

Für Mensch & Umwelt

SETAC Europe 25th Annual Meeting

A proposal for a chemical assessment concept for the protection of raw water resources under REACH

Michael Neumann, Markus A. Schwarz, Daniel Sättler, Jan Oltmanns, Lena Vierke and Fritz Kalberlah

Outline

INTRODUCTION

PROTECTION OF RAW WATER RESOURCES

SUBSTANCE PROPERTIES THAT CAUSE A CONCERN

ASSESSMENT CONCEPT WITHIN REACH

STEP 1: ASSESSMENT OF P PROPERTIES

STEP 2: ASSESSMENT OF M PROPERTIES

STEP 3: ASSESSMENT OF T PROPERTIES

VALIDATION WITH DATA FROM MONITORING

OUTLOOK: RISK MANAGEMENT AND REGULATORY OPTIONS

CONCLUSIONS

Protection of Raw Water Resources

- In Europe drinking water is obtained mainly from groundwater, reservoirs or river bank filtration.
- If these environmental compartments are exposed to chemicals a contamination of drinking water is possible.

=> PRECAUTIONARY PRINCIPLE MUST APPLY TO PROTECT THE RAW WATER RESOURCES.

- REACH Regulation (1907/2006 EG): registrant guarantees the safe use of chemicals throughout the whole life cycle.
- The risk assessment includes the evaluation of the hazardous substance properties and the exposure of the environment

=> WHICH SUBSTANCE PROPERTIES CAUSE A CONCERN TO RAW WATER RESOURCES? Overall in Europe water use is characterized by 65% ground water and 35% surface water (EU COM 2013)

REACH:

Regulation concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals

Substance properties that cause a concern

- Fate and behaviour of polar substances have been investigated both scientifically and from a regulatory perspective.
- Hazard potential is maximised if chemicals are at the same time mobile in the water cycle and persistent in the environment

=> SEVERAL NAMES AND TERMS INDICATE THAT SUBSTANCE PROPERTIES AND HAZARD ARE COMPARABLE TO THOSE OF POPS AND PBTS.

- Consequently: Emission and impact are separated in time and space and remediation may not possible
- If those chemicals are <u>toxic</u>: No "save" emissions into the environment and No risk based assessment approach

=> NO STUDY YET HAS PROPOSED CRITERIA OR AN ASSESSMENT CONCEPT WITHIN **REACH** **PPOP** or **polar POPs** polar persistent organic pollutant (Giger et al., 2005)

P³ substances or **PPPs** persistent polar pollutants (Reemtsma & Jekel, 2006)

NANA nicht abbaubar & nicht adsorbierbar

not degradable & not adsorbable

PMT-substances

persistent in the environment and mobile in the water cycle and toxic

Step 1: Assessment of P properties

- Criteria adopted from the Annex XIII of the REACH Regulation; tiered approach includes screening and assessment steps
- Assessment of PBT properties is included in registration of uses > 10 t/year

=> NO ADDITIONAL WORKLOAD FOR REGISTRANTS

- P criteria (half live at 12°C) freshwater > 40 d sediment > 120 d soil > 120 d
- marine water > 60 d marine sediment > 180 d

- Proposed decision tree focuses on the freshwater criteria, however, a proof in one environmental compartment is sufficient to fulfil "P"
- Proposed tiered approach address primary/ultimate degradation (coverage of transformation products)

=> A SUBSTANCE IS "P" IF IT FULFILS THE CRITERIA FOR PERSISTENCE IN THE ANNEX XIII OF THE REACH REGULATION

Mobility

Modelling Approach

- We used the common REACH model ECETOC TRA
- We calculated concentrations in surface water and groundwater (maximum => drinking water)
- Default scenario
 - Identical concentrations in the inlet of the sewage treatment plant
 - No biodegradation
- 64 substances with wide ranges for all substance properties

European Centre for Ecotoxicology and Toxicology of Chemicals: The Targeted Risk Assessment (TRA) tool for estimating exposures e.g. to the environment version 3 was launched in April 2012.

	MW (g/mol)	log K _{oc}	WS (mg/L)	VP (Pa)	HLC (Pa m3/mol)	log K _{ow}	P/N ot P
N	64	64	64	64	64	64	64
AM	315	3.67	75,198	340	6,249	3.13	100%
Median	293	3.23	36.1	0.00145	0.0168	2.80	
25th perc.	193	1.76	0.475	0.0000142	0.000094	0.678	P: 55% Nor P:
75 th perc.	391	5.69	2,298	1.35	6.8	5.43	45%
MIN	76	-0.320	7.00E-08	1.00E-10	3.65E-13	-3.87	
MAX	781	10.2	910,000	7,263	266,000	17.0	

Table 12: Descriptive statistics for the sample used in ECETOC TRA modelling

* HLC: Henry's law constant (calculated from molecular weight, water solubility and vapour pressure at 20-25 °C); P: Persistent; VP: Vapour pressure, WS: Water solubility

2015 UFOPLAN Project FKZ 371265416

by Fritz Kalberlah, Jan Oltmanns, Markus A. Schwarz (FoBiG GmbH) & Joachim Baumeister, Albrecht Striffler (denkbares GmbH)

05.05.2015 SETAC Europe 25th Annual Meeting

by Fritz Kalberlah, Jan Oltmanns, Markus A. Schwarz (FoBiG GmbH) & Joachim Baumeister, Albrecht Striffler (denkbares GmbH)

Water Solubility: determinant of mobility?

log K_{ow}: determinant of mobility?

log K_{oc}: determinant of mobility!

Step 2: Assessment of M properties

- Proposal to use Soil Organic Carbon-Water Partitioning Coefficient as the criterion to identify substances to be mobile in the water cycle.
- Adsorption needs to be assessed in registration of uses > 10 t/year if ionisable <u>or</u> log $K_{ow} \ge 3$

=> NO ADDITIONAL WORKLOAD FOR REGISTRANTS

```
Ionisability: The property to
ionise in water, determined by
the pK<sub>a</sub>-value
```

Neutral, non-ionisable chemicals: **K**_{oc} positively correlated with **K**_{ow}

```
    Potential to <u>adsorb</u> is not correlated with <u>BCF-value</u> and consequently<sup>the same time in the water cycle and in biota and humans an overlap of criteria for "M" and "B" is justified
</sup>
```

```
Proposal: lonisable chemicals:
if pK_a for acidic functionality
<8.5 or pK_a for alkaline
functionality >5.5
```

an overlap of criteria for "M" and "B" is justified(Health Can• For chemicals ionisable within environmental relevant pH-range:
no calculation of K_{oc} but experimental measurementProposal: Io
if pK_a for ac
(8.5 or pK_a)

=> A PERSISTENT SUBSTANCE IS "M" IF IT FULFILS THE CRITERIA WATER SOLUBILITY > 150 μ G/L AND LOG K_{OC} < 4.5

REACH: Assessment concept of PMT properties

- Applicability domain
 - Inorganic substances, organometallic compounds, surfactants
 CURRENTLY EXCLUDED
 - UVCBs and multi constituent substances
 - => ONLY INDIVIDUAL COMPONENTS
 - Ionic, zwitterionic or ionizable organic compounds
 => ONLY MEASURED LOGK_{OC}
- Criteria for P & M are independent of uses and emissions
- If exposure assessment was already performed all necessary data for P & M assessment are available
- Otherwise, emission related assessment steps reduce work load
- If criteria for P and M and emissions is fulfilled
 - => ASSESSMENT OF T PROPERTIES IS NECESSARY

Proposal for a stepwise assessment concept of PMT properties including emission related assessment steps

Step 3: Assessment of T properties

- Criteria from Annex XIII of REACH regulation:
 - classified as
 - carcinogen Cat. 1A, 1B,
 - germ cell mutagen Cat. 1A, 1B
 - reproductive toxicant Cat. 1A, 1B, 2
 - STOT RE Cat. 1 or 2
- Proposed additional criteria:
 - QSAR or screening indications for CMR or endocrine disrupting properties
 - classified with H362 ("may cause harm to breast-fed children")
 - listed in e.g. drinking water directive
 - For oral exposure (long-term, general population) the (derived no effect level) DNEL is ≤ 9 µg/kg body weight and day

=> PRECAUTIONARY PRINCIPLE MUST APPLY TO PROTECT DRINKING WATER

STOT RE: specific target organ toxicity upon repeated exposure

TTC (Threshold of toxicological concern) approach was used to derive a **DNEL** (general population, oral, long term) of 9 μg/kg x d as precautionary cut-off

Validation with data from monitoring

- Literature review of monitoring data
 - water bodies or STP effluent
 - high frequency and / or relevant concentration
 - full registration under REACH

=> 9 SUBSTANCES

1 no data "P"&"M": 4-Benzophenon

=> 8 SUBSTANCES

- 2 PMT-substances: 2,4,6-Trinitrotoluol, Diuron
- 4 PM-substances: Trichloropropylphosphat, Benzotriazol, Tolyltriazol, Acesulfam K
- 2 high emissions: Bisphenol A, NTA

=> P & M CRITERIA PROVEN FOR 6 OUT OF 8 IN MONITORING. HOWEVER, ENVIRONMENTAL EXPOSURE MAY ALSO BE CAUSED BY HIGH AND CONTINUOUS EMISSIONS => QUANTITATIVE RISK ASSESSMENT Monitoring data only available for a small fraction of chemicals registered under REACH

Chemicals found in monitoring often with data gabs in the registration dossier

Outlook: Risk Management

- The Federal Environment Agency (UBA) aims at supporting industry to fulfil their responsibility by providing guidance.
- In addition, we aim at identifying chemicals for which regulatory action may be necessary.

Outlook: Regulatory Options

- Ground- and drinking water need highest level of protection.
- Remediation is costly, if possible at all.
- Substances that are persistent in the environment, mobile in the water cycle and toxic cause a concern.
- The same substance properties may hinder the degradation by ozone and UV and the filtration by activated charcoal during the water treatment process.

=> PROPOSAL: PMT-SUBSTANCES MIGHT BE IDENTIFIED AS SUBSTANCES OF VERY HIGH CONCERN (SVHC) **Authorization:** The use of a chemical is prohibited, unless a specific use is authorized.

Restriction: The use of the chemical is generally allowed, unless a certain (or all) use is restricted.

Conclusions

- REACH Regulation (1907/2006 EG): Precautionary principle needs to be considered to protect the raw water resources.
- Substances that are persistent in the environment, mobile in the water cycle and toxic cause a hazard comparable to POPs and PBTs.
- We propose criteria and an assessment concept which is compatible to the obligations of registrations of uses > 10 t/year
- The Federal Environment Agency (UBA) aims at supporting industry to fulfil their responsibility by providing guidance.
- PMT-Substance may cause a contamination of raw water resources and intrinsic substance properties hinder the water treatment process
 - => identification as substances of very high concern (SVHC)

Propose criteria:

P = PBT-assessment and Annex XIII of the REACH regulation

if P than M = Water solubility > 150 μg/L and logKoc < 4,5

T = Annex XIII or indications or precautionary cut-off DNEL is ≤ 9µg/kg body weight and day

Stepwise approach: Emission related assessment steps shall reduce work load

Thank you for your attention

1 Michael Neumann, 2 Markus A. Schwarz, 1 Daniel Sättler, 2 Jan Oltmanns, 1 Lena Vierke and 2 Fritz Kalberlah

Michael.Neumann@uba.de

1 **UBA**, Federal Environment Agency Wörlitzer Platz 1, 06855 Dessau-Roßlau, Germany

2 **FoBiG**, Forschungs- und Beratungsinstitut Gefahrstoffe GmbH Klarastraße 63, 79106 Freiburg, Germany

www.reach-info.de/

