

P-Rückgewinnung durch Kristallisation an Calcium-Silicat-Hydrat-Phasen

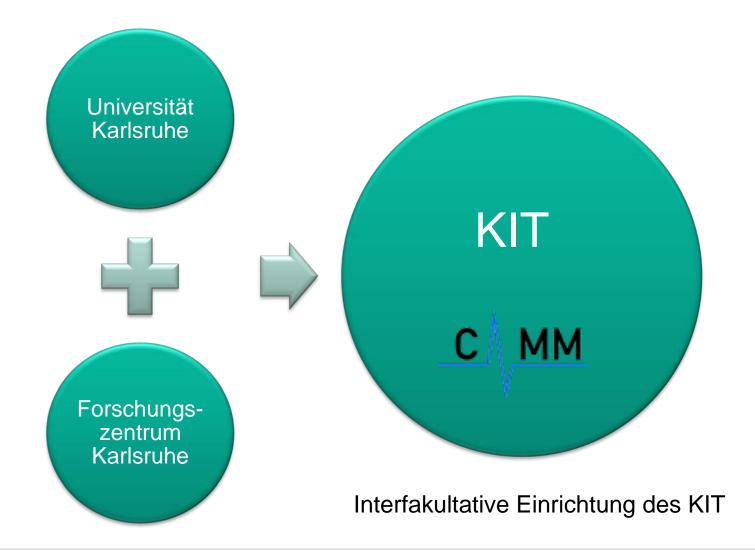
A. Ehbrecht, S. Schönauer, T. Fuderer, R. Schuhmann

Competence Center for Material Moisture (CMM) Abwasser / Prozesswasser Vorlagebecken Vorlagebecken Absetz becken Sekundärphosphat Landwirtschaft

Übersicht

- Einbindung und Philosophie des CMM
- P-RoC-Verfahren
- Wirtschaftlichkeit
- Ausblick

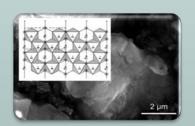
Einbindung



Universität Karlsruhe Karlsruhe Institut für Technologie Forschungszentrum Karlsruhe 1. Oktober 2009

Einbindung

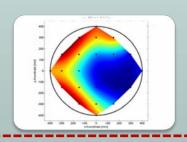
Kompetenzzentrum für Materialfeuchte

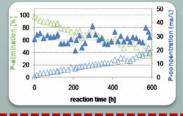

CMM

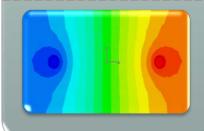
Angewandte Mineralogie/ Clay Science

Umwelttechnologie

Hochfrequenz-Elektrotechnik

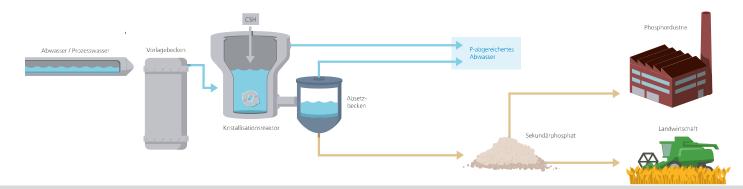

Material Nano



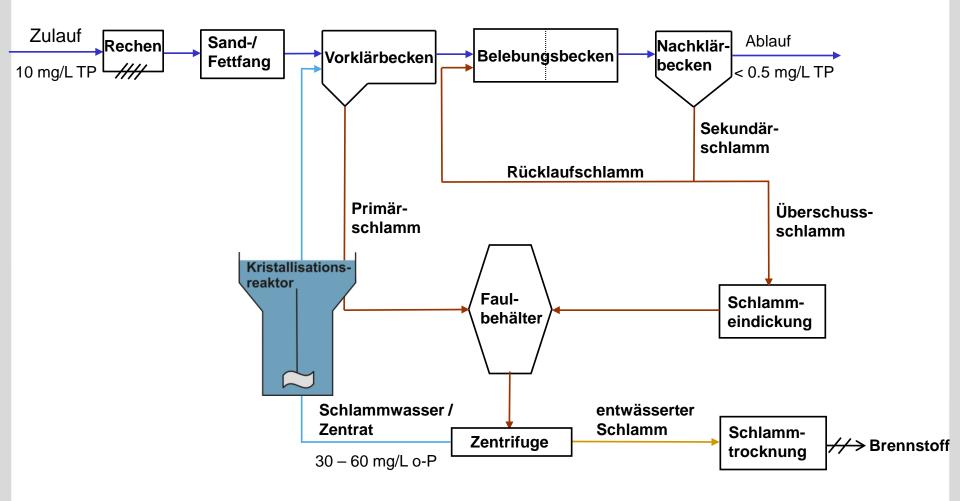


Prozesse Micro

Systeme Macro



P-RoC-Verfahren


- = Phosphor Recovery by Crystallization
- technisch einfach durchführbares Verfahren
- basiert auf einer Kristallisations- und/oder Fällungsreaktion durch Zugabe eines Calcium-Silicat-Hydrates
- geeignet für:
 - phosphatreiche Teilströme kommunaler Kläranlagen
 - industrielle oder landwirtschaftliche Prozesswässer

Ansatz des P-RoC-Verfahrens auf einer kommunalen Kläranlage

Arbeitsweise im P-RoC-Verfahren

- Langzeitversuch
- Pilotmaßstab (1m³)
- Wirtschaftlichkeit und Effizienz

- Langzeitversuch
- Halbtechnikmaßstab (0.1 m³)
- Anlagentechnik und Bilanzierung

- Kurzzeitversuch
- Labormaßstab (5 L)
- Reaktionskinetik

 Charakterisierung des Aboder Prozesswassers

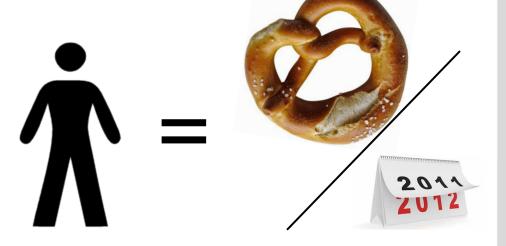
Parameter	Generiertes Sekundärphosphat	Mineralischer Phosphatdünger [1]
P ₂ O ₅	10.3 %	> 10 %
Mg	1%	deklarationspflichtig ab 5 %
Ca	17.6 %	deklarationspflichtig ab 5 %
Na	0.08 %	deklarationspflichtig ab 5 %
K	1%	deklarationspflichtig ab 5 %
Al	0.1 %	k. A.
Co	n.n.	deklarationspflichtig ab 0.002 %
Zn	0.0006 %	deklarationspflichtig ab 0.003 %
Ni	3.4 mg/kg	< 100 mg/kg
Mn	0.01 %	deklarationspflichtig ab 0.1 %
Cu	0.0001 %	deklarationspflichtig ab 0.01 %
Cr	1 mg/kg	< 2500 mg/kg
Fe	0.18 %	deklarationspflichtig ab 0.5 %

^[1] Düngemittelverordnung (2004), Fassung vom 28.11.2013

P-RoC: Wissenschaftliche Ergebnisse

Zusammenfassung

- Schlammwasser ist geeignet für eine Nährstoffrückgewinnung nach dem P-RoC-Verfahren
- Effizienz des P-RoC-Prozesses abhängig von der Qualität des Abwassers
- Linearer Zusammenhang zwischen Nährstoffelimination und Menge an Kristallisationssubstrat
- Anlagengeometrie hat keinen Einfluss auf die Effizienz
- Generiertes Produkt ist MAP mit einem P₂O₅-Gehalt von 10%



Wirtschaftlichkeit

In die Kostenrechnung gingen ein:

- Größe der Kläranlage (70.000 EGW)
- Menge an generiertem Sekundärphosphat
- hydraulische Retentionszeit

→ Kosten: 0,60 € - 1,00 € / EW x a

Quelle: badische-zeitung.de, bmas.de, mvl-kreis-salzgitter.de

Ausblick

- Add-On-Verfahren
- Anwendung z. B. auf kommunalen Kläranlagen
- Wirkungsgrad

Quelle: KIT NEULAND 2012

