

Structural Diversity of Soil

Microorganisms as a sensitive Indicator of

adverse Effects from

Pharmaceutical Antibiotics

Sören THIELE-BRUHN¹, Rüdiger REICHEL¹,

Ute Hammesfahr¹, Anja Kotzerke², Lucia Michelini³

¹Soil Science, Faculty of Geosciences, University of Trier, Germany
 ²Institute of Ecology, Berlin University of Technology, Germany
 ³Dept. of Agricultural Biotechnology, University of Padova, Agripolis, Italy

VERIS

Introduction

Input through contaminated manure Direct input through grazing livestock

Input through medication in the field

Input through stable dust

Consumption of antibiotics for livestock, t yr⁻¹

(Kim et al. 2011, Schneidereit 2012, Sarmah et al. 2006)

UK	France	Netherland	ds Denmark	Germany	/ USA	NZ	Korea	Kenya	China Russia
VMD, 2004	ANMV, 2003	FIDIN, 2004	DANMAP, 2005	BfT, 2012	Benbrook, 2002	MAF 1999	KFDA 2006	1995-99	man
476	1,261	453	114	1,734	11,148	19	1,278	13	non-medical drugs

Introduction

Molecular structures of selected antibiotics from often used structural classes

Tetracyclines: Oxytetracycline

Cefotiam

Polyethers: Monensin

Aminoglycosides: Streptomycine

Sulfonamides: Sulfadiazine

Benzimidazoles: Fenbendazole

Fluoroquinolones: Enrofloxacine

Macrolides: Oleandomycine

Polypeptides: Virginiamycine

Thiele-Bruhn S. (2003) Antibiotika. In: Blume et al. (eds.) Handbuch der Bodenkunde. Chap. 6.5.5, 1-19.

Fate of SDZ in manured soil

SDZ concentration in soil that was repeatedly treated with contaminated manure.

(Data: DFG FOR566, A. Focks)

Thiele-Bruhn, UBA Workshop, Dessau

Effects of antibiotics on soil microbial functions

bodenkunde

Dose-related effects of antibiotics on microbial Fe(III)-reduction in Luvisol-Ah.

Thiele-Bruhn (2005) Environ. Toxicol. Chem. 24:869-876

Thiele-Bruhn, UBA Workshop, Dessau

Iter.kbs.msu.edu/.../ SEM_microbes_in_soil.jpg

Thiele-Bruhn, UBA Workshop, Dessau

Experimental Design

Lab. exp.	Microcosm/Pot exp.	Mesocosm	Field Experiment
No plants	Sandy Cambisol and T <i>Zea mays</i>	opsoil of a Luvisol from Loes L. (Cultivar RR39K13, Pione	ss er Hi-Bred)
		Soil + pig slurry (control) 🗸	•
	S	oil + pig slurry with SDZ /DIF	• 🗸
varied doses	1 / 10 / 100 mg SDZ	0.3 mg SDZ	1 mg SDZ (kg ⁻¹ soil)
flasks	pots à 0.004 m ³	containers à 0.5 m ³	field plots à 3 m ²
Application 1 x	↓: 1 x	1x 1x	3x
Soil s 1, 4, 32, 61, 125	ampling (d): ↓, 1, 4, 30, 60	-1, ↓ 0, 6, 13, 27, 41, 60	↓ , 14, 48, ↓ 56, 132, ↓ 140, 252
Thiele-Bruhn, UBA	Workshop, Dessau 18-	19 June 2013 7	

DGGE of 16S rRNA genes (Heuer et <u>al. 2002</u>)

universal bacterial primers

group specific bacterial primers:

pseudomonas, α-proteobacteria, ß-proteobacteria, actinomycetes, streptomycetes

Sequencing selected bands

M48B1 M48B2

M48B3

M48B4 S48B1 S48B2 S48B3 S48B4

M48R1

Thiele-Bruhn, UBA Workshop, Dessau

0 1 0 1 0 0

ntensity in a

100

200

300

Phospholipid fatty acids

Enzyme activities N-cycle C-cycle

Microbial biomass

Statistics ANOVA + HSD posthoc (p < 0.05) Principal Response Curves (PRC) DA, CA and PCA

DGGE of 16S rRNA genes

18-19 June 2013

400

GC-FID/GC-MS of PLFA

500

600

Effect of SDZ in manured soil – lab. experiments – community structure

10 **Discriminant analysis of PLFA from soil** treated with manure and SDZ 5 day 4 Ο unfertilized soil 0Ò DA 2 [22.8%] day 1 \bigcirc day 1 + manure +manure + 10 mg SDZ kg⁻¹ day 4 0 Δ $\left(\begin{array}{c} \bullet \\ \bullet \end{array}\right)$ +manure + 100 mg SDZ kg⁻¹ (Hammesfahr et al. (2008) Soil Biol. Biochem. 40, 1583-1591) day 32 -5 day 32 -10 **3-factorial ANOVA** 12 -6 0 6

Factor 4	PLFA _{tot}	bac:fungi	gram [_] :gram ⁺	stress
So	92.2 *** 2.29	59.3 ***	31.1 ***	8.1 **
Treatment	30.0 ***	56.6 ***	3.4 *	13.5 ***
	20.3 ***	6.2 **	20.9 ***	2.6
Soil x Treatment	7.1 ***	5.4 **	3.1 *	6.3 ***
Soil x Time ²² 2130	10.9 ***	11.2 ***	1.4	1.0
Treatment & Time	4.2***	1-3.6.** Mm	····· 1.0	0.4
Soil x Treatment x ⁰ Time 300	0 2.2 400	1.3 ⁵⁰⁰	⁶⁰ 9.3	0.8

Thiele-Bruhn, UBA Workshop, Dessau

Antibiotic effects on soil microbial community structure

The universal tree of life

Paul E.A. (2007) Soil Microbiology, Ecology, and Biochemistry. 3rd ed.

- Shift from bacteria to fungi
- Shift from bacteria to archaea
- Effects on pseudomonads and ß-proteobacteria
- Shifts from Gram- to Gram+ bacteria

Thiele-Bruhn, UBA Workshop, Dessau

Total-PLFA from Luvisol-Ah Merzenhausen treated with manure and SDZ

······ Control

▲ + 8.6 mg SDZ

• +manure

+manure + 8.6 mg SDZ

(Hammesfahr 2011, PhD thesis)

Effect of SDZ in manured soil – lab. experiments – functions

(Hammesfahr et al. (2011) Europ. J. Soil Biol. 47, 61-68)

Factor	pot. Nitrification	pot. Ammonification	pot. N-Mineralization	N-Mineral. control ⁻¹	SIN control ⁻¹
+/- SDZ	120***	2162***	9.4**	111***	15.6***
Storage	0.3	9.9**	0.0	98.6***	9.5**
Time	3.0	1.4	3.6	127**	1.4
Storage x +/-SDZ	0.8	104***	6.6*	39.4***	1.4
+/- SDZ x Time	3.0	27.3***	0.7	4.9*	1.4
Storage x Time	0.0	16.5***	0.4	16.9***	4.0
Storage x +/-SDZ x Time	7.3*	12.1**	4.3*	8.2**	14.7***

Major elements of the terrestrial nitrogen cycle

(from Paul, E.A. (2007) Soil Microbiology, Ecology, and Biochemistry, Elsevier – AP, 3rd ed.)

Thiele-Bruhn, UBA Workshop, Dessau

Effects of SDZ on different microbial endpoints in a sandy Cambisol

Table 3: Three-way ANOVA of the chemical parameters NH_4 -N and NO_3 -N, the microbial parameters basal respiration (bas. resp.), microbial biomass C (MBC), the potential activities of the enzymes β -glucosidase (β -gluco.), urease, and protease. Factor 1: liquid-manure concentration (manure) (0, 20, 40, 80 g [kg dm]⁻¹), factor 2: SDZ concentration (SDZ) (0, 10, 100 mg [kg dm]⁻¹), factor 3: time (1, 8, 32 d). All values are F values with significance level *p* as indicated by asterisks.

Factor	NH ₄ -N	NO ₃ -N	bas. resp.	MBC	β-gluco.	urease	protease
Manure	3402***	25.5***	108***	5.3**	6.6***	43.0***	80.2***
SDZ	0.4	384***	0.3	57.6***	0.2	2.6	2.8
Time	816***	117***	36.2***	80.2***	132***	1.9	73.1***
Manure × SDZ	3.1**	97.7***	0.9	17.4***	4.9***	1.2	1.6
Manure × time	134***	12.2***	5.5***	5.8***	1.7	2.6*	13.5***
SDZ × time	5.4***	4.3**	0.3	21.0***	2.2	1.1	5.5***
Manure \times SDZ \times time	1.7	2.9**	0.6	6.8***	0.9	0.9	1.2

(Hammesfahr et al. (2011) J. Plant Nutr. Soil Sci. 4, 614-623)

Effect of SDZ in manured soil – lab. experiments

Thiele-Bruhn, UBA Workshop, Dessau

\rightarrow Manure and SDZ interact in their effects on microorganisms

Manure: Effects of medication on slurry composition

• Antibiotic medication affects digestive tract system and molecular composition of excreta/slurry.

Discriminant analysis of slurry composition determined by pyrolysis-field ionization mass spectrometry (Py-FIMS) obtained from medicated and control pigs. Reichel et al. (2013) Soil Biology Biochemistry 62, 82-91

Thiele-Bruhn, UBA Workshop, Dessau

• Change of excreted and survival of manure-borne,

possibly antibiotic resistant microorganisms in soil.

Tab. Sequencing results of excised DGGE bands and most closely related bacterial sequences

DGGE band	Genus (otu) and most related bacterial sequence(s)#	% Identity (bases of match)#	Accession no.#	Source and notes						
3f	Pseudomonas (otu_3227) Pseudomonas pseudoalcaligenes str. W-20	100.00 (435) 100.00 (435)	EU187489.1 EU395787.1	Pseudomonas strains with specia degradation potentials	I					
3g 3h	 3g Pseudomonas (otu_3227) Pseudomonas sp. BBTR25 Pseudomonas sp. str. 91S1 Pseudomonas sp. str. HY-14 Pseudomonas sp. str. d130 (unclassified) 3h Pseudomonas (otu_3227) 		DQ337603.1 EU370417.1 EU620679.2 FJ950669.1	Swine effluent amended soil Pig manure - Treated oxytetracycline productic wastewater	luent amended soil re oxytetracycline productic ter IS 1		rhizosphere SDZ 1 2 3a⊷	e soil 3 1 DIF 2		→ 3
a Clas	Pseudomonas sp. str. SKU Pseudomonas sp. BBTR25 Pseudomonas sp. str. 91S1 Pseudomonas sp. str. 98S1 Pseudomonas sp. str. HY-14 sification and identification according to	97.47 (413) 97.47 (413) 97.47 (413) 97.47 (413) 97.47 (413) 97.47 (413) the BlastN ana	AY954288.1 DQ337603.1 EU370417.1 EU370416.1 EU620679.2 alysis of the G	- Swine effluent amended soil Pig manure Pig manure - reengenes database		36	b⊧ C; a⊧ 3e, 3f	3e⊾ 3	3 f	
		Pseu fro	udomonas om mesoc	16S rRNA gene DGGE osm experiments; 13 d		з'n	³ 9 3h 3j			

Thiele-Bruhn, UBA Workshop, Dessau

• Specific properties of earthworm burrows and sampling.

Thiele-Bruhn, UBA Workshop, Dessau

• Sampling of aggregates and rhizosphere soil.

• Ratio of extractable SDZ in rhizosphere and earthworm burrows vs. bulk soil and macroaggregate shell vs. core. Reichel et al. (submitted)

Distribution of residual SDZ [M:X]

Thiele-Bruhn, UBA Workshop, Dessau

• Total PLFA in rhizosphere and bulk soil.

Microbial biomass (C_{mic}): decreasing with SDZ.

• Principal component analysis of Pseudomonas 16S rRNA gene DGGE fingerprints from rhizosphere and bulk soil.

Reichel et al. submitted.

Thiele-Bruhn, UBA Workshop, Dessau

• Principal component analysis of Pseudomonas 16S rRNA gene DGGE fingerprints from earthworm burrows and bulk soil.

Reichel et al. submitted.

bodenkunde

10 mm

Aggregatosphere: Effects on microbial biomass and function

• Total PLFA and enzyme activity, respectively, in soil macroaggregate shell and core soil.

...Shift to fungi in shells of SDZ treated aggregates.

Reichel et al. submitted.

bodenkunde

- Antibiotics reach the soil environment via excrements in considerable amounts.
- Antibiotic medication alters the molecular and microbial composition of excreta.
- Mid- to long-term effects of antibiotics and manure interact and manure borne microorganisms may survive in soil on a mid-term.
- Effects on functional and structural diversity of soil microorganisms.
- Tests on biodiversity are more sensitive than single endpoint tests.
- Structural community shifts may be accompanied by functional redundancy. Community structure is a more sensitive parameter.
- Long-term effects occur → apparent concentration independence.
- Accumulation and effects are different in **soil microcompartments**.

70

Thanks

• to our colleagues, especially from Research Unit FOR 566,

Amelung W., Rosendahl I.
Groeneweg J.
Lamshöft M., Spiteller M.
Smalla K., H. Heuer H.
Schloter M., Kleineidam K.
Wilke B.-M., Kotzerke A., Kindler R.
Berlin University of Technology, Institute of Ecology, Berlin
Peeters E., Focks A. Aquatic Ecology & Water Quality Management, Wageningen UR

• **DFG** for funding,

• for your attention.

Soil Science

ALMEST

FB VI Geography/Geosciences, Universität Trier

thiele@uni-trier.de