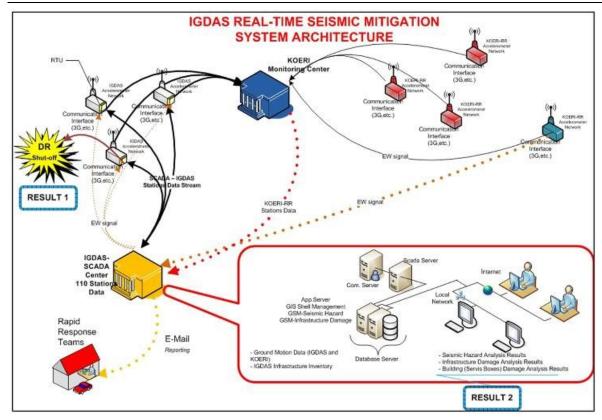


German Environment Agency


10. September 2019 Results of the UN/OECD Project on Natech Risk Management

7.3 Istanbul Natural Gas Distribution Network Earthquake Risk Reduction System (Turkey)

OECD GP Activity	UN SF Activity	UN SD Goals / Targets
Natural hazards identification and communication, NH (early) warning systems	4. Enhancing disaster preparedness for effective response	3.D Strengthen the capacity of all countries for early warning, risk reduction and management of national and global health risks

Classification according to OECD Guiding Principles, UN Sendai Framework Priorities/Activities, and UN SDGs and Targets

Figure 1: Sequence of actions in IGDAS earthquake risk mitigation system

Source: © Zulfikar et al., 2016

Short Facts:	Natural Hazard(s) Considered:
Governance approach: Risk communication Source: Gebze Technical University Entry into force: Targeted Stakeholders: Authorities in charge for the gas distribution networks Scope of applicability: Local, enterprises	Earthquake Climate change: Not relevant

Description

The Istanbul Gas Distribution Company (IGDAS) was established in 1986 by the Istanbul Metropolitan Municipality. IGDAS established a city-wide distribution network with a service area of 5400km2, 2100 staff, 6.5 million subscribers and 24,000 km of infrastructure.

IGDAS' disaster response is a leading model in the gas industry. The company created a project known as the 'Earthquake Risk Mitigation System'. The system checks the earthquake information from 10 'Earthquake Early Warning' (EEW) stations based on real-time data transmitted by satellite to the IGDAS SCADA server. When amplitudes at 3 or more EEW stations exceed certain limits, the system identifies the phenomenon as an earthquake and initiates further actions automatically.

IGDAS has 750 accelerometers distributed in city-wide locations in the IGDAS district regulators. Once the EEW information reaches the district regulators, the ground-motion parameters are checked, and the shut-off decision takes place individually for each regulator and carried out by the solenoid valve automatically. This system provides mitigation of secondary disaster risks due to a potential earthquake.

The system generates city-wide, near real-time earthquake ground-motion distribution maps and infra-structure and building damage distribution maps by using the ground-motion data from stations as well as information based soil condition, infrastructure, and building inventories. This information is shared with the field teams automatically for the emergency response.

The ground-motion station accelerometers' hardware and software were developed specifically for the project. Including EEW information, automatic shut-off mechanisms, real-time ground-motion distribution maps, the near real-time damage distribution maps both for the infrastructure and for the buildings, the system is a unique earthquake-risk mitigation system and can be applied in other regions of the world exposed to seismic hazard.

Even though today's technology may allow for a quick estimation on the level of expected ground shaking, Istanbul's time is even more limited due to its usually very close distance to the epicentre. The algorithm of the threshold-based EEW system accounts for near-source events to activate the automatic shut-down mechanism. This means that the safety measure can help to mitigate greater damage with only a few seconds of early warning.

Link/Contact:

Zulfikar A.C.: Asst. Prof. Gebze Technical University, Civil Engineering Department **Biyikoglu H.**: IGDAS, Senior Engineer, Istanbul Gas Distribution Industry and Trade Incorporated Company

https://link.springer.com/article/10.1007/s10518-016-9964-x http://meetingorganizer.copernicus.org/EGU2017/EGU2017-18438.pdf

Comments by the UN/OECD Natech-Steering Group:

This is an example of the combination of a warning system with an automatic shut-off system.

Imprint

Publisher

Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau Tel: +49 340-2103-0

Tel: +49 340-2103-0 Fax: +49 340-2103-2285

Completion: September/2019

buergerser vice @uba.de

Internet: www.umweltbundesamt.de

f / umweltbundesamt.de

Authors, Institutions

Can Zülfikar can.zulfikar(at)gmail.com

adelphi research gGmbH Alt-Moabit 91, D-10559 Berlin

