"100% Renewable Energy and more", Decarbonisation and Resource Efficiency Workshop, 8 November 2016, Berlin

Deployment of electric vehicles and support policies Findings from the Global EV Outlook 2016

Marine Gorner, International Energy Agency

© OECD/IEA 2016

The role of electric cars in sustainable transport

Total GHG emissions – all sectors 14 Aviation 4DS 45 Shipping 4DS 12 Well to wheel GHG emissions (Gt CO₂) 40 Rail 35 10 Trucks 30 Buses 8 Cars and LCVs 25 2 and 3 wheelers 2DS 6 20 Aviation reduction 15 2DS Shipping reduction 10 Rail reduction 44% Trucks reduction 5 Buses reduction 0 Cars and LCVs reduction 2015 2020 2025 2030 2035 2040 2045 2050 2015 2020 2025 2030 2035 2040 2045 2050 2 and 3 wheelers reduction Other transformation reduct Other transformation Power reduction Power Transport reduction Transport

Services reduction

GHG emissions (Gt CO₂)

Residential reduction

Agriculture reduction

- Industry reduction
- Agriculture Services Residential
- Industry

Electric cars can make a major contribution, but are also needed: \rightarrow "avoid, shift, improve" \rightarrow electrified road freight and mass transport

GHG emissions – transport

International **Energy Agency**

Sustainable

Together

The role of electric cars in sustainable transport

Electric cars benefits

	Climate	Health	Energy security
Better energy efficiency than internal combustion engines			
Absence of tailpipe emissions $(CO_2 \text{ and pollutants})$		(paramount in urban areas)	
Low-carbon mode, provided that the electricity mix is low-carbon			
Reduction of oil dependency			(+ potential for harvesting local, renewable energy sources)

Main hurdles and challenges

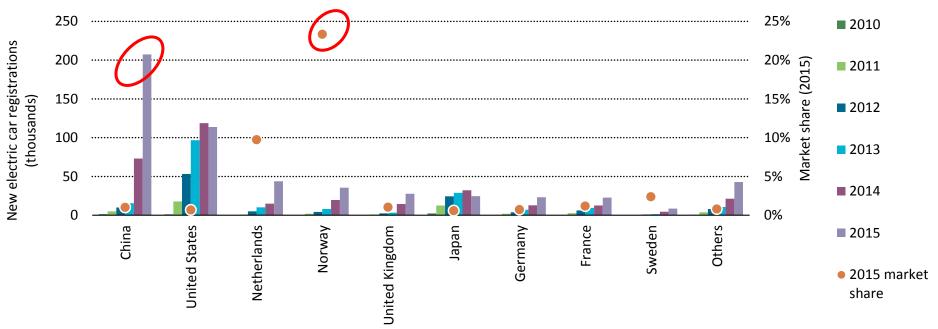
Upfront cost

Charging infrastructure and range anxiety

Need for policy action to lift up barriers, spur adoption and harvest the benefits of EVs.

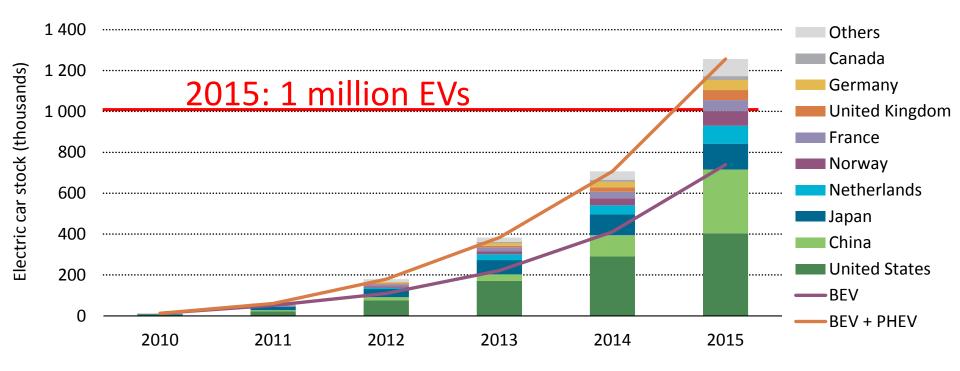
International Energy Agency

The Electric Vehicles Initiative and IEA's EV-related work


- EVI: Multi-government policy forum established in 2009 under CEM
- Knowledge-sharing on policies and programs that support EV deployment
- Global EV Outlook 2016, released on 31 May
- EVI data and analysis are at the basis of IEA's WEO and ETP scenarios

International Energy Agency

GEVO 2016: the electric car market in 2015


- 550,000 EVs sold in 2015 (+ 70%)
- China became the first EV market in 2015
- 9/10 EVs sold in 8 countries (China, US, Netherlands, Norway, UK, Japan, Germany, France)
- 7 countries >1% market share (Norway, Netherlands, Sweden, Denmark, France, China, UK)

International Energy Agency

Sustainab

Together

EV stock evolution, 2010-2015

- 1.26 million EVs in circulation by end of 2015
- **59% BEVs**
- 4/5 EVs in 5 countries (US, China, Japan, Netherlands, Norway)
- Other modes: 200 M e-2Wheelers, 173 k e-buses (mainly in China)

International

Sustainab

Secure

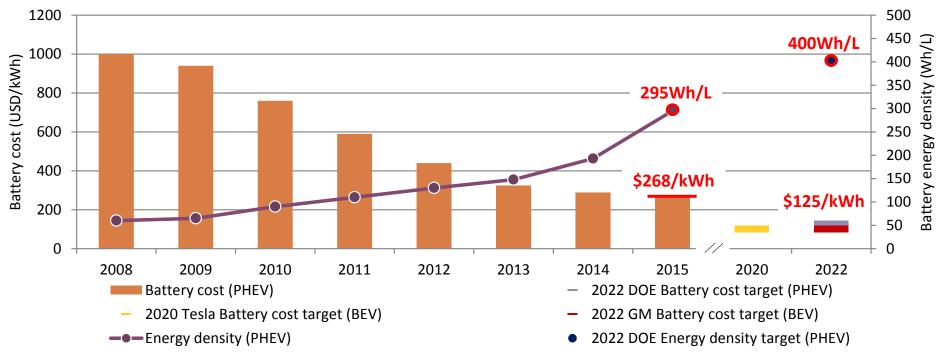
Energy Agency

Together

Recent market developments: EV sales and market share

What is happening in 2016?

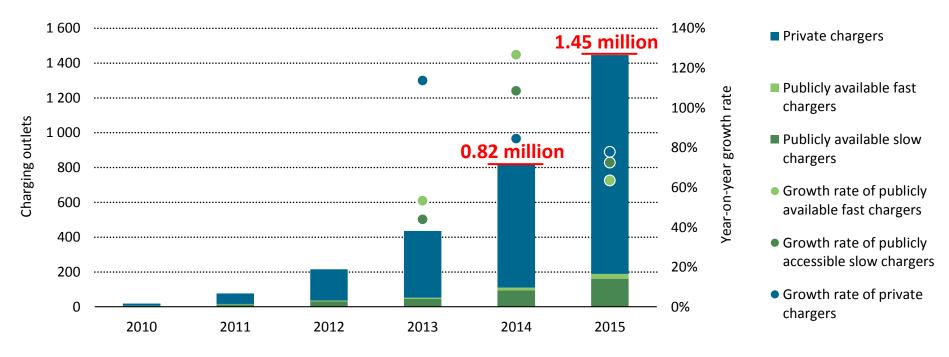
EU: +20% sales in Q1-Q2 2016 compared to Q1-Q2 2015


China: +160% sales in Q1-Q2 2016 compared to Q1-Q2 2015

Netherlands: 2.5% market share in 2016 (ytd) vs. 10% in 2015, due to changes in support mechanism and drop in PHEV sales

→ expecting dynamic global growth in 2016, mainly driven by China sales

RD&D: battery costs and energy density


- PHEV battery costs:
 - -73% in the past 7 years
 - Ambitious announcements in the next future: -58% to go in the next 7 years
- Wider model availability (Renault-Nissan, BMW, GM, Tesla (...) did not offer the same variety of EVs 5 years ago...)
- Further improvements needed to enable longer ranges for lower costs, addressing range anxiety and increasing EV competitiveness

International Energy Agency

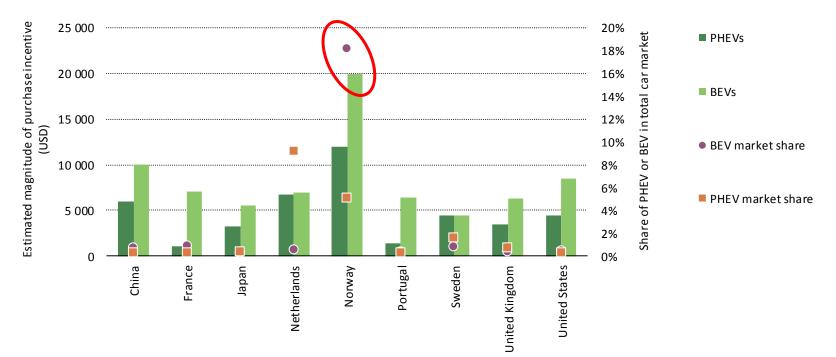
Sustainable

Together

EV Supply Equipment

- The deployment of publicly accessible chargers is positively correlated with the growth in EV sales
- Need for charging network to overcome range anxiety barrier
- Incentives are not just needed for vehicle purchase

International


Sustainab

Secure

Energy Agency

Together

Purchase incentives and EV market shares, 2015

- Various policy mechanisms behind the "market pull"
 - Differentiated taxation: CO₂-based rebates, technology-based rebates, feebates, VAT exemptions
 - Waivers on charges, preferential treatment possible if differentiated number plates are in place
- Norway stands out in terms of incentives and EV adoption
- Difficult to come to conclusions for other markets (very early phase)

International Energy Agency

Sustainable

Together

EV support policies needed in multiple fields of mobility

- CO₂-based, technology-based differentiated taxation and rebates
- Feebates
- VAT exemptions

Purchase incentives

Circulation incentives

- Differentiated plates
- Access to bus lanes
- Free/dedicated parking
- Circulation/congestion charge exemption
- .

- Fuel taxes
- Public fleets, taxi fleets initiatives

iea

International Energy Agency

Sustainabl

Together

Standards, regulations and mandates

Charging infrastructure roll-out

- Direct public investment
- Public-private partnerships
- Charger standards harmonization
- Fast and slow charging network planning
- .

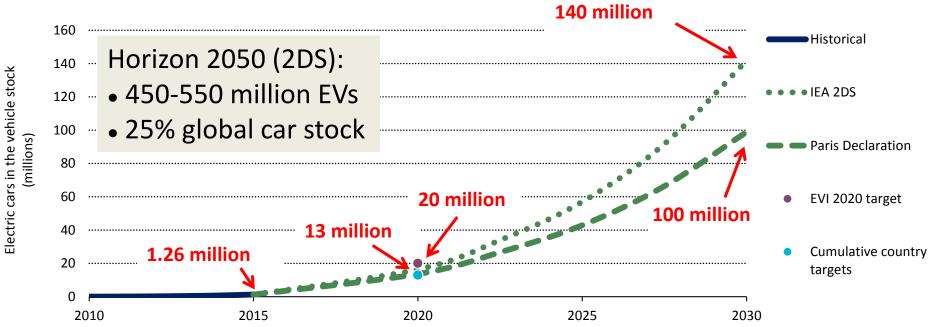
EV support policies: challenges and future evolutions

Today:

Countries are still in trial and error phase:

- Which policies have the highest impacts?
- Do any policies have unanticipated adverse effects?
- What is the cost-optimal and most effective combination of support policies?

Tomorrow:


- How to accompany mass market deployment within budget constraints ...
- How to rethink vehicle taxation to accommodate for fuel tax losses (electric cars do use public infrastructure and remain part of the congestion challenge) ...
- How to prevent potential competition between EVs and public transport ...

... without hampering EV rollout?

International Energy Agency

EV deployment targets

World

 \rightarrow Implications in terms of production scale up and need for raw materials?

International **Energy Agency**

Together

Secure Sustainable Tog

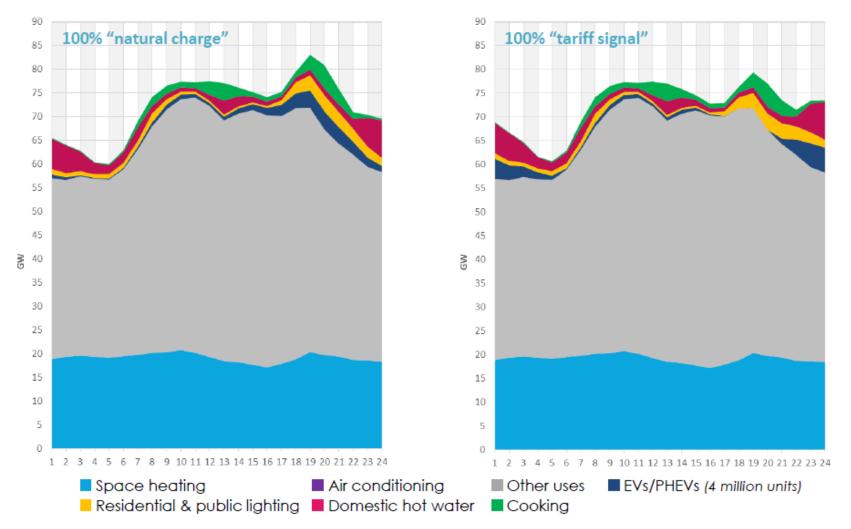
62

EV deployment scenarios

Impacts on the grid?

Slow charging:

- Potential for flexibility through variable charging: requires price signal, demand-side management tools, but not necessarily "vehicle-to-grid" operations.
- Synergies with the integration of variable renewables


Fast charging:

- Potentially disruptive locally for distribution grids
- Does not offer flexibility
- However, fast charging is not likely to take place in the evening demand peak (home chargers are slow chargers)

International

Energy Agency

(RTE) Hourly load of a winter day with different charging modes

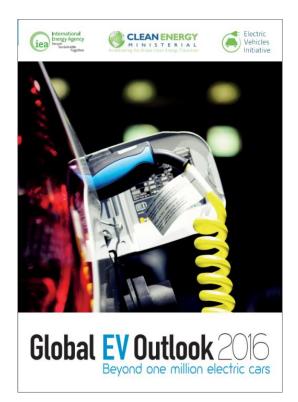
Source:

Réseau de Transport d'Electricité (RTE), France. Slide presented at the Paris

"CEEM, Conference Electric vehicles and the electricity system" on 17 October 2016.

Presentation available at http://www.ceem-dauphine.org/assets/dropbox/CEEM Conference - RTE - Impact of EV development.pdf

International Energy Agency


Secure Sustainable

Together

iea

Thank you for your attention

The Global EV Outlook 2016 is freely accessible online