POSITION // OKTOBER 2016

Steigerung des Kunststoffrecyclings und des Rezyklateinsatzes
Steigerung des Kunststoffrecyclings und des Rezyklateinsatzes
Inhalt

1 Einleitung und Zielsetzung ... 4

2 Ausgangssituation .. 4
 2.1 Status Quo des Kunststoffrecyclings ... 4
 2.2 Potenziale für mehr Kunststoffrecycling ... 5
 2.3 Hemmnisse des Kunststoffrecyclings und Rezyklateinsatzes ... 6

3 Maßnahmen und Instrumente zur Steigerung des Kunststoffrecycling und Rezyklateinsatzes 7
 3.1 Ausbau der getrennten Erfassung kunststoffhaltiger Abfälle ... 7
 3.2 Steigerung der Recyclingmengen .. 8
 3.3 Verbesserung der Recyclingfähigkeit von Produkten als Voraussetzung für die werkstoffliche Verwertung ... 10
 3.4 Erhöhung der Nachfrage nach Kunststoffrezyklaten ... 11
 3.5 Förderung im Rahmen des Umweltinnovationsprogrammes ... 14

4 Zusammenfassung ... 15

5 Quellenverzeichnis .. 16
1 Einleitung und Zielsetzung

2 Ausgangssituation

2.1 Status Quo des Kunststoffrecyclings

Im Jahr 2013 sind in Deutschland insgesamt knapp 5,7 Mio. t an Kunststoffabfällen¹ angefallen. Davon wurden 41 % werkstofflich und 57 % energetisch verwertet² (Consultic 2014). Kunststoffabfälle aus der Kunststoffherstellung sind der Kunststoffverarbeitung werden aufgrund ihrer Sortenreinheit und Sauberkeit überwiegend in den Produktionsprozess zurückgeführt. Die Recyclingraten sind daher mit 67 % sowie 91 % sehr hoch. Dagegen werden die Produktabfälle aus privaten Haushalten und gewerblichen Anfallstellen nur zu einem deutlich geringeren Anteil von 34 % bzw. 30 % recycelt. Dies ist unter anderem auf ihre höhere Heterogenität und die stärkere Verschmutzung, insbesondere bei nicht getrennter Erfassung, zurückzuführen (Consultic 2014). Die Abb. 1 stellt die Situation der Entsorgung der Kunststoffabfälle für Deutschland dar.

¹ Hierzu zählen Abfälle aus der Kunststoff-Produktion und -verarbeitung sowie Produktabfälle (am Ende der Gebrauchspanse, sog. Post-Consumer-Abfälle).
² Die Recyclingmengen schließen auch die Kunststoffabfälle ein, die zwar in Deutschland angefallen, jedoch im Ausland recycelt worden sind.

2.2 Potenziale für mehr Kunststoffrecycling

Bisher ungenutzte Potenziale für eine Steigerung des Kunststoffrecyclings bestehen insbesondere im Bereich der Gewerbeabfälle, speziell der gemischten gewerblichen Siedlungsabfälle3. Zudem wird eine gemeinsame Erfassung von Leichtverpackungen (LVP) und stoffgleichen Nichtverpackungen (StNVP) aus privaten Haushalten in einer Wertstofferfassung eine deutliche Steigerung der für eine werkstoffliche Verwertung zur Verfügung stehenden Kunststoffmenge ermöglichen (Dehoust & Christiani 2012). Einen etwas weniger großen, aber dennoch relevanten Beitrag liefert die Erschließung der Kunststoffabfälle aus Elektroaltgeräten und Altfahrzeugen. Für die Summe der genannten Abfallströme kommen Wilts et al. 2014 zu dem Schluss, dass die Menge an Kunststoffabfällen, die für das Recycling zur Verfügung steht, um etwa 1,1 Mio. t auf 1,7 Mio. t gesteigert werden könnte (s. Abb. 2).

In den einzelnen Anwendungsbereichen, also z. B. für Verpackungen, Elektrogeräte oder Fahrzeuge, werden entsprechend spezifischer Anforderungen verschiedenste Kunststoffsorten eingesetzt. Dies spiegelt sich auch in der Zusammensetzung der Altkunststoffe in den einzelnen Abfallströmen wider. Die Tabelle 1 zeigt die für eine Steigerung des Kunststoffrecycling mengenrelevanten Produktgruppen und Kunststoffsorten an den betrachteten Anfallstellen.

Abb. 2

Steigerungspotenziale für die werkstoffliche Verwertung von Kunststoffen ausgewählter Anfallstellen (Angaben in kt)

Anmerkung: Die Abb. 2 stellt für ausgewählte Anfallstellen das enthaltene Kunststoffpotenzial (dunkelblau) den derzeitig einer werkstofflichen Verwertung zugeführten Mengen (hellblau) gegenüber. In einem dritten Balken (grau) zeigt es die Kunststoffmengen, die bei der Umsetzung von geeigneten Maßnahmen und Instrumenten zusätzlich in das Recycling gehen könnten. Orange dargestellt ist jeweils die Summe aus Status quo und den Kunststoffmengen, die potenziell einer werkstofflichen Verwertung zugeführt werden könnten.

Quelle: eigene Erstellung nach Wilts et al. 2014

3 Grundsätzlich besteht nach aktueller Gewerbeabfallverordnung die Verpflichtung zur Getrennthaltung der Abfallfraktionen Papier, Glas, Kunststoffe, Metalle und Bioabfälle. Die vier erstgenannten Fraktionen können allerdings gemeinsam erfasst werden, sofern diese einer Vorbehandlung zugeführt und dort in weitgehend gleicher Menge und stofflicher Reinheit wieder aussortiert sowie anschließend einer stofflichen oder energetischen Verwertung zugeführt werden (GewAbfV §3 Abs. 1 und 2). In der Praxis wird jedoch weniger als die Hälfte der anfallenden gemischten gewerblichen Siedlungsabfälle einer Sortieranlage zugeführt (45 % von 5,8 Mio. t im Jahr 2010) und zudem werden dort nur in geringem Umfang Fraktionen zur stofflichen Verwertung erzeugt (Dehne et al. 2014).
Ausgangssituation

Bei einer beispielhaften Betrachtung von kunststoffangereicherten Abfällen aus MPS und MBA-Anlagen, die üblicherweise zur Herstellung von Ersatzbrennstoffen genutzt werden, zeigte sich ebenfalls, dass nur mit hohem technischen Aufwand und in geringem Maße stofflich verwertbare Kunststofffraktionen abgetrennt werden können, da der überwiegende Teil der im Mischabfall enthaltenen Kunststoffabfälle so gestaltet war, dass diese für ein Recycling oft nicht geeignet sind, wie:

- Verpackungen mit mehreren Materialien im Verbund (4 und mehr Layer) lassen sich mit der heutigen Trenntechnik nicht ausreichend für ein Recycling aufbereiten,
- Opake PET werden nicht recycelt, da Absatzmärkte fehlen,
- Schwarze Kunststoffe sind mit Hilfe der heutigen gängigen Sortierkammer zur Kunststofferkennung (NIR) nicht erkennbar und können somit nicht aus einem Gemisch ausgesortiert werden,
- ein hoher Anteil an Störstoffen enthalten war (Wengenroth 2015).

2.3 Hemmnisse des Kunststoffrecyclings und Rezyklateinsatzes

Problematische additive können zu Absatzschwierigkeiten von Rezyklaten führen, da in den Rezyklaten aus Altkunststoffen noch Stoffe enthalten sein können, die in Neukunststoffen aufgrund ihrer negativen

Tab. 2

Mengenrelevante Produktgruppen und Kunststoffsorten für eine Steigerung der Sekundärrohstoffmenge

<table>
<thead>
<tr>
<th>Anfallstelle Altkunstoff</th>
<th>relevante Produktgruppen</th>
<th>relevante Kunststoffsorten</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemischte gewerbliche Siedlungs- abfälle</td>
<td>Folien, formstabile Kunststoffe (u.a. Eimer, Kanister)</td>
<td>PE, PP</td>
</tr>
<tr>
<td>Verpackungen und stoffgleiche Nichtverpackungen aus privatem Endverbrauch</td>
<td>Folien, formstabile Kunststoffe (u.a. Eimer, Kanister)</td>
<td>PE, PP</td>
</tr>
<tr>
<td>Elektro-/Elektronikaltgeräte</td>
<td>u.a. Gehäuse, Abdeckungen</td>
<td>ABS, PP, PS</td>
</tr>
<tr>
<td>Altfahrzeuge</td>
<td>u.a. Gehäuse, Abdeckungen</td>
<td>ABS, PA, PP</td>
</tr>
</tbody>
</table>

Quelle: Wilts et al. 2014
Wirkungen auf Umwelt und Gesundheit nicht mehr zulässig sind (siehe Kap. 3.3.3).

2.3.1 EXKURS: Export von Kunststoffabfällen

Durch den Export von Kunststoffabfällen gehen deutschen Recyclinganlagen potenzielle Inputmengen verloren. Im Jahr 2014 exportierte Deutschland etwa 1,4 Mio. t Kunststoffabfälle. Dem stand ein Import von rund 490.000 t Kunststoffabfällen gegenüber, womit sich insgesamt ein Exportüberschuss in Höhe von rund 910.000 t für 2014 ergibt (Destatis 2015).

Der Export von Abfällen zur Verwertung (Recycling) ist rechtlich zulässig und wird seit 1993 durch eine unmittelbar in den Mitgliedstaaten geltende Verordnung der EU geregelt, die 2007 novelliert wurde.

3 Maßnahmen und Instrumente zur Steigerung des Kunststoffrecycling und Rezyklateinsatzes

3.1 Ausbau der getrennten Erfassung kunststoffhaltiger Abfälle

3.1.1 Strenge Getrennthaltungspflichten für kunststoffhaltige Abfälle

3.1.2 Einführung einer Vorbehandlungspflicht für gemischte gewerbliche Siedlungsabfälle

3.2 Steigerung der Recyclingmengen

3.2.1 Kunststoffspezifische Recyclingvorgaben

Zwar besteht laut AltfahrzeugV eine Demontagepflicht für bestimmte große Kunststoffteile, jedoch wird überwiegend von der durch die AltfahrzeugV ermöglichten Ausnahme Gebrauch gemacht. Infolgedessen werden die Restkarossen geschreddert und das dabei entstehende Materialgemisch wird aufbe-
Maßnahmen und Instrumente zur Steigerung des Kunststoffrecycling und Rezyklateinsatzes

Bei Elektro-Großgeräten liegt der Anteil der mit Flammschutzmittel belasteten Kunststoffe bei 1,5 %, bei IKT-Geräten dagegen bei 60 % (Empa 2009 zit. In Wilts et al. 2014).

3.2.2. Anspruchsvolle und selbstlernende Recyclingquoten

8 Bei Elektro-Großgeräten liegen der Anteil der mit Flammschutzmittel belasteten Kunststoffe bei 1,5 %, bei IKT-Geräten dagegen bei 60 % bei IKT-Geräten (Empa 2009 zit. In Wilts et al. 2014).
9 Hinzu kommt die Vorgabe einer sich fortentwickelnden (selbstlernenden) Mindesterfassungsmenge mit einem Startwert von 25 kg/EW*a.
10 Hersteller und Inverkehrbringer von Verkaufsverpackungen und stoffgleichen Nichtverpackungen, die in privaten Haushalten anfallen, müssen diese bei einem oder mehreren dualen Systemen lizenzieren, um so deren Entsorgung zu finanzieren. Häufig übersteigt jedoch die erfasste Menge die lizenzierte Menge (z. B. wegen Nichterfüllung der Vorgaben oder Fehlwürfen). Nichtlizenzierte Abfälle können somit zur Erfüllung der Verwertungsquoten beitragen, wodurch die technischen Möglichkeiten zur Sortierung und werkstofflichen Verwertung nicht gänzlich ausgeschöpft werden müssen.
3.3 Verbesserung der Recyclingfähigkeit von Produkten als Voraussetzung für die werkstoffliche Verwertung

3.3.1 Vorgaben zur Recyclingfähigkeit

3.3.2 Lizenzierung von Verkaufsverpackungen in Abhängigkeit von ihrer Recyclingfähigkeit

3.3.3 Qualitätsanforderungen an Rezyklate in Bezug auf Umwelt- und Gesundheitswirkungen

\begin{itemize}
\item welche Schadstoffe in welchen Konzentrationen in den Altprodukten bzw. den resultierenden Regranulaten enthalten sind,
\item ob diese Schadstoffe von Beschränkungen betroffen sind, die keine Ausnahmen zulassen (dann ist
\end{itemize}

\(^{11}\) IEC/TR 62635 (2012-10) Ed. 1.0

10 Maßnahmen und Instrumente zur Steigerung des Kunststoffrecycling und Rezyklateinsatzes
Recycling überhaupt nur sehr begrenzt erlaubt, eine Rezyklatquote wäre kaum zulässig),

- in welchen Produkten die Regranulate problemlos eingesetzt werden können und wie sich das kontrollieren lässt,
- ob es schon eine funktionierende, schützenswerte Recyclingstruktur in diesem Bereich gibt, oder ob der Zielkonflikt bislang ein „eher theoretisches“ Problem ist,
- welche Auswirkungen das Vermischungsverbot des Kreislaufwirtschaftsgesetzes jeweils hat.

Um das Ziel schadstoffarmer Recyclingmaterialein zu erreichen, sollten zudem Techniken und Maßnahmen zum Abriegeln schadstoffhaltiger Fraktionen entwickelt und gefördert werden und schon bei der Herstellung von Neuware auf potenziell problematische Stoffe verzichtet werden, auch wenn es für diese noch kein Verbot gibt (z. B. Verzicht auf Stoffe mit CMR-Eigenschaften12).

Für die Qualitätssicherung von Kunststoffrezyklaten in Bezug auf vorhandene Schadstoffe sollte dieses Thema weiterhin in den einschlägigen Normen für Kunststoffkreisläufe (z. B. der Normenreihe EN 15342ff Kunststoffe – Kunststoffrezyklate) aufgegriffen und dort ebenfalls Parameter für die Beschreibung der Schadstoffgehalte und Methoden zu deren Bestimmung eingefügt werden.

3.4 Erhöhung der Nachfrage nach Kunststoffrezyklaten

3.4.1 Mindestrezyklatquote für Kunststoffprodukte

Ob die verbindliche Vorgabe von Rezyklatquoten nur auf der europäischen oder auch auf der nationalen Ebene möglich ist, hängt entscheidend davon ab, ob die Voraussetzungen für das Inverkehrbringen einer Produktgruppe unionsrechtlich abschließend harmonisiert sind. Im Fall der Harmonisierung (z. B. Verpackungen) ist eine nationale Regelung ausgeschlossen, solange das Sekundärrecht sie nicht ausdrücklich zulässt. So sind z. B. für die prinzipiell für eine Rezyklatquote in Betracht kommenden Verpackungen nationale Regelungen derzeit nicht zulässig. Zudem sind mit der Vorgabe des Rezyklateinsatzes sehr anspruchsvolle Voraussetzungen, wie z. B. die Verfügbarkeit von Rezyklaten in ausreichender Menge und Qualität, aber auch technische Machbarkeiten, verknüpft. Daher halten wir es für notwendig, eine Rezyklatquote in jedem Einzelfall im Hinblick auf die verpflichtende Regelung und Selbstverpflichtung zu prüfen. Eine in einem ersten Schritt versuchsweise Einführung einer Rezyklatquote für bestimmte Produktgruppen könnte auch dazu beitragen, weitere Erkenntnisse über Stoffströme und Verwertungswege zu gewinnen. Daher schlagen wir

12 Stoffe mit CMR-Eigenschaften wirken carcinogen (krebsauslösend), mutagen (erbgrundverändernd) oder reproduktionstoxisch (fruchtschädigend).
13 Rezyklatquoten können verschiedenartig ausgestaltet werden. Wir verstehen hierunter die Vorgabe, dass ein bestimmter Mindestanteil des insgesamt für ein Produkt eingesetzten Kunststoffes mit Hilfe von Sekundärkunststoff erreicht werden muss.

Bei **Einweg-Kunststofftragetaschen** sollte die Quotenhöhe für den Rezyklatgehalt bei 80 % liegen. Dies ist technisch erreichbar und wird durch Folien- und Tragetaschenhersteller bereits vielfach praktiziert. Zu berücksichtigen ist, dass die kürzliche Änderung der Verpackungsrichtlinie\(^\text{14}\) Marktbeschränkungen und ein Inverkehrbrüngungsverbot in Abweichung von Art. 18 der EU-Verpackungsrichtlinie (VerpackRL)\(^\text{15}\) ermöglicht, sofern diese Beschränkungen verhältnismäßig und nicht diskriminierend sind\(^\text{16}\) und es sich um eine Maßnahme der Mitgliedstaaten handelt, um eine dauerhafte Verringerung des Verbrauchs an leichten Kunststofftragetaschen zu erreichen.\(^\text{17}\) Darüber hinaus verpflichtet Art. 6 Abs. 4 lit. a VerpackRL die Mitgliedstaaten, sofern dies sinnvoll ist, die Verwendung von Materialien aus stofflich verwerteten Verpackungsabfällen bei der Herstellung von Verpackungen und sonstigen Produkten durch a) die Verbesserung der Marktbedingungen für diese Materialien zu fördern und b) die Überarbeitung bestehender Regelungen, die die Verwendung dieser Materialien verhindern. Eine nationale Regelung, welche die EU-rechtlichen Vorgaben berücksichtigt, könnte in die Weiterentwicklung der Verpackungsverordnung aufgenommen werden; alternativ käme eine Selbstverpflichtung der Hersteller in Betracht.

Für **Mülltonnen** schlagen wir ebenfalls einen Mindestrezyklatgehalt von 80 % bezogen auf den Kunststoffanteil vor. Da die technischen Spezifikationen von fahrbaren Abfallsammelbehältern in der EU nicht durch eine Richtlinie geregelt sind\(^\text{18}\) und keine harmonisierten Normen bestehen,\(^\text{19}\) sind zusätzliche nationale Anforderungen aus Umweltschutzgründen zulässig; die Regelung einer Rezyklatquote müsste inländische und ausländische Hersteller freilich gleichermaßen belasten und die Verhältnismäßigkeit wahren.\(^\text{20}\) Technische Anforderungen sind in der Norm DIN EN 840 Blatt 1 bis 6 dargelegt. Auch diese stehen der Verwendung von Rezyklaten nicht entgegen, solange die beschriebenen Anforderungen eingehalten werden.\(^\text{21}\) Eine nationale Regelung könnte als eigenes Gesetz oder als Verordnung auf Grundlage des § 24 Nr. 3 i.V.m. § 23 Abs. 2 Nr. 2 KrWG\(^\text{22}\) ausgestaltet werden; alternativ käme eine Selbstverpflichtung der Hersteller in Betracht.

Für Bauprodukte liegen derzeit nicht ausreichende Informationen vor, um begründet eine Rezyklatquote für ein bestimmtes Produkt vorzuschlagen. Hierzu müssten die konkreten Kunststoffzusammensetzungen im Abfallstrom einschließlich der Schadstoffbelastungen, Füllstoffe und sonstigen Additive, die Produktionsmengen und die Qualitätsanforderungen für das Produkt bekannt sein – um sowohl die Machbarkeit als auch die Lenkungswirkung eines solchen Vorschlags bestimmen zu können. Eine Aufgabe für das UBA liegt in der näheren Zukunft darin, die Auswirkungen zunehmender Schadstoffregulierungen auf bestehende Recyclingverfahren zu bewerten: Hier ist das etablierte Recycling von **PVC-Fenstern** hervorzuheben, wo es zu einem Zielkonflikt zwischen Schadstoffausschleusung (schwermetallhaltige Stabilisatoren) und Kunststoffrecycling kommen bzw. das Recycling durch rechtliche Vorgaben beeinträchtigt werden könnte (siehe Kap. 3.13).

3.4.2 Vorgaben zum Rezyklateinsatz unter der Ökodesign-Richtlinie

Unter der Ökodesign-Richtlinie ist es prinzipiell möglich, in Durchführungsverordnungen einen Mindestanteil an Kunststoffrezyklat verpflichtend vorzuschreiben. Für derartige Vorgaben muss sichergestellt sein, dass eine ausreichende Masse an

\(^\text{14}\) Änderung durch Richtlinie 2015/720/EU.

\(^\text{16}\) Art. 4 Abs. 1a Satz 2 VerpackRL.

\(^\text{17}\) Art. 4 Abs. 1a Satz 1 VerpackRL.

\(^\text{18}\) Vgl. DIN EN 840-1 Anhang C.

\(^\text{21}\) Änderung durch Richtlinie 2015/720/EU.

\(^\text{22}\) Vgl. Tünnesen-Harmes, in: Jarass/Petersen, KRWG Kommentar, § 23 Rn. 35: „Eine Verordnungsermächtigung zur Konkretisierung der genannten Vorgaben lässt sich dem § 24 Nr. 3 entnehmen, wonach „bestimmte Erzeugnisse nur in bestimmter, die Abfallentsorgung spürbar entlastender Weise“, in den Verkehr gebracht werden dürfen. Gerade durch eine Wiederverwendung verwertbarer Abfälle oder sekundärer Rohstoffe wird die Abfallentsorgung erleichtert. Zudem dürfte es auch möglich sein, eine Rechtsverordnung zur Konkretisierung der genannten Pflichten auf die Produktgestaltungspflicht, die in § 24 Nr. 1 geregelt wird, zu stützen.“.
Ausgangsmaterial vorhanden ist; Gesundheits- und Umweltschutzaspekte – wie die Gefahren der Anreicherung von Schadstoffen in Recyclingkreisläufen und Produkten – berücksichtigt werden und eine Überprüfbarkeit durch die Marktaufsichtsbehörden gegeben ist. Ebenso ist der Gleichbehandlungsgrund- satz zu berücksichtigen, d.h. gleichartige Betroffenheit ähnlicher Produkte. Wir setzen uns dafür ein, dass zukünftig die Vorgabe eines Mindestanteils an Kunststoffrezyklat geprüft wird. In Anbetracht der o.g. einschränkenden Bedingungen könnte eine Selbstregulierungsinitiative unter der Ökode- sign-Richtlinie mit einer branchenübergreifenden Einsatzquote an Rezyklat die notwendige Flexibilität und eine leichtere Überprüfbarkeit im Vergleich zu produktspezifischen Vorgaben in Durchführungsver- ordnungen bieten.

3.4.3 Fortentwicklung des Blauen Engels

3.4.4 Stärkung der Nachfrage von Recycling- produkten durch öffentliche Beschaffung
Für die Berücksichtigung von umweltbezogenen Anforderungen im Rahmen von Ausschreibungen der öffentlichen Hand existieren bis auf wenige Ausnah- men bisher nur Kann-Vorschriften. Gemäß § 45 Kreis- laufwirtschaftsgesetz (KrWG) sind Bundesbehörden insbesondere dazu verpflichtet, bei der Beschaffung zu prüfen, ob und in welchem Umfang Erzeugnisse eingesetzt werden können,

- die sich durch Langlebigkeit, Reparaturfreund- lichkeit und Wiederverwendbarkeit oder Verwert- barkeit auszeichnen,
- die im Vergleich zu anderen Erzeugnissen zu weniger oder zu schadstoffärmeren Abfällen führen oder
- die durch Vorbereitung zur Wiederverwendung oder durch Recycling aus Abfällen hergestellt worden sind.

3.4.5 Steigerung der Rezyklatinachfrage im Rahmen des nachhaltigen Bauens
Der Baubereich ist der zweitwichtigste Einsatzbereich für Kunststoffprodukte. Ansätze des nachhaltigen Bauens – sei es durch öffentliche oder private Bauherrinnen und Bauherren – unterscheiden am Markt vorhandene Produkte in unterschiedliche ökologi- sche Qualitäten und stellen dann je nach angestrebter Gebäudequalität verschiedene Anforderungen an Bauprodukte. Eine (produktspezifische) Anforderung an Bauprodukte bezüglich des Rezyklatanteils kann dementsprechend nur gestellt werden, wenn auf dem Markt Produk- te vorhanden sind, die den Rezyklantanteil direkt ausweisen, oder wenn dieser sich unschwer bei den

23 Etwa 24 % der Kunststoffprodukte gehen in den Baubereich, wobei PVC mit rund 40 % den wesentlichen Anteil ausmacht (Consultic 2014).
24 Produkte aus PVC können kein Umweltzeichen erhalten, da die Jury Umweltzeichen dies bislang stets abgelehnt hat.

3.4.6 Imagekampagne für Recyclingprodukte – Sensibilisierung und Bewusstseinsbildung bei Verbraucherinnen und Verbrauchern

3.5 Förderung im Rahmen des Umweltinnovationsprogrammes

26 Siehe: https://www.blauer-engel.de/
Es besteht Bedarf, das Recycling von Kunststoffabfällen zu stärken, um Ressourcen zu schonen und CO₂-Emissionen einzusparen. Das Umweltbundesamt schlägt hier Maßnahmen vor, damit Kunststoffabfälle im Sinne einer Kaskadennutzung möglichst einer hochwertigen werkstofflichen Verwertung zugeführt und erst dann, wenn dies nicht mehr möglich ist, energetisch genutzt werden. Zur Förderung einer Kunststoffrecyclingwirtschaft bedarf es aus unserer Sicht folgender wesentlicher Voraussetzungen:

▸ konsequente Getrennthaltung kunststoffhaltiger Abfälle (z. B. Novellierung GewAbfV)

▸ Erfassung stoffgleicher Nichtverpackungen aus Haushalten durch eine Wertstofftonne

▸ anspruchsvolle, kunststoffspezifische Recyclingquoten

▸ umwelt- und recyclingfreundliches Produktdesign

▸ von Recyclingfähigkeit abhängige Lizenzentgelte für Verpackungen

▸ erhöhter Einsatz von Rezyklaten in Produkten (Mindestrezyklatquoten)

▸ Vorgaben für öffentliche Beschaffung bzgl. Einsatz rezykalthaltiger Produkte
Quellenverzeichnis

5 Quellenverzeichnis

http://www.umweltbundesamt.de/publikationen/planspiel-zur-fortentwicklung-verpackungsverordnung

http://www.umweltbundesamt.de/publikationen/stoffstromorientierte-loesungsansaetze-fuer-eine

http://www.umweltbundesamt.de/publikationen/aufkommen-verbleib-ressourcenrelevanz-von

http://www.umweltbundesamt.de/publikationen/analyse-fortentwicklung-verwertungsquoten-fuer

https://www.umweltbundesamt.de/publikationen/entwicklung-von-instrumenten-massnahmen-zur

Zangl, Stéphanie; Blepp, Markus; Marquardt, Maurice; Moch, Katja; Wirh, Olaf; Homburg, Burkhard; Temme, Christian (2012): Nationale Umsetzung des Stockholmer Übereinkommens zu persistenten organischen Schadstoffen (POPs) – PBDE und PFOS in Erzeugnissen und im Recyclingkreislauf. UFOPLAN-Vorhaben, FKZ 3710 63 415.
http://www.bmub.bund.de/fileadmin/Daten_BMU/Pools/Forschungsdatenbank/3710_63_415_stockholm_bf.pdf
Steigerung des Kunststoffrecyclings und des Rezyklateinsatzes

Diese Broschüre als Download
http://bit.ly/2e0crNf

www.facebook.com/umweltbundesamt.de
www.twitter.com/umweltbundesamt