
Aktivitäten des Landesamtes für Bergbau, Energie und Geologie

(Ref. Landwirtschaft und Bodenschutz, Landesplanung)

zur Ermittlung der dI-PCB / PCDD/F-Gehalte in niedersächsischen Böden

(Dr. Jürgen Schneider)

Veranlassung der Bodenuntersuchungen in 2008 -

eine Überschreitung der Grenzwerte für Dioxine und dI-PCB in Futtermitteln (EU-Höchstmengenregelungen für PCDD/F 0,75 ng/kg bzw. für PCDD/F & dI-PCB 1,25 ng/kg) wurde festgestellt.

- Beprobung <u>innerhalb</u> (Außendeich) und <u>außerhalb</u> (Binnendeich) des Überflutungsbereiches
- Beprobung gemäß BBodSchV, Grünland
- Analysespektrum PCDD/F, dl-PCB, Schwermetalle, pH, Corg

Bodenprofile (Marsch), innerhalb des Überflutungsbereiches

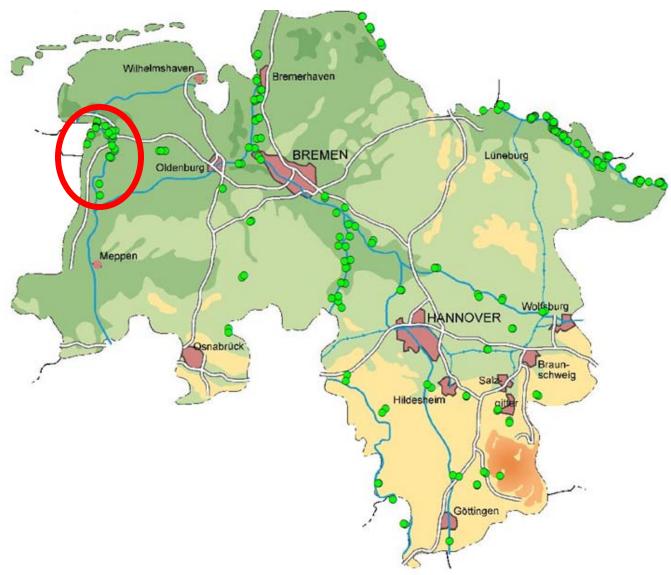
Probe-					dl-PC	В	∑ Wert PCDD/F / dI-PCE			
/Profil- Nr.		(TE ng/	kg)		(TE ng	kg)	(TE ng/kg)			
Tiefe	0-2	0-10	10-30	0-2	0-10	10-30	0-2	0-10	10-30	
(cm)										
71=1		19	24		3,9	4,1		22,9	28,1	
3		14	15		1,8	2,1		15,8	17,1	
5		18	24		2,4	3,4	//	20,4	27,4	
6		17	22		2,1	3,2		19,1	25,2	
9		13	13		1,8	2,2		14,8	15,2	
10		17	18		1,5	2,1		18,5	20,1	
13		13	14		1,9	2,2		14,9	16,2	
15		13	13		1,8	1,9		14,8	14,9	
35		15	12		1,8	2,2		16,8	14,2	
36		17	37		2,1	4,7		19,1	41,7	
4	10	12	18	1,1	1,6	2,4	11,1	13,6	20,4	
14		11	12		1,2	1,2		12,2	13,2	
27		11	13		1,3	1,9		12,3	14,9	
28	10	10	13	1,3	1,5	1,6	11,3	11,5	14,6	
30		12	18		1,5	2,4		13,5	20,4	
LK Leer								24,9	22,6	
LK Leer								17,6	21.8	

50. P. 15 ng/kg90. P. 25 ng/kg

Bodenprofile (Marsch), außerhalb des Überflutungsbereiches

Probe-/Profil-	PCDD/F (TE ng/kg)			dl-PCB (TE ng/kg)			∑ Wert PCDD/F / dI-PCE (TE ng/kg)		
Nr.									
Tiefe	0-2	0-10	10-30	0-2	0-10	10-30	0-2	0-10	10-30
(cm)									
Emsmündung									
111	4,3	0,07		0,06	aa		4,36	0,72	
112	2,7	3,0		0,04	0,64		2,74	3,64	
113	2,7	2,4		0,05	0,04		2,75	2,44	
114	3,7	2,8		0,76	0,67		4,46	3,47	1
115	2,6	2,7		0,65	0,01		3,25	2,71	
116	4,6	5,9		0,66	0,98		5,26	6,88	
Jemgum									
101	2,8	2,6		0,05	0,05		2,85	2,65	
102	2,6	3,1		0,04	0,06		2,64	3,16	
103	4,3	3,2		1,01	0,06		5,31	3,26	
104	1,6	1,6		0,01	0,02		1,61	1,62	
105	4,0	4,1		0,05	0,65		4,05	4,75	
106	2,3	7,2		0,01	0,75		2,31	7,95	1
Weener									
107	2,5	4,2		0,01	0,01		2,51	4,21	
108	2,4	2,7		nn	0,01		3,05	2,71	·
109	3,8	3,8		0,76	0,62		4,56	4,47.	
110	3,6	3,0		0,65	0,65		4,25	3,65	
38		1,5	1,9		0,01	0,01		1,51	1,91

50. P. 3 ng/kg


90. P. 5 ng/kg

Sind die Ergebnisse von der **Ems** für Niedersachsen repräsentativ ?

Flusssystem	potenzieller Eintragspfad
Söse	Wasser (Überflutungsbereich)
	Luft (binnendeichs)
Innerste	Wasser (Überflutungsbereich)
	Luft (binnendeichs)
Weser	Wasser (Überflutungsbereich)
	Luft (binnendeichs)
Aller	Wasser (Überflutungsbereich)
	Luft (binnendeichs)
Fuhse	Wasser (Überflutungsbereich)
	Luft (binnendeichs)
Hunte	Wasser (Überflutungsbereich)
	Luft (binnendeichs)
Leine	Wasser (Überflutungsbereich)
	Luft (binnendeichs)
Oker	Wasser (Überflutungsbereich)
	Luft (binnendeichs)
Elbe	Wasser (Überflutungsbereich)
Elbe	Luft (binnendeichs)

Wert PCDD/F / dl-PCB (TEQ ng/kg) 50. Perzentil Wert PCDD/F / dl-PCB (TEQ ng/kg) 90. Perzentil Probenanzahl

Die landesweit erhobenen Ergebnisse bestätigen die regional erhobenen Erkenntnisse aus 2008!

Mehr als 100 Untersuchungsstandorte belegen Stoffkonzentrationen von ca. 15 - 30 ng/kg im Überschwemmungsbereich

und

Stoffkonzentrationen von ca. 3 - 5 ng/kg außerhalb des Überschwemmungsbereiches.

Expertenworkshop **zur Ursachenanalyse** der Kontamination durch dioxinähnliche PCB von Weidegrasaufwuchs im Bereich der Ems am 16. und 17. Februar 2009 in der Evangelischen Akademie Loccum

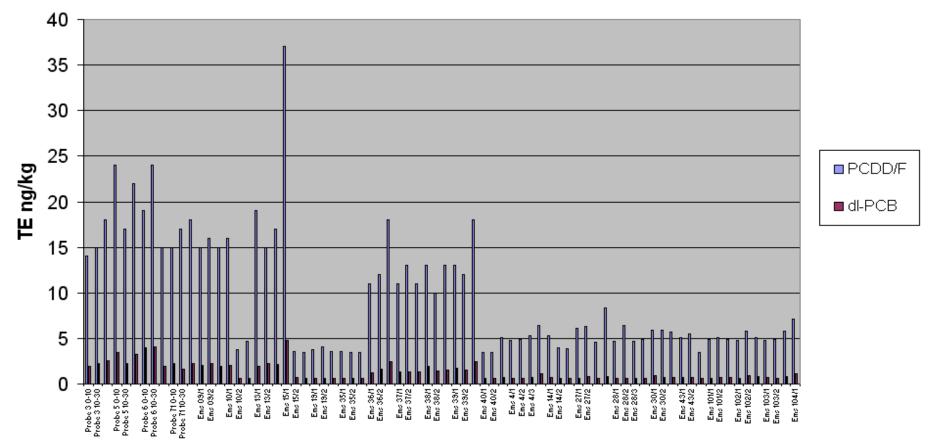
Die Ursachenanalyse gestaltete sich zunächst schwierig, da:

- Schwebstoffuntersuchungen NLWKN
- Sedimentuntersuchungen NLWKN
- Bodenuntersuchungen LBEG und die
- Immissionsuntersuchungen ZUS LG GAA

zwar in sich stimmig (Anteile PCDD/F höher als dl-PCB-Anteile) waren,

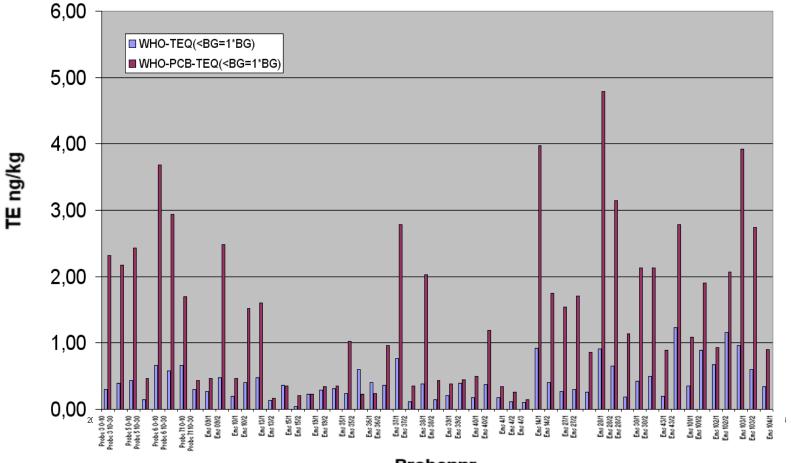
aber widersprüchliche Ergebnisse zu den Aufwuchsuntersuchungen (höhere Anteile dI-PCB als PCDD/F-Anteile) aufwiesen.

Im November 2009 wurde dieser Widerspruch aufgeklärt,


als das Niedersächsisches Ministerium für Ernährung, Landwirtschaft, Verbraucherschutz und Landesentwicklung bestätigte, dass es in einem Trocknungsraum des Futtermittelinstituts in Stade zu Kontaminationen der Aufwuchsproben gekommen war.

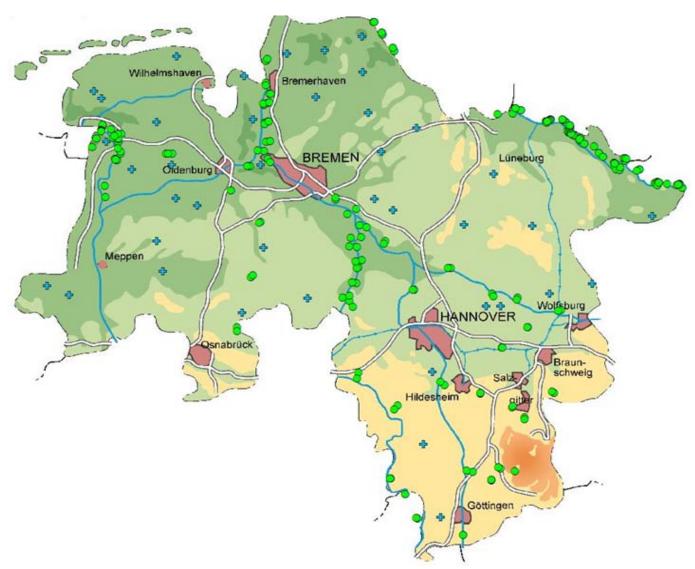
Verhältnis PCDD/F – dl-PCB im Boden

Probennr



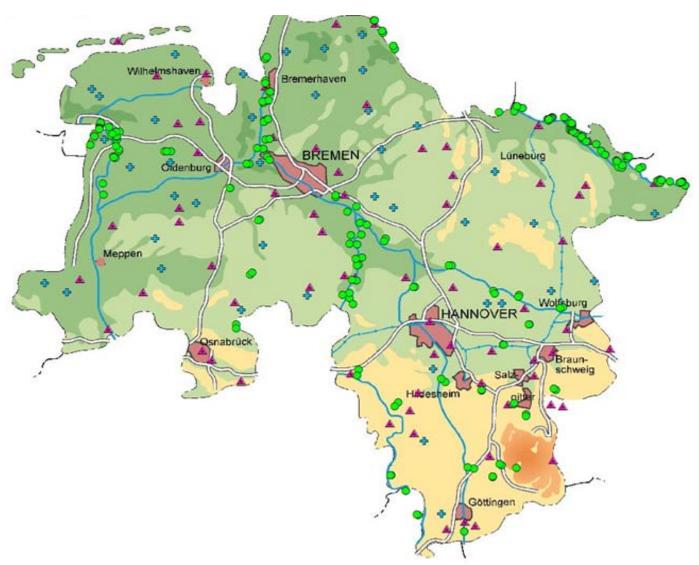
Verhältnis PCDD/F – dl-PCB in Futtermitteln

Probennr



Erweiterung des Datenbestandes

u.a. durch das UBA-Projekt "Hintergrundwerte für organische Schadstoffe in Böden"



Datenbestand Niedersachsen 2011 (incl. BDF)

Zusammenfassung:

- Die in 2008 zunächst an der Ems ermittelten Stoffgehalte für dl-PCB & PCDD/F stimmen mit landesweiten Untersuchungen überein.
 Eine regionale Belastungsproblematik besteht für die Ems nicht.
- Die <u>Dioxin-Werte</u> bewegen sich nicht im Bereich des Verdachts einer schädlichen Bodenveränderung.
- Aussagen zu dl-PCB & PCDD/F in niedersächsischen Böden können mittlerweile auf einer fundierten Datenlage abgeleitet werden.
- Der Sachstand ist dokumentiert (Nds. Bericht, UBA-Bericht), die Daten sind dem UBA zugeliefert.
- BMU & BMVEL sind über die nds. Aktivitäten informiert.
- Auch in der Bund/Länder AG Dioxine ist der Sachstand kommuniziert.
- Der länderübergreifende Informationsaustausch wird fortgeführt.

