
 

 23/2015 
TEXTE 

Green Software 
Analysis of potentials for optimizing software 
development and deployment for resource conservation 

Subproject 3: Establishing and exploiting potentials for 
environmental protection in information and 
communication technology (Green IT)  





TEXTE 23/2015 

Environmental Research of the  
Federal Ministry for the  
Environment, Nature Conservation, 
Building and Nuclear Safety 

Project No. (FKZ) 3710 95 302 3 
Report No. (UBA-FB) 001883/2,E 

Green Software 

Establishing and exploiting potentials for 
environmental protection in information and 
communication technology (Green IT) 

Subproject 3: Analysis of potentials for optimizing 
software development and deployment for resource 
conservation 

by 

Prof. Dr. Lorenz Hilty, Dr. Wolfgang Lohmann 
Universität Zürich, Institut für Informatik, Forschungsgruppe Informatik und 
Nachhaltigkeit, Zürich 

Dr. Siegfried Behrendt, Michaela Evers-Wölk 
IZT Institut für Zukunftsstudien und Technologiebewertung gemeinnützige 
GmbH, Berlin 

Prof. Dr. Klaus Fichter, Dr. Ralph Hintemann 
Borderstep Institut für Innovation und Nachhaltigkeit gemeinnützige GmbH, 
Berlin 

On behalf of the Federal Environment Agency (Germany) 



Imprint 

Publisher: 
Umweltbundesamt  
Wörlitzer Platz 1 
06844 Dessau-Roßlau 
Tel: +49 340-2103-0 
Fax: +49 340-2103-2285 
info@umweltbundesamt.de 
Internet: www.umweltbundesamt.de 

 /umweltbundesamt.de 
 /umweltbundesamt 

Study performed by: 
Universität Zürich, Institut für Informatik, Forschungsgruppe Informatik und 
Nachhaltigkeit, Binzmühlestrasse 14, CH-8050 Zürich 

IZT Institut für Zukunftsstudien und Technologiebewertung gemeinnützige 
GmbH, Schopenhauerstr. 26, 14129 Berlin 

Borderstep Institut für Innovation und Nachhaltigkeit gemeinnützige GmbH, 
Clayallee 323, D-14169 Berlin 

Study completed in: 
2013 

Edited by: 
Section III 1.1 General Aspects of Product-related Environmental Protection, 
Sustainable Consumption, Innovation Programme 
Maike Janßen, Dr. Heidrun Moser 
Advisory Office on Sustainable Information and Communication Technology – 
Green IT 
Marina Köhn 

Publication as pdf: 
 http://www.umweltbundesamt.de/publikationen/green-software 

ISSN 1862-4804 

Dessau-Roßlau, March 2015 

The Project underlying this report was supported with funding from the Federal 
Ministry for the Environment, Nature Conservation, Building and Nuclear safety 
under project number FKZ 3710 95 302 3. The responsibility for the content of 
this publication lies with the author(s). 

mailto:info@umweltbundesamt.de
http://www.umweltbundesamt.de/
http://www.umweltbundesamt.de/


Green Software 

– 7 –

Kurzbeschreibung 

Obwohl Softwareprodukte immaterielle Güter sind, kann die Nutzung von Software erhebliche Stoff- 

und Energieströme auslösen. Eigenschaften der Software entscheiden, welche Hardwarekapazitäten 

vorgehalten werden und wieviel elektrische Energie in Endgeräten, Netzwerken und Rechenzentren 

verbraucht wird. Der Zusammenhang zwischen Softwareeigenschaften und dem Bedarf an natür-

lichen Ressourcen, der durch Herstellung und Betrieb von IKT-Systemen ausgelöst wird, ist bisher 

wissenschaftlich noch wenig untersucht. Die vorliegende Studie betritt Neuland, indem sie explorativ 

den Einfluss von Software auf die indirekte Inanspruchnahme natürlicher Ressourcen durch Hard-

ware untersucht. Die Ressourceneffizienz von Software wird dabei im Kontext neuer Nutzungs-

formen wie mobiler Internetnutzung und neuer Software-Architekturmuster wie Cloud Computing 

betrachtet. Vor dem Hintergrund der Dynamik der aufgezeigten Trends identifiziert die Studie 

Ansatzpunkte im Softwarebereich, die zur Schonung natürlicher Ressourcen beitragen oder 

zumindest ein weiteres Wachstum ihrer Inanspruchnahme durch IKT-Systeme bremsen können. Sie 

geht dabei insbesondere auf methodische Probleme ein, die sich bei der Beurteilung der Ressour-

ceninanspruchnahme von Softwareprodukten stellen. Zu diesen Problemen gehören Schwierigkeiten 

bei der Definition funktioneller Einheiten, Messprobleme und Allokationsprobleme. Ansätze wie die 

Standardisierung von Nutzungsmustern und Benchmarks sowie die Definition und Umsetzung von 

Nachhaltigkeitsanforderungen im Softwareentwicklungsprozess werden als mögliche Lösungswege 

aufgezeigt. Basierend auf diesen Überlegungen formuliert die Studie erste Handlungsempfehlungen 

in den Bereichen Forschung und Standardisierung, Produktkennzeichnung, Konfigurations-

empfehlungen, Best-Practice-Leitfäden sowie Aus- und Weiterbildung im Bereich der ressourcen-

effizienten Software und ihrer Entwicklung. 

Abstract 

Although software products are immaterial goods, their use can bring about significant materials and 

energy flows. Software characteristics determine which hardware capacities are made available and 

how much electric energy is used by end-user devices, networks, and data centers. The connection 

between software characteristics and the demand for natural resources caused by the manufacture 

and use of ICT systems has been the object of little scientific study to date. The present study breaks 

new ground by exploring the effects of software on the indirect use of natural resources by 

hardware. The study identifies starting points in the realm of software that can contribute to 

conserving natural resources or at least to slowing further growth of their use by ICT systems. A 

particular focus of the study is on methodological problems arising when assessing the resource use 

of software products. Such problems include difficulties in defining functional units as well as 

problems of measurement and allocation. Approaches such as standardizing patterns of use and 

benchmarks as well as defining and implementing sustainability requirements in the software 

development process are sketched out as possible solutions. Based on these considerations, the 

study formulates initial recommendations for action in the areas of research and standardization, 

product labeling, information for users concerning configuration, best practice guides as well as 

training and professional development. 



Green Software 

 

 – 8 – 

 

  



Green Software 

 

 

 

 

 

 

Green Software
 

Final report of the project: Establishing and exploiting potentials for environmental protection in 

information and communication technology (Green IT), 

optimizing software development and deployment for 

Executive summary 

 

Report commissioned by the German Federal Environment Agency

Project funding reference number

 

 

University of Zurich, Department of Informatics, Informatics and Sustainability Research

Prof. Dr. Lorenz Hilty, Dr. Wolfgang 

IZT Institute for Futures Studies and Technology Assessment

Dr. Siegfried Behrendt, Michaela Evers

Borderstep Institute for Innovation 

Prof. Dr. Klaus Fichter, Dr. Ralph Hintemann

 

 

– 9 – 

       

Green Software 

Establishing and exploiting potentials for environmental protection in 

information and communication technology (Green IT), Subproject 3: Analysis of potentials for 

optimizing software development and deployment for resource conservation  

Report commissioned by the German Federal Environment Agency 

Project funding reference number 3710 95 302 3 

University of Zurich, Department of Informatics, Informatics and Sustainability Research

Dr. Lorenz Hilty, Dr. Wolfgang Lohmann 

Futures Studies and Technology Assessment, non-profit limited company

Dr. Siegfried Behrendt, Michaela Evers-Wölk 

Innovation and Sustainability, non-profit limited company

h Hintemann 

 

Establishing and exploiting potentials for environmental protection in 

3: Analysis of potentials for 

University of Zurich, Department of Informatics, Informatics and Sustainability Research 

profit limited company 

profit limited company 



Green Software 

 

 – 10 – 

 

Acknowledgements 

 

This study has benefited from numerous suggestions from colleagues. The authors would like to 

thank the following persons in particular: Dr. Heidrun Moser, Maike Janßen, Marina Köhn, and 

Stefan Schmitz of the German Federal Environment Agency for their detailed comments on several 

versions of the text; Prof. Dr. Stefan Naumann, The Environmental Campus Birkenfeld of the 

University of Applied Sciences Trier, for suggestions concerning the discussion of methodologies; and 

Patrizia Huber, University of Zurich, for editorial work. 

 

 

Disclaimer 

 

The present study was prepared in the framework of the Environmental Research Plan 

(Umweltforschungsplan) of the Federal Environment Agency. The findings of the study do not 

necessarily reflect the Agency’s opinions in all points. 



Green Software 

 

 – 11 – 

 

Table of contents 

 

Abstract .................................................................................................................................... 13 

Abbreviations ........................................................................................................................... 14 

1 Introduction ........................................................................................................................ 15 

2 Starting points for resource conservation ............................................................................ 16 

2.1 Starting points in the field of application software ............................................................ 16 

2.1.1 Selectable image resolution......................................................................................... 16 

2.1.2 Mobile web preferably via WLAN ................................................................................ 16 

2.1.3 Applying the “app principle” more broadly ................................................................. 17 

2.1.4 Implementing web-based applications efficiently ....................................................... 17 

2.1.5 Demand-adaptive software ......................................................................................... 18 

2.1.6 The role of open source software ................................................................................ 19 

2.2 Starting points in data centers ............................................................................................ 21 

2.2.1 Dynamic predictive load management ........................................................................ 22 

2.2.2 Information and data management ............................................................................ 23 

2.2.3 Data compression and data deduplication .................................................................. 24 

2.2.4 The challenge of a heterogeneous data center market .............................................. 25 

2.3 Additional starting points for resource efficiency .............................................................. 25 

2.3.1 User behavior in social networks ................................................................................. 25 

2.3.2 The polluter pays principle .......................................................................................... 26 

3 Methodological challenges and approaches ......................................................................... 28 

3.1 Methodological challenges ................................................................................................. 28 

3.1.1 Definition of functional units ....................................................................................... 28 

3.1.2 Measuring the energy consumption of software ........................................................ 29 

3.1.3 Allocation problems in the case of fluctuating load .................................................... 30 

3.2 Existing approaches to solutions ........................................................................................ 32 

3.2.1 Concentrating on individual aspects which can be measured .................................... 32 

3.2.2 Efforts toward standardization .................................................................................... 32 

3.2.3 Comparison of functionally similar software products ............................................... 34 

3.2.4 Comparing a software product with itself over time .................................................. 35 

3.2.5 Green software engineering ........................................................................................ 35 

4 Recommendations for action ............................................................................................... 37 

4.1 Need for research and standardization .............................................................................. 37 

4.1.1 Development of methods and standards .................................................................... 37 



Green Software 

 

 – 12 – 

 

4.1.2 Periodic data collection ............................................................................................... 37 

4.2 Consumer-oriented measures ............................................................................................ 38 

4.2.1 Awarding the “Blue Angel” environmental label for software .................................... 38 

4.2.2 Providing information .................................................................................................. 38 

4.3 Recommendations for software developers ...................................................................... 39 

4.3.1 Manuals, best-practice guidelines, checklists .............................................................. 39 

4.4 Training and professional development ............................................................................. 39 

4.4.1 Teaching materials on resource aspects of software architectures for computer 

technology education .................................................................................................. 39 

4.4.2 Professional development on resource aspects of ICT use for businesses and 

public institutions ........................................................................................................ 39 

4.4.3 Support for computer science teachers at schools ..................................................... 40 

4.4.4 Competitions for resource-efficient software ............................................................. 40 

Bibliography ............................................................................................................................. 41 

 



Green Software 

 

 – 13 – 

 

Abstract 

Although software products are immaterial goods, their use can bring about significant materials and 

energy flows. Software characteristics determine which hardware capacities are made available and 

how much electric energy is used by end-user devices, networks, and data centers. The connection 

between software characteristics and the demand for natural resources caused by the manufacture 

and use of ICT systems has been the object of little scientific study to date. The present study breaks 

new ground by exploring the effects of software on the indirect use of natural resources by 

hardware. The study identifies starting points in the realm of software that can contribute to 

conserving natural resources or at least to slowing further growth of their use by ICT systems. A 

particular focus of the study is on methodological problems arising when assessing the resource use 

of software products. Such problems include difficulties in defining functional units as well as 

problems of measurement and allocation. Approaches such as standardizing patterns of use and 

benchmarks as well as defining and implementing sustainability requirements in the software 

development process are sketched out as possible solutions. Based on these considerations, the 

study formulates initial recommendations for action in the areas of research and standardization, 

product labeling, information for users concerning configuration, best practice guides as well as 

training and professional development. 



Green Software 

 

 – 14 – 

 

Abbreviations 

BITKOM Bundesverband Informationswirtschaft, Telekommunikation und neue Medien e.V. 

(Federal Association for Information Technology, Telecommunications and New 

Media) 

BPMN Business process model and notation 

CRM Customer relationship management  

DCIM Data Center Infrastructure Management 

DSL  Digital subscriber line 

EASED Energy-aware software engineering and development 

EEG Erneuerbare-Energien-Gesetz (Renewable Energy Sources Act) 

GeSI  Global eSustainability Initiative 

GHG Greenhouse gas 

GHGP  Greenhouse Gas Protocol 

GI Gesellschaft für Informatik (German Informatics Society) 

GPL General Public License, more precisely: GNU General Public License 

GPS Global Positioning System 

HD High density 

HDTV High-density television 

HSM hierarchical storage management 

ICT Information and communication technology 

IO Input/Output 

IP Internet protocol 

ISP Internet service provider 

IT Information technology 

ITU International Telecommunications Union 

LCA Life-cycle assessment  

LTE Long-term evolution 

MDD Model-driven development 

OSS Open source software 

SUT System under test 

WBCSD World Business Council for Sustainable Development 

WG Workload generator 

WLAN Wireless local area network 

WRI World Resources Institute 



Green Software 

 

 – 15 – 

 

1 Introduction 

Software development and use offer potentials for optimization when it comes to natural resource 

conservation. Although software products are immaterial goods, their use can bring about significant 

materials and energy flows. Software characteristics determine which hardware capacities are made 

available and how much electric energy is used by end-user devices, networks, and data centers. 

Thus, software is an important starting point for reducing the use of natural resources by current 

and future information and communications technology (ICT) systems. While “Green IT” has 

previously often focused on hardware resource efficiency, this study aims to identify starting points 

for resource efficiency in the field of software. 

The connection between software characteristics and the demand for natural resources caused by 

the manufacture and use of ICT systems has been the object of little scientific study to date. In 

addition, developers, users, as well as political and business decision-makers are hardly aware of the 

topic. As the continual development of hardware has always created sufficient processing power in 

the past, efficiency was not accorded much importance for software development (with the 

exception of mobile devices). The present study breaks new ground by exploring the effects of 

software on ICT systems’ indirect use of natural resources. 

This task has proven to be a methodological challenge because each software product considered in 

isolation fulfills its function only as a part of a complex ICT system, and therefore only in interaction 

with other hardware and software components (as well as the user). But it is the total required 

hardware capacity that determines the demand for natural resources in the form of electricity 

consumption and the hardware life cycle. In addition, the innovation cycles in the realm of ICT are so 

short that results based on snapshots in time become outdated quickly. Therefore, the focus of the 

analysis is on qualitative causal relationships and the dynamics of developments in the field. 

The present final report summarizes the findings of the research project in the following chapters: 

Chapter 2 documents the result of an analysis of the potentials for resource conservation in various 

areas as well as individual measures. Against the background of the dynamics of the demonstrated 

trends, starting points in the realm of software that can contribute to conserving natural resources 

or at least slow further growth of their use by ICT systems are identified. 

Chapter 3 discusses methodological problems and approaches to solutions—in particular with a view 

to a feasible assessment of software products as “green” software—and highlights the need for 

further research. 

Chapter 4 presents recommendations for action for the purpose of setting political priorities: Where 

would measures pertaining to software have to begin in order to create incentives to design ICT 

systems in a more resource-efficient way? 



Green Software 

 

 – 16 – 

 

2 Starting points for resource conservation  

This chapter presents the most important starting points and potentials for indirect natural resource 

conservation that can be identified in the field of software.  

We assume that application and systems software use natural resources via their utilization of 

hardware capacity. Software can conserve these resources by utilizing less hardware capacity per 

unit of performance, minimizing electricity consumption by hardware, or refraining from shortening 

the operating life of hardware products to less than their technical operating life. 

A number of starting points for resource conservation can be identified in the fields of application 

software (section 2.1) and data centers (section 2.2). Starting points outside the realm of software 

are mentioned briefly in order to point to aspects above and beyond the questions studied here 

(section 2.3). 

2.1 Starting points in the field of application software 

2.1.1 Selectable image resolution 

Processing high-resolution photos and videos generally places considerable demands on hardware. 

Today, multimedia communications services (such as Skype) and multimedia entertainment services 

(such as Internet TV and computer games) can provide the quality consumers are accustomed to 

only because sufficient bandwidth and processing power are available. Demands are in lockstep with 

technical developments: The difference between the only resolution for Youtube videos available in 

the beginning and the maximum resolution available today is a factor of 164 in data volume per unit 

of film time. 

For this reason, it is important that software products at least give users the freedom to use a lower 

resolution than what is technically possible (e.g. in the case of video calls and games) and to reduce 

image resolution easily (e.g. to scale down photos automatically or by default when pasting them 

into presentations) if high resolution is not required. 

However, just as relevant as the question of resolution is the problem that the growing popularity of 

IP television and the trend from Broadcast to Unicast (users decide themselves when to watch), 

which is linked to it, brings about an increase in data traffic that triggers significant consumption of 

materials and energy in the required infrastructure. Reducing this redundancy, however, is not a 

question of software, but of business models and network management, and is therefore beyond 

the scope of this study. 

2.1.2 Mobile web preferably via WLAN  

The density of publicly accessible wireless access points is already so high in many urban areas that 

WLAN presents at least a temporary alternative to the cellular network on the move. We expect that 

software products requiring mobile Internet access function in a more resource-efficient way if they 

use a wireless network instead of a cellular network. Not only do the cellular networks require the 

largest amount of energy per unit of data transferred (ranging from 328 to 615 microjJoules per bit 



Green Software 

 

 – 17 – 

 

according to CEET, 2013, p. 19),1 they are also considered to be very materials-intensive (Scharnhorst 

et al. 2006; Emmenegger et al. 2006). From a technical point of view, this will not change 

fundamentally when the LTE networks are established. 

Software affects the choice of communication channel, and it should favor energy efficiency or 

maintain users’ freedom to make that choice. Software products should not force users to 

communicate via a cellular network even if wireless Internet access is available.  

2.1.3 Applying the “app principle” more broadly 

Mobile apps are highly efficient as they are reduced to the most important functions and because 

only limited hardware resources are available on end-user devices.  

Mobile apps could provide useful ideas for the world of application software for stationary devices. 

The simplicity with which mobile apps can be installed and uninstalled as well as their being reduced 

to the relevant tasks at hand hold significant potential for stationary devices as well.  

2.1.4 Implementing web-based applications efficiently 

Web-based application software holds high potential for resource efficiency. This is a low-threshold 

form of software-as-a-service, as web browsers are available practically everywhere. This 

development may enable end-user devices with low storage and processing capacities to become 

attractive. Operations requiring large processing capacities can be carried out on the web server and 

do not burden the web client, and this can typically be a cloud-based service.  

Examples include Thin Clients or the Google Chromebook. Prevalence of such devices can contribute 

to saving resources if activities can be shifted to them from classic stationary PCs. Whether this 

actually results in saving resources depends on the following conditions: 

1. Internet access should be via LAN or WLAN, i.e. not via the cellular network.  

2. Average capacity utilization of the servers must be high, i.e. the pooling effect must be large 

enough, and actual load management must make use of it. 

3. For the most part, application software should be used that fulfills the requirements mentioned 

by Williams and Tang (2013).  

The studies by Williams and Tang (2013) comparing traditional and web-based application software 

produced mixed results. In concrete terms, an empirical comparison of Office 2010 and its cloud 

version Office 365 showed the following: Overall energy savings did accrue (taking into account the 

sum of end-user devices, network, and data center, but disregarding manufacturing and disposal of 

the hardware) for Outlook (–8 %) and Excel (–17 %), but energy consumption of the cloud version 

of Word was 17 % higher (Williams & Tang 2013). The differences, which are all fairly small, point to 

the fact that the benefit of the new architecture is seriously limited if the goal is to reproduce the 

old concepts.2  

                                                           

1
 The reason for the fundamental superiority of networks with small radio cells over those with larger ones is 

that the required transmission power increases with the square of the distance between the transmitter 

and the receiver. 
2
 This seems to contradict the study by Masanet et al (2013), which estimated significantly higher potentials 

for saving energy by means of cloud computing, especially for “productivity software,” i.e. everyday office 



Green Software 

 

 – 18 – 

 

This shows that instead of web applications imitating complex PC software, new forms of use that 

are oriented toward reducing the software to manageable, clearly defined tasks will tend to be more 

beneficial from a resource perspective. Accordingly, only a small amount of data will need to be 

transmitted. Incorporating the “app principle” into web-based architecture to create “web apps” 

links the advantages of the two concepts in terms of resource efficiency:  

• Requirements for local hardware capacity are low. Provided that data centers transfer data and 

execute programs in a resource-efficient manner (taking the entire life cycle into account in both 

cases), this has beneficial effects on the use of natural resources.  

• In the case of well-programmed web apps combined with efficient web servers, data transfer is 

minimal both when starting and when running the program; thus, the risk that increased data 

traffic would overcompensate for savings is very low.  

The combination of these two advantages points to very resource-efficient solutions, e.g. for 

workstations. 

2.1.5 Demand-adaptive software  

We characterize a software product as demand-adaptive if it is capable of requiring only those 

hardware resources (processing power, memory, bandwidth in the network) necessary for a 

particular task at each point in time. Most software products are not even close to this. 

The working group “Software and Green IT” of BITKOM’s “Green IT Allianz” (“Green IT Alliance”) 

estimates that the average user utilizes only 7°% of the functionality of standard software frequently 

and never uses 47°% of all features. The attainable potentials for saving energy are estimated at 10 

to 20°% (BITKOM 2010b). 

Adaptivity to demand would also be a means for preventing hardware obsolescence. Hardware, less 

powerful because it was older, could be used for a longer time, if only those modules of new 

versions of software were installed and run that were actually required.  

This would require systematically modular software architecture (and thus also a return to classic 

principles of software engineering). The modules could be selected when the software is installed 

and configured, or during operation (web-based software does not require installation in any case). 

Even though this is possible today in many cases, it is usually difficult for end users to understand the 

consequences of each available option or whether it is possible to revise such decisions later on, 

which is why they always select the maximum when in doubt.  

Therefore, a central aspect of demand adaptivity is how easy the product makes it for the user to 

select settings that conserve resources. It should be expected of a “green” software product that 

resource-relevant settings can be selected at a single, easy-to-access point (Naumann 2013). The 

simplest way to do so would be by selecting an option, such as “resource conservation mode.” In the 

case of a trade-off between different resources and performance characteristics, the decision can be 

transferred to users by providing them with sliders to express their preferences (for example, to 

prioritize speed or resolution). 

                                                                                                                                                                                     

software. However, the two studies are not directly comparable, as Williams and Tang studied a special case 

in isolation, whereas Masanet et al. estimated the technically possible consolidation effects in the event of 

widespread introduction and also took embedded energy into account.  



Green Software 

 

 – 19 – 

 

It is also imaginable that in the future, application software would dynamically and automatically 

determine a balance between various resources (Naumann 2013). If electricity generated from 

renewables is available in abundance at a given point in time, CPU-intensive tasks are carried out 

then. Indexing, compression, and deduplication are examples of CPU-intensive tasks that can 

sometimes be postponed. If they are performed at times when energy is cheap, then this enables 

sparing use of network or storage resources, which saves more expensive energy. ICT end-user 

devices can be part of demand shaping in the smart grid by means of such context-sensitive behavior 

(see also section Fehler! Verweisquelle konnte nicht gefunden werden.).  

Overall, demand adaptivity has a static aspect (modular installation, configuration) and a dynamic Overall, demand adaptivity has a static aspect (modular installation, configuration) and a dynamic 

aspect (resource management at runtime, context sensitivity). However, these aspects are merging 

due to the trend toward software-as-a-service, e.g. web-based applications, thus opening up 

development perspectives with a high potential for resource conservation. 

2.1.6 The role of open source software 

Open source software (OSS)3 has become more important in recent years. Ernst & Young (2011) calls 

the period since 2004 the “mainstream era” for OSS. A trend study (Diedrich 2009) found that its 

degree of use varied across industrial sectors: “OSS is used especially often as a server operating 

system (84 percent) as well as in other classic fields of operation, such as web servers (81 percent), 

databases (79 percent), and network infrastructure (73 percent).” Public institutions also rely heavily 

on OSS. For example, Wikipedia (2013b) lists 18 migration projects in Germany in recent years, 

among others the municipalities of Munich and Leipzig and the Federal Employment Agency. 

Consulting firms such as Accenture (n. d.) now offer comprehensive open source services. Android, 

an open source operating system, is currently most widespread on tablet computers and 

smartphones (Gartner 2013). 

Linux is not yet widely used on desktop computers (its market share was 1.41 % in December, 2011; 

Heise Open Source 2012a), but is more common on servers and mainframe computers. 

For this reason, it makes sense to examine the resource efficiency of OSS separately. Technically 

speaking, OSS is just like any other software and can, in theory, be built to be just as efficient or 

inefficient in terms of its resource use. Because of its openness, however, it has advantages that can 

be exploited in the interest of resource efficiency. 

The following advantages are mentioned in the literature: adaptability, reusability of code, higher 

product quality, higher security, open standards, and the absence of licensing costs (e.g. Renner et 

al. 2005), as are the following disadvantages: a lack of warranty rights, little support provided by 

developers, uncertain future development of the software, lack of applications, or lack of 

interoperability with commercial software. These disadvantages are, however, being minimized to 

an ever greater extent. 

                                                           

3
 “’Open source’ is the term for a range of software licenses whose source text is accessible to the public and 

for which the license promotes further development. Open source software (abbreviated OSS) is subject to 

a license recognized by the Open Source Initiative (OSI). In its evaluation, this organization relies on the 

criteria of the definition of Open Source, which goes far beyond source code accessibility. It is almost 

identical to the definition of free software.” (Wikipedia 2012a). “Free software […] is software that can be 

executed, examined, modified and disseminated in its original or modified form for any purpose. This 

includes commercial uses. Free software licenses may include a copyleft clause which states that revised 

and republished versions of the software must also be free.” (Wikipedia 2012b). 



Green Software 

 

 – 20 – 

 

In spite of the model of openness (or precisely because of it), the quality of OSS is considered to be 

equal to that of proprietary software (“albeit not better as a matter of principle,” Heinrich et al. 

2006) or better (Renner et al. 2005, Heise Online, 2012). 

In the case of server operating systems, web servers, and databases, OSS is considered to be more 

efficient and can generate better performance with the same hardware (Heinrich et al. 2006, 

referring to Creber 2004 and Enterprise Management Associates, 2006), for which reason it is more 

widespread in these areas (Diedrich 2009, Heise Open Source 2012a). 

Heinrich et al. (2006) explain that “open source software often has lower hardware requirements, 

which is why existing computer systems can continue to be used even after they have been written 

off for tax purposes and the costs of new hardware investments can be postponed.” The authors 

refer here to Bräuner (2005), Bokhari & Rehman (1999), and Enterprise Management Associates 

(2006). 

The free availability of the software and independence of a particular software manufacturer can 

also help achieve a longer hardware operating life because users do not (have to) follow the trend to 

constantly increasing memory and processing capacity to the same extent as users of proprietary 

software. One the other hand, security gaps and errors that have become known make regular 

updates necessary, at least in the operating system, which over time results in inconsistencies in the 

interfaces and cumbersome configurations, in particular in the case of complex systems, such as 

Linux distributions.4 

OSS benefits from speedier development processes (Heise Open Source, 2008) and enables software 

to be distributed rapidly (Ernst&Young, 2011). For this reason, measures to increase resource 

efficiency can scale up very quickly.5 Paulson et al. (2004) compared source code development in 

various OSS and non-OSS projects and demonstrated that the likelihood of problems being solved 

was higher in the case of OSS projects. 

On the one hand, OSS provides the opportunity to make adjustments to a system to increase energy 

efficiency at any time. Yet this is balanced by the as yet low number of specialists interested in doing 

so who are in a position to implement such improvements properly. This is true in particular for 

adjustments to source code.6 This problem could be ameliorated by means of campaigns to raise 

awareness of resource efficiency in the developer community. When it comes to improvements 

based on exploiting hardware best, many developers lack knowledge about the internal workings of 

the hardware.7 Here, the task is to seek incentive systems for hardware manufacturers to disclose 

                                                           

4 
In some cases, proprietary software can enable hardware to be used for a long time, too. For example, 

Windows XP was introduced in 2001. Microsoft will support users with security updates through 2014. 
5
 Potential late delivery of new software under Linux is often caused, among other things, by hardware 

manufacturers. For example, Intel, the manufacturer of Sandy Bridge, took its time debugging the Linux 

drivers. The patches based on them were included in official distribution later: only in Kernel 3.4, and in the 

case of Ubuntu, it was included in the old kernel, but distributed only with the new Ubuntu version 12.04 

(Thoma, 2012a). 
6
 For example, Linux provides Powertop (n.d.), a fairly good analysis tool for measuring the energy 

requirements of individual programs. However, its measurement of an experimental change of the 

framerate depending on CPU load when playing videos, which cut MPlayers’ energy use during a lecture at 

the ETH Zurich, has not yet been published officially. 
7 

For example, manufacturers of graphics cards usually provide device drivers only for Windows (in compiled 

binary form) and refuse to give developers of open source drivers the necessary hardware information so as 



Green Software 

 

 – 21 – 

 

information about interfaces so that the community can use this knowledge to improve OSS. (Open 

source hardware projects do exist. They, too, are important and worthy of support from a resource 

perspective in order to provide OSS with more opportunities for improvements to resource 

efficiency.) 

While settings for good energy efficiency are often provided by manufacturers of proprietary 

software out of the box or via updates, Linux usually requires manual adjustment of energy-saving 

settings (Thoma 2012b). This problem could be ameliorated by means of campaigns to raise 

awareness of resource efficiency in the developer community.  

The fact that volunteer work is still required in many areas and that there is no way to enforce 

implementation of guidelines can be potential disadvantages in the open source universe. However, 

there is a trend toward hiring developers to work on OSS (Heise Open Source 2012b).  

Also, different licenses apply to free software and to OSS, and they can result in legal and financial 

risks for companies (BITKOM n. d.). This has consequences for decisions on how to design support 

measures for OSS strategically. 

GPL, the best-known license for free copyleft software, applies to many tools distributed with Linux, 

the Linux kernel itself, and a multitude of projects on the open source SourceForge host 

(SourceForge n. d.). Taking on resource-efficiency improvements made to GPL software in 

proprietary software without making the latter public under GPL is not permitted. On the one hand, 

one would have to include measures to increase resource efficiency in free OSS to enable rapid 

dissemination of improvements in proprietary software. On the other hand, an increasing number of 

Linux distributions are including proprietary software as well, thereby undermining the principle of 

free software. Support of GPL-licensed software would result in disseminating knowledge and would 

ensure that end users could make use of all the improvements8. At the same time, strengthening 

free (and open source) software would continue. Campaigns informing companies about legal issues 

could lower the obstacles to switching to OSS. 

Knowledge about designing and configuring software in an energy-efficient manner is insufficient 

today, both for OSS and for proprietary software, and there is a general lack of experts who apply 

this knowledge in practice. For this reason, it is important that existing knowledge is made available, 

for example through workshop series such as “Energy Aware Software Engineering and 

Development” (EASED), “Green and Sustainable Software” (GREENS), “Software Engineering Aspects 

of Green Computing” (SEGC), as well as conferences (such as ICT4S, ICT for Sustainability) and 

magazines. The problem has been recognized by the research community and is being tackled. 

Available knowledge can be brought to bear and disseminated quickly especially in OSS. Research 

initiatives in this regard that develop, collect, or disseminate knowledge on resource and energy 

efficiency of software contribute to resource conservation by software in the medium term. 

2.2 Starting points in data centers 

Data centers are among the largest electricity consumers in Germany. The connected load of large 

data centers amounts to several megawatts; thus, they are comparable to the energy-intensive 

                                                                                                                                                                                     

not to reveal details of their technology via the sources which would then be open. In contrast, hardware 

manufacturers collaborate more closely with Microsoft and provide details of their proprietary drivers. 
8
 This is not guaranteed if open source and proprietary software are combined. 



Green Software 

 

 – 22 – 

 

industrial enterprises exempted from the EEG surcharge (surcharge under the Renewable Energy 

Sources Act, the Erneuerbare-Energien-Gesetz). Servers and data centers account for 1.8 % of 

electricity consumption in Germany (Hintemann & Fichter 2013). Stobbe et al. (2009) assume that 

the electricity consumption of servers and data centers will increase by almost 30 % between 2010 

and 2020 in the baseline scenario. Even in a “Green IT” scenario, they expect an increase in 

electricity consumption of more than 10 % by 2020.  

While opportunities for saving resources in data centers through more efficient hardware have been 

under discussion for years and are being implemented at least in part, the corresponding potential 

when it comes to software has been granted little attention to date, with the exception of server 

virtualization. In the following, three approaches promising relatively high potential for increasing 

resource efficiency will be discussed. 

2.2.1 Dynamic predictive load management 

Dynamic predictive load management means managing IT hardware and the infrastructure of a data 

center in such a way that they are utilized as best as possible. Tasks that are not time-critical are 

shifted to periods when hardware utilization is low, or hardware is turned off when it is not needed. 

Comprehensive dynamic load management is not limited to IT services and IT hardware, but also 

includes the data center’s infrastructure components. For example, parts of a modular 

uninterruptible power supply (UPS) can be switched off, or air conditioning can be turned off in 

areas of the data center where hardware has been switched off (Nebel et al. 2009). 

To date, the various parts of the data center have usually been managed by different individuals or 

departments of the data center, and with different tools—some by systems and network managers, 

others by facility managers. Many different solutions for Data Center Infrastructure Management 

(DCIM) aiming to unify the two worlds and thus improve energy efficiency in data centers are 

currently on the market. However, providers and market research or consulting firms use the term 

DCIM in different ways. At least, the solutions usually enable comprehensive monitoring and 

management of IT hardware and data center infrastructure. However, they only rarely achieve 

complete and integrated load management, including the levels of hardware virtualization and 

services (Reder 2012).  

In the case of peak loads or unfavorable conditions, e.g. very high ambient temperatures, shifting IT 

loads to other data centers is a possibility. 

Experience shows that energy savings on the order of 30 % could often be realized even with the 

energy management software systems already available in companies (e.g. providers’ server 

management suites; Baumeister 2012), but that they are often not implemented because of the 

time and effort required (Müller 2013). Providers of DCIM solutions also hold out the prospect of 

savings on the order of 25 % (Lanline 2012).  

These assessments are confirmed by research projects such as GAMES (Green Active Management 

of Energy in IT Service centres, www.green-datacenters.eu), which established potential CO2 

footprint reductions of approx. 25 %. According to the responsible project managers of “Cool em All” 

(www.coolemall.eu) and “Adaptive Computing for Green Data Centers” (www.ac4dc.de), those 

projects have established similar figures.  

Load management across data centers can also entail cost advantages for data center operators by 

using regionally differentiated dynamic electricity prices, in addition to improvements in their own 

capacity utilization. A study by the Offis Institute established additional (financial) savings potential 



Green Software 

 

 – 23 – 

 

of approx. 5 to 10 % here, depending on the dynamics of electricity pricing (Nebel et al. 2009). From 

the perspective of the entire energy system, application of this solution means better adaptability to 

dynamic electricity generation from renewables (demand shaping). From a resource point of view, 

adaptability to price signals is an important advantage of dynamic predictive load management: 

setting prices accordingly makes it possible to save fossil fuels and limit power grid capacities. This 

advantage accrues even under the pessimistic assumption that the same ICT performance is 

achieved with the same electric capacity. 

On the basis of the studies and sources mentioned, it can be said that software solutions for 

dynamic predictive load management in data centers promise energy savings potentials of 25 % to 

30 %. Improving average capacity utilization also means that significantly less hardware is required, 

which in turn entails high potentials for improving materials efficiency. 

2.2.2 Information and data management 

Calculations prepared by the Borderstep Institute for the research project AC4DC have shown that 

data storage currently accounts for more than 10 % of data centers’ energy consumption, and this 

figure is rising. One reason for this is the fact that storage costs per gigabyte are constantly 

decreasing, which often determines how data is handled in data centers. In the past, the capacity of 

hard drives has doubled roughly every 18 months, as predicted by Moore’s Law. 9 According to 

Experton (as cited in Bayer 2009), the costs of storage hardware are decreasing by 30 % per year. As 

a result, there is little incentive for businesses to use memory efficiently (Bayer 2009). 

One starting point for more efficient data management is to reduce the amount of data to be stored. 

For example, unnecessary copies of data could be avoided and data no longer needed could be 

deleted. One way to implement this idea is that staff members must explicitly mark those e-mails 

they receive that are to be stored long-term. All other e-mails will be deleted automatically after a 

certain period of time (Rüdiger 2011).  

In addition, electricity consumption can be reduced if data is always stored in the most energy-

efficient medium. For example, archive data could be stored automatically and in an energy-efficient 

manner on tapes. Such software tools for hierarchical storage management (HSM) have been on the 

market for quite some time. They shift data accessed only rarely to cost-efficient storage systems 

which are usually also the most resource-efficient ones. As HSM operates automatically and without 

requiring users to do anything, its application in data centers is quite common (Müller 2013). With 

increasing prevalence of solid state disks in data centers, the correlation between cheap and energy-

efficient storage systems no longer holds. Solid state disks are currently among the costly, but 

energy-efficient storage systems (Wilde 2013). 

Software tools and concepts for information and data management that go beyond HSM are 

available: information lifecycle management solutions (Ehmann & Hintemann 2004) and enterprise 

content management solutions. However, they are seldom used in practice as technologies for 

resource conservation as they require substantial time and effort for categorizing the information 

and data (Müller 2013).  

Because of constantly increasing storage capacities and decreasing prices for storage on hard drives, 

there is little incentive to reduce amounts of data. The advantage of cost-efficient memory also has a 

                                                           

9
 In 1983, 10 MB IBM hard drives were common; today (2013), the first 8 TB hard drives are on the market, 

which corresponds roughly to 20 reduplications. 



Green Software 

 

 – 24 – 

 

disadvantage for companies, namely that identifying and finding the relevant data requires 

increasing amounts of time and effort (Vilsbeck 2012). Software solutions that help avoid the flood 

of data would contribute more to resource efficiency than “big data” solutions that help evaluate 

very large amounts of unstructured data. 

2.2.3 Data compression and data deduplication 

Another way to reduce the amount of data to be stored is data compression and deduplication. Data 

compression encompasses techniques with which digital data can be altered so that less memory is 

needed and transmission time between two IT systems is reduced. Compression of data is also called 

coding, decompression at a later point in time decoding.  

Lossless data compression ensures that data matches the original exactly even after it has been 

coded and decoded. Lossy data compression usually does not enable error-free decoding, but it does 

permit higher compression rates. While lossless compression is required above all for program files, 

company databases, etc., lossy compression is used in particular for multimedia files such as images, 

videos, or audio files.  

Deduplication of data is a special compression technique which analyzes the existing data for 

redundancy. It identifies and deletes redundant data, i.e. data existing in multiple copies (Geer 2008; 

Pelkmann 2010). The efficiency of deduplication depends on the data available in a concrete case. If 

there is a lot of similar data—e.g. in the case of numerous versions of a PowerPoint presentation 

with minor changes—then very high compression rates are possible. Manufacturer EMC reports a 

factor of 10 to 30 by which the volume of data can be deduplicated (EMC 2013).  

Other manufacturers (Unterseher 2008) and consultants (Wilde 2013) assume compression rates of 

1:10 which are common in practice for backup and archiving. Measurements of real systems confirm 

these orders of magnitude (Meyer & Bolosky 2012). Initial applications in a project funded by the 

German Federal Environment Ministry’s Environmental Innovation Programme and carried out by 

Erecon AG demonstrate that data deduplication can be suitable for direct use “on the fly” and not 

only for backup systems in data centers (BMU 2012). However, only lower deduplication rates (e.g. 

1:5) are possible here (Wilde 2013).  

Deduplication significantly reduces the amounts of both energy and hardware (He et al. 2010). 

According to Borderstep Institute calculations in the AC4DC project (n.d.), approx. 12.5 million hard 

drives were installed in German data centers in 2012. A rough calculation demonstrates the order of 

magnitude of savings potentials: Assuming that the technique were to be used on only 20 % of all 

systems because of technical and organizational limitations, inline deduplication with a 

deduplication rate of 1.5 would permit using approx. 2 million fewer hard drives. Data centers’ 

energy consumption could be decreased by approx. 2 % overall in this way.10 In addition, less 

hardware would be required for infrastructure (air conditioning, etc.).  

It is questionable whether deduplication will be employed on a larger scale in the future at all. For 

example, the author of an article in the specialist magazine speicherguide.de believes that using a 

                                                           

10
 According to calculations prepared by the Borderstep Institute in the ongoing AC4DC project (n. d.), approx. 

12.5 million hard drives were installed in German data centers in 2012, and they accounted for just under 

12% of the electricity consumed by the data centers. Reducing the number of hard drives by 2 million would 

thus correspond to a reduction in electricity consumption of about 2 %. 



Green Software 

 

 – 25 – 

 

cost-efficient hard drive system with SATA drives is more economical in many cases than purchasing 

a deduplication system (Rieß 2012).  

2.2.4 The challenge of a heterogeneous data center market 

Resource-efficient software solutions for data centers must compete in a very heterogeneous 

market. This begins even with the structure of the data centers. Most of the approx. 52,000 data 

centers in Germany are equipped with fewer than 10 physical servers. Approx. 60 data centers with 

more than 5,000 servers each are at the other end of the spectrum. In total, more than twice as 

many servers are installed in these 60 data centers than in the 31,500 small locations (Hintemann & 

Fichter 2012, 2013).  

According to a survey by the Borderstep Institute,11 almost 50 % of the large data centers (more than 

5,000 servers each) are so-called colocation data centers that provide IT space including 

infrastructure services as a package. As IT hardware and infrastructure are not operated by a single 

entity there, this reduces their potential for comprehensive and efficient software solutions 

significantly. In addition, about one-quarter of the major data centers are host computing centers 

where the IT hardware is managed by the operator, but the software is managed by the customers. 

Here, too, the opportunities for using resource-efficient software solutions are severely limited. 

Not only the data centers themselves display a very heterogeneous structure. A large number of 

different players are active in the data center market, including IT hardware and software providers, 

infrastructure solution providers, IT consultants, data center planners, and firms offering total 

system-based solutions. Some of them pursue goals contrary to establishing resource-efficient 

software solutions in the market. For example, hardware providers are primarily interested in selling 

hardware. Some players also attempt to establish proprietary systems in the market—in 

combination with appropriate software solutions—which makes comprehensive solutions more 

difficult to achieve.  

Because this market is not transparent, consumers have only severely limited opportunities to make 

decisions contributing to resource-efficient service provision. 

2.3 Additional starting points for resource efficiency 

2.3.1 User behavior in social networks 

The palette of services originally offered by Facebook, for example, required relatively little 

computing power. Implementation of videotelephony, facial recognition, games, and tracking 

functions with information about the locale and advertising has significantly increased the need for 

it. 
In the case of the major social networking platforms, one must assume today that the resource 

efficiency potential available at the software level has largely been exploited, simply because it 

would be impossible to process data for hundreds of millions of users in the absence of innovative 

measures. As the operators of data centers come up against absolute limiting factors (for example, 

with regard to their power consumption) sooner or later, it is in their own interest not to waste 

                                                           

11
 The Borderstep Institute has data on the size, location, operator, and purpose of approx. 80 % of the major 

data centers in Germany. 



Green Software 

 

 – 26 – 

 

energy or server capacity. Investments even in small resource-saving software improvements pay off 

because of the multiplication effect: the code in question is run thousands of times for many millions 

of users. 

Resource conservation when using social networking sites is therefore not a question of software, 

but can be achieved only by the following means: 

1. the operator’s data storage policy, 

2. operating data centers in a way that conserves resources, 

3. user behavior. 

The first point concerns questions such as: Does the operator provide for physical deletion of data; 

does the user have a “right to be forgotten”?12 In an optimized software landscape, the second point 

concerns cooling as well as sourcing electricity (green electricity). The third point will be discussed 

briefly in the following, as it is about interactions with software design. 

The software is usually designed so that it motivates users to interact with the platform frequently 

and for a long time. After all, the more intensely members interact with a platform, the more 

attractive it is for companies to place their advertising there. That is why various means for 

increasing the amount of time users spend on the platform are implemented (e.g. games). The result 

is increased data traffic, which does make a difference in combination with energy-intensive mobile 

access. 

From a resource perspective, the combination of social networks with location-based services seems 

especially unfavorable because it promotes access via cellular networks in particular. The fact that 

the market of mobile social networks (e.g. Foursquare13) is considered relevant for the future is 

evidenced by the involvement of major corporations such as Nokia, Intel, or Samsung. For example, 

all of them are collaborating with GyPsii, a provider of mobile social network software (Heise Online 

2011b). 

Mobile social networks have strengthened the “always on” mentality further. In the interest of 

resource conservation, platforms should be supported that back an opposing trend which can be 

characterized roughly as follows: minimizing interaction, providing only the most necessary 

functions, reducing images to the resolution required as the default setting, providing easy ways to 

physically delete data. Such a trend would be advantageous not only for resource conservation, but 

also for informational self-determination.14 

2.3.2 The polluter pays principle 

As the example of spam demonstrates, the functional principles of the Internet are far removed 

from the polluter pays principle. Otherwise, spammers would have had to pay an electricity bill as 

high as that of the entire population of Bangladesh (150 million) in 2008.15  

                                                           

12
 Regarding a “right to be forgotten” from a privacy perspective, see also Hilty et al. (2012). 

13
 Foursquare claims to have eight million users globally who sign on 2.5 million times per day with check-ins. 

The number of members is said to increase by approx. 35,000 new members daily. The platform for retailers 

is used by 250,000 companies (as of November, 2011). 
14

 Frequent mobile interaction with internet platforms makes it possible to generate profiles of users’ 

movements and contacts (Hilty et al. 2012). 
15

 McAfee’s estimate of spam-related electricity consumption totaling 33 TWh corresponds roughly to the 

annual electricity consumption of Bangladesh (Hilty & Lohmann 2011). 



Green Software 

 

 – 27 – 

 

Allocating the use of technical (and thereby indirectly of natural) resources on the Internet to those 

responsible is extremely difficult, and even in the case of criminal offenses, such as the operation of 

botnets16, it is almost impossible to accomplish. 

Another example: billing customers for the electric energy used by an Internet service provider (ISP) 

for the services provided would be possible only to a limited extent because the ISP cannot track 

everything the customer’s data traffic triggers.  

If one views the Internet as a public good and not as a commercial service, then it is very difficult to 

allocate costs for resource use to a particular person or other entity causing them. Changing this 

situation would, however, have far-reaching consequences, for example the danger of widespread 

monitoring of activities on the Internet. In the long term, this could result in a conflict of goals with 

democratic fundamental rights. From a technical point of view, solutions respecting data protection 

are possible in principle. 

If the latent conflict of goals on the Internet between the polluter pays principle and fundamental 

rights is not resolved, the resource load of further exponential growth of data traffic will inevitably 

be shifted to where no costs accrue to the person or entity causing them. 

                                                           

16
 A botnet is a set of computers that are controlled remotely via the Internet, usually without their owners’ 

knowledge. Botnet operators can use these computers for their own purposes, for example to send spam, 

attack websites, host illegal contents, or spy out data.  



Green Software 

 

 – 28 – 

 

3 Methodological challenges and approaches 

The question as to how a “resource-efficient” software product can be differentiated from a “less 

resource-efficient” one will now be made more concrete, based on the starting points identified 

above. This question is confounded by unsolved methodological problems, as software cannot be 

examined by applying the standardized method of life-cycle assessment in a routine fashion. 

Significant difficulties are yet to be overcome on the path to a label for “green software.” 

This chapter will draw upon the relevant literature to show which methodological challenges arise in 

particular and will provide an overview of existing approaches to solutions.  

3.1 Methodological challenges 

3.1.1 Definition of functional units 

Application of the LCA methodology begins with defining functional units, i.e. precise, quantitative 

definition of the service which the product system in question is to perform (Rebitzer et al. 2004). All 

resource uses are set in relation to this unit. It is the basis for comparing different product systems in 

terms of the efficiency with which they provide the service. This presupposes functional equivalence, 

i.e. the functional units must be indistinguishable from one another, or at least interchangeable. 

Resource efficiency is the relationship between a particular use or result and the resource use 

required to produce it. Here, a functional unit corresponds to the use or result. In other words, it is 

the unit for the numerator of efficiency, while a measure for resource use is in the denominator: 

  
Defining functional units for software is generally difficult. One reason for this is that most software 

products fulfill a large number of functions, and only rarely do two products fulfill the same ones. 

Even different versions of the same software product often differ in functionality. Even if one were 

to focus on a single function, e.g.  

 “creating and sending 1 e-mail," 

functional equivalence could easily be called into question; for example, e-mail programs may offer 

different support when creating the e-mails (managing contacts, correcting typing errors, etc.). In 

addition, this unit is not defined precisely: the number of characters, the size of attachments, etc., 

would have to be laid down exactly. Thus, functional units are so specific that special methodological 

effort is required to describe one or more statistically representative functional units. However, 

whether or not a functional unit is statistically representative can be ascertained only on the basis of 

empirical user behavior data. 

If software is to be evaluated in terms resource efficiency, the functional unit(s) selected must be 

representative, which would require a large amount of effort for gathering data. As changes are 

possible to usage patterns as well as the characteristics of the software products (via updates), 

results would be out of date in a short time. This problem is compounded by the methodological 

challenge of multifunctionality: an individual software product can fulfill several functions; this 

resource efficiency =  
number of functional units provided  
number of units of resources used  



Green Software 

 

 – 29 – 

 

requires defining various functional units which, in the context of an LCA, are to be treated as co-

products. 

3.1.2 Measuring the energy consumption of software 

The seemingly simplest aspect of resource use by software—namely electricity consumption via 

hardware—poses a methodological challenge. This is due to the fact that a software product is 

always part of a complex ICT system which is responsible as a whole for energy consumption, 

whereby each individual component of the system influences the resulting electricity consumption.17 

As a rule, existing indicators for ICT systems’ energy efficiency (Erek et al. 2013, Drenkelfort 2013) do 

not provide for considering the effects of software in isolation (Van Bokhoven & Bloem 2013). 

Figure 1 shows an example of a setup for measuring the energy consumption of software (Kern et al. 

2013). In this case, the System Under Test (SUT) is divided into five components: hardware, 

operating system, runtime environment, interpreter/compiler, and the application program. In order 

to compare the electricity consumption of different applications, for example, the other four 

components must be kept constant for methodological reasons. This makes the result extremely 

dependent on context: a statement such as “program A uses more energy than program B” would be 

justified only if “executed by hardware P, under operating system version Q, in runtime environment 

R, and with interpreter S” were added.  

While the problem of context dependency also arises when evaluating other products in terms of 

their resource consumption, the multitude of influencing variables in the case of software products 

poses a particular challenge. 

Figure 1: Example of a setup for measuring the energy consumption of software 

 

Source: Kern et al. (2013; p. 91) 

                                                           

17
 Bozzelli et al. (2013) provide an overview of the literature on the relevant metrics. Complex energy 

consumption models are necessary for estimating energy consumption in cloud environments (Chen et al., 

2012). 



Green Software 

 

 – 30 – 

 

The problem is exacerbated if the interaction of the components in networks is included, which is 

the norm today. For this reason, studying the energy consumption (or more generally, the resource 

consumption) of software is extremely complex and implies breaking new ground in terms of 

methods.  

Figure 1 shows a “workload generator (WG)” whose task is to generate a workload for the SUT like a 

real user would. The choice of usage patterns or usage scenarios, which is automated by the WG, is 

to be considered an approximate solution to the problem of defining functional units discussed 

above.  

3.1.3 Allocation problems in the case of fluctuating load 

If several software components use capacity of the same hardware component, then the problem of 

allocation arises, as is often the case in LCA studies. Viewed in terms of production management, 

this is an example of co-production, as one hardware component produces various products 

simultaneously: computing power for software 1, computing power for software 2, etc. In other 

words, resources used by hardware must be allocated, according to an appropriate formula, to the 

various software products (to be precise, to the defined functional units which are delivered by the 

software products) using the hardware. 

The problem of allocation becomes particularly obvious when it comes to hardware in network 

nodes, e.g. routers, as well as servers. In these cases, an individual software product running on an 

end-user device is usually responsible for an extremely small fraction of the total load handled by 

the router or server. 

Allocation can be based either on the fraction of the currently used hardware capacity or on the 

total hardware capacity available. Usually, the latter option is used; otherwise, reserve capacity 

would not be allocated at all except for peak usage times.  

The reason why this is still an unsolved methodological problem shall be elucidated using the 

example of the energy consumption measured for a video conferencing Internet connection 

between Switzerland and Japan. Coroama et al. (2013) determined the power consumption and the 

capacity utilization of all the network nodes and network connections between the conference 

center in Davos and the University of Nagoya (4 simultaneous bidirectional full HD channels). The 

data traveled a distance of 27,117 km in 24 hops. Figure 2 shows cumulative electrical power 

consumption for the entire distance, from Davos to the destination. The most striking result is that 

consumption is highest near the two end nodes and that hardly any energy is used to cover the long 

distances (the deep sea fiber optic cables through the Atlantic and the Pacific appear as practically 

horizontal segments in the figure). 

This finding can be explained in part by allocation. Near the end nodes, there are nodes whose load 

was less than 3 % at the time of measurement (some less than 1 %). In contrast, a very large number 

of data traffic streams are combined in the Internet backbone, which makes capacity utilization 

more constant and reduces the difference between average and maximum capacity utilization. In 

contrast, total reserve capacity in the network nodes with low usage, which is available for rare peak 

usage times, is allocated to very low average capacity utilization according to the allocation scheme 

mentioned above.  

If one takes this situation as given and considers the amount of data transmitted, one can derive 

that transmitting one gigabyte across this distance requires less than 0.2 kWh, assuming an 

estimated PUE value for the nodes and connections (Coroama et al., 2013). Compared to previously 



Green Software 

 

 

 

published figures, this is relatively low, even though most of it is due by way of calculation t

extremely low capacity utilization of some in

Assuming that 1,000 such video conferences were taking place simultaneously in Davos,

0.2 kWh/GB would no longer apply, because the capacity utilization of the 

increase significantly. The energy intensity per conference would be significantly lower for this 

reason; in other words, one would 

0.2 kWh/GB in calculations. Only at the p

electricity be used in absolute terms.

Figure 2: Cumulative electrical power consumption of an HD video conferencing connection

Source: Coroama et al. (2013) 

Allocation problems also occur in peer

hardware capacity available to the network.

individual users with free capacity (so

This increases the supernode’s utilization of its own hardware capacity, and if allocated in this way, 

the resource efficiency of other

way of calculation. Independently of this effect, the qu

load due to other people’s Skype calls to 

questions are decided. 

These examples are intended to illustrate that the results of resource estimates, which ar

(necessarily) dependent on decisions concerning allocation, should not be interpreted independently 

of their context. 

This methodological difficulty makes the question of assessing cloud computing in terms of 

resources a primary problem of estimating cap

allocation rules. 

– 31 – 

published figures, this is relatively low, even though most of it is due by way of calculation t

extremely low capacity utilization of some in-house and region network nodes.  

Assuming that 1,000 such video conferences were taking place simultaneously in Davos,

0.2 kWh/GB would no longer apply, because the capacity utilization of the regional nodes would 

The energy intensity per conference would be significantly lower for this 

reason; in other words, one would overestimate energy consumption if one were to continue using 

Only at the point at which capacities were increased would more 

electricity be used in absolute terms.  

Cumulative electrical power consumption of an HD video conferencing connection

Allocation problems also occur in peer-to-peer (P2P) networks in which the individual users make 

hardware capacity available to the network. For example, Skype telephone calls are transmitted via 

individual users with free capacity (so-called supernodes), who do not notice that this is occurring.

This increases the supernode’s utilization of its own hardware capacity, and if allocated in this way, 

other programs running simultaneously on that hardware is improved by 

Independently of this effect, the question arises whether one should allocate the 

Skype calls to one’s own Skype calls. The results depend on how these 

These examples are intended to illustrate that the results of resource estimates, which ar

(necessarily) dependent on decisions concerning allocation, should not be interpreted independently 

This methodological difficulty makes the question of assessing cloud computing in terms of 

resources a primary problem of estimating capacity utilization of networks and servers and selecting 

published figures, this is relatively low, even though most of it is due by way of calculation to the 

 

Assuming that 1,000 such video conferences were taking place simultaneously in Davos, the figure 

regional nodes would 

The energy intensity per conference would be significantly lower for this 

energy consumption if one were to continue using 

oint at which capacities were increased would more 

Cumulative electrical power consumption of an HD video conferencing connection 

 

er (P2P) networks in which the individual users make 

For example, Skype telephone calls are transmitted via 

called supernodes), who do not notice that this is occurring. 

This increases the supernode’s utilization of its own hardware capacity, and if allocated in this way, 

programs running simultaneously on that hardware is improved by 

estion arises whether one should allocate the 

The results depend on how these 

These examples are intended to illustrate that the results of resource estimates, which are 

(necessarily) dependent on decisions concerning allocation, should not be interpreted independently 

This methodological difficulty makes the question of assessing cloud computing in terms of 

acity utilization of networks and servers and selecting 



Green Software 

 

 – 32 – 

 

3.2 Existing approaches to solutions 

3.2.1 Concentrating on individual aspects which can be measured 

Some authors deal with the methodological problems by focusing on individual aspects which can be 

measured: 

• There are a number of programs that use PC software to determine average capacity utilization 

of processors, using standardized benchmarks; these programs are intended to help users select 

the most energy-efficient among several software products (see, e.g., Amsel und Tomlinson 

2010).  

• Wilke (2012) measured local energy consumption of smartphone apps with the goal of creating 

the basis for an energy label. He compared apps with similar functions (e.g. e-mail clients) and 

defined simple use cases as functional units.18 Two important factors contributing to natural 

resource use—production of the smartphone and the data traffic it induces in the cellular 

network—were not taken into consideration, as Wilke’s work was focused primarily on battery 

service life. 

• Naumann et al. (2008) introduced the Power Indicator (called “Green Power Indicator” today), 

an add-on for the web browser Firefox, which shows whether a website is running on a server 

operated with electricity generated from renewables. The add-on accesses a centralized list of 

“eco-providers.”  

• Zapico et al. (2010) created Greenalytics, a technique for automatically estimating the energy 

consumption of websites for clients, networks, and servers. However, the estimates are very 

rough and are based mainly on data volume and access statistics. According to Grosskop and 

Visser (2013), this does not enable measurement of energy consumption. 

3.2.2 Efforts toward standardization 

Both the problem of defining functional units and the problems of measurement and allocation can 

be partially alleviated by means of standardization, because it achieves comparability of results at 

least. 

In individual areas of testing software products, standardized usage scenarios could take on a role 

similar to that of standardized driving cycles for exhaust and fuel consumption tests of automobiles. 

It is debated, however, how realistic they are19; as a result, it appears that because of the even 

greater complexity of software products, broad consensus about “software driving cycles” would 

appear to be difficult to achieve among various manufacturers, the scientific community, public 

agencies, as well as consumer and environmental organizations. While it can be assumed implicitly in 

the case of a car that its function is to travel a given distance, in the case of software, even the 

selection of the function(s) on which the testing cycle is based is a normative decision with the 

corresponding potential for conflict. 

                                                           

18
 e.g. “Check Inbox,” “Read Mail,” “Open Attachment.” Significantly higher energy consumption was noted 

for those products showing advertising (Wilke 2012). 
19

 This is apparent even on the German Wikipedia page on “driving cycles”: “The standardized driving cycles 

represent average profiles as a basis for comparison of different vehicles. They frequently do not match the 

customer’s user profile …” (Wikipedia 2013a).  



Green Software 

 

 – 33 – 

 

Dick et al. (2011) define load profiles for ICT systems according to ISO/IEC 14756.20 These profiles are 

randomized, i.e. the order and duration of user actions are selected at random within a given 

framework. Average energy consumption of the profile in a given configuration of the ICT system 

can be determined by repeating the profile numerous times. If such load profiles are to be realistic, 

they must be oriented toward “typical workloads” in the intended area of application in each 

individual case (Dick et al. 2011; p. 292). Kern et al. (2013) call for the definition of usage scenarios 

for standard software in order to enable systematic comparison of the energy consumption of 

different software products and configurations. Such usage scenarios would then also form the basis 

for the load profiles which are measured. Standards for usage scenarios are not yet on the horizon. 

Business process models (which are defined in BPMN21, for example) could serve as the basis for 

load profiles.  

The International Telecommunications Union (ITU) prepared an “Assessment framework for 

environmental impact of ICT” (ITU 2012a). It is a part of the “ITU Toolkit on Environmental 

Sustainability for the ICT sector,” which was developed by ITU-T in collaboration with more than 50 

organizations and ICT companies with the goal of defining environmental sustainability requirements 

for the ICT sector (“Environmental Sustainability Requirements”; ITU 2012b).  

The “assessment framework” gives an overview of the existing norms and standards, including the 

ITU-T standard L.1410, “Methodology for environmental impact assessment of ICT goods, networks 

and services,” which is based on the ISO standards for LCA. It specifies a methodology for estimating 

the environmental impacts of ICT systems (ITU 2012c).  

Of the document’s 85 pages, 2 pages in the main text and 2 pages in the annex are devoted to the 

topic of software. This demonstrates that software is not yet firmly established as a subject of 

environmental standards. The ITU-T norm focuses on regulating the estimation of impacts of the 

production of software and the allocation of the production stage (divided by the number of licenses 

sold). 

The problem of defining functional units in the case of software is mentioned in an example on word 

processing: “The function experienced by a user of a word processor program is to deliver word 

processing of documents electronically. The corresponding functional unit could then be the number 

of pages processed per time unit (e.g., one hour) during the operational lifetime (e.g., three years). 

Finally, the reference flow is defined as one unit of word processing software (distributed e.g., in a 

CD with packaging)” (ITU 2012c; p. 8). This example, too, focuses on the impact of the production 

stage of the software; even its traditional distribution on CDs is considered. In contrast, the impacts 

of software due to usage of hardware capacities in the usage stage are not discussed.  

The functional unit for ICT services is generally proposed to be usage during one year (“annual 

service use”). The authors point out that realistic usage scenarios must be defined for this functional 

unit and that network capacity must be allocated, yet concrete suggestions for solving this problem 

are lacking (ITU 2012c; p. 9). 

                                                           

20
 ISO/IEC 14756 describes a procedural model for measuring software performance. Classic performance 

characteristics of ICT, such as execution time and throughput, are measured for given load profiles. This 

norm has no specific reference to software resource efficiency, but its approach for defining and using load 

profiles as well as conducting measurements can be applied. 
21

 Business process model and notation, an Object Management Group standard for describing business 

processes (BPMN 2013). 



Green Software 

 

 – 34 – 

 

The GHG Protocol, an initiative founded by WRI and WBCSD in 1998, develops standards for 

gathering data about and reporting on companies’ greenhouse gas emissions. At the 

recommendation of ICT firms, the GHG Protocol, in collaboration with The Carbon Trust and the 

Global eSustainability Initiative (GeSI), developed specific guidelines for the ICT sector (“ICT Sector 

Guidance,” GHGP 2013a, Stephen & Didden 2013). 

“ICT Sector Guidance” covers the following topics: telecommunications services, desktop-managed 

services, cloud and data center services, hardware, software, avoiding transportation (GHGP 2013b). 

The chapter on software is currently available only in draft form (Version 2.9, GHGP 2013c). The 

most important aspects for the question at hand will be presented in the following. 

In contrast to ITU-T, the GHG Protocol focuses on the impacts of software in the usage stage: “Up to 

90 % of the energy used by ICT hardware can be attributed to the application software running on 

it, and the design of software can have a significant impact on the amount of energy used. It is 

therefore important that software designers carefully consider the energy use of the software, and 

design software efficiently to reduce the energy use. Examples of where better software design can 

reduce the energy use are: optimizing the CPU usage; optimizing the disk IO usage; optimizing 

remote calls such as database calls, and web accesses.” (GHGP 2013c; p. 4) 

The central contribution of the chapter on software is the detailed suggestions on how to approach 

preparing, conducting, and evaluating electricity consumption tests for systems and application 

software, including the libraries used. Using benchmarks and correctly taking energy management 

into account by the operating system or the application software are considered particularly 

important. Testing of remote devices and virtual machines are also considered. 

No concrete suggestions are made for benchmarks as this standard describes the basic 

methodology. In so doing, the standard does make a substantial contribution to solving the problem 

of measurement (section Fehler! Verweisquelle konnte nicht gefunden werden.), but implicitly 

presupposes that meaningful and accepted functional units can indeed be defined (section Fehler! 

Verweisquelle konnte nicht gefunden werden.); after all, the definition of benchmarks must be 

founded upon them. It is not yet possible to determine to what extent the standard can contribute 

to solving problems of allocation in the case of low capacity utilization (section Fehler! 

Verweisquelle konnte nicht gefunden werden.). 

3.2.3 Comparison of functionally similar software products 3.2.3 Comparison of functionally similar software products 

As software products are usually not functionally equivalent (see section 3.1.1), comparing products 

that are merely similar to one another may be an alternative. The comparison can then be limited to 

the functions common to various software products, but it requires a realistic usage scenario. 

Examples of such studies on energy consumption of software products in the usage stage include: 

• Kern et al. (2011) compared the web browser Mozilla Firefox with Microsoft Internet Explorer, 

and Open Office Writer with Microsoft Word. 

• Commissioned by Microsoft, Roth et al. (2013) compared the web browsers Mozilla Firefox, 

Google Chrome, and Microsoft Internet Explorer, and arrived at a different result than Kern et al. 

(2011). 

• Williams and Tang (2013) compared the Microsoft products Outlook, Excel, and Word with their 

web-based equivalents from Office 365 running in the cloud (see also section 2.1.4). 



Green Software 

 

 – 35 – 

 

Functional similarity is greatest when different configurations of the same product are compared. 

This can reveal relevant energy-saving potentials, as Dick et al. (2011) showed using the example of a 

content management system: a comparison of configurations with and without a hard disk cache 

showed that energy consumption was significantly lower in the former case. 

3.2.4 Comparing a software product with itself over time 

Another possibility is to compare different releases or versions of the same software product with 

each other in terms of resource use. 

If a newer version requires greater hardware capacity (e.g. memory, CPU performance, network 

bandwidth) than an older one, this creates an incentive to replace operational hardware. If analysis 

focuses on this obsolescence effect, then measurement and allocation problems are partially 

alleviated, as it is easier to determine the use of hardware capacity than the fraction of energy 

consumption by hardware resulting from that use. 

However, the older and newer software versions are usually not functionally equivalent, as new 

versions often fulfill additional functional requirements.  

In their comparison of three versions of the Microsoft Windows operating system and the 

corresponding versions of Microsoft Word, Hilty et al. (2006) determined that Windows NT, which 

was still new at the time of the study, required more total processing time than Windows 2000 to 

carry out the same functions, even if it was running on hardware that was twice as powerful.22  

The test was based on file management and word processing tasks performed by 42 subjects. 

Execution time for the tasks and processor usage were measured as they were carrying out the 

tasks. Manufacturers generally justify the fact that new software versions inevitably 

overcompensate for increasing hardware performance by pointing to the new requirements to be 

fulfilled by the software. However, it cannot be proven that this relationship is inescapable, and 

resource efficiency itself could be treated as a high-priority requirement (see also the following 

section 3.2.5). 

3.2.5 Green software engineering 

A further approach for a solution lies in expanding the perspective of measurable characteristics of 

the software product to include the process that generates and maintains the product. Then, the 

question is no longer “What is green software?” but “What is green software engineering?” 

Software developers are accustomed to thinking in terms of requirements and developing systems 

that fulfill them. They differentiate between functional requirements (that describe what the system 

to be developed is supposed to do) and non-functional requirements that describe qualitative 

aspects of the system. Typical non-functional requirements in software engineering include security, 

serviceability, and expandability. As non-functional requirements are characteristics of software 

architecture, they must be taken into account even in the early stages of software development, and 

they influence the entire process. At a later stage, it is easier to add functions than to fulfill non-

functional requirements.  

If the task is to successfully develop “green” software products, then two problems must be solved: 

                                                           

22
 This example confirmed Wirth’s Law: “Software is getting slower more rapidly than hardware becomes 

faster” (as cited in Grosskop & Visser 2013; p. 101). 



Green Software 

 

 – 36 – 

 

1. Defining non-functional requirements that specify what “green,” “energy efficient”, “resource 

conserving,” or more generally “sustainable” mean in terms of qualitative characteristics of a 

software product. 

2. Developers taking these requirements into account across the entire process of software 

development. 

Then it would be possible to label software products as to whether they are the result of a process 

that takes these requirements into account, or to certify the process as such. 

1. Definition of non-functional requirements for “green” or sustainable software: 

Initial ideas for non-functional requirements are formulated here, based on the previous chapters 

and the literature cited:  

• Demand adaptivity (as described in section 2.1.5) 

• New versions do not make greater demands concerning memory, CPU performance, and 

bandwidth unless absolutely necessary for additional functions. 

• Basic functions can still be executed on older hardware in the long term. 

• User-oriented configuration options for energy-saving modes. 

• Power awareness, optimum management of hardware concerning energy consumption; server 

software should also take the energy used by the client into account and should in no case 

hinder or discourage turning off end-user devices or local power management. 

• “Power-down-friendliness”: software should not animate people to leave hardware turned on all 

the time. 

• Support for data formats that are economical in terms of bandwidth and memory. 

• Support for open standards for data formats (no customer lock-in via formats). 

• Flexibility in terms of useable peripheral equipment (minimizing requirements to purchase new 

equipment). 

• Undesired advertising can be turned off. 

2. Process-oriented aspects of green software engineering 

Naumann et al. (2011, 2013) developed the reference model GREENSOFT for green software 

engineering. Covering the entire software life cycle, it provides for periodic “sustainability reviews 

and previews” during the development stage (Dick 2010a) or using the approach of “continuous 

integration” to conduct energy efficiency measurements even during the development process (Dick 

et al., 2013), among other things. 

Manuals and checklists for developers are mentioned frequently as a tool to support green software 

engineering, but to date, concrete suggestions are few. Dick et al. (2010b, 2010c) formulated 

guidelines for “green web engineering,” Microsoft (2010) gave practical power management tips for 

programming applications on Windows platforms. 

Consolidation and further development of guidelines for developers on the basis of a catalogue of 

non-functional requirements has yet to occur. The new workshop series “Energy Aware Software 

Engineering and Development” collected existing manuals and checklists in order to make them 

available to the public (EASED 2013). 

 



Green Software 

 

 – 37 – 

 

4 Recommendations for action 

In this section, recommendations for action are formulated whose goal is to minimize use of natural 

resources caused indirectly by software products. 

4.1 Need for research and standardization 

4.1.1 Development of methods and standards 

The need for action is greatest at the interface between independent application-oriented research 

on one side and standardization on the other. Here, it is the task of research to analyze and solve 

methodological problems. Then, it is the task of standardization to operationalize science-based 

methods for practical use and to create a basis for comparability when they are implemented. Two 

measures to this end are recommended in the following. 

Standardized usage scenarios as the basis for software tests 

Usage scenarios describe a typical workflow of using a software function, forming an important basis 

for defining load profiles and benchmarks when conducting comparison tests. Such scenarios are 

needed to compare not only different software products, but also different versions and 

configurations of the same product. When developing standardized usage scenarios, one can build 

upon initial existing approaches (section 3.2.2). 

Definition of non-functional requirements for sustainable software 

There is a need for research to systematically develop qualitative criteria that define the idea of 

sustainable software more precisely. These criteria are to be understood as non-functional 

requirements for software engineering.  

At the same time as these requirements are being developed, it is necessary to create guides or 

tools for practical work that support incorporating them during the process of software 

development, including additions to existing procedural models, best-practice guidelines, and 

checklists in particular. 

4.1.2 Periodic data collection 

Periodic data collection in the two following areas is recommended for monitoring purposes as long 

as the current growth dynamics persist. 

Monitoring energy consumption by cellular networks and its causes 

If, as is to be expected, energy consumption grows rapidly because of the increase in mobile Internet 

access, measures to promote pricing appropriate to causation in the realm of ICT should be 

considered in general (e.g. no flat rates for especially energy-intensive or especially CO2-intensive 

data traffic). 



Green Software 

 

 – 38 – 

 

Monitoring the market for web- and cloud-based applications in terms of resource 

efficiency 

Periodic screening could help identify particularly favorable and unfavorable products and 

configurations, whereby it is important to take resource use through the entire system providing the 

service into account. Such screening serves to continuously update the configuration 

recommendations to users (see section 4.2.2). 

4.2 Consumer-oriented measures 

4.2.1 Awarding the “Blue Angel” environmental label for software 

Although it is true that significant methodological problems are yet to be solved on the way to a 

“Blue Angel” environmental label for software (see Need for research and standardization, section 

4.1), sub-areas can be identified which would be suitable for such a measure in the medium term, 

namely: 

● traditional websites 

● web-based applications. 

These products require estimating resource use by networks and servers for usage scenarios yet to 

be defined.  

It is difficult to define quantifiable product characteristics for a “Blue Angel” label for locally installed 

software products as the diversity of functions and the variability of forms of usage are too great. 

For this reason, qualitative product-related criteria, such as demand adaptivity, support for 

resource-saving data formats, and energy management on the end-user device are to be considered 

as well (see also sections 3.2.5 and 4.1.1). 

In addition, application of process-oriented criteria for software development is recommended, for 

example following (yet to be developed) best-practice guidelines for sustainable software 

development (section 3.2.5).  

4.2.2 Providing information  

Because of the existing methodological difficulties, it is very difficult to provide objective and robust 

recommendations for end users of software based on the current state of research: 

recommendations for or against certain products or types of products would be valid only under 

severely limiting conditions which would be difficult to communicate due to their complexity.  

Recommendations concerning resource-efficient configuration of common software products are an 

exception. In this case, it would not be products, but configurations of the same product that would 

be compared. The German Federal Environment Agency could harvest the low hanging fruit in ICT 

resource efficiency by developing and publishing such recommendations. 

Developing and periodically updating configuration recommendations  

The following approach is recommended: 

1. Selecting a common software product (or a common combination of application and 

systems software) that can be configured in order to optimize resource efficiency.  



Green Software 

 

 – 39 – 

 

2. Conducting comparison tests of the configurations of the software product (same product, 

same version, different configurations) to measure the hardware capacities used and the 

electricity consumed. 

3. Identifying settings that significantly affect the measured variables. Potentially existing 

recommendations by manufacturers or user communities could be tested here.  

4. Developing or updating guides for users and system administrators that recommend energy-

saving settings, for example.  

The goal of this measure is also to exploit in practice the characteristics demanded of software 

products, such as demand adaptivity and energy management, in order to actually conserve 

resources. 

4.3 Recommendations for software developers 

4.3.1  Manuals, best-practice guidelines, checklists 

Promising approaches such as the GREENSOFT model (Naumann et al. 2011) notwithstanding, the 

current state of research does not yet permit formulation of tools such as manuals, best-practice 

guidelines, or checklists for software development.  

However, there are numerous tips and practices for energy-efficient programming at least in one 

specific area: the development of apps for mobile end-user devices, as maximizing battery service 

life is an important requirement here. Accordingly, the only factor taken into account is local energy 

consumption. The new workshop series EASED (Energy Aware Software-Engineering and 

Development) consolidates and publishes the knowledge generated here, which is transferable to 

other areas of software development to some limited extent. Software developers are advised to 

follow the activities of the EASED workshops as well as research in the field of green software 

engineering in general and to participate actively in expanding the body of knowledge and 

experience. 

4.4 Training and professional development 

4.4.1 Teaching materials on resource aspects of software architectures for 

computer technology education 

The development of teaching materials on the topic of resource use by software is recommended 

with the goal of including these subjects in computer science and information systems programs at 

academic universities, universities of applied sciences, and in vocational training for IT specialists. 

Other relevant study programs include image processing and computer visualization, media 

informatics, web design, game development, and game design. 

4.4.2 Professional development on resource aspects of ICT use for businesses 

and public institutions 

Businesses and public institutions can make significant contributions to resource conservation by 

undertaking measures in the field of software, and can reduce costs as well. Because of the large 



Green Software 

 

 – 40 – 

 

number of local servers operated by small and medium-sized enterprises and schools (as small to 

medium-sized organizations operating ICT; see section 4.4.3, however), their potential to save 

energy and resources is large. 

Development of appropriate teaching materials for professional development in businesses and 

public institutions is recommended, and they should be integrated in existing professional 

development programs.  

Including federal agencies in these efforts is recommended as well because of their considerable 

equipment needs and their purchasing power in the ICT market.  

4.4.3 Support for computer science teachers at schools 

When teaching computer science in schools, it is important in general to focus on principles of 

computer science and not to teach specialized topics that quickly go out of date. This must also be 

taken into account when integrating environmental and resource-oriented topics in curricula for 

computer science (or other subjects relating to ICT). 

4.4.4 Competitions for resource-efficient software 

Annual competitions in which students and developers working in the field can submit resource-

saving improvements to existing open source software products are recommended. They would 

permit any developer to participate even without comprehensive specialized knowledge about the 

area in which a software product is to be used and to concentrate, for example, on individual 

algorithms in a module. 

In addition to raising awareness on the part of the participants and the interested public about 

resource questions relating to software, good solutions could be disseminated quickly because of 

the openness of OSS and could also be taken on in other software products. 



Green Software 

 

 – 41 – 

 

Bibliography 

AC4DC (n.d.): Bisher unveröffentlichte Angaben aus dem Projekt AC4DC, an dem die Autoren der vorliegenden Studie 

beteiligt sind, http://www.AC4DC.de; last access 24.07.2013 

Accenture (n.d.): Application Services for Open Source Software: Service-Überblick. http://www.accenture.com/de-

de/Pages/service-technology-systems-integration-open-source-overview.aspx; last access 29.6.2013 

Amsel, N., Tomlinson, B. (2010): Green Tracker: a tool for estimating the energy consump-tion of software. In: CHI EA '10: 

Proceedings of the 28th of the international conference extended abstracts on Human factors in computing systems. ACM, 

New York, S. 3337–3342 

Baumeister, J. (2012): Server-Management-Suites: Management-Software der Server-Hersteller im Vergleich. In 

Tecchannel, 18.11.2009. 

http://www.tecchannel.de/server/hardware/2023817/server_management_software_das_bieten_die_besten_verwaltung

s_suites/index6.html; last access 31.05.2013. 

Bayer, M. (2009): Hardware, Software und Prozesse: 11 Ratschläge, Storage billiger zu machen. In: CIP, 04.05.2009. 

http://www.cio.de/knowledgecenter/storage/887974; last access 17.12.2012. 

BITKOM (2010b): Green-IT-Allianz, Ergebnisstand AG3 - Software und Green IT. Internes Arbeitspapier.  

BITKOM (n.d.): Open Source Software: Rechtliche Grundlagen und Hinweise. Leitfaden (Version 1.0). 

http://www.bitkom.org/files/documents/bitkom_publikation_oss_version_1.0.pdf; last access 29.6.2013. 

BMU (2012): Ressourcen schonende Speicherlösung für Rechenzentren. http://www.bmu.de/bmu/presse-

reden/pressemitteilungen/pm/artikel/ressourcen-schonende-speicherloesung-fuer-rechenzentren; last access 14.01.2013. 

Bokhari, S. H., Rehman, R. (1999): Linux and the Developing World, IEEE Software 16(1), S. 58-64.  

Bozzelli, P., Gu, Q., Lago, P. (2013): A systematic literature review on green software metrics. Technical report.  

BPMN (2013): Business Process Modelling and Notation. Hompeage. http://www.bpmn.org/; last access 20.6.2013. 

Bräuner, H. (2005): Linux im Rathaus – Ein Migrationsprojekt der Stadt Schwäbisch Hall, in (Bärwolff et al., 2005), S. 37-50, 

http://www.opensourcejahrbuch.de/download/jb2005/; last access 30.6.2013.  

Chen, F., Schneider, J.-G., Yang, Y., Grundy, J., He, Q. (2012): An Energy Consumption Model and Analysis Tool for Cloud 

Computing Environments. 1st ICSE Workshop on Green and Sustainable Software (GREENS 2012), Zurich, Switzerland, 3rd 

June 2012, S. 45-50.  

Coroama, V., Hilty, L. M., Heiri, E., Horn, F. (2013): The Direct Energy Demand of Internet Data Flows. Journal of Industrial 

Ecology. DOI: 10.1111/jiec.12048 

Creber, C. (2004): Die Bedeutung von Open Source in der Geschäftsstrategie von IBM, in (Picot und Doeblin, 2004), S. 111-

116.  

Dick, M., Drangmeister, J., Kern, E., Naumann, S. (2013): Green Software Engineering with Agile Methods. 2nd ICSE 

Workshop on Green and Sustainable Software (GREENS 2013), San Francisco, CA, USA, May 20, 2013.  

Dick, M., Kern, E., Drangmeister, J., Naumann, S., Johann, T. (2011): Measurement and Rating of Softwareinduced Energy 

Consumption of Desktop PCs and Servers. In Innovations in sharing environmental observations and information. 

Proceedings of the 25th International Conference EnviroInfo October 5 - 7, 2011, Ispra, Italy, W. Pillmann, S. Schade and P. 

Smits, Eds. Shaker, Aachen, S. 290–299. 

Dick, M., Naumann, S. (2010a): Enhancing software engineering processes towards sustainable software product design, in: 

K. Greve, A.B. Cremers (Eds.), EnviroInfo 2010, Integration of Environmental Information in Europe, Proceedings of the 

24th International Conference on Informatics for Environmental Protection, October 6–8, 2010, Cologne/Bonn, Germany. 

Shaker, Aachen, 2010, S. 706–715. 

Dick, M., Naumann, S., Held, A. (2010b): Green Web Engineering. A Set of Principles to Support the Development and 

Operation of "Green" Websites and their Utilization during a Website’s Life Cycle. In: Filipe, J., Cordeiro, J. (Hrsg.). WEBIST 

2010 - Proceedings of the Sixth International Conference on Web Information Systems and Technologies, Volume 1, 

Valencia, Spain, April 07-10, 2010, 2 volumes, INSTICC Press, Setúbal, S. 48–55. 



Green Software 

 

 – 42 – 

 

Dick, M., Naumann, S., Kuhn, N. (2010c): A Model and Selected Instances of Green and Sustainable Software. In Berleur et 

al. (2010) S. 248-259. 

Diedrich, O. (4.2.2009): Trendstudie Open Source. Wie Open-Source-Software in Deutschland eingesetzt wird. In Heise 

Open Source. http://heise.de/-221696; last access 29.6.2013. 

Drenkelfort, G., Pröhl, T., Erek, K. (2013): Energiemonitoring von IKT-Systemen. Kennzahlen. Projektberichte IKM| 3. 

Universitätsverlag der TU Berlin.  

EASED (2013): 2nd Workshop EASED@BUIS 2013 – Energy Aware Software-Engineering and Development – Proceedings. 

Bunse, C., Gottschalk, M., Naumann, S., Winter, A. (Hrsg.). Carl von Ossietzky Universität Oldenburg. OLNSE Number 

4/2013.  

Ehmann, S., Hintemann, R. (2004): Leitfaden zum Thema Information Lifecycle Management. In Competence Site. 

http://www.competence-site.de/location-intelligence-geomarketing-gis/Leitfaden-zum-Thema-Information-Lifecycle-

Management; last access 17.12.2012. 

EMC (2013): Deduplication Solutions. http://germany.emc.com/backup-and-recovery/deduplication.html; last access 

10.05.2013. 

Emmenegger, M. F., Frischknecht, R., Stutz, M. (2006): Life Cycle Assessment of the mobile communication system UMTS – 

towards eco-efficient systems, International Journal of Life Cycle Assessment, 11, S.265-276. 

Enterprise Management Associates: 2006, EMA study: Get the Truth on Linux Management, Website, 

http://www.thalix.com/files/EMA_Levanta-Linux_RR.pdf; last access 1.7.2013.  

Erek, K., Drenkelfort, G., Pröhl, T. (2013): Energiemonitoring von IKT-Systemen. State-of-the-Art von 

Energiemonitoringsystemen. Projektberichte IKM| 2. Universitätsverlag der TU Berlin.  

Ernst&Young (2011): Open Source Software im geschäftskritsichen Einsatz. 

http://www.ey.com/Publication/vwLUAssets/Open_Source_Software_im_geschaeftskritischen_Einsatz/$FILE/Open_Sourc

e_Software_DE.pdf; last access 29.6.2013. 

Gartner (4. Mai, 2013): Gartner Says Asia/Pacific Led Worldwide Mobile Phone Sales to Growth in First Quarter of 2013. 

Pressemitteilung. http://www.gartner.com/newsroom/id/2482816; last access 18.07.2013. 

Geer, D. (2008): Reducing the Storage Burden via Data Deduplication. In Computer, Volume 41, Issue 12, December 2008, 

S. 15-17. 

GHGP (2013a): GHG Protocol Product Life Cycle Accounting and Reporting Standard ICT Sector Guidance, 26. Januar 2013, 

http://www.ghgprotocol.org/feature/ghg-protocol-product-life-cycle-accounting-and-reporting-standard-ict-sector-

guidance   

GHGP (2013b): GHG Protocol Product Life Cycle Accounting and Reporting Standard ICT Sector Guidance, Chapter 1, 

Introduction and General Principles, Draft v1.3, 26. Januar 2013, http://www.ghgprotocol.org/files/ghgp/GHGP-ICT-

Introduction-Chapter-v1-3-26-JAN-2013.pdf  

GHGP (2013c): GHG Protocol Product Life Cycle Accounting and Reporting Standard ICT Sector Guidance , Chapter 7, 

Software, Draft v2.9, http://www.ghgprotocol.org/files/ghgp/GHGP-ICT-Software-v2-9-26JAN2013.pdf  

Grosskop, K., Visser, J. (2013): Identification of Application-level Energy Optimizations. In Hilty et al. (2013), S. 101-107. 

He, Q., Li. Z., Zhang, X. (2010): Data deduplication techniques. In Future Information Technology and Management 

Engineering (FITME), 2010 International Conference on (Volume 1). Date of Conference: 9-10 Oct. 2010, S. 430-433. 

Heinrich, H., Holl, F.-L.. Menzel, K., Mühlberg, J. T., Schäfer, T., Schüngel, H. (2006): Metastudie: Open-Source-Software und 

ihre Bedeutung für Innovatives Handeln. In Holl, F.-L. (Hrsg.) Entwicklungen in den Informations- und 

Kommunikationstechnologien. Band 1. http://www.bmbf.de/pubRD/oss_studie.pdf; last access 28.6.2013. 

Heise Online (2011b): Nokia forciert ortsbezogene Anwendungen für Windows Phone 7. In Heise Online. 

http://heise.de/-1272416; last access 31.05.2013. 

Heise Online (2012): Studie: Open-Source-Software qualitativ besser als proprietäre Entwicklungen. In HeiseOnline. 

http://www.heise.de/developer/meldung/Studie-Open-Source-Software-qualitativ-besser-als-proprietaere-Entwicklungen-

1440788.html; last access 4.3. 2012.  

Heise Open Source (2008): Open Source ist überall. In Heise Online. http://heise.de/-217214; last access 29.6.2013.  



Green Software 

 

 – 43 – 

 

Heise Open Source (2012a): Immer mehr Linux auf dem Desktop. In HeiseOnline. 

http://www.heise.de/open/meldung/Immer-mehr-Linux-auf-dem-Desktop-1404775.html; last access 3.3.2012. 

Heise Open Source (2012b): Anteil der Freizeit-Kernel-Hacker sinkt. In Heise Online. http://heise.de/-1500629; last access 

29.6.2013. 

Hilty, L. M., Aebischer, B., Andersson, G., Lohmann, W. (Hrsg.) (2013): ICT4S – ICT for Sustainability. Proceedings of the First 

International Conference on Information and Communication Technologies for Sustainability, ETH Zurich, February 14-16, 

2013. ETH. http://e-collection.library.ethz.ch/eserv/eth:6558/eth-6558-01.pdf; last access 31.05.2013. 

Hilty, L. M., Köhler, A., von Schéele, F., Zah, R., Ruddy, T. (2006): Rebound Effects of Progress in Information Technology. 

Poiesis & Praxis: International Journal of Technology Assessment and Ethics of Science, 1 (4), S. 19-38. 

Hilty, L.M., Lohmann, W. (2011): The Five Most Neglected Issues in "Green IT" In CEPIS UPGRADE 12: 4, S. 12-15.  

Hilty, L.M., Oertel, B., Wölk, M., Pärli, K. (2012): Lokalisiert und identifiziert. Wie Ortungstechnologien unser Leben 

verändern. TA-Swiss. ISBN 978-3-7281-3460-8. 

Hintemann, R., Fichter, K. (2012): Energieverbrauch und Energiekosten von Servern und Rechenzentren in Deutschland - 

Aktuelle Trends und Einsparpotenziale bis 2015, Berlin. http://www.borderstep.de; last access 31.05.2013. 

Hintemann, R., Fichter, K. (2013): Server und Rechenzentren in Deutschland im Jahr 2012, Berlin 2013. 

http://www.borderstep.de/pdf/Kurzbericht_Rechenzentren_in_Deutschland_2012__09_04_2013.pdf; last access 

14.05.2013.  

ITU (2012a): Assessment Framework for Environmental Impacts of the ICT Sector (September 2012), 

http://www.itu.int/dms_pub/itu-t/oth/4B/04/T4B0400000B0008PDFE.pdf; last access 12. Mai 2013. 

ITU (2012b): Toolkit on environmental sustainability for the ICT sector (September 2012), 

http://www.itu.int/dms_pub/itu-t/oth/4B/01/T4B010000060001PDFE.pdf; last access 12. Mai 2013. 

ITU (2012c): L.1410: Methodology for the assessment of the environmental impact of information and communication 

technology goods, networks and services, http://www.itu.int/rec/T-REC-L.1410-201203-I/en, März 2012; last access 16. 

Mai 2013. 

Kern, E., Dick, M., Johann, T., Naumann, S. (2011): Green Software and Green IT: An End Users Perspective. In Golinska, P., 

Fertsch, M., Marx-Gomez J. (Hrsg.). Information Technologies in Environmental Engineering Environmental Science and 

Engineering. New Trends and Challenges. Berlin, Heidelberg: Springer, S. 199-211. 
http://link.springer.com/book/10.1007/978-3-642-19536-5  

Kern, E., Dick, M., Naumann, S., Guldner, A., Johann, T. (2013): Green Software and Green Software Engineering – 

Definitions, Measurements, and Quality Aspects. In: Hilty et al. (2013), S. 87-94. 

Lanline (2012): Ganzheitliches IT- und Facility-Management optimiert Leistung im RZ. In Lanline (online), 25.10.2012. 

http://www.lanline.de/fachartikel/ganzheitliches-it-und-facility-management-optimiert-leistung-im-rz.html; last access 

18.12.2012. 

Masanet, E., Shehabi, A, Ramakrishnan, L., Liang, J., Ma, X., Walker, B., Hendrix, V., Mantha, P. (2013): The Energy 

Efficiency Potential of Cloud-Based Software: A U.S. Case Study. Lawrence Berkeley National Laboratory, Berkeley, 

California. http://crd.lbl.gov/assets/pubs_presos/ACS/cloud_efficiency_study.pdf; last access 20.8.2013 

Meyer, D.T., Bolosky, W.J. (2012): A study of practical deduplication. In Transactions on Storage (TOS), Volume 7 Issue 4. 

January 2012, Article No. 14. http://delivery.acm.org/10.1145/2080000/2078864/a14-

meyer.pdf?ip=130.60.155.223&acc=ACTIVE%20SERVICE&key=C2716FEBFA981EF1DD5891E815377FF4A1D6D263689CD484

&CFID=219314061&CFTOKEN=74874759&__acm__=1369323403_e879f7afe03eda700773f4fa34cf0fce; last access 

31.05.13. 

Microsoft (2010): Energy Smart Software. http://www.microsoft.com/whdc/system/pnppwr/powermgmt/Energy-

Smart_SW.mspx ; last access 20.6.2013. 

Müller, K. (2013): Persönliches Gespräch von R. Hintemann mit K. Müller zu Softwarelösungen im Rechenzentrum am 

11.01.2013. 

Naumann, S. (2013): Telefonisches Gespräch von L. M. Hilty mit Stefan Naumann, Professor an der Hochschule Trier, am 

13.05.2013. 



Green Software 

 

 – 44 – 

 

Naumann, S., Dick, M., Kern, E., Johann, T. (2011): The GREENSOFT Model: A Reference Model for Green and Sustainable 

Software and Its Engineering. In Sustainable Computing: Informatics and Systems 1 (2011), S. 294-304.  

Naumann, S., Gresk, S., Schäfer, K. (2008): How green is the web? Visualizing the power quality of websites, in: A. Möller, B. 

Page, M. Schreiber (Hrsg.), Environmental Informatics and Industrial Ecology, 22nd International Conference on Informatics 

for Environmental Protection, EnviroInfo 2008, Proceedings of the 22nd International Conference Environmental 

Informatics – Informatics for Environmental Protection, Sustainable Development and Risk Management, September 10–

12, 2008, Leuphana University Lueneburg, Germany, Shaker, Aachen, 2008, S. 62–65. 

Naumann, S., Kern, E., Dick, M. (2013): Classifying Green Software Engineering - The GREENSOFT Model. In Bunse, C., 

Gottschalk, M., Naumann, S., Winter, A. (Hrsg.): Proceedings of the 2nd Workshop Energy Aware Software-Engineering and 

Development (EASED@BUIS). OLNSE Number 4/2013, S. 13-14. http://www.se.uni-oldenburg.de/documents/olnse-4-2013-

eased.pdf; last access 31.05.2013. 

Nebel, W., Hoyer, M., Schröder, K., Schlitt, D. (2009): Untersuchung des Potentials von rechenzentrenübergreifendem 

Lastmanagement zur Reduzierung des Energieverbrauchs in der IKT, Studie für das Bundesministerium für Wirtschaft und 

Technologie, OFFIS, Dezember 2009.  

Paulson, J. W., Succi, G., Eberlein, A. (2004): An Empirical Study of Open-Source and Closed-Source Software Products, IEEE 

Transactions on Software Engineering 30(4), S. 246-256.  

Pelkmann, T. (2010): Deduplizierung - wie geht das? In Computerwoche online, 29.11.2010. 

http://www.computerwoche.de/a/deduplizierung-wie-geht-das,2358569; last access 17.12.2012. 

Powertop (n.d.): https://01.org/powertop/; last access 18.07.2013. 

Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris. G., Rydberg, T., Schmidt, W.-P., Suh, S., Weidema, B.P., 

Pennington, D.W. (2004): Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis,and 

applications. Environment International. 30(2004), pp. 701-720. 

Reder, B. (2012): Data Center Infrastructure Management - Mit DCIM das RZ in den Griff bekommen. In Computerwoche 

online, 08.10.2012. http://www.computerwoche.de/a/mit-dcim-das-rz-in-den-griff-bekommen,2514482; last access 

20.12.2012. 

Renner, T., Vetter, M., Rex, S., Kett, H. (2005): Open Source Software. Einsatzpotenziale und Wirtschaftlichkeit. Eine Studie 

der Fraunhofer-Gesellschaft. Fraunhofer IRB Verlag, Stuttgart und Fraunhofer-Institut für Arbeitswirtschaft und 

Organisation IAO, Stuttgart. http://wiki.iao.fraunhofer.de/index.php/Open_Source_Software; last access 28.6.2013. 

Rieß, U (2012): Effizienz ohne Deduplizierung? In speicherguide.de, 01.06.2012. http://www.speicherguide.de/backup-

recovery/disk-backup/effizienz-ohne-deduplizierung-15576.aspx; last access 17.12.2012.  

Roth, K., Patel, S., Perkinson, J. (2013): The Impact of Internet Browsers on Computer Energy Consumption. Final Report to 

Microsoft. Fraunhofer Center for Sustainable Energy Systems.  

Rüdiger, A. (2011): Storage-Kosten: Zehn Tipps zum Sparen beim Speichern. In Computerwoche online, 26.03.2011. 

http://www.computerwoche.de/a/zehn-tipps-zum-sparen-beim-speichern,1911740; last access 17.12.2012. 

Scharnhorst, W., Hilty, L. M, Jolliet, O. (2006): Life cycle assessment of second generation (2G) and third generation (3G) 

mobile phone networks ENVIRONMENT INTERNATIONAL 32: 5. 656-675 JUL  

SourceForge (n.d.): http://sourceforge.net; last access 18.07.2013.  

Stephens, A., Didden, M. (2013): The Development of ICT Sector Guidance: Rationale, Development and Outcomes. In Hilty 

et al. (2013), pp. 8-11. 

Stobbe, L., Nissen, N. F., Proske, M., Middendorf, A., Schlomann, B., Friedewald, M., Georgieff, P., Leimbach, T. (2009): 

Abschätzung des Energiebedarfs der weiteren Entwicklung der Informationsgesellschaft Bearbeitungsnummer I D 4 - 02 08 

15 - 43/08, Abschlussbericht an das Bundesministerium für Wirtschaft und Technologie. Berlin: Fraunhofer IZM, 2009, 164 

pp. urn:nbn:de:0011-n-1102312. http://publica.fraunhofer.de/eprints/urn:nbn:de:0011-n-1102312.pdf; last access 

31.05.2013. 

Thoma, J. (2012a): Ubuntu 12.04 mit aktivierter Energiesparoption. In Golem.de. 

http://www.golem.de/news/sandy-bridge-ubuntu-12-04-mit-aktivierter-energiesparoption-1202-89883.html; last access 

3.3.2012. 



Green Software 

 

 – 45 – 

 

Thoma, J. (2012b): Stromsparen nur mit Handarbeit. In Golem.de. 

http://www.golem.de/news/test-asus-zenbook-mit-linux-stromsparen-nur-mit-handarbeit-1202-89934.html; last access 

3.3.2012. 

Unterseher, D. (2008): Data-Deduplication, Vortrag auf dem BITKOM-Arbeitskreis Speichertechnologien am 27.11.2008. 

http://www.bitkom.org/files/documents/Unterseher_Data_Deduplication_2008_11_27d.pdf; last access 16.12.2012. 

Van Bokhoven, F., Bloem, J. (2013): Pilot result Monitoring Energy usage by Software. In Hilty et al. (2013), pp. 108-115. 

Vilsbeck, C. (2012): Virtualisierung, Cloud, Big Data, SSD: Storage-Trends: Speichertechnologien für 2012. In Tecchannel, 

30.01.2012. 

http://www.tecchannel.de/storage/management/2038683/storage_trends_speichertechnologien_2012_virtualisierung_cl

oud_big_data_ssd/; last access 31.05.2013. 

Wikipedia (2012a): Seite „Open Source“. In: Wikipedia, Die freie Enzyklopädie. 

http://de.wikipedia.org/wiki/Open_Source; last access 30. März 2012 

Wikipedia (2012b): Seite „Freie Software“. In: Wikipedia, Die freie Enzyklopädie. 

http://de.wikipedia.org/wiki/Freie_Software; last access 30. März 2012 

Wikipedia (2013a): Seite „Fahrzyklus“. In: Wikipedia, Die freie Enzyklopädie. 

http://de.wikipedia.org/wiki/Fahrzyklus; last access 30. Juni 2013 

Wikipedia (2013b): Seite "Open Source Software in öffentlichen Einrichtungen". In Wikipedia. 

http://de.wikipedia.org/wiki/Open-Source-Software_in_%C3%B6ffentlichen_Einrichtungen; last access 29.6.2013. 

Wilde, H. (2013): Persönliches Gespräch von R. Hintemann mit H. Wilde zu Deduplizierungslösungen im Rechenzentrum am 

14.01.2013. 

Wilke, C. (2012): Energy Labels for Mobile Applications. Fakultät Informatik, Institut für Software- und Multimediatechnik. 

http://www.claaswilke.de/publications/workshops/EEbS2012.pdf; last access 31.05.2013. 

Williams, D. R., Tang, Y. (2013): Impact of Office Productivity Cloud Computing on Energy Consumption and Greenhouse 

Gas Emissions. In Environmental Science & Techology 47 (9), pp. 4333-4340.  

Zapico, J. L., Turpeinen, M., Brandt, N. (2010): Greenalytics: a tool for mash-up life cycle assessment of websites. In: 

Proceedings of the 24th International Conference on Informatics for Environmental Protection (EnviroInfo 2010). 

Cologne/Bonn, Germany, Shaker, Aachen, 2010, pp. 754-763. ISBN: 978-3-8322-9458-8. 

 


	Titelei TEXTE XX_2015 engl.pdf
	Imprint




