# Waste in German Rivers

- input- and output-pathways, amount, key figures and avoidance measures-

# Background

- Littering of the seas and oceans in particular by plastic waste is a growing problem with many negative environmental impacts
- Waste entries worldwide by shipping or from land
- > Landbased entries from inland areas carried to the seas and oceans via rivers
- > Via the German rivers an entry of waste into the seas and oceans is suspected which could have also negative impacts to the rivers itself

### **Objectives**

- Determination of waste types for macro waste (> 5 mm) and micro waste (1 5 mm)
- Determination of input- and output-pathways for the waste in the rivers
- Determination of the amount of waste in selected rivers
- Determination of specific key figures for the amount of waste
- Development of avoidance measures based on the research results

# **Research methods**

### Sorting analyses

#### Macro waste (> 5 mm)

Classification in product-, material- and size -classes

| Product-classes                   | Material-classes | Size-classes      |
|-----------------------------------|------------------|-------------------|
| 1 Beverage packaging              | 1 Plastic        | 1: 0,5 cm to 5 cm |
| 2 Food packaging                  | 2 Metal          | 2: 5 cm to 10 cm  |
| 3 Other packaging                 | 3 Glas           | 3: 10 cm to 20 cm |
| 4 Foils/ bags and sacks           | 4 Paper          | 4: 20 cm to 30 cm |
| 5 Objects from waste water plants | 5 Textile        | 5: 30 cm to 40 cm |
| 6 Sports- and leisure-objects     | 6 Composit       | 6: 40 cm to 50 cm |
| 7 Objects from gardens            | 7 Others         | 7: > 50 cm        |
| 8 Construction materials          |                  |                   |
| 9 Others                          |                  |                   |

### Amount of waste

#### Macro waste (> 5 mm)

- Via screenings of hydroelectric power plants
- Via flotsam in the water and in riparian zones
- Via litter at riverbanks and the surrounding areas

### Input- and output-pathways

#### Macro waste (> 5 mm)

- Product analysis of screenings and flotsam
- Comparison of product categories and -types of waste in the rivers and riparian zones and the adjacent areas

#### Micro waste (1 – 5 mm)

- Product analysis of screenings and flotsam
- Tracking of from the finding place to the source
- Product drilldown
- Detecting of operational processes in plastics-processing or plastics-using companies



#### Micro waste (1 - 5 mm)

#### Classification in product-classes

| Product-classes         | Definition                                                                         |
|-------------------------|------------------------------------------------------------------------------------|
| Styrofoom balls         | Spherical particles of expanded polystyrene, which arise from the                  |
| Styrofoam balls         | decomposition of large packaging materials or insulating panels                    |
| Plastic pellets         | Spherical particles of various plastics which are used as raw material for         |
|                         | the plastics processing industry and as a filler material in various products      |
| Plastic fragments       | Fragments from the fragmentation of large plastic items, with the                  |
|                         | exception of foils                                                                 |
| Plastic foils fragments | Fragments from the fragmentation of large Plastic foils                            |
| Foam fragments          | Fragments of polyurethane, which result from the fragmentation of<br>building foam |
| e.t.                    | Fragments which do not consist of plastic material (e.g., aluminum foil            |
| Others                  | fragments or glass fragments)                                                      |
|                         |                                                                                    |

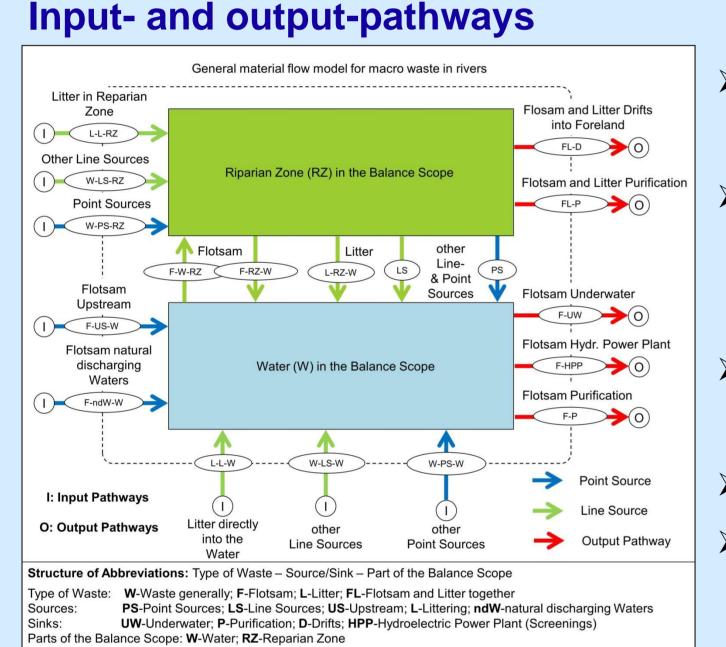
➢ In the water column in aquatic systems of 2nd or 3rd order

#### Micro waste (1 – 5 mm)

- Via screenings of hydroelectric power plants
- Via flotsam in the water and in riparian zones
- In the water column with nets
- In wastewater treatment plants



Screenings of hydroelectric power plants


Micro waste 1 – 5 mm

Flotsam in the water and in riparian zones

# **Results**

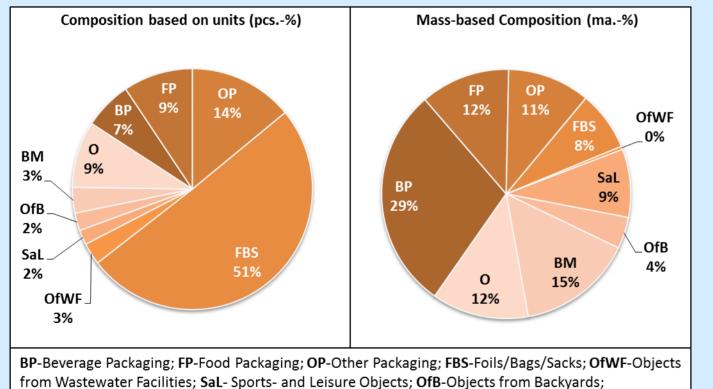
### Macro waste > 5 mm

# Input- and output-pathways



Littering is the major input-pathway for macro waste

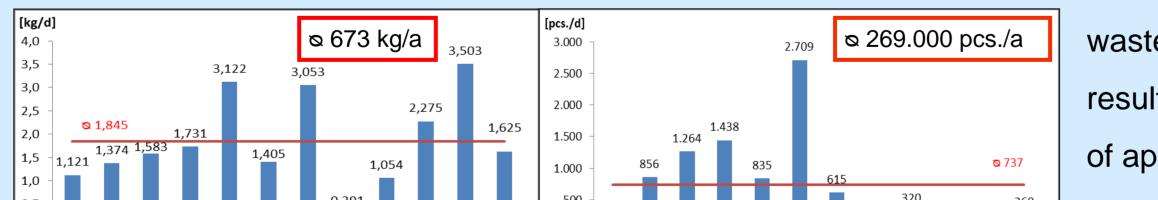
in rivers


> Other input-pathways are e.g. waste from

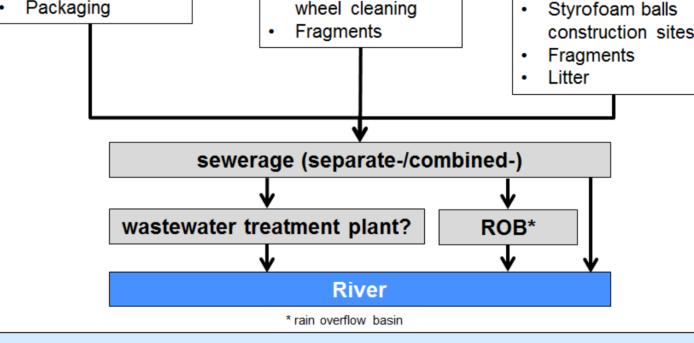
| Primary micro waste - discharges from drain and sewer systems |                                                                 |                         |  |  |  |
|---------------------------------------------------------------|-----------------------------------------------------------------|-------------------------|--|--|--|
| Households                                                    | Industry                                                        | Traffic routes          |  |  |  |
| $\checkmark$                                                  | $\checkmark$                                                    | $\checkmark$            |  |  |  |
| <ul><li>Clothing fibers</li><li>Sanitary products</li></ul>   | <ul><li>Pellets production</li><li>Pellets + abrasion</li></ul> | Abrasion vehicle wheels |  |  |  |

Secondary micro waste caused by fragmentation of macro waste  $\rightarrow$  see input-pathways for macro waste  $\succ$  Entry of primary micro waste takes place by

- Construction sites, illegal waste deposits and rain
- overflow basins
- Screenings of hydroelectric power plants are the
- major output-pathways
- In some areas purification is another output-pathway
- Exchange of wastes between waters and riparian
- zones by level variations and wind

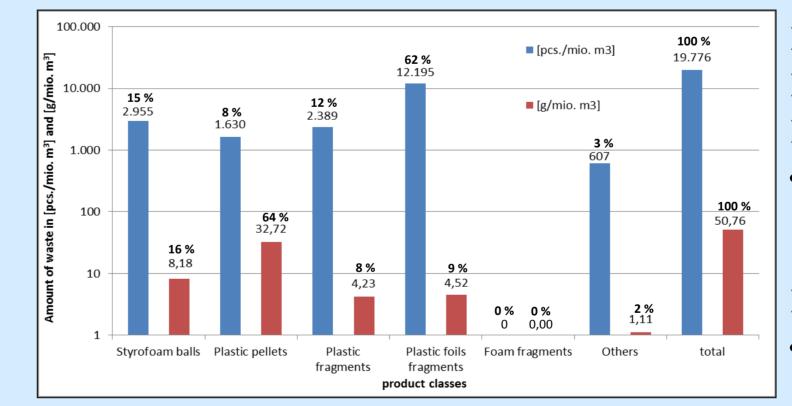

### Waste composition by the example of the Saale River




BM-Building Materials; O-Others

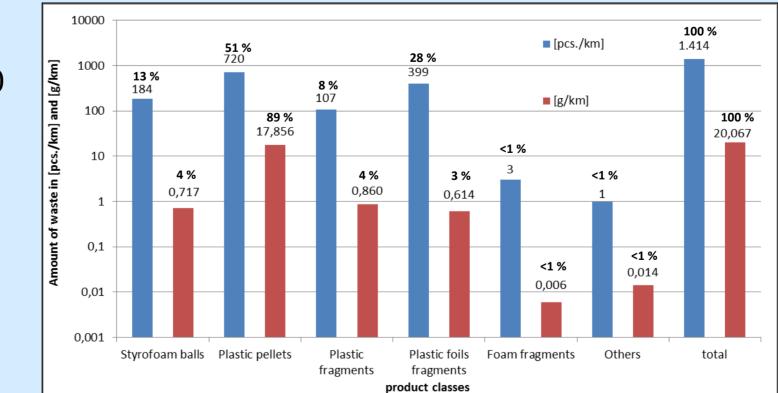
- Based on units
  - Foils, bags and sacks (51%) due to a rapid
  - fragmentation most common fraction, followed by packaging (30%)
- Mass-based
- Packaging (52%) most common fraction
- 90 % of beverage packaging deposit-free

### Amount of Waste by the example of the Saale River




An average of 1.8 kg or 740 waste particles per day results in an annual freight of approx. 673 kg or




- discharges from Drain and Sewer Systems
- Direct input via rainwater sewers and discharges
- from rain overflow basins from combined sewers
- > Output via Screenings of hydroelectric power plants

### Amount of Waste in the river by the example of the Werra River



- $\succ$  Approx. 19,800 pcs. or approx. 51 g per 1 mio. m<sup>3</sup>
- Total approx. 10 mio. pcs./a or approx. 25,6 kg/a
- Based on units
- Plastic foils fragments (62%) most common fraction, styrofoam balls (15%) and plastic fragments (12%) rank 2 and 3
- Mass-based
- Plastic pellets (64%) most common fraction, styrofoam balls (16%) second common fraction

### Amount of Waste in riparian zones by the example of the Werra River



- Flotsam in riparian zones: approx. 1,400 pcs. or approx. 20 g per km
- > In the research area (31 km length): approx. 622 g or approx. 43,800 pcs.
- Plastic pellets based on units (51%) as well as mass-based (89%) most common fraction
- Plastic pellets are more common washed ashore as

approx. 269,000 waste

particles

#### plastic foils fragments which are the dominant fraction in waters

#### Scheme for avoidance measures with examples

| Type of measure | Polluter<br>(actor-based)                    | Type of waste<br>(product-based)                         | Location<br>(situation-based)                                                                                                                            | Avoidance measures are      |
|-----------------|----------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| legal           | Administrative offences,                     | Deposit systems,<br>taxes, stipulated<br>limits,         | Administrative offences,                                                                                                                                 | derived on basis of the     |
| informative     | Information campaigns,<br>Clean-ups,         | Indications on<br>products,                              | Information campaigns,                                                                                                                                   | acquired knowledge          |
| monetary        | Deposit systems, taxes,                      | Taxes on products,                                       | Local deposit systems,                                                                                                                                   | about typical waste         |
| technical       | Retention measures on discharging companies, | Product design,<br>substitution of plastic<br>materials, | Position, size and type of waste bins,<br>systematical purification, retention in<br>rain overflow basins, filtration in<br>wastewater treatment plants, | products and their pathways |

## Summary

- For both, macro- and micro waste, plastic ist the major part of all materials
- Littering is the major input pathway for macro waste
- The entry of primary micro waste takes place by discharges from Drain and Sewer Systems
- The removal of screenings of hydroelectric power plants is the major output pathway for macro waste and due to adhesions for micro waste as well
- Packaging materials are dominating the amount of macro waste by mass and units
- plastic pellets (mass-based) and plastic foil fragments (by units) are domiating the micro wastes
- On basis of the acquired knowledge, several avoidance measures are derived

Fachgebiet Abfalltechnik Institut für Wasser, Abfall, Umwelt Univ.-Prof. Dr.-Ing. Arnd I. Urban

Marco Breitbarth, M.Sc. Author:

Contact: Univ.-Prof. Dr.-Ing Arnd I. Urban urban@uni-kassel.de Phone.: +49 561 / 804 - 3983

K A S S E L S R Ε