NEW SPECIFIC AND SENSITIVE BIOMONITORING METHODS FOR CHEMICALS OF EMERGING HEALTH RELEVANCE

Gabriele Leng¹, Wolfgang Gries¹, Marike Kolossa-Gehring², Ulrike Fiddicke² ¹Currenta GmbH & Co. OHG, Institute of Biomonitoring, Leverkusen, Germany ²Federal Environment Agency, Dessau-Roßlau/Berlin, Germany

A company of Bayer and Lanxess

THE GERMAN <u>HUMAN BIOMONITORING PROJECT</u>

Aim of the project is the development of biomonitoring methods for selected substances for which by now no suitable analytical method exists. Up to 50 new methods from 2010 – 2020!

Cooperation project between

BMUB (The German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety),

UBA (The German Federal Environment Agency)

*

Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit

V(`|

and

VCI (The German Chemical Industry Association)

HBM PROJECT - STEPWISE APPROACH

- 1. Selection of chemical expert group / steering group / BMUB, UBA, VCI
 - Substance:
 - > which might be taken up by the population in larger amounts
 - which could be relevant to human health
 - for which no (suitable) biomonitoring method exists
- Examples: plasticizers, foam components, flame retardants, antioxidants, UV filters
- 2. Development of analytical method analytical lab / expert group / VCI
- search for new specific markers (based on animal or human kinetic study; analogy to similar substances)
- urine as the preferred matrix (compared to blood)
- detection by LC/MS/MS or (HR)-GC/MS with
 - Iowest possible limit of quantification
 - minimum blood / urine volume
- application to ca. 40 persons to get a first hint of possible background level
- report with detailed method description; DFG-approval: experimental investigation from another lab according DFG-requirements
- publications in peer-reviewed journal; presentations on scientific congresses

HBM PROJECT - STEPWISE APPROACH

3. Application of new developed biomonitoring method in population – UBA

- biomonitoring performed in the framework of
 - The German Environmental Survey (GerES)
 - Environmental Specimen Bank (ESB)
 - > Others
- 4. Derivation of HBM value German HBM Commission / UBA
- To evaluate body burden measured

HBM-PROJECT - METHOD DEVELOPMENTS BY CURRENTA BIOMONITORING

Presented here:

DI-2-PROPYLHEPTYL-PHTHALATE (DPHP)

Reasons for nomination:

- New introduced substitute for endocrine active phthalates
- used as a plasticizer for technical PVC and VC application
- No specific biomonitoring method available

Aim:

- Environmental Specimen Bank: point of entry
- population monitoring: presence of substance although only technical use

DPHP – POSTULATED METABOLISM

DPHP-HUMAN ELIMINATION KINETIC STUDY

Aim:

 To examine if Cx-MPHxP, OH-MPHP and Oxo-MPHP are the main DPHP-metabolites in humans; to verify postulated metabolism
To get information about the elimination kinetics of DPHP in humans as well as the conversion factors

Study design:

- 5 male volunteers
- Oral intake of about 50 mg D4-DPHP
- Urine collected during the first 48 hours after intake in intervals
- Analysis of DPHP metabolites

Performed by Holger Koch at IPA approved by Ethical commission University of Bochum (registration number 4022-11, 24.5.2011)

DPHP - ELIMINATION KINETICS

Leistung für Chemie und Industrie

DPHP – DETECTION: LC-MS/MS VS GC-HRMS

	LC-MS/MS (routine phthalate method)			GC-HRMS		
	Found: Sum of metabolites DPHP + DINP + DIDP			Found: Only metabolites DPHP		
	Sum of cx			cx-MPHxP	OH-MPHP	oxo-MPHP
Mean (µg/L)	28.3	127.7	16.9	< 0.15	< 0.3	0.25
Range (µg/L)	2.1 - 99.7	7.7 - 337	1.1 - 49.2	< 0.15	< 0.3	< 0.25 - 0.72
Detection rate (%)	100	100	100	0	0	58
Samples provided by Holger Koch, IPA Urine of workers exposed to DINP+DIDP				OH-N	PHxP: 0.15 μ ИPHP: 0.30 μ ИPHP: 0.25 μ	g/l urine

Valid GC-HRMS method for the selective detection of DPHP metabolites in urine successfully developed!

Page 10 HBM Conference | Berlin 19.04.2016

DPHP – APPLICATION: PRESTUDY OF GerES V IN 2013 (N = 51)

Analyte	N > LOQ	Range (µg/l)	Mean (µg/l)	Median (µg/l)	90 th Percentil (µg/l)
Cx-MPHxP	0	0.075*	0.075*	0.075*	0.075*
OH-MPHP	20	0.15*- 3.81	0.507	0.150*	1.113
Oxo-MPHP	17	0.125*- 3.27	0.404	0.125*	0.921
* = LOQ/2 Far below HBM-value of 1500 μg/L urine (adult and 1000 μg/L urine (children)				urine (adults)

DPHP – APPLICATION: GERMAN ENVIRONMENTAL SPECIMEN BANK 1999 - 2012 (N = 300; 60 SAMPLES PER YEAR)

Page 12 HBM Conference | Berlin 19.04.2016

2012

3.3

0.36

21.7

0.65

Leistung für Chemie und Industrie

2-MERCAPTOBENZOTHIAZOLE (MBT)

Reasons for nomination:

- Substance which might be taken up by the population in larger amounts
 - Vulcanization accelarator especially in rubber products
 - Mostly used for car tires
- No biomonitoring method available

Aim:

- population monitoring: presence of substance
- Environmental Specimen Bank: presence of substance

HBM-I-values:

- adults: 7000 µg/L urine
- children: 4500 µg/L urine

MBT – POSTULATED METABOLISM

In rats: after oral application 90 % is excreted within 96 hours, mainly as glucuronid

By enzymatic hydrolysis of urine the total amount of MBT is measured.

MBT – METHOD

- > Total MBT is measured after enzymatic hydrolysis
- Application of high-pressure liquid chromatography tandem mass spectrometry (HPLC–MS–MS) in positive-electrosprayionization mode (ESI+) using isotope-dilution quantification
- High sample throughput by use of column-switching technique
- ➢ LOQ: 1 µg/L; LOD: 0.4 µg/L

Valid LC-MS/MS method for the detection of 2-MBT in urine successfully developed!

2-MBT – APPLICATIONS

- 1. Results of 40 urine samples of humans not occupationally exposed to MBT:
 - ➢ 39 samples < 1 µg/L</p>
 - ➤ 1 sample: 10.8 µg/L
- 2. Results of workers exposed to MBT 4 urine samples:

Analyte	N >	Range	Mean	Median	
	LOQ	(µg/L)	(µg/L)	(µg/L)	
"total" MBT	4	567 - 6210	3958	4527	
"free" MBT	3	< 1 - 137	69	70	
LOQ: 1 µg/l urine	e Far b	Far below HBM-value of 7000 µg/L urine			

2-MBT – APPLICATION: PRESTUDY OF GerES V IN 2013 (N = 51)

Analyte	N > LOQ	Range (µg/l)	Mean (µg/l)	Median (µg/l)	90 th Percentil (µg/l)
МВТ	10	0.6*- 5.95	0.975	0.6*	1.74*

* = LOQ/2; LOQ: 1 μ g/l urine

Far below HBM-value of 7000 $\mu g/L$ urine (adults) and 4500 $\mu g/L$ urine (children)

2,6-DI-TERT-BUTYL-P-CRESOL (BHT)

Reasons for nomination:

- Substance which might be taken up by the population in larger amounts
 - Anitoxidant in food, animal feedstuff, drugs
- No specific biomonitoring method available

Aim:

population monitoring: presence of substance

HBM-value in progress

BHT – POSTULATED METABOLISM

Food Antioxidants: Technological, Toxicological, and Health Perspectives Edited by DL Madhavi, SS Deshpande, and DK Salunkhe / Dekker 1996

Main metabolite (40 % of uptake) is BHT-acid.

BHT-ACID – METHOD

- > BHT-acid is measured after enzymatic hydrolysis
- UPLC-MS/MS with 2 D Chromatography
- LOQ: 0.2 μg/l urine; LOD: 0.06 μg/l urine

Valid LC-MS/MS method for the detection of BHT-acid in urine successfully developed!

BHT - APPLICATIONS

BHT-acid in 72 of 80 urine samples of humans not occupationally exposed to BHT:

1st group:

Analyte	N > 0.2 μg/l				90 th Percentil (µg/l)
BHT-acid	39	0.2 – 3.77	0.82	0.59	1.69

2nd group:

Analyte	N > 0.2 µg/l		Mean (µg/l)		90 th Percentil (µg/l)
BHT-acid	33	0.2 - 7.55	1.28	0.83	2.89

HEXABROMOCYCLODODECANE (HBCDD)

Reasons for nomination:

- Substance which might be taken in by the population in larger amounts
- Worldwide found in mother milk; sediment; fish
 - Flame retardant in insulators (polystyrene plastics; electronic devices)
- No specific biomonitoring method available

Aim:

- population monitoring: presence of substance
- Environmental Specimen Bank: point of introduction

HBM-value: 1.6 µg/L plasma

HBCDD – METHOD

HBCDD - APPLICATIONS

HBCDD-isomers in 90 plasma samples of humans not occupationally exposed

1st group - 48 samples:

Analyte	N > 0.03 μg/L (LOD)
α-HBCDD	3 (0.031- 0.084); 6.3 %
β-HBCDD	0
γ-HBCDD	0

2nd group - 42 samples:

(from Prof. Froi

omme, LGL Munich)	Analyte	N > 0.03 μg/L (LOD)
	α-HBCDD	3 (0.036 - 0.053) ; 7.1 %
	β-HBCDD	4 (0.037 - 0.090); 9.5 %
	γ-HBCDD	0

- all values below LOQ 0.10 µg/L
- far below HBM-value of 1.6 µg/L plasma

THANK YOU FOR YOUR ATTENTION!

Biomonitoring Team of Currenta www.biomonitoring.currenta.de

Page 25 HBM Conference | Berlin 19.04.2016