

Riverine Litter Monitoring *Options and Recommendations*

MSFD GES TG Marine Litter Thematic report

Lex Oosterbaan, Georg Hanke, Daniel Gonzalez, Gijsbert Tweehuysen, Marloes Holzhauer, Bert Bellert, Andreja Palatinus, Philipp Hohenblum, Jean-Baptise Dussaussois, Richard Thompson.

Daniel González Fernández European Commission Joint Research Centre Institute for Environment and Sustainability daniel.gonzalez@jrc.ec.europa.eu

Introduction

- MSFD Descriptor 10 Marine Litter
- High concern on litter pollution, and particularly plastics!
- Need to identify and quantify sources of litter and their pathways to the marine environment
 Very limited knowledge and data
- Need for harmonized methodologies that can be used to provide quantitative data for comparable assessments
- Research on the topic is ongoing and starting. Additional knowledge is expected soon

A comprehensive overview about monitoring options is needed in order to prepare harmonization of approaches

Marine Strategy Framework Directive

MSFD 2008/56/EC

- Good Environmental Status (GES) of EU marine waters by 2020
- 11 thematic descriptors
- Common Implementation Strategy (CIS) 6 years cycle

Support to MSFD implementation process

MSFD Technical Group on Marine Litter

nominated experts from EU Member States + additional experts in the field Finalization of 4 thematic reports on: Sources, Harm, Riverine litter and Modelling

> Riverine Litter Monitoring (thematic report)

- to compile options for monitoring of riverine litter
- to provide first recommendations on monitoring approaches and methodologies
- to provide indications on the issues which need to be further developed

Riverine litter

Litter in the river water body and river banks

Sources

- Inputs of litter to the riverine system
- Pathways are complex with multiple factors involved

Composition

- Mostly anthropogenic polymers (plastics)
- Macro litter: MSFD Master List of Categories of Litter Items*
- Micro litter: chemical composition and shape

Properties

- Different sizes, density, shapes and natures
- Litter properties vs. river hydrology \rightarrow influence on buoyancy

Litter collected in Danube study (Hohenblum et al., 2015)

*EC JRC, 2013. MSFD Technical Subgroup on Marine Litter. Guidance on Monitoring of Marine Litter in European Seas.

Rivers

Great variety of rivers: length, catchment size, population, catchment characteristics, meteorological/climatic differences and the level of their management

Rivers

Great variety of rivers: length, catchment size, population, catchment characteristics, meteorological/climatic differences and the level of their management

Rivers

Morphology

• The pathway of litter in a river is related to its (geo) morphological characteristics, channel/bed and those of the catchment:

- Artificial structures (e.g. dams, locks,...)
- Abundance and type of vegetation

Hydrology

• Determined by river shape and the meteorological situation

Picture: Gary Evans

Influence on litter transport

Monitoring strategy

- Location
 - Input of riverine litter into the sea river/sea boundary (estuaries)
 - Identification of sources and hot spots investigative upstream sampling locations

Timing

- High temporal variability in the amount of litter: sources and environmental conditions.
- Short term monitoring vs. Monitoring integrating over time
- Coverage of peaks of litter: source emission peak, flushing events (e.g. floods)
- Need better understanding of river litter pathways. Adapting monitoring strategies to incorporate new knowledge and tools

Joint Research Centre

utter collecti	on in water body			
Author	Device opening dimension, mesh size	g depth	Monitoring method	Unit
Moore et al., 2011	90x15 cm, 333 μm	top 15 cm	Stationary manta trawl, crane to sample in the middle of the channel. 3 replicates of 15 minute trawl (or until clogging of net) at each site. Flow rate measured by flow meter or floating objects. Fractions separated with Tyler sieves (4.75 mm, 2.8mm and 1.0mm mesh).	items/m ³
	46x25 cm and 43x22 cm, 0.8 mm; 46x25 cm , 333 μm	4 .0	Stationary hand nets (0.8 mm mesh and opening 46x25 cm; 0.8 mm mesh and opening 43x22 cm) to sample in the edge of the channel and heavy rectangular net (333 μ m mesh and opening 46x25 cm) dropped from a bridge. Replicates, time and fractions separation as described for manta trawl.	items/m ³
Faure et al. 2012	60x25 cm, 300 μm	top 25 cm	Dynamic manta trawl. Trawl distance 3.7 km trawl. Sieving (5 mm mesh) in the laboratory to separate micro from macro.	g/km², items/km²
van der ₩a et al., 2013	ു.ക., 3.2 mm	top 10 cm; 10-60 cm	Waste Free Waters (WFW) sampler from MosaBurg project: a cage-like construction mounted on a pontoon with 2 nets (3.2 mm mesh) which sampled floating and suspended litter (10-60 cm depth).	m ³ macroplastics/year (estimations based on assumptions)
<mark>iciksen,</mark> et al., 2013	61x16 cm, 333 μm	top 16 cm	Dynamic manta trawl. Trawl distance calculated with oppoard speedpoter during 60 minutes surveys. Litter fractions separated in the laboratory by Tyler sieves (0.355–0.999 mm and 1.00–4.749 mm and >4.75 mm).	items/km²
Faure et al. 2014	60x18 cm, 300 μm	top 18 cm	Dynamic manta trawl. Mechanical flow meter attached at the trawl opening. Lake sampling: trawl distance 3-4 km to filter 320-430 m ³ of surface water (speed of 1.5 m/s, 3 km). River sampling: Trawl attached on a ridge for 15-30 mins. Micro and macro fractions separated in the laboratory by sieves (> 300 μ m, >1 mm and >5 mm).	Lake: mg/km², items/km²; River: item/m³, mg/m³, items/h, mg/h
Free et al., 2014	61x16 cm, 333 μm	top 16 cm	Dynamic manta trawl. Trawl distance 3.1- 4.1 km, 60 mins at a speed of 3.5 kn. Litter fractions separated in the laboratory by sieves (0.355-0.999 mm and 1.00-4.749 mm and 44.75 mm).	items/km²

Midburst, et al., 2014	60	0.0	Characterization of debris collected by trash booms near the river mouth.	Weight
Morritt et al. 2014	0.a	bottom 40 cm	Standard and modified eel (yke nets anchored to the river bed with 40 cm diameter ring. Nets installed parallel to shoreline in line with tidal direction. Monitoring during 3 months fishing program.	Total number of items during fishing program
Lectors et al., 2014	0.5 m diameter, 500 μm	top 50 cm	Stationary conical driftnets (1.5 m long) (covering 60% of total column most cases). Flow meter attached to the net. Simultaneous replicates done at both margins of the river (25 m distance to the shoreline). Samples collected hourly for circadian periods. Items classified as mesodekcis, (2-20 mm) and microdekcis, (<2 mm).	items/1000 m³, g/1000 m³
Sadri and Thompson, 2014	50x15 cm, 300 μm	top 15 cm	Dynamic manta trawl. 3 replicates samples for both ebb and flood periods. Net towed against the tidal flow at a speed of 4 knots for 30 min during the maximum flow period. Samples sieved in the laboratory and items categorised as >5 mm, 3–5 mm, 1–3 mm and < 1 mm.	items/m ³
Jang et al., 2014	ი. გ., 5 mm	60	Netting of floating debris (mesh 5 mm) at the mouth of the river.	Weight
Hohenblum et al., 2015	30x60 cm and 60x60 cm, 250 and 500 μm	Surface, midwater, bottom	Stationary driftnets system with 5 nets (mesh size 250 μm and 500 μm) at different depths: 1 at the bottom (sediment trap with 30x60 cm opening), 2 at middle water (60x66 cm opening). Monitoring surveys of 45-60 minutes, with flow meters attached to the nets at each depth.	Concentration (g/1000 m²); fluxes (g/s and kg/d, tons/year)
Tweehuyse n, 2015	Surface net 100x10 cm and suspension net 100x50 cm, 3.2x3.2mm mesh, trapping items > 4.5 mm	top 10 cm + 20-70cm	Trawling transects sampling with Waste Free Waters (WFW) sampler on the side of the boat. Doppler current meter used to measure relative speed. WFV sampler is a cage-like structure with 2 nets: a 1 m wide surface net	items/ km², items/million m³
van der Wal et al., 2015	60x10 cm, 330 μm	top 10 cm	Stationary Manta trawl, Trawl from river bank for maximum 30 minutes. Analysis restricted to <5 mm particles.	items/km², g/km²
	റു., 330 μm	30 cm	Stationary pump-manta net method to filter 5000 L by pumping water into a container using the manta net as sieve. Analysis	items/km ² , g/km ² , items/m ³ , g/m ³

River surface observation – floating litter (macro)

- Severe lack of data for riverine litter
- Straightforward method surface as proxy for water body
- Visual monitoring data + river flow data = Estimation of litter flux
- RIMMEL project approach

Ticino river (Italy). Testing of the RIMMEL app. for Floating Macro Litter monitoring

Adour river(France). Testing of the RIMMEL app. by Surfrider Foundation Europe

River water body – floating and suspended litter (macro, meso and micro)

• Collection of floating and suspended litter is done by filtration of river water

Manta Trawls/Nets

Sampler used in Danube study (Hohenblum et al., 2015)

Pump filtration systems

Pumping system scheme (van der Wal et al., 2015)

Booms and floats (macro)

Floating booms network in Paris (Gasperi et al., 2015)

River bed – collection in bottom water - suspended and tumbling litter

Bottom nets / fishing nets (macro)

Fyke net set in the River Thames (Morritt et al., 2014)

Commercial stow nets (Schulz et al., 2014), from Scholle & Schuchardt (2012)

Net dimension: can cover an important section of the water column, not only bottom

Streambed sampler (micro)

Streambed sample hold on a crane (Moore et al., 2011)

Artificial structures – opportunity for monitoring!!

- Dams and other flow regulatory structures cleanup works
- Hydroelectric powerplants screening/filtering systems

River banks

Macro (meso) litter on river banks

- Direct observation, collection and documentation
- Abundance and composition analysis citizens science

Micro (meso) litter on river banks

- Collection of sediment samples using sieves, cores, grabs, containers
- Further analysis in the laboratory

Data

Data acquisition protocols	 Use of agreed harmonised methodologies in order to provide comparable results
Data units and format	 Common format for riverine litter fluxes - database Macro litter - MSFD Marine Litter Category list
Data quality	 Data quality information should be available Estimates about data uncertainty should be reported
Metadata	 Interpretation and use of data on marine litter fluxes E.g., location, precipitation, river flow data, river section
Data storage and availability	 Available and accessible in order to allow collaborative approaches, analysis of data and prioritization of efforts

Need for harmonization and agreement at international level (River Commissions, RSC, EU and UN and be readily available to everyone.

Recommendations

General	 Additional scientific knowledge needed Regional coordination of Member States and EU neighbouring countries with Regional Sea Conventions and River Basin Commissions and authorities
Research -	 Numerous knowledge gaps to be filled Analysis of existing/ongoing research outputs Commissioning dedicated research to answer defined questions
Monitoring	 No agreed monitoring methodologies available Guidance and Protocols for monitoring needed Metadata requirements and reporting units to be agreed at international level

> Riverine Litter Monitoring (thematic report)

- Close to finalization
- Submitted to GES meeting for comments
- Upcoming last round of comments from MSFD TG Marine Litter
- It will be publicly available as JRC Technical report

Keep track of MSFD TG Marine Litter publications on the MSFD Marine Competence Center (MCC) website: http://mcc.jrc.ec.europa.eu/

Thanks!!

Daniel González Fernández

European Commission Joint Research Centre Institute for Environment and Sustainability daniel.gonzalez@jrc.ec.europa.eu