

Material needs for greenhouse gas neutral mobility systems

Decarbonisation and Resource Efficiency – 100% Renewable Energy and more

Dr. Matthias Buchert, Oeko-Institut

8 November 2016 Berlin

Introduction

- The decarbonisation of the global mobility system up to 2050 will cause tremendous effects and shifts of global material supply chains!
- The rising new mobility age will generate "material winners" and "material losers"!
- The supply chain shifts will produce significant economic, social and ecological impacts – positive and negative ones!
- From a prediction perspective the "declining supply chains" are easier to identify!
 - The rising material needs are more difficult to predict in a long term perspective due to competitive new technologies and possible upcoming innovations within the next 3 decades!

Declining supply chains and consequences for material needs

- Declining share and declining absolute units of internal combustion engines (ICE) for passenger cars and partly (?) for trucks & busses!
- Declining supply chains for fossil fuels: oil production, pipelines, oil refineries, fuel distribution including gas stations!
- Decreasing need for steel, cast iron, cast aluminium and lead acid battery components (declining demand for ICE components)!
- Decreasing need for automotive catalysts: decreasing demand for PGM (platinum, palladium and rhodium) and the rare earth element cerium!
- Further decreasing components & materials: large catalysts for oil refineries etc. (declining demand for molybdenum, PGM etc.)!

Rising supply chains

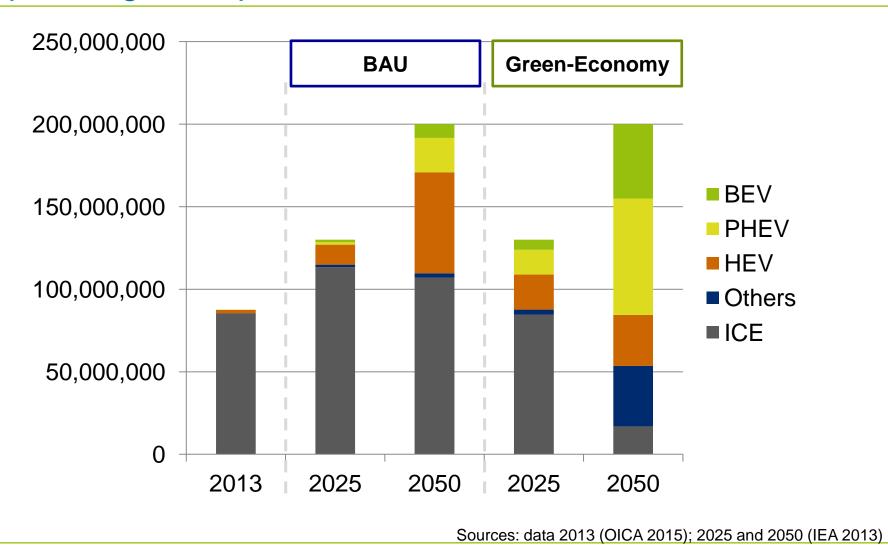
- Rising share and rising absolute units of electric drive trains for passenger cars!
- Rising units of electric bicycles!
- Rising units of fuel cells (passenger cars??, electric bicycles?, busses, trains etc.)!
- Increasing relevance (probably) of overhead hybrid electric trucks (OHtrucks) including appropriate infrastructure (overhead wiring)!
- Rising demand for H2 and Power-to-X infrastructure (for trucks, wheel loaders, vessels, aircrafts) and rising demand for electricity storage!

Consequences for material needs caused by the "rising stars"

- Rising demand for batteries will lead to significantly increasing demand for lithium and other battery materials (copper, cobalt, nickel etc.)!
- Rising demand for electric motors could lead to tremendously larger demand for rare earths like neodymium, dysprosium etc.: but alternative motor technologies without rare earths are already available (mainly for BEV)!
- Rising demand for fuel cell technology could cause e.g. significant demand for platinum!
- Rising demand for H2 and Power-to-X infrastructure will increase demand for copper, nickel, platinum, iridium, cobalt etc.
- Rising demand for copper in a large scale for many technologies!

Lithium and rare earths demand for passenger cars

- Next slides show some selected results of the on-going project "Substitution as a strategy for reducing the criticality of raw materials for environmental technologies - Determination of potentials for second-best solutions (SubSKrit)"*
- Potential demand growth for lithium, dysprosium and neodymium will be presented!
- The selected metals are key materials for batteries and electric motors!
- > The estimations include material demand for passenger cars only!

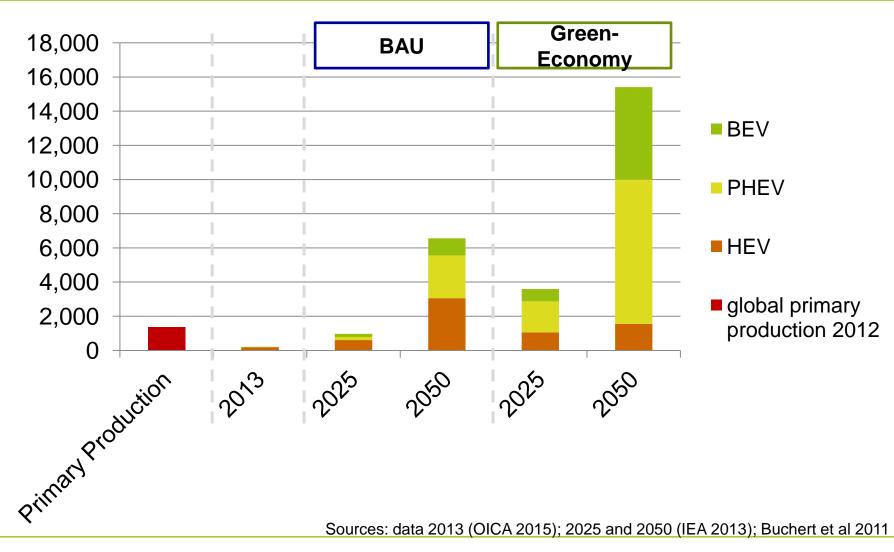

^{*} Oeko-Institut and IZT commissioned by Umweltbundesamt (2014 – 2017)

Scenarios for annual global passenger car production I/II

Global		Business-As-Usual		Green-Economy	
	2013	2025	2050	2025	2050
Total passenger car sales	87.595.998	130.000.000	200.000.000	130.000.000	200.000.000
thereof HEV	2.000.260	12.082.616	61.119.671	21.144.578	30.960.075
thereof BEV	110.200	1.510.327	8.320.493	6.041.308	45.074.534
thereof PHEV	41.800	1.510.327	20.852.594	15.103.270	70.436.777
thereof ICE	85.417.114	113.386.403	106.933.744	84.690.189	16.939.435
thereof others (e.g. fuel cell)	26.623	1.510.327	2.773.498	3.020.654	36.589.180

Sources: data 2013 (OICA 2015); 2025 and 2050 (IEA 2013)

Scenarios for annual global passenger car production II/II

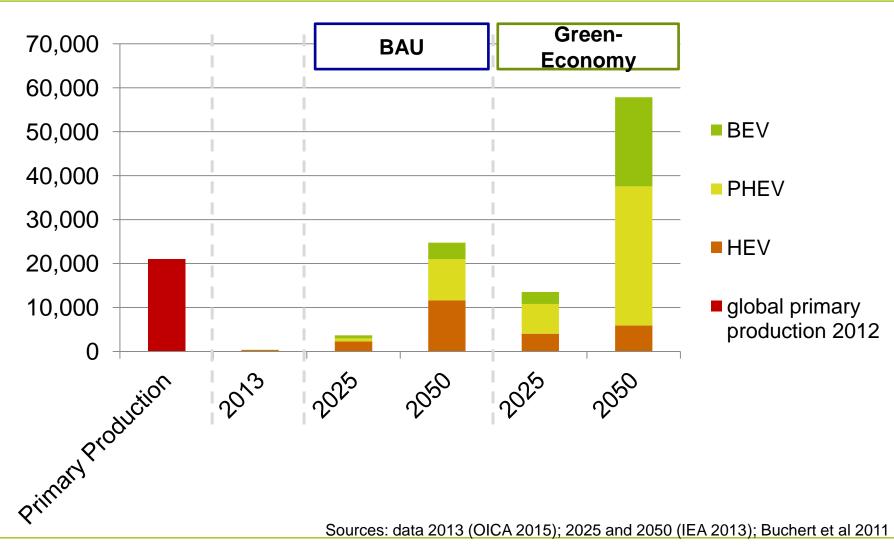


Rough estimate of dysprosium demand in metric tonnes I/II

Global		Business-As-Usual		Green-Economy	
	2013	2025	2050	2025	2050
Total passenger car sales	n.a.	n.a.	n.a.	n.a.	n.a.
thereof HEV	180	604	3.056	1.057	1.548
thereof BEV	23	181	998	725	5.409
thereof PHEV	9	181	2.502	1.812	8.452
thereof ICE	-	-	-	-	-
thereof others (e.g. fuel cell)	n.a.	n.a.	n.a.	n.a.	n.a.

Sources: data 2013 (OICA 2015); 2025 and 2050 (IEA 2013); Buchert et al 2011

Rough estimate of annual DYSPROSIUM demand for HEV, PHEV and BEV [in metric tonnes] II/II


ビ Öko-Institut e.V.

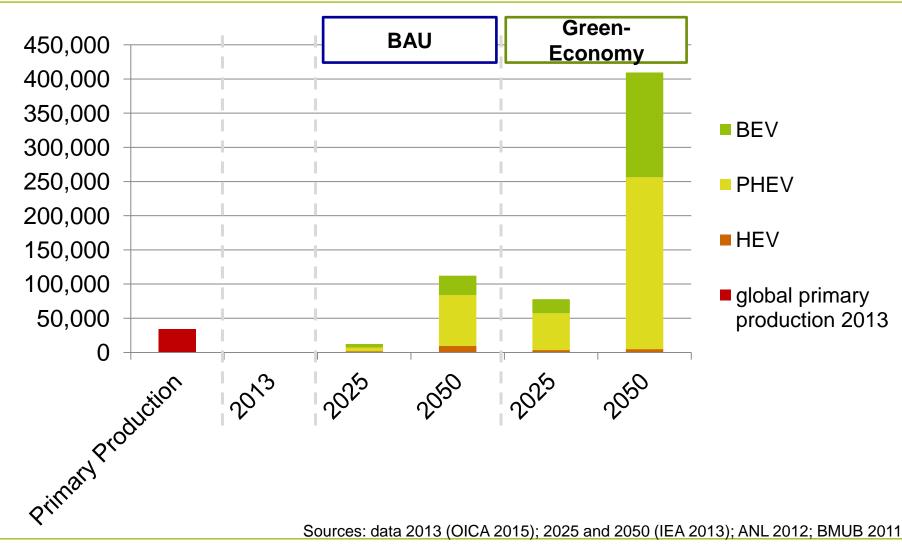
Rough estimate of neodymium demand in metric tonnes I/II

Global		Business-As-Usual		Green-Economy	
	2013	2025	2050	2025	2050
Total passenger car sales	n.a.	n.a.	n.a.	n.a.	n.a.
thereof HEV	300	2.296	11.613	4.017	5.882
thereof BEV	40	680	3.744	2.719	20.284
thereof PHEV	15	680	9.384	6.796	31.697
thereof ICE	-	-	-	-	-
thereof others (e.g. fuel cell)	n.a.	n.a.	n.a.	n.a.	n.a.

Sources: data 2013 (OICA 2015); 2025 and 2050 (IEA 2013); Buchert et al 2011

Rough estimate of annual NEODYMIUM demand for HEV, PHEV and BEV [in metric tonnes] II/II

ビ Öko-Institut e.V.


Rough estimate of lithium demand in metric tonnes I/II

Global		Business-As-Usual		Green-Economy	
	2013	2025	2050	2025	2050
Total passenger car sales	n.a.	n.a.	n.a.	n.a.	n.a.
thereof HEV	314	1.898	9.601	3.321	4.863
thereof BEV	375	5.135	28.290	20.540	153.253
thereof PHEV	43	5.392	74.444	53.919	251.459
thereof ICE	-	-	-	-	-
thereof others (e.g. fuel cell)	n.a.	n.a.	n.a.	n.a.	n.a.

Sources: data 2013 (OICA 2015); 2025 and 2050 (IEA 2013); ANL 2012; BMUB 2011

Öko-Institut e.V.

Rough estimations of annual LITHIUM demand for HEV, PHEV and BEV [in metric tonnes] II/II

www.oeko.de

Interpretation of the lithium, dysprosium and neodymium demand developments

- Due to the rising share and units of HEV, PHEV, BEV the global demand for lithium in this sector will grow significantly!
- Additionally growing demand for lithium will be triggered by other battery applications (hybrid busses, electric bicycles, power tools, wheel chairs, electricity storage etc.)!
- The development concerning rare earths elements (neodymium, dysprosium etc.) depends on the outcome of the current electric motor competition; especially for HEV the synchronous motors with permanent magnets (based on neodymium, dysprosium etc.) are classified as a stronghold!
- From an environmental point of view recycling of lithium, neodymium, dysprosium etc. will be a key task for the next decades!

Outlook

- The global transformation to a greenhouse gas neutral mobility system will generate "winning" and "losing" supply chains!
- > Rising demand for metals like copper, lithium etc. is conceivable!
- > Declining demand from the sector for PGMs, lead, steel etc. is possible!
- The main challenges are not necessarily material scarcity but reducing environmental impacts along the "winning" supply chains!
- Promoting new recycling infrastructure and recycling technologies e.g. for lithium are key tasks – but note: net economic profits for lithium ion battery recycling can not be expected!

Many Thanks for Your Attention!

Dr. Matthias Buchert

Oeko-Institut

E-Mail: m.buchert@oeko.de