German Environment Agency

10. September 2019 Results of the UN/OECD Project on Natech Risk Management

7.2 Relational Information System for Chemical Accidents Database (RISCAD) (Japan)

OECD GP Activity	UN SF Activity	UN SD Goals / Targets		
7. Consideration of Natech risks in risk communication, Natech warning systems	1. Understanding disaster risk	Non-specific targets relevant for Natech Risk Management (3.8, 6.3, 9.4, 11.5, 11.B, 12.4)		

Classification according to OECD Guiding Principles, UN Sendai Framework Priorities/Activities, and UN SDGs and Targets

Figure 1: Keyword search form on RISCAD

	Home	Case Search	Material Search	How To Use	Characteristics	
Date	From	- To				
Country / Pref.		~ 7		~		
Search keywords	SPACE = AND Se	arch, Uppercase	OR = OR Searc	h		
Human injury (Fatality)		-				
Human injury (Injury)		-				
Human injury (Toxic)		-				
Activity	select					
Equipment	select					
Has progress flow		Has additio	nalinfo		Has Pdf	

Source: © 2002 National Institute of Advanced Industrial Science and Technology

	ID ≑	Date	Country	Pref.	Name	Fatali	Injurg	Toxic	Prog	Add.	PDF
1	4490	1995/01/17	Japan	Hyogo	Ammonia gas leakage from the pipe damage caused by the	0	0	0	-	1873	-
2	<u>4491</u>	1995/01/17	Japan	Hyogo	Ammonia leakage due to pipe damage refrigeration equipme	0	0	0		181	-
3	4492	1995/01/17	Japan	Hyogo	Ammonia leakage due to looseness of the valve flange caus	0	0	0	<u></u>	100	1
4	4493	1995/01/17	Japan	Hyogo	Gas leakage from the valve flange caused by the Great Har	0	0	0			-
5	4497	1995/01/17	Japan	Hyogo	Ammonia gas leakage from the pipe damage of the cold stor	0	0	0	-	10-3	-
6	4498	1995/01/17	Japan	Hyogo	Ammonia leakage from the valve of refrigeration equipment	0	0	0		1.51	-
7	4499	1995/01/17	Japan	Hyogo	Ammonia gas leakage from a pipe flange due to the Great H	0	0	0	<u></u>		12
8	4501	1995/01/17	Japan	Hyogo	Nitrogen gas leakage caused by the Great Hanshin Earthqu	0	0	0		942	-
9	4503	1995/01/17	Japan	Hyogo	Damage to the part of LPG and liquefied oxygen tank the Gr	0	0	0	-	10-31	-
10	4504	1995/01/17	Japan	Hyogo	Hydrogen gas leakage from the hydrogen producing facilitie	0	0	0	-		-

Source: © 2002 National Institute of Advanced Industrial Science and Technology

Figure 3:	Accident Progress FlowChart form in RISCAD
-----------	--

Summery	Accident ID, Date	, Place		PFA, RISCAD, AIST		
Background						
Category	Causes	Acciden	t progress flow	Remarks		
Process		1 Date	Event 1 (before	Re : Event 1		
		Time	accident onset)			
		2 Time	• Event 2 (before	1		
	Ļ		accident onset)			
	Inferred cause 1	,		Re : Cause 1		
	<u> </u>]	·	Ļ			
		3 Time	Event 3 (before accident onset)]		
	↓ Inferred cause 2*	l		*Re : Cause 2		
	Inferred cause 3**			**Re : Cause 3		
			↓ Event 4 (final	1		
		4 Time	event: fire, leak,			
			etc.)			
Counter-			•			
measure		1 Time	Event 5 (post- onset)]		
		2 Time		1		
Permanent						
Counter- measure		1 Keywords	Permanent measure 1			
incusure		2 Keywords	Permanent measure 2			
		3 Keywords	Permanent measure 3	1		
Lessons		· · · · · · · · · · · · · · · · · · ·				
Learned	Lesson phrase 1: Description					
	Lesson phrase 2: D	escription				
	Lesson phrase 3: Description					
	L					

Source: ©2002 National Institute of Advanced Industrial Science and Technology

Short Facts:	Natural Hazard(s) Considered:
Governance approach: Risk communication Source: National Institute of Advanced Industrial Science and Technology (AIST) and Japan Science and Technology Agency (JST) Entry into force: 2002 Targeted Stakeholders: Chemical industry Scope of applicability: National	 Earthquake Flood Typhoon Tsunami Climate change: Not considered

Description

Relational Information System for Chemical Accidents Database (RISCAD)

The Relational Information System for Chemical Accidents Database (RISCAD) was developed by the Japan Science and Technology Agency (JST) and the National Institute of Advanced Industrial Science and Technology (AIST). It uses data retrieved after explosions, fires, and leakage accidents related to chemical substances, chemical processes, high-pressure gas, and explosives.

An accident-case database was developed by the AIST, specializing in chemical accidents. With support from the database development program of the JST (launched as RISCAD in October 2002), the project ran for three years, starting in 2009.

Progress Flow Analysis (PFA)

Some of the accident data in RISCAD are linked to the 'Accident Progress FlowChart'. This shows the cause analysis and timeline of each accident and is created by conducting an accident analysis called 'Progress Flow Analysis' (PFA). PFA also helps to build up safety awareness in businesses.

Link/Contact:

https://riscad.aist-riss.jp/?lang=en https://riscad.aist-riss.jp/acc Email: <u>riscad-ml@aist.go.jp</u>

Comments by the UN/OECD Natech-Steering Group:

Communication of lessons learnt should include also those from Natech accidents. This may be true for several databases, but not for all Natechs as some of them may not be in the scope of the underlying reporting system.

Imprint

Publisher

Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau Tel: +49 340-2103-0 Fax: +49 340-2103-2285

Completion: September/2019

buergerservice@uba.de
Internet: www.umweltbundesamt.de
 / umweltbundesamt.de
 / umweltbundesamt

Authors, Institutions

Yuji Wada yuji.wada(at)aist.go.jp

adelphi research gGmbH Alt-Moabit 91, D-10559 Berlin

