Biomonitoring in NHANES – Recent Advances and Future Directions

Antonia M. Calafat

Organic Analytical Toxicology Branch Centers for Disease Control and Prevention Atlanta, GA USA

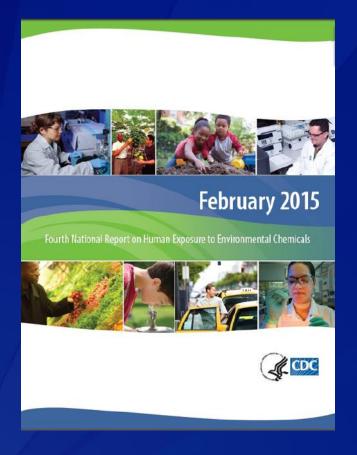
2nd International Conference on Human Biomonitoring April 17-19, 2016 Berlin, Germany

National Center for Environmental Health

Division of Laboratory Sciences

What is NHANES?

Annual survey (NCHS, CDC)


- US Congress funding
- Clinical & nutritional data

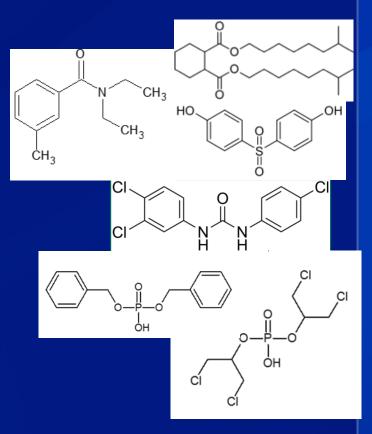
- Complex probability sample of civilian, noninstitutionalized US population
 - Yearly: ~5,000 persons, ~15 counties
 - Results for 2-year cycles (e.g., 1999-2000)
- Physical examination, collection of medical history, demographic, socioeconomic & behavioral data
- Also collects biological specimens
 - Clinical chemistry tests
 - Nutritional biomarkers & environmental chemicals
 - Link exposure to other data

http://www.cdc.gov/nchs/nhanes.htm

CDC's National Reports on human exposure to environmental chemicals (1999–2012)

- Metals
- Cotinine
- **TSNA**
- **Dioxins, furans & PCBs**
- Organochlorine pesticides
- PBDEs
- PFASs
- Organophosphate & pyrethroid insecticides
- Other pesticides (e.g., herbicides)
- Parabens
- **D** Phthalates & alternative plasticizers
- Phenols (e.g., PCP chemicals)
- PAHs
- Perchlorate, nitrate & thiocyanate
- VOCs

NHANES biomonitoring data inform public health policy


Some NHANES biomonitoring changes ahead

Expand portfolio of chemicals

- Replacement/alternative chemicals
 - DINCH
- Other chemicals
 - DEET metabolites

Control cost & matrix use

- NHANES pools
- Expand biomonitoring for the young
 - Urinary data for pre-school aged children

Biomonitoring logistics

Limited volume of blood; urine limited by age

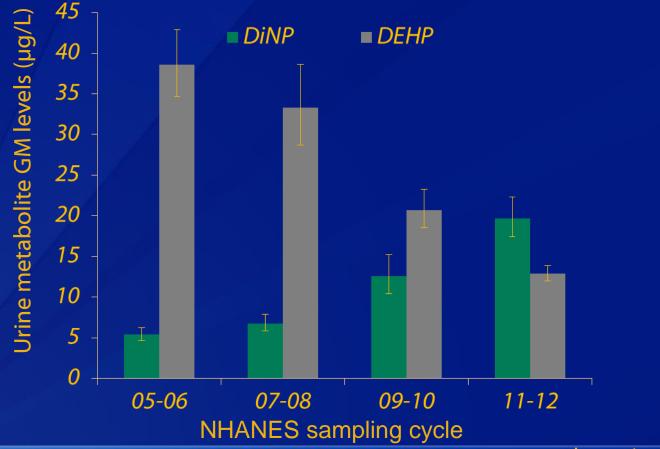
Age (years)	Blood (mL)	Urine	
1-2	9	No	
3-5	22	Yes	From 2015+
6-11	38	Yes	Metals & NPs
12+	89-92	Yes	Nutrition markers

POPs (12+), Pb, Cd, Hg, Mn & Se (1+), cotinine (3+) Nutrition markers

Randomly selected subsets of participants

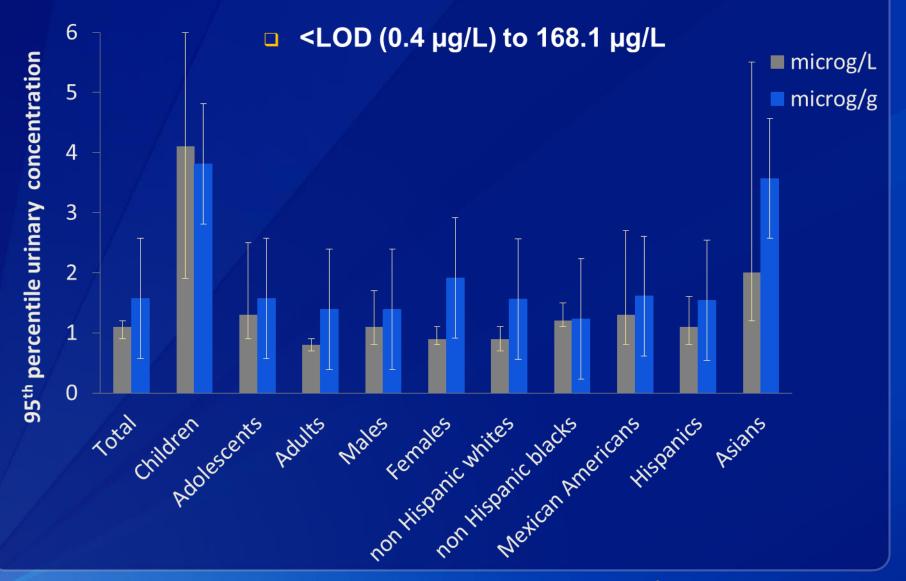
Average sample size ~ 2500 people/chemical for each 2-year cycle

http://www.cdc.gov/nchs/data/nhanes/survey_content_99_12.pdf


Exposure to phthalates in NHANES

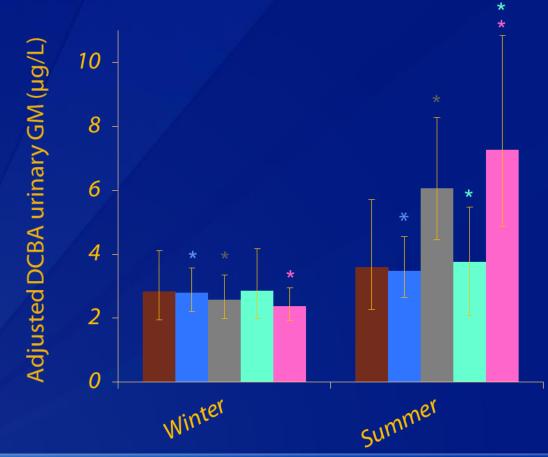
Diester	Metabolite	99–00	01–02	03–04	0510	11–12
DEP	MEP	Х	Х	Х	Х	Х
DBP	MBP		Х	Х	Х	Х
DiBP	MiBP	Х	Х	Х	Х	Х
BBzP	MBzP	Х	Х	Х	Х	Х
DEHP	MEHP	Х	Х	Х	Х	Х
	MEHHP		Х	Х	Х	Х
	MEOHP		Х	Х	Х	Х
	MECPP			Х	Х	Х
DiNP	МСОР				Х	Х
	MNP	Х	Х	Х	Х	Х
DiDP	MCNP				Х	Х
DINCH	OH-MINCH					Х

www.cdc.gov/exposurereport


Americans' exposure to phthalates is changing

- Some exposures increased: DiNP († 265%)
- Other exposures decreased: DEHP (1-67%)
 - Legislative actions and public scrutiny

www.cdc.gov/exposurereport


DINCH exposure: NHANES 2011–2012

www.cdc.gov/exposurereport

Exposure to DEET (NHANES 2007–2010)

Eighty four percent of Americans exposed
 Higher concentrations in summer vs winter

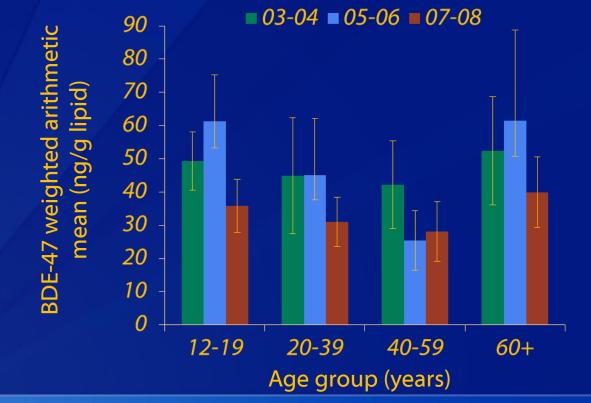
Mexican American
 Non-Hispanic black
 Non-Hispanic white
 2007-8
 2009-10

Calafat et al. Environ Int 2016. In press

Non-Hispanic whites are among the most exposed to DEET

Independent va	riable	Odds ratio (95% CI)
	Mexican American: Summer vs winter (ref)	1.13 (0.26-4.87)
	Non-Hispanic black: Summer vs winter (ref)	1.67 (0.80-3.46)
Race by season	Non-Hispanic white: Summer vs winter (ref)	10.83 (3.28-35.79)
	Winter: Mexican American vs Non- Hispanic black (ref)	1.32 (0.59 -3.00)
	Summer: Mexican American vs Non- Hispanic black (ref)	0.90 (0.26 -3.07)
	Winter: Non-Hispanic white vs Non- Hispanic black (ref)	0.53 (0.19- 1.49)
Season by race	Summer: Non-Hispanic white vs Non- Hispanic black (ref)	3.45 (1.51-7.87)

Calafat et al. Environ Int 2016. In press

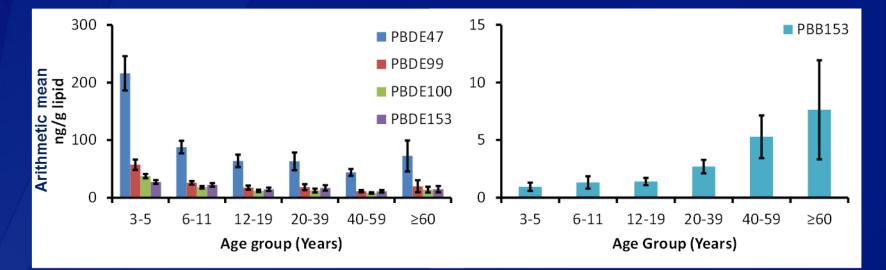

NHANES pools

- Increase serum volume
 - Improve LODs (PCDD/Fs)
- Decrease analytical cost
- Provide central tendency w/o subject-specific data
 - Multiple pools/category: 95% CI of the arithmetic mean

	2001–2	2005–6	2007–8	
No. pools	78	247	264	
Demographic categories	36	32		
Pools/category	2-4	5-23		
Children 3-11 years	Yes	No		
Other race(s)	No	Yes		
Subjects/pool 21-57		8	8	
Sample weights	No	Yes		

Exposures to PBDEs (NHANES 2003–2008)

- [PBDEs]₂₀₀₇₋₂₀₀₈ < [PBDEs]₂₀₀₃₋₂₀₀₄, but not significant
 Can't detect yet reduction in PBDE serum concentrations following discontinuation of pentaBDE
 - Furniture and other consumer articles have long lifetime



Sjodin et al. ES&T 2014

Exposure to POPs (NHANES 2001–2002)

- PBDE concentrations higher (87%-340%) in 3–5 year olds
- Traditional POPs concentrations lower in children (580%, PBB153)

Distinct exposure sources by age (e.g., food vs dust)

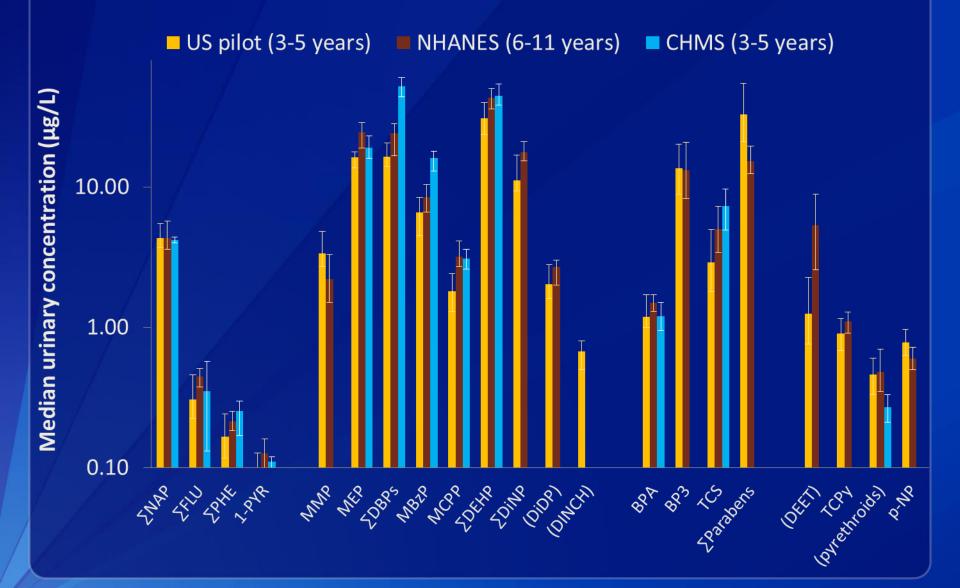
Sjodin et al. ES&T Lett 2014

Importance of early-life exposures

Needham et al. Neurotoxicology 2005

Non-persistent chemicals in pre-schoolers

Pilot conducted during 4 months


- NHANES 2013–2014
- Approximately 120 children 3–5 years old
 - Boys (~70) & girls (~50)
 - Hispanics (~80), non-Hispanic blacks (~20), others (~20)

Urine analyzed for 53 select biomarkers

- PCP chemicals
 - Phthalates & plasticizers
 - Phenols
 - Parabens
- Pesticides
- PAHs

Non-representative data

Similar exposures among North American children

Final thoughts

Usefulness of NHANES to inform public health policy Continue NHANES

- Both legacy and replacement/alternative chemicals
 - DINCH
 - BPS, BPF
 - Contemporary flame retardants
- Other chemicals/approaches
 - DEET metabolites
 - Triclocarban
 - Other phthalates metabolites
 - PFOA/S isomers

NHANES pools

But also regular NHANES

Include urinary biomonitoring data for pre-schoolers (2015+)

Acknowledgements

NCEH NCHS Our collaborators

THANK YOU!

For more information please contact Centers for Disease Control and Prevention

1600 Clifton Road NE, Atlanta, GA 30333 Telephone, 1-800-CDC-INFO (232-4636)/TTY: 1-888-232-6348 E-mail: cdcinfo@cdc.gov Web: www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

National Center for Environmental Health

Division of Laboratory Sciences