Checklisten für die Untersuchung und Beurteilung des Zustandes von Anlagen mit wassergefährdenden Stoffen und Zubereitungen

Handlungsleitfaden
Checklisten für die Untersuchung und Beurteilung des Zustandes von Anlagen mit wassergefährdenden Stoffen und Zubereitungen

Handlungsleitfaden

von

Gerhard Winkelmann-Oei (Idee und Konzeption)
Umweltbundesamt, Dessau

Jörg Platkowski
R+D Industrie Consult, Adelebsen

International Commission for the Protection of the Danube River (ICPDR), Wien

Im Auftrag des Umweltbundesamtes
Impressum

Herausgeber:
Umweltbundesamt
Wörlitzer Platz 1
06844 Dessau-Roßlau
Tel: +49 340-2103-0
Fax: +49 340-2103-2285
info@umweltbundesamt.de
Internet: www.umweltbundesamt.de

Aktualisierung:
07/2009

Redaktion:
III 2.3 Anlagensicherheit
Gerhard Winkelmann-Oei

Publikationen als pdf:
http://www.umweltbundesamt.de/publikationen/checklisten-fuer-die-untersuchung-beurteilung-des-29

ISSN 2199-6571

Dessau-Roßlau, November 2015

Diese Publikation wurde vom Bundesumweltministerium mit Mitteln des Beratungshilfeprogramms (BHP) für den Umweltschutz in den Staaten Mittel- und Osteuropas, des Kaukasus und Zentralasiens sowie weiteren an die Europäische Union angrenzenden Staaten finanziert.

Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autorinnen und Autoren.
Inhaltsverzeichnis

1 SCHRITT – AUFTEILUNG DES BETRIEBES ... 4

2 SCHRITT – ERMITTLUNG DER WASSERGEFÄHRDENDEN STOFFE 6

3 SCHRITT – ANFORDERUNGEN AN BESTIMMTE ANLAGEN 7

3.1 Befinden sich Tanks, Reaktoren oder sonstige Behälter in der Anlage? 7
3.1.1 Überfüllsicherungen ... 7
3.1.2 Rohrleitungen .. 7
3.1.3 Zusammenlagerung .. 8
3.1.4 Rückhaltevermögen, Brandschutzkonzept ... 8
3.1.5 Abdichtungssysteme .. 9
3.1.6 Abwasserteilströme .. 9

3.2 Gebindelagerung .. 9
3.2.1 Rückhaltevermögen ... 10

3.3 Lagerung fester Stoffe .. 10

3.4 Umschlag wassergefährdender Stoffe ... 11
3.4.1 Abdichtungssysteme ... 12
3.4.2 Rohrleitungen ... 12
3.4.3 Rückhaltevermögen .. 12
3.4.4 Brandschutzkonzept ... 14
3.4.5 Abwasserteilströme .. 14

3.5 Für alle Anlagenarten geltende Checks .. 15
3.5.1 Hochwassergefährdete Anlagen .. 15
3.5.2 Anlagenüberwachung ... 15

4 SCHRITT – GEFAHRENABWEHRPLANUNG .. 16

4.1 Betriebliche Alarm- und Gefahrenabwehrplanung .. 16
4.2 Aufbau von Sicherheitsberichten ... 16

5 SCHRITT – QUANTIFIZIERUNG DES SICHERHEITSNIVEAUS 17

5.1 Berechnung des modifizierten WRI .. 17
5.1.1 Erdbeben ... 17
5.1.2 Hochwasser ... 18
5.1.3 Sensitive Gebiete ... 18

5.2 Ermittlung der potentiellen Gefahr jeder Teilanlage ... 18
5.3 Bestimmung der notwendigen Checklisten ...18
5.4 Bestimmung der mittleren Risikokategorie jeder Checkliste18
5.5 Bestimmung der mittleren Risikokategorie jeder Teilanlage19
5.6 Bestimmung des realen Risikos jeder Teilanlage ..19
5.7 Bestimmung der mittleren Risikokategorie des Standortes20
5.8 Bestimmung des realen Risikos des Standortes ...21

Um dieses Konzept in der Praxis als Prüfmethod zu etablieren, soll an dieser Stelle der einfache Einstieg in die Materie erläutert werden.

Um mit den Checklisten arbeiten zu können, müssen einige Vorüberlegungen angestellt werden.

1 Schritt – Aufteilung des Betriebes

Um eine Anlagenabgrenzung durchzuführen, muss geklärt werden, was unter einer Anlage zu verstehen ist.
Anlagen sind selbständige und ortsfeste oder ortsfest benutzte Funktionseinheiten, in denen mit wassergefährdenden Stoffen umgegangen wird. Die Anlagen umfassen alle Einrichtungen, Behälter, Rohrleitungen und Flächen, die für den bestimmungsgemäßen Betrieb erforderlich sind.

Bei der Abgrenzung von Anlagen sind folgende Prinzipien zu berücksichtigen:

- Die Anlage muss nach Funktionseinheiten abgegrenzt werden und zwar nach L (Lagern), A (Abfüllen), U (Umschlagen) und HBV (Herstellen, Behandeln und Verwenden).
- Für die Abgrenzung einer Anlage ist das verfahrenstechnische Ziel im bestimmungsgemäßen Betrieb entscheidend. Ein wichtiges Kriterium ist der Stofffluss (oder der Materialfluss) zur Erlangung des verfahrenstechnischen Ziels.
- Eine HBV-Anlage, die ein Produkt herstellt, behandelt oder verwendet, bleibt HBV-Anlage auch wenn dabei Abwasser anfällt.
- Eine Anlage, die zum Behandeln von Abfall, auch von flüssigem Abfall dient, ist eine HBV-Anlage, sofern es sich dabei um wassergefährdende Stoffe handelt auch wenn bei der Behandlung Abwasser anfällt.
Eine Anlage, die Abwasser nur zum Zwecke der Ableitung behandelt, ist eine Abwasserbehandlungsanlage und wird hier nicht weiter betrachtet.

Beispiel einer Anlage:

Beispiele für ortsfest benutzte Anlagen sind:

- Fahrzeuge, die nicht mehr als solche zum Fahren benutzt werden, sondern nur der Aufsatzbehälter zum Umgang mit wassergefährdenden Stoffen verwendet wird,
- Fässer, denn sie bewegen sich nicht von alleine.

Beispiele für nicht ortsfeste und ortsfest benutze Anlagen, die lediglich vorübergehend und an ständig wechselnden Orten eingesetzt werden (mobile Anlagen), sind:

- Baustellentankstellen,
- Transportfahrzeuge,
- Notheizungen bei Umbaumaßnahmen von Gebäuden

Sie werden hier nicht weiter betrachtet, unterliegen jedoch dem Minimierungsgebot und dem allgemeinen Sorgfaltsgrundsatz (mobile Auffangeinrichtungen, wie Tropfwannen und Ölbindemittel; ständige Beaufsichtigung beim Füllen und Entleeren)

2 Schritt – Ermittlung der wassergefährdenden Stoffe

Nach dem die zu betrachtenden Anlagen definiert wurden, muss die Wassergefährdung ermittelt werden, die von dieser Anlage ausgeht.

Was sind wassergefährdende Stoffe: Mehrere gefährliche Eigenschaften spielen eine Rolle z.B. die Humangefährlichkeit, ökologische Gefährlichkeit, Algentoxizität, Bakterientoxizität, Akkumulierbarkeit in Organismen, Abbaubarkeit usw. Um diese Eigenschaften zusammenfassen zu können, hat sich in Deutschland eine Kommission gegründet die jeden Stoff auf Grundlage der genannten Kriterien bewertet. Es wird eine Wassergefährdungsklasse (WGK) vergeben. Der Unterschied zwischen den einzelnen WGK liegt bei dem Faktor 10^-100. (1Tonne WGK 3 Stoffe ist mindestens 10 mal gefährlicher als 1 Tonne WGK 2 Stoffe und mindestens 100 mal gefährlicher als 1 Tonne WGK 1 Stoffe) In Deutschland sind mehrere 1000 Stoffe eingestuft. Diese Datenbank ist über das Internet einsehbar. Verfügbare Sprachen sind deutsch und englisch.
In der folgenden Checkliste können nun alle wassergefährdende Stoffe eingetragen werden. Im Anschluss an die Zusammenstellung der Stoffe kann der Water Risk Index (WRI), der der Ausdruck für die potentielle Gefahr ist, berechnet werden. Eine ausführliche Anleitung dazu findet man im Anhang zur Checkliste 1.

Checkliste: 01.pdf „Stoffe“

Enthält nach der Abarbeitung der Checkliste diese keine wassergefährdenden Stoffe kann der Check dieser Anlage an der Stelle abgebrochen werden.

3 Schritt – Anforderungen an bestimmte Anlagen

3.1 Befinden sich Tanks, Reaktoren oder sonstige Behälter in der Anlage?

Checkliste: 13.pdf „Lagern“
Checkliste: 14.pdf „Ausrüstung von Tanks“
Checkliste: 18.pdf „Aufbau und Ausrüstung von Produktionsanlagen“

3.1.1 Überfüllsicherungen

Checkliste: 02.pdf „Überfüllsicherungen“

3.1.2 Rohrleitungen

In der Regel werden diese Tanks entweder innerhalb der betrachteten Anlage oder zu anderen Anlagen mit Rohrleitungen verbunden. Diese Rohrleitungen müssen alle möglichen auf sie einwirkenden chemischen und physikalischen Beanspruchungen standhalten. Eine genaue Zusammenfassung ist in der folgenden Checkliste enthalten.
Die hier betrachteten Rohrleitungen sind feste oder flexible Rohrleitungen zum Befördern wasser-
gerfährdender Stoffe.

Rohrleitungen können eigenständige Rohrleitungsanlagen oder Teile von Anlagen zum Lagern,
Abfüllen, Umschlagen, Herstellen, Behandeln und Verwenden wassergefährdender Stoffe sein.
Dies gilt insbesondere für Rohrleitungen, die Anlagen zum Lagern, Abfüllen, Umschlagen, Herstel-
len, Behandeln und Verwenden wassergefährdender Stoffe verbinden oder für Rohrleitungen die
der zeitweisen Befüllung und Entleerung von Anlagen zum Lagern, Herstellen, Behandeln und
Verwenden wassergefährdender Stoffe dienen und die nach dem Befüll- und Entleervorgang je-
weils entleert sind (Befüll- und Entleerleitungen). Flexible Rohrleitungen sind solche, deren Lage
betriebsbedingt verändert wird, insbesondere Schlauchleitungen und Rohre mit Gelenkverbindun-
gen.

Luftungsleitungen von Tanks sind als nicht flüssigkeitsführende Leitungen keine Rohrleitungen
in unserem Sinne. Rohrleitungen können ober- oder unterirdisch verlegt sein. Unterirdisch sind Rohr-
leitungen, die vollständig oder teilweise im Erdreich verlegt sind.

Checkliste: 03.pdf „Sicherheit von Rohrleitungen“

3.1.3 Zusammenlagerung

Gefährliche Stoffe und Zubereitungen (gemäß EG-Richtlinie 67/548/EWG) müssen entsprechend
ihren Eigenschaften geordnet gelagert werden. Sollten diese Stoffe:

 a) in Gebäuden in einem Raum gelagert werden,
 b) bei Lagerung im Freien ohne standfeste und feuerfeste Wand oder ausreichenden Sicher-
 heitsabstand (Größenordnung 8 – 10 m) gelagert werden,
 c) in einem gemeinsamen Auffangraum bzw. in einem unterteilten Tank gelagert werden

müssen zusätzliche Anforderungen eingehalten werden. Diese werden in übersichtlicher Form in
der Checkliste „Zusammenlagerung“ dargestellt.

Checkliste: 04.pdf „Zusammenlagerung“

3.1.4 Rückhaltevermögen, Brandschutzkonzept

Da bei einwandigen Tanks die Möglichkeit besteht, dass diese Wandung versagen kann, muss
eine zweite Barriere in Form eines Auffangraumes geschaffen sein. Der Auffangraum muss aus-
reichend bemessen sein.

Was bedeutet ausreichend bemessen?

Ausreichend bemessen bedeutet, dass ein Rückhaltevermögen für das Volumen flüssiger Stoffe,
das bei Betriebsstörungen freigesetzt werden kann, vorhanden sein muss, ohne dass Gegenma-
 nahmen berücksichtigt werden. Bei der Berechnung des Rückhaltevermögens kann das Volumen
der größten abgesperrten bzw. eigenständigen Betriebseinheit als Basis benutzt werden. Hier gilt:
Der Rauminhalt eines Auffangraumes muß dem Rauminhalt der in ihm aufgestellten Anlage ent-
sprechend. Befinden sich mehrere Anlagen in einem Auffangraum, ist der Rauminhalt der größten
Anlage maßgebend; dabei müssen aber wenigstens 10 % des gesamten Rauminhalts aller im Auff-
fangraum aufgestellten Anlagen zurückgehalten werden.

Sind Gegenmaßnahmen möglich, muss geprüft werden, ob diese realistisch und praktikabel sind.
Diese Gegenmaßnahmen sind dann in der Checkliste zu erläutern.
Bei nicht überdachten Auffangräumen ist neben dem Rückhaltevermögen ein zusätzliches Rückhaltevolumen für Niederschlagswasser von 50 l/m² einzurichten. Vereinfachend kann ein Freibord von 5 cm eingerichtet werden, wenn keine zusätzlichen, zum Auffangraum hin entwässernden Flächen vorhanden sind.

Der Aspekt der Beurteilung des Rückhaltevermögens wird in der Checkliste 08 „Brandschutzkonzept“ berücksichtigt. Auch wenn keine brennbaren Stoffe vorliegen müssen die entsprechenden Fragen 1.1 und 1.2 beantwortet werden.

Checkliste: 08.pdf „Brandschutzkonzept“

3.1.5 Abdichtungssysteme

Abdichtungssysteme sind die dichten und beständigen Ausführungen von Auffangwannen, -räumen oder -flächen, die bei störfallbedingten Leckagen mit wassergefährdenden Stoffen in Kontakt kommen können. Abdichtungssysteme sollen verhindern, dass diese wassergefährdenden Stoffe die Auffangwannen, -räume oder -flächen durchdringen. So kann z.B. eine Betonfläche das Abdichtungssystem bilden aber auch eine Folie die sich auf einer Betonfläche befindet.

Checkliste: 05.pdf „Abdichtungssysteme“

3.1.6 Abwasserteilströme

Checkliste: 06.pdf „Abwasserteilströme“

3.2 Gebindelagerung

Das Gebindelager wird ebenso überprüft wie die unter 3.1 beschriebenen Anlagen. Allerdings können die Punkte 3.1.1 Überfüllsicherungen und 3.1.2 Rohrleitungen übersprungen werden.

Checkliste: 13.pdf „Lagern“
3.2.1 Rückhaltevermögen
Das Rückhaltevermögen für wassergefährdende Stoffe kann in diesem Fall etwas anders abgeschätzt werden.

Die Größe kann folgendermaßen ermittelt werden:

<table>
<thead>
<tr>
<th>Gesamtrauminhalt der Anlage in m³</th>
<th>Rauminhalt des Rückhaltevermögen</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 100</td>
<td>10% des Gesamtrauminhaltes der Anlage, wenigstens den Rauminhalt des größten Behälters</td>
</tr>
<tr>
<td>> 100 bis ≤ 1000</td>
<td>3% des Gesamtrauminhaltes der Anlage, wenigstens 10 m³</td>
</tr>
<tr>
<td>> 1000</td>
<td>2% des Gesamtrauminhaltes der Anlage, wenigstens 30 m³</td>
</tr>
</tbody>
</table>

Beispiel: Lagerung von Fässern in Regalen

3.3 Lagerung fester Stoffe
Die Lagerung von festen wassergefährdenden Stoffen ist relativ problemlos.

Checkliste: 13.pdf „Lagern“

Feste wassergefährdende Stoffe müssen entweder
Auf einer gegen die Stoffe unter allen Betriebs- und Witterungsbedingungen beständige und undurchlässige Bodenfläche gelagert werden und
die Stoffe
a) in dichten, gegen Beschädigung geschützten und gegen Witterungseinflüsse und die Stoffe beständigen Behältern oder Verpackungen oder
b) in Räumen gelagert, abgefüllt oder umgeschlagen werden. Geschlossenen Räumen stehen Flächen gleich, die gegen Witterungseinflüsse und gegen den Zutritt von Wasser und anderen Flüssigkeiten so geschützt sind, dass die Stoffe nicht austreten können.

Werden feste Stoffe auf überdachten Lagerplätzen in loser Schüttung oder in Säcken gelagert, muss durch allseitigen Abschluss sichergestellt sein, dass das Lagergut nicht außerhalb des überdachten Bereichs gelangen kann.

Silos gelten als geschlossene Lagerräume
Zur Begutachtung der Bodenfläche siehe
Checkliste: 05.pdf „Abdichtungssysteme“

Ist es möglich, dass Niederschlagswasser feste Stoffe ausschwemmt, muss das abfließende Wasser einer Behandlungsanlage zugeführt werden.

Checkliste: 06.pdf „Abwasserteilströme“

3.4 Umschlag wassergefährdender Stoffe
Der Umschlag ist als Bindeglied zwischen Transport und Lagerung anzusehen. Die Empfehlungen betreffen die erforderlichen technischen und organisatorischen Maßnahmen auf dem Umschlagplatz, die verhindern sollen, dass wassergefährdende Stoffe in die Oberflächengewässer gelangen. Der Bereich «Umschlag» bezieht sich auf die ortsfesten Teile beim Umschlagen und Abfüllen von Schiffen, LKWs oder Bahn auf Land (Lager und Lagerhallen) oder umgekehrt.
Um diese komplexe Anlage überprüfen zu können wurde die Checkliste 07 „Umschlag wassergefährdender Stoffe“ entwickelt.

Checkliste: 07.pdf „Umschlag wassergefährdender Stoffe“

Prüfliste: 07-AH.pdf „Umschlag wassergefährdender Stoffe von Schiffen“

3.4.1 Abdichtungssysteme

Abdichtungssysteme sind die dichten und beständigen Ausführungen von Auffangwannen, -räumen oder -flächen, die bei störfallbedingten Leckagen mit wassergefährdenden Stoffen in Kontakt kommen können. Abdichtungssysteme sollen verhindern, dass diese wassergefährdenden Stoffe die Auffangwannen, -räume oder -flächen durchdringen.

So kann z.B. eine Betonfläche das Abdichtungssystem bilden aber auch eine Folie die sich auf einer Betonfläche befindet.

In der Checkliste 07 „Umschlag wassergefährdender Stoffe“ wird diese Problematik im Punkt 1 angerissen. Ausführlich behandelt wird dieses Thema allerdings in der Checkliste 05 „Abdichtungssysteme“

Checkliste: 05.pdf „Abdichtungssysteme“

3.4.2 Rohrleitungen

Werden wassergefährdende Stoffe mittels Rohrleitungen umgeschlagen, muss natürlich der Punkt 2 der Checkliste 07 bearbeitet werden. Ausführlich wird allerdings die Problematik in der Checkliste 03 „Sicherheit von Rohrleitungen“ bearbeitet. Zu den Rohrleitungen gehören natürlich auch sämtliche Armaturen und Pumpen. (siehe auch 3.1.2)

Checkliste: 03.pdf „Sicherheit von Rohrleitungen“

3.4.3 Rückhaltevermögen

Um in der Checkliste 07 den Punkt 4 ausfüllen zu können, muss auch hier klargestellt werden, was als ein ausreichend bemessener Auffangraum gilt.

Hierzu muss eine kleine Berechnung durchgeführt werden:
Das Rückhaltevermögen (R) berechnet sich wie folgt:

\[R = \dot{V} \cdot t_A \]

- \(R \) Rückhaltevolumen in \(m^3 \)
- \(\dot{V} \) Volumenstrom in \(m^3/h \)
- \(t_A \) Zeit bis zum Wirksamwerden geeigneter Sicherheitsvorkehrungen in h

Wenn bei einem Leitungsabriss aus beiden Leitungsenden Flüssigkeit austreten kann, ist das zu berücksichtigen.

3.4.3.1 Bestimmung des Volumenstromes

Bei Verwendung einer Pumpe wird der Volumenstrom gleich der max. Förderleistung der Pumpe angesetzt.

Im freien Auslauf berechnet sich der Volumenstrom folgendermaßen:

\[\dot{V} = 3600 \cdot A \sqrt{2gh} \]

- \(\dot{V} \) Volumenstrom \(m^3/h \)
- \(A \) Querschnitt der Leitung
- \(g \) 9,81 m/s\(^2\) Erdbeschleunigung
- \(h \) max. Höhe m

3.4.3.2 Bestimmung der Zeit bis zum Wirksamwerden geeigneter Sicherheitsvorkehrungen

\[t_A = t_T + t_R \]

- \(t_T \) Totzeit - Zeit die ein reagierendes System benötigt, um ein eintreffendes Signal als relevant zu erkennen
- \(t_R \) Reaktionszeit - Zeit die ein reagierendes System benötigt, um nach dem Erkennen eines relevanten Signals einen bestimmten Sollwert zu erreichen

Können die Zeiten nicht exakt definiert werden, wird eine Zeit

\[t_A = 5 \text{ min} \]

angenommen.

Beispiel: Ein Kesselwagen wird entleert. Dabei kommt es zum Schlauchabriss vor der Pumpe. Der Schlauch hat einen Durchmesser von 100 mm. Der Füllstand des Kessels ist bei 3 m über dem Schlauchabriss.
Unter der Annahme von t_A gleich 5 min resultiert ein Rückhaltevolumen von:

$$V = \frac{3600 \cdot \pi}{4} \cdot (0,1)^2 \cdot 9,81 \cdot 3$$

$$V = 216,92 \, m^3 / h$$

$$R = ca. 18 \, m^3$$

3.4.4 Brandschutzkonzept

Checkliste: [08.pdf „Brandschutzkonzept“](#)

3.4.5 Abwasserteilströme

Checkliste: [06.pdf „Abwasserteilströme“](#)
3.5 Für alle Anlagenarten geltende Checks

3.5.1 Hochwassergefährdete Anlagen

Die Anforderungen gelten für Anlagen, Anlagenteile (einschließlich Rohrleitungen) und Sicherheitsvorrichtungen, die durch Einstau beeinflusst werden können. Dabei ist es unerheblich, ob es sich um eine Überschwemmung durch Hochwasser, durch Rückstauereignisse aus Gewässern oder aus dem Kanalnetz, Grundwasseranstieg bei langanhaltenden Hochwasserereignissen oder durch zurückgehaltenen Löschwasser einer Löschwasserrückhalteeinrichtung handelt.

Checkliste: 11.pdf „Hochwassergefährdete Anlagen“

3.5.2 Anlagenüberwachung

Checkliste: 09.pdf „Anlagenüberwachung“
4 Schritt – Gefahrenabwehrplanung

4.1 Betriebliche Alarm- und Gefahrenabwehrplanung

Checkliste: 10.pdf „Betriebliche Alarm- und Gefahrenabwehrplanung“

4.2 Aufbau von Sicherheitsberichten

Bei Störfällen in Anlagen von Betrieben in Flußeinzugsgebieten kann die Trinkwasserversorgung ganzer Regionen beeinträchtigt, Biotope großflächig kontaminiert werden. Um die Gefahr von schweren Unfällen zu beurteilen und zielgerichtet anlagenbezogene Maßnahmen zu deren Verhinderung und Begrenzung festzulegen und zu priorisieren, sind systematische und ganzheitliche Analysen zur Sicherheit der Anlage eine wirksame Methode.

Durch einen solchen Sicherheitsbericht erhält der Betreiber eine zusammenfassende Darstellung seines Betriebes in der Gesamtheit und seiner Anlagen aus sicherheitstechnischer Sicht. Das Unternehmen erkennt bereits während der Erarbeitung des Berichtes sicherheitstechnische Schwachstellen und erhält Hinweise wie die Produktionssicherheit erhöht werden kann. In diesem Prozess prägt sich bei den Führungskräften der Unternehmen die Erkenntnis aus, dass Standsicherheit und Funktionsfähigkeit der Anlagen einen direkten Einfluss auf die Wirtschaftlichkeit des Betriebes besitzen.

Checkliste: 12.pdf „Grundsätzlicher Aufbau von Sicherheitsberichten im Hinblick auf die Wassergefährdung“

\[1\] Gemeinsamer Standpunkt (EG) des Rates vom 19. März 1996 (9743/6/95 REV 6) im Hinblick auf den Erlass der Richtlinie des Rates zur Beherrschung der Gefahren bei schweren Unfällen mit gefährlichen Stoffen
5 Schritt – Quantifizierung des Sicherheitsniveaus

Das aktuelle Sicherheitsniveau kann nur auf Basis einer eingehenden Prüfung und Bewertung der entsprechenden Anlage ermittelt werden. Dazu eignet sich die bereits entwickelte Checklistenmethode hervorragend. Mit dieser Methode können die unterschiedlichsten Anlagen einfach, strukturiert und auf internationalen Empfehlungen basierend überprüft und bewertet werden. Diese Methode wird auf einen gesamten Industriestandort angewendet.

5.1 Berechnung des modifizierten WRI

\[MWRI = WRI_s + M1 + M2 + M3 \]

- \(MWRI \): Modifizierter Water Risk Index
- \(WRI_s \): Water Risk Index des Standortes
- \(M1 \): Erdbebengefahr
- \(M2 \): Hochwassergefahr
- \(M3 \): sensibler Bereich

5.1.1 Erdbeben

Die Gefahr eines Erdbebens muss berücksichtigt werden, wenn in dem Gebiet eine Erdbebensehärte 4 der Richterskala auftreten kann. Stärke 4 der Richterskala bedeutet: Wird von den meisten Menschen bemerkt; freies Pendel schwingt deutlich; Gläser und Teller klappern, Fensterläden schwingen; abgestellte Autos schaukeln leicht; geringste Schäden. Somit wird ein Modifizierungspunkt vergeben.

\[M1 = 0,1 \]

\(M1 = 0 \) (keine Erdbebengefahr)
5.1.2 Hochwasser

Hochwasserereignisse sind Ereignisse, die durch über die Ufer getretene Flüsse oder durch Überflutung im Bereich von Seen und Meere, entstehen. Hier sollten die letzten 100 Jahre betrachtet werden, ob dieses Ereignis aufgetreten ist. Wird die Frage mit „Ja“ beantwortet, muss ein Modifizierungspunkt vergeben werden.

\[M_2 = 0,1 \]

\[M_2 = 0 \text{ (keine Hochwassergefahr)} \]

5.1.3 Sensitive Gebiete

\[M_3 = 0,1 \]

\[M_3 = 0 \text{ (kein sensitives Gebiet)} \]

5.2 Ermittlung der potentiellen Gefahr jeder Teilanlage

Für jede Teilanlage muss die potentielle Gefahr, in Form des Water Risk Indexes (WRi), unter zu Hilfenahme der Checkliste 1 bestimmt werden.

5.3 Bestimmung der notwendigen Checklisten

Für eine Teilanlage werden die relevanten Checklisten ausgewählt. Da die Checklisten Methode in modularer Form aufgebaut ist, varieren die anzuwendenden Checklisten.

5.4 Bestimmung der mittleren Risikokategorie jeder Checkliste

Nach dem die Checklisten bestimmt sind, kann an Hand dieser die Teilanlage geprüft und bewertet werden. Jede Checkliste wird einzeln abgearbeitet und geprüft, inwieweit die Empfehlungen der internationalen Flussgebietskommissionen umgesetzt wurden. Dazu muss bewertet werden ob die einzelnen Unterpunkte der Empfehlungen realisiert wurden. Es werden dazu Risiko Kategorien eingeführt:

Unterpunkt der Empfehlung ist umgesetzt (normal risk).......................... RC = 1

Unterpunkt der Empfehlung ist partiell umgesetzt (medium risk)............ RC = z.B. 5

Unterpunkt der Empfehlung ist nicht umgesetzt (high risk)..................... RC = z.B. 10

Für jeden Unterpunkt der Empfehlung wird der Mittelwert der Risikokategorien berechnet:

\[
ARC_n = \frac{\sum RC_{SP}}{m}
\]

- \(ARC_n\): Average Risk of the Checklist n
- \(M\): Anzahl der bewerteten Unterpunkte der Empfehlung
- \(SP\): Sub-point (Unterpunkt der Empfehlung)
- \(RC\): Risk Kategorie

5.5 Bestimmung der mittleren Risikokategorie jeder Teilanlage

Nach dem für jede Checkliste die mittlere Risiko Kategorie bestimmt wurde, kann nun für jede Teilanlage das mittlere Risiko ermittelt werden.

Für jede Teilanlage wird der Mittelwert der Checklisten berechnet:

\[
ARP_i = \frac{\sum ARC_n}{CL}
\]

- \(ARP_i\): Average Risk of the Plant i
- \(ARC_n\): Average Risk of the Checklist n
- \(CL\): Anzahl der bewerteten Checklisten

5.6 Bestimmung des realen Risikos jeder Teilanlage

Das reale Risiko jeder Teilanlage kann als dekadischer Logarithmus des Produktes vom WGK 3 Gleichwert der Teilanlage und dem mittleren Risiko der Teilanlage bestimmt werden.

\[
RRP_i = \log_{10}(10^{WRI_i \bullet ARP_i}) = \log_{10}(EQ 3_i \bullet ARP_i)
\]
Checklisten: Handlungsleitfaden

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRP_i</td>
<td>Real Risk of the Plant i</td>
</tr>
<tr>
<td>WRI_i</td>
<td>Water Risk Index der Teilanlage i</td>
</tr>
<tr>
<td>$EQ3_i$</td>
<td>WGK 3 Gleichwert</td>
</tr>
<tr>
<td>ARP_i</td>
<td>Average Risk of the Plant i</td>
</tr>
</tbody>
</table>

Folgende Bewertung wurde festgelegt:

- $(RRP_i - WRI_i) \leq 0.4$: Das Sicherheitsniveau ist recht gut. Diese Eingruppierung bedeutet aber nicht, dass keine Maßnahmen zur Verbesserung der Situation notwendig sind.

- $0.4 < (RRP_i - WRI_i) \leq 0.8$: Wichtige Sicherheitseinrichtungen sind nicht vorhanden oder nicht ausreichend. Es sind Maßnahmen zur Verbesserung der Situation einzuleiten.

- $(RRP_i - WRI_i) > 0.8$: Das Sicherheitsniveau bezüglich dem Gewässerschutz ist sehr gering. Es ist dringend geboten Maßnahmen zur Verbesserung der Situation einzuleiten und danach die Bewertung zu wiederholen.

5.7 Bestimmung der mittleren Risikokategorie des Standortes

Um das reale Risiko des Standortes zu bestimmen, müssen nun die Teilanlagen zusammengeführt werden. Dazu benötigt man als erstes die mittlere Risikokategorie des Standortes. Dieser Mittelwert wird mittels der WRI der Teilanlagen gewichtet.

$$ARSite = \frac{\sum_{i} (10^{WRI_i} \cdot ARP_i)}{\sum_{i} 10^{WRI_i}} = \frac{\sum_{i} (EQ3_i \cdot ARP_i)}{\sum_{i} EQ3_i}$$

- $ARSite$: Average Risk of the Industrial Site
- ARP_i: Average Risk of the Plant i
- RRP_i: Real Risk of the Plant i
- $EQ3_i$: WGK 3 Gleichwert
- WRI_i: Water Risk Index der Teilanlage i
- K: Anzahl der Teilanlagen
5.8 **Bestimmung des realen Risikos des Standortes**

Das reale Risiko des Standortes kann wie folgt bestimmt werden.

\[
RRS = M1 + M2 + M3 + \log(10^{WRI_s} \cdot ARSite) = M1 + M2 + M3 + \log(\frac{EQ3_s}{ARSite})
\]

RRS Real Risk of the Industrial Site
ARSite Average Risk of the Industrial Site
WRI_s Water Risk Index des Standortes
M1 Erdbebengefahr
M2 Hochwassergefahr
M3 sensitiver Bereich
EQ3_s WGK 3 Gleichwert des Standortes

Die Bewertung erfolgt analog des Kapitels 5.6.