Universiteit Utrecht

Umwelt

Bundes

Für Mensch und Umwelt

Antibiotic resistance in the environment – inclusion in the authorization of pharmaceuticals?

Dr. Heike Schmitt Institute for Risk Assessment Sciences Utrecht University The Netherlands

Karen Duis (ECT), Thomas ter Laak (KWR), Annette Küster, Silvia Berkner, Jens Schönfeld (UBA)

KWR

Watercycle Research institute

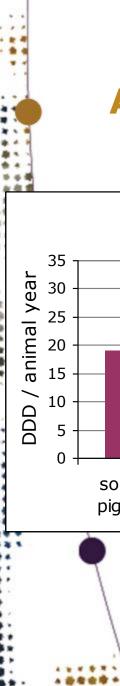
Institute for Risk Assessment Sciences

RESEARCH AND SERVICES IN ECOTOXICOLOGY

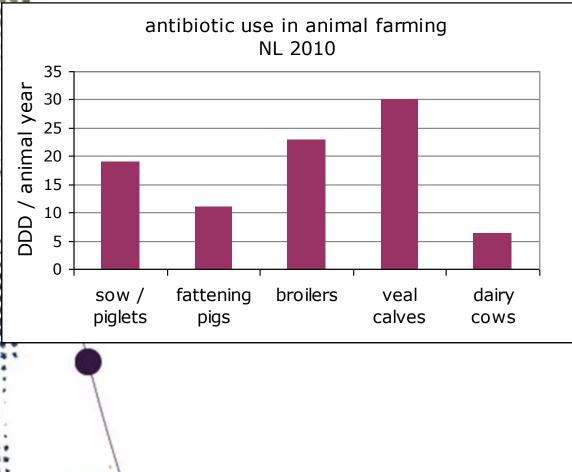
This presentation:

- Occurrence of resistance in the environment
- Role of antibiotic residues for selection of resistance
- Transmission to humans human risks
- Regulatory needs?

Resistance in the environment -"Emerging contaminants"

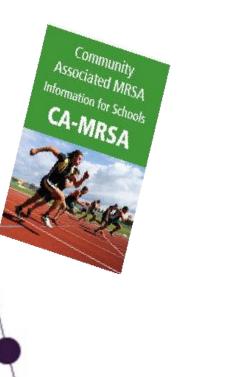

Environ. Sci. Technol. 2006,

Occurrence and Diversity of Tetracycline Resistance Genes in Lagoons and Groundwater Underlying Two Swine Production Facilities J. C. CHEE-SANFORD, ^{1†} R. I. AMINOV, ^{1*} I. J. KRAPAC, ² N. GARRIGUES-JEANJEAN, ¹ AND R. I. MACKIE ¹ Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, ¹ and Illinois State Geological Survey, Champaign, Illinois 61820 ² Received 30 November 2000/Accepted 9 January 2001	Antibiotic Resistance Genes as Emerging Contaminants: Studies in Northern Colorado [†]
Resistance in the environment	AMY PRUDEN,* RUOTING PEI,AIHEATHER STORTEBOOM, ANDenKENNETH H. CARLSONaivil and Environmental Engineering, viversity, Fort Collins, Colorado 80523en
K. Kümmerer*	
Applied Environmental Research Section, Institute of Environmental Medicine and Hospit	tal Epidemiology,


Freiburg University Hospital, Hugstetter Straße 55, D-79106 Freiburg, Germany

Research subject since 2000 (but: fish farms)

Chee-Sanford AEM 2001 / Kümmerer JAC 2004 / Pruden, EST 2006



Antibiotic use – the Dutch example

- Intensive usage of antibiotics in pig rearing / broiler production / veal calves
- Human: 4 DDD / year
- Hospital: 70 DDD / 100 patient days

Healthcare-related resistance

- Occurrence: hospitals /community
- Mostly focused on resistant pathogens
 - ESBL (E. coli / Klebsiella)
 - Staphylococcus aureus (MRSA)
 - Pseudomonas aeruginosa
 - Enterococcus faecium

• • •

New Study Shows Rise In Drug Resistance of Dangerous Infection in U.S. Hospitals

Created by ANONYMOUS

Updated at 1261600779

Washington, D.C. -- A new study in the journal Infection Control and Hospital Epidemiology reports a surge in drug-resistant strains of Acinetobacter,

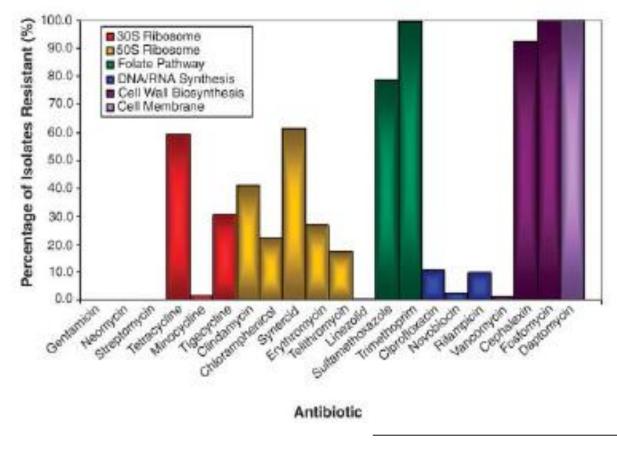
Resistance in animal farming


ciprofloxacin

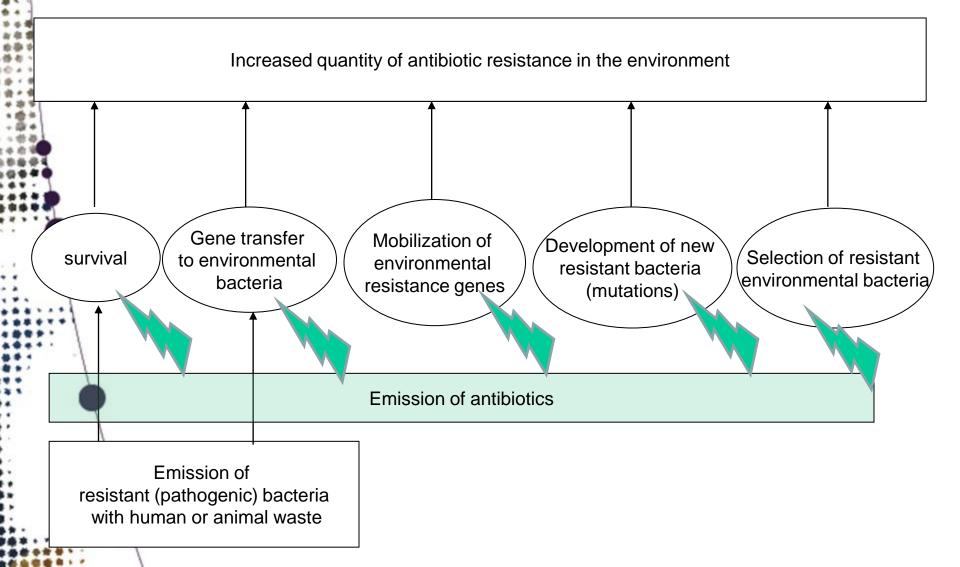
- Reflects usage intensity
- Multiresistance is increasing
- Clinically important resistances observed:
 - MRSA
 - ESBL

MARAN 2012

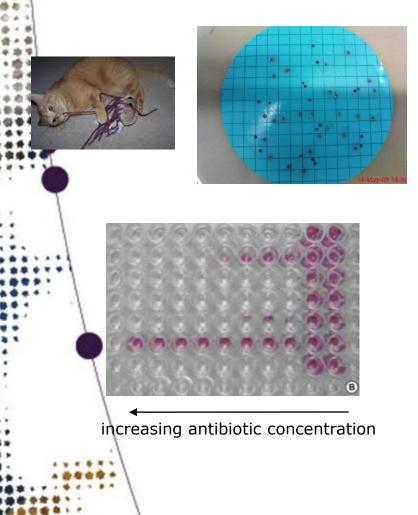
Resistance: a natural phenomenon


- Producers of antibiotics:
 - Fungi
 - Actinomycetes
- Competition
- Communication

Gillings, FMic 13 / Martinez, 08 Science

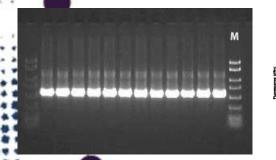

Extent of `natural' resistance

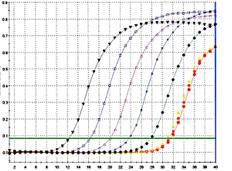
- Streptomyces soil isolates
- Resistance pattern



D'Costa, Science 2006

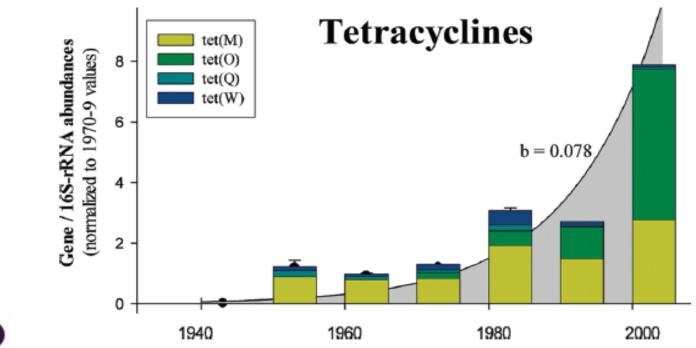
Pathways of resistance in the environment


Excursion: detection of resistance 1) Culture-based analyses: bacteria

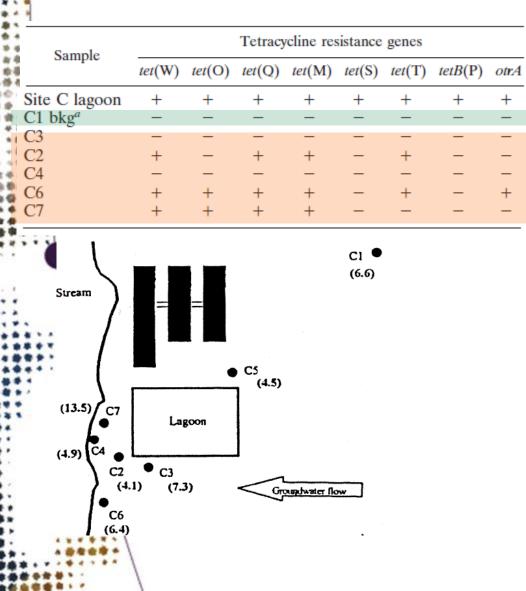


- From clinical science
- Isolation on agar plates with antibiotics
- Determination of resistance: minimum inhibitory concentration
- Focus on selected bacteria
- Enables in-depth study of resistance mechanisms

2) Gene-based analyses

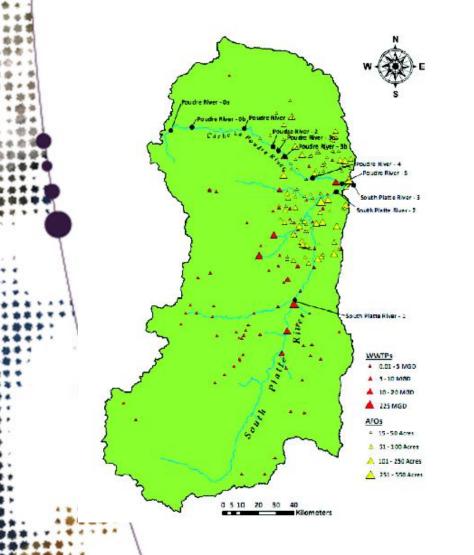


- In environmental studies
- DNA (RNA) isolation from environmental samples
- Detection of genes:
 Polymerase chain reaction
- Prior information on resistance genes needed
- Include unculturable bacteria (90-99%)
 - No information on bacterial carriers


Occurrence of resistance - soil

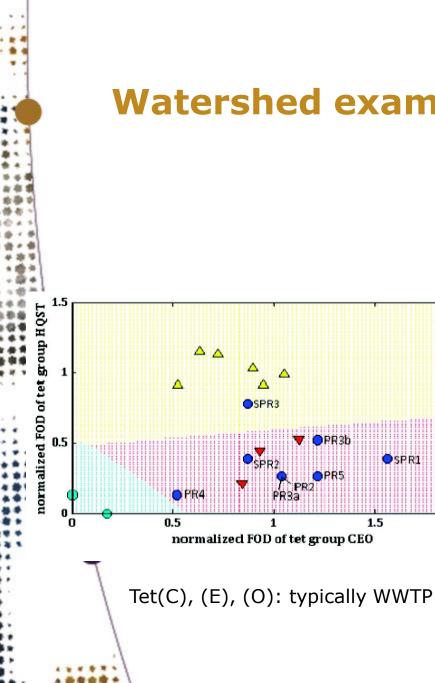
→ Evidence for quantitative changes in resistance

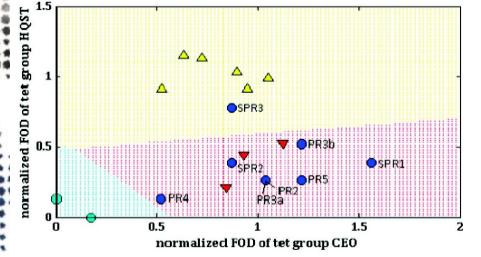
Knapp, EST 2010


Occurrence of resistance – ground water

- Tetracycline resistance: >40 genes
- Genes downstream a pig lagoon
- ➔ More genes downstream the pig lagoon

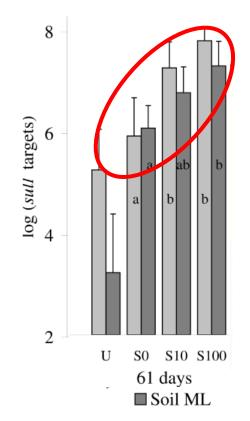
Chee-Sanford, AEM 2001


A watershed example


- Detection frequency of tetracycline and sulfonamide genes
 - "Profiles" compared with profiles of WWTP, animal lagoons, and pristine sites

Storteboom, EST 2010

Watershed example

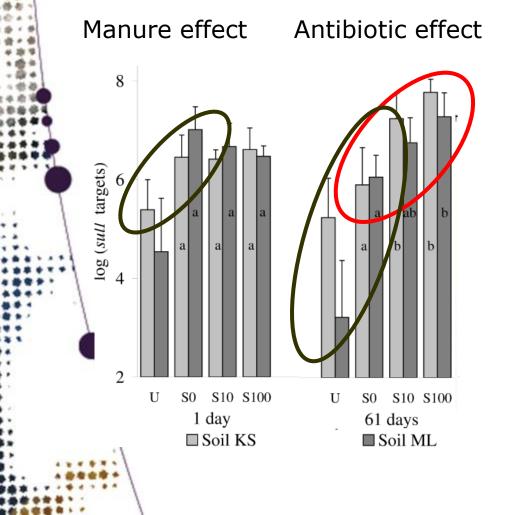

- Only 1 sample site animal farming-influenced
- Genes mirror sources \rightarrow no selection in the river

→ Evidence for increase in resistance

Role of antibiotic residues for resistance in the environment?

- Literature study
- 1500 hits (resistance & environment & antibiotic)
- Of which ~25 are relevant

Role of antibiotic residues for resistance in the environment?



Antibiotic effect

- Literature study
- 1500 hits (resistance & environment & antibiotic)
- Of which ~25 are relevant
- Yes, antibiotics can further select resistance

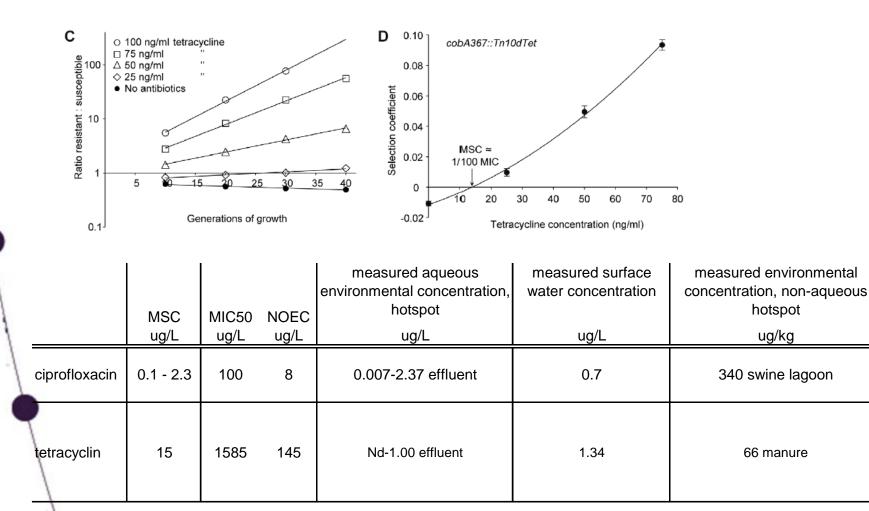
Heuer, EM 2007

Role of antibiotic residues for resistance in the environment?

- Yes, antibiotics can further select resistance
- Often, manure / WWTP sludge also increase resistance

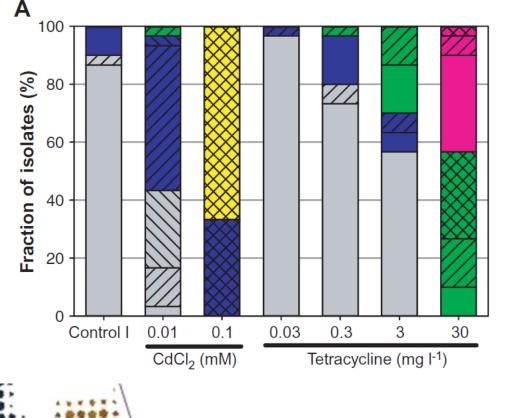
Heuer, EM 2007

Role of antibiotic residues for resistance in the environment ?


- If relatively high antibiotic concentrations are used, effects on resistance in the environment are found
- Few concentration-response studies with wide range of concentrations
- In these studies, effects found at slightly higher concentrations than MEC

Threshold concentrations?

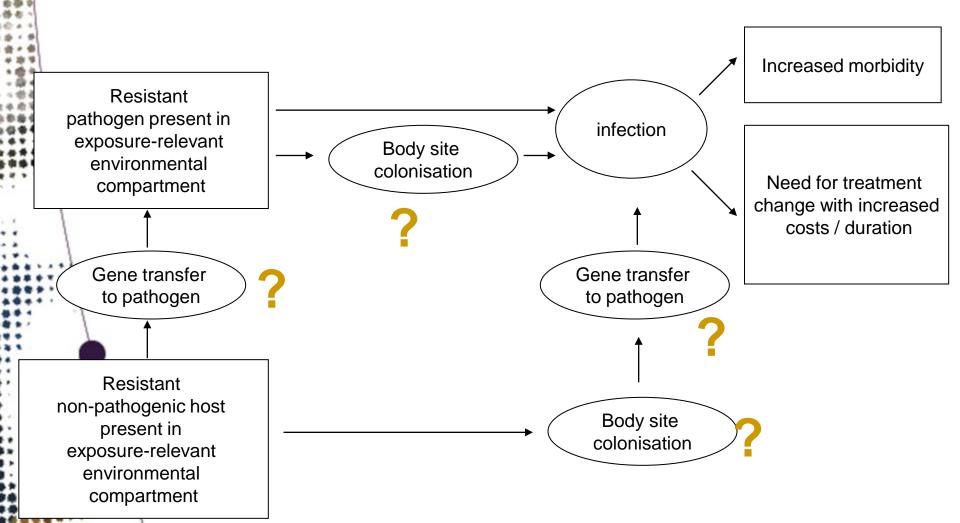
1 TH 40						
source	environmental matrix	compound	statistically significant at [ug/L]		MEC [ug/L]	MEC / lowest effect concentration
Stepanauskas 2006	surface water microcosms	tetracycline	3000	% ampicillin resistance of isolated strains increased from 0% to 42%	1.34	0.0004
Munoz-Aguayo 2007	chemostats with river water samples, fed 1/10 LB broth	chlor- tetracycline	800	total counts of resistant bacteria increase by factor 100	2.42	0.0030
Knapp 2008	mesocosms fed with lake water	oxy- tetracycline	20	selection rate (first order rate constant for the increase of the sum of resistance genes in time) increases from 0.015 to 0.025	2.2	0.1100


Threshold concentrations? Minimum selective concentrations

Gullberg, Plos Pathogens 2011

Role of co-selecting agents: metals

Coloured: resistant

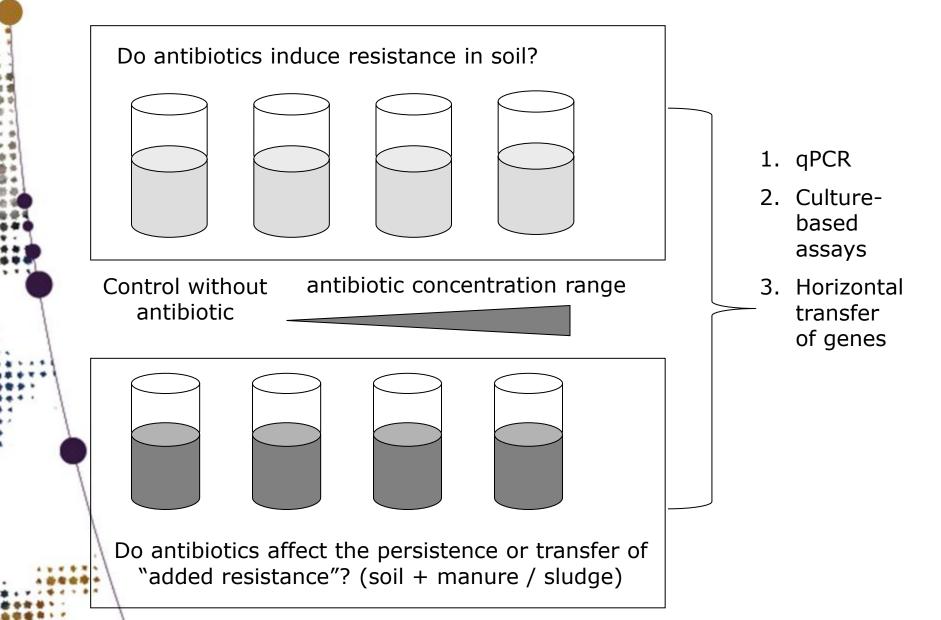

- Heavy metals shown to coselect for antibiotic resistance
- At relevant concentrations

Transmission to humans - chain of events

Human exposure

Human infection

Adverse impact on health outcome


Human risks: considerations

- Implications of resistance in the environment for public health (adverse effects): largely unstudied
- ➔ Needed: data on processes // relative risk of human uptake of resistance through food, environment
- But also: rare events can possibly have serious implications (gene transfer from soil bacterium to commensal to pathogen) – and are difficult to prove
- ➔ Current research topic

Regulatory context – need for new test systems?

- Resistance: currently not assessed in environmental risk assessment of human and veterinary antibiotics
- VICH GL27, guidance on resistance endpoint: resistance development in animals
- VICH GL36, microbiological ADI endpoint: human intestines (through antibiotic residues)
- Some analogies with risk assessment of genetically modified organisms

Suggestions for test systems - design

Suggestions for test systems - methods

est system	resistance profiling of bacterial isolates		Selective plating of bacteria	genes in bacterial	resistance genes in	Quantitative detection of resistance genes in environmental DNA	Analysis of clone libraries
pecific for resistance in nvironmental bacteria	+-	+-	+-	+-	-		
enerally applicable (no need for re-information)	++	++	++				++
elevance					+	+	+
imit of detection	-	-	++	-	+	+	
pecificity	+-	+-	+-	+-	+	+	+
eproducibility	+-	+-	+-	+-	+-	++	+-
ensitivity: effect size of istinguishable effects	+	+	+-	+	-	+-	
tandardisation	+	+	+				
alidation / quality controls	+-	+-		-	-	-	
ost effectiveness (material)	+-	+-	++	-	++	++	
est throughput	+-	+-	+	+-	+	+	
omplexity of test method	++	+-	++	-	-	-	
eed for specialized equipment	++	+-	++	++	++	+	

Suggestions for test systems - methods

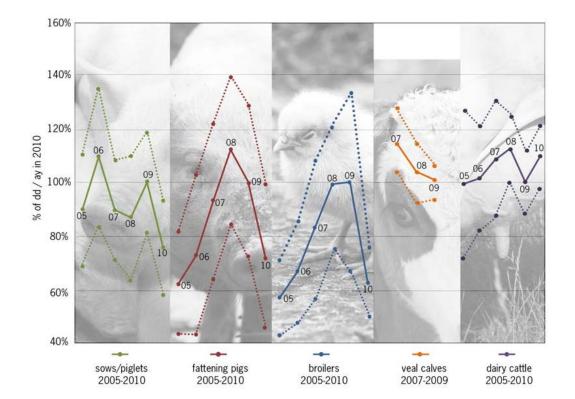
.

test system	Selective plating of bacteria	Quantitative detection of resistance genes in environmental DNA
generally applicable (no need for pre- information)	yes	no - resistance gene sequence needed for primer design
relevance	small: only around 1% of total environmental bacteria is culturable	high: contribution of non-culturable bacteria, but limited to known genes
reproducibility	unknown for environmental samples, in food matrices with well-defined species approx. <1 log unit	high (< 0.5 log unit)
standardisation	standardised tests existing for cultivation of intestinal bacteria, but not for "mixed" environmental bacteria	no standardized methods for PCR from environmental samples existing. Standards for DNA extraction published
validation / quality controls	only existing for defined bacteria	positive / negative controls are common during PCR
complexity of test method	low	medium - high
::::::		

Additionally:

- In addition: resistance monitoring
- National monitoring systems in place for human and veterinary indicator bacteria and pathogens
- Extension to (hotspot) environmental compartments

Food for thought – Concept paper for a guideline on antimicrobial risk assessment EMA/CVP


- The AMR related public health risks linked to the use of a certain VMP will be semi-quantifiable at best.
- To go beyond the pre-harvest stage and estimate the exposure to humans (directly or via food) might be too complicated knowing the number of possible different scenarios.

Summary / conclusions

- Evidence for occurrence of resistance in the environment
 - Detectable by culturing / genetic methods
 - Role of antibiotic residues?
 - In principle, yes
 - ? At environmentally realistic concentrations?
 - Why are we concerned?
 - Public health as protection goal
 - ? Evidence for public health relevance?
 - Regulatory needs
 - Placing in risk assessment framework: role of antibiotic residues?
 - ? Test systems?

Questions?

- Expert workshop on inclusion of resistance in the environmental RA of pharmaceuticals – 4 July, Berlin
- Jens.Schoenfeld@uba.de, h.schmitt@uu.nl

VICH GL36 – microbiological ADI

- Assesses effects of antibiotic residues on intestinal resistance
- Continuous and semi-continuous cultures and fed-batch cultures of fecal inocula provide a means to evaluate longterm exposure of bacteria to the drug.
- Enumeration techniques on media with and without the antimicrobial drug, applying phenotypic and molecular methodologies.