Interzeption von Wasser und reaktivem Stickstoff in Fichtenbeständen entlang eines Höhengradienten im Nationalpark Bayerischer Wald Integrated Monitoring Programm an der Messstelle Forellenbach im Nationalpark Bayerischer Wald

Projektnummer 24314

Interzeption von Wasser und reaktivem Stickstoff in Fichtenbeständen entlang eines Höhengradienten im Nationalpark Bayerischer Wald

von

Burkhard Beudert und Wilhelm Breit

Nationalparkverwaltung Bayerischer Wald Sachgebiet IV

> Im Auftrag des Umweltbundesamtes

> > August 2015

Inhaltsverzeichnis

Abbilo	dungen und Tabellen	1
1	Einleitung	2
2	Standort und Methoden	3
3	Ergebnisse und Diskussion	5
3.1 3.1.1 3.1.2	Nebelindikation und Sichtweite Nebeltage und Nebelstunden Sichtweite im Nebel	5 5 7
3.2	Eintrag von Wasser in Fichtenaltbestände entlang des Höhengradienten	8
3.3 3.3.1 3.3.2	Stickstoffdeposition an Hochlagenstandorten Wet-only- versus bulk-Messungen zur Deposition im Freiland Konzentrationen und Deposition reaktiver Stickstoffverbindungen	11 11 12
3.4 3.4.1 3.4.2	Chemische Zusammensetzung von Nebel- und Wolkenwasser Probevolumina und analytische Qualität Stickstoffkonzentrationen	16 16 17
3.5	Abschätzung der Beiträge verschiedener Depositionspfade zum Stickstoffeintrag in Fichtenwälder	19
4	Zusammenfassung	21
Litera	tur	23
Anhar	ng	25

Abbildungen und Tabellen

Abb. 1	Übersichtskarte zur Lage des Großen Falkensteins (1315 ü. NN, Dreieck) und des Forellenbachgebietes im Einzugsgebiet der Großen Ohe.	3
Abb. 2:	Anzahl Nebeltage (% Monat) am Großen Arber (1436 m ü. NN) und in 40 m Höhe am Messturm Schachtenau (807 m ü. NN) in den hydrologischen Jahren 2012 und 2013.	5
Abb. 3:	Termine mit Nebel (% der Messtermine/Monat) am Großen Arber (1436 m ü. NN) und in 40 m Höhe am Messturm Schachtenau (807 m ü. NN) in den hydrologischen Jahren 2012 und 2013. Zum Vergleich die Werte am Großen Falkenstein (1314 m ü. NN) im Jahr 1955.	6
Abb. 4:	Mittlere Anzahl der Termine mit Nebel pro Monat (linke Ordinate) am Großen Arber (GA, 1436 m ü. NN) und am Messturm Schachtenau (MT, 807 m ü. NN) in 40 m Höhe sowie mittlere Sichtweite während dieser Termine (rechte Ordinate) in den hydrologischen Jahren 2012 und 2013.	7
Abb. 5:	Box-Whisker-Plots des Kronendurchlasses unter Fichte (mm) in Gipfellage (1310 m ü. NN) und am Oberhang (1192 m ü. NN).	8
Abb. 6:	Kronendachbilanz (Kronendurchlass - Freilandniederschlag) von Fichten- beständen in Gipfellage (1310 m ü. NN), am Oberhang (1192 m ü. NN) und am Unterhang (787 m ü. NN).	9
Abb. 7:	Links: Stoffspezifische Konzentrations-Quotienten der bulk-Deposition am Großen Falkenstein (FS bulk) und der bulk-Deposition am Ruckwiesberg (HR bulk) zur wet-only-Deposition (FS wet-only) am Großen Falkenstein. Rechts: Streudiagramm der Cl ⁻ -Quotienten auf die Na ⁺ -Quotienten (bulk/wet-only) der Einzelproben am Großen Falkenstein im Jahr 2013.	11
Abb. 8:	Konzentrationen reaktiver Stickstoffverbindungen im Kronendurchlass, im wet- only-Sammler und bulk-Sammler am Großen Falkenstein und in Oberhanglage am Ruckwiesberg.	12
Abb. 9:	Oben und Mitte: standardisierte Stoffkonzentrationen im Kronendurchlass (Kleinbuchstaben: Sammlerpositionen) am Großen Falkenstein und am Ruckwiesberg. Rechts: Korrelationskoeffizienten der standardisierten Konzentrationen im Kronendurchlass.	13
Abb. 10:	Deposition reaktiver Stickstoffverbindungen unter Fichte, im wet-only-Sammler und bulk-Sammler am Großen Falkenstein und in Oberhanglage am Ruckwiesberg.	14
Abb. 11:	Box-Whisker-Plots der N-Konzentrationen (2012 und 2013) in den Proben der Nebelharfen am Großen Falkenstein (FS) und am Ruckwiesberg (HR).	17
Abb. 12:	Doppellogarithmische Auftragung der NO_3^- -Konzentrationen auf die NH_4^+ -Konzentrationen ($\mu eq/l$) im Wasser des Nebelfängers am Großen Falkenstein (links) und am Ruckwiesberg (rechts).	18
Abb. 13:	Gemessene N-Depositionsraten (TNb, Summe der beiden Messkampagnen) im Freiland und in Fichtenbeständen in Gipfellage (1310 m ü. NN), am Oberhang (1192 m ü. NN) und am Unterhang (787 m ü. NN).	19
Tab. 1:	Anzahl, Volumina und Ladungsbilanzen der Proben aus der Nebelharfe am Großen Falkenstein und am Ruckwiesberg.	16
Tab. 2:	Ableitung der erforderlichen N-Konzentration im Nebel- und Wolkenwasser, um die gesamte Interzeptionsdeposition ID bzw. die feuchte Deposition CW in den Fichtenbeständen in Gipfellage (1310 m ü. NN) und am Oberhang (1192 m ü. NN) mit dem Nebel- und Wolkenwassereintrag abzubilden (2012 und 2013).	20

1 Einleitung

Die Belastung des Forellenbachgebiets mit reaktiven Stickstoffverbindungen ist nach einem leichten Rückgang zu Beginn der 1990er Jahre seither auf wenig verändertem Niveau verblieben (BEUDERT und BREIT 2010). Dies entspricht der Gesamtsituation in Mitteleuropa, dass die Reduktion der Stickstoffemissionen und -einträge in den letzten 20 Jahren der mehr als 90%igen Reduktion beim Schwefel (UBA 2015) nicht folgen konnte.

Die Risiken hoher Stickstoffeinträge liegen vornehmlich in der Eutrophierung, die zu Veränderungen im Arteninventar der Biozönosen und in der Biodiversität führen und nachteilige Veränderungen der Ökosystemfunktionen herbeiführen kann. Für die hochmontanen Waldlebensraumtypen des Forellenbachgebiets auf saurem Ausgangsgestein liegen die kritischen N-Einträge bei 10 - 15 kg N ha⁻¹, für Grasland-, Strauch- und Moorlebensräume in Tal- und Hochlagen wie auch saure Karseen bei 3 - 10 kg N ha⁻¹ (BOBBINK and HETTELINGH 2011). Diese Critical Loads werden in den Wäldern durch die Bestandesdeposition, in den anderen Lebensräumen durch die Freilanddeposition überschritten.

Im September 2011 wurde ein begrenztes Messprogramm auf dem Gipfel des Großen Falkenstein (1315 m ü. NN) im Nationalpark Bayerischer Wald gestartet (BEUDERT und BREIT 2012), 2012 auf einen Oberhangstandort (1192 m ü. NN) am benachbarten Ruckwiesberg ausgeweitet (BEUDERT und BREIT 2013) und bis Ende 2013 weitergeführt. Es beinhaltet neben dem klassischen Depositionsmonitoring im Wald mit Freiland- und Bestandesniederschlag auch die Sammlung von Nebel- und Wolkenwasser, jeweils begrenzt auf die schneefreie Zeit von Juni bis November.

In den nachfolgenden Ausführungen werden die Ergebnisse zum Eintrag von Wasser über Regenniederschlag und Wolkenauskämmung und zur stofflichen Beschaffenheit dieser Wässer für die Jahre 2012 und 2013 gemeinsam vorgestellt und diskutiert. Diese dienen der Abschätzung des Stickstoffeintrags insbesondere über die feuchte Deposition.

Zur weiteren Absicherung der dahinter stehenden Annahmen wurden die Daten zur Sichtweite am Großen Arber (1435 m ü. NN, Deutscher Wetterdienst), einem Nachbargipfel des Großen Falkenstein, ausgewertet und mit den Daten vom Messturm Schachtenau (807 m ü. NN) im Forellenbachgebiet verglichen.

2 Standort und Methoden

Alle Standorte des Integrierten Ökosystem-Monitorings sind ausführlich beschrieben in BEUDERT und BREIT (2004), die zusätzlichen Standorte am Großen Falkenstein und dem benachbarten Ruckwiesberg in BEUDERT und BREIT (2012, 2013).

Der Große Falkenstein (49°05'30"N, 13°16'48"E) liegt im Landkreis Regen und erhebt sich mit sehr steilen südlich und westlich exponierten Hängen am nördlichen Ende des Nationalparkgebietes auf eine Höhe von 1315 m ü. NN (Abb. 1). Er ragt gegen Westen deutlich über die Gipfel des Vorderen Bayerischen Waldes (bis 1100 m ü. NN) hinaus. Die Distanz zum Forellenbachgebiet (Messturm Schachtenau) beträgt etwa 18 km.

Abb. 1 Übersichtskarte zur Lage des Großen Falkensteins (1315 m ü. NN, Dreieck) und des Forellenbachgebietes im Einzugsgebiet der Großen Ohe.

Die Positionen der Messplätze für die Untersuchungen zur feuchten Deposition am Großen Falkenstein und zur strukturellen Heterogenität in Fichtenbeständen bezüglich atmosphärischer Stoffeinträge und Stoffumsetzungen sind in den Tabellen 1 und 2 im Anhang aufgeführt. Die Bestandesstrukturen und das Messdesign in den Beständen relativ zur Überschirmung können den Abbildungen 1 - 4 des Anhangs entnommen werden.

Die Verfahren zur Probenahme- und Aufbereitung, der chemischen Analyse und die Berechnungs- und Auswerteverfahren des Integrierten Ökosystem-Monitorings sind in BEU-DERT und BREIT (2004) dargelegt. Die speziellen Verfahren im Zusammenhang mit der Gewinnung von nicht sedimentierendem Niederschlag am Großen Falkenstein und dem benachbarten Ruckwiesberg sind in BEUDERT und BREIT (2012, 2013) beschrieben.

Sichtweitenmessung

Am Messturm Schachtenau (807 m ü. NN) im Forellenbachgebiet wurde in 40 m Höhe ein Sichtweitenmessgerät des Typs PWD10 der Firma VAISALA installiert, um Klarheit über Häufigkeit, Dauer und Intensität von Nebel an diesem Standort zu erlangen. Das Gerät arbeitet nach dem Prinzip der optischen Vorwärtsstreuung im Sichtweitenmessbereich zwischen 0 und 2000 m. Die Messwerte werden in Abständen von zwei Minuten aufgezeichnet und je nach Fragestellung zu größeren zeitlichen Einheiten aggregiert.

Sichtweiten bis 1000 m werden allgemein (http://www.deutscher-wetterdienst.de/lexikon, http://amsglossary.allenpress.com/glossary) als Nebel bezeichnet. Die Bezeichnung Nebel meint im weiteren Gebrauch grundsätzlich Nebel und Wolken, da Wolken, welche die Erdoberfläche berühren, definitionsgemäß als Nebel beschrieben werden. Am Standort Großer Falkenstein auf 1314 m ü. NN bestehen die meisten Nebel aus den von Südwesten bis Nordwesten herangeführten Wolken oder entstehen beim Aufstieg von Luftmassen als orographische Nebel, wenn durch Abkühlung der Sättigungsdampfdruck erreicht wird und Kondensation einsetzt.

Die Klassifizierung Nebel erfolgt ausschließlich aufgrund der Sichtweite. Am Gipfelstandort Großer Falkenstein ist Niederschlag mit Nebel das dominierende Phänomen. Um 1050 m ü. NN machen Nebel ohne Niederschlag bzw. Niederschlag ohne Nebel noch etwa 50% aller Beobachtungen aus; bis zum Gipfel reduziert sich dieser Anteil auf 30% (BAUMGARTNER 1958). Für die Klassifizierung "Nebeltag" genügt eine einzige Nebelbeobachtung pro Tag an den festgelegten Beobachtungszeiten.

An der bemannten Wetterstation des Deutschen Wetterdienstes am benachbarten Großen Arber (1436 m ü. NN), der für die Bedingungen am Großen Falkenstein steht, erfolgt die Feststellung der Sichtweite jeweils 10 Minuten vor der vollen Stunde, beginnend um 4:50 MEZ und endend um 19:50 MEZ. Die Daten wurden dankenswerterweise vom Regionalbüro München des DWD zur Verfügung gestellt.

Um die Vergleichbarkeit bezüglich der Anzahl der Nebeltage und Nebelstunden pro Nebeltag und anderer Parameter herzustellen, wurden aus den Aufzeichnungen am Messturm nur diejenigen Daten weiter verwendet, die zu denselben Messzeiten wie am Großen Arber erhoben worden waren. Damit entfallen alle Messungen in den acht Nachtstunden, die aufgrund der Temperaturabsenkung und insbesondere in Gipfellage häufig Nebel hervorrufen (BAUMGARTNER 1958). Trotz der unterschiedlichen Distanzauflösung der Messverfahren wurden die Messwerte zur Berechnung der mittleren Sichtweite unmittelbar herangezogen, weil die Minima mit 20 m und 39 m gleich waren und das Maximum mit 1000 m definiert ist.

3 Ergebnisse und Diskussion

3.1 Nebelindikation und Sichtweite

3.1.1 Nebeltage und Nebelstunden

Die Anzahl der Nebeltage betrug in den hydrologischen Jahren 2012 und 2013 am Großen Arber 217 bzw. 253 Tage. Die Verteilung über die Monate ergab eine große mittlere Häufigkeit von 90% bis 84% in den Monaten Dezember bis Februar (Abb. 2) und geringere Werte zwischen 67% im April und 39% im August.

Abb. 2: Anzahl Nebeltage (% Monat) am Großen Arber (1436 m ü. NN) und in 40 m Höhe am Messturm Schachtenau (807 m ü. NN) in den hydrologischen Jahren 2012 und 2013.

Dies entspricht dem Mittelwert der Jahre 1994 bis 2000 mit 233 Nebeltagen pro Jahr sehr genau (BŁAŚ and SOBIK 2004). Der Große Arber gehört damit in die Reihe der nebelreichen Gipfel der mitteleuropäischen herzynischen Gebirge wie Brocken (284 Tage), Fichtelberg (261 Tage), Feldberg (250 Tage) und Waldstein (186 Tage) (BŁAŚ and SOBIK 2004). Am Messturm Schachtenau wurden lediglich 50 bzw. 61 Nebeltage registriert. Dies sind ähnlich wenige wie an der nahen Station Churanov (74 Tage, 1126 m ü. NN), die sich wenig exponiert östlich der Kammlinie des Inneren Bayerischen Waldes/Böhmerwaldes befindet. Messturm Schachtenau wie Churanov weisen auf die Unterschiede zwischen Kammlage und Hanglagen hin. Die mittlere Verteilung über die Monate ergibt dann am Messturm Schachtenau auch nur maximale Häufigkeiten von 45% bis 23% zwischen Oktober und Januar und entsprechend deutlich geringere Werte in den übrigen Monaten (<12%), insbesondere im Juli und im August (2%).

Ungeachtet der Unterschiede zwischen den Jahren, die an beiden Stationen ähnlich zu Tage traten, resultierten Abweichungen in der zeitlichen Verteilung aus dem Auftreten und der Häufigkeit von Inversionswetterlagen mit geringen Sichtweiten in den Lagen von 700 - 1100 m ü. NN, von denen der Gipfel des Großen Arber dann verschont blieb. Dies war besonders markant im niederschlagsfreien November 2011 (Abb. 2), mit mehr Nebeltagen am Messturm Schachtenau (43%) als am Großen Arber (27%). Die Bedeutung derartiger Inversionswetterlagen für die Stoffdeposition im Hochlagen-Fichtenwald war in BEUDERT und BREIT (2012) thematisiert worden.

Deutlich genauere Hinweise auf die Wahrscheinlichkeit und das Ausmaß horizontaler Wassereinträge in Fichtenwälder lassen sich der relativen Häufigkeit von Nebel zu den Beobachtungsterminen entnehmen. Nebel wurde am Großen Arber im Mittel bei 2436 Messungen pro Jahr festgestellt, entsprechend 42% aller Termine. Dieser Anteil war in den Monaten Dezember bis Februar mit 73% bis 69% groß, von März bis November mit 34% bis 19% deutlich geringer (Abb. 3). Dies entspricht der Saisonalität der Nebeltage, wobei die innerjährliche Verteilung zwischen den Jahren durchaus sehr unterschiedlich sein kann, insbesondere von März bis November.

Die grundsätzliche Eignung der Messungen am Großen Arber für die Abschätzung der Nebelsituation am Großen Falkenstein demonstrieren die mittleren Werte des Jahres 1955 an der damaligen Station des DWD auf dem Großen Falkenstein (Abb. 3). Der Anteil der Nebeltermine pro Jahr war mit 34% etwas kleiner als am Großen Arber in den Jahren 2012 (38%) und 2013 (46%), die saisonale Verteilung war gleich.

Abb. 3: Termine mit Nebel (% der Messtermine/Monat) am Großen Arber (1436 m ü. NN) und in 40 m Höhe am Messturm Schachtenau (807 m ü. NN) in den hydrologischen Jahren 2012 und 2013. Zum Vergleich die Werte am Großen Falkenstein (1314 m ü. NN) im Jahr 1955 (24 Termine/Tag, BAUMGARTNER 1958).

Am Messturm Schachtenau wurden im Mittel an 195 Terminen pro Jahr Nebel festgestellt, entsprechend 3% aller Termine. Von Oktober bis Januar (Abb. 3) war der Anteil der Nebelmessungen bei 6% bis 9%, zwischen Februar und September bei 3% bis 5%. Im Mittel enthielt ein Nebeltag zehn Nebeltermine (65%) am Großen Arber und vier Nebeltermine (22%) am Messturm Schachtenau (Tab. 3, Anhang).

3.1.2 Sichtweite im Nebel

Die mittlere Sichtweite zu den Zeitpunkten der Nebeldetektion (Abb. 4) variierte am Großen Arber nur wenig zwischen den Monaten, trotz der starken Unterschiede bei der Anzahl der Nebelmessungen. Sie lag zwischen 77 m (Dezember) und 130 m (Juli), wobei die minimale Sichtweite bei 20 m lag. Am Messturm Schachtenau dagegen war neben der geringen Anzahl an Terminen mit Nebeldetektion (maximal 54 Stunden im November) auch die mittlere Sichtweite deutlich abweichend von den Verhältnissen am Großen Arber. Sie variierte zwischen 191 m (November) und 425 m (Februar), wenn der Minimalwert im August von 67 m Sichtweite unberücksichtigt bleibt, weil nur zwei Nebelbeobachtungen in den zwei Jahren dahinterstehen. Die minimale Sichtweite lag hier bei 39 m.

Abb. 4: Mittlere Anzahl der Termine mit Nebel pro Monat (linke Ordinate) am Großen Arber (GA, 1436 m ü. NN) und am Messturm Schachtenau (MT, 807 m ü. NN, in 40 m Höhe) sowie mittlere Sichtweite während dieser Termine (rechte Ordinate) in den hydrologischen Jahren 2012 und 2013.

Die Unterschiede zwischen dem Messturm Schachtenau (Unterhanglage) und dem Großen Arber (Gipfellage) sind groß. Neben dem Anteil an Nebelterminen pro Jahr (3% versus 42%) ist auch die Anzahl der Nebeltermine pro Nebeltag am Messturm Schachtenau (22%) deutlich kleiner als am Großen Arber (65%). Zudem verdeutlicht die mittlere Sichtweite (284 m versus 96 m), die maßgeblich vom Flüssigwassergehalt des Nebels (indirekt

proportional) bestimmt wird (STOELINGA and WARNER 1999), die geringe Bedeutung des zusätzlichen Wassereintrags aus der Nebel- und Wolkeninterzeption in Unterhanglage und die große Bedeutung am Gipfel.

Dieser Sachverhalt ist die wesentliche Basis für die Abschätzung der Deposition und der Depositionspfade von Stickstoffverbindungen in den nachfolgenden Kapiteln.

3.2 Wassereintrag in Fichtenbestände entlang des Höhengradienten

Die Freilandniederschläge am Gipfel des Großen Falkenstein (wet-only) und am Oberhang des Ruckwiesberg (bulk) waren im Jahr 2012 mit 493 und 496 mm und im Jahr 2013 mit 714 und 731 mm praktisch gleich, während am Unterhang mit 410 bzw. 658 mm geringere Summen gemessen wurden (Abb. 5). Dies entspricht dem mehrfach beschriebenen Höhengradienten im Untersuchungsgebiet, der sich aus der Orographie ergibt (TEICHMANN 1984, BEUDERT und BREIT 1997, KLÖCKING et al. 2005). Die Gleichheit der Niederschlagssummen an Gipfel und Oberhang widerspricht dem nicht. Bereits BAUM-GARTNER (1958) stellte fest, dass die Niederschlagsmengen auf Freiflächen im Gipfelbereich des Großen Falkenstein kleinräumig stark variieren. Auf der Verebnungsfläche (1308 m ü. NN) unmittelbar hinter dem Gipfelkamm (1312 m ü. NN), auf der auch die vorliegenden Messungen stattfanden, wurden deutlich niedrigere Niederschlagsmengen als auf dem Gipfel gemessen (40% bzw. 176% des senkrechten Niederschlags).

Abb. 5: Box-Whisker-Plots des Kronendurchlasses unter Fichte (mm) in Gipfellage (1310 m ü. NN) und am Oberhang (1192 m ü. NN). Graue Säulen bezeichnen den Median des Kronendurchlasses aus Einzelbeprobungen, am Unterhang (787 m ü. NN) den berechneten Wert aus der gemeinsamen Beprobung aller Sammler. Gleiches gilt für die Niederschlagssummen auf unmittelbar benachbarten Freilandstationen (rotes Quadrat).

Die Verwendung von bulk-Sammlern ist unter den gegebenen Umständen als geeignet anzusehen. Die Mengenunterschiede zu dem am Gipfel des Großen Falkenstein parallel betriebenen wet-only-Sammler sind mit -20 mm (2012) und +5 mm (2013) marginal.

Die Niederschlagssummen unter dem Kronendach von Fichten waren im Bestand am Gipfel mit 545 und 757 mm (2012, 2013) etwas größer als im Bestand am Oberhang (460 und 713 mm), während sich ihre Variabilität, erkennbar an den "Whisker" in Abb. 5, markant unterschied. Die Spannweite der Niederschlagssummen zwischen den acht Sammlern am Gipfel war sowohl 2012 als auch 2013 mit 643 mm bzw. 885 mm größer als der jeweilige Median oder Mittelwert der Ergebnisse (Abb. 5, Anhang). Dies verdeutlicht die kleinräumige strukturelle Heterogenität des Kronendachs: neben schwach, durchschnittlich und stark überschirmten stammnahen Positionen treten auch sogenannte Tropfpunkte auf (HOLWERDA et al. 2006, siehe Sammlerposition c in Abb. 1 und Abb. 5 im Anhang), an denen sich das von Ästen zweier oder mehrerer Bäume ablaufende Wasser konzentriert. ZIEGLER et al. (2008) fanden bei ihren Untersuchungen in einem thailändischen Regenwald, dass dieses Phänomen an etwa 15% der Messplätze, dabei durchaus nicht immer an denselben Messplätzen, und bei fast allen Niederschlagsereignissen auftritt. Demgegenüber lag die Spannweite der Niederschlagssummen zwischen den fünf Sammlern am Oberhang mit 160 bzw. 223 mm in beiden Jahren bei einem Drittel der Mediane und Mittelwerte und bei einem Viertel der Spannweite am Gipfel.

Abb. 6: Kronendachbilanz (Kronendurchlass - Freilandniederschlag) von Fichtenbeständen in Gipfellage (1310 m ü. NN), am Oberhang (1192 m ü. NN) und am Unterhang (787 m ü. NN). Negative Werte bedeuten Interzeptionsverluste, positive Interzeptionsgewinne. Helle Farbtöne bezeichnen den Median, dunkle Farbtöne den Mittelwert.

Der Fichtenaltbestand am Unterhang zeichnet sich dagegen durch vergleichsweise geringe Summen im Kronendurchlass von 227 (2012) und 377 mm (2013) aus, die auf beträchtliche Verdunstungsverluste von den Kronenoberflächen von 183 und 281 mm zurückzuführen sind (Abb. 6). In Oberhanglage ist die mediane Kronendachbilanz mit -36 mm (2012) bzw. -18 mm (2013) annähernd ausgeglichen, wobei die Unterschiede zur Nutzung des Mittelwerts (-43 mm bzw. -4 mm) marginal sind.

Im Fichtenaltbestand am Gipfel ergab die Kronendachbilanz (Abb. 6) Interzeptionsgewinne von 52 mm (2012) und 43 mm (2013), wobei bei Verwendung des Mittelwerts beträchtlich größere Werte entstehen (79 mm bzw. 148 mm), die auf das außerordentlich hohe, aber verifizierte Ergebnis des Sammlers c (siehe BEUDERT und BREIT 2012, 2014) zurückzuführen sind. Eingang in die weiteren Betrachtungen fanden daher die Mediane aus den hochgelegenen Untersuchungsbeständen als konservative Schätzwerte.

Aus den vorgestellten aggregierten Ergebnissen lässt sich, mit folgenden Annahmen, das Ausmaß der Auskämmung von Nebel- und Wolkentröpfchen plausibel abschätzen:

- a) Zusätzlicher Wassergewinn aus Nebel- und Wolkenauskämmung ist im Fichtenbestand in Unterhanglage bedeutungslos (ELLING et al. 1987). Die negative Kronendachbilanz ist allein der Interzeptionsevaporation in die Atmosphäre zuzuordnen.
- b) Die Interzeptionsevaporationsrate des Fichtenbestands am Unterhang kann als quantitative Ann\u00e4herung an die Interzeptionsverluste in Oberhang- und Gipfellage angesehen werden. Mit der Gel\u00e4ndeh\u00f6he zunehmende Niederschl\u00e4ge, Oberfl\u00e4chenbefeuchtung und h\u00f6here direkte Einstrahlung aber auch h\u00f6here Windgeschwindigkeiten kompensieren die geringeren Temperaturen bez\u00fcglich der Wasserdampfabgabe an die Atmosph\u00e4re. Ein Argument f\u00fcr die Richtigkeit dieser Annahme sind sehr \u00e4hnliche Gebietsverdunstungsraten im Hochlageneinzugsgebiet Markungsgraben, im tiefer gelegenen Forellenbachgebiet und im \u00fcbergeordneten Einzugsgebiet der Gro\u00dfen Ohe von 600 – 650 mm a⁻¹ vor Eintritt fl\u00e4chenhafter St\u00f6rungen durch Borkenk\u00e4ferbefall (KL\u00fcKING et al. 2005).

Demnach ermittelt sich die Summe des nicht sedimentierten Niederschlags HN, also dem Eintrag an Wasser durch Auskämmung/Impaktion von Tröpfchen aus der Atmosphäre, nach

$$HN_X = TF_X - FN_X - (TF - FN)_{UH} \qquad \qquad X = G, OH$$
(1)

mit Kronendurchlass *TF* und Freilandniederschlag *FN* am Gipfel *G* und am Oberhang *OH* und Interzeptionsverdunstung des Fichtenbestands am Unterhang $(TF - FN)_{UH}$.

Für den Fichtenbestand in Oberhanglage ergibt sich daraus eine ausgekämmte Wassermenge von 148 mm (2012) und 263 mm (2013), für den Fichtenbestand am Gipfel von 235 mm und 324 mm. In Anbetracht der maximal halbjährigen Dauer der Messkampagnen lassen sich daraus horizontale Niederschlagsraten von etwa 300 - 600 mm a⁻¹ abschätzen.

3.3 Stickstoffdeposition an Hochlagenstandorten

3.3.1 Wet-only- versus bulk-Messungen zur Deposition im Freiland

Im Jahr 2013 wurden am Gipfel des Großen Falkenstein Vergleichsmessungen zum Einfluss des verwendeten Sammlers auf die Stoffdeposition im Freiland durchgeführt. Im Hinblick auf die Messungen am Ruckwiesberg, die mit bulk-Sammlern vorgenommen wurden, sollte geprüft werden, ob die Verwendung von bulk- statt wet-only-Sammlern zu wesentlichen Abweichungen bezüglich der Stickstoffdeposition im Freiland führt.

Am Gipfel des Großen Falkenstein (FS bulk) unterscheidet sich die aufgefangene Niederschlagsmenge bei einem Quotienten von 1,0 nur um weniger als fünf Prozent zwischen den Sammlertypen (Abb. 7 links). Die sauren Komponenten (H⁺, $SO_4^{2^-}$) und die analysierten Stickstoffparameter weisen Quotienten zwischen 0,9 und 1,1 auf, wobei die Abreicherung bei NH₄⁺ (0,9), vermutlich zugunsten von NO₃⁺ (1,1) und DON, auf biologische Umsetzungen in den permanent offenen Auffanggefäßen hinweist. Die Nährstoffkationen sind mit 1,2 (Ca²⁺) bis 1,7 (Mn²⁺) stärker angereichert, wobei die ebenso starke Anreicherung beim DOC (1,5) die gemeinsame Herkunft aus dem Kronenraum zumindest eines Teils dieser Kationen (Re-Insertion) wahrscheinlich macht.

Abb. 7: Links: Stoffspezifische Konzentrations-Quotienten der bulk-Deposition am Großen Falkenstein (FS bulk) und der bulk-Deposition am Ruckwiesberg (HR bulk) zur wetonly-Deposition (FS wet-only) am Großen Falkenstein. Rechts: Streudiagramm der Cl⁻ Quotienten auf die Na⁺-Quotienten (bulk/wet-only) der Einzelproben am Großen Falkenstein im Jahr 2013.

Außer bei Na⁺ und Cl⁻ liegen alle Quotienten im Bereich von einer Standardabweichung um die von GAUGER et al. (2008) berichteten Mittelwerte. Na⁺ und Cl⁻ sind eng korreliert (p<0,001) und ähnlich stark angereichert (2,3 bzw. 2,0), was für ihre gemeinsame Herkunft aus dem sea spray des Atlantiks sprechen sollte. Auch die Auftragung der bulk/wet-only-Quotienten von Cl⁻ auf die Quotienten von Na⁺ in den Einzelproben (Abb. 7 rechts) zeigt die durchgehend sehr enge Zusammengehörigkeit dieser Ionen (p<0.001). Welche zusätzlichen Quellen oder Prozesse hinter diesem einheitlichen, aber abweichenden Verhalten bei diesen Ionen stecken könnten, bleibt unklar. Abhängigkeiten der Na/Cl-Verhältnisse oder der bulk/wet-only-Quotienten von der Niederschlagsmenge liegen nicht vor. Gleiche Befunde (Abb. 7, links) liefern die bulk/wet-only-Quotienten am Ruckwiesberg (HR bulk). Im Hinblick auf die Berechnung der Gesamtdeposition des reaktiven Stickstoffs mit Hilfe von Kronenraummodellen sind die hohen bulk/wet-only-Quotienten für Cl⁻ und Na⁺ unkritisch. Die sich daraus ergebenden Unterschiede in den N-Depositionsraten liegen bei weniger als einem Kilogramm Stickstoff pro Hektar (BEUDERT und BREIT 2014).

3.3.2 Konzentrationen und Deposition reaktiver Stickstoffverbindungen

Die mittleren Konzentrationen des Gesamtstickstoff TNb im Kronendurchlass sind am Ruckwiesberg (HR) mit 1,9 mg l⁻¹ ($\pm 0,3$) höher (Abb. 8) als am Großen Falkenstein (FS) mit 1,7 mg l⁻¹ (0,3). Der Unterschied ist jedoch nicht signifikant, ebenso wenig wie bei den mittleren NO₃⁻ (0,8 versus 0,9 mg l⁻¹). Allerdings ist NH₄⁺ am Ruckwiesberg mit 0,7 mg l⁻¹ ($\pm 0,1$) hochsignifikant größer als am Großen Falkenstein, während DON hochsignifikant niedriger (0,3 versus 0,4 mg l⁻¹) ist. Beide Befunde deuten auf stärkere biochemische Umsetzungen des eingetragenen NH₄⁺ in den Kronen am Gipfel hin.

Abb. 8: Konzentrationen reaktiver Stickstoffverbindungen im Kronendurchlass (Kleinbuchstaben a – h und k – o: Sammlerpositionen), im wet-only-Sammler und bulk-Sammler am Großen Falkenstein und in Oberhanglage am Ruckwiesberg. FS und HR kennzeichnen die jeweiligen Mittelwerte (± s) des Kronendurchlasses der Messungen 2012 und 2013.

Die Unterschiede im Konzentrationsmuster im Freilandniederschlag sind bei gemessenen Gesamtkonzentrationen von jeweils 0,6 mg l⁻¹ minimal (Abb. 8). Insbesondere die minimalen und ähnlich hohen DON (und DOC) im wet-only- und bulk-Sammler sprechen für geringe Beeinflussung der bulk-Messungen durch Niederschlagswasser, das von Kronenober-flächen verdriftet ist.

Die Unterschiede zwischen den Sammlern sind in beiden Beständen beträchtlich, vor allem beim NO_3^- . Sie resultieren aus der räumlichen Heterogenität der Bestandesstrukturen, insbesondere der Kronenüberschirmung (siehe Abb. 1 – 3 im Anhang), die sich in der chemischen Komposition deutlich stärker als in der Niederschlagsmenge manifestiert. So liefert Sammler d die gleiche Gesamtkonzentration (0,7 mg l⁻¹) und dasselbe Konzentrationsmuster wie die Sammler im Freiland (0,6 mg l⁻¹), obwohl er in einer Bestandeslücke von wenigen Metern von 30 m hohen Fichten umgeben ist (siehe Abb. 2, Anhang). Dieser Befund gilt für alle untersuchten chemischen Parameter, insbesondere auch für DOC als Indikator für Umsetzungen im Kronenraum. Daher wurden die Ergebnisse von Sammler d von allen weiteren Auswertungen als Repräsentant des Kronendurchlasses ausgeschlossen, auch wenn Bestandeslücken natürliche Bestandteile eines Fichtenbestands sind.

Die Verteilung der Konzentrationen in standardisierter Form (Abb. 9) auf die Sammlerpositionen unter Fichtenschirm offenbart ein durchgehendes Muster und mindestens schwach signifikante korrelative Zusammenhänge für $SO_4^{2^-}$, Na⁺ und Cl⁻ sowie NO₃⁻. Diese Stoffe sind weit überwiegend dem Eintrag aus der Atmosphäre zuzuordnen. Ihre Konzentrationen folgen der Variation der Wassermenge: überdurchschnittliche Mengen und Konzentrationen für die Positionen a und c, unterdurchschnittliche für die Positionen e und k. Aus diesem Befund des Gleichlaufs mit der Niederschlagsmenge und der Konzentrationserhöhung mit steigender Wassermenge lässt sich schließen, dass neben der Sedimentation weitere Eintragspfade für diese Stoffe bzw. für Wasser mit abweichenden Konzentrationen vorliegen müssen.

	Menge	Na +	Cl^{-}	SO_4^{2-}	NO ₃	$\mathrm{NH_4}^+$	DON
a^+	0,76						
71-	0,50	0,76					
O_4^{2-}	0,85	0,82	0,65				
10 ₃ -	0,55	0,62	0,75	0,77			
${\rm H_4}^+$	-0,16	-0,08	0,35	0,02	0,64		
OON	0,13	0,20	0,01	0,05	-0,40	-0,67	
OOC	0,31	0,35	0,16	0,32	-0,21	-0,68	0,88

 Abb. 9: Oben und Mitte: standardisierte Stoffkonzentrationen im Kronendurchlass (Kleinbuchstaben: Sammlerpositionen) am Großen Falkenstein und am Ruckwiesberg. Rechts: Korrelationskoeffizienten der standardisierten Konzentrationen im Kronendurchlass (flussgewichtete Mittelwerte der Messungen 2012 und 2013). Farbig: P<0,05.

DOC und DON sind nicht mit $SO_4^{2^-}$, Na^+ , Cl^- sowie NO_3^- und der Niederschlagsmenge korreliert. Für DOC und DON, dessen Bindung an den DOC signifikant positiv ist (r = 0,88), deutet dies auf den Kronenraum als Quellregion hin, zumal die DOC im Freilandniederschlag um eine Größenordnung geringer als im Kronendurchlass sind.

Die N-Einträge im Freiland (Abb. 10) betrugen in der Summe beider Messkampagnen 6,9 kg ha⁻¹ am Großen Falkenstein (wet-only) sowie 7,3 kg ha⁻¹ am Ruckwiesberg (bulk) und an der Sammlerposition d unter Fichte. Die N-Einträge unter Fichte waren 26 kg ha⁻¹ (\pm 12) am Großen Falkenstein und 22 kg ha⁻¹ (\pm 6) am Ruckwiesberg. Die große Streuung der N-Deposition am Großen Falkenstein geht auf die große Variabilität bei den aufgefangenen Mengen im Kronendurchlass (Abb. 5, Anhang) und die (geringere) Variabilität der Konzentrationen (Abb. 8, s. o.) zurück. Sie ist in beiden Jahren gegeben (Abb. 6, Anhang). Die positive Korrelation von Menge und Konzentration insbesondere bei NO₃⁻ führte zu enormen Einträgen von 30, 32 und 50 kg N ha⁻¹ an den Sammlerpositionen n, a und c. Das ist das 5- bis 14-fache des Eintrags im Freiland. Im Mittel jedoch waren die stofflichen Anreicherungen bei NO₃⁻ (vierfach) und NH₄⁺ (zweifach) an beiden Standorten sehr ähnlich. Der Unterschied bestand in der Produktion/Mobilisierung des DON, dessen Deposition unter Fichte bei 6,4 kg ha⁻¹ (Großer Falkenstein) und 3,7 kg ha⁻¹ (Ruckwiesberg) lag. Selbst bei Verwendung der Freilanddeposition am Ruckwiesberg war dies das Sechsfache (±1) bzw. Dreifache (±1) der Freilanddeposition.

Abb. 10: Deposition reaktiver Stickstoffverbindungen unter Fichte (Kleinbuchstaben a – h und k – o: Sammlerpositionen), im wet-only-Sammler und bulk-Sammler am Großen Falkenstein und in Oberhanglage am Ruckwiesberg. FS und HR kennzeichnen die jeweiligen Mittelwerte (± s) im Kronendurchlass der Messungen 2012 und 2013.

Die gemessenen DON-Einträge unter Fichte sind als Summe zweier sommerlicher Messkampagnen zunächst als maximale Schätzwerte für ein Jahr anzusehen, weil DON und DOC im Sommer maximale Konzentrationen im Kronendurchlass erreichen (BEUDERT und BREIT 2010). Die Vergleichbarkeit mit Literaturangaben auf Jahresbasis kann aber dennoch als gegeben angesehen werden, weil die kurze Messzeit (285 Tage) mögliche Überschätzungen kompensiert. Aus dem benachbarten Sumava werden DON-Einträge von 4-6 kg N ha⁻¹ a⁻¹ unter Fichte berichtet (KOPACEK et al. 2009). Entsprechende Angaben für Buchenbestände liegen bei 5 kg N ha⁻¹ a⁻¹ (SOLINGER et al. 2001).

Der NO₃⁻-Anteil betrug am Großen Falkenstein 42% im Freiland und 49% unter Fichte, der NH₄⁺-Anteil 48% und 26%. Der Rückgang bei NH₄⁺ und der Anstieg bei NO₃⁻ entsprechen Ergebnissen von DE SHRIJVER et al. (2007) und MUSTAJÄRVI et al. (2008) für Gebiete mit geringer N-Deposition (< 10 kg N ha⁻¹ a⁻¹). Diese Verschiebung deutet auf die biologische Transformation von NH₄⁺ hin, könnte aber auch der Interzeption von NO₃⁻ bei gleichzeitiger Adsorption und/oder Absorption von NH₄⁺ im Kronenraum zuzuordnen sein. Die analytischen Befunde des Nebel- und Wolkenwassers (siehe Kap. 3.4) unterstützen jedoch die biologische Umwandlung im Kronenraum, da NH₄⁺ und NO₃⁻ auch im Nebel- und Wolkenwasser gleiche Anteile aufweisen.

Würde der NH_4^+ -Anteil unter Fichte gleich dem im Freiland bleiben, müsste der NH_4^+ -Eintrag bei 12,3 statt 6,7 kg ha⁻¹ liegen, am Ruckwiesberg bei 10,8 statt 8,0 kg ha⁻¹. Die Unterschiede entsprechen in auffälliger Weise den zusätzlichen DON-Einträgen unter Fichte von 5,7 und 2,5 kg ha⁻¹. Dies legt die Vermutung nahe, dass DON unmittelbar aus NH_4^+ generiert wurde und keine zusätzliche, nicht berücksichtigte Quantität im DIN-Eintrag repräsentiert. Bereits FRIEDLAND et al. (1991) vermuteten, dass die Zunahme des DON im Kronendurchlass eines subalpinen Fichten-/Tannenwaldes in einem unmittelbaren Zusammenhang mit der gleich großen Abnahme des NH_4 -N von Gesamtdeposition (einschließlich Gas- und Wolkentröpfcheninterzeption) zu Kronendurchlass stehen könnte. Auch in gering aus der Atmosphäre belasteten finnischen Fichten- und Kiefernwäldern, in denen DON 36% des Eintrags mit dem Kronendurchlass ausmacht, war DON im Kronendurchlass signifikant positiv mit DIN im Freilandniederschlag korreliert, NH_4 -N jedoch signifikant negativ (MUSTAJÄRVI et al. 2008). FERM und HULTBERG (1999) fanden ebenfalls enge Korrelationen zwischen partikulär und gasförmig deponiertem NH_Y und der Kronendachdifferenz des DON in schwedischen Fichtenwäldern.

Alle Befunde sind so zu deuten, dass insbesondere NH₄⁺ im Kronenraum in DON umgewandelt wird. Diese Umwandlung kann binnen weniger Tage ablaufen (GAIGE et al. 2007). Als Quellen des DON-Eintrags in den Boden mit dem Bestandesniederschlag werden die atmosphärische Deposition (einschließlich Mikroorganismen, Pollen u.a.), Exsudate aus Assimilationsorganen (DRAAIJERS et al. 1997), die Fäkalien von herbivoren Insekten (LE MELLEC und MICHALZIK 2008, MICHALZIK und STADLER 2005, STADLER et al. 2006) und die Biomasse der von diesen Abfallprodukten und autotroph lebenden Mikroorganismen (MÜLLER et al. 2006) diskutiert. Die analytischen Befunde des Nebel- und Wolkenwassers (Kap. 3.4) belegen jedoch, dass externe Quellen für DON außerhalb des Kronenraums quantitativ wenig bedeutsam sind.

Daraus kann für das Untersuchungsgebiet geschlossen werden, dass der Eintrag des DON als biologisches Umwandlungsprodukt aus deponiertem DIN anzusehen ist.

3.4 Chemische Zusammensetzung von Nebel- und Wolkenwasser

3.4.1 Probevolumina und analytische Qualität

Bei den eintägigen Sammelperioden in den Messkampagnen 2012 und 2013 wurden am Gipfel des Großen Falkenstein (1314 m ü. NN) im Mittel 585 und 764 ml von den Nebelharfen ausgekämmt, am Ruckwiesberg (1192 m ü. NN) nur 113 bzw. 228 ml (Tab. 1). Bei den Maximalwerten war der Unterschied noch deutlicher ausgefallen. Die Volumina des aufgefangenen Nebel- und Wolkenwassers variierten am Gipfel des Großen Falkenstein um drei Größenordnungen: im Jahr 2012 zwischen 3 und 3370 ml, im Jahr 2013 zwischen 12 und 4080 ml. Die Sammelergebnisse am Ruckwiesberg fielen mit 7 bis 455 ml (2012) und 15 bis 1110 ml wesentlich geringer aus. Bei jeweils täglicher Kontrolle der Sammler über die gesamte Messperiode hinweg, wurden im Jahr 2012 am Ruckwiesberg 53 und in Gipfellage 78 Nebelereignisse beprobt, im Jahr 2013 36 und 76 Nebelereignisse. Beide Parameter, Anzahl wie Volumina, verdeutlichen die Bedeutung der Höhenlage und der Exponiertheit für die Quantität des horizontalen Eintrags von Wasser.

Tab. 1: Anzahl, Volumina und Ladungsbilanzen der Proben aus der Nebelharfe am Großen Falkenstein und am Ruckwiesberg. Für die Ladungsbilanz wurden wegen häufig fehlender pH-Werte nur die Anionen starker Säuren, Basenkationen und NH₄⁺ verwendet.

				Volu	ımen			Ladungsbilanz					
FS	Jahr	n=	Ø	\pm s	min	max	Ø	$\emptyset \pm s$		weite			
	2011	15	269	249	10	950	4%	7%	-8%	22%			
	2012	78	558	585	3	3370	1%	10%	-22%	27%			
	2013	76	689	764	12	4080	6%	10%	-12%	28%			
HR	Jahr	n=	Ø	\pm s	min	max	Ø	\pm s	Spann	weite			
	2012	53	113	113	7	455	-7%	18%	-35%	12%			
	2013	36	169	228	15	1110	2%	10%	-19%	26%			

Die Überprüfung der analytischen Qualität war wegen der teilweise sehr geringen Volumina und der daher unvollständigen Parametersätze (insbesondere pH-Wert) nicht standardmäßig (BEUDERT und BREIT 2012) durchzuführen. Die Erweiterung des Massenbilanzverfahrens zur Berechnung der Säureneutralisationskapazität (SIGG und STUMM 2011) mit dem quantitativ relevanten NH_4^+ ergab jedoch nahezu ausgeglichene mittlere Bilanzen zwischen 1% (2012) und 6% (2103) am Großen Falkenstein und zwischen -7% und 2% am Ruckwiesberg. Die Standardabweichungen lagen bei 10% bzw. 10% bis 18% am Ruckwiesberg, die maximalen Abweichungen bei -35% und 28%.

Die Stimmigkeit der Analyse bei den Stickstoffkomponenten (NH_4^+ , NO_3^-) wurde über den Abgleich mit dem unabhängig analysierten Gesamtstickstoff ($TNb \ge NH_4^+ + NO_3^-$) überprüft. Lediglich 5% der Messwerte wiesen negative DON von mehr als 0,1 mg N l⁻¹ auf. Dies ist angesichts der geringen medianen Konzentrationen des DON nicht überraschend. Sie lagen bei 0,09 bzw. 0,26 mg l⁻¹ am Großen Falkenstein und am Ruckwiesberg, entsprechend jeweils 3% von TNb.

3.4.2 Stickstoffkonzentrationen

Die medianen N-Konzentrationen unterscheiden sich zwischen den Jahren 2012 und 2013 an beiden Standorten nicht (Abb. 7, Anhang). Allerdings sind die Unterschiede zwischen den Standorten beträchtlich. Die maximalen TNb lagen bei 90 mg N l⁻¹ am Gipfel und 30 mg N l⁻¹ am Ruckwiesberg, die maximalen NH₄⁺ und NO₃⁻ bei 43 und 52 mg N l⁻¹ bzw. 22 und 19 mg N l⁻¹. Entgegengesetzt zu den Maximalwerten, sind die medianen Konzentrationen am Ruckwiesberg mit 2,6, 2,8 und 6,2 mg N l⁻¹ bei NH₄⁺, NO₃⁻ und TNb deutlich höher (Abb. 11). Der t-Test der log-transformierten Daten ergab bei allen Komponenten hochsignifikant höhere Mittelwerte am Ruckwiesberg. Am Großen Falkenstein erreichten die mittleren NH₄⁺, NO₃⁻ und TNb lediglich 55% - 62% der Konzentrationen am Ruckwiesberg. Bei allen Komponenten und Standorten entsprachen die so berechneten Mittelwerte den jeweiligen Medianen sehr gut.

Im Vergleich zu den N-Konzentrationen im Kronendurchlass sind die Mediane im Nebelund Wolkenwasser doppelt so hoch, am Gipfel wie am Ruckwiesberg, während der Wert der Whisker die absoluten Maxima im Kronendurchlass abdeckt (Tab. 4, Anhang).

Abb. 11: Box-Whisker-Plots der N-Konzentrationen (2012 und 2013) in den Proben der Nebelharfen am Großen Falkenstein (FS) und am Ruckwiesberg (HR). Statistische Ausreißer sind nicht dargestellt. Die eingebettete Tabelle enthält die Mittelwerte der Konzentrationen von N, DOC (mg l⁻¹) und Mn (μg l⁻¹) und die Signifikanz der Unterschiede zwischen den Standorten (t-Test) unter Verwendung log-transformierter Daten.

Aufgrund der geringen Horizontaldistanz zwischen den beiden Messplätzen sollten die Positionsunterschiede keine gravierende Bedeutung haben. Aufgrund der größeren Nähe zum Waldrand jedoch könnte die Re-Insertion bereits in Fichtenkronen deponierter Tropfen am Ruckwiesberg eine größere Rolle spielen. Darüber hinaus könnte der Verdunstung des bereits an den Teflonfäden des Nebelfängers hängenden Wassers als Ursache eine zusätzliche Rolle zukommen, da sie zur Lösungseinengung und Konzentrationserhöhung führt. Dieser Effekt würde am tiefer gelegenen Standort mit den wesentlich kleineren ausgekämmten Nebel- und Wolkenwasservolumina (Tab. 1, s. o.), aber höheren Temperaturen stärker zum Tragen kommen als am Gipfel. In der Tat lässt die Auftragung der TNb auf die Volumina der Nebel- und Wolkenproben einen hochsignifikanten Zusammenhang steigender Konzentrationen bei abnehmenden Volumina erkennen (Abb. 8, Anhang). Der Erklärungsbeitrag der Volumina zur Variabilität der Konzentrationen ist insgesamt nicht sehr groß, am Ruckwiesberg jedoch mit 29% größer als am Großen Falkenstein (19%).

Als weiteres Indiz für die lokale Beeinflussung der Konzentrationen am Ruckwiesberg kann gesehen werden, dass der Mittelwert der log-transformierten DOC (Mn) am Gipfel hochsignifikant geringer ist: er erreicht, wie auch der Median, nur 60% (50%) der DOC (Mn) am Ruckwiesberg (Abb. 11). Damit gleichen sie den prozentualen Verhältnissen der N-Verbindungen.

Die mittleren Äquivalentanteile von NO_3^- und NH_4^+ liegen bei 52% und 44% (± 9%) am Großen Falkenstein 50% und 45% (± 11%) am Ruckwiesberg. In der doppellogarithmischen Auftragung (Abb. 12) lässt sich erkennen, dass NO_3^- und NH_4^+ an beiden Messplätzen hochsignifikant (r² = 0,86 bzw. 0,59) positiv miteinander korreliert sind.

Abb. 12: Doppellogarithmische Auftragung der NO₃⁻-Konzentrationen auf die NH₄⁺-Konzentrationen (μeq/l) im Wasser des Nebelfängers am Großen Falkenstein (links) und am Ruckwiesberg (rechts).

Daraus kann gefolgert werden, dass der Rückgang des NH_4^+ -Anteils und der Anstieg des DON-Anteils vom Freilandniederschlag zum Kronendurchlass (Kap. 3.3) nicht dem Eintrag über Nebel- und Wolkenwasser zuzuschreiben ist. Dieses verhält sich bezüglich der DIN-Anteile wie Freilandniederschlag (Abb. 8).

3.5 Abschätzung der Beiträge verschiedener Depositionspfade zum Stickstoffeintrag in Fichtenwälder

Der Stickstoffeintrag mit dem Freilandniederschlag betrug in der Summe der zwei sommerlichen Messkampagnen 7,5 bis 7,7 kg N ha⁻¹ an allen Standorten. Er war damit unabhängig von der Höhenlage (Abb. 13), obwohl die Niederschlagsmengen von 1068 mm auf über 1200 mm anstiegen (Abb. 5). Dies entspricht dem Befund mit der Höhe abnehmender Konzentrationen im Freilandniederschlag für das Einzugsgebiet der Großen Ohe (BOSSE 1985, TEICHMANN 1983).

Der Eintrag unter Fichte am Unterhang war mit 14 kg N ha⁻¹ (Abb. 13) gleich dem mittleren jährlichen Eintrag der Jahre 2012 und 2013 dort (BEUDERT und BREIT 2014). Dies unterstützt das Vorgehen, die Summe aus beiden Messkampagnen mit lediglich 285 Messtagen als Schätzwert für den jährlichen Eintrag zu nehmen. In Oberhang- und Gipfellage stieg der Eintrag auf 22 und 26 kg N ha⁻¹ an, wobei der gleichzeitige Anstieg der Fehlerbalken von 6 auf 12 kg N ha⁻¹ die enorme kleinstandörtliche Variabilität der Rezeptorstrukturen anzeigte. Die Verdoppelung bis Verdreifachung der Einträge gegenüber dem Freiland ist Ergebnis der Interzeption von Gasen und Partikeln und der feuchten Deposition.

Abb. 13:

Gemessene N-Depositionsraten (TNb, Summe der beiden Messkampagnen) im Freiland und in Fichtenbeständen in Gipfellage (1310 m ü. NN), am Oberhang (1192 m ü. NN) und am Unterhang (787 m ü. NN).

Unter der Annahme, dass die Auskämmung von Wolkenwasser in Unterhanglage quantitativ bedeutungslos ist, was durch die geringe Anzahl an Nebelstunden v.a. in den Sommermonaten untermauert wird (Abb. 3, Kap. 3.1), lässt sich der zusätzliche Eintrag unter Fichte dort von 6,4 kg N ha⁻¹ dem trockenen Depositionspfad zuordnen. Unterstellt man zunächst simplifizierend weiter, dass dieser Beitrag unabhängig von der Höhenlage ist, dann ergeben sich für die feuchte Deposition in den höheren Lagen 8 und 10 kg N ha⁻¹ (Mediane) bzw. 9 und 12 kg N ha⁻¹ (Mittelwerte), die immerhin 36% - 56% des gesamten Eintrags ausmachen (Tab. 2). Dies sind zunächst maximale Schätzwerte, weil darin selbstverständlich nicht definierbare Anteile trocken in der Krone deponierten Stickstoffs enthalten sind, die bei Befeuchtung in Lösung gehen und zu Boden fallen. Die quantitative Bedeutung weiterer Prozesse, wie die direkte Aufnahme in die Nadel, wurde in BEUDERT und BREIT (2014) ausführlich für die hier untersuchten Bestände diskutiert und bleibt hier unberücksichtigt.

Wollten man die feuchte N-Deposition aus den berechneten Wolken- und Nebelwassereinträgen herleiten, müssten die mittleren N-Konzentrationen in diesem Wasser N_{CW} in Gipfellage 1,9 mg l⁻¹ (Median) bzw. 1,7 mg l⁻¹ (Mittelwert) betragen, am Oberhang 2,0 mg l⁻¹. Für die Darstellung der gesamten Interzeptionsdeposition müssten die Konzentrationen N_{ID} bei 2,5 mg l⁻¹ bis 3,6 mg l⁻¹ liegen.

Tab. 2: Ableitung der erforderlichen N-Konzentration im Nebel- und Wolkenwasser N_{ID} und N_{CW} , um die gesamte Interzeptionsdeposition ID bzw. die feuchte Deposition CW in den Fichtenbeständen in Gipfellage (1310 m ü. NN) und am Oberhang (1192 m ü. NN) mit dem Nebel- und Wolkenwassereintrag P_{CW} abzubilden (2012 und 2013). Die Interzeptionsverdunstung in Unterhanglage betrug 464 mm, die trockene Deposition 6,4 kg N ha⁻¹. Die Berechnung erfolgte nach Gleichung (1) in Kap. 3.2.

		Gipfel			Oberhang				
	Median	Mittel	\pm s	Median	Mittel	\pm s			
Bestandesdeposition (kg N ha ⁻¹)	23	26	12	22	22	5			
Interzeptionsdeposition ID (kg N ha ⁻¹)	16	19		14	15				
Feuchte Deposition CW (kg N ha ⁻¹)	9	12		8	9				
Throughfall (mm)	1301	1484	489	1173	1179	126			
Nebeleintrag P_{CW} (mm)	559	741		413	418				
$N_{CW} (mg l^{-1})$	1,9	1,7	0,6	2,0	2,0	1,9			
$N_{ID} (mg l^{-1})$	2,8	2,5	0,5	3,5	3,6	2,3			

Durch Vergleich mit den mittleren Konzentrationen im Sammelwasser der Nebelharfen von 3,6 mg l⁻¹ und 6,3 mg l⁻¹ (Abb. 11) ergibt sich, dass die aus dem Höhengradienten der Stickstoffeinträge abgeleiteten Beiträge der feuchten Deposition zwanglos aus den horizontalen Wassereinträgen, ermittelt aus der Kronenwasserbilanz, und den gemessenen Konzentrationen im Nebel- und Wolkenwasser erzeugt werden können. Dies gilt wegen der erforderlichen nur geringen Konzentrationen auch dann, wenn die Konzentrationen mit zunehmender Menge des eingetragenen Wassers deutlich sinken (Abb. 8, Anhang). Selbst die Werte des ersten Quartils von 2,0 mg l⁻¹ und 4,1 mg l⁻¹ würden ausreichen, den N-Eintrag über feuchte Deposition am Großen Falkenstein und am Ruckwiesberg abzubilden.

4 Zusammenfassung

In den Jahren 2012 und 2013 wurden Messungen zur Deposition in Gipfellage am Großen Falkenstein (1315 m ü. NN) und in Oberhanglage am Ruckwiesberg (1192 m ü. NN) im Nationalpark Bayerischer Wald durchgeführt. An diesen Standorten wurde, zusätzlich zu Depositionsmessungen im Freiland und unter Fichte (*Picea abies* L.), auch Wolken- und Nebelwasser mittels Nebelharfen gesammelt, um Informationen über die chemische Qualität der feuchten Depositionskomponente zu erhalten. Als Referenz dienten die Messeinrichtungen des Integrierten Monitorings im Forellenbachgebiet in Unterhanglage: der Fichtenaltbestand Weitau (787 m ü. NN), Freilandmessstelle Taferlruck (770 m ü. NN) und Messturm Schachtenau (807 m ü. NN).

Die Niederschlagsmengen unter Fichte deuteten die enorme Bedeutung der Auskämmung von Nebel und Wolken (feuchte Deposition) für den Stoffeintrag aus der Atmosphäre an. Die Sammler unter den Fichtenkronen erbrachten in den Jahren 2012 und 2013 604 mm, 1079 mm und 1191 mm in Unterhang-, Oberhang- und Gipfellage, die Niederschläge im Freiland 1068 mm, 1227 mm und 1207 mm. Daraus wurden Wolkenwassereinträge von 383 mm und 587 mm in Oberhang- und Gipfellage errechnet. Eigene Sichtweitenmessungen am Messturm Schachtenau und des DWD am Großen Arber (1435 m ü. NN) brachten den Beleg, dass feuchte Deposition in Unterhanglage unbedeutend sein muss, in exponierter Gipfellage dagegen bedeutsam. Am Gipfel gab es 234 Nebeltage pro Jahr (64%) mit Nebel an 42% aller Messtermine, am Unterhang lediglich 56 Tage pro Jahr (15%) und 3% Nebelterminen. Auch die mittlere Sichtweite (96 m versus 284 m) und die Anzahl der Nebelbeobachtungen pro Nebeltag (63% versus 22%) unterstrichen diese Aussage.

Die Volumina der mit Nebelharfen gesammelten Nebel- und Wolkenwässer waren mit durchschnittlich 136 ml (Oberhang) und 623 ml (Gipfel) sehr unterschiedlich und belegten den Höhengradienten aus den Depositions- und Sichtweitemessungen. Die Stickstoffkonzentrationen im Sammlerwasser wiesen einen entgegengesetzten Höhengradienten auf. Am Gipfel erreichten sie wie auch DOC und Mn nur etwa 60% der Werte am Oberhang, was auf stärkere Lösungseinengung und/oder Beeinflussung durch benachbarte Fichtenbestände am Oberhang zurückgeführt wurde. NH₄⁺ und NO₃⁻ waren an beiden Standorten in annähernd gleichen Teilen vorhanden. DON war wie im Freilandniederschlag wenig bedeutsam.

Daher ist es plausibel, seine hohen Konzentrationen im Kronendurchlass auf die entsprechend rückläufigen Konzentrationen des NH_4^+ , also die biologische Umwandlung von deponierten NH_4^+ , zurückzuführen, während die anteilige Konzentrationen des NO_3^- sich nicht änderte. Die von der Überschirmungssituation abhängige Deposition mit dem Kronendurchlass lag bei 14, 22 und 26 kg N ha⁻¹ in Unterhang-, Oberhang- und Gipfellage und wies insbesondere am Gipfel eine große Variabilität auf. Die Deposition im Bestand war damit um ein Vielfaches höher als die Deposition im Freiland (7,5 – 7,7 kg N ha⁻¹), die keiner Abhängigkeit von der Geländehöhe unterlag. Mit der Prämisse, dass die feuchte Deposition in Unterhanglage unbedeutend ist und die Rate der trockenen Deposition auf die höhergelegenen Standorte übertragen werden darf, wurden Frachten von 8 kg N ha⁻¹ (Oberhang) bis 12 kg N ha⁻¹ (Gipfel) der feuchten Deposition zugeordnet. Die mittleren Konzentrationen im Nebel- und Wolkenwasser (3,6 mg N l⁻¹ und 6,3 mg N l⁻¹) und selbst die Werte des ersten Quartils von 2,0 mg N l⁻¹ und 4,1 mg N l⁻¹ sind ausreichend, den N-Eintrag über die feuchte Deposition an beiden Standorten abzubilden.

Die feuchte Deposition erreichte in den Fichtenbeständen Anteile von 36% (Oberhang) bis 48% (Gipfel). Ihr Betrag ist insbesondere von einer starken Exposition gegenüber feuchten Luftmassen abhängig und ist daher auf solchen Standorten bei der Kartierung der Deposition zu berücksichtigen. Erst oberhalb von 1100 - 1200 m ü. NN dürfte sie im Inneren Bayerischen Wald quantitativ bedeutsam werden. Höhenlage und die Anzahl der Nebeltage pro Jahr sind per se keine hinreichenden Indikatoren für relevante Beiträge der feuchten Deposition zur Gesamtdeposition.

Literatur

- BAUMGARTNER, A.: Nebel und Nebelniederschlag als Standortsfaktoren am Großen Falkenstein (Bayerischer Wald). Forstwissenschaftliches Centralblatt 77, 257-272 (1958).
- BEUDERT, B. und BREIT, W.: Bodenchemische Veränderungen als Folge anthropogener Belastungen und natürlicher Störungen. Fkz. 351 01 012 des Umweltbundesamtes; Nationalparkverwaltung Bayerischer Wald, Grafenau (2013).
- BEUDERT, B. und BREIT, W.: Horizontaler Niederschlag, nasse und feuchte Deposition im Inneren Bayerischen Wald - erste Ergebnisse. Fkz. 351 01 012 des Umweltbundesamtes; Nationalparkverwaltung Bayerischer Wald, Grafenau (2012).
- BEUDERT, B. und BREIT, W.: Hydrochemische Trends und Versauerungsmechanismen im Forellenbachgebiet. Fkz. 351 01 012 des Umweltbundesamtes; Nationalparkverwaltung Bayerischer Wald, Grafenau (2011)
- BEUDERT, B. und BREIT, W.: Kronenraumbilanzen zur Abschätzung der Stickstoffgesamtdeposition in Waldökosysteme des Nationalparks Bayerischer Wald. Fkz. 351 01 012 des Umweltbundesamtes; Nationalparkverwaltung Bayerischer Wald, Grafenau (2014).
- 6) BEUDERT, B. und BREIT, W.: Untersuchungen zum Stickstoffeintrag und zum wassergebundenen Stickstoffhaushalt des Forellenbachgebiets. Fkz. 351 01 012 des Umweltbundesamtes; Nationalpark-verwaltung Bayerischer Wald, Grafenau (2010).
- BEUDERT, B. und BREIT, W.: Zwölf Jahre Integrated Monitoring Programm an der Messstelle Forellenbach im Nationalpark Bayerischer Wald. Fkz. 351 01 012 des Umweltbundesamtes; Nationalparkverwaltung Bayerischer Wald, 307 S., Grafenau (2004).
- BEUDERT, B., BREIT, W., DIEPOLDER, U. und KAISER, M.: Integrated Monitoring im Nationalpark Bayerischer Wald. Abschlussbericht zum F+E-Vorhaben 104 02 700 des Umweltbundesamtes. Bayerische Landesanstalt f
 ür Wald und Forstwirtschaft, 265 S., Freising (1997).
- 9) BŁAŚ, M. and SOBIK, M.: The distribution of fog frequency in the Carpathians. In: KUCHCIK, M. and BŁAŻEJCZYK, K. (Eds.): General and Applied Climatology: Selected Aspects. Polish Academy of Science, Inst. of Geography and Spatial Organization, Warszawa, Poland, 77, 19-34 (2004).
- 10) BOBBINK, R. and HETTELINGH, J.-P. (eds.): Review and revision of empirical critical loads and dose-response relationships. RIVM report: 680359002, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands, www.rivm.nl/cce (2011).
- BOSSE, M.: Säure- und Stoffeintrag mit dem Niederschlag im Einzugsgebiet "Große Ohe" unter Berücksichtigung von Jahreszeit und Witterungseinflüssen. Schriftenreihe Wasserhaushalt und Stoffbilanzen im naturnahen Einzugsgebiet Große Ohe, Heft 2. Nationalparkverwaltung Bayerischer Wald, 168 S., Grafenau (1987).
- 12) DE SCHRIJVER, A., GEUDENS, G., AUGUSTO, L., STAELENS, J., MERTENS, J., WUYTS, K., GIELIS, L. and VERHEYEN, K.: The effect of forest type on throughfall deposition and seepage flux: a review. Oecologia 153, 663-674 (2007).
- 13) DRAAIJERS, G. P. J., ERISMAN, J. W., VAN LEEUWEN, N. F. M., RÖMER, F. G., TE WINKEL, B. H., VELTKAMP, A. C., VERMEULEN, A. T. and WYERS, G. P.: The impact of canopy exchange on differences observed between atmospheric deposition and throughfall fluxes. Atmospheric Environment 31, 387-397 (1997).
- ELLING, W., BAUER, E., KLEMM, G. und KOCH, H.: Klima und Böden. Schriftenreihe Nationalpark Bayerischer Wald, Heft 1, 254 S., Bayerisches Staatsministerium f
 ür Ern
 ährung, Landwirtschaft und Forsten (1987).
- 15) FERM, M. and HULTBERG, H.: Dry deposition and internal circulation of nitrogen, sulphur and base cations to a coniferous forest. Atmospheric Environment 33, 4421-4430 (1999).
- FRIEDLAND, A.J., MILLER, E.K., BATTLES, J.J. and THORNE, J.F.: Nitrogen deposition, distribution and cycling in a subalpine spruce-fir forest in the Adirondacks, New York, USA. Biogeochemistry 14, 31-55 (1991).
- 17) GAIGE, E., DAIL, D.B., HOLLINGER, D.Y., DAVIDSON, E.A., LEE, J.T., FERNANDEZ, I.F., SIEVERING, H., RODRIGUES, C., HUGHES, H., WHITE, A. and HALTEMAN, W.: Changes in canopy processes following whole-forest canopy nitrogen fertilization of a mature spruce-hemlock forest. Ecosystems 10, 1133-1147 (2007).

- 18) GAUGER, T., HAENEL, H.-D., RÖSEMANN, C., NAGEL, H.-D., BECKER, R., KRAFT, P., SCHLUTOW, A., SCHÜTZE, G. WEIGELT-KIRCHNER, R. und ANSHELM, F.: Nationale Umsetzung UNECE-Luftreinhaltekonvention (Wirkungen). Teil 2: Wirkungen und Risikoabschätzungen, Critical Loads, Biodiversität, Dynamische Modellierung, Critical Levels Überschreitungen, Materialkorrosion. UBA-Texte 39/08. http://www.umweltbundesamt.de (2008).
- 19) HOLWERDA, F., BURKARD, R., EUGSTER, W., SCATENA, F.N., MEESTERS, A.G.C.A. and BRUIJNZEEL, L.A.: Estimating fog deposition at a Puerto Rican elfin cloud forest site: comparison of the water budget and eddy covariance methods. Hydrological Processes 20, 2669-2692 (2006).
- 20) KLÖCKING, B., SCHWARZE, R., BEUDERT, B., SUCKOW, F., LASCH, P., BADECK, F. und PFÜTZNER, B.: Auswirkungen des Borkenkäferbefalls auf den Wasser- und Stoffhaushalt zweier Gewässereinzugsgebiete im Nationalpark Bayerischer Wald, Schriftenreihe "Wasserhaushalt und Stoffbilanzen im naturnahen Einzugsgebiet der Großen Ohe", Bd. 8, (2005).
- KOPÁČEK, J., TUREK, J., HEJZLAR, J. and ŠANTRŮČKOVÁ, H.: Canopy leaching of nutrients and metals in a mountain spruce forest. Atmospheric Environment 43, 5443–5453 (2009).
- 22) Le MELLEC, A. and MICHALZIK, B.: Impact of a pine lappet (*Dendrolimus pini*) mass outbreak on C and N fluxes to the forest floor and soil microbial properties in a Scots pine forest in Germany. Canadian Journal of Forest Research 38, 1829-1841(2008).
- 23) MICHALZIK, B. and STADLER, B.: Importance of canopy herbivores to dissolved and particulate organic matter fluxes to the forest floor. Geoderma 127, 227-236 (2005).
- 24) MÜLLER, T., STROBEL, K., ULRICH, A.: Microorganisms in the phyllosphere of temperate forest ecosystems in a changing environment. In: BAILEY, M. J., LILLEY, A. K., TIMMS-WILSON, T.M. and SPENCER-PHILLIPS, P. T. N. (Eds.): Microbial Ecology of Aerial Plant Surfaces. Ch. 4, pp. 51-65. CAB International, Wallingford, UK. (2006).
- 25) MUSTAJÄRVI, K., MERILÄ, P., DEROME, J., LINDROOS, A.-J., HELMISAARI, H.-S., NÖJD, P. and UKONMAANAHO, L.: Fluxes of dissolved organic and inorganic nitrogen in relation to stand characteristics and latitude in Scots pine and Norway spruce stands in Finland. Boreal Environment Research 13 (suppl.), 3-21 (2008).
- SIGG, L. und STUMM, W.: Aquatische Chemie: Einführung in die Chemie natürlicher Gewässer (Vol. 8463). UTB. (2011)
- 27) SOLINGER, S., KALBITZ, K. and MATZNER, E.: Controls on the dynamics of dissolved organic carbon and nitrogen in a Central European deciduous forest. Biogeochemistry 55, 327-349 (2001).
- STADLER, B., MÜLLER, T. and ORWIG, D.: The ecology of energy and nutrient fluxes in hemlock forests invaded by hemlock woolly adelgid. Ecology 87, 1792-1804 (2006).
- STOELINGA, M.T. and WARNER, T.T.: Nonhydrostatic, mesobeta-scale model simulations of cloud ceiling and visibility for an east coast winter precipitation event. Journal of Applied Meteorology 38, 385–404 (1999).
- 30) TEICHMANN, U.: Die Ermittlung des Gebietsniederschlages zur Lösung hydrologischer Bilanzen. Schriftenreihe Wasserhaushalt und Stoffbilanzen im naturnahen Einzugsgebiet Große Ohe. Heft 1. Nationalparkverwaltung Bayerischer Wald, Grafenau (1984).
- UBA (UMWELTBUNDESAMT): Emissionen ausgewählter Luftschadstoffe. http://www.umweltbundesamt.de/sites/default/ files/medien/384/bilder/dateien/2_abb_emi-ausgewluftschadst_2015-06-01.pdf (2015).
- 32) ZIEGLER, A.D., GIAMBELLUCA, T.W., NULLET, M.A., SUTHERLAND, R.A., TANTASARIN, C., VOGLER, J.B. and NEGISHI, J.N.: Throughfall in an evergreen-dominated forest stand in northern Thailand: Comparison of mobile and stationary methods. Agric. and Forest Meteorology 149, 373-384 (2009).

Anhang

Tab. 1:	Position und Höhenlage der Messstationen und Fichtenbestände (rot: seit 2012) (BEUDERT und BREIT 2014).	26
Tab. 2:	Untersuchungsprogramme und ihre Zuordnung zu Messplätzen.	26
Tab. 3:	Anzahl Nebeltage und Nebelstunden und mittlere Sichtweite (m) während der Nebelstunden am Großen Arber (1436 m ü. NN) und in Unterhanglage am Messturm Schachtenau (807 m ü. NN in 40 m Höhe).	27
Tab. 4:	Chemische Beschaffenheit von Freilandniederschlag (wet-only, bulk) und Kronendurchlass unter Fichte $(a - h, m - o)$ am Gipfel (FS), am Oberhang (HR) und am Unterhang (F4) in den Messkampagnen 2012 und 2013.	28
Tab. 5:	Chemische Beschaffenheit von Nebel und Wolkenwasser in der Nebelharfe am Großen Falkenstein (FS) in den Messkampagnen 2012 und 2013.	29
Tab. 6:	Chemische Beschaffenheit von Nebel und Wolkenwasser in der Nebelharfe am Ruckwiesberg (HR) in den Messkampagnen 2012 und 2013.	31
Abb. 1:	Standort Großer Falkenstein mit Messplätzen für Freiland- und Bestandesnieder- schlag, Deposition, Meteorologie und horizontalen Niederschlag.	32
Abb. 2:	Stammfußkarte des Fichtenbestands Großer Falkenstein Süd mit den Sammler- positionen D bis H zur Erfassung des Bestandesniederschlags.	32
Abb. 3:	Stammfußkarte des Fichtenbestands Ruckwiesberg mit den Sammlerpositionen K bis O zur Erfassung des Bestandesniederschlags.	33
Abb. 4:	Stammfußkarte des Fichtenbestands F4 Weitau (Kreisfläche 600 m ²) mit 10 Depositionssammlern (Kästchen) für den Bestandesniederschlag.	33
Abb. 5:	Kronendurchlass (Kleinbuchstaben a – h sowie k – o: Sammlerpositionen) und im Freiland (wet-only-Sammler und bulk-Sammler), am Großen Falkenstein und in Oberhanglage am Ruckwiesberg.	34
Abb. 6:	N-Depositionsraten im Freiland und in Fichtenbeständen am Großen Falkenstein (1310 m ü. NN), in Oberhanglage am Ruckwiesberg (1192 m ü. NN) und am Unterhang im Forellenbachgebiet (787 m ü. NN).	34
Abb. 7:	N-Konzentrationen der Nebel- und Wolkenwasserproben am Großen Falkenstein (links) und am Ruckwiesberg (rechts), differenziert nach den Jahren 2012 und 2013.	35
Abb. 8:	N-Konzentrationen (TNb) der Nebel- und Wolkenwasserproben am Großen Falkenstein (FS) und am Ruckwiesberg (HR) in den Jahren 2012 und 2013.	35

	Position (Ga	auss-Krüger)
Messplatz	Rechts	Hoch
Taferlruck	4603611	5423153
Weitau	4604044	5423738
Schachtenau Messturm	4604167	5424299
Waldhäuser	4607438	5422369
Haus zur Wildnis	4591002	5436718
Ruckwiesberg	4593585	5440271
Großer Falkenstein Süd	4593702	5439422
Großer Falkenstein Nord	4593627	5439491
Großer Falkenstein	4593585	5439464

Tab. 1:Position und Höhenlage der Messstationen und Fichtenbestände (rot: seit 2012)
(BEUDERT und BREIT 2014)

Tab. 2:Untersuchungsprogramme und ihre Zuordnung zu Messplätzen. (Rot: in 2012 einge-
führt; grau hinterlegt: Forellenbachgebiet; blau hinterlegt: Falkensteinmassiv).
(BEUDERT und BREIT 2014)

			Niederschlag	Niederschlag Deposi			
Messplatz	Höhe ü. NN	Meteorologie	Sichtweite	Intensität/Art	Freiland	Bestand	Nebel
Taferlruck	762	х		Ι	х		
Weitau	782						
Schachtenau	807	х	x	I, A			х
Waldhäuser	947	х		Ι	х		
Haus zur Wildnis	680	х		I, A			
Ruckwiesberg	1192				х	X	x
Großer Falkenstein Süd	1306					X	
Großer Falkenstein Nord	1310			I,A	х	Х	
Großer Falkenstein	1315	х					х

		An	zahl 1	Nebelta	age			Anzahl Nebelmessungen								
	Gro	ßer A	rber	М	esstur	m	Gr	oßer A	Ν	Messturm						
Monat	2012	2013	Ø	2012	2012 2013		2012	2013	Ø	2012	2013	Ø				
11	8	17	13	13	14	14	48	152	100	54	54	54				
12	30	26	28	12	8	10	403	318	361	47	37	42				
1	28	28	28	3	11	7	384	337	361	7	41	24				
2	21	26	24	4	2	3	260	361	311	16	2	9				
3	11	23	17	0	4	2	113	225	169	0	18	9				
4	19	21	20	2	4	3	170	229	200	3	13	8				
5	9	27	18	1	6	4	64	274	169	2	9	6				
6	21	18	20	3	1	2	150	163	157	5	3	4				
7	22	12	17	1	0	1	170	60	115	3	0	2				
8	13	11	12	1	0	1	80	105	93	2	0	1				
9	15	23	19	3	3	3	161	271	216	7	6	7				
10	20	19	20	7	8	8	197	176	187	37	24	31				
	217	251	234	50	61	56	2200	2671	2436	183	207	195				

Tab. 3:	Anzahl Nebeltage und Nebelstunden und mittlere Sichtweite (m) während der Nebel-
	stunden am Großen Arber (1436 m ü. NN) und in Unterhanglage am Messturm Schach-
	tenau (807 m ü. NN) in 40 m Höhe.

							-							
	N	lebelm	essui	ngen/N	ebelta	g			Ø	Sichty	weite (1	n)		
	Gro	ßer Aı	ber	Μ	esstur	m		Großer Arber Messtur						
Monat	2012	2013	Ø	2012	2013	Ø		2012	2013	Ø	2012 2013		Ø	
11	6	9	8	4	4	4	-	138	98	108	212	233	223	
12	13	12	13	4	5	4		67	70	68	328	331	329	
1	14	12	13	2	4	3		65	90	77	485	236	272	
2	12	14	13	4	1	3		124	92	105	424	435	425	
3	10	10	10	0	5	5		50	106	87		249	249	
4	9	11	10	2	3	3		95	100	98	463	336	360	
5	7	10	9	2	2	2		99	111	109	98	431	370	
6	7	9	8	2	3	2		100	120	110	366	198	303	
7	8	5	7	3	0	3		133	121	130	364		364	
8	6	10	8	2	0	2		140	105	120	67		67	
9	11	12	11	2	2	2		99	96	97	167	220	191	
10	10	9	10	5	3	4		106	130	117	221	405	293	
Ø	10	11	10	4	3	4	_	93	99	96	279	288	284	

Tab. 4: Chemische Beschaffenheit von Freilandniederschlag (wet-only, bulk) und Kronendurchlass unter Fichte (a – h, m – o) am Gipfel (FS), am Oberhang (HR) und am Unterhang (F4) in den Messkampagnen 2012 und 2013.

		LF	pН	K	Na	Ca	Mg	Mn	Fe	Al	DOC	TNb	Cl	NO3-N	SO4-S	NH4-N	Menge
		µS cm ⁻¹	•	ſr	ng l ⁻¹	1	[μg l	-1	1	ſ			mg l ⁻¹		1	ml
				L	0			10			L			0			
Freiland									~ ~	•							
FS wet-only	Median	6	5,3	0,1	0,2	0,1	10	2	35	20	1	0,6	0,2	0,3	0,2	0,3	23,2
	Mittel	20	5,4	0,1	0,3	0,2	23	3	35	20	1	0,7	0,2	0,3	0,2	0,3	30,2
110 1 11	Max.	20	6,2	0,3	0,8	0,6	63	10	35	20	3	1,9	0,8	0,8	0,9	1,0	109,2
HR bulk	Median	7	5,4	0,2	0,4	0,1	21	4	35	20	1	0,7	0,4	0,3	0,2	0,3	25,5
	Mittelwert	8	5,5	0,3	0,5	0,2	30	5	35	20	1	0,8	0,5	0,3	0,2	0,4	31,4
	Maximum	17	0,4	1,5	1,9	0,8	140	20	33	20	4	2,0	1,4	1,0	1,2	1,5	139,1
Fichtenbestan	d Gipfel																
FS a	Median	29	4,6	2,2	0,6	1,1	208	62	35	20	17	2,2	1,0	1,1	0,5	0,5	33,1
	Mittel	40	4,6	2,8	0,9	1,7	326	98	35	32	20	3,1	1,5	1,8	0,8	0,8	39,3
	Max.	181	5,4	10,6	3,9	10,6	2077	565	35	155	124	16,2	6,1	12,0	5,5	3,5	169,3
FS b	Median	32	4,5	1,7	0,6	1,2	245	58	35	20	17	2,2	1,1	1,2	0,6	0,5	21,0
	Mittel	38	4,5	2,3	0,9	1,7	338	80	37	36	22	3,0	1,5	1,7	0,8	0,7	30,6
	Max.	146	5,0	12,7	3,0	9,1	1752	406	95	235	170	12,9	6,3	8,4	3,9	2,9	169,3
FS c	Median	30	4,8	2,4	1,0	1,2	199	68	35	20	14	2,2	1,1	1,3	0,6	0,4	46,0
	Mittel	40	4,7	3,2	1,0	1,9	323	105	36	29	20	3,2	1,6	1,9	0,9	0,7	58,2
	Max.	186	5,2	12,2	2,3	11,8	1900	613	73	162	161	18,2	5,5	13,1	4,9	3,8	221,2
FS d	Median	8	5,3	0,4	0,3	0,2	31	8	35	20	2	0,8	0,4	0,3	0,2	0,3	20,4
	Mittel	10	5,4	0,8	0,5	0,3	59	15	35	20	4	1,0	0,6	0,5	0,3	0,3	26,9
	Max.	37	6,5	4,0	1,4	1,4	342	81	35	20	15	4,0	4,3	2,1	0,9	1,3	121,6
FS e	Median	21	4,8	2,2	0,6	0,7	160	58	35	20	15	1,4	0,8	0,5	0,3	0,4	19,4
	Mittel	24	4,9	2,5	0,7	0,8	199	66	35	24	18	1,9	1,2	0,7	0,4	0,5	31,5
	Max.	69	6,5	9,2	2,7	3,8	988	289	35	98	59	6,6	4,7	3,1	1,2	1,8	167,7
FS f	Median	27	5,0	3,2	0,9	0,9	223	81	35	25	21	2,4	1,4	1,1	0,5	0,6	22,0
	Mittel	22	4,9	2,7	0,7	0,7	161	67	35	20	16	1,8	1,0	0,7	0,3	0,4	14,2
	Max.	28	5,0	3,4	0,8	0,9	226	82	35	25	22	2,4	1,5	1,1	0,4	0,6	21,4
FS g	Median	21	5,1	2,8	0,7	0,7	140	57	35	20	14	1,9	1,0	0,7	0,4	0,5	25,8
	Mittelwert	26	5,1	3,3	0,8	0,8	190	71	35	24	19	2,4	1,3	1,1	0,5	0,6	29,3
FGI	Maximum	107	6,5	16,2	4,2	4,1	1043	330	35	164	161	9,2	6,3	4,5	1,8	2,3	144,5
FS h	Median	20	5,1	2,4	0,7	0,7	154	46	35	20	14	2,0	0,8	0,8	0,4	0,5	24,5
	Mittelwert	26	5,1	2,9	0,7	1,0	206	60	35	24	1/	2,4	1,3	1,2	0,5	0,7	35,2
	Maximum	96	6,5	13,3	1,8	4,8	1040	285	35	141	108	9,6	4,6	4,5	1,8	2,2	169,3
Fichtenbestan	d Oberhang																
HR k	Median	18	5,4	1,7	0,5	0,5	102	59	35	20	9	1,8	0,7	0,8	0,3	0,6	20,7
	Mittel	26	5,4	2,3	0,7	0,8	173	103	35	23	12	2,5	1,3	1,2	0,5	0,8	28,2
	Max.	85	6,4	10,5	3,6	4,1	861	636	35	98	66	9,9	6,5	6,1	1,8	3,2	159,8
HR 1	Median	19	5,5	1,6	0,6	0,5	97	63	35	20	8	2,0	0,8	1,1	0,4	0,8	18,0
	Mittel	26	5,4	2,4	0,8	0,8	168	106	35	23	10	2,7	1,3	1,4	0,5	0,9	24,9
	Max.	85	6,2	10,5	2,1	4,1	861	636	35	72	42	9,9	6,5	6,1	1,8	3,2	128,9
HR m	Median	25	5,3	2,5	0,8	0,7	152	91	35	20	12	2,6	1,1	1,4	0,4	0,9	20,4
	Mittel	34	5,4	3,3	0,9	1,0	229	141	35	25	14	3,6	1,7	1,9	0,6	1,2	25,4
	Max.	132	6,6	13,4	2,9	6,7	1558	1104	35	146	88	16,6	6,5	10,2	2,8	4,3	160,7
HR n	Median	27	5,2	2,4	0,7	0,9	192	90	35	20	12	2,7	1,0	1,4	0,5	0,9	25,4
	Mittel	37	5,2	3,1	0,9	1,3	292	151	36	26	15	3,7	1,6	2,0	0,7	1,2	33,1
	Max.	132	6,1	13,4	3,2	6,7	1558	1104	74	154	76	16,6	6,7	10,2	2,8	4,3	169,3
HR o	Median	27	5,4	2,8	0,7	0,9	188	118	35	20	12	2,9	1,1	1,4	0,5	0,9	22,4
	Mittel	33	5,4	3,2	0,8	1,1	248	167	35	25	15	3,3	1,6	1,7	0,6	1,1	28,7
	Max.	132	6,3	13,4	2,5	6,7	1558	1104	35	98	66	16,6	6,5	10,2	2,8	4,3	138,8
Fichtenbestan	d Unterhang																
F4	Median	25	5.5	3.4	0,5	0.9	229	52	35	52	19,2	2,4	1.3	0.9	0,2	0.7	15,4
	Mittel	27	5,6	3,8	0,8	0,9	237	57	35	57	20,4	2,4	1,6	0,9	0,3	0,8	15,9
	Max.	59	6,4	12,4	3,4	2,1	721	179	35	179	34,9	4,2	8,2	1,8	0,8	1,8	72,9

	LF	рH	К	Na	Са	Mg	Mn	Fe	Al	DOC	TNb	Cl	NO3-N	SO4-S	NH4-N	Menge
	uS cm ⁻¹	P	[]	ng l ⁻¹	1	[цg	1 ⁻¹	1	[1110	0.	mg l ⁻¹	5015	1	ml
12.05.2012	99,3	3,8	4,5	1,5	3,7	500	72	140	107	88,0	5,4	2,5	24,2	29,4	4,2	340
16.05.2012	4,5	4,9	1,0	0,4	0,8	171	15	35	20	4,4	5,3	1,1	4,5	1,5	4,1	500
17.05.2012			1,0	1,3	0,7	227	31	35	20	7,1	3,3	1,4	4,5	2,4	2,5	50 30
31.05.2012	36.6	4.7	0.4	4,5 0.6	4,0	180	21	35	41	98,0 6,4	3.7	0.3	9.3	2.1	2.9	100
01.06.2012	35,5	5,1	0,9	0,5	1,8	240	26	35	49	8,7	3,4	0,8	11,0	2,9	2,6	630
02.06.2012	47,5	4,5	0,2	0,8	0,6	101	18	35	20	5,7	5,1	0,3	4,5	1,9	4,0	170
03.06.2012	61,1 20,0	4,5	0,7	0,6	1,2	181	23	35	52 20	11,3	7,6	0,4	11,8	3,8	5,9	340
05.06.2012	20,9	3,0 4.7	0,1	0,1	0,1	30	5	35	20	1.3	2,0	0,2	4,5	0.4	1,3	1540
06.06.2012	11,9	5,0	0,4	0,3	0,1	32	3	35	20	1,2	0,9	0,3	4,5	0,4	0,7	230
07.06.2012	27,7	4,6	0,5	0,2	0,3	68	5	35	20	2,5	2,7	0,4	4,5	0,8	2,1	720
08.06.2012	22,7	4,8	0,3	0,3	0,3	50 51	6	35	20	3,0	2,3	0,3	4,5	1,0	1,8	740
10.06.2012	23,8	4,9	0,8	0,4	0,5	76	4	35	20	2,2	2,1	1,0	4,5	0,7	1,8	100
11.06.2012			1,9	0,3	0,3	77	5	41	23	2,9	1,8	1,8	5,3	1,0	1,4	35
13.06.2012	26,6	4,5	0,3	0,2	0,3	58	7	35	20	2,0	2,4	0,2	4,5	0,7	1,9	1080
14.06.2012	28,2	4,3	0,1	0,1	0,1	10	5 35	35	20 52	1,3	1,9	0,1	4,5	0,4 6.7	1,5	870 170
21.06.2012	32.6	5.7	0,7	0,1	1,2	171	17	35	20	4.0	4,5	0,3	4.5	1.3	3,3	520
25.06.2012	21,8	5,5	1,1	0,3	1,1	195	12	35	20	2,4	2,0	0,5	4,5	0,8	1,5	590
03.07.2012	42,5	5,8	1,5	1,2	3,1	378	41	35	20	6,7	5,6	0,7	4,5	2,2	4,3	760
04.07.2012	21,0	5,4	0,8	0,5	1,3	171	13	35	20	5,7	2,0	0,7	4,5	1,9	1,5	200
11.07.2012	92.1	6.3	2.7	33	2.7	359	30	35	20 77	10.0	5,8 9.2	1.2	4,3	3 3	2,9	60
14.07.2012	36,3	5,5	1,0	0,6	1,2	196	16	35	20	5,0	4,7	0,7	4,5	1,7	3,7	420
15.07.2012	36,0	5,0	1,0	1,0	1,1	239	23	35	20	5,3	3,7	1,1	4,5	1,8	2,9	80
17.07.2012	22,2	5,5	0,6	0,3	0,3	79	5	35	20	2,2	2,2	0,5	4,5	0,7	1,7	2370
22.07.2012	29,0 118.0	5,5 5,2	4.7	1.6	0,6 7.2	906	8 58	35 35	20 47	2,5	12.7	3.4	4,5	0,8 2.9	2,4	190
30.07.2012	60,4	5,9	2,2	1,3	3,9	434	45	35	20	9,0	6,7	1,2	4,5	3,0	5,2	390
06.08.2012	18,6	5,6	0,7	0,5	0,6	103	11	35	20	2,7	2,0	0,6	4,5	0,9	1,5	480
07.08.2012	21,6	5,5	0,6	0,4	0,6	103	11	35	20	2,6	2,2	0,6	4,5	0,9	1,7	600
21.08.2012	32,7 14 3	5,5 5,9	2,1 0.4	0,9	2,4	338 99	12	35	20	23	23	03	4,5	2,0	3,4 1.8	1700
25.08.2012	18,9	5,9	1,0	0,2	1,2	98	15	35	20	1,6	2,1	0,8	4,5	0,5	1,6	1130
26.08.2012	8,8	5,4	0,4	0,0	0,2	28	4	35	20	0,3	0,9	0,5	4,5	0,1	0,7	840
28.08.2012	24,3	5,1	0,9	0,2	0,4	115	10	35	20	0,8	2,7	1,2	4,5	0,3	2,1	1130
02.09.2012	49.2	3,0 4.2	0.7	0,1	0,5	105	10	35 35	20 20	2.7	4.8	0,7	4,5	0,8	3.7	820
04.09.2012	389,0	3,3	1,6	1,8	5,9	511	82	325	578	17,9	28,4	4,8	130,6	6,0	22,0	170
04.09.2012	90,4	4,1	2,0	0,7	2,4	311	42	35	79	4,5	9,8	1,7	17,8	1,5	7,6	120
10.09.2012	28.4	5.0	6,0	2,0	2,7	552	67	53	30	7,0	12,0	6,2	6,8	2,4	9,3	30
13.09.2012	28,4 19.0	3,9 47	2,0	0,4	0.3	66	5	35	20	2,5	3,7 17	1,1 0.8	4,5	0,8	2,8	870
14.09.2012	19,0	.,,	2,8	0,4	0,5	118	13	35	20	1,9	1,4	1,6	4,5	0,6	1,1	40
15.09.2012	56,4	4,6	2,9	0,6	1,4	298	17	35	20	2,1	7,7	1,5	4,5	0,7	6,0	470
19.09.2012	22,8	4,9	1,4	0,4	0,7	99	9	35	20	2,5	2,9	0,8	4,5	0,8	2,3	430
22.09.2012	32.3	4,8 4.5	0,4 2.6	0,5	0,6	219	8	35 35	20	2,8	3.1	0,5 1.4	4,5	0,9	2,4	560
23.09.2012	12,7	4,8	1,3	0,2	0,1	24	2	35	20	0,9	1,1	0,8	4,5	0,3	0,9	770
25.09.2012	48,8	5,1	2,5	0,6	1,8	272	20	35	20	3,7	6,7	1,6	4,5	1,2	5,2	170
27.09.2012	13,6	5,4	1,4	0,3	0,4	79 35	6	35	20	2,3	1,3	1,2	4,5	0,8	1,0	600 720
29.09.2012	10,7	5,1	3,2	0,2	0,2	75	5	47	27	2,4	2,0	2,2	4,5 6,0	0,0	2,1	30
30.09.2012	53,7	4,5	3,1	0,6	0,9	229	15	35	20	3,6	6,8	1,8	4,5	1,2	5,3	55
01.10.2012	76,7	4,8	4,1	0,8	2,4	385	39	35	20	5,4	11,1	2,3	4,5	1,8	8,6	65
02.10.2012	61,1 24.7	4,4	1,6	0,4	0,7	101	8	35	20	4,0	8,6	0,9	4,5	1,3	6,7	600
07.10.2012	12.6	5.3	2,7	0,4	0,0	110	4	35	20	2.0	2,0	2,0	4,5	0.7	2,0	3370
08.10.2012	, ·	- 9-	7,3	0,8	1,3	348	21	79	45	4,5	5,5	6,0	10,2	1,5	4,3	20
09.10.2012	107,8	4,2	5,6	0,6	0,9	606	12	35	20	3,2	13,2	6,9	4,5	1,1	10,3	220
10.10.2012	15,0	4,8 4 5	1,4	0,1	0,1	42	2	35	20	1,6	1,3	1,4	4,5	0,5	1,0	370 630
14.10.2012	38,0	4,3	25.7	2.2	0,5 3.4	240 3394	29	33 49	20 28	7.8	4,0 33.8	1,7 39.2	4,5 6.3	2.6	26.2	30
15.10.2012	60,7	4,5	3,8	0,5	0,7	485	11	35	20	2,8	5,8	4,7	4,5	0,9	4,5	230
16.10.2012	65,1	4,2	0,7	0,1	0,5	116	6	35	20	2,4	7,2	1,0	4,5	0,8	5,6	340
17.10.2012	49,2	4,5	1,1	0,3	0,2	42	5	35	20	2,3	7,2	1,0	4,5	0,8	5,6	365
20.10.2012	83 1	3,8 47	1,5	2,3 1 2	1,0	225	23 20	35 35	20 20	7,4 5.0	14,4 12.0	1,9 1,9	4,5 4,5	2,5 1.7	9.3	470
01.11.2012	18,5	4,7	0,5	0,4	0,2	67	8	35	20	1,9	1,6	0,7	4,5	0,6	1,2	630
02.11.2012	16,1	5,3	1,0	0,3	0,2	43	4	35	20	2,2	2,0	1,0	4,5	0,7	1,5	570
03.11.2012	12,2	5,5	1,8	0,2	0,1	39	3	35	20	2,0	1,9	1,8	4,5	0,7	1,5	480
08.11.2012	8,1 36.0	3,2 4 4	0,9	0,1	0,1	∠3 96	1	35 35	20 20	1,4 17	0,8 2.6	0,8	4,5 4 5	0,5	2.0	80
10.11.2012	58,7	4,3	2,0	0,6	0,4	46	3	35	20	3,3	8,1	2,0	4,5	1,1	6,3	555

Tab. 5:Chemische Beschaffenheit von Nebel und Wolkenwasser in der Nebelharfe am Großen
Falkenstein (FS) in den Messkampagnen 2012 und 2013.

	IF		IZ.	N	0			Г	4.1	DOG	TNI	Cl	NO2N	604.6	NILLAN	<u> </u>
	LF uS cm ⁻¹	рн	к г,	Na	Ca	мg	Mn	ге 1 ⁻¹		r DOC	IND	CI	NO3-N	504-5	NH4-N	menge
13.11.2012	26.4	4.4	1.0	ng 1 0.2	0.3	1 81	<u>μg</u> 7	35	20	2.8	1.9	0.3	4.5	0.9	1.5	200
22.11.2012	49,0	4,1	1,3	0,6	1,6	216	19	35	41	3,2	3,6	0,6	9,2	1,1	2,8	400
23.11.2012			1,9	0,3	0,8	150	33	526	301	8,5	4,1	1,4	67,9	2,8	3,2	3
24.11.2012	37.2	53	0,7	0,8	0,5	129	10	47	27	5,5	10,0	0,7	6,1 9.7	1,8	7,8	30 200
11.05.2013	26,9	4,6	3,3	1.0	1,3	429	21	35	41	5.9	6,3	3,7	9,3	2,0	4,9	2080
13.05.2013	59,4	5,1	2,3	0,7	0,9	347	17	35	20	3,0	7,5	2,4	4,5	1,0	5,8	535
14.05.2013	24,1	5,0	0,6	0,2	0,3	90	5	35	20	2,3	2,9	0,9	4,5	0,8	2,2	110
18.05.2013	14,6	5,0	0,2	0,2	0,4	53	9	35	20	2,7	1,8	0,3	4,5	0,9	1,4	1080
22.05.2013	21,1	5,0	1,0	0,2	0,4	95	4	35	20	1.8	2,1	0,5	4,5	0,6	2,1	520
23.05.2013	17,7	5,2	0,3	0,2	0,2	41	4	35	20	1,8	3,1	0,2	4,5	0,6	2,4	855
24.05.2013	67,5	4,3	2,1	0,7	0,7	300	16	35	20	2,7	7,8	2,5	4,5	0,9	6,1	165
25.05.2013	14,7	4,8	0,2	0,1	0,1	34 118	3	35	20	0,3	1,9	0,3	4,5 4 5	0,1	1,5	145 480
28.05.2013	12,0	4,8	0,0	0,0	0,2	21	2	35	20	0,8	1,1	0,2	4,5	0,3	0,9	4080
29.05.2013	26,8	4,3	1,6	0,3	0,2	38	6	35	20	1,7	2,0	0,9	4,5	0,6	1,5	480
30.05.2013	74,3	3,9	0,2	0,3	0,3	53	9	35	20	3,2	5,2	0,2	4,5	1,1	4,1	75
01 06 2013	7,8 193	4,8	0,2	0,0	0,1	10	5	35	20	0,7	0,4	0,2	4,5 4 5	0,2	0,3	180
02.06.2013	7,4	5,1	0,1	0,0	0,1	10	1	35	20	0,8	0,3	0,1	4,5	0,3	0,2	3230
03.06.2013	7,4	4,8	0,1	0,1	0,1	10	1	35	20	0,3	0,3	0,1	4,5	0,1	0,2	1600
04.06.2013	13,2	4,7	0,5	0,5	0,5	31	1	35	20	0,8	0,7	0,3	4,5	0,3	0,5	200
10.06.2013	160,0 97 1	4,7	1,9	0,7	1,8	746	39 109	35	82	7,9 9.9	8,4 93	1,7	16,3	2,6	6,5 7 2	50 65
11.06.2013	72,1	4,3	0,7	1,2	2,2	334	51	35	47	7,1	5,4	0,0	10,6	2,4	4,2	80
14.06.2013	32,0	5,1	1,8	1,0	1,3	243	42	35	20	4,7	3,4	0,9	4,5	1,6	2,6	240
25.06.2013	41,4	5,3	1,7	0,9	2,9	306	29	35	20	5,1	4,1	1,1	4,5	1,7	3,2	595
26.06.2013	26,0	5,3 5,2	0,7	0,4	0,3	68 302	10	35	20	2,5	2,7	1,1	4,5 4 5	0,8	2,1	850 510
04.07.2013	102,3	5,5	1,0	0,5	1,2	270	12	35	20	5,2	5,9	0,5	4,5	1,7	4,6	12
25.07.2013	234,7	4,2	1,0	1,4	5,7	530	105	200	218	22,2	28,8	1,1	49,1	7,4	22,4	30
30.07.2013	35,7	5,3	0,5	0,6	1,3	162	24	35	20	5,7	4,7	0,6	4,5	1,9	3,6	920
31.07.2013	45,0	5,9 5.9	5,5 0.5	2,4	1,2	252	23 45	35	20	4,5	6,1 3,5	6,3 0.5	4,5 4 5	1,4	4,8	490 310
13.08.2013	131,7	5,6	6,7	2,0	8,6	1171	68	35	20	5,5	16,1	1,4	4,5	1,8	12,5	115
19.08.2013	33,6	5,8	1,4	0,8	2,4	308	32	35	20	3,4	4,1	0,5	4,5	1,1	3,2	250
20.08.2013	45,2	5,7	1,0	0,4	1,1	179	13	35	20	4,8	6,7	0,9	4,5	1,6	5,2	255
20.08.2013	42.3	3,3 44	0.9	5,2 04	14	274	27	35	20	7,4 4 5	43	2,2 0.4	4 5	2,5	33	250
28.08.2013	28,3	4,4	0,2	0,3	0,4	52	14	35	20	4,6	2,6	0,2	4,5	1,5	2,0	390
01.09.2013	116,2	5,2	0,8	1,1	7,0	549	73	35	95	8,2	18,3	0,7	21,6	2,7	14,2	100
07.09.2013	282,0	5,4	21,5	2,2	10,7	3077	108	35	90	6,4	29,2	23,4	20,4	2,1	22,7	180
10 09 2013	21,8 15.5	5,0 5,1	0,6	0,4	0.5	238 77	28 11	35	20	3,0 2,6	2,5	0,4	4,5	1,2	1,9	260
11.09.2013	16,8	5,2	0,4	0,3	0,4	68	8	35	20	2,5	4,4	0,5	4,5	0,8	3,4	930
12.09.2013	36,0	4,6	0,3	0,1	0,3	53	6	35	20	1,7	3,3	0,3	4,5	0,6	2,6	970
13.09.2013	36,7	4,2	0,1	0,1	0,2	20	6	35	20	2,1	2,7	0,1	4,5	0,7	2,1	195
15.09.2013	26.7	4.4	0,5	0,5	0,0	24	5	35	20	2.0	8,2 2.6	0,7	4,5	0.7	2.0	770
17.09.2013	22,2	4,6	0,4	0,1	0,1	44	4	35	20	1,2	2,0	0,5	4,5	0,4	1,5	2310
18.09.2013	7,4	5,1	0,6	0,1	0,1	67	3	35	20	0,8	1,4	0,8	4,5	0,3	1,1	3250
19.09.2013	24,1	4,4	0,2	0,1	0,1	26	2	35	20	0,3	1,8	0,2	4,5	0,1	1,4	1390
21.09.2013	64.3	3.9	0,8	0,2	0,3	118	7	35	20	1,8	5.0	1.2	4,5	0,0	3.9	1830
23.09.2013	54,2	4,2	1,5	0,5	1,9	202	18	35	43	2,4	5,1	3,1	9,8	0,8	4,0	500
24.09.2013	78,0	4,1	1,3	0,9	0,6	156	8	35	20	3,8	7,6	1,0	4,5	1,3	5,9	490
26.09.2013	41.1	4.6	5,6	3,2 0.5	22,7	324	180	323	495	34,2 4.0	95,3 4.6	2,2	111,8	11,4	74,0	40 470
07.10.2013	9,4	5,3	0,1	0,2	0,2	39	14	35	20	3,2	1,2	0,2	4,5	1,1	1,0	60
09.10.2013	134,4	3,9	0,1	0,4	1,6	181	25	103	72	8,1	16,2	0,3	16,3	2,7	12,6	230
10.10.2013	139,4	3,9	0,2	0,5	1,6	185	31	104	75	8,9	15,9	0,4	17,0	3,0	12,4	320
11.10.2013	16,0 16,0	4,6	0,2	0,1	0,2	30 40	2	35	20 20	2,8	1,6 0.4	0,1	4,5 4 5	0,9	1,2	790 295
16.10.2013	47,7	4,0	1,3	0,1	0,3	30	8	35	20	1,8	2,0	0,1	4,5	0,2	1,5	1050
17.10.2013	29,1	4,3	0,3	0,2	0,3	53	9	35	20	2,0	2,1	0,4	4,5	0,7	1,7	815
18.10.2013	47,5	4,4	1,9	0,1	0,4	228	8	35	20	1,1	2,5	2,9	4,5	0,4	2,0	1630
22.10.2013	52,5 32 5	4,'/ 5 1	2,2	0,4 0.4	1,1 0.6	319 136	11 14	35 35	20	3,6 4 1	6,2 4.6	1,1 0.4	4,5 4 5	1,2 1.4	4,8	460 320
28.10.2013	26,5	5,5	2,1	0,3	0,6	222	12	35	20	4,0	2,0	3,2	4,5	1,3	1,6	700
29.10.2013	38,5	5,4	3,3	0,4	0,7	425	13	35	20	3,2	3,0	4,2	4,5	1,1	2,3	140
30.10.2013	50,1	5,8	3,2	0,3	0,5	328	10	35	20	3,4	5,8	4,8	4,5	1,1	4,5	630
02.11.2013	26,4	5,7 57	1,0 1 1	0,2	0,6 04	228	4	35 35	20 20	3,2 27	3,1 3,2	1,5 1.5	4,5 4 5	1,1 0.9	2,4 2.4	285
04.11.2013	25,8	5,6	1,1	0,1	0,4	151	5	35	20	2,3	3,1	1,5	4,5	0,8	2,4	1400
05.11.2013	15,3	5,3	0,3	0,1	0,2	70	4	35	20	2,3	3,2	0,4	4,5	0,8	2,5	500
08.11.2013	21,4	5,2	0,6	0,1	0,2	82	6	35	20	1,7	2,1	0,8	4,5	0,6	1,6	1110
10 11 2013	8,1 24.6	5,5 5,4	0,1	0,0	0,1	30 111	3 7	35 35	20 20	0,8 14	0,9 2.9	0,2 1.6	4,5 4 5	0,3	2.2	860 250
12.11.2013	12,9	5,6	0,4	0,2	0,1	41	4	35	20	1,7	1,9	0,6	4,5	0,4	1,5	140
18.11.2013	83,3	3,9	0,7	0,4	0,5	108	20	80	20	4,3	5,8	0,8	4,5	1,4	4,5	470

Tab. 5:Chemische Beschaffenheit von Nebel und Wolkenwasser in der Nebelharfe am Großen
Falkenstein (FS) in den Messkampagnen 2012 und 2013 - Fortsetzung.

	LF	pН	K	Na	Ca	Mg	Mn	Fe	Al	DOC	TNb	Cl	NO3-N	SO4-S	NH4-N	Menge
	μS cm ⁻¹		[]	mg l ⁻¹]	[μg	1 ⁻¹]	[mg l ⁻¹]	ml
16.05.2012	79 55	5,4	1,4	0,9	3,5	439 310	51 50	368	64 40	5,2	11,6	1,6	14,4 0 1	1,7 3 7	9,0 4.0	100
02.06.2012	55	0,2	1,2	2,7	1,1	334	15	150	85	21,2	8,8	0,8	19,3	7,1	6,9	10
03.06.2012	25	5,8	0,9	1,7	0,5	133	27	35	20	10,5	3,1	0,8	4,5	3,5	2,4	70
04.06.2012	50	5,8	0,7	1,4	1,3	223	27	35	20	8,3	7,0	0,5	4,5	2,8	5,5	160
05.06.2012	33	5,5	0,7	0,7	0,7	60	4	35	20	4,5	4,5	0,7	4,5	0.7	3,3 0.7	80 50
07.06.2012		4,9	1,8	1,7	0,7	113	9	35	20	5,2	3,9	1,3	4,5	1,7	3,0	40
08.06.2012	84	6,6	2,6	2,9	1,1	279	20	35	20	7,5	8,0	1,9	4,5	2,5	6,2	80
10.06.2012	44	47	2,2	0,8	0,9	211	15 18	35 35	20	4,5	4,6	2,0	4,5	1,5 1 2	3,5	60 180
14.06.2012	44	4,3	0,2	0,6	0,3	52	7	35	20	2,8	4,6	0,5	4,5	0,9	3,6	170
21.06.2012			1,9	3,8	8,3	819	81	58	33	17,5	14,5	1,3	7,4	5,8	11,2	25
25.06.2012	50		6,2	4,9	8,7	1317	63	64 25	36	20,3	29,1	4,2	8,2	6,8	22,6	25
03.07.2012	58	6,6	1,4	1,6	3,9	4// 95	54 27	35	20 20	9,9 4.6	4,9	0,7	4,5 4.5	3,3 15	3,8	80 50
15.07.2012			5,7	5,2	23,8	2892	245	97	217	30,3	28,8	3,2	49,0	10,1	22,4	40
17.07.2012	41	6,1	1,1	0,7	2,5	361	30	35	42	5,7	5,3	0,9	9,6	1,9	4,1	300
18.07.2012	56	6,1	3,1	0,5	1,8	400	20	35 35	20 64	4,8	6,2	2,6	4,5	1,6 8.4	4,8	220
07 08 2012	57	6.5	8,5 2,3	5,5 12	4 2	579	90 51	35	46	25,2 74	28,5 6.8	3,5 1.5	14,4	2.5	5.3	50 110
17.08.2012	67	5,4	1,3	1,1	4,1	554	67	35	89	10,1	9,8	0,4	20,2	3,4	7,6	70
21.08.2012	41	5,9	0,7	0,7	3,0	403	49	35	20	7,3	6,0	0,3	4,5	2,4	4,6	100
25.08.2012	21	6,7	0,4	0,4	0,7	82 75	9 11	35 35	20	3,7	2,5	0,5	4,5 4 5	1,2 0.8	2,0	70
28.08.2012	60	5.9	2.8	0.5	1,2	, 5 394	25	35	20	2,5 3.1	2,7 6.7	4,7	4,5	1.0	5.2	100
02.09.2012	83	5,0	1,7	1,0	1,4	283	44	35	52	6,7	9,5	2,2	11,7	2,2	7,4	50
12.09.2012	73	6,0	5,0	0,9	4,1	676	29	35	20	5,7	8,0	2,4	4,5	1,9	6,2	180
14.09.2012 15.09.2012	35	4,9	1,5 3.6	0,7 1 1	1,3	239 700	24 42	35 52	20 30	3,7 45	4,6 16 3	0,7	4,5 6 7	1,2 1.5	3,6 12 7	50 25
20.09.2012			4,0	5,1	4,3	399	47	104	59	8,1	9,9	5,0	13,4	2,7	7,7	15
22.09.2012	63	4,7	2,2	0,6	2,5	497	27	35	20	3,4	7,5	1,3	4,5	1,1	5,8	90
23.09.2012	28	5,7	1,4	0,3	0,4	77	6 1	35	20	1,7	2,9	0,8	4,5	0,6	2,2	200
27.09.2012	35	6.1	3,8 1.8	2,0	1,/	330 161	9	35	21	3,8 24	3,/ 49	3,1 15	4,0 4.5	1,3	2,9	40 160
02.10.2012	55	0,1	4,9	1,6	6,6	815	52	35	96	2,4 9,3	30,4	2,9	21,8	3,1	23,6	50
05.10.2012	28	6,4	1,6	0,4	1,0	117	10	35	20	2,8	4,1	1,2	4,5	0,9	3,2	100
07.10.2012	21	5,0	1,8	0,1	0,4	62	3	35	20	1,7	1,3	1,2	4,5	0,6	1,0	390
13 10 2012			2,1 5.4	0,5	1,5	622	26	44 35	25 20	3,1 78	10,5	2,3 5 7	5,6 4,5	2.6	o,∠ 8.6	50 45
16.10.2012			8,3	1,4	2,1	896	31	69	40	7,1	13,1	7,7	9,0	2,4	10,2	25
17.10.2012			5,7	1,1	1,9	700	26	35	20	4,8	14,4	5,0	4,5	1,6	11,2	45
26.10.2012			1,6	1,0	1,7	460	40	59	34	9,1	26,3	1,2	7,6	3,0	20,4	25
01 11 2012	24	6.0	1,4	0,7	0,7	99 99	7	231	20	16,6	24	2,0	29,0 4.5	5,5 0.6	10,1	455
02.11.2012	35	6,1	1,3	0,6	0,9	190	19	35	20	3,2	3,5	1,9	4,5	1,1	2,7	70
03.11.2012	34	6,1	1,5	0,4	0,8	162	18	35	20	2,9	3,3	2,0	4,5	1,0	2,6	325
06.11.2012	21	6,2	1,4	0,3	0,3	93 64	6	35	20	0,9	1,7	1,6	4,5	0,3	1,3	335
10 11 2012	21	0,2	1.0	0,5	13	121	21	35	20	3.8	2,2 8 7	0,0	4,5	1.3	6.7	430 88
13.11.2012			0,5	0,5	0,8	50	23	176	101	7,9	4,0	0,5	22,7	2,7	3,1	8
22.11.2012			2,6	0,6	1,4	170	25	35	50	5,0	4,1	1,4	11,3	1,7	3,1	45
23.11.2012			2,2	0,9	1,0	461	18 112	174 73	99 42	8,9	2,6	0,5	22,4	3,0	2,0	8 20
25.06.2013			3.8	8,2	15,7	1604	155	89	51	17,1	18,0	3,6	11,5	5,7	14,1	15
26.06.2013	91	6,1	1,9	1,1	6,5	723	53	35	20	6,5	8,1	2,3	4,5	2,2	6,3	90
29.06.2013	70	6.0	5,2	1,9	5,6	1112	84	35	49	8,9	9,5	3,7	11,2	3,0	7,4	45
09.09 2013	78	0,0	0,8 2.8	2,3 24	5,5 6,6	965	76	35 43	70 52	89	0,2 107	1,2 1,2	11.7	3,0 3,0	0,4 8,3	35
10.09.2013			1,0	0,7	2,8	387	41	38	22	4,5	4,7	0,4	4,9	1,5	3,6	38
11.09.2013	45	4,7	0,5	0,4	1,0	139	14	35	20	2,3	6,0	0,4	4,5	0,8	4,7	175
12.09.2013	45 46	4,7 4 5	0,5	0,2	0,8 0 9	130 138	12 13	35 35	20 20	2,5	0,0 63	0,5	4,5 4 5	υ,8 1 0	4,7 4 9	245 110
14.09.2013	56	4,3	0,2	0,2	0,5	71	10	35	20	2,5	7,1	0,2	4,5	0,8	5,5	195
15.09.2013			0,2	0,2	0,5	64	9	35	20	2,5	6,9	0,2	4,5	0,8	5,3	50
17.09.2013	24	4,8	0,4	0,1	0,2	54	5	35	20	1,4	2,9	0,4	4,5	0,5	2,2	450
18.09.2013	21 18	4,7 5.0	0,3	0,1	0,2 04	40 141	0 14	ათ 35	∠∪ 20	1,0 1 2	2,0 2.2	0,3 14	4,5 4.5	0,3	1,5 1.7	865 160
20.09.2013	53	4,4	1,5	0,5	1,0	213	27	35	20	3,8	5,6	1,1	4,5	1,3	4,4	220
21.09.2013	97	3,9	1,9	0,4	0,6	243	16	35	49	3,5	7,3	1,9	11,1	1,2	5,7	130
23.09.2013	89	4,3	2,2	0,8	0,8	291	22 16	35 ⊿⊃	20 24	3,9	8,9	1,0	4,5	1,3 1 P	6,9	55 25
06 10 2013			2,0	1.5	10.5	960	138	42 54	31	83	13.0	0.6	6.9	2.8	10.1	30
07.10.2013			1,0	0,8	5,9	561	71	65	37	5,3	7,5	0,3	8,4	1,8	5,8	20
11.10.2013	196	4,1	0,6	1,0	4,6	438	65	109	127	11,2	23,5	0,6	28,7	3,7	18,2	175
12.10.2013	61	36	0,2	0,3	1,0	110 89	17 ค	39 35	22	3,6	5,3 ⊿ 2	0,2	5,1 45	1,2	4,1 3 3	40
17 10 2013	62	3,0 3,0	0,5	0,2	0,5	00 76	0 8	35 35	20 20	2,9 23	4,2 4 2	0,0	4,5	0.8	3,3 3,2	200
18 10 2013	65	45	44	03	0,4 0,9	540	10	35	20	2.0	4 7	61	4.5	0.7	3.6	205
22 10 2013	05	ч,5	7,4 87	12	43	1241	36	56	32	2,0 7.6	۳,7 181	3.8	7.2	2.5	14 0	203
24.10.2013			4,0	1,3	3,5	711	44	75	43	12,6	16,2	2,0	9,6	4,2	12,6	20
28.10.2013	87	6,1	3,6	1,1	3,4	641	43	35	41	8,5	9,1	2,5	9,2	2,8	7,1	45
03.11.2013	50	6,1	3,0	0,5	1,2	419	11	35	20	4,1	5,1	4,0	4,5	1,4	4,0	350
04.11.2013	50 53	6,1 5 0	3,0 3 3	0,4	1,2	421 475	9 13	35 35	20 20	3,5 2 0	5,1 5 0	4,0 4 3	4,5 4 5	1,2 1.0	4,0 4.6	520 100
08.11.2013	17	5,2	0,9	0,1	0,3	125	7	35	20	1,6	1,5	-,,5 1,4	4,5	0,5	1,2	1110
09.11.2013	44	6,7	0,9	0,4	2,3	240	27	35	20	3,7	4,2	0,7	4,5	1,2	3,3	70
10.11.2013	47	5,9	1,4	0,3	0,9	200	9	35	20	3,3	5,8	1,9	4,5	1,1	4,5	80
10.11.2013	120	3,9	2,5	0,6	1,4	401	30	194	ιIŎ	/,/	11,4	1,/	∠0,7	∠,0	0,9	100

Tab. 6:Chemische Beschaffenheit von Nebel und Wolkenwasser in der Nebelharfe am Ruck-
wiesberg (HR) in den Messkampagnen 2012 und 2013.

Abb. 1: Standort Großer Falkenstein mit Messplätzen für Freiland- und Bestandesniederschlag, Deposition, Meteorologie und horizontalen Niederschlag. Die Kronenschirmflächen über den Sammlern A, B, C wurden gemessen. Die Schirmflächen der anderen Bäume über ihren Brusthöhendurchmesser berechnet (BEUDERT und BREIT 2012).

Abb. 2: Stammfußkarte des Fichtenbestands Großer Falkenstein Süd mit den Sammlerpositionen D bis H zur Erfassung des Bestandesniederschlags. Die Kronenschirmflächen der Fichten wurden aus jeweils acht Kronenablotungen berechnet (BEUDERT und BREIT 2013).

Abb. 3: Stammfußkarte des Fichtenbestands Ruckwiesberg mit den Sammlerpositionen K bis O zur Erfassung des Bestandesniederschlags (BEUDERT und BREIT 2013).

Abb. 4: Stammfußkarte des Fichtenbestands F4 Weitau (Kreisfläche 600 m²) mit 10 Depositionssammlern (Kästchen) für den Bestandesniederschlag. Die Kronenschirmflächen der Fichten und einer Buche (strichliniert) wurden aus jeweils acht (12) Kronenablotungen berechnet (BEUDERT und BREIT 2014).

Abb. 5: Kronendurchlass (Kleinbuchstaben a – h sowie k – o: Sammlerpositionen) und im Freiland (wet-only-Sammler und bulk-Sammler) am Großen Falkenstein und in Oberhanglage am Ruckwiesberg. FS und HR kennzeichnen die jeweiligen Mittelwerte (± s) des Kronendurchlasses der Messkampagnen 2012 und 2013.

Abb. 6: N-Depositionsraten im Freiland und in Fichtenbeständen am Großen Falkenstein (1310 m ü. NN), in Oberhanglage am Ruckwiesberg (1192 m ü. NN) und am Unterhang im Forellenbachgebiet (787 m ü. NN).

Abb. 7: N-Konzentrationen der Nebel- und Wolkenwasserproben am Großen Falkenstein (links) und am Ruckwiesberg (rechts), differenziert nach den Jahren 2012 und 2013.

Abb. 8: N-Konzentrationen (TNb) der Nebel- und Wolkenwasserproben am Großen Falkenstein (FS) und am Ruckwiesberg (HR) in den Jahren 2012 und 2013. Die Bestimmtheitsmaße sind hochsignifikant.