg </td></bg<></bg </td></bg<></bg 		1 0 0 0	0,06 <bg <bg< td=""><td>0,00</td><td><bg <bg <bg< td=""><td></td><td>0 0 0 0</td></bg<></bg </bg </td></bg<></bg 	0,00	<bg <bg <bg< td=""><td></td><td>0 0 0 0</td></bg<></bg </bg 		0 0 0 0
METAZCHE METHABZT METOLA PENDIMETH PROMETR PROPAZ	0,04 0,20	<bg <bg 1,77 1,32 0,13 <<i>BG</i></bg </bg 	0,47 0,03 0,01	<bg <bg 0,07 0,14 0,02 <<i>BG</i></bg </bg 	0,01 0,03 0,00	0 2 3 2 0	<pre>0,03 <bg 0,09="" 0,11<="" 0,43="" 1,47="" <bg="" pre=""></bg></pre>	0,00 0,01 0,02 0,00	<bg <bg 0,13 0,98 0,09</bg </bg 	0,00 0,16 0,01	0 3 3 3 0
TERBAZ TERBUTR AZINPH-E AZINPH-M CHLORFENV	0,08 0,05	0,53 2,59 0,52 <bg< td=""><td>0,43 0,77 0,06</td><td><pre><bg 0,14="" 0,29="" <="" <bg="" pre=""></bg></pre></td><td>0,11 0,06</td><td>3 3 0 0</td><td>0,11 1,37 0,46</td><td>0,00</td><td>0,43 0,67 0,42 <bg< td=""><td>0,20 0,08 0,08</td><td>3 3 0 0 0</td></bg<></td></bg<>	0,43 0,77 0,06	<pre><bg 0,14="" 0,29="" <="" <bg="" pre=""></bg></pre>	0,11 0,06	3 3 0 0	0,11 1,37 0,46	0,00	0,43 0,67 0,42 <bg< td=""><td>0,20 0,08 0,08</td><td>3 3 0 0 0</td></bg<>	0,20 0,08 0,08	3 3 0 0 0
DIMETH MALATH PIRIMIC BENZTRI HBCD-A	0,93 0,01 0,02 0,16	<pre></pre>	0,00	<bg <bg 0,45 <bg< td=""><td></td><td>0 0 0 1</td><td><pre>>BG 0,23 <bg 0.35<="" <bg="" pre=""></bg></pre></td><td>0,09</td><td><bg <bg 0,11 <bg <bg <bg< td=""><td>0,02</td><td>0 3 0 0</td></bg<></bg </bg </bg </bg </td></bg<></bg </bg 		0 0 0 1	<pre>>BG 0,23 <bg 0.35<="" <bg="" pre=""></bg></pre>	0,09	<bg <bg 0,11 <bg <bg <bg< td=""><td>0,02</td><td>0 3 0 0</td></bg<></bg </bg </bg </bg 	0,02	0 3 0 0
HBCD-BG MTBT TBBPA CARBAMAZ CLOFIBRS DICLOF	0,09 0,98 0,05 0,13 0,04	0,20 3,38 <bg 0,31 <bg 0,55</bg </bg 	0,01 0,03 0,27	0,07 0,84 0,13 0,11 <bg< td=""><td><i>0,01</i> 0,16 0,03</td><td>3 1 3 3 3 0</td><td>0,34 3,58 <bg 0,07 <bg <bg< td=""><td>0,01 0,44 0,00</td><td>0,36 4,61 0,05 <bg <bg< td=""><td>0,14 1,42 0,01</td><td>3 3 0 3 0 0</td></bg<></bg </td></bg<></bg </bg </td></bg<>	<i>0,01</i> 0,16 0,03	3 1 3 3 3 0	0,34 3,58 <bg 0,07 <bg <bg< td=""><td>0,01 0,44 0,00</td><td>0,36 4,61 0,05 <bg <bg< td=""><td>0,14 1,42 0,01</td><td>3 3 0 3 0 0</td></bg<></bg </td></bg<></bg </bg 	0,01 0,44 0,00	0,36 4,61 0,05 <bg <bg< td=""><td>0,14 1,42 0,01</td><td>3 3 0 3 0 0</td></bg<></bg 	0,14 1,42 0,01	3 3 0 3 0 0
OXAZEP PRIMID PFBA	32,94	1,26	0,14	1,60	1,24	0 0 3	<bg 1,20</bg 	0,05	2,86	2,93	0 0 3

LHW-	Trip	1 Monat	: (n=2)	1	Monat (r	1=3)	2 Mona	te (n=2)	2 N	Ionate	(n=3)	
Station	on Transportblank Mai/Juni		uni		Juni/Juli			Mai-Juli		Juli-August		
Magdeburg (Elbe)	ng	ng	S	ng	S	n positiv	ng	S	ng	S	n positiv	
PFBS	0,02					0	<bg< td=""><td></td><td></td><td></td><td>0</td></bg<>				0	
PFDEA	0,01	<bg< td=""><td></td><td><bg< td=""><td></td><td>0</td><td>0,13</td><td>0,00</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td>0</td><td>0,13</td><td>0,00</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<>		0	0,13	0,00	<bg< td=""><td></td><td>0</td></bg<>		0	
PFHPA	2,04	0,59	0,12	5,03	5,38	3	0,99	0,01	0,73	0,03	3	
PFHXA	0,17	0,04	0,00	0,56	0,61	3	0,06	0,00	0,05	0,01	3	
PFHXS		<bg< td=""><td></td><td><bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<></td></bg<>		0	<bg< td=""><td></td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<>		<bg< td=""><td></td><td>0</td></bg<>		0	
PFNOA	0,02			0,06	0,03	2	0,05	0,00			0	
PFOA	0,38	0,40	0,08	0,74	0,95	3	0,55	0,00	0,39	0,12	3	
PFOS	0,08	0,16	0,02	<bg< td=""><td></td><td>0</td><td>0,30</td><td>0,00</td><td>0,05</td><td>0,01</td><td>3</td></bg<>		0	0,30	0,00	0,05	0,01	3	
PFOSA	0,02	<bg< td=""><td></td><td><bg< td=""><td></td><td>0</td><td>0,02</td><td>0,00</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td>0</td><td>0,02</td><td>0,00</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<>		0	0,02	0,00	<bg< td=""><td></td><td>0</td></bg<>		0	

A-2.5 Analytkonzentrationen in den verschiedenen Sammlertypen – Übergangs-, Küstengewässer und Hochsee

Tabelle A-2.5.1: Hamburg (Elbe) – Analytkonzentrationen in ng je 15 mm Silikonstab (normalisiert auf 50 mg) – **MESCO/Silikonstab** (n=3 je Ausbringung); n.a.=nicht analysiert; <BG: alle Replikate unter Bestimmungsgrenze. Leere Zellen: nicht detektiert.

	Trip (MESCO)			MESCO		Silikonstab			
Kirchenpauerkai	BG	Transportblank		N	ovember 20	11 (42 Tag	ge)		
Halliburg (Elbe)	ng	ng	ng	S	n positiv	ng	s	n positiv	
CB028	0,01		0,01		1	0,02	0,01	2	
CB052	0,01				0			0	
CB101	0,01				0			0	
CB118				n.a.					
CB138	0,01				0			0	
CB153	0,01				0			0	
CB180				n.a.					
DDTOP	0,01	<bg< td=""><td>0,10</td><td></td><td>1</td><td>0,53</td><td>0,09</td><td>3</td></bg<>	0,10		1	0,53	0,09	3	
DDTPP	0,02		0,10	0,10	3	0,11	0,04	3	
DDDOP	0,05	<bg< td=""><td></td><td></td><td>0</td><td>0,13</td><td>0,03</td><td>3</td></bg<>			0	0,13	0,03	3	
DDDPP	0,04		0,05		1	0,25	0,05	3	
DDEOP	0,05				0			0	
DDEPP	0,05				0	0,07	0,01	2	
HCB	0,04		0,14	0,06	3	0,43	0,12	3	
HCHA	0,01	<bg< td=""><td></td><td></td><td>0</td><td>0,33</td><td>0,12</td><td>3</td></bg<>			0	0,33	0,12	3	
HCHB	0,03		0,06	0,00	2	0,15	0,02	3	
HCHG	0,03		0,13	0,05	3	0,97	0,07	3	
ACY				n.a.					
ACE	0,03		0,29	0,08	3	0,43	0,14	3	
ANT	0,03	<bg< td=""><td>0,08</td><td>0,03</td><td>3</td><td>0,42</td><td>0,09</td><td>3</td></bg<>	0,08	0,03	3	0,42	0,09	3	
DBAHA	0,01		0,02	0,00	3	0,05	0,05	3	
BAA	0,04	<bg< td=""><td>0,07</td><td>0,04</td><td>3</td><td>0,29</td><td>0,03</td><td>3</td></bg<>	0,07	0,04	3	0,29	0,03	3	
BAP	0,02	0,07	0,11	0,00	3	0,16	0,04	3	
BBF	0,05	<bg< td=""><td></td><td></td><td>0</td><td>0,07</td><td>0,02</td><td>2</td></bg<>			0	0,07	0,02	2	
BGHIP	0,02				0			0	
I123P	0,02	0,08	0,03		1			0	
CHRTR	0,03	0,05	0,12		1	0,51	0,08	3	
FL	0,04	<bg< td=""><td>0,62</td><td>0,21</td><td>3</td><td>1,23</td><td>0,38</td><td>3</td></bg<>	0,62	0,21	3	1,23	0,38	3	
FLU	0,05	0,08	0,62	0,24	3	3,21	0,67	3	
PHEN	0,01	0,20	1,46	0,57	3	0,49	0,15	3	
PYR	0,06	<bg< td=""><td>0,46</td><td>0,18</td><td>3</td><td>2,71</td><td>0,55</td><td>3</td></bg<>	0,46	0,18	3	2,71	0,55	3	
BDE028	0,06				0			0	
BDE047	0,07	<bg< td=""><td></td><td></td><td>0</td><td></td><td></td><td>0</td></bg<>			0			0	
BDE099	0,06		0,15	0,06	2			0	

		Trip (MESCO)		MESCO	1	(Silikonstab			
Kirchenpauerkai Hamburg (Elbe)	BG	Transportblank		N	ovember 20	11 (42 Tag	1 (42 Tage)			
namburg (Eibe)	ng	ng	ng	S	n positiv	ng	S	n positiv		
BDE100	0,12	<bg< td=""><td>10,04</td><td>9,43</td><td>2</td><td>0,55</td><td></td><td>1</td></bg<>	10,04	9,43	2	0,55		1		
BDE153	0,11		0,22		1			0		
BDE154	0,02		0,21		1	0,03		1		
ATRAZIN	0,02				0			0		
IRGAROL	0,03	<bg< td=""><td></td><td></td><td>0</td><td></td><td></td><td>0</td></bg<>			0			0		
TERBUAZI	0,01	<bg< td=""><td></td><td></td><td>0</td><td>0,69</td><td>0,27</td><td>3</td></bg<>			0	0,69	0,27	3		
TRIFLURALI	0,03	<bg< td=""><td></td><td></td><td>0</td><td></td><td></td><td>0</td></bg<>			0			0		

Tabelle A-2.5.2: Hamburg (Elbe) – Analytkonzentrationen in ng je 6 x 5,5 cm x 9 cm x 500 µm **Silicone Sheets** (n=3 je Ausbringung); <BG: alle Replikate unter der Bestimmungsgrenze. Leere Zellen: nicht detektiert. n.a.=nicht analysiert.

Homburg	Trip	<u>63</u> Ta	ige	83 Tage		49 Tage		
Hamburg (Elbo)	Transportblank	Mai-Juli	2010	Juli-Oktober	2010	November-F	ebruar 2011	
(Eibe)	ng	ng	S	ng	S	ng	s	
				GC-Analyten				
CB028		12,10	0,18	13,46		5,23	0,04	
CB052		19,07	0,01			6,71	0,50	
CB101		18,02	0,89	13,85		5,47	0,40	
CB118		4,47	0,20	2,87		1,34		
CB138		11,14	0,03			4,17		
CB153		7,94	0,27	7,07		55,20	74,60	
CB180		4,57	0,12	2,69		1,03		
DDTOP				n.a.				
DDTPP		18,43	2,17	<bg< td=""><td></td><td>88,40</td><td>96,84</td></bg<>		88,40	96,84	
DDDOP				n.a.				
DDDPP		79,72	5,04	412367,30		960,57	1274,56	
DDEOP				n.a.				
DDEPP				n.a.				
HCB	0,06	94,30		0,25		78,87	7,29	
HCHA		15,17	1,59	<bg< td=""><td></td><td>521,16</td><td></td></bg<>		521,16		
HCHB		8,56	0,59	12558,41		4481,96	6177,50	
HCHG		7,50	1,06	<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>		
ACY		42,65	13,87	71,42	27,15	254,19	17,78	
ACE		157,10	0,71	61,16	0,59	203,09	11,02	
ANT		163,19	5,85	104,45	4,55	133,06	45,05	
DBAHA		<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>		
BAA		20,90	0,16	193,33	9,47	67,48	1,58	
BAP		6,78	0,05	53,96	1,40	16,67	1,53	
BBF		19,47	0,11	201,97	5,06	49,69	1,05	
BGHIP		30,03	0,56	40,02	0,96	9,98	0,99	
I123P		25,96	0,35	36,18	0,68	10,46	0,80	
CHRTR		38,30	0,02	510,07	25,93	176,18	38,51	
FL		330,83	34,37	226,21	2,48	1053,84	484,81	
FLU		320,57	7,44	1620,82	37,86	1200,82	325,32	
PHEN	2,66	185,24	12,69	449,14	0,45	1850,08	703,37	
PYR		253,24	3,37	1307,08	33,18	1045,61	227,14	
				LC-Analyten				
IRGAROL		45,46		44,72		58,09	1,60	
CARBEND		3,08	0,01	4,43	0,04	1,79	0,05	
ALACHL	2,25	4,91	0,82	6,86	3,39	12,27	1,12	
AMETRYN		12,33	0,17	10,09	1,46	12,00	2,89	
ATRAZ		10,55	0,14	12,32	1,33	15,15	3,18	
BENTAZ								
CHLORI								
CHLORTUR		7,00	0,05	9,63	0,38	54,14	3,41	
DEATRAZ		0,27	0,02	0,44	0,07	0,66	0,00	

Hamburg	Trip	63 Ta	age	83 Tag	е	49 T	age
(Flbe)	Transportblank	Mai-Jul	i 2010	Juli-Oktober	r 2010	November-F	ebruar 2011
(LIDE)	ng	ng	S	ng	S	ng	S
DICHLPR							
DIURON		16,79	1,26	12,46	0,55	15,14	0,75
FENUR		0,12	0,02	0,07	0,02	0,14	0,01
HEXAZIN		0,78	0,03	0,77	0,03	0,24	0,04
ISOPRUR		18,85	1,06	33,88	0,05	99,83	3,79
LINUR		20,83	4,25	27,74	10,48	31,19	3,28
MCPA		-					
MECOPR	0,03						
METAZCHL		22,79	5,22	265.00	46,75	105,14	8.06
METHABZT		,	,	n.a.	,		,
METOLA	0.01	120.89		117.25		126.44	0.58
PENDIMETH	0.48	47.10	21.93	55.49	28.64	477.11	10.01
PROMETR	0.01	73 16	,	72 89	_0,0 :	78.28	0.67
PROPAZ	0,01	2 66	0.03	3.02	0.07	4 88	0.05
SIMA7		3 52	0,00	3 57	0,07	4,00	0,58
	0.25	73.25	0,00	71 78	0,10	111 05	6.22
	0,20	10,20		/1.02		64 78	4.62
	0,01	44,20		41,52		04,70	4,02
	0.18						
	0,10	0.15	0.02	0.42	0.09	0.54	0.02
		0,15	0,02	0,42	0,06	0,54	0,03
DIAZINON		47,53	10,17	74,84	3,59	61,06	2,50
				n.a.			
		4.00	0.04	0.70	0.00	4.04	0.07
PIRIMIC	0.70	1,68	0,04	2,79	0,02	1,91	0,07
BENZIRI	0,76	2,47	0,05	4,74	0,79	7,84	0,31
HBCD-A	0.04	0.44		n.a.		0.00	
HBCD-BG	0,04	0,44	0,04	0,06		0,08	
MTBT	0,25						
ТВВРА		0,73				0,60	0,06
CARBAMAZ		44,58	0,03	42,90	0,99	23,13	0,49
CLOFIBRS	0,04						
DICLOF							
NAPROX							
OXAZEP							
PRIMID							
PFBA	3,06	8,74	0,41	3,42	0,21	3,20	1,29
PFBS	0,01	<bg< td=""><td></td><td><bg< td=""><td></td><td>0,02</td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td>0,02</td><td></td></bg<>		0,02	
PFDEA	0,06	0,09	0,05	<bg< td=""><td></td><td>0,15</td><td></td></bg<>		0,15	
PFHPA	0,01	0,02	0,01	0,02		0,04	0,01
PFHXA		<bg< td=""><td></td><td></td><td></td><td><bg< td=""><td></td></bg<></td></bg<>				<bg< td=""><td></td></bg<>	
PFHXS	0,01	<bg< td=""><td></td><td><bg< td=""><td></td><td></td><td></td></bg<></td></bg<>		<bg< td=""><td></td><td></td><td></td></bg<>			
PFNOA	0,27	0,36		0,26	0,07	0,60	0,06
PFOA	0,14	0,28	0,09	0,17	0,03	0,43	0,09
PFOS	0,03	0,23	0,00	0,13	0,06	0,05	0,04
PFOSA		0,37	0,02	0,21	0,02	0,51	0,08

Tabelle A-2.5.3: Hamburg (Elbe) – Analytkonzentrationen in ng je 100 mm x 2,8 cm x 100 µm **LDPE-Streifen** (n=3 je Ausbringung); <BG: alle Replikate unter Bestimmungsgrenze. Leere Zellen: nicht detektiert. n.a.=nicht analysiert.

Hemeleune	Trip	49 Tage				
Hamburg (Elbo)	Transportblank	Novembe	er-Januar 2011			
(Eibe)	ng	ng	S			
		GC-Analyten				
CB028		1,17	0,49			
CB052		2,58	0,45			
CB101		3,76	1,29			
CB118		0,64	0,03			
CB138		1,79	0,16			
CB153		1,24	0,23			
CB180		0,54	0,10			
DDTOP		n.a.				
DDTPP		917,33	1576,31			
DDDOP		n.a.				
DDDPP		n.d.	n.d.			
DDEOP		n.a.				
DDEPP	0,28	26,01	12,25			
HCB		16,53	5,48			
HCHA		n.a.				
HCHB		n.a.				
HCHG		n.a.				
ACY		n.a.				
ACE		<bg< td=""><td></td></bg<>				
ANT		6,57	0,06			
DBAHA		<bg< td=""><td></td></bg<>				
BAA		25,41	6,00			
BAP		5,97	1,53			
BBF		21,16	4,18			
BGHIP		2,73	0,97			
I123P		<bg< td=""><td></td></bg<>				
CHRTR	2,65	59,73	10,44			
FL	3,85	120,42	63,96			
FLU		481,02	64,80			
PHEN		53,05	40,25			
PYR		575,83	46,98			
		<u>C-Analyten</u>				
IRGAROL		0,03	0,02			
PENDIMETH	0,19	12,82	0,67			
TERBAZ	0,05	0,16	0,02			
TERBUTR		0,14	0,04			

Tabelle A-2.5.4: Fehmarnsund (Ostsee) - Analytkonzentrationen in ng je 6 x 5,5 cm x 9 cm x 500 μ m **Silicone Sheets** (n=3 je Ausbringung); <BG: alle Replikate unter Bestimmungsgrenze. Leere Zellen: nicht detektiert. n.a.=nicht analysiert.

	Trip	8	32 Tage	44	Tage
	Transportblank	Septembe	r-Dezember 2010	Juni-	Juli 2011
(03:300)	ng	ng s		ng	S
			GC-Analyten		
CB028	0,17	5,38	0,03	2,38	0,28
CB052		5,02	0,10	2,36	0,19
CB101		7,20	0,46	4,19	1,00
CB118		2,74	0,15	1,92	0,08
CB138		6,77	0,83	4,88	0,16
CB153		4,15	0,65	3,01	0,43

Permansum (Ostsee) Transportblank September-Dezember 2010 Juni-Juli 2011 ng ng s ng s CB 180 0,70 0,59 0,55 DDTPP 4,87 0,56 4,47 1,28 DDDPP 15,31 4,83 11,94 4,44 DDEPP n.a.	Echmornound	Trip	82	2 Tage	44 Tage		
Option DDTOP ng s ng s DDTOP 4,87 0,56 4,47 1,28 DDDOP n.a. n.a. n.a. DDDOP n.a. n.a. n.a. DDEOP n.a. 11,94 4,44 DDEOP n.a. 6,27 DECH n.a. 6,27 HCHA 17,81 12,78 6,27 HCHB 3,65 2.09 3,79 ACY 275,83 57,95 60.08 39,50 ACE 72,06 3,15 11,18 1,60 ANT 40,22 0,39 10,67 2,32 BAA 72,51 3.02 25,37 3,67 BA 72,65 23,60 13,28 89,45 9,66 FL 3,85 1029,14 149,76 155,40 11,00 FLC 2,36 0,37 0,79 0,49 2,34 0,47 PHEN 2,267,60 2	(Ostsee)	Transportblank	September	-Dezember 2010	Juni-	Juli 2011	
CB180 0,70 0,59 0,05 DDTOP n.a. -	(031300)	ng	ng	S	ng	S	
DDTOP 4.87 0.56 4.47 1.28 DDDOP 15.31 4.83 11.94 4.44 DDDOP n.a. 10.01 0.63 DDEOP n.a. 10.01 0.63 HCB 17.81 12.78 6.27 HCHB 3.65 2.09 3.79 HCHB 3.33 1.72 3.23 ACY 275.83 57.95 60.08 39.50 ACE 72.06 3.15 11.18 16.07 2.32 DBAH <eg< td=""> <eg< td=""> 86 88 89.50 85.51 BAA 72.51 3.02 25.37 3.67 89.7 89.7 89.7 89.7 89.7 89.66 11.18 16.02 6.67 2.90 14.24 38.94 9.66 11.00 11.11 11.29 11.28 11.10 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00</eg<></eg<>	CB180		0,70		0,59	0,05	
DDTPP 4,87 0.56 4,47 1,28 DDDOP n.a. n.a. n.a. DDEPP n.a. n.a. n.a. HCB 28,02 1,05 10,01 0,63 HCHA 17,81 12,78 6,27 10.01 0,63 HCHB 3,65 2,09 3,79 - - ACY 275,83 57,95 60,08 39,50 ACY 275,83 57,95 60,67 2,32 DBAHA -4BG - 66 - 2,32 DBAHA -4BG - 66,7 2,90 15,91 BGHIP 2,022 0,27 11,55 1,41 10,00 FLU 156,21 6,93 80,95 19,45 9,66 FLU 3,85 1029,14 149,76 155,40 11,00 FLU 1629,20 142,42 368,95 19,45 PHEN 2,254 61,92 116,89	DDTOP			n.a.			
DDDOP n.a. n.a. DDEPP n.a. n.a. HCB 28,02 1,05 10,01 0,63 HCHA 17,81 12,78 6,27 0,03 3,79 HCHB 3,65 2.09 3,79 - - HCHG 3,33 1,72 3,23 - <td>DDTPP</td> <td></td> <td>4,87</td> <td>0,56</td> <td>4,47</td> <td>1,28</td>	DDTPP		4,87	0,56	4,47	1,28	
DDDPP 15,31 4,83 11,94 4,44 DDEOP n.a. n.a. n.a. HCB 28,02 1,05 10,01 0,63 HCHA 17,81 12,78 6,27 HCHB 3,65 2.09 3,79 HCHB 3,33 1,72 3,23 ACY 275,83 57,95 60,08 39,50 ACE 72,06 3,15 11,18 1,60 ANT 40,22 0,39 10,67 2,32 BAA 72,51 3,02 25,37 3,67 BAP 16,51 0,29 6,67 2,90 BGHP 20,82 0,27 11,55 1,11 H23P 2,436 3,08 16,55 0,51 CHRR 2,65 236,00 13,28 89,45 9,66 FL 3,85 1629,20 14,24,23 368,93 2,45 CARBEND 0,05 0,03 3,282 0,33	DDDOP			n.a.			
DDECP n.a. HCB 28,02 1,05 10,01 0,63 HCHA 17,81 12,78 6,27 HCHG 3,65 2,09 3,79 HCHG 3,65 2,09 3,79 ACY 275,83 57,95 60,08 39,50 ACE 72,06 3,15 11,18 1,60 ANT 40,22 0,39 10,67 2,32 DBAHA <bg< td=""> <bg< td=""> 66,7 2,90 BBF 16,51 0,29 6,67 2,90 BBF 156,21 6,93 89,45 9,66 FLU 2,35 1029,14 149,76 155,40 11,00 PHEN 2,65 2267,60 210,03 308,28 39,35 PYR 2,24 0,47 0,79 0,49 ALACHL 2,34 0,47 0,79 0,49 ATRAZ 14,91 0,20 10,96 0,52 <t< td=""><td>DDDPP</td><td></td><td>15,31</td><td>4,83</td><td>11,94</td><td>4,44</td></t<></bg<></bg<>	DDDPP		15,31	4,83	11,94	4,44	
DUEPP Int. Int. HCB 28.02 1,05 10,01 0.63 HCHA 3.65 2.09 3.79	DDEOP			n.a.			
ICDD 20.02 1,03 10,11 0,03 HCHB 1,781 12,78 6,27 HCHB 3,85 2,09 3,79 ACY 3,33 1,72 3,23 ACY 3,33 1,72 3,23 ACE 72,06 3,15 11,18 1,60 ANT 40,22 0,39 10,67 2,32 DBAHA 40,22 0,39 10,67 2,32 BAP 166,51 0,29 6,67 2,90 BGHIP 20,82 0,27 11,55 1,41 1123P 2,436 3,08 16,55 0,51 CHRTR 2,65 236,00 13,28 89,45 9,66 FLU 3,85 1029,14 149,76 155,40 11,00 FLU 3,85 1029,14 149,76 155,40 11,00 GAROL CARBEND 2,34 0,47 0,79 0,49 ATRAZ 0,05 0,03 </td <td>DDEPP HCB</td> <td></td> <td>28.02</td> <td>1.6.</td> <td>10.01</td> <td>0.63</td>	DDEPP HCB		28.02	1.6.	10.01	0.63	
HCHB 1,0,0 1,1,0 1,2,1 2,1,0 3,79 HCHG 3,33 1,72 3,23	НСНА		17 81	12 78	6 27	0,05	
HCHG 3,33 1,72 3,23 ACY 275,83 57,95 60,08 39,50 ACE 72,06 3,15 11,18 1.60 ANT 40,22 0,39 10,67 2,32 DBAHA <bg< td=""> </bg<>	НСНВ		3.65	2.09	3.79		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HCHG		3.33	1.72	3.23		
ACE ANT F2.06 3.15 11,18 1.60 ANT 40,22 0.39 10,67 2.32 DBAHA -	ACY		275,83	57,95	60,08	39,50	
ANT 40,22 0,39 10,67 2,32 DBAHA <bg< td=""> BG BAA 72,51 3,02 25,37 3,67</bg<>	ACE		72,06	3,15	11,18	1,60	
DBAHA <bg< td=""> <bg< td=""> BAA 72,51 3,02 25,37 3,67 BAP 156,21 6,93 80,91 5,91 BGHIP 20,82 0,27 11,55 1,41 1123P 20,82 0,27 11,55 0,51 CHRTR 2,65 236,00 13,28 89,45 9,66 FL 3,85 1029,14 149,76 155,40 11,00 FLU 3,85 1029,14 149,76 116,89 9,80 PYR 2267,60 210,03 308,28 39,35 PYR 2267,60 210,03 308,28 39,35 PYR 2,34 0,47 0,79 0,49 AMETRYN 4,28 0,33 2,82 0,38 ATRAZ 14,91 0,20 10,96 0,52 BENTAZ <bg< td=""> <bg< td=""> CHLOR CHLORIUR 1,37 0,14 0,19 0,05 DICHLPR</bg<></bg<></bg<></bg<>	ANT		40,22	0,39	10,67	2,32	
BAA 72,51 3,02 25,37 3,67 BAP 16,51 0.29 6,67 2,90 BGHIP 20,82 0.27 11,55 1,41 1123P 24,36 3,08 16,55 0,51 CHRTR 2,65 236,00 13,28 89,45 9,66 FL 3,85 1029,14 149,76 155,40 11,00 FLU 2267,60 210,03 308,28 39,35 PYR 2267,60 210,03 308,28 39,35 CARBEND 0,05 0,03 14,94 0,79 0,49 AMETRYN 4,28 0,33 2,82 0,38 ATRAZ 14,91 0,20 10,96 0,52 BENTAZ <bg< td=""> <bg< td=""> <bg< td=""> <bg< td=""> CHLORTUR 1,37 0,14 0,94 0,94 ATRAZ 0,27 0,14 0,10 0,05 DICHOR 6,81 0,39 3,79 0,47 <!--</td--><td>DBAHA</td><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<></bg<></bg<></bg<>	DBAHA		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>		
BAP 16,51 0.29 6,67 2,90 BBF 156,21 6,93 80,91 5,91 BGHIP 20,82 0,27 11,55 1,41 H123P 24,36 3,08 16,55 0,51 CHRTR 2,65 236,00 13,28 89,45 9,66 FL 3,85 1029,14 149,76 155,40 11,00 FLU 1629,20 142,42 368,95 19,45 PHEN 2267,60 210,03 308,28 39,35 PYR 2267,60 210,03 308,28 39,35 CARBEND 0,05 0,03 4,49 0,20 116,89 9,80 EXARDL 2,34 0,47 0,79 0,49 4,28 0,33 2,82 0,38 ATRAZ 4,28 0,33 2,62 0,38 ATRAZ 4,86 SEC CHLORI 4,28 0,33 2,62 0,38 ATRAZ 4,86 SEC	BAA		72,51	3,02	25,37	3,67	
BBH 156,21 6,93 80,91 5,91 BGHIP 20,82 0,27 11,55 1,41 I123P 24,36 3,08 16,55 0,51 CHRTR 2,65 236,00 13,28 89,45 9,66 FL 3,85 1029,14 149,76 155,40 11,00 PHEN 2267,60 210,03 308,28 39,35 PYR LC-Analyten LC-Analyten 33,89 2,05 IRGAROL 2,34 0,47 0,79 0,49 AMETRYN 4,28 0,33 2,82 0,38 ATRAZ 14,91 0,20 10,96 0,52 BENTAZ <bg< td=""> <bg< td=""> CHLORIUR 428 0,33 2,46 DIURON 6,81 0,39 3,79 0,47 FENUR 14,91 0,02 0,03 0,00 INOPAU 3,39 0,70 0,56 0,31</bg<></bg<>	BAP		16,51	0,29	6,67	2,90	
BUGHIP 20,82 0,27 11,95 1,41 1123P 24,36 3,08 16,55 0,51 CHRTR 2,65 236,00 13,28 89,45 9,66 FL 3,85 1029,14 149,76 155,40 11,00 FLU 1629,20 142,42 368,95 19,45 PYR 2267,60 210,03 308,28 39,35 BCARDL 2267,60 210,03 308,28 39,35 CARBEND 0,05 0,03 1629,20 142,42 368,95 ALACHL 2,34 0,47 0,79 0,49 AMETRYN 4,28 0,33 2,82 0,38 ATRAZ 14,91 0,20 10,96 0,52 BENTAZ <8G	BBF		156,21	6,93	80,91	5,91	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BGHIP		20,82	0,27	11,55	1,41	
Drink FL 2,03 23,00 13,23 13,23 13,24 14,276 155,40 11,00 FLU 1629,20 142,42 368,95 19,45 2267,60 210,03 308,28 39,35 PYR 825,84 61,92 116,89 9,80 IRGAROL LC-Analyten 33,89 2,05 33,89 2,05		2.65	24,30	3,00 13.28	10,00	0,51	
FLU 102,14 102,14 102,14 102,14 102,14 PHEN 1629,20 142,42 368,95 19,45 2267,60 210,03 308,28 39,35 PYR 2267,60 210,03 308,28 39,35 CARBEND 0,05 0,03 308,28 39,35 ALACHL 2,34 0,47 0,79 0,49 AMETRYN 4,28 0,33 2,82 0,38 ATRAZ SBG SBG SBG CHLORI 4,28 0,33 2,82 0,38 A ATAZ SBG SBG SBG CHLORI 4,28 0,33 2,82 0,38 A DICHORUR 0,27 0,14 0,10 D D DEATRAZ 0,27 0,14 0,10 D D DIURON 6,81 0,39 3,79 0,47 FENUR 0,01 10,41	FI	2,00	1029 14	149 76	155 40	9,00	
PHEN PYR 2267.60 210,03 308,28 39,35 PYR 2267.60 210,03 308,28 39,35 IRGAROL LC-Analyten 116,89 9,80 IRGAROL 2,34 0,47 0,79 0,49 ALACHL 2,34 0,47 0,79 0,49 AMETRYN 4,28 0,33 2,82 0,38 ATRAZ 14,91 0,20 10,96 0,52 BENTAZ < 86	FLU	5,05	1629.20	142 42	368.95	19.45	
PYR 825,84 61,92 116,89 9,80 LC-Analyten LC-Analyten 33,89 2,05 CARBEND 0,05 0,03 A ALACHL 2,34 0,47 0,79 0,49 AMETRYN 4,28 0,33 2,82 0,38 ATRAZ 14,91 0,20 10,96 0,52 BENTAZ <bg< td=""> <bg< td=""> <bg< td=""> C CHLORI <bg< td=""> <bg< td=""> <bg< td=""> <bg< td=""> C CHLORTUR 1,37 0,14 0,54 0,10 D D DEATRAZ 0,27 0,14 0,19 0,05 D</bg<></bg<></bg<></bg<></bg<></bg<></bg<>	PHEN		2267.60	210.03	308.28	39.35	
IRGAROL CARBEND 0.05 0.03 ALACHL 2,34 0,47 0,79 0,49 ALACHL 2,34 0,47 0,79 0,49 AMETRYN 4,28 0,33 2,82 0,38 ATRAZ 14,91 0,20 10,96 0,52 BENTAZ <bg< td=""> <bg< td=""> CHLORIUR 1,37 0,14 0,54 0,10 DEATRAZ 0,27 0,14 0,19 0,05 DIURON 6,81 0,39 3,79 0,47 FENUR 0,02 0,03 0,00 005 ILINUR 7,27 2,28 17,00 10,29 MCOPR 0,11 0,01 0,05 0.03 0,00 INORPA 0,03 17,23 0,03 31,53 0,47 METOLA 0,03 17,23 0,03 31,53 1,22 PROMETR 0,01 40,49 0,92 33,55 1,22 PROM</bg<></bg<>	PYR		825,84	61,92	116,89	9,80	
IRGAROL CARBEND ALACHL 33,89 2,05 ALACHL 2,34 0,47 0,79 0,49 AMETRYN 4,28 0,33 2,82 0,38 ATRAZ 14,91 0,20 10,96 0,52 BENTAZ <bg< td=""> <bg< td=""> CHLORI <bg< td=""> <bg< td=""> CHLORUR 1,37 0,14 0,54 0,10 DEATRAZ 0,27 0,14 0,19 0,05 DICHLPR 0,27 0,14 0,19 0,05 DIURON 6,81 0,39 3,79 0,47 FENUR 0,02 0,03 0,00 INOPRUR 3,39 0,70 0,56 0,31 LINUR 7,27 2,28 17,00 10,29 MECOPR 0,01 10,41 0,42 4,34 0,12 METAZCHL 0,01 10,55,87 6,71 75,53 5,72 PROMETR 0,01 40,49 <td< td=""><td></td><td></td><td>LC</td><td>C-Analyten</td><td>,</td><td></td></td<></bg<></bg<></bg<></bg<>			LC	C-Analyten	,		
CARBEND 0,05 0,03 ALACHL 2,34 0,47 0,79 0,49 AMETRYN 4,28 0,33 2,82 0,38 ATRAZ 14,91 0,20 10,96 0,52 BENTAZ <bg< td=""> <bg< td=""> CHLORI <bg< td=""> <bg< td=""> CHLORTUR 1,37 0,14 0,54 0,10 DICHLPR 0,27 0,14 0,19 0,05 DICHLPR 0 0,27 0,14 0,10 0,05 DIURON 6,81 0,39 3,79 0,47 0,47 FENUR 0,02 0,03 0,00 0,03 0,00 ISOPRUR 3,39 0,70 0,56 0,31 10,41 0,42 4,34 0,12 MECOPR 0,11 0,01 0,05 0,47 10,53 5,72 PROMETR 0,19 105,587 6,71 75,53 5,72 PROMETR <</bg<></bg<></bg<></bg<>	IRGAROL				33,89	2,05	
ALACHL 2,34 0,47 0,79 0,49 AMETRYN 4,28 0,33 2,82 0,38 ATRAZ 14,91 0,20 10,96 0,52 BENTAZ <bg< td=""> <bg< td=""> CHLORI <bg< td=""> <bg< td=""> CHLORI 1,37 0,14 0,54 0,10 DEATRAZ 0,27 0,14 0,19 0,05 DIURON 6,81 0,39 3,79 0,47 FENUR 0,02 0,03 0,00 ISOPRUR 3,39 0,70 0,56 0,31 LINUR 7,27 2,28 17,00 10,29 MECOPR 0,01 0,01 0,01 0,05 METAZCHL 0,03 17,23 0,03 31,53 0,47 PENDIMETH 0,19 1055,87 6,71 75,53 5,72 PROMETR 0,01 40,49 0,92 33,55 1,22 PROPAZ 5,76 0,25 4,27 0,19 3,54 <tr< td=""><td>CARBEND</td><td></td><td>0,05</td><td>0,03</td><td></td><td></td></tr<></bg<></bg<></bg<></bg<>	CARBEND		0,05	0,03			
AMETRYN 4,28 0,33 2,82 0,38 ATRAZ 14,91 0,20 10,96 0,52 BENTAZ <bg< td=""> <bg< td=""> CHLORI <bg< td=""> <bg< td=""> CHLORI 1,37 0,14 0,54 0,10 DEATRAZ 0,27 0,14 0,19 0,05 DIURON 6,81 0,39 3,79 0,47 FENUR 0,02 0,03 0,00 0,00 ISOPRUR 3,39 0,70 0,56 0,31 LINUR 7,27 2,28 17,00 10,29 MECOPR 0,011 0,01 0,05 000 METAZCHL 0,01 10,41 0,42 4,34 0,12 METAZCHL 0,01 10,41 0,42 4,34 0,12 METAZCHL 0,01 10,41 0,42 4,34 0,12 METOLA 0,03 17,23 0,03 31,53 0,47 PENDIMETH 0,19 1055,87 6,71 75,53 5,72</bg<></bg<></bg<></bg<>	ALACHL		2,34	0,47	0,79	0,49	
ATRAZ 14,91 0,20 10,96 0,52 BENTAZ <bg< td=""> <bg< td=""> <</bg<></bg<>	AMETRYN		4,28	0,33	2,82	0,38	
BENIAZ <8G	ATRAZ		14,91	0,20	10,96	0,52	
CHLORI 1,37 0,14 0,54 0,10 DEATRAZ 0,27 0,14 0,19 0,05 DICHLPR	BENTAZ		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>		
CHLOR TOR 1,37 0,14 0,94 0,16 DEATRAZ 0,27 0,14 0,19 0,05 DICHLPR 0 6,81 0,39 3,79 0,47 FENUR 6,81 0,39 3,79 0,47 HEXAZIN 0,02 0,03 0,00 ISOPRUR 3,39 0,70 0,56 0,31 LINUR 7,27 2,28 17,00 10,29 MCPA 7,27 2,28 17,00 10,29 METOLA 0,01 10,11 0,01 0,05 METOLA 0,01 10,587 6,71 75,53 5,72 PROMETR 0,01 40,49 0,92 33,55 1,22 PROPAZ 3,24 0,05 2,74 0,06 SIMAZ 5,76 0,25 4,27 0,19 TERBAZ 0,05 43,59 0,07 71,81 2,64 TERBUTR 23,07 1,40 19,91 2,36 <td></td> <td></td> <td><bg 1.27</bg </td> <td>0.14</td> <td><bg 0.54</bg </td> <td>0.10</td>			<bg 1.27</bg 	0.14	<bg 0.54</bg 	0.10	
DICHLPR 0,14 0,13 0,03 DIURON 6,81 0,39 3,79 0,47 FENUR 0,02 0,03 0,00 ISOPRUR 3,39 0,70 0,56 0,31 LINUR 7,27 2,28 17,00 10,29 MCPA 0,11 0,01 0,05 0,12 METAZCHL 0,01 10,41 0,42 4,34 0,12 METAZCHL 0,01 10,41 0,42 4,34 0,12 METAZCHL 0,01 10,41 0,42 4,34 0,12 METAZCHL 0,01 10,49 0,92 33,55 1,22 PROMETR 0,01 40,49 0,92 33,55 1,22 PROPAZ 3,24 0,05 2,74 0,06 SIMAZ 5,76 0,25 4,27 0,19 TERBAZ 0,05 43,59 0,07 71,81 2,64 AZINPH-E 0,12 0,00 0,09			0.27	0,14	0,54	0,10	
DIURON FENUR 6,81 0,39 3,79 0,47 HEXAZIN 0,02 0,03 0,00 ISOPRUR 3,39 0,70 0,56 0,31 LINUR 7,27 2,28 17,00 10,29 MCPA 0,11 0,01 0,05 0.12 MECOPR 0,11 0,01 0,05 0.12 METAZCHL 0,01 10,41 0,42 4,34 0,12 METABZT	DICHI PR		0,27	0,14	0,13	0,00	
FENUR 0.02 0.03 0.00 HEXAZIN 0.02 0.03 0.00 ISOPRUR 3,39 0,70 0,56 0,31 LINUR 7,27 2,28 17,00 10,29 MCPA 0,11 0,01 0,05 0.05 METAZCHL 0,01 10,41 0,42 4,34 0,12 METAZCHL 0,01 10,41 0,42 4,34 0,12 METAZCHL 0,01 10,41 0,42 4,34 0,12 METOLA 0,03 17,23 0,03 31,53 0,47 PENDIMETH 0,19 1055,87 6,71 75,53 5,72 PROMETR 0,01 40,49 0,92 33,55 1,22 PROPAZ 3,24 0,05 2,74 0,06 SIMAZ 5,76 0,25 4,27 0,19 TERBAZ 0,05 43,59 0,07 71,81 2,64 TERBUTR 0,12 0,00	DIURON		6.81	0.39	3.79	0.47	
HEXAZIN ISOPRUR 0,02 0,03 0,00 ISOPRUR 3,39 0,70 0,56 0,31 LINUR 7,27 2,28 17,00 10,29 MCPA 0,11 0,01 0,05	FENUR		-,	-,	-,	-,	
ISOPRUR 3,39 0,70 0,56 0,31 LINUR 7,27 2,28 17,00 10,29 MCPA 0,11 0,01 0,05 MECOPR 0,11 0,01 0,05 METAZCHL 0,01 10,41 0,42 4,34 0,12 METOLA 0,03 17,23 0,03 31,53 0,47 PENDIMETH 0,19 1055,87 6,71 75,53 5,72 PROPAZ 3,24 0,05 2,74 0,06 SIMAZ 5,76 0,25 4,27 0,19 TERBAZ 0,05 43,59 0,07 71,81 2,64 4 TERBUTR 23,07 1,40 19,91 2,36 48G 6	HEXAZIN		0,02		0,03	0,00	
LINUR 7,27 2,28 17,00 10,29 MCPA 0,11 0,01 0,05 MECOPR 0,01 10,41 0,42 4,34 0,12 METAZCHL 0,01 10,41 0,42 4,34 0,12 METOLA 0,03 17,23 0,03 31,53 0,47 PENDIMETH 0,19 1055,87 6,71 75,53 5,72 PROMETR 0,01 40,49 0,92 33,55 1,22 PROPAZ 3,24 0,05 2,74 0,06 SIMAZ 5,76 0,25 4,27 0,19 TERBAZ 0,05 43,59 0,07 71,81 2,64 TERBUTR 23,07 1,40 19,91 2,36 AZINPH-E 0,12 0,00 0,09 0,03 AZINPH-M 8,13 0,37 7,58 0,05 DIAZINON 8,13 0,37 7,58 0,05 DIMETH n.a. n.a. <td>ISOPRUR</td> <td></td> <td>3,39</td> <td>0,70</td> <td>0,56</td> <td>0,31</td>	ISOPRUR		3,39	0,70	0,56	0,31	
MCPA Image: Metric of the system	LINUR		7,27	2,28	17,00	10,29	
MECOPR 0,11 0,01 0,05 METAZCHL 0,01 10,41 0,42 4,34 0,12 METHABZT n.a. n.a. n.a. netrola 0,03 31,53 0,47 PENDIMETH 0,19 1055,87 6,71 75,53 5,72 PROMETR 0,01 40,49 0,92 33,55 1,22 PROPAZ 3,24 0,05 2,74 0,06 SIMAZ 5,76 0,25 4,27 0,19 TERBAZ 0,05 43,59 0,07 71,81 2,64 TERBUTR 23,07 1,40 19,91 2,36 AZINPH-E 0,12 0,00 0,09 0,03 AZINPH-K 8,13 0,37 7,58 0,05 DIAZINON 8,13 0,37 7,58 0,05 DIMETH n.a. n.a. n.a. NALATH PIRIMIC 0,03 < <bg< td=""> </bg<>	MCPA						
METAZCHL 0,01 10,41 0,42 4,34 0,12 METHABZT n.a.	MECOPR		0,11	0,01	0,05		
METHABZI n.a. METOLA 0,03 17,23 0,03 31,53 0,47 PENDIMETH 0,19 1055,87 6,71 75,53 5,72 PROMETR 0,01 40,49 0,92 33,55 1,22 PROPAZ 3,24 0,05 2,74 0,06 SIMAZ 5,76 0,25 4,27 0,19 TERBAZ 0,05 43,59 0,07 71,81 2,64 TERBUTR 23,07 1,40 19,91 2,36 AZINPH-E 0,12 0,00 0,09 0,03 AZINPH-M 8,13 0,37 7,58 0,05 DIAZINON 8,13 0,37 7,58 0,05 DIMETH n.a. n.a. n.a. NALATH PIRIMIC 0,03 < <bg< td=""></bg<>	METAZCHL	0,01	10,41	0,42	4,34	0,12	
MILTOLA 0,03 17,23 0,03 31,33 0,47 PENDIMETH 0,19 1055,87 6,71 75,53 5,72 PROMETR 0,01 40,49 0,92 33,55 1,22 PROPAZ 3,24 0,05 2,74 0,06 SIMAZ 5,76 0,25 4,27 0,19 TERBAZ 0,05 43,59 0,07 71,81 2,64 TERBUTR 23,07 1,40 19,91 2,36 AZINPH-E 0,12 0,00 0,09 0,03 AZINPH-M 8,13 0,37 7,58 0,05 DIAZINON 8,13 0,37 7,58 0,05 DIMETH 0,03 <		0.03	17.02	11.8. 0.03	31 52	0.47	
PROMETR 0,01 40,49 0,92 33,55 1,22 PROPAZ 3,24 0,05 2,74 0,06 SIMAZ 5,76 0,25 4,27 0,19 TERBAZ 0,05 43,59 0,07 71,81 2,64 TERBUTR 23,07 1,40 19,91 2,36 AZINPH-E 0,12 0,00 0,09 0,03 AZINPH-M 8,13 0,37 7,58 0,05 DIAZINON 8,13 0,37 7,58 0,05 DIMETH	PENDIMETH	0,03	1055.87	6 71	75 53	0,47 5.72	
PROPAZ 3,24 0,05 2,74 0,06 SIMAZ 5,76 0,25 4,27 0,19 TERBAZ 0,05 43,59 0,07 71,81 2,64 TERBUTR 23,07 1,40 19,91 2,36 AZINPH-E 0,12 0,00 0,09 0,03 AZINPH-M 8,13 0,37 7,58 0,05 DIAZINON 8,13 0,37 7,58 0,05 DIMETH n.a. n.a. NALATH NALATH PIRIMIC 0,03 <bg< td=""></bg<>	PROMETR	0,13	40 49	0,71	33.55	1 22	
SIMAZ 5,76 0,25 4,27 0,19 TERBAZ 0,05 43,59 0,07 71,81 2,64 TERBUTR 23,07 1,40 19,91 2,36 AZINPH-E 0,12 0,00 0,09 0,03 AZINPH-M 8,13 0,37 7,58 0,05 DIAZINON 8,13 0,37 7,58 0,05 DIMETH n.a. n.a. National Actional Actiona	PROPAZ	0,01	3.24	0.05	2.74	0.06	
TERBAZ 0,05 43,59 0,07 71,81 2,64 TERBUTR 23,07 1,40 19,91 2,36 AZINPH-E 0,12 0,00 0,09 0,03 AZINPH-M 8,13 0,37 7,58 0,05 DIAZINON 8,13 0,37 7,58 0,05 DIMETH n.a. n.a. PIRIMIC 0,03 <bg< td=""></bg<>	SIMAZ		5,76	0,25	4,27	0,19	
TERBUTR 23,07 1,40 19,91 2,36 AZINPH-E 0,12 0,00 0,09 0,03 AZINPH-M - - - - CHLORFENV 8,13 0,37 7,58 0,05 DIAZINON 8,13 0,37 7,58 0,05 DIMETH n.a. - - PIRIMIC 0,03 <bg< td=""> -</bg<>	TERBAZ	0,05	43,59	0,07	71,81	2,64	
AZINPH-E 0,12 0,00 0,09 0,03 AZINPH-M	TERBUTR		23,07	1,40	19,91	2,36	
AZINPH-M <bg< td=""> CHLORFENV 8,13 0,37 7,58 0,05 DIAZINON 8,13 0,37 7,58 0,05 DIMETH n.a. n.a. PIRIMIC 0,03 <bg< td=""></bg<></bg<>	AZINPH-E		0,12	0,00	0,09	0,03	
CHLORFENV 8,13 0,37 7,58 0,05 DIAZINON 8,13 0,37 7,58 0,05 DIMETH n.a. n.a. PIRIMIC 0,03 <bg< td=""></bg<>	AZINPH-M				<bg< td=""><td></td></bg<>		
DIAZINON 8,13 0,37 7,58 0,05 DIMETH n.a. n.a. PIRIMIC 0,03 <bg< td=""></bg<>	CHLORFENV						
DIMETH n.a. MALATH n.a. PIRIMIC 0,03 <bg< td=""><td>DIAZINON</td><td></td><td>8,13</td><td>0,37</td><td>7,58</td><td>0,05</td></bg<>	DIAZINON		8,13	0,37	7,58	0,05	
PIRIMIC 0,03 <bg< td=""><td>DIMETH</td><td></td><td></td><td>n.a.</td><td></td><td></td></bg<>	DIMETH			n.a.			
	MALATH		0.02	n.a.			
BENZTRI 0.62 0.81 0.06 1.26 0.43	BENZTRI	0.62	0,03	0.06	1.26	0.43	

Fohmornound	Trip	8	2 Tage	44 Tage	
(Ostsee)	Transportblank	September	-Dezember 2010	Juni-	Juli 2011
(031300)	ng	ng	S	ng	S
HBCD-A			n.a.		
HBCD-BG	0,10	0,11	0,05	0,07	0,02
MTBT	0,87	49,11	3,37	30,83	2,17
TBBPA				3,37	1,59
CARBAMAZ		1,82	0,00	1,70	0,03
CLOFIBRS					
DICLOF		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>	
NAPROX				0,81	
OXAZEP					
PRIMID					
PFBA	4,63	3,21	0,06	10,19	3,47
PFBS	0,02	0,03	0,00	0,03	0,01
PFDEA				<bg< td=""><td></td></bg<>	
PFHPA				0,04	0,01
PFHXA		<bg< td=""><td></td><td>0,03</td><td>0,01</td></bg<>		0,03	0,01
PFHXS	0,02	0,02	0,00	0,03	0,02
PFNOA				0,36	0,11
PFOA	0,01	0,04	0,00	0,41	0,29
PFOS	0,01	0,06	0,00	0,06	0,03
PFOSA		<bg< td=""><td></td><td>0,02</td><td></td></bg<>		0,02	

Tabelle A-2.5.5: Fehmarnsund (Ostsee) – Analytkonzentrationen in ng je 100 mm x 2,8 cm x 100 µm **LDPE-Streifen** (n=3 je Ausbringung); <BG: alle Replikate unter Bestimmungsgrenze.

Fabragenaund	Trip	82 Tage			
renmarnsund	Transportblank	September-Dezember 2010			
(Osisee)	ng	ng	S		
		GC-Analyten			
CB028		<bg< td=""><td></td></bg<>			
CB052		0,22	0,02		
CB101		1,32	0,12		
CB118		0,72	0,10		
CB138		2,50	0,37		
CB153		1,27	0,14		
CB180		<bg< td=""><td></td></bg<>			
DDTOP		n.a.			
DDTPP		0,52	0,02		
DDDOP		n.a.			
DDDPP		<bg< td=""><td></td></bg<>			
DDEOP		n.a.			
DDEPP	0,19	4,21	0,35		
НСВ		2,17	0,24		
HCHA		n.a.			
НСНВ		n.a.			
HCHG		n.a.			
ACY		n.a.			
ACE		<bg< td=""><td></td></bg<>			
		<bg< td=""><td></td></bg<>			
DBAHA		<bg< td=""><td>0.00</td></bg<>	0.00		
BAA		27,57	3,03		
BAP		12,08	1,79		
BBF		83,58	12,70		
		11,30	1,70		
		14,32	2,17		
		80,92	1,33		
FL		45,15	2,43		

February	Trip	82 Tage			
(Ostsoo)	Transportblank	September-Dezember 2010			
(03(366)	ng	ng	S		
FLU		231,67	16,85		
PHEN		76,29	5,53		
PYR		154,38	12,59		
		LC-Analyte	<u>n</u>		
IRGAROL		0,09	0,01		
PENDIMETH		12,18	0,50		
TERBAZ	0,03	0,05	0,00		

Uslavslavd	Trip 43 Tage			44 Ta	age	43 T	43 Tage	
Heigoland	Transportblank	Juli-Aug	ust 2010	Juni-Jul	i 2011	Juli-August 2011		
(Nordsee)	ng	ng	S	ng	s	ng	S	
			GC-Analyte	en				
CB028	0,16	0,70	0,05	2,71	0,29	2,54	0,16	
CB052		1,05	0,02	2,90	0,11	2,84	0,08	
CB101		3,16	0,31	4,22	0.01	4,46	0.30	
CB118		0,56	0,21	1,34	0.05	1,38	0,05	
CB138		2,32	0,17	3,34	0,04	4,54	0.30	
CB153		1,25	0,16	1,92	0,10	2,42	0,27	
CB180		0,35		0,49	0,02	0,44	0,06	
DDTOP			n.a	i.				
DDTPP		<bg< td=""><td></td><td>0,75</td><td>0,30</td><td>1,30</td><td></td></bg<>		0,75	0,30	1,30		
DDDOP			n.a	ı.				
DDDPP		1603,08		11,87	4,84	15,92	11,39	
DDEOP			n.a	1.				
DDEPP			n.a	1.				
HCB	0,05	2,47	0,12	4,83	0,41	4,60	0,50	
HCHA		<bg< td=""><td></td><td>3,23</td><td></td><td>0,83</td><td></td></bg<>		3,23		0,83		
HCHB		n.d.	n.d.	2,16		2,76	1,95	
HCHG				2,20		2,78	1,97	
ACY		12,30		50,87	57,11	73,31	68,97	
ACE		16,33	_	14,50	3,25	14,40	0,53	
ANT		8,12	5,72	12,92	1,59	14,82	1,72	
DBAHA		<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>		
BAA		5,44		18,70	0,86	31,17	2,22	
BAP		4,73		<bg< td=""><td>40.40</td><td>10,12</td><td>0,19</td></bg<>	40.40	10,12	0,19	
BBF		6,40		63,94	12,40	72,50	2,50	
BGHIP		7,60		6,95	0,21	14,58	0,20	
1123P		9,10		9,48	1,16	15,69	0,25	
CHRIR		7,59	47.00	105,51	4,57	108,89	1,57	
FL		70,94	17,89	257,94	68,09	110,31	14,66	
FLU		17,00	7,76	496,76	34,82	393,80	12,18	
PHEN		11,60		234,03	10,69	199,58	2,16	
PIR		15,62		188,25	15,58	191,65	4,14	
			LC-Analyter	22.51		20.26	5 56	
		0.32	0.05	33,51		20,20	0,00	
		0,52	0,05			0,03	0,03	
		2 17	0.30	4 37	0 10	4 03	0.63	
		7.05	0,50	7.87	0,10	-,00 5 30	0,00	
RENTA7		7,00	0,01	0.07	0,07	<bg< td=""><td>0,00</td></bg<>	0,00	
				<bg< td=""><td></td><td>.00</td><td></td></bg<>		.00		
CHI ORTUR		4.56	0.64	7.04	0.33	4.26	0.44	
DFATRAZ		0.17	0.05	8.57	8.41	0.07	0,11	
DICHLPR		0,	0,00	0,01	0,11	0,01		
DIURON		12,88	1,89	7,80	0.09	7,16	0,19	
FENUR		<bg< td=""><td>,</td><td>0,21</td><td>0,05</td><td>1,11</td><td>0,48</td></bg<>	,	0,21	0,05	1,11	0,48	
HEXAZIN		0,02		<bg< td=""><td>,</td><td><bg< td=""><td></td></bg<></td></bg<>	,	<bg< td=""><td></td></bg<>		
ISOPRUR		8,40	0,23	7,00	0,70	5,65	0,87	
LINUR		6,83	1,51	19,91	4,65	12,98	2,56	
MCPA				0,24				
MECOPR	0,04			0,07	0,00	0,23	0,10	
METAZCHL	-	3,00	0,26	5,83	0,42	2,14	0,44	
METHABZT			n.a	1.				
METOLA	0,03	46,68	3,97	52,65	0,32	23,98	0,58	
PENDIMETH		18,92	0,94	75,69	3,43	28,30	7,00	
PROMETR		5,69	1,32	7,65	0,08	8,46	0,61	
PROPAZ		0,82	0,26	1,09	0,09	0,82	0,13	
SIMAZ		0,98	0,05	0,92	0,02	0,52	0,00	

Tabelle A-2.5.6: Helgoland (Nordsee) - Analytkonzentrationen in ng je 6 x 5,5 cm x 9 cm x 500 μ m **Silicone Sheets** (n=2-3 je Ausbringung); <BG: alle Replikate unter Bestimmungsgrenze.

Holgolond	Trip	43 1	lage	44 Tage		43 Tage	
(Nordsoo)	Transportblank	Juli-Aug	ust 2010	Juni-Ju	i 2011	Juli-August 2011	
(1010366)	ng	ng	S	ng	S	ng	S
TERBAZ	0,04			87,77	0,67	60,63	2,51
TERBUTR				65,23	0,25	45,25	0,29
AZINPH-E				0,19	0,03	0,32	0,09
AZINPH-M	3,51			<bg< td=""><td></td><td>0,67</td><td></td></bg<>		0,67	
CHLORFENV				0,30	0,16	0,11	
DIAZINON		4,59	0,04	14,23	0,19	11,36	1,77
DIMETH				0,06		<bg< td=""><td></td></bg<>	
MALATH				1,05	1,14	3,85	5,01
PIRIMIC		0,04	0,01	0,04		0,03	0,00
BENZTRI	0,14	1,11	0,09	0,86	0,17	1,33	0,32
HBCD-A				0,29		<bg< td=""><td></td></bg<>	
HBCD-BG	2,41	0,20		0,16	0,11	0,04	0,00
MTBT	0,71			40,25	5,43	35,13	4,45
TBBPA				<bg< td=""><td></td><td></td><td></td></bg<>			
CARBAMAZ		5,37	0,29	3,61	0,02	3,44	0,09
CLOFIBRS	0,06			0,15			
DICLOF				<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>	
NAPROX				2,86	1,85	1,67	1,85
OXAZEP				0,30	0,02	<bg< td=""><td></td></bg<>	
PRIMID							
PFBA	3,49	2,70	0,33	11,75	1,39	2,55	0,04
PFBS	0,02	<bg< td=""><td></td><td>0,03</td><td>0,00</td><td>0,02</td><td>0,00</td></bg<>		0,03	0,00	0,02	0,00
PFDEA		<bg< td=""><td></td><td><bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<></td></bg<>		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>	
PEHPA		<bg< td=""><td></td><td>0,06</td><td>0,01</td><td></td><td></td></bg<>		0,06	0,01		
PFHXA	0.00			0,05	0,01	0.00	0.00
PFHXS	0,02	<bg< td=""><td>0.00</td><td>0,04</td><td>0,00</td><td>0,03</td><td>0,00</td></bg<>	0.00	0,04	0,00	0,03	0,00
PFNOA	0.00	0,32	0,03	0,42	0,11	0.05	0.04
PFOA	0,03	0,21	0,03	0,39	0,14	0,05	0,01
PFUS		0,07	0,01	0,23	0,04	0,05	0,01
PFUSA		0,10	0,00	0,06	0,01	0,08	0,01

Tabelle A-2.5.7: Helgoland (Nordsee) – Analytkonzentrationen in ng je 100 mm x 2,8 cm x 100 μ m **LDPE-Streifen** (n=3 je Ausbringung) ; <BG: alle Replikate unter Bestimmungsgrenze.

	Trip	43	Tage	33 Tage		
Helgoland (Nordsee)	Transportblank	Juli-Au	gust 2010	November- Dezember 2010		
	ng	ng	S	ng	S	
			GC-Analyten			
CB028		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>		
CB052		0,46	0,02	0,37	0,02	
CB101		1,39	0,24	0,92	0,02	
CB118		0,49	0,01	0,30	0,02	
CB138		1,39	0,14	0,99	0,08	
CB153		0,80	0,15	0,46	0,03	
CB180		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>		
DDTOP			n.a.			
DDTPP		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>		
DDDOP			n.a.			
DDDPP		<bg< td=""><td></td><td>0,56</td><td>0,05</td></bg<>		0,56	0,05	
DDEOP			n.a.			
DDEPP	0,09	1,25		1,00	0,11	
HCB	0,02	0,85	0,08	1,04	0,06	
HCHA			n.a.			
НСНВ			n.a.			
HCHG			n.a.			
ACY		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>		
ACE	6,90	<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>		
ANT		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>		

	Trip	43 1	Гаде	33 Tage			
Helgoland (Nordsee)	Transportblank	Juli-Aug	ust 2010	November- Dezember 2010			
	ng	ng	S	ng	S		
DBAHA		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>			
BAA		5,45	0,67	10,26	0,08		
BAP		<bg< td=""><td></td><td><bg< td=""><td></td></bg<></td></bg<>		<bg< td=""><td></td></bg<>			
BBF		20,65	2,92	19,43	0,30		
BGHIP		3,08	0,47	2,57	0,23		
I123P	0,82	4,28	0,59	<bg< td=""><td></td></bg<>			
CHRTR		18,43	1,58	28,73	0,33		
FL		<bg< td=""><td></td><td>10,90</td><td>1,32</td></bg<>		10,90	1,32		
FLU		27,10	0,33	148,19	8,15		
PHEN		<bg< td=""><td></td><td>33,78</td><td>3,77</td></bg<>		33,78	3,77		
PYR	0,82	19,61	0,26	114,06	5,76		
	LC-Analyten						
IRGAROL		0,12	0,02	0,02	0,00		
PENDIMETH		0,35	0,01	14,68	0,66		
TERBAZ	0,08	0,08	0,01	0,05	0,00		
TERBUTR		0,06	0,01	0,02	0,00		

A-2.6: Analytkonzentrationen in den Wasserproben

Tabelle A-2.6.1: Dessau (Mulde) – Analytkonzentrationen in den Wochenmischproben; <BG: unter Bestimmungsgrenze; leere Zellen: nicht detektiert.

LHW-	Wochenmischproben (jeweils Mittelwert aus 3 Messungen)									
Station		1 Mo	nat Juni/Ju	li (n=5)	1 Mo	nat Juli/Aug	gust (n=5)	2 Moi	1onate Juni-August (n=9)	
Dessau (Mulde)	BG (ng/L)	ng/L	S	n positiv	ng/L	S	n positiv	ng/L	S	n positiv
CB028	0,03	<bg< td=""><td></td><td>1</td><td></td><td></td><td>0</td><td><bg< td=""><td></td><td>1</td></bg<></td></bg<>		1			0	<bg< td=""><td></td><td>1</td></bg<>		1
CB052	0,02			0			0			0
CB101	0,02	0,02	0,04	3	0,07		1	0,04	0,04	4
CB118						n.a.				
CB138	0,02			0	0,07		1	0,07		1
CB153	0,02	<bg< td=""><td></td><td>1</td><td><bg< td=""><td></td><td>1</td><td><bg< td=""><td></td><td>2</td></bg<></td></bg<></td></bg<>		1	<bg< td=""><td></td><td>1</td><td><bg< td=""><td></td><td>2</td></bg<></td></bg<>		1	<bg< td=""><td></td><td>2</td></bg<>		2
CB180						n.a.				
DDTOP	0,07	0,15	0,05	5	0,18	0,05	4	0,16	0,05	8
DDTPP	0,12	0,30	0,18	4	0,42	0,18	2	0,34	0,17	6
DDDOP	0,27	0,32	0,26	5	0,23	0,20	4	0,28	0,24	8
DDDPP	0,19	0,36	0,24	5	<bg< td=""><td></td><td>4</td><td>0,27</td><td>0,23</td><td>8</td></bg<>		4	0,27	0,23	8
DDEOP	0,23	<bg< td=""><td></td><td>3</td><td><bg< td=""><td></td><td>2</td><td><bg< td=""><td></td><td>5</td></bg<></td></bg<></td></bg<>		3	<bg< td=""><td></td><td>2</td><td><bg< td=""><td></td><td>5</td></bg<></td></bg<>		2	<bg< td=""><td></td><td>5</td></bg<>		5
DDEPP	0,26	<bg< td=""><td></td><td>5</td><td><bg< td=""><td></td><td>5</td><td><bg< td=""><td></td><td>9</td></bg<></td></bg<></td></bg<>		5	<bg< td=""><td></td><td>5</td><td><bg< td=""><td></td><td>9</td></bg<></td></bg<>		5	<bg< td=""><td></td><td>9</td></bg<>		9
HCB	0,18	0,23	0,42	4	0,44	0,41	4	0,38	0,41	7
HCHA	0,07	9,31	4,69	5	5,44	5,07	5	7,52	5,32	9
HCHB	0,14	85,74	124,73	5	26,30	10,20	3	68,54	106,15	7
HCHG	0,16	1,39	0,31	4	1,64	2,42	5	1,59	1,83	8
ACE	0,16	2,86	0,98	4	1,21	1,05	4	1,95	1,37	7
ACY						n.a.				
ANT	0,17	0,86	1,08	4	0,50	0,04	2	0,79	0,94	5
BAA	0,20	0,38	0,23	4	0,40	0,27	4	0,34	0,20	7
BAP	0,11	0,32	0,11	4	1,76	2,07	3	1,02	1,54	6
BBF	0,24	0,49	0,32	5	0,65	0,42	4	0,59	0,37	8
BGHIP	0,11	<bg< td=""><td></td><td>5</td><td>0,09</td><td>0,06</td><td>5</td><td>0,07</td><td>0,06</td><td>9</td></bg<>		5	0,09	0,06	5	0,07	0,06	9
CHRTR	0,15	1,05	0,66	5	1,28	0,80	4	1,07	0,69	8
DBAHA	0,06	0,15	0,14	4	0,13	0,13	5	0,14	0,13	8
FL	0,22	1,42	0,48	5	<bg< td=""><td></td><td>5</td><td>1,13</td><td>0,62</td><td>9</td></bg<>		5	1,13	0,62	9
FLU	0,24	0,82	0,44	5	0,92	0,67	5	0,80	0,52	9
I123P	0,08	0,18	0,21	5	0,29	0,19	4	0,25	0,21	8
PHEN	0,07	8,93	2,26	4	5,36	3,98	5	6,45	3,56	8
PYR	0,28	0,76	0,53	5	2,10	1,33	4	1,32	1,22	8

LHW-		Wochenmischproben (jeweils Mittelwert aus 3 Messungen)											
Station		1 Mo	nat Juni/Ju	li (n=5)	1 Mo	nat Juli/Aug	gust (n=5)	2 Moi	nate Juni-Au	ugust (n=9)			
Dessau (Mulde)	BG (ng/L)	ng/L	S	n positiv	ng/L	S	n positiv	ng/L	S	n positiv			
BDE028	0,29	<bg< td=""><td></td><td>3</td><td><bg< td=""><td></td><td>1</td><td><bg< td=""><td></td><td>3</td></bg<></td></bg<></td></bg<>		3	<bg< td=""><td></td><td>1</td><td><bg< td=""><td></td><td>3</td></bg<></td></bg<>		1	<bg< td=""><td></td><td>3</td></bg<>		3			
BDE047	0,35	<bg< td=""><td></td><td>3</td><td><bg< td=""><td></td><td>1</td><td><bg< td=""><td></td><td>3</td></bg<></td></bg<></td></bg<>		3	<bg< td=""><td></td><td>1</td><td><bg< td=""><td></td><td>3</td></bg<></td></bg<>		1	<bg< td=""><td></td><td>3</td></bg<>		3			
BDE099	0,32			0			0			0			
BDE100	0,58	<bg< td=""><td></td><td>4</td><td>1,35</td><td>1,48</td><td>5</td><td>1,00</td><td>1,22</td><td>8</td></bg<>		4	1,35	1,48	5	1,00	1,22	8			
BDE153	0,57	<bg< td=""><td></td><td>5</td><td><bg< td=""><td></td><td>4</td><td><bg< td=""><td></td><td>8</td></bg<></td></bg<></td></bg<>		5	<bg< td=""><td></td><td>4</td><td><bg< td=""><td></td><td>8</td></bg<></td></bg<>		4	<bg< td=""><td></td><td>8</td></bg<>		8			
BDE154	0,09			0			0			0			
ATRAZIN	0,12	0,45	0,66	3	0,30	0,22	3	0,43	0,48	5			
IRGAROL	0,13	6,11	6,16	3	21,41	32,71	3	13,76	22,66	6			
TERBUAZI	0,07	86,13	137,17	5	36,21	16,93	3	74,22	113,96	7			
TRIFLURALI	0,14	<bg< td=""><td></td><td>1</td><td></td><td></td><td>0</td><td><bg< td=""><td></td><td>1</td></bg<></td></bg<>		1			0	<bg< td=""><td></td><td>1</td></bg<>		1			

Tabelle A-2.6.2: Dessau (Mulde) – Analytkonzentrationen in den Schöpfproben; <BG: unter Bestimmungsgrenze; leere Zellen: nicht detektiert.

LHW-Station	Schöpfproben jeweils Mittelwert aus 3 Messungen)												
Dessau			Juni (n=3	5)		Juli (n	=3)		August (n	=3)			
(Mulde)	BG (ng/L)	ng/L	S	n positiv	ng/L	S	n positiv	ng/L	S	n positiv			
CB028	0,03	<bg< td=""><td></td><td>3</td><td><bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<></td></bg<>		3	<bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<>		0	<bg< td=""><td></td><td>0</td></bg<>		0			
CB052	0,02	0,02	0,00	3	<bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<>		0	<bg< td=""><td></td><td>0</td></bg<>		0			
CB101	0,02	0,02	0,00	1	<bg< td=""><td></td><td>0</td><td>0,05</td><td>0,00</td><td>3</td></bg<>		0	0,05	0,00	3			
CB118	0.00	a a a			n	.a.	-			<u>^</u>			
CB138	0,02	0,79	0,02	3	<bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<>		0	<bg< td=""><td></td><td>0</td></bg<>		0			
CB153	0,02	0,03	0,00	2	SBC 2	-	0	<bg< td=""><td></td><td>0</td></bg<>		0			
	0.07	1 /0	0.04	3		.a.	3	0.15	0.01	2			
	0,07	0.37	0,04	3	0,10	0,00	3	0,10	0,01	2			
DDDOP	0,12	0,07	0,01	3	0,00	0,00	3	0,23	0,01	3			
DDDPP	0.19	1.33	0.02	3	0.54	0.01	3	0.82	0.05	3			
DDEOP	0.23	<bg< td=""><td>0,01</td><td>2</td><td><bg< td=""><td>0,01</td><td>0</td><td><bg< td=""><td>0,00</td><td>0</td></bg<></td></bg<></td></bg<>	0,01	2	<bg< td=""><td>0,01</td><td>0</td><td><bg< td=""><td>0,00</td><td>0</td></bg<></td></bg<>	0,01	0	<bg< td=""><td>0,00</td><td>0</td></bg<>	0,00	0			
DDEPP	0,26	0,29	0,01	3	<bg< td=""><td></td><td>3</td><td>0,23</td><td>0,01</td><td>3</td></bg<>		3	0,23	0,01	3			
HCB	0,18	0,47	0,01	3	<bg< td=""><td></td><td>3</td><td>0,46</td><td>0,00</td><td>3</td></bg<>		3	0,46	0,00	3			
HCHA	0,07	4,20	0,54	3	13,77	0,04	3	14,52	1,16	3			
HCHB	0,14	<bg< td=""><td></td><td>2</td><td><bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<></td></bg<>		2	<bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<>		0	<bg< td=""><td></td><td>0</td></bg<>		0			
HCHG	0,16	<bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td><td>3,03</td><td>0,53</td><td>3</td></bg<></td></bg<>		0	<bg< td=""><td></td><td>0</td><td>3,03</td><td>0,53</td><td>3</td></bg<>		0	3,03	0,53	3			
ACY					n	.a.							
ACE	0,16	<bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>1</td><td><bg< td=""><td></td><td>3</td></bg<></td></bg<></td></bg<>		0	<bg< td=""><td></td><td>1</td><td><bg< td=""><td></td><td>3</td></bg<></td></bg<>		1	<bg< td=""><td></td><td>3</td></bg<>		3			
ANT	0,17	0,86	0,22	3	0,59	0,00	1	<bg< td=""><td></td><td>0</td></bg<>		0			
DBAHA	0,06	<bg< td=""><td></td><td>1</td><td>0,91</td><td>0,20</td><td>3</td><td>0,21</td><td>0,00</td><td>3</td></bg<>		1	0,91	0,20	3	0,21	0,00	3			
BAA	0,20	0,90	0,02	3	0,59	0,06	3	<bg< td=""><td></td><td>0</td></bg<>		0			
BAP	0,11	0,59	0,02	3	0,28	0,03	2	<bg< td=""><td>0.00</td><td>2</td></bg<>	0.00	2			
BRE	0,24	3,04	0,13	3	0,49	0,01	3	0,64	0,00	3			
BGHIP	0,11	0,10	0,01	2	0,48	0,04	3	<bg< td=""><td>0.00</td><td>3</td></bg<>	0.00	3			
	0,00	0,22	0,01	3	0,45	0,09	3	1 22	0,00	3			
FI	0,13	2,04 <bg< td=""><td>0,00</td><td>3</td><td><bg< td=""><td>0,05</td><td>0</td><td>2 16</td><td>0,03</td><td>3</td></bg<></td></bg<>	0,00	3	<bg< td=""><td>0,05</td><td>0</td><td>2 16</td><td>0,03</td><td>3</td></bg<>	0,05	0	2 16	0,03	3			
FLU	0,22	3.91	0.08	3	1.82	0.01	3	0.94	0.05	3			
PHEN	0.07	2.02	0.05	3	1.32	0.08	3	<bg< td=""><td>0,00</td><td>0</td></bg<>	0,00	0			
PYR	0.28	2.55	0.13	3	1.26	0.02	3	0.58	0.08	3			
BDE028	0,29	<bg< td=""><td>-,</td><td>0</td><td><bg< td=""><td>-,</td><td>0</td><td><bg< td=""><td>-,</td><td>0</td></bg<></td></bg<></td></bg<>	-,	0	<bg< td=""><td>-,</td><td>0</td><td><bg< td=""><td>-,</td><td>0</td></bg<></td></bg<>	-,	0	<bg< td=""><td>-,</td><td>0</td></bg<>	-,	0			
BDE047	0,35	<bg< td=""><td></td><td>2</td><td><bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<></td></bg<>		2	<bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<>		0	<bg< td=""><td></td><td>0</td></bg<>		0			
BDE099	0,32	<bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<></td></bg<>		0	<bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<>		0	<bg< td=""><td></td><td>0</td></bg<>		0			
BDE100	0,58	<bg< td=""><td></td><td>2</td><td><bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<></td></bg<>		2	<bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<>		0	<bg< td=""><td></td><td>0</td></bg<>		0			
BDE153	0,57	<bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>3</td></bg<></td></bg<></td></bg<>		0	<bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>3</td></bg<></td></bg<>		0	<bg< td=""><td></td><td>3</td></bg<>		3			
BDE154	0,09	<bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<></td></bg<>		0	<bg< td=""><td></td><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<>		0	<bg< td=""><td></td><td>0</td></bg<>		0			
ATRAZIN	0,12	<bg< td=""><td></td><td>0</td><td>0,63</td><td>0,00</td><td>1</td><td>2,40</td><td>0,03</td><td>3</td></bg<>		0	0,63	0,00	1	2,40	0,03	3			
IRGAROL	0,13	<bg< td=""><td></td><td>0</td><td>20,44</td><td>0,23</td><td>3</td><td>8,21</td><td>0,05</td><td>2</td></bg<>		0	20,44	0,23	3	8,21	0,05	2			

TERBUAZI	0,07	81,67	5,16	3	<bg< td=""><td>0</td><td>181,14</td><td>2,55</td><td>3</td></bg<>	0	181,14	2,55	3
TRIFLURALI	0,14	<bg< td=""><td></td><td>3</td><td><bg< td=""><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<></td></bg<>		3	<bg< td=""><td>0</td><td><bg< td=""><td></td><td>0</td></bg<></td></bg<>	0	<bg< td=""><td></td><td>0</td></bg<>		0
		-			=				

LHW-Station	Wochenmischprot						nischprober	ben (jeweils Mittelwert aus 3 Messungen)								
Magdeburg		1 Mor	nat Mai/Ju	uni (n=4)	1 Mon	at Juni/Ju	uli (n=5)	1 Monat	t Juli/Aug	ust (n=4)	2 Mona	ate Mai-Ju	uli (n=8)	2 Monat	e Juni-Aı	ugust (n=8)
(Elbe)	BG (ng/L)	ng/L	S	n positiv	ng/L	S	n positiv	ng/L	S	n positiv	ng/L	S	n positiv	ng/L	S	n positiv
CB028	0,03	0,10	0,02	4	0,09	0,03	3	0,06	0,02	2	0,10	0,02	6	0,08	0,03	4
CB052	0,02	0,02	0,00	4	0,01	0,01	2			0	0,02	0,01	5	0,01	0,01	2
CB101	0,02	0,02	0,02	3	0,02	0,03	1			0	0,02	0,02	3	0,02	0,03	1
CB118								n.a.								
CB138	0,02	0,09		1	0,09		1			0	0,09		1	0,09		1
CB153	0,02	0,05	0,08	3	0,14		1	0,09		1	0,05	0,08	3	0,11	0,04	2
CB180								n.a.								
DDTOP	0,07	0,47	0,22	4	0,41	0,45	4	0,35	0,43	3	0,39	0,33	7	0,30	0,38	6
DDTPP	0,12			4	0,38	0,27	4	0,67		1	0,27	0,27	7	0,44	0,27	5
DDDOP	0,27			4			5	0,23	0,20	4			8			8
DDDPP	0,19			4			5	0,19	0,14	3			8	0,18	0,16	7
DDEOP	0,23			4			3			4			6			6
DDEPP	0,26			4			5			3			8			7
HCB	0,18			3			2	0,20	0,11	3			5			4
HCHA	0,07	3,67	0,99	3	1,71	1,26	5	1,36	0,64	4	2,42	1,60	7	1,64	1,02	8
HCHB	0,14			1	69,34	59,44	5	97,31	63,65	4	69,34	59,44	5	72,43	55,74	8
HCHG	0,16	9,09	1,98	4	9,17	4,21	5	11,47	4,81	4	8,79	3,25	8	9,59	4,25	8
ACE	0,16	13,31	4,07	4	16,45	3,99	5	7,23	2,60	4	14,63	4,18	8	12,54	6,21	8
ACY		_			_			n.a.								
ANT	0,17	1,11	0,37	4	1,31	0,59	5	1,28	0,30	4	1,17	0,50	8	1,26	0,47	8
BAA	0,20	0,39	0,21	4	0,79	0,49	5	1,34	1,08	4	0,60	0,45	8	0,99	0,84	8
BAP	0,11	0,10	0,13	2	0,28	0,21	4	0,23		1	0,22	0,22	5	0,27	0,19	5
BBF	0,24	0,61	0,12	4	0,72	0,65	5	1,57	1,53	4	0,69	0,50	8	1,01	1,18	8
BGHIP	0,11	0,48		1	0,47	0,53	5	0,69	0,57	4	0,47	0,53	5	0,46	0,46	8
CHRTR	0,15	0,70	0,64	4	1,48	0,85	5	1,45	0,62	4	1,07	0,86	8	1,49	0,76	8
DBAHA	0,06	0,43		1	0,38	0,53	5	0,56	0,51	4	0,38	0,53	5	0,36	0,42	8
FL	0,22	5,05	2,00	4	7,25	0,60	5	6,69	5,09	4	6,06	1,72	8	7,07	3,37	8
FLU	0,24	1,00	0,14	4	1,64	1,22	5	3,42	0,88	4	1,38	0,99	8	2,42	1,48	8
I123P	0,08	0,16	0,16	4	0,39	0,48	5	0,66	0,52	4	0,28	0,40	8	0,42	0,44	8
PHEN	0,07	97,29	16,59	4	122,15	48,88	5	116,06	60,72	4	109,78	40,77	8	108,69	42,05	8
PYR	0,28	0,61	0,19	4	1,74	1,63	5	3,97	2,37	4	1,28	1,38	8	2,82	2,33	8
BDE028	0,29			1			4	2,11	2,91	2			4	0,73	1,69	6
BDE047	0,35			4			4	0,49		1			7			5
BDE099	0,32			1			1	1,26		1			1	0,67	0,84	2
BDE100	0,58			4			4			1			7			5
BDE153	0,57			0			0			0			0			0
BDE154	0,09			0			0			0			0			0

Tabelle A-2.6.3: Magdeburg (Elbe) – Analytkonzentrationen in den Wochenmischproben; leere Zellen: <BG.

•

LHW-Station		Wochenmischproben (jeweils Mittelwert aus 3 Messungen)														
Magdeburg		1 Monat Mai/Juni (n=4)				1 Monat Juni/Juli (n=5)			1 Monat Juli/August (n=4)			ate Mai-Ju	uli (n=8)	2 Monate Juni-August (n=8)		
(Elbe)	BG (ng/L)	ng/L	S	n positiv	ng/L	S	n positiv	ng/L	S	n positiv	ng/L	S	n positiv	ng/L	S	n positiv
ATRAZIN	0,12			1	0,09	0,08	3	1,22	1,56	2	0,09	0,08	3	0,54	1,00	5
IRGAROL	0,13			0			0	13,97		1			0	13,97		1
TERBUAZI	0,07	70,10	23,35	4	54,43	34,52	5	70,10	33,63	4	58,68	30,28	8	54,81	31,09	8
TRIFLURALI	0,14			3			0			0			3			0

Tabelle A-2.6.4: Magdeburg (Elbe) – Analytkonzentrationen in den Schöpfproben; leere Zellen: <BG.

LHW-		Schöpfproben (jeweils Mittelwert aus 3 Messungen))												
Station			Mai (n=3	8)	J	uni (n=2)		Juli (n=3)	Αι	ugust (n=	=3)	
Magdeburg (Elbe)	BG (ng/L)	ng/L	S	n positiv	ng/L	S	n positiv	ng/L	S	n positiv	ng/L	S	n positiv	
CB028	0,03	0,03	0,00	3			0			0			0	
CB052	0,02	0,28	0,09	3			0			0			0	
CB101	0,02	0,03	0,00	3	0,06	0,00	2			0			0	
CB118							n.a.							
CB138	0,02			0			1			0			0	
CB153	0,02			1			0			0			0	
CB180							n.a.							
DDTOP	0,07	1,84	0,14	3	0,14	0,02	2	1,24	0,01	3	1,11	0,05	3	
DDTPP	0,12	0,30	0,02	3	0,25	0,00	2	0,50	0,02	3			0	
DDDOP	0,27	0,60	0,04	3			0	0,33	0,01	3			3	
DDDPP	0,19	0,76	0,01	3			0	1,01	0,01	3	1,13	0,07	3	
DDEOP	0,23			3			0			0			0	
DDEPP	0,26	0,27	0,01	3			0			3	0,22	0,02	3	
HCB	0,18	0,90	0,05	3	0,66	0,03	2	0,47	0,01	3	2,19	0,20	3	
HCHA	0,07	1,32	0,06	3	3,59	0,03	2	35,53	11,01	3	4,71	0,36	3	
HCHB	0,14			0	128,25	11,89	2			0	88,67	3,93	3	
HCHG	0,16			0	15,40	1,75	2	5,20	0,12	3	2,25	0,19	3	
ACE	0,16			3	5,64	0,20	2			0	3,31	0,00	1	
ACY							n.a.							
ANT	0,17	0,53	0,06	3			0	0,65	0,01	3	1,23	0,13	3	
BAA	0,20	1,08	0,07	3			0	1,43	0,05	3	1,97	0,11	3	
BAP	0,11	0,69	0,02	3	0,25	0,03	2	1,20	0,02	3	0,87	0,08	3	
BBF	0,24	2,56	0,13	3	0,80	0,04	2	1,25	0,04	3	1,62	0,06	3	
BGHIP	0,11			0			2	0,54	0,02	3	0,72	0,03	3	
CHRTR	0,15	3,64	0,27	3	1,33	0,13	2	4,97	0,14	3	2,98	0,09	3	
DBAHA	0,06			0	0,30	0,01	2	0,13	0,01	3	0,26	0,01	3	
FL	0,22	1,31	0,08	3	2,98	0,22	2			0	6,88	0,62	3	
FLU	0,24	4,74	0,54	3	1,16	0,01	2	3,15	0,08	3	7,91	0,17	3	
I123P	0,08	0,14	0,01	3	0,47	0,02	2	0,28	0,00	3	0,53	0,02	3	
PHEN	0,07	3,94	0,40	3	196,20	4,31	2	0,81	0,08	3	9,47	0,40	3	
PYR	0,28	4,48	0,51	3			2	6,07	0,07	3	7,33	0,22	3	
BDE028	0,29			0			0			0	0,70	0,00	1	
BDE047	0,35			0			0			1			0	
BDE099	0,32			0			0			0			1	
BDE100	0,58			3			0			0			0	
BDE153	0,57			0			2			0			0	
BDE154	0,09			0			0			0			0	
ATRAZIN	0,12			0	0,36	0,00	2			0	0,97	0,04	3	
IRGAROL	0,13			0	6,20	0,07	2	87,92	0,94	3			0	
TERBUAZI	0,07	83,96	7,20	3	267,46	44,85	2	66,10	2,98	3	67,74	0,42	3	
TRIFLURALI	0,14			3			0			0			0	

Tabelle A-2.6.5: Übergangsgewässer, Elbe bei Hamburg) – Zusammenfassung der Analytkonzentrationen in den Wasserproben (Untersuchungszeitraum 2010-2011); **Fett**: 5 höchstkonzentrierte Stoffe (bezogen auf den Medianwert); BG: Bestimmungsgrenze; min: Minimalwert; max: Maximalwert; n.a.: nicht analysiert; x: Analyt nicht quantifiziert; leere Zellen: <BG.

Substanz	Wasserproben in ng/L											
Substanz	BG	min	max	median	90er quantil	n positiv	gesamt					
				GC-Analy	ten							
CB028	0,0002	0.033	0,045	0,038	0,044	4	4					
CB052	0.0004	0.038	0.047	0.044	0.047	4	4					
CB101	n.a.	n.a.	n.a.	-,	-,	0	4					
CB118	n.a.	n.a.	n.a.			0	4					
CB138	0.0004	0.066	0.086	0 072	0.083	4	4					
CB153	0,0005	0.082	0,005	0,090	0,095	4	4					
CB180	n a	n a	0,000 n a	0,000	0,000	0	4					
DDTPP	0.0001	0.087	0.223	0 191	0 214	4	4					
פפחחח	0,0001	0,007	0,609	0.448	0.565	4	4					
DDEPP	0,0001	0,200	0,000	0,440	0,000	4	4					
HCB	0,0001	0,000	0,100	0,102	0,100	4	4					
НСНА	0,0001	0,200	1 533	0,204	1 4 2 5	4	4					
НСНВ	0,0001	0,753	1,000	1 113	1,420	4	4					
НСНС	0,0001	0,702	0.502	0.431	0.485	4	4					
	0,0003	0,301	0,508	0,431	0,405	4	4					
	0,0000	0,075	0,075	0,075	0,075	1	4					
ACT	0,0000	0,375	0,375	0,375	0,575	1	4					
	0,0000	0,000	0,000	0,000	0,000	1	4					
	0,0000	1,903	1,903	1,903	1,903	1	4					
	0,0000	1,203	3,011	2,290	2,009	4	4					
BBF	0,0000	3,485	3,485	3,485	3,485	1	4					
BGHIP	0,0000	1,786	1,786	1,786	1,786	1	4					
	0,0000	1,538	3,277	2,650	3,144	4	4					
DBAHA	0,0000	0,551	0,551	0,551	0,551	1	4					
FL	0,0000	0,477	1,577	0,934	1,462	4	4					
FLU	0,0000	2,917	7,171	5,680	6,965	4	4					
1123P	0,0000	1,038	2,203	1,796	2,141	4	4					
PHEN	0,0000	1,680	4,201	2,767	3,920	4	4					
PYR	0,0000	2,918	6,459	5,316	6,335	4	4					
				LC-Analy	<u>rten</u>		<u>.</u>					
IRGAROL	0,0300	1,787	3,288	2,282	3,102	4	4					
CARBEND	0,0300	Х	х	х	х	х	х					
ALACHL	0,5000	Х	х	х	х	х	х					
AMETRYN	0,0300	0,532	1,073	0,742	0,978	4	4					
ATRAZ	0,1000	3,341	5,381	3,729	4,962	4	4					
BENTAZ	0,0300	2,779	119,449	9,839	97,527	3	4					
CHLORI	0,5000	0,792	2,864	1,789	2,558	4	4					
CHLORTUR	0,1000	3,459	10,535	5,531	9,626	4	4					
DEATRAZ	0,1000	2,730	3,561	3,371	3,512	4	4					
DICHLPR	0,1000	0,852	1,275	0,905	1,201	3	4					
DIURON	0,1000	6,311	10,440	9,543	10,323	4	4					
FENUR	0,0900	1,436	4,257	1,631	3,489	4	4					
HEXAZIN	0,0300	2,347	3,212	2,756	3,088	4	4					
ISOPRUR	0,0500	9,084	14,586	13,107	14,533	4	4					
LINUR	0,5000	0,587	1,900	1,816	1,896	4	4					
MCPA	0,1000	3,581	7,366	6,193	7,132	3	4					
MECOPR	0,1000	3,216	4,818	3,556	4,566	3	4					
METAZCHL	0,0500	4,076	50,857	16,156	43,290	4	4					
METHABZT	0,0500	0,120	0,203	0,144	0,186	4	4					
METOLA	0,0300	3,007	14,080	8,181	13,339	4	4					
PENDIMETH	0,1000			-		0	4					
PROMETR	0,0300	1,681	2,964	1,892	2,703	4	4					
PROPAZ	0,1000	0,383	0,433	0,396	0,424	4	4					
SIMAZ	0,1000	3,097	4,071	3,894	4,067	4	4					
TERBAZ	0,0300	7,500	59,085	19,806	49,327	4	4					

Substant	Wasserproben in ng/L											
Substanz	BG	min	max	median	90er quantil	n positiv	gesamt					
TERBUTR	0,0300	3,341	4,968	4,482	4,893	4	4					
AZINPH-E	0,1000	х	х	х	х	х	Х					
AZINPH-M	1,0000	х	х	х	х	х	Х					
CHLORFENV	0,1000	х	х	х	х	х	Х					
DIAZINON	0,1000	0,232	0,397	0,247	0,353	4	4					
DIMETH	0,1000	х	х	х	х	х	х					
MALATH	0,1000					0	4					
PIRIMIC	0,0500	0,215	1,287	0,501	1,069	4	4					
BENZTRI	0,8000	57,734	212,798	107,835	187,138	4	4					
HBCD-A	0,5000	х	х	х	х	х	х					
HBCD-BG	0,0300	х	х	х	х	х	х					
MTBT	1,0000	х	х	х	х	х	х					
TBBPA	1,0000					0	4					
CARBAMAZ	0,0300	57,576	94,458	75,825	92,147	4	4					
CLOFIBRS	0,1000	0,449	0,808	0,635	0,774	3	4					
DICLOF	0,5000	32,712	64,024	49,876	61,308	4	4					
NAPROX	0,5000	х	х	х	х	х	х					
OXAZEP	0,5000	7,848	12,494	8,625	11,459	4	4					
PRIMID	0,5000	30,078	79,761	37,177	67,847	4	4					
PFBS	0,4000	0,742	1,753	0,778	1,470	4	4					
PFDA	0,0300	0,362	0,530	0,447	0,524	4	4					
PFHPA	0,1000	0,972	1,533	1,180	1,436	4	4					
PFHXA	0,0300	1,396	3,197	2,180	2,920	4	4					
PFHXS	0,0300	0,636	1,057	0,727	0,959	4	4					
PFNA	0,0500	0,421	0,715	0,517	0,670	4	4					
PFOA	0,0300	3,206	4,514	3,649	4,276	4	4					
PFOS	0,0300	2,281	3,727	3,204	3,641	4	4					
PFOSA	0,0300	0,049	0,082	0,064	0,078	4	4					

Tabelle A-2.6.6: Küstengewässer (Fehmarnsund, Ostsee) – Zusammenfassung der Analytkonzentrationen in den Wasserproben (Untersuchungszeitraum 2009-2011) ; **Fett**: 5 höchstkonzentrierte Stoffe (bezogen auf den Medianwert); BG: Bestimmungsgrenze; min: Minimalwert; max: Maximalwert; n.a.: nicht analysiert; x: Analyt nicht quantifiziert; leere Zellen: <BG.

Substant	Wasserproben in ng/L											
Substanz	BG	min	max	median	90er quantil	n positiv	gesamt					
				<u>GC-Analyt</u>	<u>en</u>							
CB028	0,0002					0	2					
CB052	0,0004	0,001	0,002	0,001	0,002	0	2					
CB101	n.a.	0,001	0,002	0,001	0,002	0	2					
CB118	n.a.	0,000	0,001	0,001	0,001	0	2					
CB138	0,0004	0,001	0,002	0,001	0,002	0	2					
CB153	0,0005	0,001	0,003	0,002	0,003	0	2					
CB180	n.a.	0,000	0,001	0,000	0,001	0	2					
DDTPP	0,0001	0,001	0,003	0,002	0,003	0	2					
DDDPP	0,0001	0,001	0,002	0,002	0,002	0	2					
DDEPP	0,0001	0,002	0,004	0,003	0,004	0	2					
HCB	0,0001	0,005	0,010	0,007	0,009	0	2					
HCHA	0,0001					0	2					
HCHB	0,0001					0	2					
HCHG	0,0003					0	2					
ACE	0,000001	0,135	0,217	0,176	0,208	0	2					
ACY	0,000001	0,037	0,173	0,105	0,159	0	2					
ANT	0,000003	0,032	0,044	0,038	0,043	0	2					
BAA	0,000001	0,025	0,061	0,043	0,058	0	2					
BAP	0,000003	0,021	0,049	0,035	0,046	0	2					
BBF	0,000002	0,026	0,127	0,077	0,117	0	2					
BGHIP	0,000002	0,011	0,083	0,047	0,076	0	2					
CHRTR	0.000001	0.031	0.150	0.091	0.138	2	2					

Substant	Wasserproben in ng/L						
Substanz	BG	min	max	median	90er quantil	n positiv	gesamt
DBAHA	0,000004	0,002	0,015	0,008	0,013	0	2
FL	0,000004	0,357	1,286	0,822	1,194	0	2
FLU	0,000013	0,200	1,340	0,770	1,226	0	2
I123P	0,000037	0,016	0,105	0,061	0,096	0	2
PHEN	0,000037	1,184	1,598	1,391	1,557	0	2
PYR	0,000007	0,110	0,593	0,352	0,545	0	2
				LC-Analyte	en		
IRGAROL	0,0300	0,111	0,223	0,161	0,200	4	6
CARBEND	0,0300	х	х	х	х	х	х
ALACHL	0,5000	х	х	х	х	х	х
AMETRYN	0,0300	0,035	0,060	0,047	0,060	4	6
ATRAZ	0,1000	1,469	2,487	1,789	2,409	4	6
BENTAZ	0,0300	0,065	0,079	0,071	0,076	4	6
CHLORI	0,5000	1,359	3,698	2,109	3,500	4	6
CHLORTUR	0,1000	0,182	0,282	0,213	0,280	4	6
DEATRAZ	0,1000	0,698	0,943	0,894	0,933	4	6
DICHLPR	0,1000	0,107	0,164	0,131	0,160	2	6
DIURON	0,1000	1,066	1,362	1,180	1,335	4	6
FENUR	0,0900	0,133	0,419	0,215	0,359	3	6
HEXAZIN	0,0300	0,082	0,095	0,084	0,093	4	6
ISOPRUR	0,0500	0,328	0,731	0,449	0,702	4	6
LINUR	0,5000					0	6
MCPA	0,1000	0,363	0,445	0,418	0,433	4	6
MECOPR	0,1000	0,108	0,206	0,154	0,193	4	6
METAZCHL	0,0500	0,270	0,627	0,431	0,617	4	6
METHABZT	0,0500	0,054	0,057	0,054	0,056	1	6
METOLA	0,0300	0,079	0,356	0,186	0,311	4	6
PENDIMETH	0,1000	0,384	0,742	0,590	0,735	4	6
PROMETR	0,0300	0,221	0,411	0,326	0,402	4	6
PROPAZ	0,1000	0,118	0,171	0,155	0,169	4	6
SIMAZ	0,1000	1,449	2,694	1,843	2,638	4	6
TERBAZ	0,0300	0,620	1,005	0,768	0,989	4	6
TERBUTR	0,0300	0,053	0,108	0,080	0,101	4	6
AZINPH-E	0,1000	Х	х	х	х	х	х
AZINPH-M	1,0000	Х	х	х	Х	х	х
CHLORFENV	0,1000	Х	х	х	Х	х	х
DIAZINON	0,1000					0	6
DIMETH	0,1000	Х	х	х	Х	х	х
MALATH	0,1000					0	6
PIRIMIC	0,0500					0	6
BENZTRI	0,8000	2,061	3,166	2,249	2,946	4	6
HBCD-A	0,5000	Х	х	х	х	х	х
HBCD-BG	0,0300	Х	х	х	Х	х	х
MTBT	1,0000	Х	х	х	Х	х	х
ТВВРА	1,0000					0	6
CARBAMAZ	0,0300	1,815	2,745	2,178	2,703	4	6
CLOFIBRS	0,1000	0,113	0,134	0,115	0,130	2	6
DICLOF	0,5000	0,732	2,814	1,773	2,606	2	6
NAPROX	0,5000	Х	х	х	Х	x	x
OXAZEP	0,5000	4		0.570		0	6
	0,5000	1,579	3,741	2,576	3,608	4	6
PFBS	0,4000					U	6
PEDA	0,0300	0 170	0.000	0.001	0.000	0	6
PEHPA	0,1000	0,1/2	0,233	0,204	0,226	4	6
PEHXA	0,0300	0,1/5	0,228	0,201	0,227	4	6
PEHAS	0,0300	0,139	0,155	0,152	0,154	4	6
PENA	0,0500	0.000	0.405	0.440	0.404	0	6
PFUA	0,0300	0,390	0,425	0,418	0,424	4	6
PFUS	0,0300	0,217	0,301	0,235	0,277	4	6
PFUSA	0,03					U	6

Tabelle A-2.6.7: Hochsee (Helgoland, Nordsee) – Zusammenfassung der Analytkonzentrationen in den Wasserproben (Untersuchungszeitraum: 2010-2011) ; **Fett**: 5 höchstkonzentrierte Stoffe (bezogen auf den Medianwert); BG: Bestimmungsgrenze; min: Minimalwert; max: Maximalwert; n.a.: nicht analysiert; x: Analyt nicht quantifiziert; leere Zellen: <BG.

Substant		Wasserproben in ng/L										
Substanz	BG	min	max	median	90er quantil	n positiv	gesamt					
				GC-Analy	<u>/ten</u>							
CB028	0,0002	0,003	0,006	0,005	0,006	4	4					
CB052	0,0004	0,002	0,003	0,003	0,003	4	4					
CB101	n.a.	n.a.	n.a.									
CB118	n.a.	n.a.	n.a.									
CB138	0,0004	0,007	0,007	0,007	0,007	3	4					
CB153	0,0005	0,009	0,009	0,009	0,009	4	4					
CB180	n.a.	n.a.	n.a.									
DDTPP	0,0001	0,002	0,006	0,003	0,005	4	4					
DDDPP	0,0001	0,010	0,017	0,013	0,017	4	4					
DDEPP	0,0001	0,005	0,007	0,006	0,007	4	4					
HCB	0,0001	0,003	0,010	0,006	0,009	4	4					
HCHA	0,0001	0,050	0,140	0,056	0,116	4	4					
HCHB	0,0001	0,049	0,117	0,097	0,116	4	4					
HCHG	0,0003	0,071	0,108	0,077	0,099	4	4					
ACE	0,0000	0,044	0,069	0,057	0,067	2	4					
ACY	0,0000	0,041	0,046	0,044	0,046	2	4					
ANT	0,0000	0,062	0,074	0,068	0,073	2	4					
BAA	0,0000	0,222	0,229	0,226	0,228	2	4					
BAP	0,0000	0,180	0,438	0,330	0,425	4	4					
BBF	0,0000	0,663	0,741	0,702	0,733	2	4					
BGHIP	0,0000	0,337	0,403	0,370	0,397	2	4					
CHRTR	0.0000	0.260	0.469	0.391	0.457	4	4					
DBAHA	0,0000	0,072	0,110	0,091	0,106	2	4					
FL	0.0000	0.172	0.463	0.316	0.428	4	4					
FLU	0.0000	0.610	0.935	0.888	0.930	4	4					
1123P	0.0000	0.192	0.452	0.319	0.421	4	4					
PHFN	0.0000	0.456	0.591	0.515	0.583	4	4					
PYR	0.0000	0.369	0,718	0.628	0.717	4	4					
	-,	-,	-,	LC-Analy	/ten	-	-					
IRGAROL	0.0300	0.275	0.438	0.429	0.436	3	3					
CARBEND	0.0300	x	X	X	X	x	x					
	0.5000	x	x	x	x	x	x					
AMETRYN	0.0300	0.102	0.170	0.128	0.162	3	3					
ATRAZ	0,1000	0.827	2.302	1.106	2.063	3	3					
BENTAZ	0.0300	0.312	0,793	0.521	0,738	3	3					
CHLORI	0.5000	1,182	1,182	1,182	1,182	1	3					
CHLORTUR	0.1000	1.163	2.213	1.816	2.134	3	3					
DFATRAZ	0,1000	0.745	1.826	0.954	1,652	3	3					
DICHI PR	0,1000	0,155	0,155	0,155	0,155	1	3					
DIURON	0.1000	1.396	3.317	2.484	3,150	3	3					
FFNUR	0.0900	0.122	0.456	0.162	0.397	3	3					
HEXAZIN	0,0300	0 191	0,300	0.270	0 294	3	3					
ISOPRUR	0,0500	1 008	3 631	2 258	3 357	3	3					
LINUR	0.5000	1,000	0,001	_,0	0,001	0	3					
MCPA	0,1000	0 250	0 919	0 454	0.826	3	3					
MECOPR	0,1000	0,520	1 519	0.858	1,387	3	3					
METAZCHI	0.0500	0.395	1 239	1 090	1 210	3	3					
METHAR7T	0.0500	0 118	0 153	0 125	0 147	3	3					
METOLA	0,0000	1 166	1 533	1 306	1 4 8 8	2	2					
PENDIMETH	0,0000	1,100	1,000	1,000	1,-100	0	3 3					
PROMETR	0,1000	0 1 1 5	0 196	0 178	0 102	े २	3 3					
PROPAZ	0,0000	0,110	0,190	0,170	0,132	0	2					
SIMA7	0,1000	0 340	0 860	0.519	0 704	2	2					
TERBAZ	0.0300	1,198	3.853	2,296	3,542	3	3					
	2,2000	.,	2,000	_,_00	J,J	-	-					

A-2.77

Substant	Wasserproben in ng/L												
Substanz	BG	min	max	median	90er quantil	n positiv	gesamt						
TERBUTR	0,0300	0,466	0,549	0,498	0,539	3	3						
AZINPH-E	0,1000	х	х	х	х	х	х						
AZINPH-M	1,0000	х	х	х	х	х	х						
CHLORFENV	0,1000	х	х	х	х	х	х						
DIAZINON	0,1000					0	3						
DIMETH	0,1000	х	х	х	х	х	х						
MALATH	0,1000					0	3						
PIRIMIC	0,0500					0	3						
BENZTRI	0,8000	12,468	29,688	17,861	27,323	3	3						
HBCD-A	0,5000	х	х	х	х	х	х						
HBCD-BG	0,0300	х	х	х	х	х	х						
MTBT	1,0000	х	х	х	х	х	х						
TBBPA	1,0000					0	3						
CARBAMAZ	0,0300	7,180	13,214	7,325	12,036	3	3						
CLOFIBRS	0,1000	0,118	0,199	0,158	0,191	2	3						
DICLOF	0,5000					0	3						
NAPROX	0,5000	х	х	х	х	х	х						
OXAZEP	0,5000	1,777	3,821	2,864	3,629	3	3						
PRIMID	0,5000	5,764	6,771	6,712	6,759	3	3						
PFBS	0,4000	0,690	1,689	0,835	1,518	3	3						
PFDA	0,0300	0,044	0,097	0,057	0,089	3	3						
PFHPA	0,1000	0,257	0,630	0,352	0,575	3	3						
PFHXA	0,0300	0,405	1,014	0,646	0,940	3	3						
PFHXS	0,0300	0,239	0,582	0,287	0,523	3	3						
PFNA	0,0500	0,092	0,230	0,151	0,214	3	3						
PFOA	0,0300	1,164	2,132	1,267	1,959	3	3						
PFOS	0,0300	0,727	1,608	0,976	1,481	3	3						
PFOSA	0.03					0	3						

A-2.7: Berechnete zeitgemittelte Durchschnittskonzentrationen – Binnengewässer

Tabelle A-2.7.1: Dessau (Mulde) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle **MESCO** (n=1); leere Zelle: < BG

LHW- Station	1 1 1 1 Monat ¹ Monat ² Monat ³		1 Monat ¹	1 Monat ²	1 Monat ³	2 Monate ¹	2 Monate ²	2 Monate ³	
Dessau		Juni/Juli 20	11	J	uli/August	2011	Jur	ni-August 20	011
(Mulde)		ng/L			ng/L			ng/L	
PCB 28				0,00	0,01	0,05			
PCB 52				0,00	0,00	0,04	0,00	0,01	0,05
PCB 101				0,00	0,00	0,11			
PCB 118					n.a.				
PCB 138				0,00	0,00	0,41			
PCB 153				0,00	0,00	0,27			
PCB 180				_	n.a.				
DDTOP	0,00	0,00	0,39						
DDTPP							0,00	0,03	kein <i>R</i> ₅
DDDOP	0,22	0,51	14,29	0,03	0,05	4,52	0,05	0,18	4,66
DDDPP	0,05	0,10	5,23	0,02	0,02	3,78	0,05	0,15	6,85
DDEOP									
DDEPP	0,01	0,08	1,70	0,00	0,02	1,13	0,01	0,06	1,48
HCB	1,12	4,80	2,50	0,06	0,32	0,17	0,13	0,70	0,22
HCHA	34,74	10,01	325,66	6,37	1,83	56,76	7,78	2,19	37,72
HCHB	31,46	0,94	kein <i>R</i> s	12,32	0,37	kein <i>R</i> ₅	4,29	0,13	kein <i>R</i> ₅
HCHG	5,84	1,96	24,00	0,96	0,32	3,77	2,20	0,72	4,67
ACE	0,97	0,80	kein R _s	0,42	0,34	kein R _s			

LHW-	1 1 1 1 Monat ¹ Monat ² Monat ³		1 Monat ¹	1 Monat ²	1 Monat ³	2 Monato ¹	2 Monato ²	2 Monato ³	
Station	WOnat	Juni/Juli 201	1	wonat		2011	lur	i-August 20	11
(Mulde)		ng/L		0	ng/L	2011	001	ng/L	,,,,
ACY					n.a.				
ANT	0,15	0,27	0,23	0,11	0,18	0,15	0,23	0,38	0,18
BAA	0,01	0,04	kein <i>R</i> ₅	0,01	0,02	kein R _s	0,02	0,06	kein <i>R</i> ₅
BAP				0,00	0,01				
BBF									
BGHIP				0,01	0,01				
CHRTR	0,02	0,07	kein <i>R</i> ₅	0,00	0,01	kein R _s	0,03	0,07	kein <i>R</i> ₅
DBAHA				0,00	0,01	kein R _s			
FL	1,49	1,41	0,88	0,24	0,23	0,14	0,29	0,27	0,09
FLU	0,89	1,60	14,52	0,40	0,61	6,37	0,53	0,80	4,94
I123P				0,01	0,02	kein <i>R</i> s			
PHEN	4,90	6,70	4,73	2,30	3,08	2,10	1,45	1,91	0,73
PYR	0,28	0,56	6,44	0,12	0,20	2,74	0,26	0,44	3,50
BDE 28				0,15	0,14	kein <i>R</i> s	0,05	0,05	kein <i>R</i> ₅
BDE 47									
BDE 99				0,01	0,02	kein R _s			
BDE 100									
BDE 153									
BDE 154									
ATRAZIN				10,77	54,27	kein R _s			
IRGAROL									
TERBUAZI	1,57	8,78	kein <i>R</i> ₅						
TRIFLURALI									

 ${}^{1}C_{w}$ berechnet mit PRCs, experimentelle K_{sw} ${}^{2}C_{w}$ berechnet mit PRCs, K_{sw} berechnet mit LSER-Modell nach [19] ${}^{3}C_{w}$ berechnet mit Sammelrate aus Laborkalibrierung (v_{kal} = 0,4 cm/s; [26])

LHW-Station	1 Mo	nat ¹	1 Mo	nat ²	1 Mor	nat ³		1 Mo	nat ¹	1 Mo	nat ²	1 Mon	at ³	
Dessau			J	luni/Juli 20	11					J	uli/August	2011		
(Mulde)	ng/L	S	ng/L	S	ng/L	S	n positiv	ng/L	S	ng/L	S	ng/L	S	n positiv
PCB 28	0,01	0,00	0,01	0,00	0,04	0,01	2	0,00	0,00	0,04	0,01	0,04	0,01	3
PCB 52							0							0
PCB 101	0,00	0,00	0,01	0,01	0,04	0,02	2							0
PCB 118							n.a	l.						
PCB 138							0							0
PCB 153	0,00	0,00	0,01	0,00	0,09	0,02	2	0,00		0,00		0,02		1
PCB 180							n.a	ı.						
DDTOP	0,02		0,04		0,66		1							0
DDTPP	0,22	0,05	0,46	0,11	kein R _s		2	0,03	0,02	0,06	0,05	kein R _s		3
DDDOP	0,91	0,11	2,02	0,24	8,15	0,99	3	0,26	0,02	0,58	0,05	6,30	0,49	3
DDDPP	0,62	0,25	1,44	0,57	7,37	2,93	3	0,21	0,01	0,42	0,02	5,76	0,28	3
DDEOP	0,01		0,05		0,19		1							0
DDEPP	0,04	0,01	0,18	0,03	1,00	0,19	3	0,01	0,00	0,18	0,01	1,12	0,07	3
HCB	0,90	0,83	2,91	2,69	1,40	1,29	3	0,11	0,00	0,87	0,03	0,18	0,01	3
HCHA	44,92	5,44	12,64	1,53	118,54	14,35	3	20,43	0,50	5,74	0,14	49,66	1,23	3
HCHB	9,97		0,29		kein R _s		1	31,76		0,93		kein R _s		1
HCHG	15,88	6,60	5,21	2,17	14,52	6,03	3	10,12	0,93	3,32	0,30	8,52	0,78	3
ACE	0,83	0,16	0,68	0,13	kein <i>R</i> s		3	0,87	0,39	0,70	0,31	kein R _s		3
ACY					_		n.a	1.						
ANT	0,76	0,17	1,27	0,29	1,19	0,27	3	0,74	0,06	1,20	0,10	1,03	0,08	3
BAA	0,11	0,06	0,07	0,04	0,34	0,21	3	0,05	0,01	0,28	0,04	0,34	0,05	3
BAP							0							0
BBF	0,08	0,09	0,21	0,22	0,42	0,45	3	0,01	0,00	0,04	0,00	0,23	0,02	3
BGHIP	0,01	0,00	0,02	0,00	0,15	0,03	3	0,00	0,00	0,01	0,00	0,18	0,06	3
CHRTR	0,17	0,04	0,12	0,03	0,55	0,13	3	0,10	0,01	0,48	0,05	0,53	0,05	3
DBAHA	0,01	0,00	0,02	0,00	0,24	0,07	3	0,00		0,00		0,12		1
FL	2,02	0,37	1,87	0,34	1,76	0,32	3	0,79	0,05	0,73	0,04	0,63	0,04	3
FLU	1,38	0,11	1,95	0,15	24,03	1,90	3	2,03	0,18	11,41	0,99	30,16	2,61	3
I123P	0,01	0,01	0,02	0,01	0,17	0,06	3	0,00	0,00	0,01	0,00	0,12	0,06	3
PHEN	4,36	1,21	5,75	1,59	6,01	1,67	3	4,49	0,24	5,81	0,31	5,60	0,30	3
PYR	0,48	0,06	0,75	0,10	3,31	0,45	3	0,92	0,09	5,74	0,55	5,40	0,52	3
BDE 28	0,35	0,17	0,28	0,14	kein R _s		2	0,23	0,10	0,73	0,33	kein R _s		3
BDE 47	0,04		0,16		kein R _s		1	0,01		0,05		kein R _s		1
BDE 99	0,06	0,03	0,20	0,10	kein R _s		2	0,02	0,00	0,06	0,01	kein R _s		3
BDE 100	1,91		2,03		kein R _s		1							0

Tabelle A-2.7.2: Dessau (Mulde) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle **Silikonstab** (n=2-3 je Ausbringung); leere Zelle: < BG

LHW-Station	1 Mo	nat ¹	1 Mo	nat ²	1 Mon		1 Monat ¹ 1 Monat ²				1 Mona			
Dessau			J	uni/Juli 20	11					Ju	uli/August	2011		-
(Mulde)	ng/L	S	ng/L	S	ng/L	s	n positiv	ng/L	S	ng/L	S	ng/L	s	n positiv
BDE 153							0							0
BDE 154	0,00		0,00		kein <i>R</i> s		1							0
ATRAZIN	27,08	2,41	136,55	12,15	kein R _s		2							0
IRGAROL	4,27	1,12	6,26	1,64	kein R _s		2	2,12	0,49	3,11	0,72	kein R _s		3
TERBUAZI	326,86	69,05	1833,52	387,36	kein R _s		3	114,31	8,10	640,84	45,39	kein <i>R</i> s		3
TRIFLURALI							0							0

)	2 Mo	nate ¹	2 Mo	nate ²	2 Mo	nate ³			2 Monate ¹ 2 Monate ²				2 Monate ³		
LHW-Station Dessau (Mulde			JI	uni-Augus	t 2011			LHW-Station Dessau (Mulde)			Jun	ii-August	2011		
•	ng/L	S	ng/L	S	ng/L	S	n positiv		ng/L	S	ng/L	S	ng/L	S	n positiv
PCB 28	0,00		0,00		0,01		1	BAP							0
PCB 52	0,00	0,00	0,01	0,00	0,03	0,00	3	BBF	0,00		0,01		0,10		1
PCB 101							0	BGHIP							0
PCB 118				n.a.				CHRTR	0,05	0,00	0,10	0,00	0,25	0,01	3
PCB 138							0	DBAHA							0
PCB 153							0	FL	0,26	0,04	0,24	0,04	0,12	0,02	3
PCB 180				n.a.				FLU	0,65	0,08	0,97	0,12	5,94	0,75	3
DDTOP							0	I123P							0
DDTPP	0,00	0,00	0,00	0,00	kein <i>R</i> ₅		3	PHEN	1,12	0,09	1,49	0,12	0,79	0,06	3
DDDOP	0,07	0,01	0,10	0,01	2,14	0,30	3	PYR	0,35	0,04	0,59	0,07	1,29	0,16	3
DDDPP	0,08	0,01	0,09	0,01	2,58	0,26	3	BDE 28	0,13	0,10	0,12	0,09	kein R _s		2
DDEOP							0	BDE 47							0
DDEPP	0,00	0,00	0,04	0,01	0,61	0,11	3	BDE 99							0
HCB	0,07	0,02	0,39	0,09	0,09	0,02	3	BDE 100							0
HCHA	4,99	0,77	1,43	0,22	6,83	1,06	3	BDE 153							0
HCHB	0.40	0.05	4.00	0.00	4 47	0.40	0	BDE 154							0
HCHG	3,10	0,25	1,03	0,08	1,47	0,12	3		0.00		0.00				0
ACE	0,30		0,25		Kein R _s		1	IRGARUL	0,60		0,88		kein R _s		1
ACY				n.a.				TERBUAZI	36,36	4,63	203,52	25,89	kein R _s		3
ANT	0,43	0,07	0,72	0,12	0,34	0,06	3	TRIFLURALI							0
BAA	0,03	0,00	0,08	0,01	0,22	0,03	3								

 ${}^{1}C_{w}$ berechnet mit PRCs, experimentelle K_{sw} ${}^{2}C_{w}$ berechnet mit PRCs, K_{sw} berechnet mit LSER-Modell nach [19] ${}^{3}C_{w}$ berechnet mit Sammelrate aus Laborkalibrierung (v_{kal} = 0,4 cm/s; [26])

LUW Station	1 Monat ¹	1 Monat ²	1 Monat ³	1 Monat⁴	1 Monat⁵		
Dessau (Elbe)		J	uni/Juli 2011				
	ng/L	ng/L	ng/L	ng/L	ng/L		
CB028	0,01	0,02	0,09	0,03	0,04		
CB052	0,00	0,02	0,11	0,05	0,06		
CB101	0,00	0,01	0,08	0,03	0,04		
CB118	0,00	0,01	kein R _s	0,04	0,04		
CB138	0,00	0,00	0,15	0,08	0,09		
CB153	0,00	0,00	0,11	0,04	0,05		
CB180	0,00	0,00	0,04	0,02	0,02		
DDTOP	х	х	х	х	х		
DDTPP	х	х	х	х	х		
DDDOP	х	х	х	х	х		
DDDPP	х	х	х	х	х		
DDEOP	х	х	х	х	х		
DDEPP	х	х	х	х	х		
HCB	1,81	4,18	kein R _s	5,08	6,31		
HCHA	х	х	х	х	х		
HCHB	х	х	х	х	х		
HCHG	х	х	х	х	х		
ACE	2,12	1,81	kein R _s	0,56	0,69		
ACY	2,22	1,49	kein <i>R</i> s	0,26	0,32		
ANT	0,42	0,60	1,59	0,34	0,42		
BAA	0,13	0,26	5,38	0,46	0,58		
BAP	0,01	0,03	1,13	0,13	0,16		
BBF	0,06	0,13	3,55	0,58	0,72		
BGHIP	0,01	0,01	2,13	0,15	0,19		
CHRTR	0,44	0,77	6,74	1,38	1,71		
DBAHA							
FL	2,85	2,79	8,91	1,14	1,42		
FLU	3,49	4,54	22,44	4,35	5,40		
I123P	0,01	0,01	1,83	0,14	0,17		
PHEN	13,05	16,77	13,99	9,46	11,75		
PYR	1,80	2,45	8,89	2,34	2,91		
IRGAROL	1,76	2,58	kein R _s	0,23	0,28		
CARBEND	107,10	379,81	kein R _s	0,07	0,09		
ALACHL	·						
AMETRYN	0.64	29,62	kein R _s	0,74	0,92		
ATRAZ	1,09	5,49	kein R _s	0,07	0,08		
BENTAZ	X	X	X	X	x		
CHLORI							
CHLORTUR	kein Ksw	7,76	kein R _s	0,08	0,10		
DEATRAZ	kein Ksw	1,58	kein R _s	0,00	0,00		
DICHLPR	3,7E+03	3,7E+03	kein R _s	0,00	0,00		
DIURON	15.94	28.89	kein R _s	0.22	0.27		
FENUR	x	x	x	x	x		
HEXAZIN	0.08	0.52	kein Rs	0.00	0.00		
ISOPRUR	31.66	15.85	kein Rs	0.33	0.41		
LINUR	X	X	X	X	x		
MCPA							
MECOPR							
METAZCHI	kein Ksw	3.82	kein R _e	0.33	0.41		
METHAB7T	x	x	X	x	x		
METOLA	9.85	4,43	kein R.	2,96	3.68		
PENDIMETH	x	x	X	_,00 X	x		
PROMETR	1.56	36.57	kein R.	2.07	2.57		
PROPAZ	0.24	3.33	kein R.	0.09	0.11		
SIMAZ	7 20	13.31	kein R	0.07	0.09		
5.110 L	.,20	10,01	1.011715	0,07	0,00		

Tabelle A-2.7.3:Dessau(Mulde)-zeitgemittelteDurchschnittskonzentrationen c_{TWA} unterschiedlicher BerechnungsmodelleSilicone Sheets(n=1 je Ausbringung); leere Zelle: < BG</td>

LUM Station	1 Monat ¹	1 Monat ²	1 Monat⁴	1 Monat°	
Dessau (Flbe)			Juni/Juli 2011		
Dessau (Libe)	ng/L	ng/L	ng/L	ng/L	ng/L
TERBAZ	22,39	124,82	kein R _s	3,90	4,84
TERBUTR	38,82	27,83	kein R _s	1,81	2,25
AZINPH-E	х	х	х	х	х
AZINPH-M	х	х	х	х	х
CHLORFENV	0,02	0,02	kein R _s	0,01	0,01
DIAZINON	3,10	0,78	kein R _s	0,28	0,35
DIMETH	х	х	x	х	х
MALATH					
PIRIMIC	3,70	9,05	kein R _s	0,13	0,17
BENZTRI	kein Ksw	251,76	kein R _s	0,03	0,04
HBCD-A	х	х	x	х	х
HBCD-BG	х	х	x	х	х
MTBT	kein Ksw	104,73	kein R _s	4,86	6,04
TBBPA					
CARBAMAZ	185,22	31,96	kein R _s	0,57	0,71
CLOFIBRS					
DICLOF					
NAPROX	kein Ksw	756,03	kein R _s	0,04	0,05
OXAZEP	х	х	х	х	Х
PRIMID	kein Ksw	9,92	kein R _s	0,00	0,00
PFBA	х	х	x	х	х
PFBS	kein Ksw	-2,6E+08	kein R _s	0,00	0,00
PFDEA					
PFHPA					
PFHXA					
PFHXS	kein Ksw	-9,1E+07	kein R _s	0,00	0,00
PFNOA					
PFOA	kein Ksw	-1,4E+04	kein R _s	0,00	0,00
PFOS	kein Ksw	1,3E+08	kein R _s	0,00	0,00
PFOSA	kein Ksw	0,14	kein R _s	0,01	0,01

 ${}^{1}C_{w}$ berechnet mit PRCs, experimentelle K_{sw} ${}^{2}C_{w}$ berechnet mit PRCs, K_{sw} berechnet mit LSER-Modell nach [19] ${}^{3}C_{w}$ berechnet mit Sammelrate aus Laborkalibrierung (v_{kal} = 0,4 cm/s; [26]) ${}^{4}C_{w}$ berechnet nach [42], experimentelle K_{sw} ${}^{5}C_{w}$ berechnet nach [42], K_{sw} berechnet mit LSER-Modell nach [19]

LHW-Station	1 Monat ¹ 1 Monat ² 1 M			1 Mo	nat ³		1 Mona	onat ² 1 Monat ³						
Dessau			Ju	ini-August 2	2011		_			Ju	ili-August 20	011		_
(Mulde)	ng/L	S	ng/L	S	ng/L	S	n positiv	ng/L	S	ng/L	S	ng/L	S	n positiv
CB028	0,01	0,00	0,01	0,00	0,02	0,01	3	0,02	0,01	0,02	0,01	0,04	0,00	3
CB052	0,02	0,01	0,01	0,00	0,02	0,01	3	0,05	0,02	0,04	0,02	0,03	0,01	3
CB101	0,01	0,00	0,01	0,00	0,04	0,01	3	0,05	0,05	0,05	0,06	0,07	0,02	3
CB118	0,00	0,00	0,01	0,00	0,01	0,00	3	0,01	0,01	0,02	0,03	0,02	0,01	3
CB138	0,00	0,00	0,00	0,00	0,03	0,01	3	0,01	0,01	0,01	0,01	0,04	0,03	3
CB153	0,00	0,00	0,00	0,00	0,02	0,00	3	0,01	0,01	0,01	0,01	0,02	0,01	3
CB180	0,00	0,00	0,00	0,00	kein R _s		3	0,00	0,00	0,00	0,00	kein R _s		3
DDTOP							0							0
DDTPP	0,28	0,19	0,07	0,02	kein R _s		2	0,55	0,25	0,34	0,15	kein R _s		3
DDDOP							0							0
DDDPP							0							0
DDEOP							0							0
DDEPP	0,24	0,14	0,39	0,15	0,49	0,09	3	0,68	0,44	1,82	1,16	0,60	0,11	3
HCB	0,52	0,23	3,02	1,39	1,36	0,18	3	1,03	0,35	6,09	2,05	1,40	0,26	3
HCHA	х		х		х		3	х		х		х		3
HCHB	х		х				3	х		Х				3
HCHG	х		х		x		3	х		Х		x		3
IRGAROL	kein K _{sw}		0,09	0,04	kein R _s		2	kein K _{sw}		0,09	0,02	kein <i>R</i> s		3
CARBEND							0							0
ALACHL							0							0
AMETRYN	kein K _{sw}		0,33	0,12	kein R _s		2	kein K _{sw}		0,48	0,14	kein <i>R</i> s		3
ATRAZ	kein K _{sw}		0,86		kein <i>R</i> s		1	kein K _{sw}		3,52		kein <i>R</i> ₅		1
BENTAZ							0							0
CHLORI							0							0
CHLORIUR							0							0
DEATRAZ							0							0
DICHLPR			0 = 1				0			o o -	4.00			0
DIURON	kein K _{sw}		0,51	0,24	kein R _s		3	kein K _{sw}		2,87	1,38	kein $R_{\rm s}$		3
FENUR							0							0
HEXAZIN			0.44	0.05			0			0.55	0.40			0
ISOPRUR	kein K _{sw}		0,41	0,05	kein R _s		3	kein K _{sw}		0,55	0,19	kein R _s		3
							U							U
MCPA							0							0
MECOPR					1		0					1		0

Tabelle A-2.7.4: Dessau (Mulde) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle **LDPE-Streifen** (n=3 je Ausbringung); leere Zelle: < BG

LHW-Station	1 Monat ¹ 1 Monat ² 1 Monat ³							1 Monat	1 Mc	onat ²	1 Monat ³			
Dessau			Ju	ini-August 20	011					Ju	lli-August 20	11		
(Mulde)	ng/L	s	ng/L	S	ng/L	S	n positiv	ng/L	S	ng/L	S	ng/L	S	n positiv
METAZCHL	kein K _{sw}		0,63		kein R _s		1	kein K _{sw}		6,94	1,53	kein R _s		3
METHABZT							0							0
METOLA	kein K _{sw}		0,24	0,01	kein R _s		2	kein K _{sw}		0,36	0,06	kein R _s		3
PENDIMETH	kein K _{sw}		0,10	0,02	kein R _s		2	kein K _{sw}		0,06	0,02	kein R _s		3
PROMETR	kein K _{sw}		0,33	0,12	kein R _s		2	kein K _{sw}		0,49	0,14	kein R _s		3
PROPAZ							0							0
SIMAZ	kein K _{sw}		3,53	1,26	kein R _s		3							0
TERBAZ	kein K _{sw}		2,09	0,91	kein R _s		2	kein K _{sw}		2,58	0,78	kein R _s		3
TERBUTR	kein K _{sw}		0,49	0,16	kein <i>R</i> ₅		2	kein K _{sw}		0,55	0,21	kein <i>R</i> s		3
AZINPH-E							0							0
AZINPH-M							0							0
CHLORFENV							0							0
DIAZINON							0							0
DIMETH							0							0
MALATH	kein K _{sw}		0,21	0,16	kein R _s		2	kein K _{sw}		3,35		kein R _s		1
PIRIMIC	kein K _{sw}		67,30		kein R _s		1							0
BENZTRI	kein K _{sw}		94,11		kein R _s		1	kein K _{sw}		389,03	212,47	kein <i>R</i> s		3
HBCD-A							0	kein K _{sw}		0,00	0,00	kein <i>R</i> s		3
HBCD-BG							0							0
MIBI							0							0
TBBPA	kein K _{sw}		0,00	0,00	kein R _s		3			0.00	4.05			0
	kein K _{sw}		0,55	0,18	kein R _s		2	kein K _{sw}		6,02	4,85	kein R _s		3
	Kein K _{sw}		1,7E+05		Kein R _s		1	Kein K _{sw}		2,2E+05	8,9E+04	Kein R _s		3
	kain K		2 25 . 02		kain D		0							0
	Kein A _{sw}		3,3⊑+03		Kein R _s		1							0
							0							0
							0							0
DEBS							0							0
	kein <i>K</i>		2 5E+03	2 0E+03	kein P		2	koin K		2 7E+03	2 2 = + 0 3	kein P		3
	Kent Asw		2,50,00	2,92,00	Kelli As		2	kein K		2,7 L + 03	2,2L+05	kein R		2
ΡΕΗΧΔ	kein K		2 5E+05	8 5E+04	kein R		2	kein K		1,0L+07	2,1L+00 1.8E+07	kein R		2
PEHXS	NULL ANSW		2,50,00	0,00-04	NOIT INS		2 0	NOT I ASW		1,501	1,001	NOIT INS		0
PENOA							0	kein Kau		7 1E+03	9 3E+02	kein R.		3
PEOA	¥		Y		Y		1	Y		7,1⊑+03 ¥	3, 3 L ' 02	Y		2
PEOS	kein K		^ 1 7E+08	2.3E+08	kein R.		2	^		^		Î Î		0
PFOSA	NOT I NSW		1,7 - 100	2,02.00	Kent As		0	kein K _{sw}		0,00	0,00	kein <i>R</i> s		2

LHW-Station	2 Monat	e ¹	2 Mo	2 Monate ² 2 Monate ³						
Dessau			Ju	ni-August 2	011					
(Mulde)	ng/L	S	ng/L	S	ng/L	S	n positiv			
CB028	0,01	0,00	0,01	0,00	0,02	0,00	3			
CB052	0,04	0,01	0,03	0,01	0,02	0,00	3			
CB101	0,02	0,02	0,02	0,02	0,05	0,02	3			
CB118	0,00	0,00	0,01	0,01	0,01	0,00	3			
CB138	0,00	0,00	0,01	0,00	0,02	0,01	3			
CB153	0,00	0,00	0,01	0,00	0,01	0,01	3			
CB180	0,00	0,00	0,00	0,00	kein R _s		3			
DDTOP							0			
DDTPP	0,44	0,16	0,27	0,10	kein R _s		3			
DDDOP							0			
DDDPP							0			
DDEOP							0			
DDEPP	0,58	0,51	1,55	1,36	0,37	0,10	3			
HCB	0,42	0,03	2,46	0,18	0,66	0,15	3			
HCHA	х		х		х		3			
HCHB	х		Х				3			
HCHG	х		Х		х		3			
IRGAROL	kein K _{sw}		0,06	0,01	kein R _s		3			
CARBEND							0			
ALACHL							0			
AMETRYN	kein K _{sw}		0,34	0,04	kein R _s		3			
ATRAZ							0			
BENTAZ							0			
CHLORI							0			
CHLORTUR							0			
DEATRAZ							0			
DICHLPR							0			
DIURON	kein K _{sw}		0,81	0,19	kein <i>R</i> ₅		3			
FENUR							0			
HEXAZIN							0			
ISOPRUR	kein K _{sw}		0,34	0,11	kein R _s		3			
LINUR							0			
MCPA							0			
MECOPR							0			
METAZCHL	kein K _{sw}		3,84	0,31	kein <i>R</i> s		2			
METHABZI			a / -				0			
METOLA	kein K _{sw}		0,15	0,05	kein R _s		3			
PENDIMETH	kein K _{sw}		0,05	0,02	kein R _s		3			
PROMETR	kein K _{sw}		0,39	0,14	kein <i>R</i> s		3			
PROPAZ			0.05				0			
SIMAZ	Kein K _{sw}		0,25	0.05	kein R _s		1			
TERBAZ	kein K _{sw}		0,96	0,05	kein R _s		3			
IERBUIR	Kein K _{sw}		0,44	0,07	kein R _s		3			
AZINPH-E							0			
							0			
CHLORFENV							0			
DIAZINON							0			
	Irain K		0.44	0.00	kain D		0			
	Kein A _{sw}		0,41	0,30	Kein Rs		2			
	kain K		100.07	7 70	kain D		0			
	Kein A _{sw}		138,37	1,13	Kein Rs		3			
MECD-BG							0			
	koin K		0.00		koin D		U			
	kein K _{sw}		0,00	0.00	kein R _s					
	kein K _{sw}		1,94	0,30	kein R _s		3			
	Kein K _{sw}		1,7 ⊑+05	5,9E+03	kein R _s		3			
DICLOF							0			
NAPROX			l		l		U			

LHW-Station	2 Monate	e ¹	2 Mo	nate ²	2 Mo					
Dessau	Juni-August 2011									
(Mulde)	ng/L	S	ng/L	S	ng/L	S	n positiv			
OXAZEP							0			
PRIMID							0			
PFBA							0			
PFBS							0			
PFDEA	kein K _{sw}		1,1E+04	1,6E+04	kein R _s		3			
PFHPA							0			
PFHXA	kein K _{sw}		2,3E+06	2,1E+06	kein R _s		3			
PFHXS							0			
PFNOA	kein K _{sw}		1,1E+04	2,5E+03	kein R _s		2			
PFOA	х		х				2			
PFOS	kein K _{sw}		3,4E+09		kein R _s		1			
PFOSA	kein K _{sw}		0,00		kein R _s		1			

 ${}^{1}C_{w}$ berechnet mit PRCs, experimentelle K_{sw} ${}^{2}C_{w}$ berechnet mit PRCs, K_{sw} berechnet in Anlehnung an [24] ${}^{3}C_{w}$ berechnet mit Sammelrate aus Laborkalibrierung (v_{kal} = 0,4 cm/s; [26])

Tabelle A-2.7.5: Magdeburg (Elbe) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle **MESCO** (n=1 je Ausbringung); leere Zelle: < BG

I HW-Station	1	1	1	1	1	1	2	2	2	1	1	1	1	1	1
Magdeburg	Monat Monat Monat									Monat Monat Monat			Monat Monat Monat		
(Elbe)	Mai/Juni 2011									Juli/August 2011 (A)			Juli/August (B)		
0000		⊓g/∟			ng/L			∏g/∟		0.05	ny/L	0.14	0.00	119/L	0.07
CB020										0,05	0,20	0,14	0,09	0,10	0,07
CB002										0,02	0,15	0,14	0,11	0,21	0,09
CB118								na		0,00	0,02	0,19			
CB138							1	n.a.							
CB153										0.00	0.01	0.34			
CB180							<u> </u>	na		0,00	0,01	0,01			
DDTOP	0.01	0.02	0.81			(0.00	0.00	0.01						
DDTPP	-,	-,	-,				-,	-,	-,						
DDDOP							0.01	0,01	0,61	0,11	0,14	1,75	0,26	1,52	1.20
DDDPP							0,01	0,01	1,59	0,07	0,07	1,57	0,19	1,26	1,85
DDEOP							-	-			·		-		·
DDEPP										0,01	0,14	1,00			
HCB	2,26	1,19	0,49	0,08	0,36	0,19	0,12	0,70	0,24	1,84	1,29	0,59	0,87	1,09	0,39
HCHA	1,79	0,51	17,02	0,65	0,19	6,57	1,36	0,38	7,08	1,35	0,38	10,22	1,01	0,29	7,17
HCHB							4,97	0,15	kein <i>R</i> s						
HCHG	2,82	0,93	11,76	0,56	0,19	2,48	1,71	0,56	3,90	1,15	0,38	3,82	0,68	0,22	2,10
ACE															
ACY								n.a.					1		
ANT										0,13	0,21	0,16	0,12	0,19	0,13
BAA													0,13	0,49	kein $R_{\rm s}$
BAP										0.00	0.04		0.00	0.00	
BBF							0.00	0.00	kain D	0,02	0,04	kein Rs	0,08	0,38	Kein Rs
							0,00	0,00	kein R _s	0,15	0,22	kein R	0.16	0.64	koin P
							0,00	0,00	kein R	0,12	0,24		0,10	0,04	
FI							0,00	0,00	Kelli As	0,04	0,10	0 12			
FLU	0 44	0 44	1 62	0.07	0 12	1 08	0 11	0 16	1 10	0,20	1 42	7 43	0.89	1 64	7 78
1123P	0,11	0,11	1,02	0,01	0,12	1,00	0,11	0,10	1,10	0.07	0.10	kein R.	0,00	1,01	1,10
PHEN	0.14	0.18	0.14	0.08	0.11	0.08	0.09	0.12	0.05	1.14	1.50	0.90	1.17	1.53	0.83
PYR	0,40	0,17	0,79	0,00	-,	0,00	0.06	0.09	0,80	0,58	1,13	7,56	0,69	1,29	7,83
BDE028	-, -	- /	-, -				-,	- ,	- ,	0,09	0,45	kein R _s	-,	, -	,
BDE047											·				
BDE099										0,04	0,13	kein R _s			

	1	1	1	1	1	1	2	2	2	1	1	1	1	1	1
LHW-Station	Monat ¹	Monat ²	Monat ³	Monat ¹	Monat ²	Monat ³	Monate ¹	Monate ²	Monate ³	Monat ¹	Monat ²	Monat ³	Monat ¹	Monat ²	Monat ³
Magdeburg	Mai/Juni 2011			Juni/Juli 2011			1	Mai-Juli 201	1	Juli/August 2011 (A) ng/L			Juli/August (B) ng/L		
(Eine)	ng/L				ng/L		ng/L								
BDE100										0,48	0,45	kein R _s	1,38	2,50	kein R _s
BDE153															
BDE154															
ATRAZIN															
IRGAROL															
TERBUAZI	0,14	0,79	kein R _s	0,41	2,27	kein R _s	1,78	9,96	kein <i>R</i> s						
TRIFLURALI	0,01	0,01	kein R _s												

 ${}^{1}C_{w}$ berechnet mit PRCs, experimentelle K_{sw} ${}^{2}C_{w}$ berechnet mit PRCs, K_{sw} berechnet mit LSER-Modell nach [19] ${}^{3}C_{w}$ berechnet mit Sammelrate aus Laborkalibrierung (v_{kal} = 0,4 cm/s; [26])

Tabelle A-2.7.6: Magdeburg (Elbe) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle **Silikonstab** (n=1 je Ausbringung); leere Zelle: < BG

LHW-Station	1 Mo	nat ¹	1 Mo	nat ²	1 Mc	onat ³		1 Mo	onat ¹	1 Mo	onat ²	1 Mo	nat ³			
Magdeburg	Mai/Juni 2011								Juni/Juli 2011							
(Elbe)	ng/L	S	ng/L	S	ng/L	S	n positiv	ng/L	S	ng/L	S	ng/L	S	n positiv		
CB028							0	0,04	0,01	0,15	0,06	0,24	0,09	2		
CB052							0	0,01	0,00	0,05	0,02	0,09	0,04	2		
CB101							0	0,00	0,00	0,01	0,00	0,08	0,00	2		
CB118							n.	a.								
CB138							0	0,00	0,00	0,00	0,00	0,11	0,00	2		
CB153							0	0,00	0,00	0,01	0,00	0,34	0,09	2		
CB180					_		n.	a.				_				
DDTOP	0,00	0,00	0,01	0,00	0,92	0,19	3	0,09	0,12	0,25	0,34	8,39	11,53	2		
DDTPP							0	0,03	0,01	0,06	0,02	kein R _s		2		
DDDOP	0,02	0,00	0,03	0,00	0,62	0,04	3	0,25	0,18	0,46	0,32	4,00	2,79	3		
DDDPP	0,04	0,00	0,04	0,00	1,33	0,15	3	0,44	0,28	0,71	0,44	7,76	4,83	3		
DDEOP							0	0,01	0,00	0,08	0,02	0,35	0,09	2		
DDEPP							0	0,04	0,00	0,43	0,03	2,45	0,15	2		
HCB	0,16	0,01	0,56	0,03	0,25	0,01	3	0,84	0,59	2,49	1,75	1,05	0,74	3		
HCHA	2,04	0,42	0,58	0,12	5,88	1,21	3	8,16	6,70	2,31	1,89	23,62	19,37	3		
LHW-Station	1 Mo	nat ¹	1 Mo	nat²	1 Mo	nat ³		1 Me	onat ¹	1 Mo	nat ²	1 Mo	nat ³			
-------------	--------	------------------	--------	-------------	---------------------	------------------	-----------	--------	-------------------	---------	------------------	---------------------	------------------	-----------		
Magdeburg			N	1ai/Juni 20)11					,	Juni/Juli 20	11				
(Elbe)	ng/L	S	ng/L	S	ng/L	S	n positiv	ng/L	S	ng/L	S	ng/L	S	n positiv		
HCHB	4,08		0,12		kein <i>R</i> s		1	24,54		0,72		kein R _s		1		
HCHG	5,74	0,94	1,89	0,31	5,72	0,93	3	7,63	5,50	2,51	1,81	7,64	5,51	3		
ACE							0	0,31		0,25		kein R _s		1		
ACY							n.	a.								
ANT							0	0,44	0,33	0,72	0,55	0,73	0,55	3		
BAA	0,02	0,00	0,04	0,00	0,12	0,01	3	0,24	0,02	0,68	0,07	0,96	0,10	2		
BAP	0,00	0,00	0,01	0,00	kein R _s		2	0,06	0,00	0,15	0,00	kein R _s		2		
BBF	0,01	0,00	0,01	0,00	kein <i>R</i> s		3	0,08	0,00	0,20	0,01	kein R _s		2		
BGHIP	0,00	0,00	0,00	0,00	kein R _s		3	0,03	0,00	0,06	0,00	kein R _s		2		
CHRIR	0,02	0,00	0,04	0,01	0,10	0,03	3	0,33	0,23	0,87	0,61	1,15	0,80	3		
DBAHA	0,00	0,00	0,00	0,00	kein R _s		3	0,01	0,01	0,04	0,02	kein R _s	A 4A	2		
FL					0.05	o 40	0	0,96	0,42	0,89	0,39	0,92	0,40	2		
FLU	0,22	0,03	0,34	0,05	3,25	0,46	3	1,84	1,12	3,40	2,07	28,19	17,11	3		
1123P	0,00	0,00	0,00	0,00	kein R _s		3	0,02	0,00	0,03	0,01	Kein R _s	0 70	2		
PHEN	0.45	0.00	0.05	0.00	0.00	0.40	0	2,01	0,47	2,67	0,62	3,00	0,70	2		
PIR	0,15	0,02	0,25	0,03	0,83	0,10	3	1,43	0,85	2,83	1,68	8,30	4,96	3		
BDE028							0	1,15	0,53	2,12	0,98	kein R _s		2		
BDE047							0	0,05	0,02	0,25	0,08	kein R _s		2		
BDE099							0	0,08	0,04	0,29	0,12	kein Rs		2		
BDE100							0	0,80	1,31	0,89	1,40	kein R _s		3		
BDE 153							0	0,00		0,01		kein R _s		1		
							0	0,00	0.70	0,00	40.00	Kein Rs		1		
							0	14,00	0,70	10,57	43,80	kein Rs		3		
	129.07	11 40	774 46	63 OF	koin P		0	10,00	106 42	1065 70	1,33 506.02	kein <i>R</i> s		2		
	0.01	11,40	0.05	03,95	koin P		3 1	190,02	100,42	1000,79	090,92	Kelli Ks		0		
TRIFLUKALI	0,01		0,05		Kelli As									U		

LHW-Station	2 Mor	nate ¹	2 Mon	ate ²	2 Mon	ate ³		1 Mo	onat ¹	1 Mo	nat ²	1 Mon	at ³	
Magdeburg			N	1ai-Juli 20	11					J	uli/August	2011		
(Elbe)	ng/L	S	ng/L	S	ng/L	S	n positiv	ng/L	S	ng/L	S	ng/L	S	n positiv
CB028							0	0,00	0,00	0,02	0,01	0,07	0,03	3
CB052							0	0,00	0,00	0,02	0,01	0,08	0,03	3
CB101							0	0,00	0,00	0,00	0,00	0,09	0,03	2
CB118							n.a							
CB138							0							0
CB153							0	0,00	0,00	0,00	0,00	0,14	0,06	2
CB180			1		1		n.a					1		
DDTOP							0							0
DDTPP	0.00	0.00	0.05	0.04	0.00	0.07	0	0,00	0.04	0,01	0.04	kein R _s	0.40	1
DDDOP	0,03	0,00	0,05	0,01	0,38	0,07	3	0,04	0,01	0,06	0,01	1,70	0,40	3
DDDPP	0,06	0,01	0,11	0,02	0,94	0,20	3	0,06	0,00	0,06	0,00	2,28	0,16	3
							0	0.00	0.00	0.03	0.01	0.62	0.14	0
HCB	0.23	0.04	0.04	0 16	0.21	0.04	3	0,00	0,00	0,03	0,01	0,02	0,14	3
НСНА	1 94	0,04	0,94	0,10	2.80	0,04	3	3 31	0,03	1 00	0,14	8 30	1.85	3
HCHB	60.05	0, 4 2 7 31	1 78	0,12	kein R.	0,01	3	0,01	0,74	1,00	0,22	0,00	1,00	0
HCHG	4 07	0.55	1,70	0,22	2 04	0.28	3	3 52	0 24	1 24	0.09	3 04	0.21	3
ACE	1,01	0,00	1,00	0,10	2,01	0,20	0	0.65	0.19	0.54	0.16	kein R _s	0,21	2
ACY					_		n.a		-,	-,	-,			_
ANT	0,22	0,05	0,37	0,07	0,18	0,04	3	0,36	0,06	0,59	0,10	0,47	0,08	3
BAA			,				0	0,05	0,01	0,12	0,02	0,45	0,06	3
BAP							0							0
BBF							0	0,01	0,00	0,01	0,00	kein R _s		3
BGHIP	0,00		0,00		kein R _s		1	0,01	0,01	0,02	0,01	kein R _s		2
CHRTR	0,03	0,01	0,06	0,01	0,07	0,02	3	0,06	0,02	0,11	0,04	0,39	0,13	3
DBAHA							0	0,01	0,01	0,01	0,01	kein R _s		3
FL	0,51	0,08	0,48	0,08	0,24	0,04	3	0,30	0,04	0,28	0,04	0,24	0,04	3
FLU	1,12	0,17	1,80	0,27	9,18	1,36	3	1,21	0,29	1,81	0,43	17,21	4,06	3
I123P	0,00	0,00	0,00	0,00	kein R _s		3	0,01	0,01	0,02	0,01	kein R _s		2
PHEN	1,41	0,44	1,86	0,58	1,03	0,32	3	1,19	0,13	1,60	0,18	1,43	0,16	3
PYR	0,74	0,11	1,32	0,20	2,40	0,37	3	0,98	0,10	1,66	0,17	5,62	0,59	3
BDE028							0	0,38	0,23	0,35	0,22	kein R _s		2
BDE047							U	0,01	0,00	0,02	0,01	kein R _s		2
BDE100							U	0,02	0,01	0,05	0,03	kein R _s		2
BDE100							U	0,02	0,00	0,02	0,00	kein R _s		2
							0							0
DDE104			l		I		U	l				I		U

LHW-Station	2 Mon	ate1	2 Mona	ate ²	2 Monate ³			1 Monat ¹ 1 Monat ²			nat²	1 Monat ³		
Magdeburg			Μ	ai-Juli 20	11					Jı	uli/August	2011		_
(Elbe)	ng/L	S	ng/L	S	ng/L	S	n positiv	ng/L	S	ng/L	S	ng/L	S	n positiv
ATRAZIN	2,42	1,88	12,18	9,48	kein R _s		3							0
IRGAROL	0,64	0,30	0,94	0,43	kein R _s		3	4,31	0,28	6,31	0,41	kein R _s		2
TERBUAZI	179,72	10,05	1007,10	56,30	kein R _s		3	70,40	2,15	386,34	11,77	kein R _s		3
TRIFLURALI							0							0

 ${}^{1}C_{w}$ berechnet mit PRCs, experimentelle K_{sw} ${}^{2}C_{w}$ berechnet mit PRCs, K_{sw} berechnet mit LSER-Modell nach [19] ${}^{3}C_{w}$ berechnet mit Sammelrate aus Laborkalibrierung (v_{kal} = 0,4 cm/s; [26])

Tabelle A-2.7.7: Magdeburg (Elbe) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle **Silicone Sheets** (n=1 je Ausbringung); x = nicht analysiert; leere Zelle: < BG

LHW-Station	1 Mor	nat ¹	1 Mo	1 Monat ²			1 Moi	nat⁴	1 Monat⁵	
Magdeburg				Mai/J	Juni 2011					
(Elbe)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	ng/L	S
CB028	0,02	0,02	0,11	0,03	0,19	0,03	0,13	0,01	0,13	0,02
CB052	0,01	0,01	0,06	0,01	0,16	0,02	0,13	0,00	0,13	0,02
CB101	0,00	0,00	0,01	0,00	0,09	0,00	0,07	0,00	0,07	0,01
CB118	0,00	0,00	0,01	0,00	kein R _s		0,07	0,00	0,06	0,01
CB138	0,00	0,00	0,01	0,00	0,23	0,03	0,21	0,01	0,20	0,03
CB153	0,00	0,00	0,00	0,00	0,16	0,02	0,12	0,00	0,11	0,01
CB180	0,00	0,00	0,00	0,00	0,07	0,00	0,06	0,00	0,06	0,00
DDTOP	х		Х		х		х		х	
DDTPP	х		Х		х		х		х	
DDDOP	х		Х		х		х		х	
DDDPP	х		Х		х		х		х	
DDEOP	х		Х		х		х		х	
DDEPP	х		Х		х		х		х	
HCB	4,84	3,89	4,17	0,55	kein R _s		13,19	1,04	12,65	2,47
HCHA	х		Х		х		х		х	
HCHB	х		Х		х		х		х	
HCHG	х		Х		х		х		х	
ACY	2,15	1,06	1,41	0,69	kein R _s		0,36	0,14	0,34	0,09
ACE	3,42	1,84	2,72	1,41	kein R _s		1,30	0,54	1,21	0,37
ANT	0,63	0,33	0,85	0,39	2,18	0,56	0,90	0,31	0,84	0,20

LHW-Station	1 Monat ¹		1 Mo	onat ²	1 Monat ³		1 Monat ⁴		1 Monat⁵	
Magdeburg				Mai/J	uni 2011					
(Elbe)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	ng/L	S
DBAHA										
BAA	0,33		1,11		13,15		2,29		2,00	
BAP	0,05		0,11		3,26		0,73		0,64	
BBF	0,07		0,18		3,62		1,19		1,04	
BGHIP	0,02		0,03		4,30		0,62		0,55	
I123P	0,01		0,01		1,27		0,20		0,17	
CHRTR	0,81		2,48		12,33		5,09		4,46	
FL	3,53	1,76	3,13	1,44	8,57	2,28	2,10	0,75	1,96	0,48
FLU	4,92	1,82	9,71	4,80	26,48	3,59	9,65	0,40	9,24	1,46
PHEN	17,96	1,76	21,01	0,32	17,83	3,47	22,62	2,27	21,72	4,71
PYR	4,92	2,97	9,30	5,75	18,17	5,06	8,95	1,67	8,64	2,60
IRGAROL	1,59	0,77	2,33	1,13	kein R _s		0,31	0,18	0,31	0,21
CARBEND	104,39	8,71	370,18	30,88	kein <i>R</i> ₅		0,10	0,00	0,10	0,01
ALACHL	0,97	0,22	0,08	0,02	kein R _s		0,04	0,00	0,04	0,00
AMETRYN	0,10	0,01	6,22	0,43	kein R _s		0,23	0,01	0,22	0,04
ATRAZ	3,36	0,60	16,95	2,99	kein <i>R</i> ₅		0,29	0,02	0,28	0,02
BENTAZ	х		Х		х		х		х	
CHLORI	37,06	3,60	8,29	2,50	kein R _s		0,01	0,00	0,01	0,00
CHLORTUR	kein Ksw		34,39	3,45	kein R _s		0,52	0,11	0,51	0,17
DEATRAZ	kein Ksw		4,55	0,88	kein <i>R</i> ₅		0,01	0,00	0,01	0,00
DICHLPR										
DIURON	24,80	5,45	44,94	9,88	kein R _s		0,49	0,05	0,47	0,00
FENUR	х		Х		х		х		х	
HEXAZIN	0,33	0,08	2,27	0,53	kein R _s		0,02	0,00	0,01	0,00
ISOPRUR	47,02	8,93	23,54	4,47	kein R _s		0,72	0,22	0,70	0,29
LINUR	х		Х		х		х		х	
MCPA										
MECOPR										
METAZCHL	kein Ksw		5,95	4,60	kein R _s		0,79	0,67	0,79	0,73
METHABZT	х		Х		х		х		х	
METOLA	16,03	0,85	6,42	0,41	kein R _s		7,19	1,27	6,93	2,02
PENDIMETH	х		Х		х		х		х	
PROMETR	0,31	0,05	9,34	0,44	kein R _s		0,78	0,13	0,75	0,21
PROPAZ	0,18	0,02	2,52	0,28	kein R _s		0,10	0,00	0,10	0,01
SIMAZ	7,86	1,54	14,52	2,84	kein R _s		0,11	0,01	0,10	0,00
TERBAZ	45,32	5,23	253,15	27,83	kein R _s		11,60	0,05	11,08	1,35
TERBUTR	21,95	0,25	15,72	0,18	kein R _s		1,51	0,19	1,46	0,35

LHW-Station	1 Mona	at ¹	1 M	1 Mon	at ³	1 Mo	nat⁴	1 Monat⁵		
Magdeburg				Mai/Ju	ni 2011					
(Elbe)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	ng/L	S
AZINPH-E	х		х		х		х		х	
AZINPH-M	х		Х		х		х		х	
CHLORFENV	0,01	0,00	0,02	0,00	kein R _s		0,01	0,00	0,01	0,00
DIAZINON	3,83	0,50	0,94	0,12	kein R _s		0,51	0,12	0,50	0,18
DIMETH	х		Х		х		х		х	
MALATH										
PIRIMIC	1,60	0,12	3,90	0,31	kein R _s		0,09	0,02	0,08	0,03
BENZTRI	kein Ksw		416,14	104,87	kein R _s		0,05	0,01	0,05	0,00
HBCD-A	х		Х		х		х		х	
HBCD-BG	х		Х		х		х		х	
MTBT	kein Ksw		96,26	27,83	kein R _s		6,50	1,16	6,14	0,37
TBBPA										
CARBAMAZ	212,58	61,30	36,69	10,58	kein <i>R</i> ₅		0,96	0,17	0,90	0,05
CLOFIBRS										
DICLOF	379,71	82,71	0,55	0,23	kein R _s		0,01	0,00	0,01	0,00
NAPROX	kein Ksw		1,7E+03	174,35	kein <i>R</i> ₅		0,05	0,01	0,04	0,00
OXAZEP	х		х		х		х		х	
PRIMID	kein Ksw		12,62	2,16	kein R _s		0,00	0,00	0,00	0,00
PFBA	х		Х		х		х		х	
PFBS	kein Ksw		2,2E+11	2,7E+11	kein <i>R</i> ₅		0,00	0,00	0,00	0,00
PFDEA										
PFHPA	kein Ksw		3,1E+05	2,8E+05	kein R _s		0,00	0,00	0,00	0,00
PFHXA	kein Ksw		1,3E+06	3,0E+05	kein R _s		0,00	0,00	0,00	0,00
PFHXS	kein Ksw		1,9E+09	1,9E+09	kein <i>R</i> ₅		0,00	0,00	0,00	0,00
PFNOA	kein Ksw		1,7E+05	8,7E+03	kein R _s		0,01	0,00	0,01	0,00
PFOA	kein Ksw		7,1E+05	4,2E+05	kein R _s		0,01	0,00	0,01	0,00
PFOS	kein Ksw		1,3E+09	3,5E+08	kein <i>R</i> ₅		0,00	0,00	0,00	0,00
PFOSA	kein Ksw		0,40	0,26	kein R _s		0,01	0,01	0,01	0,01

¹C_w berechnet mit PRCs, experimentelle K_{sw} ²C_w berechnet mit PRCs, K_{sw} berechnet mit LSER-Modell nach [19] ³C_w berechnet mit Sammelrate aus Laborkalibrierung ($v_{kal} = 0.4$ cm/s; [27]) ⁴C_w berechnet nach [42], experimentelle K_{sw} ⁵C_w berechnet nach [42], K_{sw} berechnet mit LSER-Modell nach [19]

LHW-Station	n <u>1 Monat¹ 1 Monat²</u>		1 Monat ³		1 Mona	nt ¹	1 Monat ² 1 Monat ³					
Magdeburg		Mai/Jul	i 2011					Jur	ni/Juli 2011 (i	n=3)		
(Elbe)	ng/L	ng/L	S	ng/L	n positiv/n	ng/L	S	ng/L	S	ng/L	S	n positiv
CB028	0,02	0,03		0,06	1/1	0,00		0,01		0,02		1
CB052	0,01	0,01		0,03	1/1	0,05	0,03	0,02	0,01	0,03	0,01	3
CB101	0,00	0,00		0,05	1/1	0,02	0,01	0,02	0,01	0,10	0,03	3
CB118	0,00	0,00		0,02	1/1	0,02		0,04		0,13		1
CB138	0,00	0,00		0,05	1/1	0,01		0,02		0,20		1
CB153	0,00	0,00		0,02	1/1	0,01		0,02		0,12		1
CB180	0,00	0,00		kein R _s	1/1							0
DDTOP												0
DDTPP						0,27	0,11	0,17	0,07	kein <i>R</i> ₅		3
DDDOP												0
DDDPP												0
DDEOP												0
DDEPP	0,04	0,07		0,20	1/1	0,15	0,07	0,09	0,01	0,26	0,06	3
HCB	0,70	3,09		2,08	1/1	0,19	0,07	0,90	0,26	0,47	0,08	3
HCHA	х	х		х	1/1	х		х		х		1
HCHB	х	х		x	1/1	х		х		х		3
HCHG	X	x		X	1/1	х		х		х		3
IRGAROL	kein Ksw	0,19	0,01	kein R _s	2/2							0
CARBEND												0
ALACHL												0
AMEIRYN												0
AIRAZ						kein Ksw		17,44	15,47	kein R _s		3
BENTAZ												0
												0
CHLORIUR												0
												0
	kain Kaw	0.00		kain D	1/0							0
	Kein KSW	0,68		Kein Rs	1/2							0
												0
						koin Kow		0.61		koin P		1
						Kein KSW		0,01		Kein Rs		
												0
MECODD												0
												0
METAZCHL										1		U

Tabelle A-2.7.8: Magdeburg (Elbe) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle **LDPE-Streifen**; x = nicht analysiert; leere Zelle: < BG

LHW-Station	1 Monat ¹	1 Mc	onat ²	1 Monat ³		1 Monat ¹			1 Monat ² 1 Monat ³			
Magdeburg		Mai/Ju	li 2011					Jun	i/Juli 2011 (n	=3)		-
(Elbe)	ng/L	ng/L	S	ng/L	n positiv/n	ng/L	S	ng/L	S	ng/L	S	n positiv
METHABZT												0
METOLA	kein Ksw	3,18	0,87	kein R _s	2/2	kein Ksw		0,09	0,02	kein R _s		2
PENDIMETH	kein Ksw	0,05	0,00	kein <i>R</i> ₅	2/2							0
PROMETR	kein Ksw	0,15	0,01	kein R _s	2/2	kein Ksw		0,03	0,00	kein R _s		2
PROPAZ												0
SIMAZ	kein Ksw	18,54	17,78	kein R _s	2/2							0
TERBAZ	kein Ksw	10,92	3,37	kein <i>R</i> s	2/2	kein Ksw		1,21	0,63	kein <i>R</i> s		3
IERBUIR	kein Ksw	0,32	0,04	kein R_{s}	2/2	kein Ksw		0,08	0,05	kein R_{s}		3
AZINPH-E												0
AZINPH-M												0
												0
												0
	koin Kow	1 20	0.01	koin P	2/2							0
	Kelli KSW	1,29	0,01	Kelli / As	212							0
BENZTRI						kein Ksw		112 84		kein R.		1
HBCD-A						Kennikew		112,01		Non 7 kg		0
HBCD-BG												0
MTBT												0
TBBPA												0
CARBAMAZ	kein Ksw	10,33	10,78	kein <i>R</i> ₅	2/2	kein Ksw		7,52	10,58	kein <i>R</i> s		2
CLOFIBRS						kein Ksw		5339,78		kein <i>R</i> s		1
DICLOF	kein Ksw	692,97		kein R _s	1/2							0
NAPROX												0
OXAZEP												0
PRIMID												0
PFBA												0
PFBS												0
PFDEA								4.75.00	0.55.00			0
PFHPA						kein Ksw		4,7E+08	6,5E+08			2
PEHXA						Kein Ksw		3,5⊑+08	3,7E+08			2
PFHX5 DENOA						koin Kow		1 15+05	0.25+04			0
	×	v		v	1/2	Kelli KSW		1,1⊑+05	9,20+04	×		∠ 1
PEOS	kein Kew	2 3E+00	5 1E+09	kein R	1/Z 2/2	~		^		~		
PFOSA	NGILI NOW	2,50,00	3,1∟100	KGIII / \S	212							0

LHW-Station	2 Mona	2 Monate ¹		2 Monate ² 2 Monate ³				2 Monate ¹ 2 Monate ²			nate ²	2 Monate ³		
Magdeburg			Mai	i-Juli 2011 (ı	n=2)		•			Juni-A	August 20	11 (n=3)		
(Elbe)	ng/L	S	ng/L	S	ng/L	S	n positiv	ng/L	S	ng/L	S	ng/L	S	n positiv
CB028	0,02	0,00	0,02	0,00	0,03	0,00	2	0,03	0,01	0,04	0,02	0,05	0,02	3
CB052	0,03	0,00	0,01	0,00	0,05	0,00	2	0,02	0,01	0,01	0,01	0,05	0,02	3
CB101	0,01	0,00	0,01	0,00	0,09	0,01	2	0,00	0,00	0,00	0,00	0,06	0,01	3
CB118	0,00	0,00	0,00	0,00	0,03	0,00	2	0,00	0,00	0,00	0,00	0,02	0,01	3
CB138	0,01	0,00	0,00	0,00	0,10	0,01	2	0,00	0,00	0,00	0,00	0,06	0,02	3
CB153	0,00	0,00	0,00	0,00	0,04	0,00	2	0,00	0,00	0,00	0,00	0,03	0,01	3
CB180	0,00	0,00	0,00	0,00	kein R _s		2	0,00	0,00	0,00	0,00	kein R _s		2
DDTOP														0
DDTPP														0
DDDOP														0
DDDPP														0
DDEOP														0
DDEPP	0,14	0,01	0,11	0,01	0,36	0,04	2	0,04	0,01	0,08	0,03	0,25	0,09	3
HCB	0,61	0,00	2,85	0,04	1,97	0,03	2	0,60	0,24	3,06	0,99	1,96	0,58	3
HCHA	X		X		X		2	X		Х		X		2
HCHB	X		X		X		2	X		X		x		3
	X koin Kow		X 0.15	0.00	X koin D		2	X kain Kaw		X 0.22	0.16	X koin D		3
	Kelli KSW		0,15	0,00	Kelli R _s		2	Kein KSW		0,22	0,10	Kein R _s		3
														0
														0
								kein Ksw		1 82		kein R.		1
BENTAZ								Kelli Kow		1,02		KCITT AS		0
CHLORI														0
CHLORTUR														0
DEATRAZ														0
DICHLPR														0
DIURON														0
FENUR														0
HEXAZIN														0
ISOPRUR	kein Ksw		0,58	0,01	kein R _s		2							0
LINUR														0
MCPA														0
MECOPR														0
METAZCHL	kein Ksw		0,61	0,02	kein R _s		2							0
METHABZT														0
METOLA	kein Ksw		0,73	0,01	kein R _s		2	kein Ksw		0,18	0,01	kein R _s		3
PENDIMETH	kein Ksw		0,05	0,00	kein R _s		2	kein Ksw		0,03	0,01	kein R _s		3

A-2.97	•
--------	---

LHW-Station	2 Monat	e ¹	2 Mo	nate ²	2 Mor	nate ³		2 Monate	e ¹	2 Mon	ate ²	2 Mor	nate ³	
Magdeburg			Mai	-Juli 2011 (r	=2)					Juni-A	ugust 20	11 (n=3)		
(Elbe)	ng/L	s	ng/L	S	ng/L	S	n positiv	ng/L	S	ng/L	S	ng/L	S	n positiv
PROMETR	kein Ksw		0,10	0,00	kein R _s		2	kein Ksw		0,11	0,02	kein R _s		3
PROPAZ														0
SIMAZ	kein Ksw		2,06	0,04	kein R _s		2	kein Ksw		16,55	8,78	kein R _s		3
TERBAZ	kein Ksw		5,63	0,04	kein R _s		2	kein Ksw		2,80	0,39	kein R _s		3
TERBUTR	kein Ksw		0,29	0,00	kein R _s		2	kein Ksw		0,28	0,06	kein R _s		3
AZINPH-E														0
AZINPH-M														0
CHLORFENV														0
DIAZINON														0
DIMETH														0
MALATH	kein Ksw		2,68	0,43	kein R _s		2	kein Ksw		1,34	0,29	kein R _s		3
PIRIMIC														0
BENZTRI														0
HBCD-A	kein Ksw		0,00	0,00	kein <i>R</i> ₅		2							0
HBCD-BG														0
MTBT														0
TBBPA														0
CARBAMAZ	kein Ksw		0,82	0,02	kein R _s		2	kein Ksw		0,05		kein R _s		1
CLOFIBRS														0
DICLOF														0
NAPROX														0
OXAZEP														0
PRIMID														0
PFBA														0
PFBS	In a la Marrie		0.05.04		lucia D		0							0
PFDEA	Kein Ksw		6,9E+04	5,6E+02	kein R _s		2							0
PFHPA														0
PFHXA														0
PEHAS	koin Kow			1 55 100	kain D		2							0
PFNUA	Kein KSW		0,5⊏+04	1,5⊏+03	kein R _s		2							0
PFUA	X			4 55 107	X kain D		2	х		Х		X		2
PFUS	Kein Ksw		0,0⊑+09	4,5⊏+U/	kein R _s		2							0
PFUSA	Kein KSW		0,00	0,00	kein $R_{\rm s}$		2							U

 ${}^{1}C_{w}$ berechnet mit PRCs, experimentelle K_{sw} ${}^{2}C_{w}$ berechnet mit PRCs, K_{sw} berechnet in Anlehnung an [24] ${}^{3}C_{w}$ berechnet mit Sammelrate aus Laborkalibrierung (v_{kal} = 0,4 cm/s; [26])

A-2.8: Berechnete zeitgemittelte Durchschnittskonzentrationen – Übergangs-, Küstengewässer und Hochsee

Tabelle A-2.8.1: Hamburg (Elbe) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle MESCO und Silikonstab; leere Zelle: < BG

	MESCO ¹		MESCO ² MESCO ³				Siliko	onstab ¹	Silikonstab ²		Silikonstab ³			
Kirchenpauerkai					-	Ν	ovember 20	11 (42 Ta	ge)					-
Hamburg (Eibe)	ng/L	S	ng/L	S	ng/L	S	n positiv	ng/L	S	ng/L	S	ng/L	S	n positiv
CB028	0,00		0,00		0,01	0,01	1	0,00	0,00	0,02	0,01	0,03	0,02	2
CB052							0							0
CB101							0							0
CB118							n.a	a.						
CB138							0							0
CB153							0							0
CB180					_		n.a	a.						
DDTOP	0,01		0,01		1,28	1,80	1	0,37	0,61	0,29	0,41	3,51	0,63	3
DDTPP	0,01	0,00	0,01	0,01	kein R _S		3	0,12	0,19	0,07	0,10	kein R _S		3
DDDOP					0,00		0	0,42	0,70	0,10	0,12	0,46	0,09	3
DDDPP	0,02		0,01		0,61	0,87	1	1,07	1,77	0,19	0,24	1,13	0,23	3
DDEOP							0							0
DDEPP							0	0,05	0,07	0,07	0,07	0,21	0,02	2
HCB	0,08	0,04	0,24	0,12	0,07	0,06	3	4,39	7,29	1,40	0,81	0,20	0,06	3
HCHA							0	5,60	2,51	1,83	1,03	7,06	2,46	3
HCHB	8,30	0,60	0,26	0,02	kein R _S		2	26,92	5,35	0,88	0,17	kein R _S		3
HCHG	1,58	0,60	0,54	0,21	3,23	2,80	3	14,39	2,55	5,37	1,52	6,41	0,44	3
ACE	1,72	0,54	1,43	0,45	kein R _S		3	3,32	1,38	2,98	1,49	kein R _S		3
ACY							n.a	a.						
ANT	0,13	0,05	0,20	0,08	0,09	0,08	3	1,86	1,70	1,68	0,75	0,59	0,12	3
BAA	0,02	0,02	0,03	0,02	kein R _s		3	1,08	1,77	0,26	0,24	0,26	0,03	3
BAP	0,01	0,00	0,01	0,00	kein <i>R</i> s		3	0,18	0,30	0,06	0,08	kein R _S		3
BBF							0	0,01	0,00	0,01	0,00	kein R _s		2
BGHIP							0							0
CHRTR	0,03		0,03		kein <i>R</i> s		1	2,18	3,59	0,45	0,43	0,39	0,07	3
DBAHA	0,00	0,00	0,00	0,00	kein R _s		3	0,01	0,02	0,01	0,01	kein R _s		3
FL	2,57	0,94	2,42	0,89	0,73	0,64	3	6,62	2,74	6,77	3,28	2,67	0,83	3
FLU	0,43	0,22	0,53	0,25	2,75	2,45	3	34,09	54,38	5,91	3,72	19,13	4,08	3
1123P	0.00	4.6-	o · -				0	4.65		4.00				0
PHEN	2,63	1,25	3,45	1,65	1,21	1,09	3	1,32	1,17	1,28	0,93	0,48	0,24	3
PYR	0,33	0,16	0,44	0,19	2,82	2,54	3	30,24	48,83	5,05	3,13	5,83	1,18	3
BDE028							0							0
BDE047							0							0

A-2.99

Kirahannauarkai	MES	SCO ¹	MES	CO ²	MESC	CO ³		Siliko	nstab ¹	Siliko	nstab ²	Silikons	stab ³	
Hamburg (Elbe)			_		_	1	November 20	11 (42 Tag	ge)	_				
namburg (Elbe)	ng/L	S	ng/L	S	ng/L	S	n positiv	ng/L	S	ng/L	S	ng/L	S	n positiv
BDE099	0,00	0,00	0,01	0,00	kein R _S		2							0
BDE100	0,89	0,45	0,55	0,37	kein R _S		2	0,03		0,03		kein R _S		1
BDE153	0,01		0,01		kein R _S		1							0
BDE154	0,01		0,01		kein R _S		1	0,00		0,00		kein R _S		1
ATRAZIN							0							0
IRGAROL							0							0
TERBUAZI							0	13,12	6,30	73,67	35,47	kein R _S		3
TRIFLURALI							0							0

 ${}^{1}C_{w}$ berechnet mit PRCs, experimentelle K_{sw} ${}^{2}C_{w}$ berechnet mit PRCs, K_{sw} berechnet mit LSER-Modell nach [19] ${}^{3}C_{w}$ berechnet mit Sammelrate aus Laborkalibrierung (v_{kal} = 0,4 cm/s; [26])

Tabelle A-2.8.2: Hamburg (Elbe) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle **Silicone Sheets** (n=2 je Ausbringung); x = nicht analysiert; n.d. nicht detektiert; leere Zelle: < BG

Kinahannauarkai	KI	KA ¹	KI	KA ²	KIKA	A ³	KIKA ⁴						
Kirchenpauerkai Hamburg (Elbe)		25.05.2010 (63 Tage)											
namburg (Libe)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv				
CB028	0,09	0,00	0,17	0,00	n.d.		n.d.		2				
CB052	2,4E+03	1,69	0,12	0,00	n.d.		n.d.		2				
CB101	2,0E+10	1,0E+09	6,6E+06	3,3E+05	n.d.		n.d.		2				
CB118	1,5E+12	6,7E+10	7,4E+06	3,4E+05	n.d.		n.d.		2				
CB138					n.d.		n.d.		2				
CB153					n.d.		n.d.		2				
CB180					n.d.		n.d.		2				
DDTOP									0				
DDTPP									0				
DDDOP									0				
DDDPP									0				
DDEOP									0				
DDEPP	х		х		х		х		2				
HCB	1,61		9,33		n.d.		n.d.		1				
HCHA									0				
HCHB	х		х		х		х		2				
HCHG	х		х		X		x		2				
ACE	24,63	0,11	20,09	0,09	n.d.		n.d.		2				

Δ	2	1	n	\cap
	~~.		v	v

	KIK	A ¹	KI	KA ²	KIKA ³		KIK	A ⁴	
Kirchenpauerkai			-	25.0	5.2010 (63 Tage)		-		
Hamburg (Elbe)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv
ACY	11,41	3,71	7,53	2,45	n.d.		n.d.		2
ANT	6,87	0,25	11,48	0,41	n.d.		n.d.		2
BAA	0,08	0,00	0,21	0,00	n.d.		n.d.		2
BAP	18,80	0,15	n.d.	n.d.	n.d.		n.d.		2
BBF	267,20	1,47	n.d.	n.d.	n.d.		n.d.		2
BGHIP	n.d.	n.d.			n.d.		n.d.		2
CHRTR	0,18	0,00	0,38	0,00	n.d.		n.d.		2
DBAHA									0
FL	29,31	3,05	27,14	2,82	n.d.		n.d.		2
FLU	5,50	0,13	8,15	0,19	n.d.		n.d.		2
I123P	n.d.	n.d.			n.d.		n.d.		2
PHEN	24,95	1,71	32,93	2,26	n.d.		- n.d.		2
PYR	3,50	0,05	5,92	0,08	n.d.		n.d.		2
IRGAROL	13,66		20,03		n.d.		n.d.		1
CARBEND	n.d.	0.93	n.d.	3.31	n.d.		n.d.		2
ALACHL	n.d.	1,72			n.d.		n.d.		2
AMETRYN	0,19	0,00	15,88	0,22	n.d.		n.d.		2
ATRAZ	5.58	0.07	28.15	0.37	- n.d.		n.d.		2
BENTAZ	-,	-,		-,					0
CHLORI									0
CHLORTUR	kein Ksw		31.42	0.21	n.d.		n.d.		2
DFATRAZ	kein Ksw		8.24	0.52	n.d.		n.d.		2
DICHI PR			0,	0,01					0
DIURON	44.58	3.36	80.79	6.08	n.d.		n.d.		2
FENUR	x	0,00	x	0,00	x		X		2
HEXAZIN	0.95	0.04	6 55	0.25	nd		nd		2
ISOPRUR	104 21	5 85	52 18	2.93	n d		n d		2
LINUR	x	0,00	x	2,00	x		x		2
MCPA	^		^		^		^		0
MECOPR									0
METAZCHI	kein Ksw		12 10	2 77	n d		n d		2
METHABZT	Kelli KSW		12,10	2,11	n.u.		n.u.		2
	18 56		7 4 8		nd		n d		1
PENDIMETH	2 14	1 00	1 27	0 59	n.u.		n d		2
	2,14 0.00	1,00	45.02	0,09	n.u.		n.u.		2 1
	0.30	0.00	40,02	0.04	n.u.		n.u.		1 2
	10.74	0,00	3,43 10.94	0,04	n.u.		n.u.		2
SINAL	10,74	0,20	19,04	0,52	n.u.		n.u.		<u> </u>
TERBAZ	13,80		77,41		n.d.		n.u.		1

	KIK	A ¹	KI	۲A ²	KIK	A ³	KIKA	4 ⁴	
Kirchenpauerkai			-	25.0	5.2010 (63 Tage	e)			
Halliburg (Elbe)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv
TERBUTR	34,34		24,60		n.d.		n.d.		1
AZINPH-E									0
AZINPH-M									0
CHLORFENV	0,03	0,00	0,04	0,00	n.d.		n.d.		2
DIAZINON	29,24	6,26	7,16	1,53	n.d.		n.d.		2
DIMETH									0
MALATH									0
PIRIMIC	1,57	0,03	3,84	0,08	n.d.		n.d.		2
BENZTRI	kein Ksw		254,56	7,38	n.d.		n.d.		2
HBCD-A									0
HBCD-BG	х		х		х		х		2
MTBT									0
TBBPA	kein Ksw				n.d.		n.d.		1
CARBAMAZ	n.d.	0,31	92,26	0,05	n.d.		n.d.		2
CLOFIBRS									0
DICLOF									0
NAPROX									0
OXAZEP									0
PRIMID									0
PFBA	х		х		х		х		2
PFBS									0
PFDEA	kein Ksw		6,1E+03		1,7E+03	2,3E+03	3,24		2
PFHPA	kein Ksw		5,9E+04	7,1E+04	-42,55		-0,08		2
PFHXA									0
PFHXS									0
PFNOA	kein Ksw		2,0E+04		-3,3E+03		-6,41		1
PFOA	kein Ksw		1,4E+05	1,5E+05	-4,7E+03		-9,27		2
PFOS	kein Ksw		1,7E+09	1,1E+07	-6,9E+03		-13,47		2
PFOSA	kein Ksw		0,669	0,036	-1,7E+04		-32,73		2

Kinahannavarkai	KIKA ¹	l	KIK	KA ²	KIK	A ³	KIKA ⁴						
Kirchenpauerkai Hamburg (Elbe)		27.07.2010 (83 Tage)											
nambarg (Eise)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv				
CB028	0,045		0,342		0,028		0,157		1				
CB052									0				
CB101	0,006		0,044		0,016		0,091		1				

	KIKA	A ¹	KIK	KA ²	KIK	A ³	KIK	A ⁴	
Kirchenpauerkai			-	27.	07.2010 (83 Ta	ge)	-		•
Hamburg (Libe)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv
CB118	0,003		0,030		0,011		0,063		1
CB138									0
CB153	0,002		0,016		0,021		0,116		1
CB180	0,001		0,002		0,009		0,048		1
DDTOP									0
DDTPP									0
DDDOP									0
DDDPP									0
DDEOP									0
DDEPP	х		х		х		х		2
HCB	0,003		0,008		0,010		0,010		1
HCHA									0
HCHB	х		х		х		х		1
HCHG									0
ACY	3,457	1,314	2,280	0,867	0,182	0,147	0,359	0,100	2
ACE	1,736	0,017	1,416	0,014	0,264	0,273	0,427	0,050	2
ANT	0,816	0,038	1,351	0,056	0,527	0,532	0,874	0,057	2
DBAHA									0
BAA	0,946	0,078	5,257	1,024	1,496	1,506	2,487	0,149	2
BAP	0,173	0,031	0,475	0,105	0,406	0,413	0,668	0,055	2
BBF	0,584	0,109	1,703	0,377	1,458	1,484	2,396	0,201	2
BGHIP	0,072	0,015	0,119	0,026	0,317	0,322	0,520	0,044	2
I123P	0,059	0,013	0,105	0,024	0,281	0,287	0,461	0,042	2
CHRTR	2,517	0,157	13,868	2,676	3,944	3,965	6,561	0,381	2
FL	3,633	0,041	3,364	0,036	0,867	0,888	1,415	0,139	2
FLU	6,921	0,213	29,602	3,463	9,795	9,978	16,086	1,376	2
PHEN	10,893	0,031	14,412	0,015	5,754	5,923	9,352	1,008	2
PYR	4,948	0,144	21,959	2,525	7,260	7,388	11,933	0,997	2
IRGAROL	2,431		3,565		0,047		0,260		1
CARBEND	74,796	0,675	265,241	2,394	0,027	0,028	0,045	0,004	2
ALACHL	2,441	1,285	0,197	0,104	0,028	0,020	0,061	0,026	2
AMETRYN	0,030	0,005	2,351	0,340	0,030	0,029	0,052	0,002	2
ATRAZ	1,179	0,127	5,947	0,640	0,037	0,036	0,064	0,000	2
BENTAZ									0

A٠	-2.	1	03

	KIKA ¹		KIKA ²		KIKA ³		KIKA ⁴		
Kirchenpauerkai Hamburg (Elbe)				27.0	07.2010 (83 Ta	ige)			
nambarg (1 100)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv
CHLORI									0
CHLORTUR	kein Ksw		7,815	0,308	0,044	0,044	0,072	0,005	2
DEATRAZ	kein Ksw		2,396	0,359	0,001	0,001	0,002	0,000	2
DICHLPR									0
DIURON	5,985	0,265	10,846	0,480	0,044	0,045	0,074	0,005	2
FENUR	х		х		х		х		2
HEXAZIN	0,170	0,007	1,170	0,049	0,003	0,003	0,005	0,000	2
ISOPRUR	33,899	0,052	16,973	0,026	0,195	0,201	0,316	0,035	2
LINUR	х		х		х		х		2
MCPA									0
MECOPR									0
METAZCHL	kein Ksw		25,459	4,487	1,108	1,040	1,961	0,134	2
METHABZT									0
METOLA	3,256		1,315		0,150		0,826		1
PENDIMETH	0,479	0,250	1,574	0,570	0,443	0,310	0,952	0,399	2
PROMETR	0,185		8,114		0,069		0,382		1
PROPAZ	0,049	0,001	0,704	0,017	0,010	0,011	0,017	0,001	2
SIMAZ	1,973	0,087	3,645	0,161	0,010	0,010	0,017	0,001	2
TERBAZ	2,441		13,689		0,065		0,356		1
TERBUTR	5,893		4,222		0,042		0,229		1
AZINPH-E									0
AZINPH-M									0
CHLORFENV	0,016	0,003	0,018	0,003	0,003	0,003	0,005	0,000	2
DIAZINON	8,329	0,399	2,038	0,098	0,407	0,409	0,676	0,041	2
DIMETH									0
MALATH									0
PIRIMIC	0,472	0,004	1,154	0,009	0,009	0,010	0,015	0,002	2
BENZTRI	kein Ksw		96,421	20,569	0,005	0,004	0,009	0,001	2
HBCD-A									0
HBCD-BG	х		х		х		х		1
MTBT									0
TBBPA									0
CARBAMAZ	93,063	2,141	16,060	0,370	0,158	0,161	0,260	0,022	2
CLOFIBRS									0

	KIKA ¹		KIKA ²		KIK	KIKA ³		KIKA ⁴	
Kirchenpauerkai Hamburg (Elbe)				27.0	7.2010 (83 Ta	ge)			-
nambarg (±156)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv
DICLOF									0
NAPROX									0
OXAZEP									0
PRIMID									0
PFBA	х		х		х		х		0
PFBS									0
PFDEA									0
PFHPA	kein Ksw		1,1E+05		0,000		0,000		1
PFHXA									0
PFHXS									0
PFNOA	kein Ksw				-0,002	0,002	-0,003	0,001	2
PFOA	kein Ksw				-0,001	0,001	-0,001	0,000	2
PFOS	kein Ksw		9,3E+08	5,1E+08	0,001	0,000	0,001	0,001	2
PFOSA	kein Ksw		0,069	0,007	0,002	0,002	0,003	0,000	2

Kirohonnouarkai	KIKA ¹		KI	KIKA ²		KIKA ³		KIKA⁴	
Hamburg (Elbe)				25.	11.2010 (49 Ta	age)			
Hamburg (Libe)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv
CB028	0,003	0,000	0,022	0,000	0,000	0,000	0,001	0,000	2
CB052	0,002	0,000	0,013	0,001	0,000	0,000	0,001	0,000	2
CB101	0,000	0,000	0,002	0,000	0,000	0,000	0,000	0,000	2
CB118	0,000		0,002		0,000		0,000		1
CB138	0,000		0,001		0,000		0,001		1
CB153	0,002	0,003	0,015	0,020	0,004	0,005	0,008	0,011	2
CB180	0,000		0,000		0,000		0,000		1
DDTOP									0
DDTPP									0
DDDOP									0
DDDPP									0
DDEOP									0
DDEPP	х		х		х		х		2
HCB	0,385	0,036	1,878	0,174	0,011	0,001	0,024	0,002	2
HCHA									0
HCHB	х		х		x		х		2
HCHG									0

A	-2.	1	05

Kinahannauarkai	KIKA ¹		KI	KA ²	KI	KA ³	KI	KA⁴	
Hamburg (Elbe)				25.1	11.2010 (49 Ta	age)	_		_
Hambarg (Elbe)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv
ACY	12,609	0,882	8,314	0,582	0,005	0,000	0,010	0,001	2
ACE	5,921	0,321	4,818	0,261	0,005	0,000	0,011	0,001	2
ANT	1,111	0,376	1,770	0,599	0,004	0,001	0,009	0,003	2
DBAHA									0
BAA	0,078	0,002	0,190	0,004	0,003	0,000	0,007	0,000	2
BAP	0,007	0,001	0,014	0,001	0,001	0,000	0,002	0,000	2
BBF	0,019	0,000	0,040	0,001	0,002	0,000	0,005	0,000	2
BGHIP	0,002	0,000	0,003	0,000	0,000	0,000	0,001	0,000	2
I123P	0,002	0,000	0,003	0,000	0,000	0,000	0,001	0,000	2
CHRTR	0,238	0,052	0,496	0,108	0,008	0,002	0,018	0,004	2
FL	17,448	8,027	16,077	7,396	0,025	0,011	0,053	0,024	2
FLU	4,981	1,350	8,525	2,310	0,044	0,012	0,096	0,026	2
PHEN	48,154	18,307	62,190	23,644	0,146	0,056	0,315	0,120	2
PYR	3,601	0,782	6,829	1,484	0,036	0,008	0,077	0,017	2
IRGAROL	3,236	0,089	4,744	0,131	0,001	0,000	0,003	0,000	2
CARBEND	30,992	0,897	109,903	3,179	0,000	0,000	0,000	0,000	2
ALACHL	4,772	0,437	0,386	0,035	0,000	0,000	0,001	0,000	2
AMETRYN	0,039	0,009	2,865	0,691	0,000	0,000	0,001	0,000	2
ATRAZ	1,486	0,312	7,492	1,572	0,000	0,000	0,001	0,000	2
BENTAZ									0
CHLORI									0
CHLORTUR	kein Ksw		45,008	2,836	0,002	0,000	0,003	0,000	2
DEATRAZ	kein Ksw		3,696	0,004	0,000	0,000	0,000	0,000	2
DICHLPR									0
DIURON	7,452	0,367	13,505	0,665	0,000	0,000	0,001	0,000	2
FENUR	x		x		x		x		2
HEXAZIN	0,053	0,008	0,366	0,056	0,000	0,000	0,000	0,000	2
ISOPRUR	102,306	3,888	51,224	1,947	0,003	0,000	0,007	0,000	2
LINUR	x		x		x		x		2
MCPA									0
MECOPR									0
METAZCHL	kein Ksw		10,347	0,793	0,003	0,000	0,006	0,000	2
METHABZT									0
METOLA	3,599	0,017	1,454	0,007	0,004	0,000	0,008	0,000	2
PENDIMETH	х		х		x		x		2
PROMETR	0,212	0,002	8,923	0,076	0,002	0,000	0,004	0,000	2
PROPAZ	0,082	0,001	1,168	0,012	0,000	0,000	0,000	0,000	2
SIMAZ	2,734	0,328	5,052	0,606	0,000	0,000	0,000	0,000	2
TERBAZ	3,920	0,218	21,978	1,223	0,002	0,000	0,005	0,000	2

Kinghammana dari	KIKA ¹		KIKA ²		KI	κA³	KI		
Kirchenpauerkai			-	25.7	11.2010 (49 Ta	age)	-		
Halliburg (Elbe)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv
TERBUTR	9,330	0,666	6,683	0,477	0,001	0,000	0,003	0,000	2
AZINPH-E									0
AZINPH-M									0
CHLORFENV	0,021	0,001	0,024	0,002	0,000	0,000	0,000	0,000	2
DIAZINON	6,962	0,292	1,704	0,072	0,002	0,000	0,004	0,000	2
DIMETH									0
MALATH									0
PIRIMIC	0,331	0,013	0,808	0,031	0,000	0,000	0,000	0,000	2
BENZTRI	kein Ksw		195,274	8,361	0,000	0,000	0,000	0,000	2
HBCD-A									0
HBCD-BG	х		х		х		х		1
MTBT									0
TBBPA	kein Ksw		0,000	0,000	0,000	0,000	0,000	0,000	2
CARBAMAZ	51,407	1,094	8,871	0,189	0,001	0,000	0,001	0,000	2
CLOFIBRS									0
DICLOF									0
NAPROX									0
OXAZEP									0
PRIMID									0
PFBA	х		х		X		X		2
PFBS					0,000		0,000		0
PFDEA			2,5E+04		0,000		0,000		1
PFHPA	kein Ksw		2,4E+05	7,2E+04	0,000	0,000	0,000	0,000	2
PFHXA									0
PFHXS									0
PENOA	kein Ksw		2,9E+05	3,0E+04	0,000	0,000	0,000	0,000	2
PFOA	kein Ksw		7,0E+05	1,5E+05	0,000	0,000	0,000	0,000	2
PFOS	kein Ksw		5,0E+08	3,9E+08	0,000	0,000	0,000	0,000	2
PFOSA	kein Ksw		0,171	0,028	0,000	0,000	0,000	0,000	2

 ${}^{1}C_{w}$ berechnet mit PRCs, experimentelle K_{sw} ${}^{2}C_{w}$ berechnet mit PRCs, K_{sw} berechnet mit LSER-Modell nach [19] ${}^{3}C_{w}$ berechnet nach [42], experimentelle K_{sw} ${}^{4}C_{w}$ berechnet nach [42], K_{sw} berechnet mit LSER-Modell nach [19]

Tabelle A-2.8.3: Kirchenpauerkai Hamburg (Elbe) - zeitgemittelte Durchschnittskonzentrationen cTWA unterschiedlicher Berechnungsmodelle LDPE-Streifen (n=3 je Ausbringung). x = nicht analysiert; n.d. nicht detektiert; leere Zelle: < BG

Kinahannavarkai	KIK	A ¹	KI	KA ²	KI	۲A ³	
Kirchenpauerkai Hamburg (Elbe)			25.11	.2010 (49 Tage	, n=3)		
namburg (Eibe)	ng/L	S	ng/L	S	ng/L	S	n positiv
CB028	0,008	0,009	0,007	0,004	0,001	0,000	3
CB052	0,012	0,011	0,005	0,001	0,002	0,000	3
CB101	0,006	0,003	0,002	0,001	0,001	0,000	3
CB118	0,001	0,001	0,001	0,000	kein R _s		3
CB138	0,002	0,001	0,002	0,003	0,001	0,000	3
CB153	0,001	0,001	0,002	0,002	0,001	0,000	3
CB180	0,000	0,000	0,000	0,000			3
DDTOP							0
DDTPP	1,864	3,157	1,008	1,728	0,440	0,756	3
DDDOP							0
DDDPP	299,985	519,522	254,868	441,381	42,187	73,061	3
DDEOP							0
DDEPP	0,043	0,020	0,047	0,016	0,003	0,001	3
HCB	0,167	0,154	0,492	0,174	0,020	0,007	3
HCHA							0
HCHB	х		х		х		1
HCHG							0
ACE							0
ACY							0
ANT	0,213	0,002	0,207	0,002	0,052	0,000	2
BAA							3
BAP	0,090	0,072	0,038	0,006	0,011	0,003	2
BBF	0,006	0,007	0,022	0,025	0,002	0,001	3
BGHIP	0,023	0,019	0,058	0,073	0,009	0,002	2
CHRTR	0,002	0,002	0,002	0,003	0,001	0,000	3
DBAHA							0
FL	0,200	0,165	0,093	0,019	0,028	0,005	3
FLU	х		Х		Х		3
I123P	3,839	0,508	3,444	0,813	0,624	0,084	0
PHEN	3,287	2,453	2,622	2,036	1,264	0,959	3
PYR	3,052	0,551	4,012	0,728	0,511	0,042	3
IRGAROL	kein Ksw		0,107	0,073	kein R _s		2
PENDIMETH	kein Ksw		0,515	0,025	kein R _s		3
TERBAZ	kein Ksw		0,525	0,109	kein R _s		3
TERBUTR	kein Ksw		0,098	0,026	kein R _s		3

 ${}^{1}C_{w}$ berechnet mit PRCs, experimentelle ${}^{2}C_{w}$ berechnet mit PRCs, K_{sw} berechnet in Anlehnung an [24] ${}^{3}C_{w}$ berechnet mit Sammelrate aus Laborkalibrierung (v_{kal} = 40 cm/s; [26])

Tabelle A-2.8.4: Fehmarnsund (Ostsee) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle Silicone Sheets; x = nicht analysiert; n.d. nicht detektiert; leere Zelle: < BG

Fohmarnsund	Fehmarn ¹		Fehmarn ²		Fehmarn ³		Fehmarn ⁴						
(Ostsee)		15.06.2011 (44 Tage, n=3)											
(001000)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv				
CB028	0,003	0,000	0,017	0,011	0,002	0,000	0,007	0,001	3				
CB052	0,002	0,000	0,009	0,006	0,002	0,000	0,007	0,000	3				
CB101	0,002	0,000	0,004	0,004	0,003	0,000	0,009	0,001	3				
CB118	0,002	0,000	0,004	0,003	0,004	0,000	0,013	0,001	3				
CB138	0,003	0,001	0,004	0,003	0,010	0,001	0,032	0,002	3				
CB153	0,001	0,000	0,002	0,002	0,005	0,001	0,015	0,002	3				
CB180	0,000	0,000	0,000	0,000	0,001	0,000	0,003	0,000	3				

A-2.108

February	Fehmarn ¹ Fehmarn ²			Fehm	arn ³	Fehmarn ⁴			
Fenmarnsund			•	15.0	6.2011 (44 T	age, n=3)			
(031366)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv
DDTOP									0
DDTPP									0
DDDOP									0
DDDPP									0
DDEOP	Y.		Y				X		0
	X 0.051	0 000	X 0.294	0 107	X	0.004	X 0.110	0.011	ა ი
НСНА	0,051	0,000	0,304	0,107	0,034	0,004	0,110	0,011	0
HCHB	x		x		x		x		1
HCHG	x		x		x		x		1
ACE	0.277	0.041	0.237	0.035	0.007	0.001	0.023	0.004	3
ACY	2,534	1,661	2,166	1,420	0,027	0,018	0,089	0,059	3
ANT	0,072	0,015	0,072	0,014	0,008	0,001	0,026	0,004	3
BAA	0,050	0,012	0,309	0,063	0,029	0,004	0,095	0,013	3
BAP	0,010	0,002	0,049	0,050	0,007	0,003	0,024	0,009	3
BBF	0,118	0,026	0,450	0,283	0,085	0,007	0,279	0,021	3
BGHIP	0,014	0,004	0,034	0,021	0,013	0,002	0,044	0,007	3
CHRTR	0,168	0,021	1,133	0,254	0,096	0,007	0,314	0,018	3
DBAHA									0
FL	2,062	0,164	1,760	0,138	0,082	0,010	0,269	0,036	3
FLU	1,132	0,065	4,196	1,607	0,326	0,030	1,064	0,091	3
	0,018	0,003	0,044	0,033	0,019	0,002	0,061	0,005	3
	0,002	0,000	0,000	0,001	0,564	0,107	1,900	0,343	3
	0,302	0,025	2 4 1 6	0,510	0,095	0,010	0,310	0,028	3
	1,040	0,000	2,410	0,120	0,013	0,001	0,002	0,000	0
ALACHL	0.268	0.166	0.022	0.013	0.001	0.000	0.002	0.001	3
AMETRYN	0,007	0,001	0,593	0,075	0,001	0,000	0,004	0,000	3
ATRAZ	0,949	0,036	4,784	0,181	0,005	0,000	0,016	0,001	3
BENTAZ			-		-				0
CHLORI									0
CHLORTUR	kein		0.395	0.068	0.000	0.000	0.001	0.000	3
	Ksw		-,	-,	-,	-,	-,	-,	-
DEATRAZ	Kein		0,991	0,285	0,000	0,000	0,000	0,000	3
DICHLPR									0
DIURON	1,642	0,209	2,975	0,379	0,002	0,000	0,007	0,001	3
FENUR									0
HEXAZIN	0,006	0,001	0,040	0,005	0,000	0,000	0,000	0,000	2
ISOPRUR	0,502	0,273	0,251	0,137	0,000	0,000	0,001	0,001	3
LINUR	х		х		х		х		3
MCPA	1								0
MECOPR	Kein		2,3E+03		0,000		0,000		1
	kein								-
METAZCHL	Ksw		0,380	0,011	0,003	0,000	0,009	0,001	3
METHABZT									0
METOLA	0,779	0,010	0,316	0,004	0,021	0,001	0,070	0,005	3
PENDIMETH	0,553	0,037	0,771	0,135	0,118	0,003	0,385	0,005	3
PROMETR	0,072	0,002	3,353	0,093	0,017	0,001	0,055	0,003	3
PROPAZ	0,040	0,001	0,575	0,008	0,001	0,000	0,005	0,000	3
SIMAZ	2,145	0,092	3,963	0,170	0,002	0,000	0,006	0,000	3
TERBAZ	2,191	0,061	12,288	0,342	0,034	0,001	0,112	0,004	3
	2,500	0,282	1,791	0,202	0,010	0,001	0,034	0,004	3
AZINPH-E									0
									0
	0 720	0.012	0 176	0 003	0 006	0 000	0 020	0 000	U 2
DIMETH	0,720	0,012	0,170	0,003	0,000	0,000	0,020	0,002	0
MALATH									0
PIRIMIC									Ő
	•		•						•

Fohmarnsund	Fehn	Fehmarn ¹ Fehmarn ²		Fehm	arn ³	Fehr	narn⁴		
(Ostsee)			L	15.0	6.2011 (44 T	age, n=3)			
()	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv
BENZTRI	kein Ksw		12,704	10,457	0,000	0,000	0,000	0,000	3
HBCD-A HBCD-BG	x		x		x		x		0
MTBT	kein Ksw		2,551	0,206	0,011	0,001	0,035	0,005	3
TBBPA	kein Ksw		0,010	0,011	0,004	0,002	0,012	0,005	3
CARBAMAZ CLOFIBRS DICLOF	3,351	0,034	0,578	0,006	0,001	0,000	0,003	0,000	3 0 0
NAPROX	kein Ksw		164,88		0,000		0,001		1
OXAZEP PRIMID PFBA	X		x		x		x		0 0 3
PFBS	kein Ksw		3,5E+10		0,000	0,000	0,000	0,000	1
PFDEA	-								0
PFHPA	kein Ksw		2,3E+05	5,1E+04	0,000	0,000	0,000	0,000	3
PFHXA	kein Ksw		6,1E+05	1,6E+05	0,000	0,000	0,000	0,000	3
PFHXS	kein Ksw		4,1E+09		0,000	0,000	0,000	0,000	1
PFNOA	kein Ksw		1,4E+05	4,4E+04	0,000	0,000	0,001	0,000	3
PFOA	kein Ksw		5,3E+05	4,0E+05	0,000	0,000	0,001	0,001	3
PFOS	kein Ksw		3,2E+08	2,3E+08	0,000	0,000	0,000	0,000	3
PFOSA	kein Ksw		0,01		0,000		0,000		1

February	Fehmarn ¹		Fehr	narn ²	Feh	marn ³	Fehmarn ⁴		
(Ostsoo)				22	09.2010 (82 Tage, n=2)				
(031366)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv
CB028	0,025	0,001	0,024	0,002	0,013	0,001	0,034	0,001	2
CB052	0,010	0,000	0,008	0,001	0,010	0,001	0,026	0,001	2
CB101	0,003	0,000	0,002	0,000	0,010	0,000	0,026	0,001	2
CB118	0,003	0,000	0,002	0,000	0,012	0,000	0,033	0,001	2
CB138	0,003	0,001	0,002	0,000	0,029	0,002	0,077	0,008	2
CB153	0,001	0,000	0,001	0,000	0,014	0,002	0,037	0,005	2
CB180	0,000		0,000		0,003		0,007		1
DDTOP									0
DDTPP									0
DDDOP									0
DDDPP									0
DDEOP									0
DDEPP	х		х		х		х		2
HCB	0,440	0,123	0,994	0,053	0,199	0,016	0,533	0,030	2
HCHA									0
HCHB	х		х		х		х		2
HCHG	х		х		х		х		2
ACE	1,803	0,079	1,543	0,068	0,094	0,000	0,252	0,006	2
ACY	11,767	2,473	10,063	2,115	0,267	0,067	0,713	0,163	2
ANT	0,272	0,001	0,333	0,019	0,063	0,003	0,170	0,005	2
BAA	0,487	0,048	0,597	0,082	0,176	0,000	0,470	0,011	2
BAP	0,056	0,003	0,049	0,006	0,038	0,001	0,103	0,000	2

Februaringund	Fehmarn ¹		Fehn	narn²	Feh	Fehmarn ⁴			
(Ostsee)				22	09.2010 (8	2 Tage, n=2)			
(00000)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv
BBF	0,465	0,003	0,407	0,021	0,349	0,030	0,933	0,059	2
BGHIP	0,033	0,003	0,027	0,003	0,051	0,001	0,136	0,001	2
	1,040	0,204	2,302	0,347	0,571	0,008	1,529	0,057	2
FL	14.473	2.114	12.340	1.797	1.207	0.125	3.235	0.410	2
FLU	6,199	0,255	41,355	2,609	3,036	0,138	8,132	0,558	2
I123P	0,034	0,002	0,027	0,001	0,058	0,010	0,156	0,023	2
PHEN	48,579	4,640	46,428	3,707	9,014	0,457	24,147	1,784	2
PYR	2,902	0,002	19,288	1,550	1,416	0,047	3,793	0,213	2
IRGAROL	0.044	0.500	0.004	4 070	0.000	0.000	0.000	0.000	0
	0,841	0,528	2,981	1,873	0,000	0,000	0,000	0,000	2
	0,000	0,104	0,005	0,013	0,004	0,001	0,012	0,003	2
ATRAZ	1.304	0.017	6.576	0.087	0.015	0,000	0.039	0,000	2
BENTAZ	1,001	0,011	0,010	0,001	0,010	0,000	0,000	0,000	0
CHLORI									0
CHI ORTUR	kein		1.017	0.104	0.002	0.000	0.005	0.001	2
	Ksw		.,	0,101	0,002	0,000	0,000	0,001	-
DEATRAZ	Kein		1,408	0,704	0,000	0,000	0,001	0,000	2
DICHLPR	1.011								0
DIURON	2,983	0,170	5,405	0,308	0,008	0,001	0,020	0,002	2
FENUR									0
HEXAZIN	0,004		0,025		0,000		0,000		1
ISOPRUR	3,104	0,643	1,554	0,322	0,006	0,001	0,016	0,004	2
	Х		х		х		х		2
WOFA	kein								0
MECOPR	Ksw		4,7E+03	614,155	0,000	0,000	0,000	0,000	2
METAZCHL	kein		0.919	0.037	0.015	0.000	0.039	0.001	2
	Ksw		-,	-,	-,	-,	-,	-,	0
	0.430	0.001	0 174	0 000	0.025	0.001	0.066	0.001	2
	0,400 X	0,001	0,174 X	0,000	0,025 X	0,001	0,000 x	0,001	2
PROMETR	0,090	0,002	4,092	0.094	0.043	0,003	0,116	0,005	2
PROPAZ	0,048	0,001	0,685	0,010	0,003	0,000	0,009	0,000	2
SIMAZ	2,926	0,129	5,407	0,239	0,005	0,000	0,014	0,000	2
TERBAZ	1,344	0,002	7,537	0,013	0,044	0,002	0,118	0,002	2
TERBUTR	2,930	0,178	2,098	0,127	0,026	0,000	0,069	0,003	2
AZINPH-E									0
									0
	0 780	0.035	0 191	0 009	0 014	0.000	0.037	0.001	2
DIMETH	0,700	0,000	0,101	0,000	0,014	0,000	0,007	0,001	0
MALATH									0
PIRIMIC	0,005		0,012		0,000		0,000		1
BENZTRI	kein		7 477	1 377	0 000	0.000	0.000	0 000	2
	Ksw		.,	1,011	0,000	0,000	0,000	0,000	_
	v		v		v		×		2
	kein		^		^		~		2
MIBI	Ksw		4,100	0,288	0,036	0,001	0,096	0,005	2
TBBPA									0
CARBAMAZ	3,633	0,007	0,627	0,001	0,002	0,000	0,006	0,000	2
CLOFIBRS									0
									0
									0
PRIMID									0
PFBA	х		x		х		х		Õ
PEBS	kein		1 1E+10	7 4F+00	0 000	0 000	0 000	0 000	2
	Ksw		1,12.10	,, , ∟.00	0,000	0,000	0,000	0,000	-

February	Fehm	narn ¹	Fehn	narn ²	Feh	marn ³		Fehmarn ⁴	
(Ostsee)				22.	09.2010 (82	2 Tage, n=2)			_
(031300)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv
PFDEA									0
PFHPA									0
PFHXA									0
PFHXS	kein Ksw		4,1E+08	7,5E+06	0,000	0,000	0,000	0,000	2
PFNOA									0
PFOA	kein Ksw		5,3E+04	1,4E+03	0,000	0,000	0,000	0,000	2
PFOS	kein Ksw		4,6E+08	2,3E+07	0,000	0,000	0,000	0,000	2
PFOSA		_		_					0

PFOSAImage: Constraint of the system $^{1}C_{w}$ berechnet mit PRCs, experimentelle K_{sw} $^{2}C_{w}$ berechnet mit PRCs, K_{sw} berechnet mit LSER-Modell nach [19] $^{3}C_{w}$ berechnet nach [42], experimentelle K_{sw} $^{4}C_{w}$ berechnet nach [42], K_{sw} berechnet mit LSER-Modell nach [19]

Tabelle A-2.8.5: Fehmarnsund (Ostsee) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle **LDPE** (n=2); x = nicht analysiert; n.d. nicht detektiert; leere Zelle: < BG

Fahmarn	Fehma	arn ¹	Fehn	narn ²	Fehm	arn ³	
(Ostsoo)			22.09.20	010 (82 Ta	age, n=2)		-
(03:366)	ng/L	S	ng/L	S	ng/L	S	n positiv
CB028							0
CB052	0,000	0,000	0,000	0,000	0,000	0,000	0
CB101	0,000	0,000	0,000	0,000	0,000	0,000	2
CB118	0,000	0,000	0,000	0,000	kein R _s		2
CB138	0,000	0,000	0,000	0,000	0,001	0,000	2
CB153	0,000	0,000	0,000	0,000	0,000	0,000	2
CB180							0
DDTOP							0
DDTPP	0,001	0,000	0,001	0,000	0,000	0,000	2
DDDOP							0
DDDPP							0
DDEOP							0
DDEPP	0,002	0,000	0,006	0,000	0,000	0,000	2
HCB	0,009	0,001	0,051	0,006	0,002	0,000	2
HCHA							0
HCHB							0
HCHG							0
ACE							0
ACY							0
ANT							0
BAA						0.004	2
BAP	0,030	0,003	0,032	0,004	0,007	0,001	2
BBF	0,002	0,000	0,004	0,001	0,003	0,000	2
BGHIP	0,012	0,002	0,024	0,004	0,020	0,003	2
	0,001	0,000	0,001	0,000	0,003	0,000	2
	0,001	0,000	0,001	0,000	0,004	0,001	0
FL	0,073	0,007	0,095	0,009	0,023	0,002	2
FLU 1402D	X 1 509	0 1 1 7	X 1 201	0 102	X 0.170	0.012	2
	1,508	0,117	1,301	0,103	0,179	0,013	2
PHEN	3,940	0,293	3,075	0,235	1,080	0,079	2
	0,020 koin Kow	0,055	0,002	0,075	0,002 koin <i>P</i>	0,007	2
	Kein KSW		0,200	0,019	Kelli Rs		2
							0
							0
							0
ATTNAL			I		I		

Fahmarn	Fehma	rn ¹	Fehmarn ²		Fehmarn ³				
(Ostsoo)	22.09.2010 (82 Tage, n=2)								
(031366)	ng/L	S	ng/L	S	ng/L	S	n positiv		
BENTAZ							0		
PENDIMETH	kein Ksw		0,402	0,018	kein R _s		2		
TERBAZ	kein Ksw		0,058	0,017	kein R _s		2		

 ${}^{1}C_{w}$ berechnet mit PRCs, experimentelle K_{sw} ${}^{2}C_{w}$ berechnet mit PRCs, K_{sw} berechnet in Anlehnung an [24] ${}^{3}C_{w}$ berechnet mit Sammelrate aus Laborkalibrierung (v_{kal} = 40 cm/s; [26])

Tabelle A-2.8.6: Helgoland (Nordsee) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle **Silicone Sheets** (n=2); x = nicht analysiert; n.d. nicht detektiert; leere Zelle: < BG

Holgoland	Helgola	and ¹	Helgo	land ²	Helgo	oland ³	Helgo	oland ⁴	
(Nordsoo)		31.05.201		11 (44 Tag	ge)	-			
(Norusee)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv
CB028	0,003	0,001	0,022	0,008	0,005	0,001	0,014	0,002	2
CB052	0,002	0,001	0,023	0,011	0,005	0,001	0,014	0,001	2
CB101	0,001	0,001	0,016	0,012	0,005	0,000	0,014	0,000	2
CB118	0,001	0.001	0,017	0,013	0,006	0,001	0.015	0,001	2
CB138	0.001	0.001	0.015	0.012	0.013	0.001	0.036	0.001	2
CB153	0.001	0.000	0.007	0.006	0.006	0.001	0.016	0.001	2
CB180	0.000	0.000	0.001	0.001	0.002	0.000	0.005	0.000	2
DDTOP	-,	- ,	-,	-,	-,	-,	-,	-,	0
DDTPP									0
DDDOP									0
DDDPP									0
DDEOP									0
DDEPP	x		x		x		x		2
HCB	0 029	0 004	0 108	0.011	0.032	0.005	0.087	0.010	2
НСНА	0,020	0,001	0,100	0,011	0,002	0,000	0,007	0,010	0
HCHB	Y		Y		Y		Y		1
HCHG	x		x		x		x		1
ACE	0 342	0.077	0.278	0.063	0.017	0 002	0.048	0 000	2
ACY	2 004	2 249	1 319	1 480	0.043	0,002	0,040	0,000	2
	2,004	2,243	0.146	0.017	0,040	0,047	0,122	0,100	2
	0,030	0,010	0,140	0,017	0,013	0,004	0,052	0,000	2
	0,030	0,007	0,241	0,115	0,042	0,000	0,115	0,008	2
BRE	0.074	0.006	0.517	0 203	0 132	0.014	0 361	0.060	2
BGHIP	0,074	0,000	0,017	0,233	0,102	0,014	0,001	0,000	2
CHRTR	0,000	0,002	1 358	0.641	0,010	0,001	0,040	0,000	2
DBAHA	0,200	0,001	1,000	0,011	0,200	0,001	0,010	0,010	0
FL	3.458	0.925	3.212	0.863	0.279	0.050	0.766	0.182	2
FLU	1.823	0.137	4.088	0.014	0.859	0.015	2.348	0.101	2
1123P	0.008	0.004	0.036	0.032	0.021	0.004	0.058	0.009	2
PHEN	5.053	0.281	6.665	0.367	0.865	0.036	2.361	0.044	2
PYR	0.593	0.050	1.422	0.017	0.299	0.001	0.819	0.046	2
IRGAROL	1,559	,	2,280		0,039	,	0,102	,	1
CARBEND	,		,						0
ALACHL									0
AMETRYN	0,013	0,000	0,886	0,016	0,004	0,000	0,011	0,000	2
ATRAZ	0,656	0,028	3,302	0,141	0,007	0,000	0,019	0,000	2
BENTAZ	x		х		х	-	х		1
CHLORI									0
CHLORTUR	kein Ksw		5,010	0,255	0,009	0,001	0,025	0,002	2
DEATRAZ	kein Ksw		43,428	42,537	0,006	0,006	0,018	0,017	2
DICHLPR									0
DIURON	3,248	0,050	5,886	0,091	0,008	0,001	0,022	0,001	2
FENUR	х		х		х		х		2
HEXAZIN									0
ISOPRUR	6,100	0,587	3,054	0,294	0,011	0,000	0,031	0,002	2
LINUR	х		х		х		х		2
MCPA	kein Ksw		2,2E+04		0,000		0,001		1
MECOPR	kein Ksw		2,8E+03	2,292	0,000	0,000	0,000	0,000	2
METAZCHL	kein Ksw		0,495	0,033	0,008	0,000	0,021	0,001	2
METHABZT									0
METOLA	1,247	0,009	0,516	0,001	0,070	0,007	0,191	0,006	2
PENDIMETH	х		х		х		х		2
PROMETR	0,019	0,000	0,731	0,004	0,008	0,001	0,021	0,000	2
PROPAZ	0,016	0,001	0,217	0,017	0,001	0,000	0,003	0,000	2
SIMAZ	0,448	0,009	0,828	0,016	0,001	0,000	0,002	0,000	2
TERBAZ	2,562	0,026	14,271	0,171	0,083	0,008	0,226	0,008	2

A-2.1	14
-------	----

Halgaland	Helgola	and ¹	Helgo	oland ²	Helgo	oland ³	Helgo	oland⁴	
			-	31.05.20	11 (44 Tag	ge)	-		
(1010366)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv
TERBUTR	7,793	0,061	5,579	0,045	0,068	0,006	0,184	0,006	2
AZINPH-E									0
AZINPH-M									0
CHLORFENV	0,009	0,005	0,011	0,005	0,001	0,000	0,002	0,001	2
DIAZINON	1,227	0,012	0,302	0,003	0,022	0,002	0,061	0,001	2
DIMETH									0
MALATH									0
PIRIMIC	0,006		0,016		0,000		0,000		1
BENZTRI	kein Ksw		20,842	4,307	0,000	0,000	0,001	0,000	2
HBCD-A									0
HBCD-BG	kein Ksw		0,000	0,000	0,000	0,000	0,001	0,000	2
MTBT	kein Ksw		3,144	0,448	0,027	0,006	0,074	0,012	2
TBBPA									0
CARBAMAZ	6,911	0,062	1,193	0,011	0,004	0,000	0,010	0,000	2
CLOFIBRS	7595,594		5,4E+03		0,000		0,000		1
DICLOF									0
NAPROX	kein Ksw		513,341	331,460	0,003	0,002	0,007	0,005	2
OXAZEP									0
PRIMID									0
PFBA	X		X	1 0 - 00	X		X		2
PFBS	kein Ksw		5,8E+09	1,9E+09	0,000	0,000	0,000	0,000	2
PFDEA					0.000	0.000	0.000	0.000	0
	kein Ksw		2,7E+05	5,2E+04	0,000	0,000	0,000	0,000	2
	kein Ksw		8,3E+05	1,5E+05	0,000	0,000	0,000	0,000	2
PFHXS	kein Ksw		1,4E+09	5,4E+07	0,000	0,000	0,000	0,000	2
	kein Ksw		1,4E+05	3,0E+04	0,001	0,000	0,002	0,001	2
PEOS	kein Ksw		4,3⊑+05 1 5⊑±00	1,0⊏+00 2 2⊑±00	0,001	0,000	0,002	0,001	2
PFOS	kein Kow		1,50+09	2,3⊑+08	0,000	0,000	0,001	0,000	2
PFUSA	Kein KSW		0,02	0,00	0,000	0,000	0,000	0,000	2

Helevelend	Helgoland ¹		Helgo	oland ²	Helgo	oland ³	Helgo	Helgoland ^₄	
(Nordsee)				18.07.20	11 (43 Ta	ge)			
(11010300)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv
CB028	0,009	0,002	0,063	0,011	0,013	0,001	0,024	0,002	2
CB052	0,004	0,001	0,030	0,004	0,012	0,001	0,022	0,001	2
CB101	0,001	0,000	0,009	0,000	0,013	0,000	0,024	0,001	2
CB118	0,001	0,000	0,009	0,001	0,013	0,000	0,024	0,000	2
CB138	0,001	0,000	0,008	0,000	0,041	0,001	0,077	0,003	2
CB153	0,001	0,000	0,003	0,001	0,017	0,003	0,032	0,004	2
CB180	0,000	0,000	0,000	0,000	0,003	0,001	0,006	0,001	2
DDTOP									0
DDTPP									0
DDDOP									0
DDDPP									0
DDEOP									0
DDEPP	х		х		х		х		2
HCB	0,118	0,002	0,080	0,008	0,067	0,005	0,125	0,011	2
HCHA									0
HCHB	х		х		х		х		2
HCHG	х		х		х		х		2
ACE	0,303	0,012	0,247	0,010	0,040	0,003	0,075	0,004	2
ACY	2,633	2,483	1,737	1,638	0,153	0,147	0,283	0,270	2
ANT	0,084	0,010	0,137	0,016	0,050	0,008	0,093	0,013	2
BAA	0,209	0,038	0,505	0,092	0,160	0,018	0,299	0,028	2
BAP	0,025	0,002	0,049	0,005	0,050	0,001	0,093	0,000	2
BBF	0,156	0,012	0,336	0,026	0,343	0,002	0,641	0,008	2
BGHIP	0,016	0,002	0,023	0,002	0,076	0,002	0,141	0,001	2

A-2.115

Holgoland	Helgola	and ¹	Helgo	oland ²	Helgo	oland ³	Helgo	land⁴	-
(Nordsee)				18.07.20	11 (43 Tag	ge)			
(11010000)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv
CHRTR	0,856	0,104	1,779	0,225	0,560	0,030	1,046	0,039	2
DBAHA									0
FL	1,296	0,177	1,200	0,164	0,276	0,047	0,515	0,080	2
FLU	2,695	0,071	11,055	0,157	1,558	0,013	2,912	0,025	2
I123P	0,015	0,002	0,023	0,003	0,080	0,004	0,149	0,006	2
PHEN	3,546	0,022	4,644	0,033	1,686	0,048	3,150	0,037	2
PYR	1,407	0,017	4,781	0,092	0,698	0,012	1,304	0,001	2
IRGAROL	1,197	0,240	1,756	0,352	0,071	0,017	0,133	0,029	2
CARBEND	9,285	0,379	32,928	1,343	0,003	0,000	0,005	0,000	2
ALACHL									0
AMETRYN	0,010	0,001	0,748	0,115	0,008	0,001	0,016	0,002	2
ATRAZ	0,411	0,006	2,073	0,030	0,011	0,001	0,021	0,001	2
BENTAZ									0
CHLORI									0
CHLORTUR	kein Ksw		2,773	0,295	0,013	0,002	0,024	0,003	2
DEATRAZ			0,348		0,000		0,000		1
DICHLPR									0
DIURON	2,729	0,061	4,945	0,110	0,017	0,000	0,032	0,000	2
FENUR	х		х		х		х		2
HEXAZIN									0
ISOPRUR	4,513	0,709	2,260	0,355	0,021	0,004	0,039	0,007	2
LINUR	х		х		х		х		2
MCPA									0
MECOPR	kein Ksw		4,4E+03	3,8E+03	0,000	0,000	0,000	0,000	2
METAZCHL	kein Ksw		0,166	0,035	0,006	0,002	0,012	0,003	2
METHABZT									0
METOLA	0,514	0,014	0,207	0,006	0,073	0,005	0,136	0,006	2
PENDIMETH	х		х		х		х		2
PROMETR	0,018	0,001	0,741	0,051	0,019	0,001	0,036	0,002	2
PROPAZ	0,010	0,002	0,149	0,022	0,002	0,000	0,003	0,000	2
SIMAZ	0,233	0,000	0,430	0,000	0,001	0,000	0,002	0,000	2
TERBAZ	1,608	0,061	9,021	0,341	0,130	0,000	0,244	0,005	2
TERBUTR	4,949	0,013	3,545	0,009	0,107	0,004	0,200	0,003	2
AZINPH-E									0
AZINPH-M	х		х		х		х		0
CHLORFENV	0,003		0,004		0,001		0,001		1
DIAZINON	0,895	0,136	0,219	0,033	0,041	0,005	0,076	0,010	2
DIMETH									0
MALATH									0
PIRIMIC	0,004	0,000	0,010	0,001	0,000	0,000	0,000	0,000	2
BENZTRI	kein Ksw		20,158	6,936	0,001	0,000	0,002	0,001	2
HBCD-A									0
HBCD-BG	х		х		х		х		2
MTBT	kein Ksw		2,498	0,318	0,054	0,005	0,101	0,011	2
TBBPA									0
CARBAMAZ	6,018	0,185	1,039	0,032	0,008	0,001	0,016	0,001	2
CLOFIBRS									0
DICLOF									0
NAPROX	kein Ksw		299,392	332,323	0,003	0,004	0,006	0,007	2
OXAZEP									0
PRIMID									0
PFBA	х		х		х		х		2
PFBS	kein Ksw				0,000	0,000	0,000	0,000	2
PFDEA									0
PFHPA									0
PFHXA									0
PFHXS	kein Ksw				0,000	0,000	0,000	0,000	2
PFNOA									0
PFOA	kein Ksw		4,4E+04	1,1E+04	0,000	0,000	0,000	0,000	2
PFOS	kein Ksw		3,1E+08	6,7E+07	0,000	0,000	0,000	0,000	2

A-2.116

Halgaland	Helgoland ¹		Helgoland ²		Helgo	Helgoland ³		Helgoland ⁴	
(Nordsoo)	18.07.2011 (43 Tage)								-
(Norusee)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv
PFOSA	kein Ksw		0,02	0,00	0,000	0,000	0,001	0,000	2

	Helgola	Ind ¹	Helgo	land ²	Helgola	and ³	Helgo	_	
Helgoland				08.07.2	2010 (43 Tage	e)	1		
(Nordsee)	ng/L	s	ng/L	S	ng/L	S	ng/L	S	n positiv
CB028	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	2
CB052	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	2
CB101	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	2
CB118	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	2
CB138	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	2
CB153	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	2
CB180	0,000		0,000		0,000		0,000		1
									0
									0
DDDPP									0
DDEOP									0
DDEPP	х		х		х		х		2
HCB	0,005	0,000	0,030	0,001	0,000	0,000	0,000	0,000	2
HCHA									0
HCHB	х		Х		х		х		2
HCHG									0
ACE	0,338		0,275		0,000		0,000		1
ACY	0,434	0.004	0,286	0.050	0,000	0.000	0,000	0.000	1
ANI	0,044	0,031	0,074	0,052	0,000	0,000	0,000	0,000	2
BAA	0,003		0,000		0,000		0,000		1
BRE	0,001		0,002		0,000		0,000		1
BGHIP	0,001		0,002		0,000		0,000		1
CHRTR	0.004		0.009		0.000		0.000		1
DBAHA	-,		-,		-,		-,		0
FL	0,819	0,207	0,758	0,191	0,000	0,000	0,000	0,000	2
FLU	0,036	0,017	0,054	0,025	0,000	0,000	0,000	0,000	2
I123P	0,001		0,001		0,000		0,000		1
PHEN	0,201		0,265		0,000		0,000		1
PYR	0,027		0,046		0,000		0,000		1
IRGAROL	4 740	0 700	40 704	0.500	0.000	0.000	0.000	0.000	0
	4,716	0,733	16,724	2,598	0,000	0,000	0,000	0,000	2
	1,334	0,434	0,100	0,035	0,000	0,000	0,000	0,000	2
ATRAZ	0,528	0,001	2 664	0,004	0,000	0,000	0,000	0,000	2
BENTAZ	0,020	0,000	2,001	0,100	0,000	0,000	0,000	0,000	0
CHLORI									0
CHLORTUR	kein Ksw		2,922	0,408	0,000	0,000	0,000	0,000	2
DEATRAZ	kein Ksw		0,785	0,233	0,000	0,000	0,000	0,000	2
DICHLPR									0
DIURON	4,824	0,709	8,742	1,284	0,000	0,000	0,000	0,000	2
FENUR			0.004						0
HEXAZIN	0,003	0.404	0,021	0.000	0,000	0.000	0,000	0.000	1
ISOPRUR	6,596	0,184	3,303	0,092	0,000	0,000	0,000	0,000	2
MCPA	Х		X		х		X		
									0
METAZCHI	kein Ksw		0.229	0.020	0.000	0.000	0.000	0.000	2
METHABZT			0,220	0,020	0,000	0,000	0,000	0,000	0
METOLA	0,985	0,084	0,397	0,034	0,000	0,000	0,000	0,000	2
PENDIMETH	х		Х		х		x		2
PROMETR	0,010	0,002	0,489	0,114	0,000	0,000	0,000	0,000	2

	Helgola	nd ¹	Helgo	land ²	Helgola	and ³	Helgo	oland ⁴	
Helgoland				08.07.2	2010 (43 Tage	e)			
(Nordsee)	ng/L	S	ng/L	S	ng/L	S	ng/L	S	n positiv
PROPAZ	0,010	0,003	0,148	0,046	0,000	0,000	0,000	0,000	2
SIMAZ	0,431	0,020	0,797	0,037	0,000	0,000	0,000	0,000	2
TERBAZ									0
									0
									0
									0
DIAZINON	0.356	0.003	0.087	0.001	0.000	0.000	0.000	0.000	2
DIMETH	0,000	0,000	0,001	0,001	0,000	0,000	0,000	0,000	0
MALATH									0
PIRIMIC	0,005	0,001	0,012	0,003	0,000	0,000	0,000	0,000	2
BENZTRI	kein Ksw		24,161	1,944	0,000	0,000	0,000	0,000	2
HBCD-A									0
HBCD-BG	х		х		х		х		2
MTBT									0
TBBPA									0
CARBAMAZ	9,242	0,493	1,595	0,085	0,000	0,000	0,000	0,000	2
CLOFIBRS									0
									0
									0
									0
PFBA	x		x		x		x		2
PFBS	~		~				~		0
PFDEA									0
PFHPA									0
PFHXA									0
PFHXS									0
PFNOA	kein Ksw		1,1E+05	8,3E+03	0,00	0,00	0,00	0,00	2
PFOA	kein Ksw		1,8E+05	3,3E+04	0,00	0,00	0,00	0,00	2
PFOS	kein Ksw		4,7E+08	7,7E+07	0,00	0,00	0,00	0,00	2
PFOSA	kein Ksw		0,02	0,00	0,00	0,00	0,00	0,00	2

¹ C_w berechnet mit PRCs, experimentelle K_{sw} ² C_w berechnet mit PRCs, K_{sw} berechnet mit LSER-Modell nach [19] ³ C_w berechnet nach [42], experimentelle K_{sw} ⁴ C_w berechnet nach [42], K_{sw} berechnet mit LSER-Modell nach [19]

Tabelle A-2.8.7: Helgoland (Nordsee) - zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle **LDPE**; x = nicht analysiert; n.d. nicht detektiert; leere Zelle: < ΒG

Helgoland	Helgo	and ¹	Helgo	oland ²	Helgo	and ³	
Heigoland (Nordsee)			16.11.20	010 (33 Ta	age, n=3)		
(1010300)	ng/L	S	ng/L	S	ng/L	S	n positiv
CB028							0
CB052	0,001	0,000	0,000	0,000	0,000	0,000	3
CB101	0,001	0,000	0,003	0,002	0,000	0,000	3
CB118	0,000	0,000	0,001	0,001	kein R _s		3
CB138	0,001	0,001	0,002	0,003	0,001	0,000	3
CB153	0,001	0,001	0,001	0,001	0,000	0,000	3
CB180							0
DDTOP							0
DDTPP							0
DDDOP							0
DDDPP	0,003	0,000	0,002	0,000	0,001	0,000	3
DDEOP							0
DDEPP	0,000	0,000	0,001	0,000	0,000	0,000	3
HCB	0,003	0,000	0,020	0,002	0,002	0,000	3

A-2.118

Heleveland	Helgola	and ¹	Helgo	oland ²	Helgo	land ³	
Heigoland (Nordsoo)			16.11.20	010 (33 Ta	age, n=3)		
(11010366)	ng/L	S	ng/L	S	ng/L	S	n positiv
HCHA							0
HCHB							0
HCHG							0
ACY							0
ACE							0
ANT							0
DBAHA							0
BAA	0,011	0,000	0,009	0,000	0,007	0,000	3
BAP							0
BBF	0,023	0,018	0,085	0,095	0,012	0,000	3
BGHIP	0,002	0,002	0,002	0,002	0,002	0,000	3
I123P							0
CHRTR	0,028	0,001	0,028	0,001	0,020	0,000	3
FL	х		х		Х		3
FLU	0,874	0,058	0,736	0,049	0,285	0,016	3
PHEN	1,625	0,198	1,257	0,153	1,195	0,133	3
PYR	0,411	0,026	0,548	0,034	0,147	0,008	3
IRGAROL	kein Ksw		0,059	0,003	kein R _s		3
METOLA							0
PENDIMETH	kein Ksw		0,447	0,023	kein R _s		3
PROMETR							0
PROPAZ							0
SIMAZ							0
TERBAZ							0
TERBUTR	kein Ksw		0,011	0,001	kein <i>R</i> s		3

Halgaland	Helgo	oland ¹	Helgo	oland ²	Helgo	oland ³	
Heigoland (Nordsee)			08.07.2	011 (43 Tage, n	=2)		
(14010366)	ng/L	S	ng/L	S	ng/L	S	n positiv
CB028							0
CB052	0,001	0,000	0,001	0,000	0,000	0,000	2
CB101	0,008	0,011	0,003	0,004	0,000	0,000	2
CB118	61,535	87,024	0,002	0,002	kein <i>R</i> s		2
CB138	1,9E+06	2,7E+06	2,3E+03	3,3E+03	0,001	0,000	2
CB153	1,3E+06	1,8E+06	1,8E+03	2,6E+03	0,000	0,000	2
CB180							0
DDTOP							0
DDTPP							0
DDDOP							0
DDDPP							0
DDEOP							0
DDEPP	0,001		0,002		0,000		1
HCB	0,003	0,000	0,017	0,002	0,001	0,000	2
HCHA							0
HCHB							0
HCHG							0
ACY							0
ACE							0
ANT							0
DBAHA							0
BAA	0,005	0,000	0,006	0,000	0,003	0,000	2
BAP		1.05.00	4 070	0.007	0.040	0.004	0
BBF	1,3E+06	1,8E+06	1,872	2,637	0,010	0,001	2
BGHIP	2,5E+09	3,5E+09	3,9E+06	5,5E+06	0,002	0,000	2
1123P	3,2E+09	4,5E+09	8,2E+06	1,2E+07	0,002	0,000	2
	0,015	0,000	0,020	0,002	0,010	0,001	2
FL	0 457	0.001	0 4 9 4	0.000	0.040	0.000	0
	0,157	0,001	0,134	0,002	0,040	0,000	2
PHEN							U

Holgoland	Helgoland ¹		Helgo	oland ²	Helgo		
(Nordsee)			08.07.2	011 (43 Tage, n	=2)		
(11010366)	ng/L	S	ng/L	S	ng/L	S	n positiv
PYR	0,071	0,002	0,096	0,001	0,020	0,000	2
IRGAROL	kein Ksw		0,300	0,070	kein <i>R</i> s		2
PENDIMETH	kein Ksw		0,010	0,001	kein <i>R</i> ₅		2
TERBAZ	kein Ksw		0,027		kein <i>R</i> s		1
TERBUTR	kein Ksw		0,032	0,005	kein <i>R</i> s		2

 ${}^{1}C_{w}$ berechnet mit PRCs, experimentelle K_{sw} , ${}^{2}C_{w}$ berechnet mit PRCs, K_{sw} berechnet in Anlehnung an [24], ${}^{3}C_{w}$ berechnet mit Sammelrate aus Laborkalibrierung (v_{kal} = 40 cm/s; [26])

A-2.9: Laborvergleichsstudien – Analytkonzentrationen in den verschiedenen

Sammlertypen

Tabelle A-2.9.1: AQUA-REF 1 - Pestizide und PAK auf MESCO und Silikonstab in ng/Sammler (Angabe je 15 mm Silikonstab. ohne Angabe <BG)

AQUA-REF 1	In K 1			MESCO				Siliko	nstab	
(Thau-Bassin)	log A _{ow}	BG ²	Trip	1	2	3	Trip	1	2	3
Acetochlor	4,14	0,16								
Alachlor	3,09	0,14								
Atrazin	2,5	0,21		0,25	0,21	0,30			0,29	0,21
DEA	1,52	0,2								
DIA	1,13	0,57								
Diuron	2,85					n 0				
Isoproturon	2,5					n.a.				
Metolachlor	2,9	0,16							0,17	
Simazin	2,1	0,26								0,33
Acenaphten	3,92	0,07					0,08		0,3	0,15
Acenaphtylen	3,94	0,77							0,8	
Anthracen	4,45	0,09								
Benzo(a)anthracen	5,76	0,1								
Benzo(a)pyren	5,97	0,18								
Benzo(b)fluoranthen	5,78	0,31								
Benzo(k)fluoranthen	6,84	0,12								
Benzo(g,h,i)perylen	6,63	0,31								
Chrysen	5,5	0,09								
Dibenzo(a,h)anthracen	6,75	0,33								
Fluoranthen	5,16	0,12	0,19	0,22	0,2	0,19		0,33	0,33	0,43
Fluoren	4,18	0,15	0,28	0,16	0,18	0,15				
Indeno(1,2,3)pyren	7,66	0,34								
Naphthalin	3,3	0,13								
Phenanthren	4,46	0,14	0,65	0,27	0,31	0,26	0,27	0,18	0,19	0,24
Pyren	4,88	0,12						0,19	0,19	0,24
¹ Oktanol Wassor Vorto	ilungekooff	iziont [2	5 1							

¹Oktanol-Wasser-Verteilungskoeffizient [25] ²Bestimmungsgrenze für MESCO und Silikonstab

Tabelle A-2.9.2: AQUA-REF 2 - Pestizide auf MESCO, Silikonstab (beide ng/15 mm Silikonstab) und polare Chemcatcher (ng/ SDB-RPS Empore disk)

AQUA-REF 2	log	MESCO					Siliko	onstab		polarer Chemcatcher				
(Beillant)	K_{ow}^{1}	BG ²	Trip	1	2	3	Trip	1	2	3	Trip	1	2	3
Acetochlor	4,14	0,16						0,26	0,21	0,27				
Alachlor	3,09	0,14												
Atrazin	2,5	0,21						0,26	0,36	0,6	11,23	20,90	14,72	14,44
DEA	1,52	0,2												
DIA	1,13	0,57												
Diuron	2,85													
Isoproturon	2,5					I	I.d.							
Metolachlor	2,9	0,16						0,33	0,27	0,74				
Simazin	2,1	0,26			_					0,5				

Oktanol-Wasser-Verteilungskoeffizient [25]

²Bestimmungsgrenze für MESCO und Silikonstab

Tabelle A-2.9.3: AQUA-REF 3 - PAK auf unpolare Chemcatcher (ng/C₁₈ Empore disk, MESCO und Silikonstab wurden bei Einholung abgerissen)

		unpolarer Chemcatcher								
AQUA-REF 5 (Ternay)	iog n _{ow}	BG ²	Trip	1	2	3				
Acenaphten	3,92	23,0		28,7	23,8					
Acenaphtylen	3,94	25,0		771,3						
Anthracen	4,45	28,0		114,7						
Benzo(a)anthracen	5,76	50,0		130,3						
Benzo(a)pyren	5,97	15,0		125,0	17,5	18,7				
Benzo(b)fluoranthen	5,78	18,0		41,6	15,3	14,4				
Benzo(k)fluoranthen	6,84	42,5		114,1						
Benzo(g,h,i)perylen	6,63	12,0		53,5	14,7	14,0				
Chrysen	5,5	23,5				20,9				
Dibenzo(a,h)anthracen	6,75	60,0								
Fluoranthen	5,16	19,5		24,5	26,3	86,7				
Fluoren	4,18	12,0		55,4	23,8	19,3				
Indeno(1,2,3)pyren	7,66	32,0		151,0						
Naphthalin	3,3	50,0		n	i.a.					
Phenanthren	4,46	50,0			43,5	68,9				
Pyren	4,88	80,0		90,2		77,5				

¹Oktanol-Wasser-Verteilungskoeffizient [25] ²Bestimmungsgrenze für unpolaren Chemcatcher

	polarer Chemcatcher										POCIS					
(Brno-Modřice)	$\log K_{\rm ow}^{1}$		Pestizide	Aufarbeitun	g		Pharmaka	-Aufarbeitun	g							
(Billo-Modilice)		Trip	1	2	3	Trip	1	2	3	Trip	1	2	3			
Atenolol	0,16		21,8	17,3	45,2		33,1	22,8	19,6		67,7	60,9	65,0			
Carbendazime	1,52		6,4	8,0	5,9		7,0	6,8	6,8							
Desethylatrazine	1,02															
Carbamazepine	2,08		108,5	121,1	93,6		120,3	122,9	109,7		193,5	189,9	174,7			
Desethylterbutylazine	1,55															
Atrazine	2,61										7,7	7,9	7,4			
Diuron	2,68		11,6	11,6	8,0		11,4	12,6	9,4		43,9	42,3	38,8			
Diazepam	2,82															
Terbutylazine	3,06										12,5	13,5	12,7			
S-Metolachlor	3,13										7,0	6,9	8,1			
Naproxen	3,18		252,6	196,8	247,8		310,1	249,8	232,6		472,6	469,5	313,3			
Ketoprofen	3,12	7,9	108,3	82,8	103,3	10,1	139,7	116,5	119,8	14,0	292,8	288,8	219,8			
Diclofenac	4,41		577,6	435,9	578,1		707,7	581,1	556,8		1394,2	1261,5	862,7			
Ibuprofen	3,50		76,6	48,3	75,6		67,1	54,6	54,4							

Tabelle A-2.9.4: NORMAN 1 - Pharmaka und Pestizide auf polare Chemcatcher (ng/SDB-RPS Empore disk) und POCIS (ng/200 mg OASIS HLB Sorbent)

¹Oktanol-Wasser-Verteilungskoeffizient [25]

Tabelle A-2.9.5: NORMAN 3 – PBDE auf MESCO, Silikonstab (ng/15 mm Silikonstab), eigene und vom Veranstalter bereitgestellte Silicone Sheets (ng/3 Sheets), LDPE (ng/100 mm LDPE) und Chemcatcher (ng/C₁₈ Empore disk

NORMAN 3	4.2		MESCO				Silikonstab				LDPE				
(Brno- Modřice)	$\log K_{\rm ow}^{1,2}$	BG ³	Trip	1	2	3	Trip	1	2	3	BG	Trip	1	2	3
PBDE 28	5,94	0,02									4,4	0,9	1,5		12,9
PBDE 47	6,81	0,02		0,01		0,02		0,05	0,05	0,06	3,6	0,9	27,8	26,7	53,0
PBDE 99	7,32	0,03	0,02			0,00		0,01	0,00	0,01	6,2	0,9	11,6	7,3	17,2
PBDE 100	7,24	0,03	0,01	0,00	0,05	0,06	0,02	0,01	0,01	0,00	6,2	1,1	4,1	1,2	15,6
PBDE 153	7,9	0,05	0,03			0,01					10		0,8		
PBDE 154	7,82	0,06									13	0,3	1,3	0,3	

NORMAN 3	10	Silicone Sheets UFZ					Silicone Sheets NORMAN				unpolarer Chemcatcher				
(Brno- Modřice)	log <i>K</i> _{ow} ^{1,2}	BG^4	Trip	1	2	3	Trip	1	2	3	BG	Trip	1	2	3
PBDE 28	5,94	4,6		0,4		5,2	1,4								
PBDE 47	6,81	5,6	3,8	35,4	34,4	38,9	2,2	31,5	24,9	56,0					
PBDE 99	7,32	7	4,0	26,3	28,2	27,3	17,0	50,1	43,6	56,2					
PBDE 100	7,24	5,4	8,2	18,7	12,6	13,0	5,4	5,5	4,7	8,0					

PBDE 153	7,9	4,4	8,6	7,6	6,3	8,1	0,5	0,5	0,5	0,5	l
PBDE 154	7,82	7	4,7	6,9	4,9	7,5	1,0				

¹Oktanol-Wasser-Verteilungskoeffizient aus [43], ²Oktanol-Wasser-Verteilungskoeffizient aus [44], ³Bestimmungsgrenze für MESCO, Silikonstab ⁴Bestimmungsgrenze für Silicone Sheets

A-2.10: Laborvergleichsstudien – Zeitgemittelte Durchschnittswerte der Wasserkonzentrationen

Tabelle A-2.10.1: Zeitgemittelte Durchschnittskonzentrationen c_{TWA} in ng/L und Vergleich mit Schöpfproben

	Schöpfproben (n=5/7)			MESCO (n=3)						Silikonstab (n=3)				
AQUA-REF 1 (Thau-Bassin)	MW ¹	S	n nooitiv	MW ²	S	n nacitiv	MW ³	MW^4	MW ²	s	n naaitiy	MW ³	MW ⁴	
(11180-0835111)	ng/L	ng/L	n positiv	ng/L	ng/L	n positiv	ng/L	ng/L	ng/L	ng/L	n positiv	ng/L	ng/L	
Acetochlor			0											
Alachlor			0											
Atrazin	0,37	0,10	5	18,00	4,49	3	keir	า <i>R</i> s	7,26	1,64	2	kei	n R _s	
DEA	0,09		0											
DIA			1											
Diuron	2,41	0,34	5					nicht av	mosson					
Isoproturon	0,05	0,02	4					nicht ge	- -					
Metolachlor	1,73	0,84	5						1,75		1			
Simazin	0,73	0,24	5						14,62		1			
Acenaphten	0,1	0,0	7						0,25	0,19	2		0,28	
Acenaphtylen	0,4	0,2	5						3,26		1	2,15		
Anthracen			0											
Benzo(a)anthracen	0,1	0,0	3											
Benzo(a)pyren			0											
Benzo(b)fluoranthen	0.1	0.0	3											
Benzo(k)fluoranthen	0,1	0,0	5											
Benzo(g,h,i)perylen			0											
Chrysen			0											
Dibenzo(a,h)anthracen			0											
Fluoranthen	0,3	0,1	7	0,03	0,04	3	0,17	0,02	0,26	0,04	3	4,73	0,24	
Fluoren	0,2	0,1	7											
Indeno(1,2,3)pyren			0											
Naphthalin	1,3	0,6	7											
Phenanthren	0,7	0,1	7											
Pyren	0,2	0,1	7						0,16	0,02	3	0,96	0,12	

¹gefilterte Wasserproben [45] ²C_w berechnet mit PRCs, K_{sw} berechnet nach [19] ³C_w berechnet mit Sammelraten (v = 0,4 cm/s; [26]) ⁴C_w berechnet mit Sammelraten (v = 40 cm/s; [26])

	Schöp	ofproben (MESCO			Si	likonstab		polarer Chemcatcher			
AQUA-REF 2 (Beillant)	MW ¹	S	Ν	MW ²	S	Ν	MW^2	S	Ν	MW^3	S	Ν
2 (Beillant)	ng/L	ng/L		ng/L	ng/L		ng/L	ng/L		ng/L	ng/L	
Acetochlor							0,26	0,03	3			
Alachlor												
Atrazin							8,76	4,91	3	2,78	1,86	3
DEA	49,2	3,5	5									
DIA	13,3	0,5	5									
Diuron						nicht	namassan					
Isoproturon						mont	gemessen					
Metolachlor	18,3	5,0	5				0,33	0,18	3			
Simazin							30,02		1			

Tabelle A-2.10.2: Zeitgemittelte Durchschnittskonzentrationen c_{TWA} in ng/L und Vergleich mit Schöpfproben

¹gefilterte Wasserproben [45] ² C_w berechnet mit PRCs, K_{sw} berechnet nach [19] ³ C_w berechnet mit $R_s = 0,14$ L/d [28]

Tabelle A-2.10.3: Zeitgemittelte Durchschnittskonzentrationen c_{TWA} in ng/L und Vergleich mit Schöpfproben

	Sch	öpfprobei	า	unpolarer Chemcatcher					
AQUA-REF 3 (Ternay)	MW ¹	S	Ν	MW ²	S	Ν	MW ³		
	ng/L	ng/L		ng/L	ng/L		ng/L		
Acenaphten	6,3		1	2,94	0,39	2	0,37		
Acenaphtylen	4,8	4,5	6	86,19		1			
Anthracen	1,2		1	11,23		1	1,23		
Benzo(a)anthracen	0,4		1	2,29		1	5,76		
Benzo(a)pyren			0	0,61	0,70	3	7,13		
Benzo(b)fluoranthen			0	0,40	0,26	3	2,37		
Benzo(k)fluoranthen			0	0,30		1	3,64		
Benzo(g,h,i)perylen			0	0,04	0,04	3			
Chrysen	0,4		1	0,61		1	0,93		
Dibenzo(a,h)anthracen			0						
Fluoranthen	2,6	2,2	6	2,32	1,79	3	0,61		
Fluoren	2,3	2,6	4	3,52	2,11	3	0,44		
Indeno(1,2,3)pyren	1,3	0,3	2	0,04		1			
Naphthalin	3,0	1,7	4		n.a				
Phenanthren	2,9	0,2	3	5,47	1,75	2	0,59		
Pyren	1,5	1,0	6	6,00	0,64	2	1,67		
¹ aofiltorto Wassorprobo	n [45]								

¹gefilterte Wasserproben [45] ² C_w berechnet mit PRCs, $K_{sw} = K_{ow}$ [25] ³ C_w berechnet mit Sammelraten [46]

Tabelle A-2.10.4: Mit Gipskartuschen abgeschätzte durchschnittliche Fließgeschwindigkeit v_{PFM} (cm/s)

NORMAN 1		n=3		Ausbring- zeit	Abnahme	Fließ- geschwindigkeit	Durchfluss (ILS-Daten)	
	m0 (g) ¹	m (g) ²	d(m) ³	d ⁴	rPFM (g/d)⁵	v _{PFM} (cm/s) ⁶	Q (m ³ /d) ⁷	
1	259,36	253,82	5,54					
2	257,98	249,14	8,84	14	0,49	2,61	100819	
3	256,96	250,6	6,36					
MW:			6,91					
s (%)			24,85					
A-2.*	125							
-------	-----							
-------	-----							

NORMAN 3		n=3		Ausbring- zeit	Abnahme	Fließ- geschwindigkeit	Durchfluss (ILS-Daten)
	$m_0 (g)^1$	m (g) ²	d(m) ³	d ⁴	rPFM (g/d)⁵	v _{PFM} (cm/s) ⁶	Q (m ³ /d) ⁷
4	256,65	220,23	36,42				
5	260,21	229,73	30,48	42	0,90	5,07	83003
6	251,18	205,15	46,03				
MW:			37,64				
s (%)			20,85				
¹ Gesamtmas	se PFM v	or der Aust	oringung	-			

²Gesamtmasse PFM nach Einholung ³Massenabnahme während der Ausbringung ⁴Ausbringzeit in Tagen ⁵durchschnittliche tägliche Gewichtsabnahme

⁶berechnete durchschnittliche Fließgeschwindigkeit $v_{\text{PFM}} = (r_{\text{PFM}} - 0.065) / 0.164$ [30]

⁷vom Veranstalter bereitgestellte Durchflussdaten

Tabelle A-2.10.5: NORMAN 1 - Zeitgemittelte Durchschnittskonzentrationen c_{TWA} in ng/L (mit PFM ermittelte durchschnittliche Fließgeschwindigkeit v_{PFM} = 2,61 cm/s)

	F	oolarer C	hemcatche	r ¹	POCIS ²					
NORMAN 1	Pe	st.	Pha	rm.			PUCI	3		
(Brno-Modřice)	MW	S	MW	S	MW	S	Rs	Sammelra	te POCIS	
	ng/L	ng/L	ng/L	ng/L	ng/L	ng/L	L/d	cm/s	Referenz	
Atenolol	61,4	33,0	51,8	15,5	113,7	6,1	0,04	3 - 12	[35]	
Carbendazime	4,8	0,8	4,8	0,1						
Desethylatrazine										
Carbamazepine	236,0	30,4	258,7	15,4	37,9	2,0	0,348	3 - 12	[35]	
Desethylterbutylazine										
Atrazine										
Diuron	35,3	7,1	38,0	5,6	14,6	0,9	0,2	2 - 3	[47]	
Diazepam										
Terbutylazine					3,5	0,1	0,25	2 - 3	[41]	
S-Metolachlor					2,2	0,2	0,23	480 rpm	[38]	
Naproxen	512,4	68,1	582,5	89,7	257,7	56,1	0,116	3 - 12	[35]	
Ketoprofen	197,5	29,9	259,0	27,6	133,9	21,7	0,135	3 - 12	[35]	
Diclofenac	473,7	73,2	548,7	72,4	504,4	119,0	0,166	3 - 12	[35]	
lbuprofen	147 4	35.4	129.4	16 1						

ibuprofen 147,4 35,4 129,4 16,1 V_{A} 119,0 0,166 3 - 12 [35] C_{W} berechnet mit abgeschätzter Sammelrate R_{s} (lineare Regression von Experimentalwerten aus der Literatur in Abhängigkeit von der Fließgeschwindigkeit v_{kal} ; $R_{s} = 0,0079 \cdot v_{PFM} + 0,117$; außer Diuron: $R_{s} = 0,0044 \cdot v_{PFM} + 0,0093$) [48]

²C_w berechnet mit Sammelrate R_s aus der Literatur

Tabelle A-2.10.6: NORMAN 3 - Zeitgemittelte Durchschnittskonzentrationen c_{TWA} unterschiedlicher Berechnungsmodelle der verschiedenen Sammler (pg/L)

	MESCO (n=3)											
(Brno-Modřice)	MW ¹	S	MW ²	s	MW ³	s						
(Brite-Mounce)	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	n positiv					
PBDE 28												
PBDE 47	0,5	0,1	4,1	2,7	16,4	9,0	2					
PBDE 99												
PBDE 100	1,2	0,2	2,8	2,0	133,7	27,8	2					
PBDE 153												
PBDE 154												

	Silikonstab												
(Brno-Modřice)	MW ¹	s	MW ²	s	MW ³	s							
(Bino-Mounce)	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	n positiv						
PBDE 28													
PBDE 47	1,0	0,1	4,6	0,5	12,4	1,2	3						
PBDE 99	0,1	0,0	0,2	0,1	1,9	1,2	3						
PBDE 100													
PBDE 153													
PBDE 154													

	Silicone Sheets UFZ												
(Brno-Modřice)	MW ¹	S	MW ²	s	MW^4	s	MW ⁵	s					
(Billo-Modilce)	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	n positiv				
PBDE 28	14,9	18,2	10,6	12,9	7,8	9,7	23,0	28,4	2				
PBDE 47	6,4	0,8	30,2	1,3	104,1	13,8	314,0	33,0	3				
PBDE 99	2,0	0,5	8,1	1,7	86,7	7,5	262,1	21,3	3				
PBDE 100	2,1	1,3	2,5	1,8	24,3	11,2	73,6	34,0	3				
PBDE 153									0				
PBDE 154	0,1	0,1	0,4	0,3	7,2	6,1	21,4	17,8	3				

	Silicone Sheets NORMAN												
(Brno-Modřice)	MW ¹	S	MW ²	s	MW^4	S	MW ⁵	S					
(Billo-Modilce)	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	n positiv				
PBDE 28									0				
PBDE 47	12,7	18,1	9,9	5,6	5,4	3,5	85,4	44,0	3				
PBDE 99	8,4	5,7	40,0	43,0	5,7	2,1	93,8	41,1	3				
PBDE 100	0,2	0,0	1,3	1,9	0,3	0,4	3,6	4,6	2				
PBDE 153									0				
PBDE 154									0				

			L		unpolarer Chemcatc				
(Brno-Modřice)	MW ⁶	s	MW ⁷	S	MW ³	S		MW ⁸	S
(Brite-Modifice)	pg/L	pg/L	pg/L	pg/L	pg/L	pg/L	n positiv	ng/L	ng/L
PBDE 28	7,0	9,0	8,1	10,5	2,2	2,8	2		
PBDE 47	37,8	13,2	53,0	17,3	12,2	5,2	3		
PBDE 99	4,1	0,5	4,8	1,1	5,4	2,4	3		
PBDE 100	1,8	2,0	1,9	2,0	2,9	3,7	3		
PBDE 153	0,1		0,1		0,3		1		
PBDE 154	0,2		0,1		0,4		1		

¹*C*_w berechnet mit PRCs, experimentelle K_{sw} ²*C*_w berechnet mit PRCs, K_{sw} berechnet mit LSER-Modell nach [19] ³*C*_w berechnet mit Sammelrate aus Laborkalibrierung (v_{kal} = 40 cm/s; [26]) ⁴*C*_w berechnet mit PRCs nach [42], experimentelle K_{sw} ⁵*C*_w berechnet mit PRCs nach [42], K_{sw} berechnet mit LSER-Modell nach [19] ⁶*C*_w berechnet mit PRCs, experimentelle K_{sw} ⁷*C*_w berechnet mit PRCs, K_{sw} berechnet in Anlehnung an [24] ⁸*C*_w berechnet mit PRCs, K_{sw} = log K_{ow} [25]

A-2.11: Diskussion der Ergebnisse

Tabelle A-2.11.1: Durchschnittliche Standardabweichung der c_{TWA} -Werte (konventionelles Berechnungsmodell) von MESCO, Silikonstab, Silicone Sheet und LDPE-Streifen in %, wenn Quantifizierung in mindestens 3 Sammlern möglich (einschließlich c_{TWA} =0 ng/L); kursiv gedruckt: konnte nicht bei allen Sammlern berücksichtigt werden (siehe QS) %; MW – Mittelwert; s – Standardabweichung; n – Anzahl zugrundeliegender c_{TWA} -Werte

Manulaiah	DESSAU						MAGDEBURG						Zusammenfassung			
Vergleich	Juni	/Juli	Juli/A	ugust	Juni-A	ugust	Juni	/Juli	Juli/A	ugust	Juni-A	ugust	Bin	neng	gewässer	
Sammler	EXP	LSER	EXP	LSER	EXP	LSER	EXP	LSER	EXP	LSER	EXP	LSER	EXP		LSER	
Gammer	s (%)	s (%)	s (%)	s (%)	s (%)	s (%)	s (%)	s (%)	s (%)	s (%)	s (%)	s (%)	MW s (%)	n	MW s (%)	n
CB028	84	89	123	69	160	124	117	153	155	130	179	179	136	6	124	6
CB052	160	135	170	153	155	76	116	167	141	80	165	190	151	6	133	6
CB101	143	78	172	166	173	173	126	145	154	72	169	196	156	6	138	6
CB118														0		0
CB138	161	116	170	158	173	173	118	165	129	112	194	199	158	6	154	6
CB153	117	92	168	148	173	173	116	154	147	69	192	199	152	6	139	6
CB180														0		0
DDTOP														0		0
DDTPP	117	167	161	134	170	147			200	142			162	4	147	4
DDDOP			112	121	23	45							68	2	83	2
DDDPP	155	156	121	128	39	33	173	173	173	173	141	147	134	6	135	6
DDEOP														0		0
DDEPP	146	78	167	149	169	156	157	115	161	118	147	177	158	6	132	6
HCB	50	25	137	131	91	94	105	74	121	94	163	109	111	6	88	6
HCHA	89	88	74	78	85	90	106	111	151	108	94	99	100	6	96	6
HCHB	139	143	89	42	21	94	117	161	196	136	112	98	112	6	112	6
HCHG	61	66	88	79	104	88	111	97	86	68	68	62	86	6	77	6
ACY														0		0
ACE	54	57	50	49	141	141	173	173	173	131	173	173	127	6	121	6
ANT	68	72	106	105	44	44	173	173	173	87	110	108	112	6	98	6
DBAHA	173	173	49	46									111	2	110	2
BAA	73	96	100	120	32	20	160	164	160	98	173	173	116	6	112	6
BAP	173	173	141	141			157	159	163	98	173	173	161	5	149	5
BBF	90	94	141	141	141	141	155	157	151	89	173	173	142	6	133	6
BGHIP	93	95	23	21			163	164	169	104	173	173	124	5	112	5
I123P	102	105	77	76			146	148	163	89	173	173	132	5	118	5
CHRTR	100	122	129	136	36	22	167	169	168	119	170	171	128	6	123	6
FL	32	35	75	74	9	8	173	173	173	109	127	128	98	6	88	6
FLU	72	59	95	127	14	14	142	154	144	86	125	130	99	6	95	6
PHEN	65	63	45	43	18	17	171	171	171	123	136	137	101	6	92	6

A-	-2.	1	28

Manalalah			DES	SAU			MAGDEBURG						Zusammenfassung			
vergieicn	Jun	i/Juli	Juli/A	ugust	Juni-A	lugust	Jun	/Juli	Juli/A	ugust	Juni-A	lugust	Bin	neng	gewässer	
Sammler	EXP	LSER	EXP	LSER	EXP	LSER	EXP	LSER	EXP	LSER	EXP	LSER	EXP		LSER	
Gammer	s (%)	s (%)	s (%)	s (%)	s (%)	s (%)	s (%)	s (%)	s (%)	s (%)	s (%)	s (%)	MW s (%)	n	MW s (%)	n
PYR	97	83	109	132	20	21	147	162	152	91	134	135	110	6	104	6
BDE 28			28	95	61	59							45	2	77	2
BDE 47			141	141										1	141	1
BDE 99			66	70									66	1	70	1
BDE 100														0		0
BDE 153														0		0
BDE 154														0		0
ATRAZIN	163	188	141	158			200	200	173	122	116	116	159	5	157	5
IRGAROL	107	132	141	166	141	156	173	180	173	146	106	123	140	6	150	6
TERBUAZI	156	182	141	172	141	172	115	139	162	162	137	163	142	6	165	6

Tabelle A-2.1	1.2: Durchso	hnittliche Ab	oweichung	zwi	schen	auf	e e	perim	entel	ller (EXP)	ι	ind	t
berechneter	(LSER/REG)	Sammelrate	e basierer	nder	c _{TWA}	in	%;	MW	_	Mittelwert;	s	-	-
Standardabw	eichung; n – A	nzahl zugrun	deliegende	er <i>c</i> _{TW}	A-Wert	е							

Vergleich	N	IESCO	Sil	ikonsta	b	Silic	one Sh	eets	LDPE-Streifen			
EXP und LSER/REG	MW	s (%)	n	MW	s (%)	n	MW	s (%)	n	MW	s (%)	n
CB028	68	52	3	83	44	5	67	29	4	26	8	7
CB052	90	30	4	103	4	3	76	28	4	33	22	7
CB101	104	4	2	104	2	3	88	15	4	12	24	7
CB118			n.a	a.			95	19	4	42	10	7
CB138	103		1	107		1	98	6	4	16	9	7
CB153	101	3	2	103	2	4	94	6	4	16	9	7
CB180			n.a	a.			88	12	4	12	13	6
DDTOP	72	13	3	65	2	3			n	.a.		
DDTPP	109		1	51	4	5			0	46	25	4
DDDOP	54	32	6	37	16	7			n	.a.		
DDDPP	44	39	6	26	22	7			0			0
DDEOP			0	94	22	2			n	.a.		
DDEPP	112	8	4	111	13	5	92	27	4	45	18	7
HCB	70	35	8	87	15	7	38	26	4	96	5	7
HCHA	79	1	8	79	1	7			0	75	0	7
HCHB	133	0	4	133	0	5	133	0	3	95	0	7
HCHG	71	1	8	71	1	7	67	2	3	86	0	7
ACY			n.a	a.			28	1	4			
ACE	14	0	2	14	1	5	13	2	4			
ANT	36	1	5	35	1	6	28	5	4			
DBAHA	64	14	3	56	4	5			0			
BAA	69	9	4	60	22	6	56	17	4			
BAP	52		1	52	9	2	56	20	4			
BBF	72	28	2	59	9	6	60	17	4			
BGHIP	41	16	3	35	9	6	48	34	4			
I123P	37	8	2	40	8	6	51	31	4			
CHRTR	61	14	6	55	21	7	53	18	4		na	
FL	5	1	4	5	1	6	4	3	4		m.a.	
FLU	32	15	8	41	26	7	33	13	4			
PHEN	20	1	8	20	1	6	17	4	4			
PYR	44	8	7	47	25	7	34	10	4			
BDE 28	35	53	3	29	29	5						
BDE 47			0	95	6	4						
BDE 99	78	1	2	78	3	4		na				
BDE 100	22	26	2	4	3	3		n.a.				
BDE 153			0	33		1						
BDE 154			0	13	2	2						
ATRAZIN	95		1	95	0	3	95	0	4	141		1
IRGAROL			0	27	0	6	27	0	4			0
TERBUAZI	99	0	4	99	0	7	98	0	4			0

Passiv-	ME	SCO		Silikonstab			Silicon	e Sheets	;	LDPE-Streifen			
sammler	MW	S	n	MW	S	n	MW	S	n	MW	S	n	
und Mischprobe	C _{TWA} /C _{WM}			C _{TWA} /C _{WM}			c _{twa} /c _{wm}			C _{TWA} /C _{WM}			
CB028	1.16	0.50	2	0.24	0.24	2	1.02	1.36	3	0.18	0.11	4	
CB052	.,	0,00	0	0.64	•,= ·	1	6.54	9.75	3	1.82	1.35	4	
CB101	0.00		1	0.08	0.01	2	5.01	9,79	4	0.57	0.34	7	
CB118	0,00		·	0,00	0,01	_ n.	.a.	0,10		0,01	0,01	•	
CB138	0,00		1	0,01		1	5,02	8,62	3	0,09	0,07	6	
CB153	0,01		1	0,01	0,01	2	4,24	7,30	3	0,05	0,04	4	
CB180						n.	.a.						
DDTOP	0,01	0,01	3	0,11	0,11	3			I	n.a.			
DDTPP	0,01		1	0,18	0,32	5			0	1,06	0,29	4	
DDDOP	0,52	0,41	5	1,11	1,26	4			1	n.a.			
DDDPP	0,40	0,38	4	0,78	0,82	3			0			0	
DDEOP			0			0			ı	n.a.			
DDEPP			0			0			0			0	
HCB	3,70	3,67	5	1,30	1,74	4	7,75		1	1,88	0,68	3	
HCHA	1,14	1,08	8	2,54	1,92	7			0	4,02	2,19	7	
HCHB	0,19	0,21	5	0,64	0,49	4	1,52	1,57	3	0,05	0,05	6	
HCHG	0,86	1,42	8	3,12	4,22	7	6,31	9,83	3	5,30	5,37	7	
ACY						n.	.a.						
ACE	0,34	0,00	2	0,25	0,28	5	0,29	0,31	4	r	n.a.		
ANT	0,17	0,08	5	0,62	0,49	6	0,54	0,19	4				
DBAHA	0,03	0,04	3	0,02	0,02	5			0				
BAA	0,06	0,03	4	0,15	0,11	6	1,60	1,81	4				
BAP	0,00		1	0,13	0,13	2	2,11	3,50	4				
BBF	0,03	0,03	2	0,05	0,07	6	2,29	4,29	4				
BGHIP	0,10	0,11	3	0,03	0,03	5	1,75	2,86	3				
I123P	0,07	0,05	2	0,03	0,03	6	1,99	3,89	4				
CHRTR	0,04	0,04	6	0,09	0,08	7	2,15	2,48	4				
FL	0,45	0,53	3	0,38	0,58	5	0,85	0,79	4				
FLU	0,40	0,35	8	1,03	0,71	7	4,49	2,02	4				
PHEN	0,15	0,22	8	0,26	0,34	6	0,45	0,67	4				
PYR	0,20	0,21	8	0,46	0,23	7	4,52	3,08	4				
BDE 28	0,04		1	0,18		1	r	1.a.					
BDE 47			0	0,01		1							
BDE 99	0,03		1	0,01		1							
BDE 100			0			0							
BDE 153			0			0							
BDE 154			0			0							
ATRAZIN	36,47		1	81,08	66,96	3	52,37	64,01	3			0	
IRGAROL			0	0,29	0,30	4	0,29		1			0	
TERBUAZI	0,01	0,01	4	2,42	1,29	7	1,05	1,10	4			0	

Tabelle A-2.11.3: Quotienten von c_{TWA} aus Passivsammler (ohne 0 ng/L), berechnet mit experimentellen Sammelraten (EXP), und Mittelwert der zeitgleichen Wochenmischproben c_{WM} (ohne 0 ng/L); MW – Mittelwert; s – Standardabweichung; n – Anzahl zugrundeliegender c_{TWA}/c_{MW} -Werte

Tabelle A-2.11.4: Quotienten von c_{TWA} aus Passivsammler (ohne 0 ng/L), berechnet mit berechneten Sammelraten (LSER/REG), und Mittelwert der zeitgleichen Wochenmischproben c_{WM} (ohne 0 ng/L); MW – Mittelwert; s – Standardabweichung; n – Anzahl zugrundeliegender c_{TWA}/c_{MW} -Werte

Passiv-	MESCO			Silik	onstab		Silicone	LDPE-Streifen				
sammler und Mischprobe	MW c _{TWA} /c _{WM}	s	n	MW c _{TWA} /c _{WM}	S	n	MW c _{TWA} /c _{WM}	S	n	с тwа/сwм	s	n
CB028	3,01	1,84	2	1,02	0,89	2	1,42	1,04	3	0,28	0,19	4
CB052			0	3,67		1	8,14	8,37	3	0,94	0,46	4
CB101	0,02		1	0,57	0,07	2	5,31	9,60	4	0,49	0,34	7

Passiv-	MESCO			Silik	constab		Silicone	LDPE-Streifen				
sammler und Mischprobe	MW c _{TWA} /c _{WM}	S	n	MW c _{TWA} /c _{WM}	S	n	MW c _{TWA} /c _{WM}	S	n	с _{тwa} /с _{wм}	S	n
CB118						n.a	1.					
CB138	0,01		1	0,04		1	5,15	8,51	3	0,10	0,09	6
CB153	0,06		1	0,05	0,05	2	4,29	7,26	3	0,05	0,04	4
CB180						n.a	1.					
DDTOP	0,02	0,02	3	0,31	0,30	3			n.a.			
DDTPP	0,08		1	0,38	0,67	5			0	0,57	0,28	4
DDDOP	1,91	2,61	5	2,37	2,87	4			n.a.			
DDDPP	1,92	3,07	4	1,55	2,12	3			0			0
DDEOP			0			0			n.a.			
DDEPP			0			0			0			0
HCB	6,96	7,97	5	5,00	5,20	4	17,95		1	11,07	4,02	3
HCHA	0,32	0,31	8	0,73	0,54	7			0	1,24	0,68	7
НСНВ	0,01	0,01	5	0,01	0,02	5	0,06	0,04	3	0,01	0,01	6
HCHG	0,29	0,48	8	1,03	1,38	7	2,42	3,61	3	1,30	1,32	7
ACY	0.00	0.00	•	0.04	0.00	n.	a.	0.00				
ACE	0,28	0,00	2	0,21	0,22	5	0,25	0,26	4			
ANI	0,29	0,14	5	1,02	0,79	6	0,69	0,13	4			
	0,07	0,09	3	0,05	0,05	5	2.26	1 57	0			
	0,10	0,14	4	0,30	0,33	0	2,30	1,57	4			
	0,00	0 15	ו ר	0,30	0,33	2	2,39	3,34 1 21	4			
BCHID	0,15	0,15	2	0,15	0,17	5	2,41	4,21 292	2			
11230	0,15	0,10	3 2	0,05	0,05	5	2.01	2,02	J ⊿			
CHRTR	0,11	0,07	6	0,00	0,05	7	2,01	2 20	- -			
FI	0,13	0,17	3	0,20	0,21	5	0.81	0.78	- -		na	
FLU	0,42	0,50	8	2 90	0,0 4 4 27	7	6.23	2.88	4		n.a.	
PHEN	0.21	0.30	8	0.34	0.44	6	0.57	0.87	4			
PYR	0.26	0.23	8	1.09	0.85	7	6,73	5.86	4			
BDF 28	0.21	0,20	1	0.17	0,00	1	0,10	0,00	·			
BDE 47	•,=:		0	0.05		1						
BDE 99	0.10		1	0.04		1						
BDE 100	-, -		0	- , -		0	n.	а.				
BDE 153			0			0						
BDE 154			0			0						
ATRAZIN	183,77		1	408,84	337,65	3	96,18	73,97	3	52,88	94,41	
IRGAROL			0	0,42	0,44	4	0,42		1	0,01	0,01	4
TERBUAZI	0,08	0,07	4	13,58	7,24	7	2,80	0,99	4	0,06	0,05	7

Tabelle A-2.11.5: Quotient von c_{TWA} aus Passivsammler, berechnet mit experimentellen Sammelraten (EXP), und Mittelwert der zeitgleichen Schwebstoffproben c_{WP} (ohne 0 ng/L); die Wasserkonzentration wurde über den POC-Gehalt sowie über den K_{OC} der einzelnen Substanzen abgeschätzt; MW – Mittelwert; s – Standardabweichung; n – Anzahl zugrundeliegender $c_{\text{TWA}}/c_{\text{WP}}$ -Werte

Passiv-	ME	SCO		Siliko	Silikonstab			Silicone Sheets			LDPE-Streifen		
sammler und	MW	s	n	MW	S	n	MW	S	n	MW	S	n	
Mischprobe	C _{TWA} /C _{WP}			c _{TWA} /c _{WP}			$c_{\rm TWA}/c_{\rm WP}$			c _{TWA} /c _{WP}			
CB028	13,1	5,6	2	5,3	6,4	2	28,2	37,5	3	4,3	2,1	4	
CB052	14,1	22,3	4	2,4	3,1	3	59,1	104,0	4	14,1	10,2	7	
CB101	1,5	1,7	2	2,0	1,3	3	157,6	305,9	4	24,5	17,6	7	
CB118			n.	a.			482,7	942,7	4	29,5	36,8	7	
CB138	0,6		1	1,4		1	1092,2	2166,2	4	21,7	17,1	7	
CB153	2,5	1,6	2	6,3	6,0	4	1316,9	2609,8	4	47,0	39,9	7	
CB180			n.	a.			438,6	873,8	4	4,7	4,4	6	

3 DDTOP 0,9 1,5 3 9,3 14,2 n.a. 0,5 8,6 15,1 5 54,5 19,9 DDTPP 1 0 4 7 4.4 6 6,2 DDDOP 3,9 7,0 n.a. 7 DDDPP 1,1 1,3 6 3,8 3,7 0 0 2 DDEOP 0 6,5 2,5 n.a. DDEPP 0.9 0.7 4 2.7 3.0 5 58.7 112,4 4 30.8 22.9 7 HCB 8,2 9,6 8 3,3 3,2 7 44,9 4 5,4 2,4 7 35,7 **HCHA** 7,1 3 8,8 3 0 16,4 3 6,6 9,3 9,2 **HCHB** 4 5 92,3 3 7 4,1 6,4 45,9 69,4 65,1 3,8 4,9 **HCHG** 0 0 0 0 ACY n.a. ACE 0,2 0,1 2 0,2 0.1 5 0,5 0.3 4 n.a. ANT 0,0 4 0,1 5 0,2 0,2 6 0,2 0,1 3 2,1 DBAHA 5,0 7,8 2,1 5 0 2,1 BAA 0,1 0,1 4 0,2 0,1 6 1,9 4 4 BAP 0,0 1 0,1 0,1 2 1,5 2,5 BBF 0,1 0,1 3,4 6,4 4 0,1 2 0,1 6 **BGHIP** 10,5 19,8 4 0,7 1,1 3 0,2 0,2 6 I123P 4,4 2 89,0 174,1 4 5,1 1,3 1,2 6 CHRTR 0,0 4 0,0 6 0,1 0,2 7 3,3 3,4 0,3 0,4 4 0,4 0,4 0,9 0,5 4 FL 6 FLU 0,1 8 0,3 0,2 1,1 0,5 4 0,1 7 PHEN 0,2 0,2 0,2 0,9 4 0,1 8 6 0,4 0,5 PYR 0,0 0,0 8 0,0 7 0,3 0,1 4 **BDE 28** 0 0 n.a. **BDE 47** 0 0 **BDE 99** 0 2010,0 1 **BDE 100** 0 0 **BDE 153** 0 0 BDE 154 0 0 ATRAZIN n.a. IRGAROL **TERBUAZI**

Tabelle A-2.11.6: Quotient von c_{TWA} aus Passivsammler, berechnet mit berechneten Sammelraten (LSER/REG), und Mittelwert der zeitgleichen Schwebstoffproben c_{WP} (ohne 0 ng/L); die Wasserkonzentration wurde über den POC-Gehalt sowie über den K_{OC} der einzelnen Substanzen abgeschätzt; MW – Mittelwert; s – Standardabweichung; n – Anzahl zugrundeliegender c_{TWA}/c_{WP} -Werte

Passivsammler	ME	MESCO Silikonstab					Silico	ne Sheets	LDPE-Streifen			
und	MW	S	n	MW	S	n	MW	S	n	MW	S	n
Mischprobe	c _{TWA} /c _{WP}			c _{TWA} /c _{WP}			C _{TWA} /C _{WP}			c _{TWA} /c _{WP}		
CB028	34,0	20,8	2	22,4	25,4	2	40,4	28,8	3	6,6	3,2	4
CB052	39,8	46,3	4	14,2	17,2	3	75,3	94,9	4	8,2	3,8	7
CB101	10,6	12,9	2	13,6	9,7	3	169,1	298,4	4	22,2	19,0	7
CB118			r	i.a.			520,7	918,0	4	54,4	76,8	7
CB138	3,9		1	10,4		1	1120,9	2147,3	4	24,6	21,7	7
CB153	15,7	11,0	2	40,7	38,9	4	1350,6	2587,6	4	54,2	50,8	7
CB180			r	n.a.			442,4	871,2	4	4,1	4,2	6
DDTOP	2,4	3,9	3	25,9	39,7	3			n.a	a.		
DDTPP	0,5		1	18,0	31,0	5			0	29,6	16,8	4
DDDOP	14,8	27,0	6	12,5	15,3	7			n.a	а.		
DDDPP	4,9	10,0	6	6,8	7,5	7			0			0
DDEOP			0	41,0	34,6	2			n.a	а.		
DDEPP	7,3	8,5	4	23,4	28,6	5	67,9	106,3	4	62,0	70,9	7
HCB	11,2	11,5	8	12,0	8,6	7	55,2	24,6	4	28,1	12,2	7
HCHA	2,6	1,8	3	2,6	2,5	3			0	5,1	2,8	3
HCHB	0,2	0,2	4	1,4	2,1	5	4,9	4,1	3	0,7	1,0	7

A-2.132

HCHG			0			0			0	0
ACY							n.a.			
ACE	0,2	0,1	2	0,1	0,1	5	0,4	0,2	4	n.a.
ANT	0,1	0,0	5	0,3	0,2	6	0,2	0,0	4	
DBAHA	11,2	17,2	3	5,0	5,0	5			0	
BAA	0,2	0,3	4	0,4	0,4	6	2,7	1,8	4	
BAP	0,0		1	0,2	0,3	2	1,6	2,4	4	
BBF	0,3	0,4	2	0,2	0,2	6	3,6	6,3	4	
BGHIP	1,0	1,5	3	0,3	0,3	6	10,8	19,7	4	
I123P	8,3	6,6	2	2,2	2,1	6	90,1	173,4	4	
CHRTR	0,1	0,2	6	0,3	0,4	7	4,7	3,1	4	
FL	0,3	0,3	4	0,3	0,4	6	0,9	0,5	4	
FLU	0,2	0,1	8	0,8	1,1	7	1,5	0,7	4	
PHEN	0,2	0,2	8	0,3	0,2	6	1,1	0,5	4	
PYR	0,1	0,0	7	0,3	0,3	7	0,8	0,4	4	
BDE 28			0			0		n.a.		
BDE 47			0			0				
BDE 99			0	6918,4		1				
BDE 100			0			0				
BDE 153			0			0				
BDE 154			0			0				
ATRAZIN							n.a.			İ
IRGAROL										
TERBUAZI										

Literatur:

- 1. Advanced Chemistry Development, *ACD/ADME Suite, ABSOLV Module*. 1996-2012.
- 2. Ni, N. and Yalkowsky, S.H., *Prediction of Setschenow constants.* International Journal of Pharmaceutics, 2003. **254**(2): p. 167-172.
- 3. Kipka, U. and Di Toro, D.M., *A linear solvation energy relationship model of organic chemical partitioning to particulate organic carbon in soils and sediments.* Environmental Toxicology And Chemistry, 2011. **30**(9): p. 2013-2022.
- 4. Kipka, U. and Di Toro, D.M., *A linear solvation energy relationship model of organic chemical partitioning to dissolved organic carbon.* Environmental Toxicology And Chemistry, 2011. **30**(9): p. 2023-2029.
- 5. DiFilippo, E.L. and Eganhouse, R.P., Environ. Sci. Technol., 2010((18)): p. 6917.
- Smedes, F., Geertsma, R.W., Zande, T.v.d., and Booij, K., Polymer-Water Partition Coefficients of Hydrophobic Compounds for Passive Sampling: Application of Cosolvent Models for Validation. Environmental Science & Technology, 2009. 43(18): p. 7047-7054.
- 7. Smedes, F. and Beeltje, H., *Silicone Rubber-Water Partition Coefficients for Passive Sampling*. 2010, Deltares: Utrecht.
- 8. Ter Laak, T.L., Busser, F.J.M., and Hermens, J.L.M., Anal. Chem., 2008. 80(10): p. 3859.
- Lambropoulou, D.A., Sakkas, V.A., and Albanis, T.A., Analysis of antifouling biocides Irgarol 1051 and Sea Nine 211 in environmental water samples using solid-phase microextraction and gas chromatography. Journal of Chromatography A, 2002. 952(1–2): p. 215-227.
- Magnér, J.A., Alsberg, T.E., and Broman, D., Evaluation of poly(ethylene-co-vinyl acetateco-carbon monoxide) and polydimethylsiloxane for equilibrium sampling of polar organic contaminants in water. Environmental Toxicology And Chemistry, 2009. 28(9): p. 1874-1880.
- 11. Xia, X.-R., Baynes, R.E., Monteiro-Riviere, N.A., Leidy, R.B., Shea, D., and Riviere, J.E., A Novel <i>in-Vitro Technique for Studying Percutaneous Permeation with a Membrane-Coated Fiber and Gas Chromatography/Mass Spectrometry: Part I. Performances of the Technique and Determination of the Permeation Rates and Partition Coefficients of Chemical Mixtures. Pharmaceutical Research, 2003. 20(2): p. 275-282.
- Zambonin, C.G. and Palmisano, F., Determination of triazines in soil leachates by solidphase microextraction coupled to gas chromatography–mass spectrometry. Journal of Chromatography A, 2000. 874(2): p. 247-255.
- 13. Wille, K., Claessens, M., Rappé, K., Monteyne, E., Janssen, C.R., De Brabander, H.F., and Vanhaecke, L., *Rapid quantification of pharmaceuticals and pesticides in passive samplers*

using ultra high performance liquid chromatography coupled to high resolution mass spectrometry. Journal of Chromatography A, 2011. **1218**(51): p. 9162-9173.

- 14. Boyd-Boland, A.A. and Pawliszyn, J.B., *Solid-phase microextraction of nitrogen-containing herbicides.* Journal of Chromatography A, 1995. **704**(1): p. 163-172.
- 15. Kwon, J.-H., Wuethrich, T., Mayer, P., and Escher, B.I., *Dynamic Permeation Method To Determine Partition Coefficients of Highly Hydrophobic Chemicals between Poly(dimethylsiloxane) and Water.* Analytical Chemistry, 2007. **79**(17): p. 6816-6822.
- Magdic, S., Boyd-Boland, A., Jinno, K., and Pawliszyn, J.B., *Analysis of organophosphorus insecticides from environmental samples using solid-phase microextraction.* Journal of Chromatography A, 1996. **736**(1–2): p. 219-228.
- Beltran, J., Lopez, F.J., Cepria, O., and Hernandez, F., Solid-phase microextraction for quantitative analysis of organophosphorus pesticides in environmental water samples. Journal of Chromatography A, 1998. 808(1–2): p. 257-263.
- Lambropoulou, D.L., Sakkas, V.S., and Albanis, T.A., Validation of an SPME method, using PDMS, PA, PDMS-DVB, and CW-DVB SPME fiber coatings, for analysis of organophosphorus insecticides in natural waters. Analytical and Bioanalytical Chemistry, 2002. 374(5): p. 932-941.
- Arp, H.P.H., Endo, S., and Goss, K.-U., Comment on "Assessment of PDMS-Water Partition Coefficients: Implications for Passive Environmental Sampling of Hydrophobic Compounds". Environmental Science & Technology, 2010. 44(22): p. 8787-8788.
- 20. Bao, L.-J., Xu, S.-P., Liang, Y., and Zeng, E.Y., *Development of a low-density polyethylene*containing passive sampler for measuring dissolved hydrophobic organic compounds in open waters. Environmental Toxicology And Chemistry, 2012. **31**(5): p. 1012-1018.
- 21. Hale, S.E., Martin, T.J., Goss, K.-U., Arp, H.P.H., and Werner, D., *Partitioning of organochlorine pesticides from water to polyethylene passive samplers.* Environmental Pollution, 2010. **158**(7): p. 2511-2517.
- Bao, L.-J., You, J., and Zeng, E.Y., Sorption of PBDE in low-density polyethylene film: Implications for bioavailability of BDE-209. Environmental Toxicology And Chemistry, 2011.
 30(8): p. 1731-1738.
- 23. Hale, S.E., Tomaszewski, J.E., Luthy, R.G., and Werner, D., Sorption of dichlorodiphenyltrichloroethane (DDT) and its metabolites by activated carbon in clean water and sediment slurries. Water Research, 2009. **43**(17): p. 4336-4346.
- 24. Lohmann, R., *Critical Review of Low-Density Polyethylene Partitioning and Diffusion Coefficients for Trace Organic Contaminants and Implications for Its Use As a Passive Sampler.* Environmental Science & Technology, 2011. **46**(2): p. 606-618.
- 25. UFZ Department of Ecological Chemistry. *ChemProp* 5.2.4. 2011; Available from: <u>http://www.ufz.de/index.php?en=6738</u>.

- 26. Gunold, R., Paschke Albrecht, Mohammed Radwan, and Gerrit, S., *Calibration of MESCO and bare Silicone Rod passive samplers for the determination of organic contaminants in water.* in preparation, 2013.
- Prokeš, R., Vrana, B., Klánová, J., and Kupec, J., Calibration of passive samplers of hydrophobic organic compounds in water: assessment of critical issues in experimental design, data interpretation and field application. Fresenius Environmental Bulletin, 2010.
 19(12): p. 2812-2822.
- Shaw, M., Eaglesham, G., and Mueller, J.F., Uptake and release of polar compounds in SDB-RPS Empore(TM) disks; implications for their use as passive samplers. Chemosphere, 2009. **75**(1): p. 1-7.
- 29. Shaw, M. and Mueller, J.F., *Time Integrative Passive Sampling: How Well Do Chemcatchers Integrate Fluctuating Pollutant Concentrations?* Environmental Science & Technology, 2009. **43**(5): p. 1443-1448.
- O'Brien, D., Bartkow, M., and Mueller, J.F., *Determination of deployment specific chemical uptake rates for SDB-RPD Empore disk using a passive flow monitor (PFM).* Chemosphere, 2011. 83(9): p. 1290-1295.
- Tran, A.T.K., Hyne, R.V., and Doble, P., Calibration of a passive sampling device for timeintegrated sampling of hydrophilic herbicides in aquatic environments. Environmental Toxicology and Chemistry, 2007. 26(3): p. 435-443.
- 32. Vermeirssen, E.L.M., Bramaz, N., Hollender, J., Singer, H., and Escher, B.I., Passive sampling combined with ecotoxicological and chemical analysis of pharmaceuticals and biocides evaluation of three Chemcatcher[™] configurations. Water Research, 2009. **43**(4): p. 903-914.
- 33. Stephens, B.S., Kapernick, A.P., Eaglesham, G., and Mueller, J.F., *Event monitoring of herbicides with naked and membrane-covered Empore disk integrative passive sampling devices.* Marine Pollution Bulletin, 2009. **58**(8): p. 1116-1122.
- 34. Schäfer, R.B., Paschke, A., and Liess, M., *Aquatic passive sampling of a short-term thiacloprid pulse with the Chemcatcher: Impact of biofouling and use of a diffusion-limiting membrane on the sampling rate.* Journal of Chromatography A, 2008. **1203**(1): p. 1-6.
- MacLeod, S.L., McClure, E.L., and Wong, C.S., Laboratory calibration and field deployment of the Polar organic chemical integrative sampler for pharmaceuticals and personal care products in wastewater and surface water. Environmental Toxicology And Chemistry, 2007.
 26(12): p. 2517-2529.
- Li, H., Helm, P.A., and Metcalfe, C.D., Sampling in the Great Lakes for pharmaceuticals, personal care products, and endocrine-disrupting substances using the passive polar organic chemical integrative sampler. Environmental Toxicology And Chemistry, 2010. 29(4): p. 751-762.

- 37. Alvarez, D., Development of an integrative sampling device for hydrophilic organic contaminants in aquatic environments, in Environmental/Analytical Chemistry. 1999, University of Missouri-Columbia.
- Thomatou, A.-A., Zacharias, I., Hela, D., and Konstantinou, I., *Passive sampling of selected pesticides in aquatic environment using polar organic chemical integrative samplers.* Environmental Science and Pollution Research, 2011. **18**(7): p. 1222-1233.
- Alvarez, D.A., D, P.J., Huckins, J.N., and Jones-Lepp, T.L., Environ. Toxicol. Chem., 2004.
 23: p. 1640.
- 40. Togola, A. and Budzinski, H., *Development of Polar Organic Integrative Samplers for Analysis of Pharmaceuticals in Aquatic Systems.* Analytical Chemistry, 2007. **79**(17): p. 6734-6741.
- 41. Mazzella, N., Dubernet, J.-F., and Delmas, F., *Determination of kinetic and equilibrium regimes in the operation of polar organic chemical integrative samplers. Application to the passive sampling of the polar herbicides in aquatic environments.* Journal Of Chromatography A, 2007. **1154**: p. 42-51.
- 42. Rusina, T.P., Smedes, F., Koblizkova, M., and Klanova, J., *Calibration of Silicone Rubber Passive Samplers: Experimental and Modeled Relations between Sampling Rate and Compound Properties.* Environmental Science & Technology, 2010. **44**(1): p. 362-367.
- 43. Braekevelt, E., Tittlemier, S.A., and Tomy, G.T., *Direct measurement of octanol-water partition coefficients of some environmentally relevant brominated diphenyl ether congeners.* Chemosphere, 2003. **51**(7): p. 563-567.
- 44. Choi, K.-I., Lee, S.-H., and Osako, M., *Leaching of brominated flame retardants from TV housing plastics in the presence of dissolved humic matter.* Chemosphere, 2009. **74**(3): p. 460-466.
- Miège, C., Schiavone, S., Dabrin, A., Coquery, M., Mazzella, N., Berho, C., Ghestem, J.P., Togola, A., Gonzalez, C., Gonzalez, J.L., Lalere, B., Lardy-Fontan, S., Lepot, B., Munaron, D., and Tixier, C., *An in situ intercomparison exercise on passive samplers for monitoring metals, polycyclic aromatic hydrocarbons and pesticides in surface waters.* TrAC Trends in Analytical Chemistry, 2012. **36**(0): p. 128-143.
- 46. Vrana, B., Mills, G., Greenwood, R., Knutsson, J., Svensson, K., and Morrison, G., *Performance optimisation of a passive sampler for monitoring hydrophobic organic pollutants in water.* Journal of Environmental Monitoring, 2005. **7**(6): p. 612-620.
- 47. Lissalde, S., Mazzella, N., Fauvelle, V., Delmas, F., Mazellier, P., and Legube, B., *Liquid chromatography coupled with tandem mass spectrometry method for thirty-three pesticides in natural water and comparison of performance between classical solid phase extraction and passive sampling approaches.* Journal of Chromatography A, 2011. **1218**(11): p. 1492-1502.

48. Münze, R., Khrycheva, P., Gunold, R., Paschke, A., Kaske, O., Hundt, M., Bauer, C., Möder, M., Liess, M., and Beketov, M.A., *Linking exposure and effects of pesticides using passive samplers and the SPEARpesticides bioindicator – A case study in Central Germany, 2010.* In preparation, 2013.

A-3. Abbildungen

Abbildung A-3.1: Silikonplatten in Halterung. Foto: Kraus, BSH

Abbildung A-3.2: MESCO Gitter mit Chemcatcher (2. Generation). Foto: UFZ

Abbildung A-3.3: Chemcatcher (3. Generation) vor (unten) und nach (oben) der Ausbringung. Fotos: Kraus, BSH

Abbildung A-3.4: Chemcatcher in SPMD-Käfig. Foto: UFZ

Abbildung A-3.5: Ausbringungsbereiter MESCO (oben) sowie schematische Darstellung des MESCO-Sammlers (unten) bestehend aus 15 mm-Silikonstücken in einem LDPE-Membranschlauch. Durchgezogene Linien: Schweißnaht; Unterbrochene Linien: Bereich für die Befestigung am Probenort. Foto: UFZ

Abbildung A-3.6: Geöffnetes Gitter mit MESCO und Silikonstab. Foto: UFZ

Abbildung A-3.7: LDPE-Membran zugeschnitten (links) und in Sammlervorrichtung (rechts). Fotos: Kraus, BSH

Abbildung A-3.8: Rohmaterial LDPE-Schlauch (links) und Silikonstab (rechts). Foto: UFZ

Abbildung A-3.9: Probenahmestellen Binnengewässer. Karte © Google Maps, 2012; Fotos: UFZ.

Abbildung A-3.10: Mischprobennehmer. Foto: UFZ

Abbildung A-3.11: Extraktion von Wasserproben mit Twister®. Fotos: UFZ

Abbildung A-3.12: Lage der Messstellen an Übergangs- und Küstengewässern sowie in der Hochsee. Karte © Google Maps, 2012

Abbildung A-3.13: Heben der Seezeichentonne Fehmarnsund 3 mit Kette und Ankerstein mittels Kran zur Einholung des Sammelkorbs. Fotos: Kraus, BSH

Abbildung A-3.14: Probenahmestelle Kirchenpauerkai, Hamburger Hafen. Karte © Google Maps, 2012

Abbildung A-3.15: Prototyp eines hochseetauglichen Sammlerkorbs vor und nach Strömungstests vor Helgoland. Foto: Kraus, BSH

Abbildung A-3.16: Gasdichter Transportbehälter für Passivsammlerkorb (Prototyp), der den Transport eines bereits bestückten Sammler-Korbes unter Schutzatmosphäre erlaubt. Fotos: Pohle, BSH

Abbildung A-3.17: Edelstahlkorb nach Vorbild der Arbeitsgruppe von F. Smedes (National Institute for Costal and Marine Management, Netherlands bzw. Deltares Geo-environmental Research Laboratory, Utrecht). Links und Mitte: Bestückung ausschließlich mit Silikonsammlern, rechts: Bestückung mit verschiedenen Sammlertypen. Fotos: links: Dora, BSH; Mitte und rechts: Kraus, BSH

Abbildung A-3.18: Gipskartuschen zur Ermittlung der durchschnittlichen Fließgeschwindigkeit vor dem Ausbringen. Foto: UFZ

Abbildung A-3.19: Gipskartuschen nach der Verwendung (im Laborversuch). Foto: UFZ

Abbildung A-3.20: Glasrohr zur Trocknung der LDPE-Schlauchstücke. An einem Ende ist die Stickstoffzufuhr angeschlossen, das andere Ende ist offen für die Abluft. Foto: UFZ

Abbildung A-3.21: Konditionierofen von Gerstel zum Ausheizen von Twister® und Silikonstäben für MESCO und Silikonstab-Sammler. Foto: UFZ