

Umweltbundesamt - International Conference: Elements of a Greenhouse Gas Neutral Society Berlin, 10.10.2013

Power-to-Gas (P2G®): **Technology and System Operation Results**

Michael Specht, Ulrich Zuberbühler

ZSW – Center for Solar Energy and Hydrogen Research, Stuttgart in Co-operation with

Agenda:

Power-to-Gas (P2G®) - Technology and System Operation Results

Goal

Principle of P2G®-Process

Layout / Construction / Experimental Results / Development Status 25kW_{el}-, 250kW_{el}-, 6000kW_{el}-Plant

Facts / Frame Conditions (CO₂ Resources, Economics)

Conclusion

Power-to-Gas (P2G[®]): Key Thesis

- Chemical energy carriers are needed for future energy supply in electricity, heat, mobility, and long term energy storage market!
- → There is no alternative to (electricity-based) chemical energy carriers (eFuels)!

Power-to-Gas (P2G[®]): Main Goals

- Equalization of fluctuating supply of renewable energy
- Energy storage > 1 week / seasonal storage
- Fuel for sustainable mobility ("Energiewende" in mobility sector)
- Convergence of electricity grid, gas grid and mobility sector
- Reduction of agricultural area for energy plants

Energy Consumption and Storage Capacity in Germany (2012)

		Electricity	Natural gas	Liquid fuels ¹⁾
Consumption	[TWh/a]	595	909	711
Average power	[GW]	70	1002)	80
Storage capacity	[TWh]	0.043)	2174)	250 ⁵⁾
Calculated operating range of installed storage capacity ⁶⁾	[h]	0,6	2000	3000

¹⁾ Petrol, diesel, kerosene; final energy consumption

- Installed PV power 32.6 GW / installed wind power 31.2 GW
- → Required storage capacity for electricity grid in DE: tens of TWh!
- → Required fuel demand for mobility: **hundreds of TWh/a**!

²⁾ Seasonally fluctuating

³⁾ Pumped hydro storage

^{4) 48} underground gas storage facilities [Landesamt für Bergbau, Energie und Geologie (LBEG), Hannover]

⁵⁾ Provisioning of petrol, diesel, kerosene and heating oil

⁶⁾ Related to average power

Agenda:

Power-to-Gas (P2G®) - Technology and System Operation Results

Goal

Principle of P2G®-Process

Layout / Construction / Experimental Results / Development Status 25kW_{el}-, 250kW_{el}-, 6000kW_{el}-Plant

Facts / Frame Conditions (CO₂ Resources, Economics)

Conclusion

(Digestive) Biomass → SNG: State-of-the-Art – Technology / CO₂ Source for P2G[®]

SW

Concept of Power-to-Gas (P2G®): Convergence of Electricity Grid, Gas Grid and Mobility Sector

Power-to-Gas (P2G®) Core Process: Hydrogen Generation by Alkaline Electrolysis

Example: Alkaline Electrolysis

Cathode:
$$4 H_2O + 4 e^- \rightarrow 2 H_2^{\uparrow} + 4 OH^-$$

Anode:
$$4 \text{ OH}^- \longrightarrow O_2^{\uparrow} + 2 \text{ H}_2 \text{O} + 4 \text{ e}^-$$

$$2 H_2 O \longrightarrow 2 H_2 + O_2$$

Power-to-Gas (P2G®) Core Process: Methanisation of CO_x

Methanisation:

$$3 H_2 + CO \rightleftharpoons CH_4 + H_2O$$

$$4 H_2 + CO_2 \rightleftharpoons CH_4 + 2 H_2O$$

$$\Delta H_{R}^{0} = -206,4 \text{ kJ/mol}$$

$$\Delta H_{R}^{0} = -164,9 \text{ kJ/mol}$$

Shift- Reaction:

$$H_2O + CO \implies H_2 + CO_2$$

$$\Delta H_R^0 = -41,5 \text{ kJ/mol}$$

Educt gas

Catalyst

SNG (Substitute Natural Gas)

Agenda:

Power-to-Gas (P2G®) - Technology and System Operation Results

Goal

Principle of P2G®-Process

Layout / Construction / Experimental Results / Development Status 25kW_{el}-, 250kW_{el}-, 6000kW_{el}-Plant

Facts / Frame Conditions (CO₂ Resources, Economics)
Conclusion

Power-to-Gas (P2G®)

Power-to-Gas - Technology: Principle Process Flow Sheet of 25kW_{el}-P2G[®]-Plant

25kW_{el}-P2G[®]-Plant: Technical Realisation for SolarFuel Company in 2009

25kW_{el}-P2G[®] - Container: Operation with CO₂ and at Biogas Plants with Biogas and PSA Off-Gas

Source: ETOGAS (formerly known as SolarFuel)

25kW_{el}-P2G[®] – Container (25 kW_e): Operation with Off-Gas at Werlte Biogas Plant

Measurement of Gas Composition: Source ZSW

02.02.2011
Grave, EWE ENERGIE AG
Gasprobe
Produktgas SolarFuel vom 02.02.2011
Biogasaufbereitungsanlage Werite

CH4 —H2 CO₂ 02 100 100 90 90 80 80 $y_{-}CO_2$, $y_{-}H_2$, $y_{-}O_2$ [Vol-%] 70 70 y_CH₄ [Vol-%] 60 50 50 40 30 30 20 20 10 10 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 Dauer [hh:mm]

	Analyse -	Labor-Nr.	11550 Messwert
Laborleistungen	Verfahren	Einheit	
Gasanalyse I			
Wasserstoff	Differenz rechnerisch zu 100%	Mol%	4,2439
Sauerstoff	DIN EN ISO 6974-6	Mol%	0,0202
Stickstoff	DIN EN ISO 6974-6	Mol%	1,0502
Methan	DIN EN ISO 6974-6	Mol%	91,0622
Kohlenstoffdioxid	DIN EN ISO 6974-6	Mol%	3,6235
Gasanalyse III Sonstige			
Wassergehalt	in Anl. an DIN ISO 10101-3 (Karl-Fischer Titration)	mg/m³	76

Gasanalysis: Source EWE AG

Power-to-Gas (P2G®)

Goals of the Ongoing 250kW_{el}-P2G[®]-Project (1)

- ➤ Further development of P2G® technology
- Process optimisation (efficiency, dynamics,)
- Scalability of methanisation reactor
- ➤ Transfer of operating data: 250 kW → 6 MW
- > Transition to commercialization
- Start of operation: end of 2012

Co-operation partners of ZSW:

Electrolysis Stacks for 250 kW_e System

Installation of 250kW_{el}-P2G[®]-Plant at Gas Storage Area in Stuttgart-Vaihingen

ZSW P2G[®] Plant Facility

250kW_{el}-P2G[®]: Plant Design

250kW_{el}-P2G[®]: Plant Construction

Public Fund:

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit

250kW_{el}-P2G[®]: Plant Completion

Public Fund:

Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit

Power-to-Gas (P2G®)

Experimental Methanisation Results with 250 kW_e Plant: Gas Composition with and without Gas Upgrade

Results: Tube Bundle Reactor + Gas Upgrade via Membrane Technology

Without Gas Upgrade

Reaction Parameters:

 $p_{Methanation} = 6 barg$

SV = 1365 1/h

With Gas Upgrade

Reaction Parameters:

SV = 1365 1/h

 $p_{Methanation} = 4 barg$

 $\Delta p_{Membran Unit} = 4 bar$

Experimental Methanisation Results: Gas Composition at Stand-by/Start-up & Load Change

Power-to-Gas (P2G®)

ETOGAS Layout of 6000kW_{el}-P2G[®] - Plant in Werlte (Audi e-gas Project)

Electrolysis

Methanisation

ETOGAS Layout of 6000kW_{el}-P2G® - Plant in Werlte (Audi e-gas Project)

6000kW_{el}-P2G[®] - Plant in Werlte (Audi e-gas Project): Inauguration: 25.06.2013

Sustainable Mobility: 6000kW_{el}-P2G[®] - Plant in Werlte for Fueling Audi Vehicles with e-gas

Agenda:

Power-to-Gas (P2G®) - Technology and System Operation Results

Goal

Principle of P2G®-Process

Layout / Construction / Experimental Results / Development Status 25kW_{el}-, 250kW_{el}-, 6000kW_{el}-Plant

Facts / Frame Conditions (CO₂ Resources, Economics)
Conclusion

Biogenic Carbon Resources for P2G®

Biogenic CO₂ (CO) Resources: via Anaerobic Digestion, Ethanol Production, Gasification

Anaerobic Digestion:

$$C_6H_{12}O_6$$

$$3 CH_4 + 3 CO_2$$

Ethanol Production:

 $2 C_2 H_5 OH + 2 CO_2$

Thermo-chemical Gasification:

Biomass

H₂, CO, CO₂

CO₂ / Carbon Potential in Germany for the Production of C-based Fuels

Carbon Resource	CO ₂	С	SNG Production Potential
	[t/a]	[t/a]	[TWh _{gas} /a]
Biogas Plants			
CH₄ Gas Share	7.3 * 10 ⁶	2.0 * 10 ⁶	39
CO ₂ Gas Share	5.1 * 10 ⁶	1.4 * 10 ⁶	27
Energetic Biomass Utilisation in DE today (without Biogas)	73 * 10 ⁶	20 * 10 ⁶	385
Non-renewable Trash	25 * 10 ⁶	6.8 * 10 ⁶	130
Cement / Limestone Production	17 * 10 ⁶	4.8 * 10 ⁶	92
CCPP/CCU 1) (or SOFC/CCU)	27 * 10 ⁶	7.3 * 10 ⁶	135
Fossile Power Plants	309 * 10 ⁶	84 * 10 ⁶	1618
CO ₂ from Air			unlimited

¹⁾ Direct CO₂ recycling:

CCPP/CCU: Combined Cycle Power Plant / Carbon Capture and Utilisation 25 GW, 3000 h/a, η = 50 %, CO₂ retention: 90 %

SNG: Substitute Natural Gas

P2G® - Economics

Cost Estimate of e-gas (Capital and Energy Costs only): Electricity to Gas - Path

Assumptions

Estimated life: 20 years

Interest rate: 6% p.a.

 No other operating cost, no cost for methan feed-in etc.

Methan-Path (Status 2020)

• Investment: 1.000 €/kW_{el}

Efficiency factor electricity to gas: 60%

Hydrogen-Path (Status 2020)

• Investment: 600 €/kW_{el}

• Efficiency factor electricity to gas: 75%

→ Without reduction of the end consumer fee for electricity an economic operation of a P2G plant is not possible!

Agenda:

Power-to-Gas (P2G®) - Technology and System Operation Results

Goal

Principle of P2G®-Process

Layout / Construction / Experimental Results / Development Status 25kW_{el}-, 250kW_{el}-, 6000kW_{el}-Plant

Facts / Frame Conditions (CO₂ Resources, Economics)

Conclusion

Options for Long Term (Seasonal) Energy Storage: Chemical Energy Carriers

Hydrogen

Substitute Natural Gas (SNG)

Liquid Hydrocarbons

- → Chemical energy carriers are needed for future energy supply in electricity, heat and mobility market!
- → No alternative for long term energy storage!

Conclusion: Advantages of P2G® - Technology

- Inspired by nature: "P2G® = artificial photosynthesis"
- SNG is an ideal chemical storage medium for renewable energy (RE)
- Storage of RE with "unlimited" storage capacity in the gas grid
- Utilisation of existing underground gas storage facilities
- Stabilization of electricity grid (positive and negative control power)

Merging of the energy sectors "electricity grid", "gas grid", and "mobility"

P2G®-ROADMAP

Thanks for your kind attention.

An interesting discussion !

