The Shanghai Birth Cohort Study: Current status and results

Jun Jim Zhang
Shanghai Jiao Tong University School of Medicine
Shanghai, China
To study the effects of genetic, environmental and behavioral factors on reproductive health, pregnancy outcomes, child growth, development and risks of diseases.
Eligibility Criteria

Inclusion criteria:
- Women who are 20 years of age or older and married
- Plan to be pregnant or pregnant women in the first trimester (≤ 16 weeks of gestation)
- Registered residents of Shanghai municipality
- Intend to receive prenatal care and give birth in the participating hospital
- Not plan to move out of the catchment area of any one of the participating hospitals in the next 2 years

Exclusion criteria:
- Women who have tried to conceive spontaneously for more than 12 months
Visit Schedule

• Women and husband
 – Women: Preconception, 1st, 2nd, 3rd trimester, birth
 – or 1st, 2nd, 3rd trimester, birth
 – Husband: during pregnancy

• Children
 – Newborn and 42 days postpartum
 – Hospital visit at 6th, 12th and 24th months
Contents – 1. Questionnaire

- Questionnaire
 - Socio-economic status
 - Social support
 - Health behavior: physical activity, sleeping, smoking, alcohol, tea, drugs
 - Reproductive history
 - Medical history
 - Medication and supplements
 - Family history

- Environment, occupation
- Psychology: stress, anxiety and depression
- Diet and nutrition
- Infant feeding and habit
- Family and community environment
- Child developmental tests
- Child ASQ, M-CHAT
- Child psychological behavior
- Child diseases
Contents – 2. Biological Specimens

– Women’s blood, urine, hair and nail
– Partners’ blood, urine, buccal swab
– Cord blood
– Placental tissue
– Child blood spots
– Child urine and blood
Contents – 3. Medical record review

- **Record review**
 - Preconceptional care
 - Prenatal history and complications
 - Labor & delivery record
 - Newborn (NICU) record
 - 42-day infant physical exam
 - Well-baby physical exams

- **Disease confirmation**
 - Child illness journal by mother
 - Standard questionnaire
 - Electronic medical record
 - Hospital chart review
 - Expert review
 - Confirmation diagnosis
Coverage Area

Phase I:
5,000 couples,
3,500 children,
oldest 2 years
Environmental Triclosan Exposure and Female Reproductive Health

Wenting Zhu, Jun Zhang
Background

- Triclosan (2,4,4-trichloro-2-hydroxy-diphenyl ether, TCS), a broad spectrum antimicrobial agent.

- It is widely used in personal care, household as well as health care products, including toothpastes, antibacterial soaps, shampoos, deodorants, cosmetics, kitchen utensils, toys, bedding and clothes.
Background

- TCS is absorbed mainly through the digestive tract and skin.

- Detected in various human body fluids and tissues

 Blood: 0.01–38 ng/ml

 Breast milk: 20–300 ng/g

 Urine: 2.4–3,790 μg/L
Background

Triclosan

Estradiol

Diethylstilbestrol

BPA

Thyroxine
Background

Estrogen sulfotransferase (EST)
E2
E2-S

Study design

1. To examine the effect of TCS on menstrual irregularity and female fecundity
 • A prospective cohort study

2. To assess the association between TCS and female reproductive disorders in infertile couples
 • A multicenter case-control study
1 The effect of TCS on menstrual irregularity and fecundity

- Shanghai Birth Cohort Study: the preconceptional cohort

Inclusion criteria
- Married couple, age ≥ 20y;
- Plan to be pregnant;
- Registered resident of Shanghai;
- No plan to move out of Shanghai in the next 2 years;
- Plan to give birth in collaborating hospitals

Exclusion criteria
- Have tried to conceive for > 12 months
The preconceptional cohort

- Recruited through 2 preconceptional care clinics;
- Standardized questionnaire: demographic characteristics, living and working environment, health-related behaviors, menstrual history, medical history;
- Biological samples: blood and urine samples from men and women;
- Women were followed via telephone every 2 months for up to 12 months. Information on pregnancy, miscarriage, etc. was collected.
1 The effect of TCS on menstrual irregularity and fecundity

Criteria of menstrual irregularity

- Cycle Length: 21-35 days;
- Length of menstruation: 3-7 days;
- Menstrual bleeding: minimal, normal and heavy (self-report);
- **Menstrual regularity**: menstrual cycle length, length of menstruation and menstrual bleeding volume are within the normal range;
- **Menstrual irregularity**: any of the above criterion is beyond the normal range;
The effect of TCS on menstrual irregularity and fecundity

Inclusion and exclusion of volunteers (TCS and menstrual irregularity)

1. Volunteers recruited N=1183
2. Volunteers with TCS levels in urine N=716
3. No urine N=57
 Low urine volume < 24 ml N=410
4. No menstrual information N=6
5. Volunteers in the final analysis N=710
TCS measurements

<table>
<thead>
<tr>
<th></th>
<th>Detection rate</th>
<th>LOD</th>
<th>10th</th>
<th>25th</th>
<th>50th</th>
<th>75th</th>
<th>90th</th>
<th>95th</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCS (ng·mL⁻¹)</td>
<td>98.3</td>
<td>0.1</td>
<td>0.41</td>
<td>0.86</td>
<td>2.13</td>
<td>7.29</td>
<td>30.74</td>
<td>53.16</td>
<td>122.19</td>
</tr>
<tr>
<td>TCS_Cre (ng·mg⁻¹)</td>
<td>98.3</td>
<td></td>
<td>0.57</td>
<td>1.16</td>
<td>2.67</td>
<td>8.75</td>
<td>34.58</td>
<td>66.04</td>
<td>293.42</td>
</tr>
</tbody>
</table>

The values less than LOD were imputed as \((\text{LOD} \times 2)^{0.5}\)
Inclusion and exclusion of volunteers (TCS and fecundity)

Volunteers recruited N=1183

Follow-up N=1138
(follow-up rate=96.2%)

With TCS concentration N=706

contraception use or
TTP<12m N=117

With outcomes (pregnancy,
infertility or miscarriage) N=554

No urine or low volume N=432

ART N=2
Drugs assisted conception N=29
Age>40y N=4

No inclusion or exclusion.
Pre-pregnancy TCS exposure and pregnancy rate

% of women still not pregnant

Duration of trying to conceive

> 0.66 ng/g cre
≤ 0.66 ng/g cre
TCS and female reproductive health

• TCS exposure may increase the risk of menstrual irregularity;

• Pre-pregnancy TCS exposure may increase the risk of infertility;
To assess the association between TCS and female reproductive disorders in infertile couples

• A multicenter case-control study
Multicenter case-control study on environmental endocrine disruptors and female reproductive disorders

Cases:
• Polycystic ovarian syndrome (PCOS) \(N = 276 \)
• Endometriosis \(N = 138 \)
• Endometrial polyps or uterine fibroids \(N = 72 \)
• Repeated failure of artificial insemination by donor (AID) \(N = 72 \)
• Premature ovarian failure (POF) \(N = 47 \)

Controls:
• Male factors \(N = 305 \)
• Tubal obstruction/intrauterine adhesion \(N = 220 \)
 – Regular menstruation \(N = 316 \)
Multicenter case-control study on environmental endocrine disruptors and female reproductive disorders

- Fertility Centers: Shandong, Zhejiang, Shanghai
- Standardized questionnaire: demographic characteristics, living and working environment, health-related behaviors, menstrual history, medical history;
- Medical records abstraction: diagnosis and all test results;
- Biosamples of the women: blood and urine;
TCS and endometriosis, endometrial polyps/uterine fibroids

<table>
<thead>
<tr>
<th>Sample size</th>
<th>TCS-Crea</th>
<th>Unadjusted-OR (95% CI)</th>
<th>P value</th>
<th>Adjusted-ORb (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>316</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>Endometriosis</td>
<td>100</td>
<td>0.80 (0.63, 1.02)</td>
<td>0.661</td>
<td>1.42 (1.04, 1.96)</td>
<td>0.029</td>
</tr>
<tr>
<td>Polyps/fibroids</td>
<td>72</td>
<td>0.94 (0.72, 1.23)</td>
<td>0.662</td>
<td>1.45 (1.04, 2.02)</td>
<td>0.030</td>
</tr>
<tr>
<td>EM + EP/fib</td>
<td>38</td>
<td>1.08 (0.77, 1.51)</td>
<td>0.637</td>
<td>1.99 (1.31, 3.04)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

aLn/SD; bAdjusted for age, BMI, education, income, center and batch;

<table>
<thead>
<tr>
<th>Center, n (%)</th>
<th>Control N=316</th>
<th>EM N=100</th>
<th>EP/UF N=72</th>
<th>EM + EP/UF N=38</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhejiang</td>
<td>62 (19.6)</td>
<td>87 (87.0)</td>
<td>60 (83.3)</td>
<td>38 (100.0)</td>
<td><.0001</td>
</tr>
<tr>
<td>Shanghai</td>
<td>81 (25.6)</td>
<td>8 (8.0)</td>
<td>4 (5.6)</td>
<td>0 (0.0)</td>
<td></td>
</tr>
<tr>
<td>Shandong</td>
<td>173 (54.8)</td>
<td>5 (5.0)</td>
<td>8 (11.1)</td>
<td>0 (0.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sample size</td>
<td>Unadjusted-OR (95% CI)</td>
<td>P value</td>
<td>Adjusted-OR (95% CI)</td>
<td>P value</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>---------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Control</td>
<td>62</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
<td>Ref</td>
</tr>
<tr>
<td>Endometriosis</td>
<td>86</td>
<td>1.17 (0.82, 1.66)</td>
<td>0.389</td>
<td>1.31 (0.88, 1.93)</td>
<td>0.189</td>
</tr>
<tr>
<td>Polyps/fibroids</td>
<td>59</td>
<td>1.24 (0.85, 1.82)</td>
<td>0.263</td>
<td>1.28 (0.84, 1.94)</td>
<td>0.253</td>
</tr>
<tr>
<td>EM + EP/fib</td>
<td>38</td>
<td>1.73 (1.15, 2.62)</td>
<td>0.009</td>
<td>1.86 (1.19, 2.92)</td>
<td>0.013</td>
</tr>
</tbody>
</table>

aLn/SD; bAdjusted for age, BMI, education, income, center and batch; c Sensitive Analysis (SA): only included Zhejiang center;
TCS and PCOS, POF, Repeated AID failure

<table>
<thead>
<tr>
<th>Sample size</th>
<th>PCOS(^b)</th>
<th>276</th>
<th>1.10 (0.93, 1.29)</th>
<th>0.279</th>
<th>1.06 (0.87, 1.29)</th>
<th>0.582</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unadjusted-OR (95% CI)</td>
<td>P value</td>
<td>Adjusted-OR(^b) (95% CI)</td>
<td>P value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POF(^c)</td>
<td>47</td>
<td>1.12 (0.82, 1.52)</td>
<td>0.480</td>
<td>1.21 (0.88, 1.67)</td>
<td>0.247</td>
<td></td>
</tr>
<tr>
<td>Repeated AID failure(^d)</td>
<td>70</td>
<td>0.71 (0.38, 1.35)</td>
<td>0.294</td>
<td>0.82 (0.43, 1.58)</td>
<td>0.548</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Ln/SD;
\(^b\)Adjusted for BMI, income, center and batch;
\(^c\)Adjusted for age, education, sleep and center;
\(^d\)Adjusted for BMI;
In women seeking fertility treatment

• TCS exposure may increase the risks of endometriosis, endometrial polyps/uterine fibroids;
• No association was found between TCS exposure and polycystic ovarian syndrome, premature ovarian failure, or repeated failure of artificial insemination by donor.
Acknowledgment

- Shanghai Birth Cohort team
- Shanghai Jiao Tong University:
 - Ying TIAN, Yun SUN
 - Wenting ZHU, Jiangfeng YE, Wei ZHOU
 - Han LIU, Xiaona HUO, Yuexin GAN
- Shandong University: Zi-jiang CHEN, Yuhua SHI
- Zhejiang University: Fan JIN
Thank you