Resource criticality and the 'Energiewende'

> Prof. dr. Arnold Tukker Director, CML, Leiden University Senior Scientist, TNO Chair, EU DG ENTR ERECON WG on Rare Earth scenarios

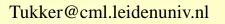
Review

- The resource challenge: not all resources are equal
- Metals as a special and difficult category
- Differentiation between economies thriving on primary materials and intermediates
- Conclusions

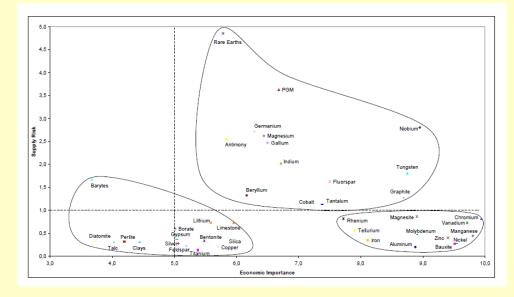
Can we grow resource use another 100 yrs? The resource challenge: what happens at 7% growth with no decoupling

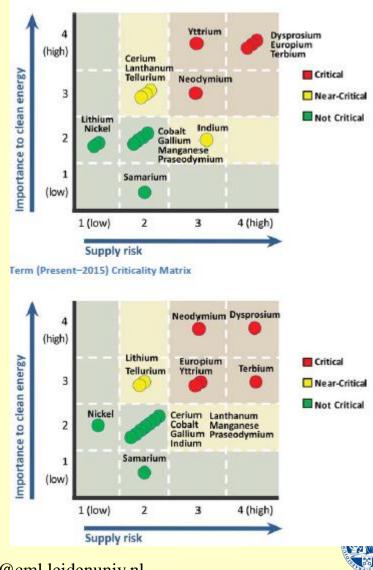
Doubles global economy every 10 years

Resource needs per year:


- Oil barrel the size of the earth: in 382 years
- Mining the whole earth crust: in 307 years
- Using all water including seas: in 190 years
- Energy use equal to the full solar influx: in 131 years

Of course with 2-3% growth it is better, but the long-term problem is clear

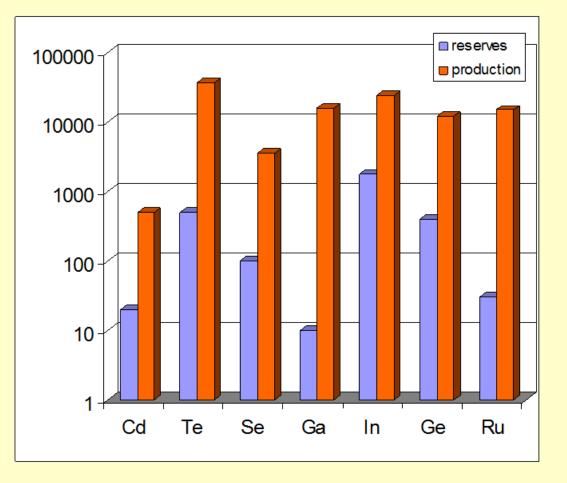




But on shorter term, not all resources are equal....

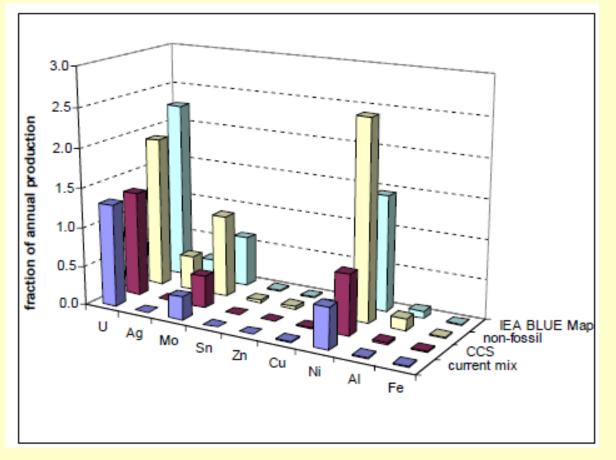
71		Basis for planetary limits	Potential limit	Reduction factor	Reference
Metal ores, industrial minerals	10%	(varies by metal).	EU 14 'critical materials' . Transition to renewables: absolute scarcity	Varies	EC (2010); Kleijn (2012), Graedel and van der Voet (2010).
Fossil fuels	20%	-	Factor 4-5 reduction for 2°C target	>10	IPCC (2007), Stern (2006), Meinsausen et al. (2009)
Construc- tion minerals			CO2 emission targets for cement, steel, aluminium	-	WRI (2006)
Biomass			HANNP = now 30-35% of available biomass	2	Vitusek et al. (1986), Haberl et al. (2007).
Land		Available bioproductive land	?? (remaining land, productivity potential)		Erb et al. (2009), OECD/FAO (2009); Nature (2010a and b), WWF (2010)
Water	p.m.	Renewable supply (by region)	2030: Global 'water gap' of 40%		Hoekstra and Chapagain (2007), Water resources group / McKinsey (2009)
•			Tukker@cml.leidenuniv.nl		The second states in the secon

Metals: a differentiated case


ERECON WG: it is market failure, not scarcity

- 800 times more deposits as current use
- 2 trillion value in end products, 5 bio needed for new mines
- Mining: Chinese monopoly, Western companies are small, we outsourced the dirty job for a reason
- Refining: Chinese build up huge knowledge base, Europe has limited capacity and knowledge
- Future demand is highly uncertain, supply inelastic (co-mining, opening mines costs 10 years and a few billion of investment)
- Bankers have less risky investment options
- There are hence massive market failures

Amount of resources needed to build low-carbon infrastructure is massive



Material requirement for PV thinfilm cells (if 80% of 2050 energy supply should come from these technologies compared to reserves

Universiteit Leiden

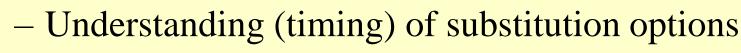
Amount of resources needed to build low-carbon infrastructure is massive

Annual metal requirements for 3 sustainable electricity generation scenarios – use by the electricity sector compared to total global annual production Tukker@cml.leidenuniv.nl

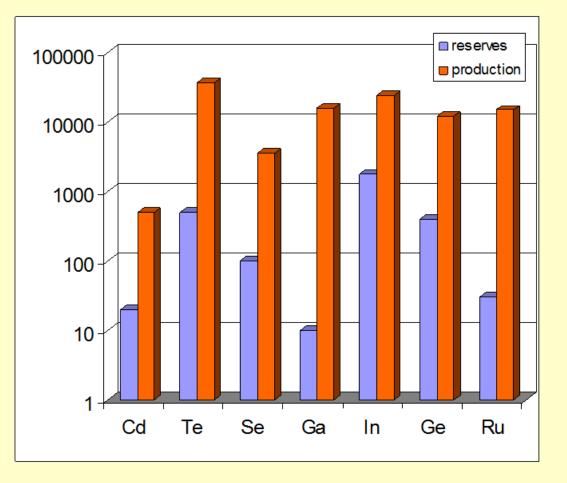
And more bad news

Graedel et al. (2013) claim substitutability is limited




Fig. 5. The periodic table of substitute performance. The results are scaled from 0 to 100, with 0 indicating that exemplary substitutes exist for all major uses and 100 indicating that no substitute with even adequate performance exists for any of the major uses.

Amount of resources needed to build low-carbon infrastructure is massive • Country level


- Use of critical materials (direct, intermediates)
- Current contribution to added value
- Impact on added value and competitiveness of price change and supply disruptions
- Company level
 - Knowledge if critical materials are part of their of supplies
 - Understanding number and stability of sources, also given position in value chain

Amount of resources needed to build low-carbon infrastructure is massive

Material requirement for PV thinfilm cells (if 80% of 2050 energy supply should come from these technologies compared to reserves

Universiteit Leiden

Conclusions

- We face already material criticality.....
-currently mainly due to market failures and uncertain future demand
- A massive shift to renewables means a massive investment in infrastructure requiring up to dozens of times current production
- We hence have to work on
 - Substitution by new technologies, e.g. nanomaterials replacing critical materials
 - Overcoming the market failures that currently hinder investment in mining
- Otherwise the 'energiewende' will stall due to lack of access to relevant resources

Thanks for your attention!

