

Environmental Criticality of Raw Materials

Outcomes of the OekoRess II Project

Andreas Manhart, Regine Vogt, Michael Priester, Günter Dehoust

Berlin, 19.02.2019

Commissioned by

Öko-Institut e.V. ıfeu projekt consult adelphi Member of GFA Consulting Group

Background

- Germany, the EU are widely dependent on imports of mineral and metals. Such dependencies are often connected with supply risks
- Criticality assessments provide a list of "critical raw materials" based on the analyses of supply risks in relation to the vulnerability of sectors or countries (economic importance)
- But, raw materials are also subject to environmental aspects. Mining & processing of minerals often have far-reaching consequences for local, regional environments which also may affect downstream users
 - corporate reputation risk for downstream manufacturing industries
 - opposition against mining, increasing mid- and long-term supply risks (e.g. closure of existing mines, no granting of new concessions)
 - Environmental criticality complements the criticality assessment by considering the environmental dimension

Overview

The OekoRess approach

Indicators, data & aggregation

The OekoRess approach

- The OekoRess raw material-related evaluation method was developed in OekoRess I, and applied to about 50 raw materials (candidate list EU criticality study 2014) in OekoRess II
- **Scope** is on mining & processing of abiotic raw materials
 - Mining & processing are relevant steps in the value chain with regard to environmental impacts, but data on emissions and impacts are missing
 - The value chain is addressed with indicators on material & energy demand
- **Paradigm shift** from assessing environmental impacts to evaluation of Environmental Hazard Potentials (EHPs), a qualitative method
 - to screen potential impacts from mining
 - to identify most relevant abiotic raw materials in mining from an environmental point of view

The OekoRess approach

- The **method and results can be used** by decision makers and also e.g. by LCA practitioners to complement LCA results
- **Aggregated EHPs** provide an ordinal scale applicable to criticality concepts. However, disaggregated indicator results must be considered for decisions.
- For practical reasons, the actual management and possible countermeasures to avoid harmful environmental consequences are not covered by the approach
 - This is not to imply that such measures would be ineffective!
 - However, a reliable data base to include such measures is missing, and in many fields, mitigation measures can reduce but not fully eliminate environmental hazard potentials
- The **method is not suitable** for raw material comparisons or substitution recommendations (require LCA and quantitative data)

Öko-Institut e.V. ıfeu projekt consult adelphi Member of GFA Consulting Group Background

Overview

The OekoRess approach

Indicators, data & aggregation

Indicators for five main evaluation levels:

- Geology
- Technology
- Natural environment
- Value chain
- Governance
- A total of 11 indicators

Evaluation based on measurement instructions

www.oeko.de

	Goal	Indicator	Enviro	Environmental Hazard Potential (EHP)							
			Low	Medium	High						
G	Avoiding pollution risks	1. Pre- conditions for AMD	Geochemical preconditions for AMD do not exist	Geochemical preconditions for AMD exist in part	Geochemical preconditions for AMD exist						
Geology		2. Paragenesis with heavy metals	The deposits usually have no elevated heavy metal concentrations	The deposits usually have slightly elevated heavy metal concentrations	The deposits usually have strongly elevated heavy metal concentrations						
		3. Paragenesis with radioactive substances	The deposits usually have low uranium and/or thorium concentrations	The deposits usually have slightly elevated uranium and/or thorium concentrations	The deposits usually have elevated uranium and/or thorium concentrations						
Technology	Limiting the direct impacts on eco-systems	4. Mining method	Commonly extracted in underground mines	Commonly extracted from solid rock open pit mines	Commonly extracted from alluvial or unconsolidated sediments and/or dredging in rivers						
ogy	Avoiding pollution risks	5. Use of auxiliary substances	Standard extraction & processing methods without auxiliary chemicals	Standard extraction & processing methods using auxiliary chemicals	Standard extraction & processing methods using toxic reagents and auxiliary chemicals						

	Goal	Indicator	Environmental Hazard Potential (EHP)							
			Low	Medium	High					
Natural	Avoiding natural accident hazards	6. Accident hazards due to floods, earthquakes, storms, landslides	≤ 25% quantile of the combined assessment result of the 42 raw materials	 > 25% quantile and ≤ 75% quantile of the combined assessment result of the 42 raw 	> 75% quantile of the combined assessment result of the 42 raw materials with sufficient					
l environment	Avoiding competition in water usage	7. Water Stress Index (WSI) and desert areas	with sufficient data availability	materials with sufficient data availability	data availability					
nent	Protection of valuable ecosystems	8. Designated protected areas and AZE sites								

Bauxite mine sites and layer for natural accident hazards (indicator 6)

Copper mine sites and layer for natural accident hazards (indicator 6)

Class limits for the indicators of

- natural environment
- value chain
- governance

are consistently set by using the 25% and 75% quantile of the results

 For the natural environment indicators 6-8 single score results per raw material are derived by weighting the percentage of low-medium-high EHP results. The factors 0-1-5 are chosen to emphasize on the GIS assessment results with a high EHP.

Aggregation indicators 1 to 8 \rightarrow aggregated EHP (aEHP)

	Goal	Indicator	Environmental Hazard Potential (EHP)							
			Low	Medium	High					
Value c	Limiting the extent of EHPs	9. Size of material flow (SMF) = Cumulated raw material demand of global production	≤ 25% quantile of the 52 raw materials with available data	 > 25% quantile and ≤ 75% quantile of the 52 raw materials with available data 	> 75% quantile of the 52 raw materials with available data					
chain		10. Size of energy flows (SEF) = Cumulated energy demand of global production	≤ 25% quantile of the 52 raw materials with available data	 > 25% quantile and ≤ 75% quantile of the 52 raw materials with available data 	> 75% quantile of the 52 raw materials with available data					

Aggregation \rightarrow Global size of material and energy flows (GSMEF)

- Share [%] of total results and class limits 25% and 75% quantile
- The aggregated indicator provides information about the global dimension of raw material mining & production

Governance in major production countries (indicator 11)

- What governance indicator reflects a country's mining sector governance best (focusing on environmental aspects)?
- Eight indicators were tested on 23 case studies, covering four indicator groups:
 - General governance
 - Environmental governance
 - Sector-specific governance
 - Conflicts
- Result: Environmental Performance Index (EPI) best suited
- In addition ASM is indicated for raw materials which tend to be exploited to a significant extent by ASM

	Goal	Indicator	ndicator Environmental Hazard Potential (EHP)									
			High									
Governance	Compliance with standards	11. Environmental governance in major production countries = Environmental Performance Index (EPI)	Weighted EPI according to production share of producing countries ≤ 25% quantile of EPI for 180 countries	Weighted EPI according to production share of producing countries > 25% quantile and \leq 75% quantile of EPI for 180 countries	Weighted EPI according to production share of producing countries > 75% quantile of EPI for 180 countries							

The indicator on environmental governance can be used in the sense of a risk enhancing or risk reducing factor

 Good governance (low EHP) for a raw material with a high aEHP indicates that hazards are probably addressed to some extent and vice versa bad governance (high EHP) enhances EHPs

Image: Consult adelphi Image: Consult adelphi

Overview

The OekoRess approach

Indicators, data & aggregation

Results

Disaggregated Evaluation of Environmental Hazard Potential (EHP)

- 1 Preconditions for acid mine drainage (AMD)
- 2 Paragenesis with heavy metals
- 3 Paragenesis with radioactive substances
- 4 Mining method
- 5 Use of auxiliary substances
- 6 Accident hazards due to floods, earthquakes, storms, landslides
- 7 Water Stress Index (WSI) and desert areas
- 8 Designated protected areas and AZE sites Global Size of Material and Energy Flows (GSMEF)
- SMF Size of material flow
- SEF Size of energy flow

Boundary Conditions

- Share of mining sites in the arctic region: < 5%
- Mined as main product

Disaggregated Evaluation of Environmental Hazard Potential (EHP)

- 1 Preconditions for acid mine drainage (AMD)
- 2 Paragenesis with heavy metals
 - 3 Paragenesis with radioactive substances
 - 4 Mining method
 - 5 Use of auxiliary substances
 - 6 Accident hazards due to floods, earthquakes, storms, landslides
 - 7 Water Stress Index (WSI) and desert areas
- 8 Designated protected areas and AZE sites Global Size of Material and Energy Flows (GSMEF)
- SMF Size of material flow
- SEF Size of energy flow
 - Boundary Conditions
 - Share of mining sites in the arctic region: < 1%
 - Mined as main product

EHP Indicators								GSMEF		Raw materials	aw materials Aggregated results				Supplementary information			
1.	2.	3.	4.	5.	6.	7.	8.	SMF	SEF		aEHP	EGov	GSMEF	M/B/C	ASM	AR		
										Antimony				M+ <u>B</u> +C	ASM	< 1%		
										Cobalt				M+ <u>B</u>	ASM	< 5%		
										Platinum				M+B+C		< 10%		
										Vanadium				M+ <u>B</u>		< 5%		
										Rhodium				C+B		< 20%		
										Copper				М		< 5%		
										Gold				M+B	ASM	< 5%		
										Phosphate rock				М		< 5%		
										Zinc				М		< 1%		
										Palladium				C+B		< 30%		
										Indium				В		< 1%		
										Lead				M+C		< 1%		
										LREE				M+C		< 5%		
										Molybdenum				M+B		< 1%		
										Silver				M+C+B	ASM	< 5%		
										Bismuth				В		< 1%		
										Selenium				В		< 5%		
										Tellurium				В		< 5%		
										Nickel				М		< 15%		
										Germanium				В		< 10%		
										Rhenium				В		< 5%		
										HREE				M+C		< 1%		
										Aluminium				М		< 1%		
										Borates				М		0%		
										Gallium				В		< 1%		
										Scandium				В		< 10%		
										Beryllium				<u>M</u> +B	ASM	< 5%		
										Niobium				М		< 1%		
										Silica sand				М		0%		

Results

EHP Indicators								GSMEF		Raw materials	Aggregated results			Supplementary information		
1.	2.	3.	4.	5.	6.	7.	8.	SMF	SEF		aEHP	EGov	GSMEF	M/B/C	ASM	AR
										Chromium				М	ASM	0%
										Tin				М	ASM	< 1%
										Magnesium				М		0%
										Manganese				М	ASM	0%
										Bauxite				М		< 1%
										Iron				М		< 1%
										lron ore				М		< 1%
										Titanium				М		< 1%
										Gypsum				М	ASM	0%
										Magnesite				М		0%
										Lithium				М		0%
										Tantalum				С	ASM	0%
										Fluorspar				М	ASM	0%
										Tungsten				М	ASM	< 5%
										Graphite				М	ASM	< 5%
										Coking coal				М		0%
										Potash				М		0%
										Kaolin clay				М		0%

- 1. Preconditions for acid mine drainage (AMD)
- 2. Paragenesis with heavy metals
- 3. Paragenesis with radioactive substances
- 4. Mining method
- 5. Use of auxiliary substances
- 6. Accident hazards due to floods, earthquakes, storms, landslides
- 7. Water Stress Index (WSI) and desert areas
- 8. Designated protected areas and Alliance for Zero Extinction (AZE) sites
- SMF Size of material flow
- SEF Size of energy flow

- aEHP aggregated environmental hazard potential Egov Environmental governance GSMEF Global size of material and energy flows
- M/B/C Main (M), co- (C) or by- (B) product ASM Artisanal and small scale mining
- AR Share of mining sites in the arctic region
 - High EHP Medium to high EHP Medium EHP Low to medium EHP Low EHP

Environmental Criticality of Raw Materials | Berlin | 19.02.2019

adelphi ^(*) Öko-Institut e.V. projekt consult Member of GFA Consulting Group

Overview

The OekoRess approach

Indicators, data & aggregation

- link the environmental and raw materials policy debate ٠
- prioritize raw materials with high overall environmental hazard potential in mining
- and initiate individual raw material-specific processes
- initiate targeted **partnerships with countries rich in raw** materials in order to improve the ecological and social conditions of primary extraction
- promote and expand industrial partnerships and standard initiatives aimed at achieving targeted improvements in the ecological and social conditions in mining
- support governments in implementation of good environmental governance in the mineral sector
- support **formalization ASGM** (Minamata convention on mercury)
- initiate studies on Internalization and fair distribution of environmental costs of mining along the value chain

Industry Int. Coop R&D

Öko-Institut e.V.

Policy-makers

consult

Thank you for your attention!

Öko-Institut e.V. Andreas Manhart

Phone: +49 89 12590077 E-Mail: a.manhart@oeko.de

Projekt-Consult

Dr. Michael Priester

Phone: +49 40 60306740 E-Mail: Michael.Priester@projekt-consult.de **ifeu Heidelberg** Regine Vogt

Phone: +49 6221 476722 E-Mail: regine.vogt@ifeu.de

adelphi Lukas Rüttinger

Phone: +49 30 8900068 37 E-Mail: ruettinger@adelphi.de

Commissioned by

The project underlying this presentation was financed by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety under project number FKZ 3715 32 310 0. The responsibility for the content of this publication lies with the authors.

Umwelt 📦 Bundesamt