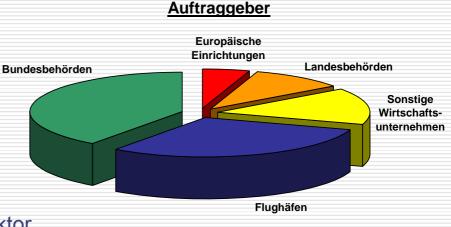
Luftschadstoffe durch Flugverkehr und Flughafenbetrieb

Konferenz des UBA zur Internalisierung der externen flughafennahen Umweltkosten

Dessau, 14.05.2008

ANDRES RADIG

Inhalt


- Vorstellung Avistra
- Luftschadstoffe und ihre Wirkungen
- Schadstoff-Emissionsquellen im Flugverkehr und Flughafenbetrieb
- Zielwerte und Minderungspotentiale
- Fazit

Vorstellung Avistra

 Avistra ist eine Unternehmensberatung und Forschungseinrichtung mit Schwerpunkt Luftverkehr Geschäftsführende Gesellschafter: Andreas Hotes und Andres Radig

 Seit 1991 ca. 120 Forschungsund Beratungsprojekte insbesondere im Luftverkehrssektor

- Hintergrund der Mitarbeiter: größtenteils Ingenieure für Luft- und Raumfahrttechnik, Schwerpunkt Flugführung und Luftverkehr
- Enge Zusammenarbeit mit zahlreichen Partnern für verschiedene Schwerpunktthemen

Vorstellung Avistra

Safety & Security

- Sicherheitsaspekte auf Flughäfen
- Szenarioanalysen

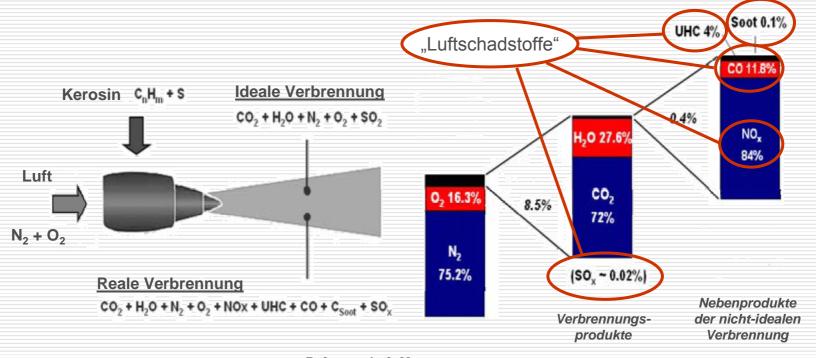
Umwelt & Luftverkehr

- Emissionsberechnungen
- Lärmberechnungen
- Forschung

Kapazität & Pünktlichkeit

- Kapazitätsberechnungen
- Pünktlichkeitsanalysen
- Simulation

Marktstudien


- Passagierbefragungen
- Marktanalysen

Verkehrsprognosen

- Kurzfrist- und Langfristprognosen
- Szenarioentwicklung

Verbrennungsprozess im Triebwerk

Referenz: Luft-Massenstrom

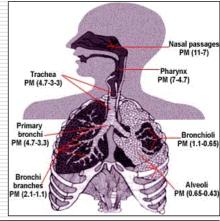
[IPCC 1999]

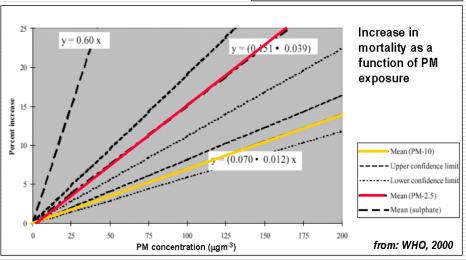
Mengen und Wirkungen aus der Verbrennung von 1 kg Kerosin:

3,15 kg Kohlendioxid	Toxisch neutral, Wetterbeeinflussung
1,24 kg Wasser(dampf)	Toxisch neutral, Eis- und Wolkenbildung (Zirren), Nebel
6-20 g Stickoxide	Erzeuger photochemischen Smogs, führt in Reiseflughöhe zum Aufbau von Ozon
0,7-2,5 g Kohlenmonoxid	Giftig, reduziert Sauerstoffkapazität im Blut
0,1-0,7 g UHC	Von toxisch neutral bis giftig, je nach Zusammensetzung
0,02 g Ruß	Sichtminderung, Träger von Giftstoffen, Kondensationskerne
Schwefeloxide	Vernachlässigbare Konzentration, "Saurer Regen"

Stickoxide (No_x)

- Hauptsächlich von Interesse ist NO₂ (Stickstoffdioxid)
- allgemeine Wirkungen
 - Tierexperimente: Wirkungen bei > 940 μg/m³
 - Kontrollierte Humanstudien: Wirkungen ab 190–375 μg/m³
 - Atemwegssymptome bei Kindern: Zunahme der Erkrankungen um 20% bei einem Anstieg von NO₂ um 30 μg/m³
- Beeinträchtigung der Atemwegsfunktion
 - Lungenödem
 - Chronische Gewebeschäden
 - Geruchsirritation ab ≈300 μg/m³
- Voraussetzung zur Ozonbildung (Sommersmog)
- Grenzwerte: 40 μg/m³ (Jahr), 200 μg/m³ (Stunde)


Kohlenmonoxid (CO)


- Schädigung durch Sauerstoffmangel
- Symptome:
 - Kopfschmerzen
 - Müdigkeit
 - Schwindel
 - Übelkeit
 - Erbrechen
- Bei stärkeren Vergiftungen sind Bewusstseinsstörungen und Krämpfe diagnostizierbar.
- Grenzwerte: 10 mg/m³ als maximaler 8-Stunden-Mittelwert

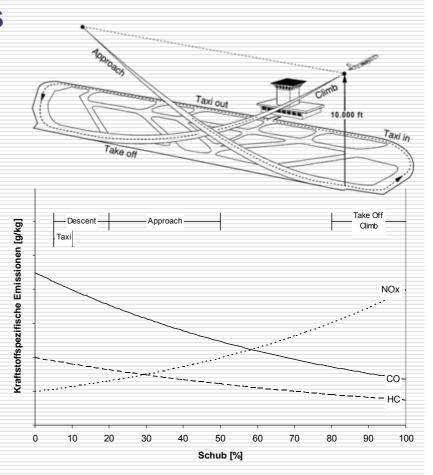
Partikel (PM₁₀)

- Partikel wirken sich nachteilig auf die Gesundheit aus (Herz-Kreislauf- und Atemwegserkrankungen, Mortalität)
- entscheidend neben der Masse ist auch die Größenverteilung (und damit Anzahl), da die
 - kleineren Teilchen tiefer in den Körper eindringen
- Lebenserwartung pro
 10 μg/m³ PM_{2,5} um
 ca. 0,7 Jahre vermindert
- Grenzwerte: 40 μg/m³ (Jahr),
 50 μg/m³ (Tag)

Schwefel(di)oxid SO₂

- starkes Atemgift
- Symptome:
 - Husten und Atemnot
 - Entzündung der Atemwege und der Schleimhäute (Augen)
- weitere Wirkung:
 - Bronchitis und Tracheitis (Luftröhrenentzündung)
 - indirekt Mehrbelastung für Herz und Kreislauf
- Kombination von Schwefeldioxid mit Stäuben verstärkt die gesundheitlich negative Wirkung erheblich.
- Entstehung von "Saurem Regen"
- Grenzwerte: 125 μg/m³ (Tag), 350 μg/m³ (Stunde)

Schadstoff-Emissionsquellen


- Flugbetrieb
 - Triebwerks- und APU-Emissionen
 - Berücksichtigung von LTO-Zyklus sowie Wartezeiten am Boden und in der Luft
- Flugzeugabfertigung
 - Betrieb der APU während der Abfertigung,
 - Emissionen aus Kraftfahrzeugen während der Abfertigung der Luftfahrzeuge
 - Emissionen während der Betankung der Flugzeuge
 - Emissionen durch die Enteisung von Flugzeugen
- Stationäre Quellen
 - Energieversorgung
 - Klimatisierung
- Landseitiger, flughafeninduzierter Verkehr

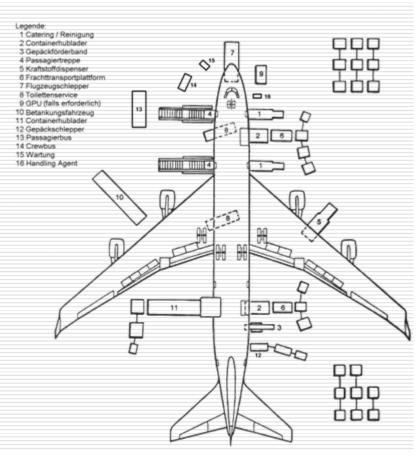
Schadstoff-Emissionsquellen: Flugbetrieb

Emissionen im LTO-Zyklus

- Spezifische Emissionen sind u.a. abhängig vom Schub
- Anteil NO_x nimmt mit dem Schub zu
- Anteile CO und HC nehmen hingegen ab
- modellgestützte Berechnungsverfahren ermöglichen eine Quantifizierung der Emissionen aus dem Flugbetrieb
- Grundlage: ICAO
 Emissionsdatenbank

Schadstoff-Emissionsquellen: Flugzeugabfertigung APU-Betrieb

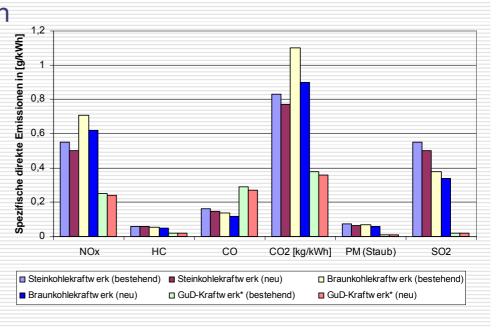
- genutzt zur Bereitstellung von elektrischer Energie und klimatisierter Luft am Boden sowie zum Anlassen der TW
- wegen hoher Drehzahlen sehr ineffizient (Wirkungsgrad 10 -25%)
- Emissionen lassen sich anhand von Abschätzungen quantitativ darstellen



Schadstoff-Emissionsquellen: Flugzeugabfertigung

Andere Quellen

- Fahrzeugbewegungen
 - Anfahrt zum bzw. Abfahrt vom
 Luftfahrzeug und Bewegungen auf dem
 Flughafengelände über Fahrstraßen,
 - Bewegung auf der Abfertigungsfläche direkt am Luftfahrzeug
- Betankung
 - Freisetzung von HC bei der Betankung
 - Volumen HC proportional zur betankten Kerosinmenge
- Enteisung
 - Flugzeugenteisung
 - Flächenenteisung
- → Eine Abschätzung der Emissionen ist überschlägig möglich.

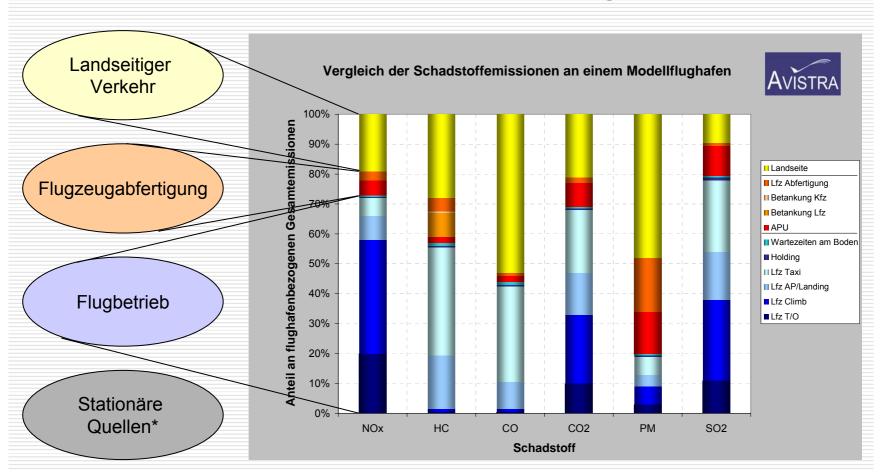

Schadstoff-Emissionsquellen: Stationäre Quellen

Energieversorgung

 Versorgung über das öffentliche Strom- und Fernwärmenetz oder eigene Kraftwerke zur Strom- und/oder Wärmeerzeugung

 aus dem Energieverbrauch des Flughafens lassen sich Rückschlüsse auf die mit dem Betrieb verbundenen Emissionen ziehen

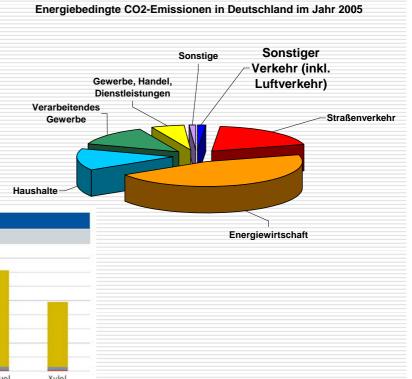
 Berücksichtigung des Energiemix' erforderlich



Schadstoff-Emissionsquellen: Landseitiger Verkehr

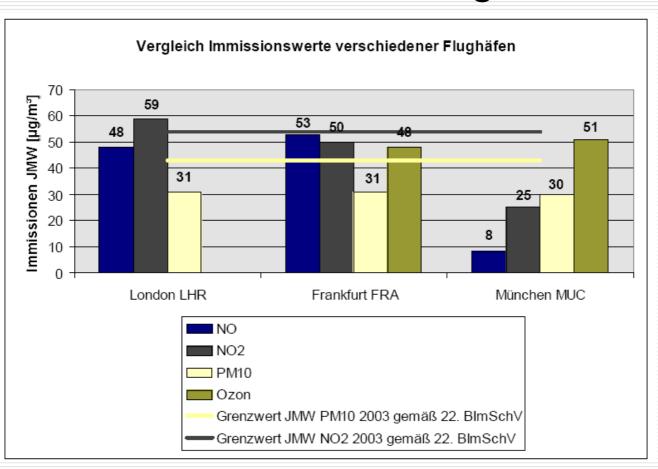
- Berücksichtigung des zusätzlichen Kraftfahrzeugverkehrs durch
 - Passagiere und ihre Begleiter
 - Besucher
 - Beschäftigte
 - Lieferanten
 - Lieferbetrieb für das Fracht- und Postaufkommen
- Berechnungsgrundlagen für Emissionen:
 - Passagieraufkommen
 - "Bringer & Abholer"
 - Besucheraufkommen (ca. 10% des Passagieraufkommens)
 - Verkehrsanbindung → Modal Split
 - Auslastung der Verkehrsmittel

Schadstoff-Emissionsquellen: Zusammenfassung



^{*} Stationäre Quellen hier nicht berücksichtigt, da die Emissionen nicht zwangsläufig lokal anfallen.

Schadstoff-Emissionsquellen: Zusammenfassung


Die gemessenen Immissionen von Schadstoffen am Flughafen liegen nicht höher als das Niveau des städtischen Hintergrundes, obwohl die Zahl der Flugbewegungen kontinuierlich gestiegen ist. [Umweltbericht Fraport, 2005]

Schadstoff-Emissionsquellen: Zusammenfassung

Regulatorische Tendenzen

- IATA (branchenweite Klimastrategie)
 - 1. Beschleunigung der technologischen Entwicklung und der Forschung auf alternativen Brennstoffen
 - 2. Verbesserungen der Infrastruktur
 - 3. Keine Kerosin oder CO₂-Steuern
 - 4. Einbeziehung des Luftverkehrs im Emissionshandel

ICAO

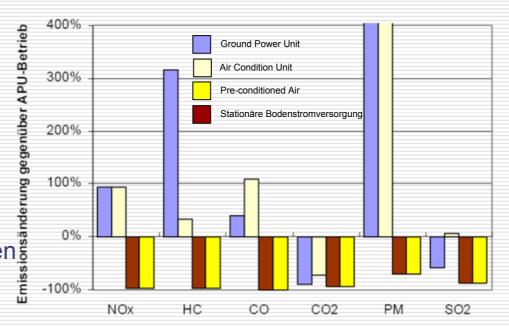
- Kontinuierliche Verschärfung der Emissionsgrenzwerte für NO_x im LTO sowie Lärm (ICAO Annex 16, Volume 11)
- CAEP Arbeitsgruppe: Entwicklung von Grenzwerten für NO_x während des Reiseflugs

Europa / EU

- Gesetzesvorschlag zur Einführung eines EU-weiten Emissionshandelssystems ETS per 2011 vor.
- Einbindung der Nicht-EU-Länder Schweiz, Norwegen und Island in ein EU-ETS

National

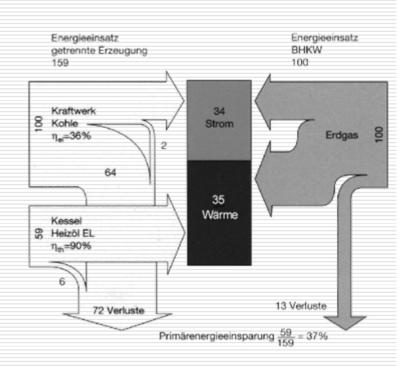
- Förderung von Forschungsaktivitäten
- Einführung emissionsabhängiger Landeentgelte


Minderungsmaßnahmen

- Flugbetrieb
 - Schadstoffoptimierte An- und Abflugprofile,
 - Verringerung von Warteverfahren in der Luft und am Boden,
 - Reduzierung von Rollvorgängen der Flugzeuge
 - Einsatz schwefelfreien Kerosins
 - Emissionsabhängige Landeentgelte:
 - Beispiel Frankfurt: Seit 1.1.2008 gilt ein emissionsbezogenes Landeentgelt von 3,00 € pro kg Stickoxidäquivalent
 - NO_{x, Luftfahrzeug} [kg] = (Anzahl Triebwerke x $\Sigma_{\rm Mode}$ Zeit [s] x Treibstoffverbrauch [kg/s] x Emissionsfaktor [g /kg]) / 1000
 - Datenbasis: ICAO Emissionsdatenbank
 - Abrechnung erfolgt einzelflugbezogen für Start und Landung
 - Verringerung der Emissionen durch technische/konstruktive
 Möglichkeiten (TW-Technik, Aerodynamik, Gewichtsreduzierung)

Minderungsmaßnahmen

- Flugzeugabfertigung
 - Einsatz bodenseitiger
 Energie- und
 Klimaversorgung
 - Einsatz schadstoff mindernder Antriebs konzepte in den
 Abfertigungsfahrzeugen
 - Optimierung der Fahrstrecken



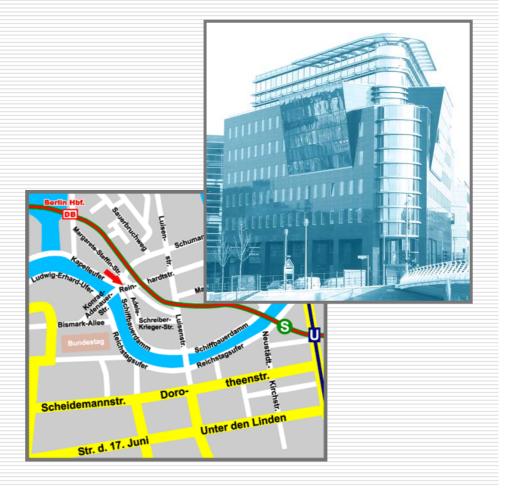
- Maßnahmen zu Minderung der Betankungsemissionen im Bereich des Tanklagers, der Befüllung der Tankwagen und der Betankung
- Anwendung alternativer Enteisungsmethoden und Enteisungsmittel

Minderungsmaßnahmen

- Stationäre Quellen
 - Blockheizkraftwerke haben gegenüber konventionellen Kraftwerken einen bis zu 40% geringeren Primärenergiebedarf
- Landseitiger Verkehr
 - Verbesserung des Angebots an ÖPNV-Verbindungen
 - Car-Sharing und Job-Tickets für Beschäftigte

Fazit

- Luftschadstoffe haben einen negativen Einfluss auf die Gesundheit und das Klima.
- Der Anteil des Flugverkehrs und Flughafenbetriebs an den Gesamtemissionen ist gering.
- Einfluss verstärkt sich durch hohe Zuwachsraten im Luftverkehr.
- Es bestehen betriebliche und technische Möglichkeiten zur Verringerung der Schadstoffemissionen.
- Anreize zur Verringerung liegen in regulatorischen
 Maßnahmen (Grenzwerte) sowie in ökonomischen Aspekten
 (Kraftstoffverbrauch, Landeentgelte).


Kontakt

Avistra GmbH Reinhardtstr. 58 10117 Berlin

Tel.: (+49 30) 28 44 9 88 - 0

Fax: (+49 30) 28 44 9 88 - 20

info@avistra.de www.avistra.de

