

Faculty of Environmental Sciences, Department of Hydrosciences, Institute for Urban an Industrial Water Management

Development of Standard Operating Procedures for Sampling of Microplastic in Waste Water Treatment Plants

Gerold Bönisch and André Lerch

Motivation & Objectives

- Microplastic (MP) gained more and more interest of the public and scientific communities with focus on:
 - 1. the occurrence in freshwater systems
 - 2. the behaviour in technical systems, e.g. waste water treatment plants (WWTPs)
- Few studies on MP in WWTPs were published (see table 1), thereby
 - 1. results differ
 - 2. mainly focused on WWTP effluent
 - 3. sampling procedures often remain unclear and lack of confirmability
 - 4. sample number, size, volume and method vary
 - 5. particle sizes determined by screens of different mesh sizes, delivering often just coarse subdivisions but no real distributions

Need to establish standard operating procedures (SOP) for sampling and analytics:

- 1. to compare the results of different studies
- 2. to perform mass balances (with possible sources and sinks) within the WWTPs

Table 1: Sampling volumes and methods used in studies on the occurrence of Microplastic in waste water treatment plants (examples of studies)

Author	Sampling Volume		Sampling Method		
	Influent	Effluent	24-hour mixed sample	grab sample	2- and 6-hour mixed sample
Leslie et al. (2012)		not specified		X	
Brandsma et al. (2013)	2 L	2 L	X		
Chaskey et al. (2014)		not specified			X
HELCOM (2014)	0,1 L	1 L* 50 L**	X		
Magnusson (2014)	0,7 to 2,5 L* 0,25 to 0,5 L**	37 to 230 L* 2 to 18 L**	X	X	
Magnusson and Wahlberg (2014)	1 to 8 L* 1 to 5 L**	800 to 1,000 L* 4 to 9 L**		X	
van Echelpoel (2014)	7 L	7 L	X	X	
Universität Bayreuth (2015)		255 to 517 L		X	
* particle size < 300 to 100 µm		† particle size ≥ 300 μm			

** particle size < 100 to 20 µm ** particle size < 300 to 20 μm

Approaches and first Results

Approaches

- Testing different set-ups (e.g. pumps, screens) for sampling on various points within the WWTP by use of local on-site equipment of the WWTP and authorities
- Assessment of the MP release by the different set-ups itself
- Assessment of the recovery of the sampling method (see Figure 1)
 - defined particle concentrations added to a tank, sampling of an 24-hour mixed samples and measurement of the particle number

Results for sampling with a peristaltic pump using polypropylene tube

- increase of the particles number in the range of 2 to 139 µm within the 1st day of the test (see Figure 2) \rightarrow the particle material is unknown
- no further significant increase of the particles number after the 1st day (see Figure 2)
- BUT: insert of visible plastic particles from the polypropylene tube (see Figure 3)

Acknowledgments

Parts of the material shown is based on the work of Saphira Schnaut and Stephan Pieper within theirs bachelor and master thesis.

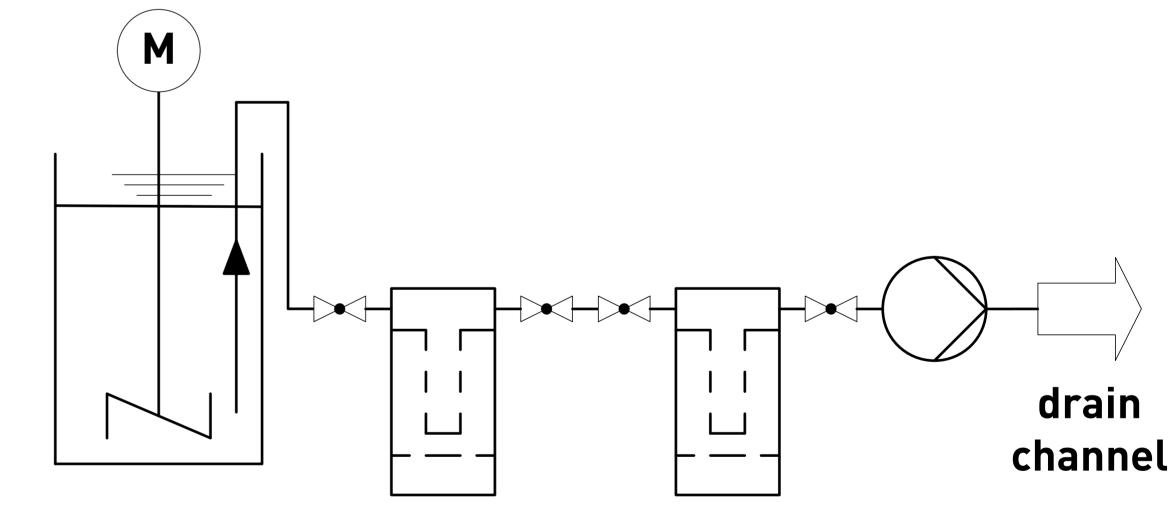


Figure 1: Example of the sampling set-up used to assess the recovery of the sampling method

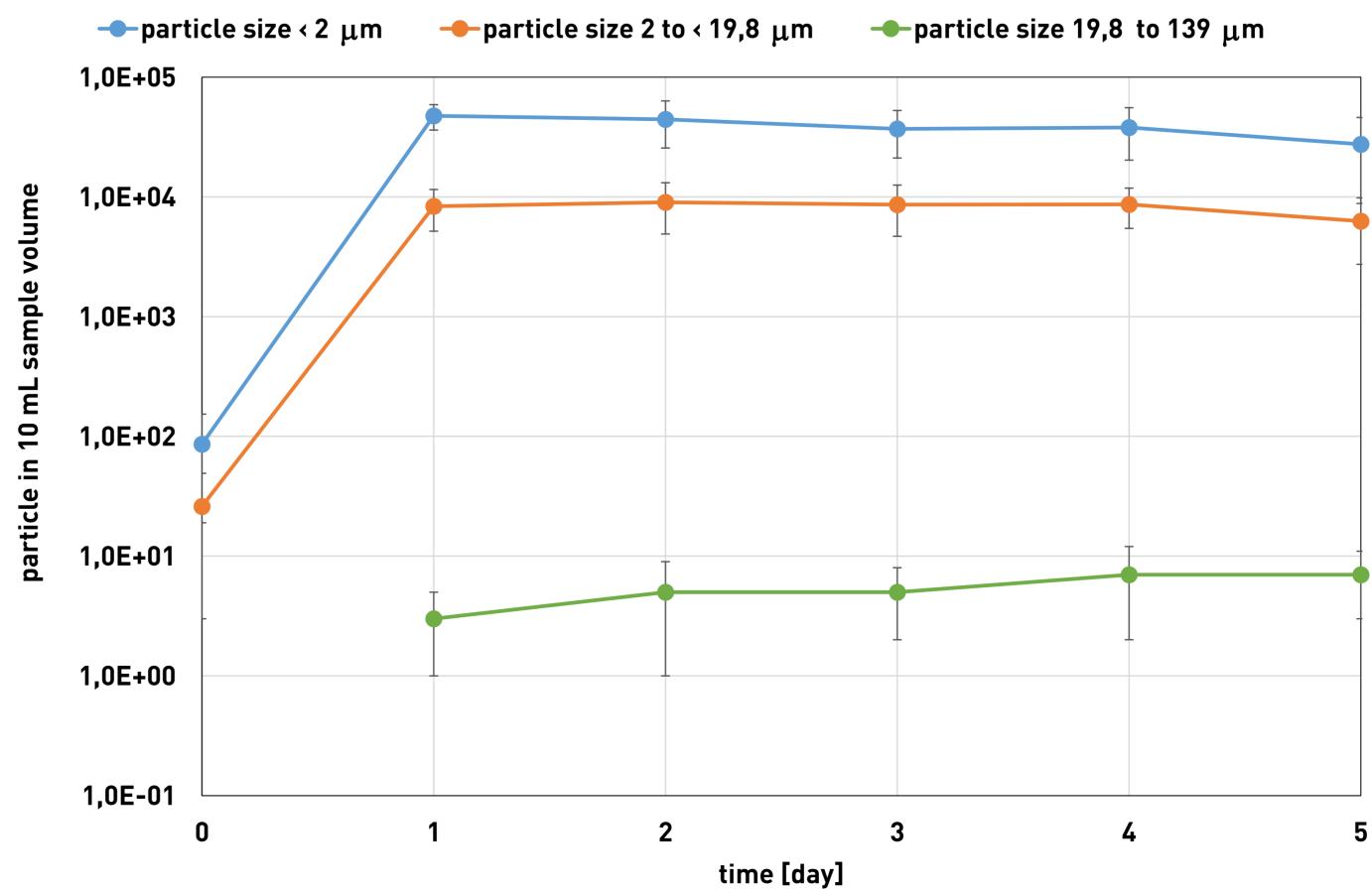


Figure 2: Development of the particles vs. time

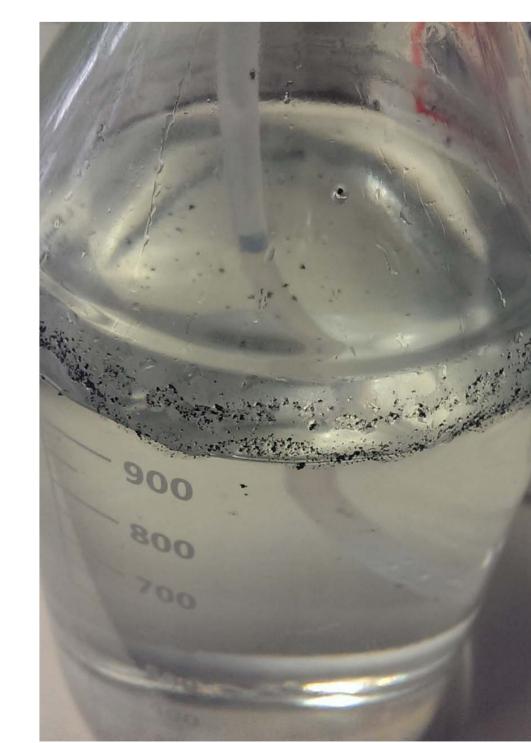


Figure 3: Inserted plastic particles by using a hose pump (© Stephan Pieper)

Contact: Dr.-Ing. André Lerch E-Mail: andre.lerch@tu-dresden.de

> Dipl.-Ing. Gerold Bönisch E-Mail: gerold.boenisch@tu-dresden.de

Technische Universität Dresden Institute of Urban and Industrial Water Management Chair of Hydro Process Engineering 01062 Dresden Tel.: +49 351 463-32337

DRESDEN concept und Kultur