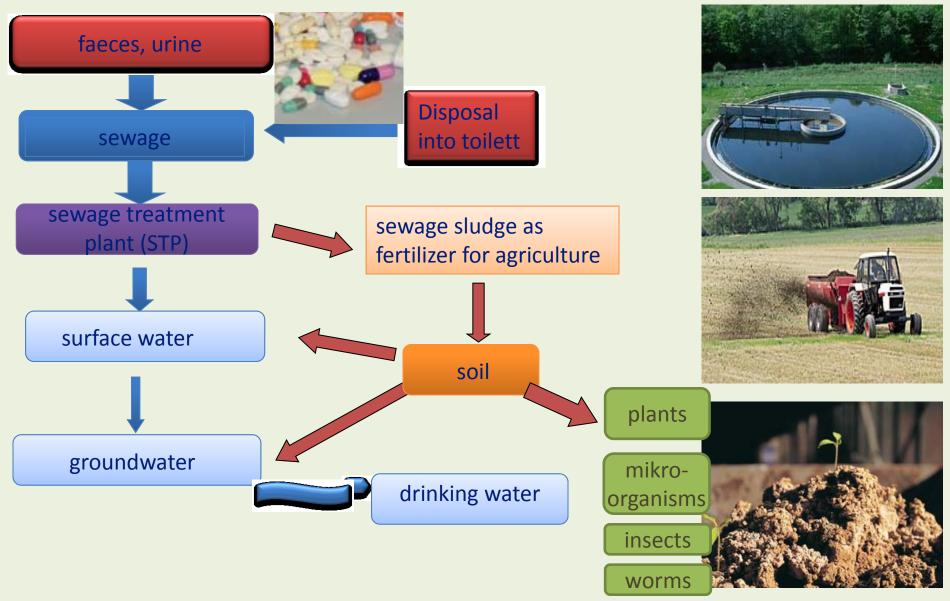


Fate of pharmaceuticals (PhCs) in sewage sludge and proposal of indicator substances for monitoring

Sabine Konradi, Ines Vogel, Environmental Agency in Dessau, Germany

Workshop "Pharmaceuticals in Soil, Sludge and Slurry" 18th of June 2013, Dessau, Germany

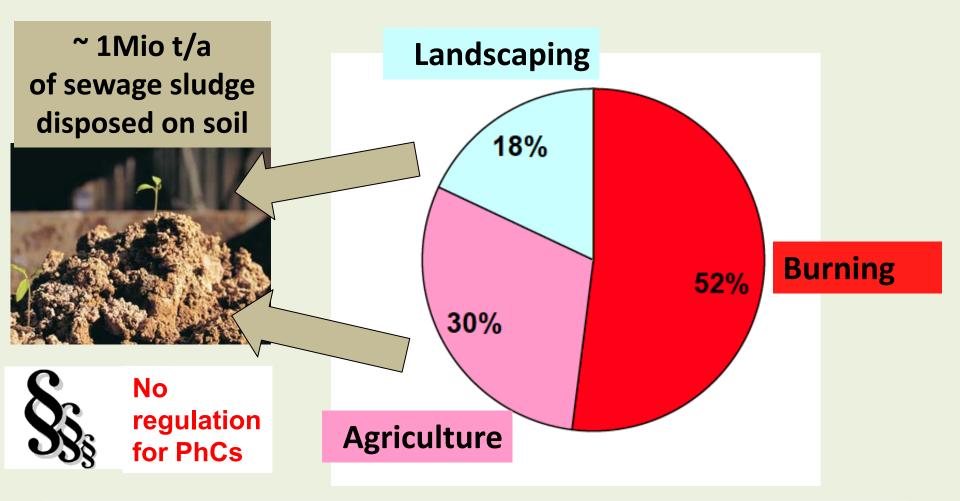
Fate of PhCs in sludge and proposal of indicator substances


Overview

- 1. Regulation sewage sludge usage in agriculture
- 2. Fate of PhCs during sewage treatment
- 3. Priorization strategy
- 4. Fate of PhCs in sludge/soil
- 5. Terrestrial Ecotoxicity PhCs
- 6. List of indicator substances
- 7. Conclusion and future Research

Aim of the talk Provoke Discussion on How to classify and predict fate and effects of PhCs in sludge and soil based on literature data?

How are human PhCs distributed in the environment?



Why addressing PhCs in sewage sludge?

Disposal of 2.100.000 tons Ts/year sewage sludge in Germany

(Statist. Bundesamt 2009) adopted from Prof. Ulf Theilen , Kompetenzzentrum ZEuUS, Presentation: Zukunft Klärschlammverwertung und -entsorgung

Good news:

German sewage sludge usage ordinance In agriculture is under revision

Draft of German "Abfallklärschlamm Verordnung" AbfklärV

Regulation on oganic pollutants

Category1: Previously regulated pollutants Ø Dioxines / Furane Ø PCB lower threshold values

Category2: Pollutants currently at high environ. concentrations Ø PAH Polyaromatic Hydrocarbons Ø PFT perfluorated tensides New legal limit values

Category4: pollutants that are readily degradable, No limit values, no Monitoring Category3: pollutants of concern that are not regulated Ø Phtalates, Ø Triclosan No threshold values but Monitoring

New concept of sewage sludge quality certificates

Monitoring via certified organisations

NEW: Hygiene Standards for sewage sludge to kill pathogenes

Bad news: no regulation, monitoring planned for PhCs

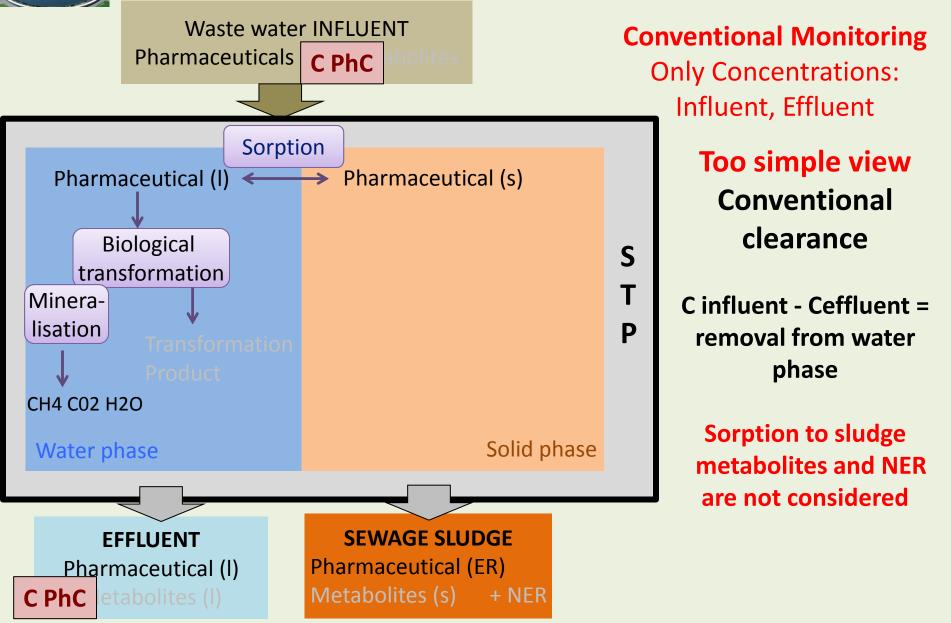
adopted from a Presentation of Prof. Ulf Theilen, Kompetenzzentrum ZEuUS, TH Mittelhessen

Since Draft is still under debate

Overview

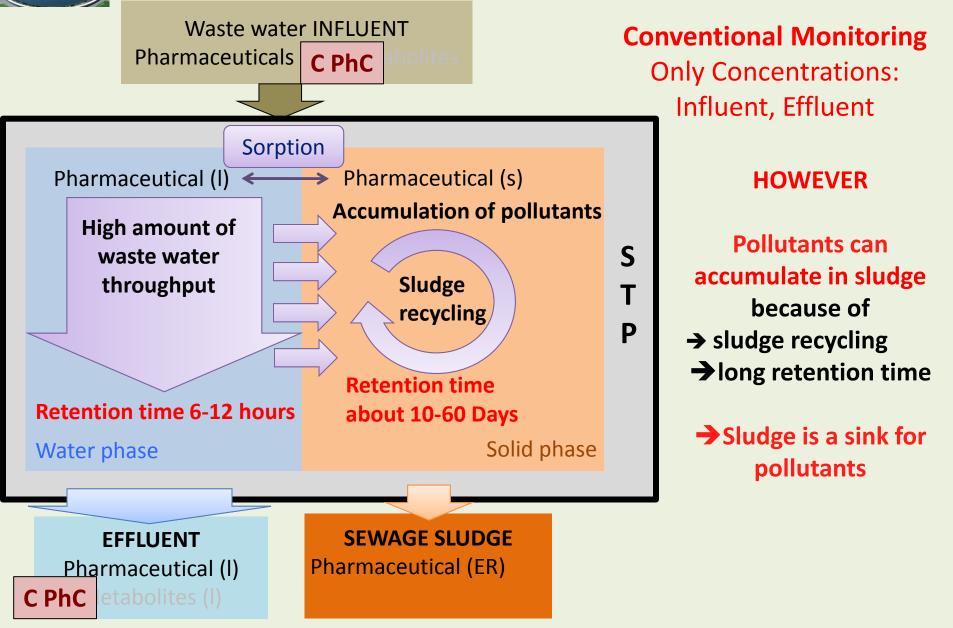
- 1. Regulation sewage sludge usage in agriculture
- 2. Fate of PhCs during sewage treatment
- 3. Priorization strategy
- 4. Fate of PhCs in sludge/soil
- 5. Terrestrial Ecotoxicity PhCs
- 6. List of indicator substances

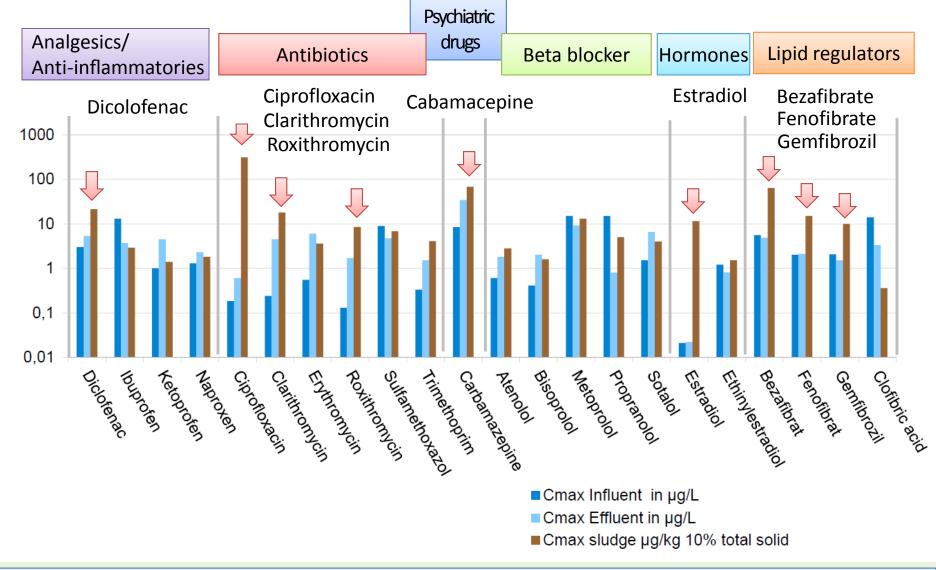
7. Conclusion and future Research

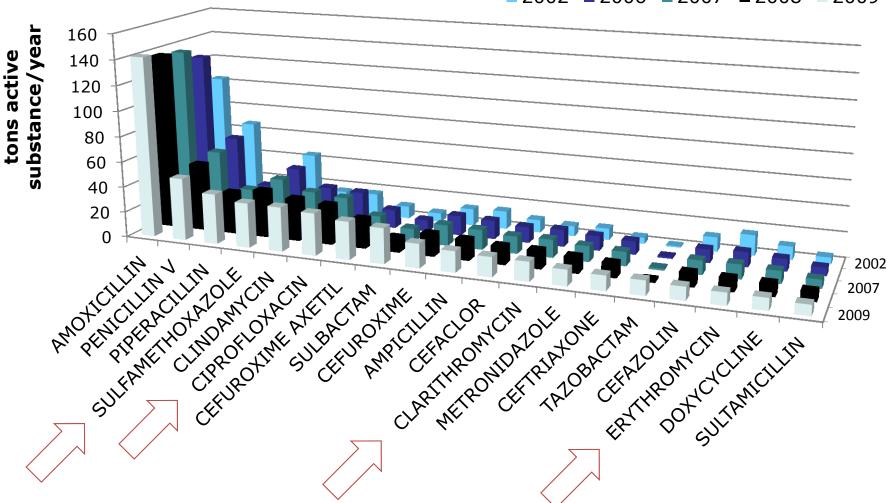

We aim to provide scientific evidence for PhCs of concern in sludge and soil to suggest for regulatory monitoring (category 3)

Identify indicator PhCs of high concern

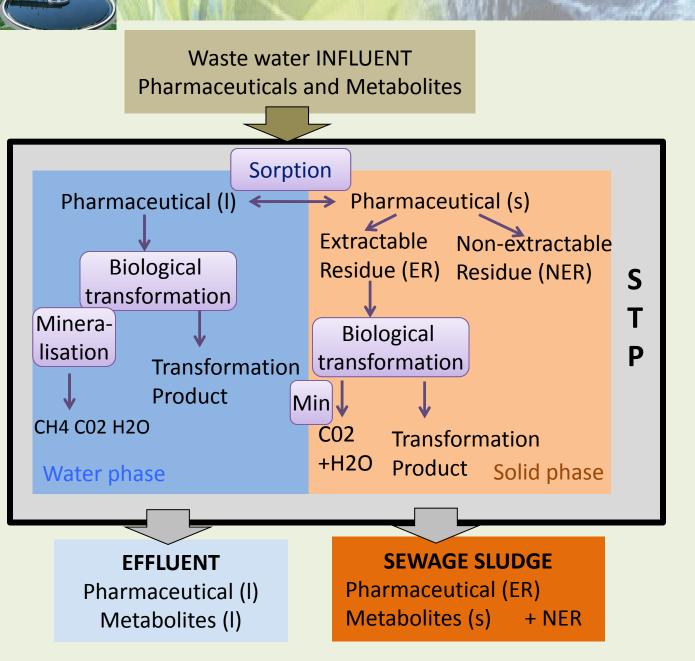
- high occurrence in sludge and soil
- high sorption potential
- low degradation
- toxic to terrestric organisms


What fate of PhCs in sewage treatment plant STP?


Sewage Sludge is a sink for pollutants

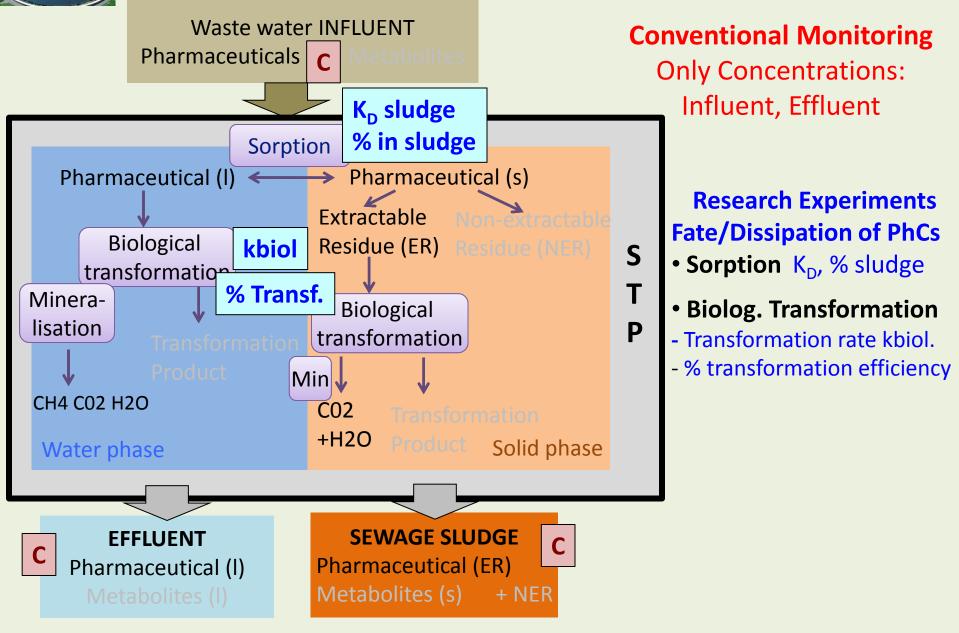

Occurrence of PhCs in sewage and sludge

Bergmann A. Monitoring Data on environment concentration of Pharmaceuticals, UBA-FB 001525 Zusammenstellung von Monitoring Daten zu Umweltkonzentrationen von Arzneimitteln **Consumption of human antibiotics** ~ 450-600t/year in Germany

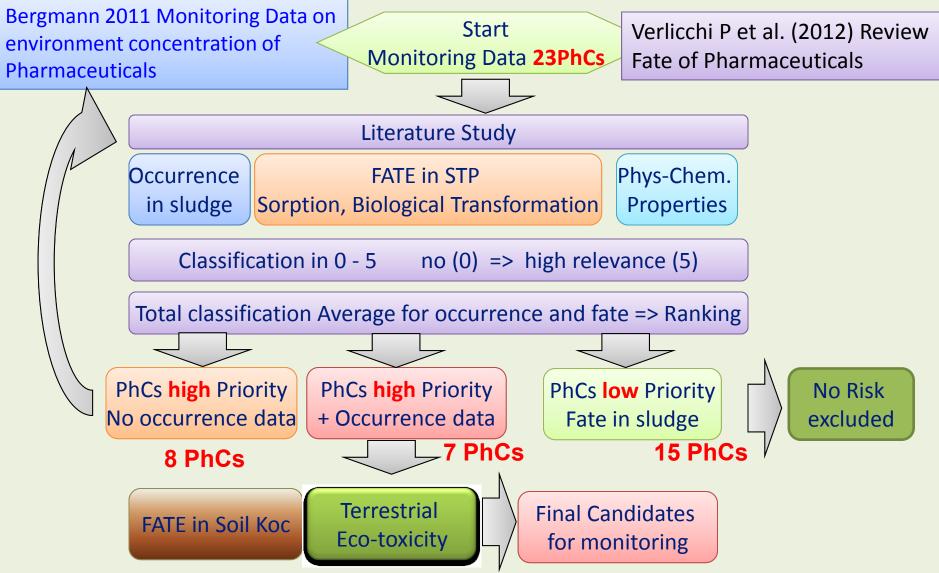


■ 2002 ■ 2006 ■ 2007 ■ 2008 ■ 2009

Increased consumption of antibiotics in the last few years


Fate of PhCs in sewage treatment plant (STP)

Umwelt Bundes Amt ()


Fate of PhCs in sewage treatment plant (STP)

Flow chart of classification strategy

Verlicchi P et al. 2012 Occurrence of Pharmaceutical Compounds in Urban Wastewater: Removal, Mass Load and Environmental Risk after a Secondary Treatment - A Review

Classification of Occurrence Data

- Classification according to range of monitoring data
- Maximum concentration observed in STP in Germany were selected
- Concentration in sludge in $\mu g/kg$ normalized to 100% Total solids
- concentration in sludge not directly comparable to influent conc. estimated 10% TS

Class	Concentration Influent µg/L	Concentration sludge 10%TS µg/kg	Concentration sludge 100%TS µg/kg	concentration
0	< 0.1	< 0.1	< 1	Very low
1	0.1—1	0.1—1	1—10	low
2	1—5	1—5	10—50	moderate
3	5—10	5—10	50—100	intermediate
4	10—50	10—50	100—500	high
5	>50	>50	>500	very high

Classification of physico-chemical properties of PhCs

Water Solubility S_w in mg/L

"...maximum amount of the chemical that will dissolve in pure water Lyman 1990

Classification modified after (Mensink 1995)

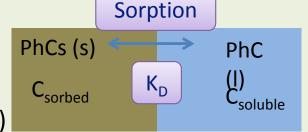
n-Octanol/Water Partition coefficient K_{ow}

"... ratio of a chemical's concentration in the octanol phase to its concentration in the aqueous phase of a two-phase octanol/water system " Lyman 1990

Classification modified after (Jones 2005)

Class	Solubility Sw in mg/L	water Solubility	logK _{ow}	Ratio conc. n-octanol: H ₂ 0	sorption potential
0	>1000	readily	<1	<10:1	no sorption potential
1	100—1000	Medium	1-2	10-100:1	low sorption potential
2	10—100	moderate	2-3	100-1000:1	medium sorption potential
3	10—1	low	3-4	1000-10 ⁴ :1	moderate sorption potential
4	0.1—1	slightly	4-5	10 ⁴ -10 ⁵ :1	high sorption potential
5	<0.1	very slightly	>5	>100.000:1	very high sorption potential

Lyman, W.J. (1990), Handbook of chemical property estimation methods--Environmental behavior of organic compounds, Mensink (1995), Manual of summarizing and evaluating the environmental aspects of pesticides Report no 679101022 National Institute of public Health and environmental protection Bilthoven, Netherlands Jones, O. A. H. (2005). "Human pharmaceuticals in wastewater treatment process." Critical reviews in Environmental Science and Technology 35: 401-427.


Classification of fate parameters in sewage treatment plant

Umwelt Bundes Amt () Für Mensch und Umwelt

Sorption solid-liquid partition coefficient K_D

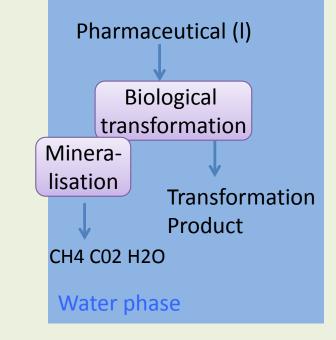
- sorption constant describing the overall sorption affinity of a substance to solid phase
- K_D sludge <500 ~10% sorption to sewage (Ternes 2005)

Class	KD sludge in L/kg	% sorbed to sludge	sorption
0	<100	<5%	No
1	100500	5-10%	Very low sorpt.
2	5001000	10-30%	Sorption
3	10004000	30-50%	Medium sorpt.
4	400010000	50-80%	high sorption
5	>10000	80-100%	very high

$$K_{\rm D} = \frac{C_{\rm sorbed} \, \rm mg/kg}{(C_{\rm soluble} \, \rm mg/L)}$$

Ternes, T., Joss, A., Kreuzinger, N., Miksch, K., Lema, J.M., and U. von Gunten, McArdell, Ch.S., Siegrist, H. (2005). Removal of pharmaceuticals and personal care products: results of Poseidon project. WEFTEC.

Classification of biotransformation


Biological transformation rate kbiol (L gSS⁻¹ d⁻¹) Rate of dissipation = concentration change over time

dc/dt = kbiol. * SS * C total SS suspended solids

Biodegradation shows kinetics pseudo 1st order (Ternes 2006)

k< 0.1 no transformation ~ less than 20% transformation

- complete transformation => mineralization C02 +H20
- partial transformation => Transformation products
- total dissipation efficiency of PhC depends on
 - concentration of PhCs,
 - sorption properties,
 - type of sewage treatment, pH, biomass,
 - sewage sludge retention time
 - temperature (fermentation, winter/summer)

Classification of biotransformation modified after Joss 2006

Biological transformation rate kbiol (LgSS⁻¹ d⁻¹)

Rate of transformation = concentration change over time dc/dt = kbiol. * SS *Ctotal Data for 16-20d sludge retention time selected from review Verlicchi 2012

Class	Biolog. Trans- formation rate kbiol (LgSS ⁻¹ d ⁻¹)	% of Transformation	Biological transformation
0	>10	>95%	good
1	510	75-95%	medium
2	15	75-50%	not sufficient
3	0.1-1	2050%	low
4	0.010.1	10-20%	poor
5	<0.01	10%	no

Verlicchi P et al. 2012 Occurrence of Pharmaceutical Compounds in Urban Wastewater: Removal, Mass Load and Environmental Risk after a Secondary Treatment - A Review

Pharmaceuticals with low priority excluded from selection

	Pharmaceutical	PC-	Data	Occur ST	rence FP	FATE STP		Fate
Therapeutic Group		s	Kow	C inf- luent	C sldge	Sorp- tion	Dissi- pat.	Class
Antibiotics	Clarithromycin							2,5
Antibiotics	Roxithromycin							2,3
Antibiotics	Erythromycin							1,8
Analgesics	Naproxen							1,8
Antibiotics	Trimethoprim							1,3
Lipid regulators	Clofibric acid							2,8
Lipid regulators	Benzafibrate							2,4
Beta-blockers	Propranolol							2,8
Beta-blockers	Atenolol							1,5
Beta-blockers	Bisoprolol							1,3
Beta-blockers	Sotalol							2,0
Analgesics	Ibuprofen							2,0
Analgesics	Ketoprofen							1,0

Pharmaceuticals with high priority but excluded because No data for occurrence in sludge and soil

	Pharmaceutical	PC-	Data	Occur ST	rence [P	FATE STP		Fate	
Therapeutic Group		s	Kow	C inf- luent	C sldge	Sorp- tion	Dissi- pat.		Class
Antibiotics	Ofloxacin								4,8
Antibiotics	Lomefloxacin					1			4,8
Antibiotics	Enrofloxacin								4,3
Antibiotics	Norfloxacin								3,5
Antibiotics	Sulfamethazine								3,0
Antidiabetics	Glibenclamide								3,8
Antihypertensives	Hydrochlorothiazide								3,8
Psychiatric drugs	Diazepam								3,3

Pharmaceuticals with high priority but excluded because no data for occurrence in sludge in Germany

	Pharmaceutical	PC-	Data	Occurrence STP		FATE STP		Fate
Therapeutic Group		s	Kow	C inf- luent	C sldge	Sorp- tion	Dissi- pat.	Class
Antibiotics	Ofloxacin							4,8
Antibiotics	Lomefloxacin							4,8
Antibiotics	Enrofloxacin							4,3
Antibiotics	Norfloxacin							3,5
Antibiotics	Sulfamethazine							3,0
Antidiabetics	Glibenclamide					u		3,8
Antihypertensives	Hydrochlorothiazide							3,8
Psychiatric drugs	Diazepam							3,3

further literature search for concentration in sludge

Pharmaceuticals with high priority selected for effect analysis

Therapeutic Group	Pharmaceutical	PC-	Data		rence FP	FATE	STP		Fate
merapeutic Group	rhannaceuticar	s	Kow	C inf- luent	C sldge	Sorp- tion	Dissi- pat.		Class
Antibiotics	Ciprofloxacin						•		3,9
Antibiotics	Sulfamethoxazole						4		3,6
Lipid regulators	Fenofibrate								3,3
Lipid regulators	Gemfibrozil				-				3,0
Psychiatric drugs	Carbamazepine						•		3,3
Beta-blockers	Metoprolol						•		3,1
Analgesics	Diclofenac						•		2,9
								_	

Hormones included because of very toxic to aquatic organisms (ng/L)

Hormones	Ethinylestradiol				1,9
Hormones	Estradiol				1,4

Pharmaceuticals with high priority selected for effect analysis

Therapeutic Group	Pharmaceutical	PC-	Data		Occurrence STP		E STP	Fate	
merapeutic Group		s	Kow	C inf- luent	C sldge	Sorp- tion	Dissipat.	Class	
Antibiotics	Ciprofloxacin		1					3,9	
Antibiotics	Sulfamethoxazole							3,6	
Lipid regulators	Fenofibrate							3,3	
Lipid regulators	Gemfibrozil							3,0	
Psychiatric drugs	Carbamazepine						u	3,3	
Beta-blockers	Metoprolol					ľ	u	3,1	
Analgesics	Diclofenac							2,9	
	High concentration							Low/no Dissipatio	
Hormones	Ethinylestradiol							1,9	
Hormones	Estradiol							1,4	

Conclusion from fate analysis

Many PhCs low correlation between Kow and sorption to sludge might be dependent on complex structure of pharmaceuticals

- → Solubility/ Kow excluded from priorisation
- Antibiotics are dominant in sludge because of specific properties
 - low degradation and high sorption to sludge

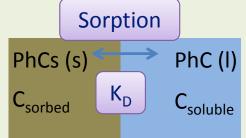
Therapeutic group	Pharmaceutical
Antibiotics	Ciprofloxacin, Sulfamethoxazole
Lipid regulator	Fenofibrate
Lipid regulator	Gemfibrozil
Psychiatric drugs	Carbamazepine
Beta-blocker	Metoprolol
Analgesics	Diclofenac
Hormones	Ethinylestradiol Estradiol

Selected for further literature study on

- Fate in soil
- Terrestrial toxicity

Classification of fate parameters in soil – mobility, dissipation

Umwelt Bundes Amt ()


solid-liquid partition coefficient Koc = Kd for 100% organic carbon

- sorption constant that is normalized to 100% organic carbon content of soil

- Describes the mobility of a substance

Degadability/Dissipation in soil

- DT50 measure for the time where 50% of substance dissipated
- measured with radioactive labeling
- describes the persistence in soil

Class	Koc L/kg	Mobility in soil	DT50 n days Half life in soil	Dissipation in Soil	criteria
0	0to50	very highly mobile	<10	fast degradable	
1	50-150	highly mobile	10—40	readily degradable	
2	150-500	moderate mobile	40—60	fairly degradable	
3	500-2000	low mobility	60—120	slightly degradable	
4	2000-5000	Slightly mobile	120-180	persistent in Soil	P criteria
5	>5000	immobile	> 180	Very Persistent very slightly degradable	vP criteria

McCall, P.J. et al. (1981): Measurement of Sorption Coeffi-cients of organic Chemicals and their use in Environ-mental Fate Analysis; Test protocols for Environmental Fate & Movement of Toxicants (1981); Proceedings of Symposium AOAC, 21.-22.10.1980, Washington, DC

Fate of selected PhCs in soil mobility and dissipation

- Persistence of PhCs in soil strongly depends on soil type analysed, high variability

Therapeutic Group	Pharmaceutical	PC-	Data	Occur- rence STP		FATE STP		Fate Soil		Fate	Fate	
		s	Kow	C inf- luent	elda			Dissi- pat.	Кос	DT50 soil	Class	Class
Antibiotics	Ciprofloxacin											4,3
Antibiotics	Sulfamethoxazole											3,1
Lipid regulators	Fenofibrate											3,6
Lipid regulators	Gemfibrozil											3,2
Psychiatric drug	Carbamazepine											3,7
Beta-blockers	Metoprolol											3,3
Analgesics	Diclofenac						5 	*				2,8
Hormones	Ethinylestradiol	1										2,6
Hormones	Estradiol											2,2

Summary of Fate of PhCs in sludge and soil

- Dissipation rates of PhCs in sludge during STP are higher than in soil, because sludge treatment conditions promote dissipation of pollutants

- \rightarrow higher temperature
- ightarrow higher microbial activity
- ightarrow higher content of organic matter

 Evidence that PhCs in biosolid matrices (Faeces, sludge from STP) show higher persistence when applied to soil than pure PhCs (Walters et al. 2010)

- \rightarrow Nofloxacin DT50_{biosolids} 1155 days to DT50_{alone} 300 days
- \rightarrow Gemfibrozil DT50_{biosolids} 231 days to DT50_{alone} 20 days
- Dissipation rates of PhCs in soil are highly variable because of high variability between soil types → organic content
 - → microbial content and activity

Walters, E., et al. (2010) "Occurrence and loss over three years of 72 pharmaceuticals and personal care products from biosolids-soil mixtures in outdoor mesocosms." Water Research 44(20): 6011-6020.

Ecotoxicity of PhCs on terrestrial organisms

Hazard Classification for terrestrial organisms, microbes, plants and earthworms Proposed by Fabrice Renaud, Alistair B.A. Boxall (2004)

Class	EC50 1mg/kg soil	Toxicity	Uptake in Plants
0	>10000	not toxic	No uptake described
1	>1000	Very slightly toxic	
2	100-1000	slightly toxic	
3	10—100	harmful	Uptake but no accumulation above initial soil concentration
4	1—10	Toxic	
5	< 1	Very toxic	Uptake and accumulation above initial soil concentration

Renaud FG, Boxall ABA, et al. 2004 "Evaluation of approaches for terrestrial hazard classification"; Chemosphere 57 1697–1706

Ecotoxicity of PhCs on terrestrial organisms

Therapeutic		Ecotoxicity				up- take	Тох		Fate	
Group	Pharmaceutical	orga-	Myco rhizza fungi	Earth	Plant s	in plant	Class		Class	
Antibiotics	Ciprofloxacin						4,0		4,3	
Antibiotics	Sulfamethoxazole						4,0		3,1	
Psychiatric drug	Carbamazepine	*					4,3		3,6	
Beta-blockers	Metoprolol	*			*		3.5	ł	3,2	
Analgesics	Diclofenac	*			*		4.0	ł	3,7	
Lipid regulators	Fenofibrate	*					2.0	ł	3,3	
Lipid regulators	Gemfibrozil	*					3.0	ł	2,8	
Hormones	Ethinylestradiol			-			3,8		2,6	
Hormones	Estradiol						2,0		2,2	

*Data for aquatic organisms used because no data for terrestrial organisms

Umwelt Bundes Amt Für Mensch und Umwelt

Ecotoxicity of PhCs on terrestrial organisms

Umwelt Bundes Amt Für Mensch und Umwelt

Therapeutic		Ecotoxicity				up- take		Тох		Fate
Group	Pharmaceutical	orga-		Earth- worm		in plant		Class	Class	Class
Antibiotics	Ciprofloxacin							4,0		4,3
Antibiotics	Sulfamethoxazole	/						4,0		3,1
Psychiatric drug	Carbamazepine	*						4,3		3,6
Beta-blockers	Metoprolol	*			*			3.5*		3,2
Analgesics	Diclofenac	*			*			4.0*		3,7
Lipid regulators	Fenofibrate	*						2.0*		3,3
Lipid regulators	Gemfibrozil	¥,						3.0*		2,8
Hormones	Ethinylestradiol							3,8		2,6
Hormones	Estradiol							2,0		2,2

*Data for aquatic organisms used because no data for terrestrial organisms

Big gaps for effects on terrestrial microorganisms, plants, earthworms and uptake in plants \rightarrow Research needed

Summary Ecotoxicity of PhCs on terrestrial organisms

Antibiotics Ciprofloxcacine, Sulfamethornizadole show very high toxicity on

terrestrial organisms → uptake and toxic to terrestrial plants (Carrots, Rice)

- → toxic to soil microbs (Pseudomonas putida, Enterococcus faecales)
- \rightarrow very toxic to mycorrhizza fungi associated with roots of carrots (Hillis 2008)

Ethinylestradiol act as endocrine disruptors - extremely toxic to fish (0.000001mg/L) and also toxic for terrestric organisms (0.1-50mg/kg soil)

- Plants 10.000x less sensitive than fish, fungi more sensitive than plants
 - → Ethinlylestradiol selected as indicator substance, because
 - ightarrow very toxic to plants and mycorrhizza fungi (Hillis 2008)
 - ightarrow uptake and accumulation in plants

No Data on terrestrial toxicity of Metroprolol, Fenofibrate and Diclofenac

→ more research needed addressing terrestrial ecotoxicity of PhCs in soil

- ightarrow mycorrhizza fungi and soil microbs seem most sensitive species
- ightarrow plant toxicity and uptake into plants
- \rightarrow accumulation in food chain??

Hillis, D. G., et al. 2008 "Structural responses of Daucus carota root-organ cultures and the arbuscular mycorrhizal fungus, Glomus intraradices, to 12 pharmaceuticals." Chemosphere 73(3): 344-352.

List of indicator substances for monitoring in sludge

Therapeutic group	Compounds	Occurrence in sludge	Fate in Sewage treatment plant and soil	Toxicity to terrestrial organisms
Antibiotics	Ciprofloxacin, Sulfamethoxazole	>500µg/kg TS in sludge	Very high sorption very low dissipation Immobile	Very toxic EC50 >1mg/kg
Psychiatric drugs	Carbamazepine	>500µg/kg TS in sludge	Very Low sorption no dissipation Very slightly mobile	Very toxic EC50 >1mg/kg
Analgesics	Diclofenac	100—500 μg/kg TS in sludge	Low sorption no dissipation Very slightly mobile	No data
Hormone	Ethinylestradiol	10-50μg/kg TS in sludge	moderate sorption Slight dissipation immobile	Very-toxic- toxic EC50 0.1- 10mg/kg
Beta-blocker	Metoprolol	50—100 μg/kg TS in sludge	Very Low sorption no dissipation Very slightly mobile	No data
Lipid regulator	Fenofibrate Gemfibrozil	100—500 μg/kg TS in sludge	High sorption very low dissipation low mobility	No data

General conclusion and discussion

Antibiotics are pre-dominant PhCs in sludge, due to high sorption and Low degradation => predicted to be immobile and may persistent in soil

Sulfamethoxazole Cirpofloxacin

Ofloxacin Clarithromycin

Selection pressure on Microorganism communities

Shift of Microorg. Populations soil formation/nitrification organic material digestion Growth of unwanted pathogens

Cocktail of Antibotics in soil Potential risks:

- spreading Antibiotics resistance
- Shift of microorganism populations

Multi-resistant pathogens

Food

Animals

Questions for future research

- 1. Scientific proof of increase of antibiotics resistance spread
- 2. What is the fate of PhCs (antibiotics) in soil? Accumulation? Long term persistence in active form?
- **3. Understanding balance of microorganism communities in soil** What are the effects of antibiotics?
- 4. Uptake and accumulation of PhCs in plants and other terrestrial organisms Enter the food chain?
- 5. What are the hot spots for PhCs on terrestrial toxicity?
 sensitive species? Which PhCs high toxicity potential?
- 6. Which PhCs are present in soil? Concentrations? Monitoring?
- 7. Techniques to eliminate PhCs from sludge in STP?

for our Environment

ACKNOWLEDGEMENTS Thanks to Dr. Ines Vogel and my colleagues of UBA IV2.2 For help and suggestions

THANK YOU FOR DISCUSSION