Human Biomonitoring in the Canadian Health Measures Survey – Progress and Uses

Douglas Haines, G. Saravanabhavan, C. Khoury, K. Werry
Healthy Environments and Consumer Safety Branch
April 18, 2016
Objectives

• Describe the human biomonitoring component of the Canadian Health Measures Survey (2007 to 2019)

• Highlight the uses of biomonitoring data

• Describe tools for interpretation of biomonitoring data
Biomonitoring is the measurement of a chemical, the products it makes after it has broken down, or the products that might result from interactions in the body.
In 2006, the Government of Canada launched the Chemicals Management Plan (CMP) to advance and improve the management of chemical substances and safeguard the health of Canadians.

Human biomonitoring is an element of the CMP
Health-Related Monitoring: Chemicals Management Plan

Targeted Population Biomonitoring

- Children’s exposure to lead
- Plastics & personal care products in pregnancy
- Arsenic in targeted geographic areas
- Exposure of recent Canadians’ to metals

Targeted Environmental Monitoring

- National Indoor Air Survey
- Canadian House Dust Study

National Human Biomonitoring

- Canadian Health Measures Survey
- Maternal Infant Research on Environmental Chemicals
- Northern Contaminants Program

Biomonitoring Supportive Research

- HBM Values
- Toxico-kinetic

First Nations Biomonitoring Initiative

- Canadian Health Measures Survey
- Maternal Infant Research on Environmental Chemicals
- Northern Contaminants Program
Canadian Health Measures Survey (CHMS)

Nationally representative survey on the general health and lifestyle of Canadians

Design
- Cross-sectional survey carried out in 2 year cycles
- Age groups: 3-5, 6-11, 12-19, 20-39, 40-59, 60-79 years
- Covers 94% of the Canadian population

Household Component
- Interview
- Indoor air (≥ cycle 2) and tap water (≥ cycle 3) sampling

Mobile Examination Centre Component
- Direct physical measures, including blood, urine, hair
- Clinic questionnaire

Partners:
Statistics Canada
Health Canada
Public Health Agency of Canada
Direct Measures (Mobile Examination Centre)

- Field staff: accredited and qualified health specialists and technicians
- 12 dedicated Statistics Canada interview staff
- Medical advisor working from central office

Measures
- Physical measurements (i.e. height, weight)
- Physical activity and fitness tests
- Oral health exam (cycle 1)
- Blood measures
 - Environmental chemicals, nutritional status, chronic & infectious disease, blood chemistry, DNA, biobank
- Urine measures
 - Environmental chemicals, iodine, microalbumin, creatinine
- Hair measures
 - Environmental chemicals
- Audiometry (cycle 3)
- FENO (fractional exhaled nitric oxide) (cycle 3)
• Establish nationally-representative blood, urine and hair concentrations for environmental chemicals

• Provide baseline data to track temporal trends and to allow for comparisons with sub-populations in Canada and with other countries

• Provide data to explore relationships between environmental chemicals, other physical measures, and self-reported information
Selection of CHMS Biomonitoring Chemicals

Based on

• Health Canada program priorities

Criteria

• Public health considerations
• Regulatory needs
• Evidence of population exposures or sources of exposure
• Feasibility of field collection of biospecimens / respondent burden
• Availability of laboratory analytical methods
• Consistency with other surveys
• International commitments
CHMS Biomonitoring Chemicals

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamide</td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Alternate plasticizer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbamate pesticides</td>
<td>•</td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Chlorophenols</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Dioxins and furans</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Environmental phenols</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Flame retardants</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Fungicides</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Metals and trace elements</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Organochlorines</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Organophosphate insecticides</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Parabens</td>
<td></td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Perfluoroalkyl substances</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Phenoxy herbicide</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phthalates</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>PCBs</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>PAH metabolites</td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrethroid insecticides</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Tobacco biomarkers</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Triazine herbicide</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOCs</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

277 chemicals measured over Cycles 1 to 6
CHMS Environmental Monitoring

Indoor Air Analysis:
- Trihalomethanes
- Benzene, Toluene, Ethylbenzene, Xylene
- Siloxanes
- Other Volatile Organic Compounds

Tap Water Analysis:
- Trihalomethanes
- Benzene, Toluene, Ethylbenzene, Xylene
- Fluoride
CHMS Milestones - Biomonitoring

Cycle 1
Mar 2007 – Feb 2009
15 sites
6-79 years (n = 5,600)
148 chemicals

Cycle 2
Aug 2009 – Nov 2011
18 sites
3-79 years (n = 6,400)
91 chemicals

Cycle 3
Jan 2012 – Dec 2013
16 sites
3-79 years (n = 5,700)
114 chemicals

Cycle 4
Jan 2014 – Dec 2015
16 sites
3-79 years (n = 5,700)
114 chemicals

Cycle 5
Jan 2016 – Dec 2017
16 sites
3-79 years (n = 5,700)
184 chemicals
Report planned 2019

Cycle 6
Jan 2018 – Dec 2019
16 sites
3-79 years
(n = 5,700)
184 chemicals
Report in 2021
Table 8.7.1
Fluoride — Geometric means and selected percentiles of urine concentrations (µg/L) for the Canadian population aged 3–79 years by age group, Canadian Health Measures Survey cycle 2 (2009–2011).

<table>
<thead>
<tr>
<th>Group (years)</th>
<th>Cycle</th>
<th>n</th>
<th>%<LODa</th>
<th>GM (95%CI)</th>
<th>10th (95%CI)</th>
<th>50th (95%CI)</th>
<th>75th (95%CI)</th>
<th>95th (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total, 3–79</td>
<td>2</td>
<td>2530</td>
<td>0</td>
<td>500</td>
<td>190 (180 - 210)</td>
<td>480 (430 - 540)</td>
<td>840 (750 - 930)</td>
<td>1500 (1300 - 1800)</td>
</tr>
<tr>
<td>3–5</td>
<td>2</td>
<td>510</td>
<td>0</td>
<td>470 (420 - 520)</td>
<td>190 (140 - 230)</td>
<td>510 (440 - 590)</td>
<td>720 (620 - 820)</td>
<td>1300 (920 - 1700)</td>
</tr>
<tr>
<td>6–11</td>
<td>2</td>
<td>514</td>
<td>0</td>
<td>500 (440 - 570)</td>
<td>200 (170 - 240)</td>
<td>490 (410 - 560)</td>
<td>820 (720 - 910)</td>
<td>1500 (1100 - 1800)</td>
</tr>
<tr>
<td>12–19</td>
<td>2</td>
<td>507</td>
<td>0</td>
<td>410 (370 - 460)</td>
<td>170 (150 - 200)</td>
<td>440 (360 - 520)</td>
<td>660 (570 - 750)</td>
<td>1200 (990 - 1400)</td>
</tr>
<tr>
<td>20–39</td>
<td>2</td>
<td>354</td>
<td>0</td>
<td>530 (470 - 590)</td>
<td>220 (190 - 260)</td>
<td>500 (380 - 620)</td>
<td>900 (750 - 1100)</td>
<td>1500 (1200 - 1800)</td>
</tr>
<tr>
<td>40–59</td>
<td>2</td>
<td>357</td>
<td>0</td>
<td>510 (430 - 610)</td>
<td>190 (130 - 250)</td>
<td>510 (410 - 620)</td>
<td>880 (740 - 1000)</td>
<td>1800 (1400 - 2300)</td>
</tr>
<tr>
<td>60–79</td>
<td>2</td>
<td>288</td>
<td>0</td>
<td>490 (440 - 560)</td>
<td>190 (120 - 260)</td>
<td>470 (410 - 540)</td>
<td>830 (760 - 910)</td>
<td>1600 (1200 - 2000)</td>
</tr>
</tbody>
</table>

*a If >40% of samples were below the LOD, the percentile distribution is reported but means were not calculated.

Use data with caution.
CHMS data use: Establish baseline levels

Acrylamide adduct in blood

Geometric mean acrylamide haemoglobin adduct concentration (pmol/g Hb)

Age Group (years)

3-79 (total population)

3-79 (total population)

3-5

6-11

12-19

20-39

40-59

60-79

NHANES (2003-2004)

Cycle 3 (2012-2013)
CHMS data use: Establish baseline levels

Triclosan in urine

- Cycle 2 (2009-2011)
- Cycle 3 (2012-2013)
CHMS data use: to establish relationships

Blood BTEX by smoking status

Ages 12-79 years, Cycle 3
CHMS data use: effectiveness of regulatory actions

Lead in blood

1978-79 geometric mean blood lead: 4.8 µg/dL
(Canada Health Survey)

Canadian Blood Lead Intervention Level – 10 µg/dL
CHMS data use: identify exposed populations

Mercury – women of childbearing age

<table>
<thead>
<tr>
<th>Survey / Region of Sampling</th>
<th>Percent Exceeding Guidance Value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHMS Cycle 2 (2009-2011)</td>
<td>2.2%</td>
</tr>
<tr>
<td>FNBI (2011)</td>
<td>2.7%</td>
</tr>
<tr>
<td>Baffin Region (2005-2007)</td>
<td>20% Down from 53% in 1997</td>
</tr>
<tr>
<td>Inuvik Region (2005-2006)</td>
<td>1.9% Down from 10% in 1997</td>
</tr>
</tbody>
</table>

FNBI: First Nations Biomonitoring Initiative
HBM Values: Tools for Interpretation

- **Biomonitoring Equivalents**
 - Population-level
 - Derived from existing exposure guidance values (risk assessment based)
 - Population-level
 - Statistically-derived (not health risk-based)

- **Reference Values**

- **Intervention Levels**
 - Individual- & population-level
 - Health risk-based

Increasing level of effort & sophistication
HBM Reference Values (RV$_{95}$)

- Upper bound of background exposure of the general population to a substance at a given time.
- Statistical reference values; not health-based.

- In Canada:
 - RV$_{95}$ for metals and trace elements have been derived using CHMS data
 - Work is underway to derive RV$_{95}$ for POPs, VOCs, environmental phenols, PAHs and phthalates

RV$_{95}$ can be used to:
- Identify individuals or sub-populations with increased exposures
- Follow changes in exposure over time
- Determine the effectiveness of actions to reduce exposures
Biomonitoring Equivalents (BE)

“Safe” human dose
RfD, TDI: mg/kg-d

Human (equivalent) Point of Departure
POD: mg/kg-d

Uncertainty Factors

BE - Concentration of biomarker that is consistent with existing exposure guidance or reference values such as RfDs, TDIs, etc.

Human urine/blood level
BE: µg/L

Human urine/blood level
BE_{POD}: µg/L
Interpretation of Biomonitoring Data using BEs

One Chemical

BE

BE_{POD}

High priority

Medium priority

Low priority

Increasing priority for follow-up

Source: LaKind et al., 2008
Use of BEs: assess exposure in a public health risk context

Arsenic in urine

- High: $16 \, \text{µg/L}
- Medium: $5.8 \, \text{µg/L}
- Low: BE_{POD}

CHMS Data: GM, P95
HAZARD QUOTIENT (HQ)

HQ = BIOMARKER CONCENTRATION / SCREENING VALUE (E.G. BE)

HQ > 1
CONC. MEASURED ABOVE SCREENING VALUE (E.G. BE)

HQ < 1
CONC. MEASURED BELOW SCREENING VALUE (E.G. BE)

Use of BEs: as a screening tool across a set of chemicals
Use of BEs: Identify chemicals for further action

CHMS Chemicals: Short half-lives

From: St-Amand et al., Toxicol. Lett. (2014)
Use of BEs: Identify chemicals for further action

CHMS Chemicals: Long half-lives

From: St-Amand et al., Toxicol. Lett. (2014)
Uses of CHMS Biomonitoring Data

Inform Risk Assessment

Contribute to International Agreements and Programs

Inform Risk Management

Canadian Health Measures Survey

National Reporting
Selected Uses of CHMS Biomonitoring Data

Inform Risk Assessment

- Screening Assessment Report on Perfluorooctanoic Acid (PFOA), its Salts and its Precursors
- Screening Assessment Report on Selenium (pending)
- Screening Assessment on Cobalt and Cobalt-Containing Substances
- Assessment Report on Triclosan (pending)
- Human Health State of the Science Report on Lead
- Human Health State of the Science Report on Decabromodiphenyl Ether (decaBDE)

Inform Risk Management

- Risk Management Scope for Triclosan (pending)
- Proposed Risk Management Approach for BPA
- Risk Management Strategy for Lead
- Performance Measurement Plans for Mercury and Its Compounds, Polybrominated Diphenyl Ethers (PBDEs), and BPA
Selected Uses of CHMS Biomonitoring Data

National Reporting

- Federal Sustainable Development Strategy
- Canadian Environmental Sustainability Indicators

Contribute to International Agreements and Programs

- UNEP Stockholm Convention on Persistent Organic Pollutants
- Arctic Monitoring and Assessment Programme (AMAP)
- Minimata Mercury Convention – Canadian Mercury Science Assessment
- North American Commission for Environmental Cooperation
CHMS provides important nationally representative HBM data

HBM data are being used to:

• Establish baselines of levels of chemicals in the Canadian population and track trends over time
• Assess exposure and health risk
• Inform chemical risk assessment and risk management activities
• Assess effectiveness of regulatory and risk management actions
• Study associations between HBM and other health and lifestyle factors
• Contribute to national and international monitoring and reporting programs
For Additional Information

Canadian Health Measures Survey

www.healthcanada.gc.ca/biomonitoring

www.statcan.gc.ca/chms