TEXTE

Protecting the sources of our drinking water: The criteria for identifying persistent, mobile and toxic (PMT) substances and very persistent and very mobile (vPvM) substances under EU **Regulation REACH (EC)** No 1907/2006

TEXTE 127/2019

Protecting the sources of our drinking water: The criteria for identifying persistent, mobile and toxic (PMT) substances and very persistent and very mobile (vPvM) substances under EU Regulation REACH (EC) No 1907/2006

by

Michael Neumann, Ivo Schliebner Section IV 2.3 Chemicals

German Environment Agency

Imprint

Publisher:

Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau Tel: +49 340-2103-0 Fax: +49 340-2103-2285 buergerservice@uba.de Internet: www.umweltbundesamt.de

f /umweltbundesamt.de
/umweltbundesamt

Study completed in:

September 2018

Edited by:

Section IV 2.3 Chemicals Michael Neumann, Ivo Schliebner

Publication as pdf:

http://www.umweltbundesamt.de/publikationen

ISSN 1862-4804

Dessau-Roßlau, November 2019

Table of Contents

List of figures	7
List of tables	7
1 Summary	8
1 Zusammenfassung	9
2 The technical development of PMT/vPvM criteria under REACH	. 10
2.1 Acknowledgement	. 11
3 Preamble	. 18
4 The presence of chemicals in drinking water and groundwater	. 19
5 Aims of this initiative	. 25
6 Benefits from this initiative	. 26
7 What intrinsic substance properties make a substance a hazard to the sources of our drinking water?	
7.1 Challenges related to water treatment	. 27
7.2 Challenges related to the analysis of water samples	. 28
8 Comparing PMT/vPvM substances to PBT/vPvB substances	. 30
9 The assessment procedure for PMT/vPvM substances	. 31
10 The criteria for identifying PMT/vPvM substances	. 32
10.1 PMT substances	. 32
10.1.1 Persistence	. 32
10.1.2 Mobility	. 32
10.1.3 Toxicity	. 32
10.2 vPvM Substances	. 33
10.2.1 Persistence	. 33
10.2.2 Mobility	. 33
10.3 Information relevant for the screening of P, vP, M, vM, and T Properties	. 33
10.3.1 Indication of P and vP properties	. 33
10.3.2 Indication of M and vM properties	. 34
10.3.3 Indication of T properties	. 34
10.4 Information relevant for the assessment of P, vP, M, vM, and T Properties.	. 34
10.4.1 Assessment of P or vP properties	. 34
10.4.2 Assessment of M or vM properties	. 34
10.4.3 Assessment of T properties	. 35
11 Regulatory and Scientific Justification	. 36

-	L1.1	Justification of the P/vP criteria	. 36
-	L1.2	Justification of the M/vM criteria	. 38
-	L1.3	Justification of the T criteria	. 43
12	Valio	dation of the PMT/vPvM criteria	. 45
13	Impa	act Assessment of the PMT/vPvM criteria	. 47
14	Risk	Management Options for PMT/vPvM substances	. 49
-	L4.1	Manufacturers, importers and downstream users	. 49
	L4.2	Local authorities and water suppliers	. 50
	L4.3	European Commission, ECHA and Member States	. 51
15	Refe	rences	. 52
A	Stud	ies considered in literature review	. 58
В	Othe	er Substances detected in drinking water and groundwater	. 59
С	PMT	/vPvM assessment of REACH registered substances detected in drinking water and	
	grou	ndwater	. 64
D	False	e Negatives in PMT/vPvM assessment	. 85

List of figures

Figure 1:	Number of substances detected in drinking water (top panel)	
	and groundwater (lower panel) in which the maximum	
	reported concentration falls within one of the specified	
	concentration ranges	23
Figure 2:	The percentage of substances that were reported in drinking	
	water or groundwater with a maximum concentration over 0.1	
	μ g/L for both non REACH registered substances and REACH	
	registered substances	24
Figure 3	Box and Whisker plots of calculated log D_{ow} values at ph 7.4	
	(chemaxon)	29
Figure 4:	Overview of the assessment procedure to identify PMT/vPvM	
	substances registered under REACH	31
Figure 5	Categories of P evaluations for 142 REACH registered	
	substances detected in drinking water and/or groundwater	37
Figure 6:	Distribution of log K_{OC} values of REACH registered substances	
	detected in drinking water and groundwater from a review of	
	monitoring studies	41
Figure 7:	The log-log correlation between experimental K_{OC} and K_{OW}/D_{OW}	42
Figure 8:	Distribution of 142 REACH registered substances detected in	
	drinking water and groundwater from the review of monitoring	
	studies, organized by their minimum K_{ow} or D_{ow} (pH 4 to 9)	43
Figure 9	Validation of the PMT/vPvM criteria via comparison to 142	
	REACH registered substances detected in drinking water	
	and/or groundwater	45

List of tables

Table 1	REACH registered substances (as of May 2017) detected in	
	drinking water (DW) and/or groundwater (GW)	19
Table A1	Studies considered in this literature review of drinking water	
	(DW) and groundwater (GW) contaminants	58
Table B1	List of substances detected in drinking water and groundwater	
	that are not REACH registered substances (as of May 2017)	59
Table C1	PMT/vPvM assessment of REACH registered substances (as of	
	May 2017) that have been reported in at least one study as	
	detected in groundwater (GW) or drinking water (DW)	65
Table D1	List of false negatives for the P criterion	85
Table D2	List of false negatives for the M criterion	87

1 Summary

Substances with a specific combination of intrinsic substance properties pose a hazard to the sources of our drinking water, including substances that are very persistent (vP) in the environment and very mobile (vM) in the aquatic environment as well as substances that are persistent (P), mobile (M), and toxic (T). To identify such substances the German Environment Agency (UBA) since 2010 has funded research projects and since 2017 has performed two written consultations and several workshops. This document presents the result of this scientific and technical development of the PMT/vPvM criteria under EU REACH Regulation (EC) No 1907/2006. The German authorities propose to name such substances in the regulatory context of REACH "PMT substances" or "vPvM substances" (Neumann et al., 2015; Neumann, 2017; Neumann and Schliebner, 2017a, b).

The combination of the two intrinsic substance properties P (persistence) and M (mobility) increase the chances for substances to pass natural barriers like river banks and artificial barriers in water treatment facilities. Consequently, a contamination potentially becomes irreparable. A partial removal only up to 80% in additional water treatment facilities for the approximately 5.2 billion m^3 of wastewater produced every year in Germany would cost 0.8 to 1.5 billion \notin per year. Complete removal of persistent and mobile substances is neither economically nor technologically feasible.

Substantial analytical challenges exist related to the detection and quantification of mobile (polar) substances in water samples. Conventional methods using gas chromatography (GC) and reverse-phase liquid chromatography (RPLC) are not able to detect and quantify the most mobile (polar) substances. As such, waiting for monitoring data before minimising emissions of persistent and mobile substances into the environment is irresponsible.

The PMT/vPvM criteria are based on scientific and regulatory considerations under REACH. The scientific justifications include (1) monitoring data, (2) simulation and model studies and (3) impact considerations. The basis of the regulatory justification is integration with existing data and assessment requirements of the REACH registration process to allow for the least possible additional workload for registrants.

A literature review of 25 studies, comprising data between 2000 and 2018, was performed. In total, 333 chemicals were identified, of which 246 were detected in drinking water and 187 were detected in groundwater, including 100 detected in both. REACH registered substances comprise 113 (46%) of the 246 total drinking water contaminants and 75 (40%) of the 187 total groundwater contaminants. 58% of the detected REACH registered substances exceed the 0.1 μ g/L limit value of the EU's drinking water directive. Therefore, a substantial portion of drinking water and groundwater contaminants are substances registered under REACH.

The PMT/vPvM assessment will benefit chemical industry and downstream users by providing clarity regarding which substances require scrutiny in chemical risk assessment for posing a hazard to the sources of our drinking water. It can be considered a ready-to-use tool for industry to identify PMT/vPvM substances. Risk mitigation measures to minimise emissions would only apply to a limited and clearly defined number of substances. It may be concluded that under REACH fewer substances fulfil the PMT/vPvM criteria than the PBT/vPvB criteria and that the implementation of the PMT/vPvM assessment would have a relatively small impact on the European chemical industry as a whole.

More careful and transparent use of identified PMT/vPvM substances will result in less, more specific chemical monitoring and if needed treatment technologies, leading to overall less water management costs.

1 Zusammenfassung

Stoffe mit einer spezifischen Kombination von intrinsischen Stoffeigenschaften stellen eine Gefahr für die Ressourcen unserer Trinkwässer dar. Dies schließt Stoffe ein, die sehr persistent (vP) in der Umwelt und sehr mobil (vM) in der aquatischen Umwelt sind, sowie solche, die persistent (P), mobil (M) und toxisch (T) sind. Zur Identifizierung dieser Stoffe fördert das Umweltbundesamt (UBA) seit 2010 Forschungsprojekte und führte seit 2017 zwei schriftliche Konsultationen sowie mehrere Workshops durch. Dieses Dokument stellt das Ergebnis dieser wissenschaftlichen und technischen Entwicklung der PMT/vPvM-Kriterien unter der EU-Chemikalienverordnung REACH (EG) Nr. 1907/2006 dar. Die deutschen Behörden schlagen vor, solche Stoffe unter REACH als "PMT-Stoffe" oder "vPvM-Stoffe" zu bezeichnen (Neumann et al., 2015; Neumann, 2017; Neumann und Schliebner, 2017a, b).

Die Kombination der beiden intrinsischen Stoffeigenschaften P (Persistenz) und M (Mobilität) erhöht die Chancen für Chemikalien natürliche Barrieren wie Uferfiltrationsstrecken und künstliche Barrieren in der Wasseraufbereitung zu überwinden. Infolgedessen ist eine Kontamination möglicherweise irreparabel. Bereits eine nur teilweise Entfernung bis zu 80% in zusätzlicher Wasseraufbereitung für die jährlich rund 5,2 Milliarden m³ Abwasser in Deutschland würde 0,8 bis 1,5 Milliarden € pro Jahr kosten. Die vollständige Entfernung von persistenten und mobilen Stoffen ist weder wirtschaftlich noch technologisch realisierbar.

Erhebliche analytische Herausforderungen bestehen mit dem Nachweis und der Quantifizierung mobiler (polarer) Stoffe in Wasserproben. Herkömmliche Verfahren mit Gaschromatographie (GC) und Umkehrphasen-Flüssigkeitschromatographie (RPLC) sind nicht in der Lage, die mobilsten (polarsten) Substanzen zu erkennen und zu quantifizieren. Auf Monitoringdaten zu warten bevor Emissionen von persistenten und mobilen Stoffen in die Umwelt minimiert werden ist daher unverantwortlich.

Die PMT/vPvM-Kriterien basieren auf wissenschaftlichen und regulatorischen Überlegungen unter REACH. Die wissenschaftlichen Begründungen umfassen (1) Monitoringdaten, (2) Simulations- und Modellierungsstudien und (3) Folgenabschätzungen. Grundlage der regulatorischen Überlegungen ist die Integration mit den bereits bestehenden Daten- und Bewertungsanforderungen im REACH-Registrierungsprozess, um so für Registranten einen möglichst geringen zusätzlichen Arbeitsaufwand zu verursachen.

Durch eine Literaturrecherche mit 25 Studien zwischen 2000 und 2018 wurden 333 Chemikalien identifiziert, von denen 246 im Trinkwasser und 187 im Grundwasser nachgewiesen wurden, davon 100 in beiden. REACH-registrierte Stoffe machen 113 (46%) der 246 Trinkwasser- und 75 (40%) der 187 Grundwasserkontaminanten aus. 58% der nachgewiesenen REACH-registrierten Stoffe überschreiten den Grenzwert von 0,1 µg/L. Ein signifikanter Anteil der Kontaminanten in Trink- und Grundwasser ist unter REACH registriert.

Die PMT/vPvM-Bewertung schafft für die Chemieindustrie und den nachgeschalteten Anwendern Klarheit darüber, welche Stoffe einer Prüfung bedürfen, um eine Gefahr für die Ressourcen unserer Trinkwässer auszuschließen. Es ist ein einsatzbereites Werkzeug für die Chemieindustrie zur Identifizierung von PMT/vPvM-Stoffen. Risikominderungsmaßnahmen zur Minimierung der Emissionen sind für eine begrenzte und klar definierte Anzahl von Stoffen notwendig. Unter REACH erfüllen weniger Stoffe die PMT/vPvM-Kriterien als die PBT/vPvB-Kriterien und die Umsetzung hätte relativ geringe Auswirkungen auf die Chemieindustrie.

Eine sorgfältigere und transparentere Verwendung der identifizierten PMT/vPvM-Stoffe wird zu geringerem Monitoring und Wasseraufbereitung führen, was insgesamt zu geringeren Kosten für die Wasserwirtschaft führt.

2 The technical development of PMT/vPvM criteria under REACH

The hazard posed by persistent chemicals that are mobile in the aquatic environment has been well known since decades (Schröder, 1991; Knepper et al., 1999). Such chemicals have previously been named in the scientific literature as Polar Persistent Organic Pollutants (PPOPs) (Giger et al. 2005), Persistent Polar Pollutants (PPPs, P3 substances) (Steinhäuser & Richter 2006) or Persistent and Mobile Organic Contaminants (PMOCs) (Reemtsma et al. 2016). The German authorities in May 2017 proposed criteria for identifying such chemicals in the regulatory context of EU REACH Regulation (EC) No 1907/2006. Substances meeting these criteria are referred to as either persistent, mobile and toxic (PMT) or very persistent and very mobile (vPvM) substances (Neumann et al., 2015; Neumann, 2017; Neumann and Schliebner, 2017a, b).

Under REACH, industry must demonstrate in their registration dossier the safe use of substances over their entire life cycle. For substances with intrinsic properties that indicate severe hazards, scrutiny is needed during chemical risk assessment. Already prior to the establishment of REACH, there has long been consensus that certain intrinsic substance properties exclude a quantitative risk-based regulation. Substances with carcinogenic, mutagenic, reprotoxic, or endocrine disrupting properties, for which it is not possible to determine a threshold, or substances considered persistent, bioaccumulative and toxic (PBT) or very persistent and very bioaccumulative (vPvB) warrant *per se* a minimisation of human and environmental exposure and therefore a qualitative, hazard-based regulation. Unfortunately, REACH currently lacks similar criteria for intrinsic substance properties that indicate a potential drinking water contaminant. Consequently, there is a regulatory gap between the requirements of the drinking water directive and REACH to fulfil the precautionary protection of the sources of our drinking water. For this purpose, the German Environment Agency (UBA) deemed it necessary to scientifically and technically develop PMT/vPvM criteria under REACH.

Since 2010 the German Environment Agency (UBA) has funded research projects to develop PMT/vPvM criteria under REACH. These projects include a review of existing prioritisation models (Kuhlmann et al., 2010 - FKZ 363 012 41), a study to identify relevant intrinsic substance properties (Skark et al., 2011 - FKZ 360 010 59), the initial development of an assessment concept tailor-made for REACH (Kalberlah et al., 2014 - FKZ 371 265 416), and an assessment of persistence, mobility and toxicity of 167 REACH registered substances (Berger et al. 2018) - Project No. 74925). Since 2016 a research project has further developed and justified the PMT/vPvM criteria and assessed all REACH registered substances as of May 2017 (Arp and Hale, 2019 - FKZ 371 667 4160).

The German authorities had submitted a first proposal (Neumann and Schliebner, 2017a) for the criteria persistence in the environment ("P"), mobility in the aquatic environment ("M") and toxicity to humans ("T") to the Risk Management Expert Meeting (RiME-2/2017) on the 17th-18th of May 2017 in Łódź, Poland and to the 15th meeting of the European Chemicals Agency's (ECHA) PBT expert group (PBT EG) on the 23rd-24th of May 2017 for comments and suggested revisions. The comments were further discussed during a WEBEX-Meeting on the 16th of August 2017 with the members of the PBT EG and have been summarised in a Response to Comment (RCOM) document.

The proposal was then revised by the German authorities, and the second version of the proposal (Neumann and Schliebner, 2017b) was submitted to the 16th meeting of ECHA's PBT expert group (PBT EG) on 28rd-29th of September 2017 and to the Risk Management Expert Meeting (RiME-3/2017) on 4th-5th of October 2017 in Tallinn, Estonia for a second round of

comments and suggested revisions. In addition to these two written consultations the proposal was repeatedly presented and discussed, e.g. at the SETAC Europe Conferences 2015, 2016, 2017 and 2018; the first UBA workshop "REACH in der Praxis: PMT-Stoffe erkennen und ihre Emissionen vermeiden" ("REACH in practice: Identifying PMT substances and avoiding their emissions") held by the German Environment Agency (UBA) for industry on 4th of May 2017 in Berlin, Germany, the Centre for Environmental Research (UFZ) European stakeholder workshop "Persistent and mobile organic chemicals in the water cycle: Linking science, technology and regulation to protect drinking water quality" on 23rd-24th of November 2017 in Leipzig, Germany and finally at the second UBA workshop "PMT/vPvM substances under REACH. Voluntary measures and regulatory options to protect the sources of drinking water" on 13th-14th of March 2018 in Berlin, Germany.

Through these meetings and consultations, the scientific and technical descriptive comments received as well as the feedback and suggestions have been, as far as possible, accommodated in this third version. Consequently, this document presents the result of the scientifically and technical development under REACH of the PMT/vPvM criteria.

2.1 Acknowledgement

This document was developed by the German Environment Agency (UBA), Section IV 2.3 Chemicals, Michael Neumann & Ivo Schliebner with support through the research project "REACH: Improvement of a guidance for the identification and evaluation of PM/PMT substances" (FKZ 3716 67 416 0) Hans Peter H. Arp and Sarah E. Hale; NGI - Norwegian Geotechnical Institute funded by the Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety of Germany

The German authorities would like to express their gratitude for the thorough scientific and technical comments received from the following person and institutions:

Aki Sebastian Ruhl, DE

▶ German Environment Agency (UBA), Section II 3.1 Drinking Water Hygiene & Resources

Alexander Eckhardt, DE

▶ German Environment Agency (UBA), Section II 3.6 Toxicology of Drinking & Swimming Pool Water

Amaya Jánosi, EU

European Chemical Industry Council (Cefic)

André Bannink, NL

► RIWA, Association of River Waterworks

Andreas Buser, CH

► Federal Office for the Environment (BAFU)

Andreas Schäffer, DE

RWTH Aachen University, Institute for Environmental Research

Anja Enell, SE

Swedish Geotechnical Institute (SGI)

Anja Menard Srpčič, SI

• Chemicals Office of the Republic of Slovenia (CORS)

Anna Lennquist, SE

ChemSec - International Chemical Secretariat, Toxicology and Substitution

Anne Straczek, FR

Agency for Food, Environmental and Occupational Health & Safety (ANSES), Chemicals Evaluation

Arne Hein, DE

- ▶ German Environment Agency (UBA), Section IV 2.2 Pharmaceuticals, Washing and Cleaning Agents
- Association of the Chemical Industry e. V. (VCI), Environmental Protection, Plant Safety, Transport, DE

Béatrice Chion, FR

Agency for Food, Environmental and Occupational Health & Safety (ANSES), Chemicals Evaluation

Benigno Sieira Novoa, ES

• University of Santiago de Compostela (USC), Food Analysis and Research (IIAA), Analytical Chemistry

Bert van der Geest, SI

Competent Authority of RS

Cecile Michel, FR

Agency for Food, Environmental and Occupational Health & Safety (ANSES), Chemicals Evaluation

Charlotta Tiberg, SE

Swedish Geotechnical Institute (SGI)

Dania Esposito, IT

▶ National Institute for Environmental Protection and Research (ISPRA)

Daniel Zahn, DE

Hochschule Fresenius, Institute for Analytical Research (IFAR)

Debora Romoli, IT

National Institute for Environmental Protection and Research (ISPRA)

Dirk Bunke, DE

Öko-Institut e.V. - Institute for Applied Ecology

Eleni Vaiopoulou, EU

Concawe - European Oil Company Organisation for Environment, Health and Safety

Eleonora Petersohn, DE

▶ German Environment Agency (UBA), Section IV 1.2 Biocides

Elsa Mendonca, PT

Portuguese Environment Agency (APA), Environmental Risk Assessment and Emergencies

Emiel Rorije, NL

National Institute for Public Health and the Environment (RIVM)

Eoin Riordan, IE

Department of Agriculture, Food and the Marine (DAFM)

Eric Verbruggen, NL

National Institute for Public Health and the Environment (RIVM)

Ester Papa, IT

University of Insubria, Environmental Chemistry and Ecotoxicology

Esther Martín, ES

Ministry of Health, Social Affairs and Equality (MSCBS), Environmental and Occupational Health

Eva Stocker, AT

Environment Agency Austria (EAA), Chemicals & Biocides

Falk Hilliges, DE

▶ German Environment Agency (UBA), Section II 2.1 General Water and Soil Aspects

Fleur van Broekhuizen, NL

National Institute for Public Health and the Environment (RIVM)

Friederike Vietoris, DE

Ministry for Climate Protection, Environment, Agriculture & Consumer Protection of the State of NRW

Gerard Stroomberg, NL

RIWA-Rijn, Association of Rhine Waterworks

Gerrit Schüürmann, DE

▶ Helmholtz-Centre for Environmental Research (UFZ), Department of Ecological Chemistry

Harrie Timmer, NL

Oasen N.V.

Heinz-Jürgen Brauch, DE

TZW: DVGW-Technologiezentrum Wasser (German Water Centre)

Helena Andrade, CH

▶ ETH Zürich, Institute of Biochemistry and Pollutant Dynamics

Helene Loonen, EU

European Environmental Bureau (EEB)

Henrik Tyle, DK

Danish Environmental Protection Agency (MST)

Hermann H. Dieter, DE

German Environment Agency (UBA), ret'd. Leader Department II 3.6 Drinking Water

Hervé Gallard, FR

▶ University of Poitiers, Institut de Chimie des Milieux et des Matériaux

Ian Cousins, SE

Stockholm University, Department of Environmental Science and Analytical Chemistry (ACES)

Ignacio de la Flor Tejero, ES

• on behalf of the Spanish Ministry for the Ecological Transition

Ingrid Borg, MT

Malta Competition and Consumer Affairs Authority (MCCAA)

Isabelle Schmidt, DE

▶ German Environment Agency (UBA), Section II 3.1 Drinking Water Hygiene & Resources

Jan Koschorreck, DE

German Environment Agency (UBA), Section II 2.4 Environmental Specimen Bank

Jan Wijmenga, NL

▶ REACH CA of the NL, Ministry of Infrastructure and Water Management

Jana Balejikova, SK

Ministry of Economy (MHSR), Centre for Chemical Substances and Preparations, Chemical Unit

Janina Wöltjen, DE

▶ German Environment Agency (UBA), Section IV 1.3 Plant Protection Products

Jessica Bowman, USA

FluoroCouncil - Global Industry Council for Fluoro Technology

João Carvalho, PT

> Portuguese Environment Agency (APA), Environmental Risk Assessment and Emergencies

Jose Benito Quintana, ES

▶ University of Santiago de Compostela (USC), Food Analysis and Research (IIAA), Analytical Chemistry

Juan Pineros, BE

Federal Public Service Health, Food Chain Safety and Environment (EPS), Chemicals Risk Management

Juha Einola, FI

Finnish Safety and Chemicals Agency (Tukes)

Juliane Ackermann, DE

German Environment Agency (UBA), Section IV 2.3 Chemicals

Juliane Hollender, CH

Swiss Federal Institute of Aquatic Science and Technology (Eawag), Environmental Chemistry

Karen Burga, FR

Agency for Food, Environmental and Occupational Health & Safety (ANSES), Chemicals Evaluation

Karen Willhaus, DE

German Environment Agency (UBA), Section IV 1.2 Biocides

Karsten Nödler, DE

TZW: DVGW-Technologiezentrum Wasser (German Water Centre)

Klaus Günter Steinhäuser, DE

German Environment Agency (UBA), ret'd. Leader Division IV Chemical Safety

Kostas Andreou, CY

Cyprus University of Technology

Lars Andersson, SE

Swedish Chemicals Agency (KEMI)

Lars Richters, DE

Ministry for Climate Protection, Environment, Agriculture & Consumer Protection of the State of NRW

Laure Geoffroy, FR

National Institute for Industrial Environment and Risks (INERIS)

Leonello Attias, IT

▶ Institute of Health (ISS), Centre for Chemicals, Cosmetic Products and Consumer Protection (CNSC)

Lina Dunauskiene, LT

Environmental Protection Agency, Chemical Substances Division

Lothar Aicher, CH

Swiss Centre for Applied Human Toxicology (SCAHT)

Maarten van der Ploeg, NL

RIWA-Maas, Association of Maas/Meuse Waterworks

Magdalena Frydrych, PL

Bureau for Chemical Substances

Margareta Warholm, SE

Swedish Chemicals Agency (KEMI)

Maria Antonietta Orrù, IT

▶ Institute of Health (ISS), Centre for Chemicals, Cosmetic Products and Consumer Protection (CNSC)

Marion Letzel, DE

Bavarian Environment Agency (LFU)

Martin Scheringer, CH

▶ ETH Zürich, Institute of Biochemistry and Pollutant Dynamics

Matthew MacLeod, SE

Stockholm University, Department of Environmental Science and Analytical Chemistry (ACES)

Matthias Liess, DE

Helmholtz-Centre for Environmental Research (UFZ), Department of System-Ecotoxicology

Merike Nugin, EE

Health Board of Republic of Estonia, Department of Chemical Safety

Michael Klein, DE

Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ecological Chemistry

Michael McLachlan, SE

Stockholm University, Department of Environmental Science and Analytical Chemistry (ACES)

Mihaela Ilie, RO

National Institute for Research and Development in Environmental Protection (INCDPM)

Milagros Vega, ES

• on behalf of the Spanish Ministry for the Ecological Transition

Miriam Leon Paumen, EU

Concawe - European Oil Company Organisation for Environment, Health and Safety

Ninja Reineke, EU

- CHEM Trust
- -
- NORMAN Association, EU

Olaf Wirth, DE

OEKOPOL - Institute for Environmental Strategies

Paola Gramatica, IT

Insubria University, Environmental Chemistry (ret'd.)

Paul Van Elsacker, BE

Federal Public Service Health, Food Chain Safety and Environment (EPS), Chemicals Risk Management

Peter von der Ohe, DE

▶ German Environment Agency (UBA), Section IV 2.2 Pharmaceuticals, Washing and Cleaning Agents

Pierre Lecoq, FR

Agency for Food, Environmental and Occupational Health & Safety (ANSES), Chemicals Evaluation

Pierre Studer, CH

▶ Federal Food Safety and Veterinary Office, Food and Nutrition

Pietro Paris, IT

National Institute for Environmental Protection and Research (ISPRA)

Pim de Voogt, NL

KWR Watercycle Research Institute, Chemical Water Quality and Health

Ralf Schulz, DE

University of Koblenz-Landau, Environmental Sciences

Riitta Leinonen, FI

Finnish Safety and Chemicals Agency (Tukes)

Rikke Holmberg, DK

Danish Environmental Protection Agency (MST)

Romana Hornek-Gausterer, AT

Environment Agency Austria (EAA), Chemicals & Biocides

Ronald Kozel, CH

Federal Office for Environment (BAFU), Section Hydrology

Rosario Rodil, ES

▶ University of Santiago de Compostela (USC), Food Analysis and Research (IIAA), Analytical Chemistry

Rucki Marián, CZ

National Institute of Public Health

Rüdiger Wolter, DE

▶ German Environment Agency (UBA), ret'd. Section II 2.1 General Water and Soil Aspects

Rudolf Stockerl, DE

Bavarian Environment Agency (LfU), Unit Evaluation of Substances and Chemicals

Rune Hjorth, DK

Danish Environmental Protection Agency (MST)

Sara Martin, UK

Environment Agency

Sara Valsecchi, IT

Water Research Institute of the National Research Council of Italy (IRSA-CNR)

Sjur Andersen, NO

Norwegian Environment Agency (NOEA)

Sondra Klitzke, DE

▶ German Environment Agency (UBA), Section II 3.1 Drinking Water Hygiene & Resources

Stefan Hahn, DE

Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM)

Stefan Kools, NL

KWR Watercycle Research Institute, Chemical Water Quality and Health

Stefanie Schulze, DE

▶ Helmholtz-Centre for Environmental Research (UFZ), Department Analytical Chemistry

Stéphanie Alexandre, FR

Agency for Food, Environmental and Occupational Health & Safety (ANSES), Chemicals Evaluation

Steve Dungey, UK

Environment Agency

Sylvia Jacobi, EU

European Centre for Ecotoxicology and toxicology of Chemicals (ECETOC)

Thomas Knepper, DE

► Hochschule Fresenius, Institute for Analytical Research (IFAR)

Thomas Letzel, DE

▶ Technical University of Munich, Urban Water Systems Engineering

Thomas Ternes, DE

German Federal Institute of Hydrology (BfG)

Thorsten Reemtsma, DE

▶ Helmholtz-Centre for Environmental Research (UFZ), Department Analytical Chemistry

Urs Berger, DE

▶ Helmholtz-Centre for Environmental Research (UFZ), Department Analytical Chemistry

Valeria Dulio, FR

Executive Secretary of NORMAN at National Institute for Industrial Environment and Risks (INERIS)

Werner Brack, DE

▶ Helmholtz-Centre for Environmental Research (UFZ), Department of Effect-Directed Analysis

Wolfgang Körner, DE

Bavarian Environment Agency (LfU), Unit Analysis of Organic Compounds

Xenia Trier, EU

European Environment Agency (EEA)

Žilvinas Užomeckas, LT

Environmental Protection Agency, Chemical Substances Division

3 Preamble

Ensuring that the sources of our drinking water are secure from any threats caused by chemicals is of the utmost importance. The United Nations (UN, Resolution 64/292) and the World Health Organization (WHO, Guidelines for drinking-water quality) consider access to clean drinking water essential to the realisation of human rights and the protection of human health. Similarly, the European Union's (EU) drinking water directive (98/83/EC, amended 2015/1787) has the objective "to protect human health from the adverse effects of any contamination of water [...] by ensuring that it is wholesome and clean". The EU's groundwater directive (2006/118/EC) states, "groundwater is a valuable natural resource and as such should be protected from [...] chemical pollution". Moreover, the EU's water framework directive (2000/60/EC) states that "member States shall ensure the necessary protection for the bodies of water identified with the aim of avoiding deterioration in their quality in order to reduce the level of purification treatment required in the production of drinking water".

Two of the UN's Sustainable Development Goals (2015) for the next 15 years specifically address the need to protect water resources from the use of chemicals: Goal No 6 "Ensure availability and sustainable management of water and sanitation for all", and Goal No 12 "Ensure sustainable consumption and production patterns". Further, water quality is central to Goal No 3 "Ensure healthy lives and promote well-being for all at all ages". Targets within and related to these goals include "by 2030 to improve water quality by reducing pollution, eliminating dumping and minimizing release of hazardous chemicals and materials..." (Target 6.3), "by 2020 to achieve the environmentally sound management of chemicals and all wastes throughout their life cycle, in accordance with agreed international frameworks, and significantly reduce their release to air, water and soil in order to minimize their adverse impacts on human health and the environment" (Target 12.4), "by 2030 substantially reduce the number of deaths and illnesses from hazardous chemicals and contamination" (Target 3.9); and "by 2020 ensure conservation, restoration and sustainable use of terrestrial and inland freshwater ecosystems and their services" (Target 15.1).

A desire to enact these goals can be seen on a local scale in Europe. The 'Memorandum regarding the protection of European rivers and watercourses in order to protect the provision of drinking water' (ERM, 2013) prepared by 170 European water companies across 17 countries expresses the vision that "*water must be protected for its own sake. Nobody has a right to pollute water bodies*". A desire to enact these goals can also be found on a regional scale in Europe. The European Commission's 7th Environment Action Programme strategy for a non-toxic environment (EC, 2017a) has the goal to "*create and maintain a non-toxic environment that is free of exposures to minimise and eliminate all exposures to hazardous substances*".

These directives, goals and vision statements collectively address a growing threat to the sources of Europe's drinking water and freshwater environments. This threat is the increasing number and volume of chemical substances that contribute to the concern of planetary boundary threats from persistent substances (MacLeod et al., 2014; Diamond et al., 2015). Persistent and mobile substances emitted into the aquatic environment could, over long time frames, not only impact the taste, odour and colour of drinking water, but also public health, ecosystem services and human rights leading to substantial costs for society.

Implementing the PMT/vPvM criteria under EU REACH Regulation (EC) No 1907/2006 is a pollution prevention strategy and will help ensuring protection of Europe's drinking water and freshwater environments for future generations.

4 The presence of chemicals in drinking water and groundwater

To illustrate which chemicals have recently been detected in drinking water and groundwater, a literature review of 25 studies, comprising data between 2000 and 2018, was performed (Arp and Hale, 2019). The list of these studies can be found in Appendix Table A1. The studies reviewed usually targeted specific groups like pharmaceuticals, restricted chemicals, perfluoroalkyl and polyfluoroalkyl substances (PFAS), disinfection by-products and solvents. In total 333 chemicals were identified, of which 246 were detected in drinking water and 187 were detected in groundwater, including 100 detected in both. This review may be considered a representative but by no means exhaustive list of all substances that have ever been detected in drinking water or groundwater. Of these 333 chemicals, 142 (43%) corresponded to substances that were registered under REACH (as of May 2017) of which 32 are also used as pharmaceuticals and 5 are also used as pesticides. These chemicals are presented in Table 1. The 191 chemicals not registered under REACH (as of May 2017), with several pharmaceuticals and their metabolites (74) as well as pesticides and their metabolites (62) and 55 chemicals belonging to other use categories, are presented in the Appendix Table B1. The REACH registered substances in Table 1 comprise 113 (46%) of the 246 total drinking water contaminants and 75 (40%) of the 187 total groundwater contaminants. It can therefore be considered factual that a substantial portion of drinking water and groundwater contaminants are substances registered under REACH.

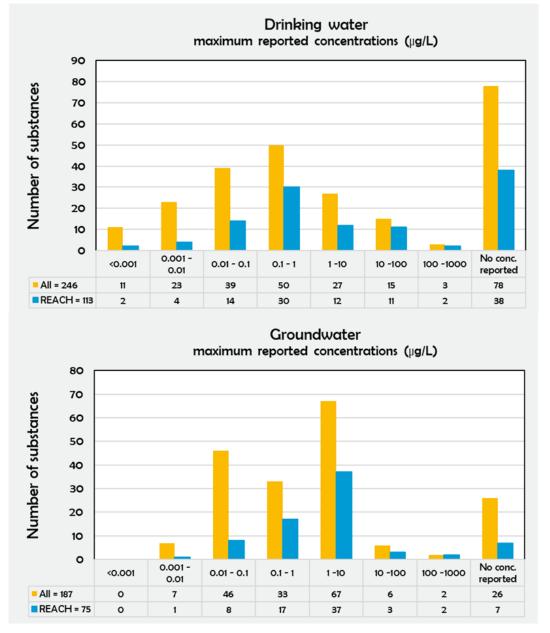
Table 1REACH registered substances (as of May 2017) detected in drinking water (DW)
and/or groundwater (GW).

CAS No	Name	Example Usage	max. conc. (ng/L) in DW	max. conc. (ng/L) in GW	Study ID
139-13-9	NTA	chelating agent		detected	н
140-01-2	Pentasodium pentetate	chelating agent	detected		E
60-00-4	EDTA	chelating agent	13600	>10000	B; E; S
67-43-6	DTPA acid	chelating agent	9000	>3000	B; S; E
77-93-0	Triethyl citrate	cosmetic	82		H; J
121-82-4	RDX	explosive	1100		н
85-98-3	1,3-Diethyl-1,3-diphenylurea	explosive	detected		х
126-73-8	твр	flame ret.	180		J
13674-84-5	ТСРР	flame retardant	510		E; F; K
128-44-9	Saccharin	food additive	detected		F
76-22-2	Camphor	food additive	17		H; J
1634-04-4	МТВЕ	fuel oxygenate	57800	>10000	E; H; O; S
637-92-3	ЕТВЕ	fuel oxygenate		detected	Н
994-05-8	Tert-amyl methyl ether	fuel oxygenate		200-500	0
108-20-3	Diisopropyl ether	fuel oxygenate		>10000	0
74-83-9	Bromomethane	fumigant		200-500	0
106-46-7	1,4-Dichlorobenzene	fumigant		>10000	0
78-87-5	1,2-Dichloropropane	fumigant	1710	5000-10000	Н; О
106-93-4	Ethylene dibromide	fumigant		200-500	0

The CAS numbers partly correspond to the registered salts of unregistered free acids. The column example usage present uses inside or outside the scope of the REACH registrations. The study ID refers to appendix Table A1. Source: Arp and Hale (2019).

CAS No	Name	Example Usage	max. conc. (ng/L) in DW	max. conc. (ng/L) in GW	Study ID
96-18-4	1,2,3-Trichloropropane	fumigant		1000-5000	0
95-16-9	Benzothiazole	metabolite	10		S
1222-05-5	Galaxolide	musk	82	23000	D; H; Q
21145-77-7	AHTN	musk	68		J
98-86-2	Acetophenone	musk	490		Н
1506-02-1	Acetylhexamethyltetrahydronaph talin	musk	detected		н
120-12-7	Anthracene	РАН		detected	н
129-00-0	Pyrene	РАН		detected	н
83-32-9	Acenaphthene	РАН		detected	н
29420-49-3	PFBS	PFAS	19	25	A; H; I; L; M
56773-42-3	PFOS	PFAS	20	135	A; E; H; I; L; S
62037-80-3	GenX	PFAS	11		М
137862-53-4	Valsartan acid	pharm.	detected		E
15307-86-5	Diclofenac	pharm.	35	590	A; B; D; H; R
50-78-2	Acetylsalicylic acid	pharm.	120	>100	B; S
80-08-0	Dapsone	pharm.	detected		F
103-90-2	Paracetamol	pharm.	210.1	120000	B; C; D; H; J; Q; R
114-07-8	Erythromycin	pharm.		>1000	В
117-96-4	Diatrizoic acid	pharm.	1200	>1000	B; S; R
15687-27-1	Ibuprofen	pharm.	1350	12000	A; B; C; D; N; R
22204-53-1	Naproxen	pharm.	detected	detected	н
3380-34-5	Triclosan	pharm.	734	2110	A; D; K; N; R
50-28-2	17b-Estradiol	pharm.	1	120	D; H
57-41-0	Phenytoin	pharm.	19		H; K; R
57-68-1	Sulfamethazine	pharm.		616	C; D; H; Q
57-83-0	Progesterone	pharm.	0.57	>100	В; Н; К
58-08-2	Caffeine	pharm.	119	110000	A; B; C; D; H; J; L; Q; R
60-80-0	Phenazone	pharm.	400	3950	B; D; H; R; S
68-35-9	Sulfadiazine	pharm.		>100	B; H; Q
69-72-7	Salicylic acid	pharm.		1225	D; H
826-36-8	Vincubine	pharm.	detected		E
53-16-7	Estrone	pharm.		45	A; D
63-05-8	Androstenedione	pharm.	detected	>100	В; Н
152459-95-5	Imatinib	pharm.		>100	В
76-74-4	Pentobarbital	pharm.		>1000	В
93413-69-5	Venlafaxine	pharm.	1.1		L
144-83-2	Sulfapyridine	pharm.		104	Q
18559-94-9	Salbutamol	pharm.		9	Q
50-48-6	Amitryptilline	pharm.	1.4		R
66108-95-0	Iohexol	pharm.	11050		H; S
131-57-7	Oxybezon	pharm.	detected		Н
83905-01-5	Azithromycin	pharm.	detected		х
139481-59-7	Candesartan	pharm.	detected		х
144689-24-7	Olmesartan	pharm.	detected		х
13674-87-8	TDIP	plasticizer	510		H; J

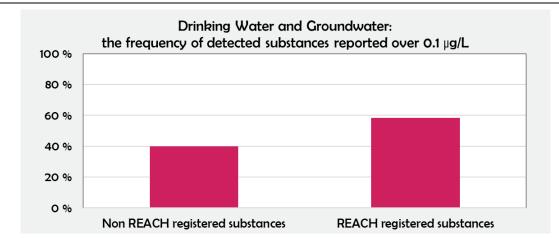
CAS No	Name	Example Usage	max. conc. (ng/L) in DW	max. conc. (ng/L) in GW	Study ID
80-05-7	Bisphenol A	plasticizer	420	9300	A; B; D; H; J; K; Q
80-09-1	Bisphenol S	plasticizer	detected		F
3622-84-2	n-Butylbenzenesulphonamide	plasticizer	50		S
139-40-2	Propazine	pesticide	0	25	A; H; Q
1912-24-9	Atrazine	pesticide	1900	3450	A; E; H; K; Q
330-54-1	Diuron	pesticide	2100	178	A; E; H; Q; S
834-12-8	Ametryn	pesticide	detected	detected	Н
7085-19-0	Mecoprop	pesticide	detected	785	A; E
128-37-0	butylhydroxytoluol	preservative	26	705	К; Н
75-71-8	Dichlorodifluoromethane	refrigerant	20	5000-10000	0
79-01-6	Trichloroethene	solvent	21600	>10000	G; H; O; S
				>10000	
123-91-1	1,4-dioxane	solvent	600		E; S; T
127-18-4	Tetrachloroethene	solvent	180000		G; H; J
143-24-8	Tetraglyme	solvent	detected	10000	E
67-66-3	Chloroform	solvent	34580	>10000	H; O; P
71-55-6	1,1,1-Trichlorethane	solvent	detected	>10000	0
71-43-2	Benzene	solvent	25770	>10000	H; O; S
100-41-4	Ethylbenzene	solvent	detected	>10000	H; O
98-82-8	Isopropylbenzene	solvent	110	1000-5000	Н; О
108-88-3	Toluene	solvent	63120	>10000	H; O; P
95-63-6	1,2,4-Trimethylbenzene	solvent	130	1000-5000	Н; О
1330-20-7	total Xylenes	solvent	16470	>10000	Н; О
56-23-5	Carbon tetrachloride	solvent	2240	1000-5000	Н; О
108-90-7	Chlorobenzene	solvent		5000-10000	0
75-00-3	Chloroethane	solvent		1000-5000	0
74-87-3	Chloromethane	solvent		>10000	0
95-50-1	1,2-Dichlorobenzene	solvent	10	>10000	Н; О
107-06-2	1,2-Dichloroethane	solvent	81900	1000-5000	H; O
156-60-5	trans-1,2-Dichloroethene	solvent		>10000	0
127-18-4	Perchloroethene	solvent		>10000	0
111-96-6	Diethylene glycol dimethyl ether	solvent	150		S
75-09-2	Dichloromethane	solvent	531		н
87-61-6	1,2,3-Trichlorbenzene	solvent	160		н
120-82-1	1,2,4-Trichlorbenzene	solvent	920		н
79-00-5	1,1,2-Trichlorethane	solvent	100		н
107-07-3	2-Chlorethanol	solvent	detected		х
104-40-5	Nonylphenol	surfactant	1100	84000	A; D; H; J; K; Q
140-66-9	tert-Octylphenol	surfactant		1800	A; Q
131-11-3	Dimethyl phthalate	surfactant	540		N
84-66-2	Diethyl phthalate	surfactant	2470	1115	N; Q; S
84-74-2	Dibutyl phthalate	surfactant	2730	1115	N, Q, J
85-68-7	Butyl benzyl phthalate	surfactant	911		N
117-81-7	DEHP	surfactant	2680	5661	N; Q
126-86-3	Surfynol 104	surfactant	240	5001	N, Q
		surfactant	350		
78-51-3	(2-Butoxyethyl)phosphate				H
74-95-3	Dibromomethane	various	740	400	H
76-05-1	Trifluoroacetate	various	150	123	E; U; V
108-78-1	Melamine	various	detected		E; F


CAS No	Name	Example Usage	max. conc. (ng/L) in DW	max. conc. (ng/L) in GW	Study ID
288-13-1	Pyrazole	various	detected		E
461-58-5	Cyanoguanidine	various	detected		F
100-02-7	Nitrophenol	various		122	А
102-06-7	1,3-Diphenylguanidine	various	detected		F
102-76-1	Triacetin	various	detected		Е
105-60-2	e-Caprolactam	various	detected		F
108-80-5	Cyanuric acid	various	detected		F
115-96-8	ТСЕР	various	470	740	D; E; J; K
120-18-3	Naphthalenesulfonic acid	various	detected		F
121-57-3	Sulfanilic acid	various	detected		F
1493-13-6	Trifluoromethansulfonic acid	various	1000		F; W
15214-89-8	2-Acrylamido-2- methylpropanesulphonic acid	various	detected		F
25321-41-9	Dimethylbenzene sulfonic acid	various	detected		F
288-88-0	1,2,4-Triazole	various	detected		E
51-28-5	2,4-Dinitrophenol	various	333000	122	А; Н
532-02-5	Sodium naphthalene-2- sulphonate	various	detected		E
56-93-9	Benzyltrimethyl ammonium	various	detected		F
95-14-7	Benzotriazoles	various	200	1548	A; B; E; S
97-39-2	1,3-Di-o-tolylguanidine	various	detected		F
119-61-9	Benzophenone	various	260		Ν
91-20-3	Naphthalene	various	900	1000-5000	H; O; P
75-35-4	1,1-Dichloroethene	various		>10000	0
75-01-4	Vinyl chloride	various	250	5000-10000	Н; О
791-28-6	Triphenyl phosphorus oxide	various	130		S
84-65-1	Anthraquinone	various	72		н
541-73-1	1,3-Dichlorbenzene	various	100		Н
98-95-3	Nitrobenzene	various	100000		н
100-42-5	Styrene	various	46400		Н
96-76-4	2,4-Di-tert-butylphenol	various	detected		х
70-55-3	4-Methylbenzolsulfonamide	various	detected		Х

For many substances in Table 1 and in Appendix Table B1 it was only reported whether they were detected or not, due to elevated limits of quantification, missing quantification standards or absence of concentration data in the references. If available from the studies listed in Appendix Table A1, the maximum concentration in drinking water and/or in groundwater is presented, as this was the most commonly reported parameter amongst these studies. The distribution of the maximum concentrations in drinking water and groundwater is visualized through histograms in Figure 1 of the total number of substances and of the REACH registered substances only.

Chemicals contaminating drinking water and groundwater may cause a wide variety of problems, depending on their concentration and toxicity, including possible mixture effects with other chemicals (Schriks et al., 2010). These problems can range from tainting of flavour, such as the concern of sweetening agents like sucralose, to the concern of carcinogenic or endocrine disrupting substances that may exhibit adverse effects at low doses. For persistent and mobile chemicals it must be noted that also a contamination with less toxic substances can become biologically relevant.

Figure 1: Number of substances detected in drinking water (top panel) and groundwater (lower panel) in which the maximum reported concentration falls within one of the specified concentration ranges


The data are presented for all detected substances reported in the review of monitoring studies (yellow bars) and just for REACH registered substances as of May 2017 (blue bars).

Source: Arp and Hale (2019)

On the other hand this random collection of analytic data indicates that REACH registered substance are detected with higher concentrations. While the portion of REACH registered substances from all detected substances is 43% (142 of 333) the portion from those substances exceeding 0.1 μ g/L (e.g. cut-off value of the drinking water directive (EU Regulation 98/83/EC) for pesticides) is 52% (83 of 159). Figure 2 shows that only 40% (76 of 191) of the detected non-REACH registered substances exceed 0.1 μ g/L while 58% (83 of 142) of the detected REACH registered substances exceed this concentration level.

Figure 2: The percentage of substances that were reported in drinking water or groundwater with a maximum concentration over 0.1 µg/L for both non REACH registered substances and REACH registered substances.

Source: Arp and Hale (2019)

A substance may contaminate drinking water and groundwater because of its emissions into the environment in combination with the intrinsic substance properties to be persistent in the environment and mobile in the aquatic environment. Consequently, here we use the intrinsic substance properties of the substances registered under REACH already detected in drinking water and groundwater in chapter 11 to scientifically justify the cut-off values for the PMT/vPvM criteria. As a consequence, intrinsic substance properties alone can be used to identify potential drinking water and groundwater contaminants.

5 Aims of this initiative

With this initiative, the German authorities has set out to achieve three major aims:

The first aim is to seek consensus on the need to prevent undue emissions into the environment by substances, registered under EU REACH Regulation (EC) No 1907/2006, which have the intrinsic substance properties that indicate a hazard to the sources of our drinking water. Herein the phrase "sources of our drinking water" refers to pristine and sometimes remote freshwater ecosystems, surface water reservoirs, water that undergoes bank filtration, groundwater aquifers or other aquatic environments that could potentially be used as a drinking water source.

The second aim is to establish under REACH the persistency, mobility and toxicity (PMT) criteria as well as the very persistent and very mobile (vPvM) criteria for the identification of those substances that potentially pose a hazard to the sources of our drinking water. Beyond the T criteria set out in Annex XIII, 1.1.3 of REACH this also includes other hazardous properties posing a risk to human health and the environment. With these criteria, registrants are able to assess the intrinsic substance properties of their substances. Identified PMT/vPvM substances should be particularly considered in monitoring and in the minimisation of emissions.

The third aim is to actually minimise emissions of PMT/vPvM substances into the aquatic environment. Depending on their uses and emissions, registrants should implement risk mitigation measures to prevent pollutions precautionarily. Proper management of PMT/vPvM substances and chemical safety over the complete life-cycle can be achieved by chemical stewardship programs. If necessary, authorities must implement regulatory measures to minimize emissions and to protect the valuable water resources for future generations.

6 Benefits from this initiative

The German authorities are convinced that all stakeholders affected by this initiative will benefit.

Chemical industry, including downstream users, will obtain clarity regarding which substances require minimising emissions into the environment. The PMT/vPvM criteria as well as the assessment procedure are strongly rooted in existing obligations and requirements under the REACH registration process (see chapter 11). Thus, they can be considered a ready-to-use tool not causing additional testing other than already required by existing obligations. This reduces the additional costs for industry to identify their PMT/vPvM substances. Risk mitigation measures to minimise emissions consequently apply to a limited and clearly defined number of substances. Innovation and substitution towards sustainability will provide competitive advantages to the more proactive companies. Overall, this initiative will benefit registrants in fulfilling their existing responsibility of guaranteeing the safe use of their REACH registered substances and to protect the sources of our drinking water.

Authorities and regulators, including member states (MS), the European Chemical Agency (ECHA) and the European Commission (COM) will benefit by focusing regulatory actions under REACH on those substances and their uses that give rise to a high concern to contaminate the sources of our drinking water. Implementing the PMT/vPvM criteria under EU REACH Regulation (EC) No 1907/2006 will allow regulatory actions to be justified and implemented precautionarily before an irreparable contamination has happened or has been proven by monitoring data.

Drinking water suppliers will be able to ensure clean and safe water using natural treatment methods or conventional technologies, rather than implementing costly advanced water treatment technologies at drinking water production facilities. A future list of PMT/vPvM substances registered under REACH will result in less, but instead more specified chemical monitoring and if needed less remediation, leading to overall more efficient use of financial resources. This initiative may also stimulate joint strategies between industry, enforcement authorities and drinking water suppliers to develop prevention strategies, proactively.

European Society as a whole will benefit by avoiding contamination to the sources of our drinking water, and the negative financial, health and social consequences thereof. If all stakeholders act voluntarily, society can develop sustainably while managing to avoid one of the most important threats to the sources of our drinking water.

7 What intrinsic substance properties make a substance a hazard to the sources of our drinking water?

For a chemical substance emitted into the environment to pose a threat to the sources of our drinking water, it must be transported from the point of emission through soil layers, riverbanks, aquifers, and other natural or even artificial barriers. The time scales for this can vary from a few days in the case of surface water sources, to one or two weeks for riverbank filtration, or few years for remote groundwater extraction wells. Important factors are the scale of environmental emissions, and whether the substance, or its transformation products, are sufficiently *persistent in the environment* and enough *mobile in the aquatic environment* to survive such a journey. Inherently through these definitions, they accumulate with emissions, potentially being irreversibly present (Plumlee et al., 2008; Reemtsma et al., 2016).

Therefore, substances that have the *intrinsic substance properties* of being persistent (P) in the environment, mobile (M) in the aquatic environment and toxic (T) are the ones we must handle with care, monitor and – if necessary – regulate. Beyond the T criteria set out in Annex XIII, 1.1.3 of REACH this also includes other hazardous properties posing a risk to human health and the environment. An accumulating presence in the sources of our drinking water could eventually lead to a serious threat to both ecosystem and human health, particularly if they are considered toxic at low concentrations or are present at concentrations that exceed ecological thresholds (Liu et al., 2015).

Analogously, substances that are considered very persistent in the environment (vP) and very mobile in the aquatic environment (vM), regardless of their toxicity, must also be considered due to their enhanced potential to transport to remote areas or irreversibly be present within the water cycle, even for a long time after emissions have ceased. This is reflected in the European Commission's study on very persistent (vP) chemicals: "[vP chemicals] may remain in the natural and man-made environments for an indefinite time and eventually reach levels leading to the same type of continuous exposure as occurs with bioaccumulation and to harmful effects to health, environment and natural resources. Such contamination may be poorly reversible or even irreversible, and could render natural resources such as soil and water unusable far into the future" (EC, 2017b).

The German authorities propose to name such substances in the regulatory context of REACH persistent, mobile and toxic (PMT) substances or very persistent and very mobile (vPvM) substances (Neumann et al., 2015; Neumann, 2017; Neumann and Schliebner, 2017a, b).

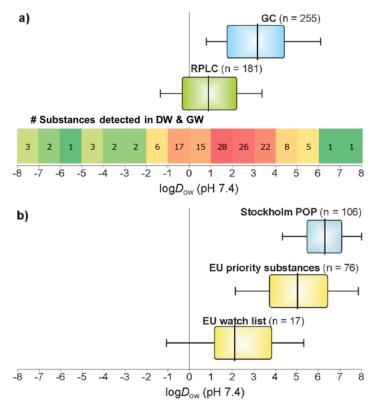
7.1 Challenges related to water treatment

Once raw water used for drinking water production is contaminated with persistent and mobile substances, the general population is placed at risk of exposure and must also bear the cost of cleaning and purifying the contaminated water. A survey from 2014 found that 59% of Europe used either non-treated drinking water or drinking water treated with natural treatment methods and conventional technologies (van der Hoek et al., 2014). Only 41% used advanced water treatment technologies, such as granular-activated-carbon (GAC) filtration, ultra-filtration, advanced oxidation processes (like ozonation) and reverse osmosis. However, even these costly treatments are not completely effective for all persistent and mobile substances. A study on 113 organic compounds found that even after clarification, disinfection (chlorination) and GAC filtration, many mobile substances were not effectively removed, such as DEET (35% removal), nonylphenol (73% removal), camphor (25% removal) and bisphenol A (76% removal) (Stackelberg et al., 2007). A study on the treatment of wastewater in the Netherlands (Mulder et al., 2015) reported that 12 out of 28 substances they monitored have a removal rate of less than

40% in wastewater, and even if extra units were added to remove these pollutants, such as ozonolysis followed by sand filtration, GAC and powder activated carbon (PAC), there were still various persistent and mobile substances with poor removal rate, such as iopromid, atrazine and perfluorinated substances. Similar results were also seen for mobile compounds going through a large scale powder activated carbon facility, particularly those with small molecular size, low hydrophobicity and negative charges (Mailler et al., 2015). It was further commented on in the Dutch study that some of these treatments, like ozonolysis, could form persistent and mobile by-products (Mulder et al., 2015).

Thus, the same intrinsic substance properties that lead to persistence in the environment and mobility in the aquatic environment lead to breakthrough in drinking water treatment facilities. If emissions are continuous or increasing, the concentration of such persistent and mobile substances in the wastewater-drinking water cycle will increase over time (Steinhäuser and Richter, 2006), potentially becoming irreversible. Studies have indicated that persistent and mobile substances can be recirculated in this way (Plumlee et al., 2008; Filipovic and Berger, 2015).

An idea of direct economic costs of this advanced water treatment technology can be obtained by considering the following theoretical example: If Germany mandated the treatment of the approximately 5.2 billion m³ of wastewater produced every year (Umweltbundesamt, 2014), how much would this cost? The aforementioned Dutch study (Mulder et al., 2015) estimated costs to remove between 30 – 80% of micropollutants (depending on the micropollutant) using different technologies. The cheapest technology (ozonation plus sand filtration) would cost 0.16 $€/m^3$ for a system set up for 300 000 person equivalents at 150 g/m³ total oxygen demand, and the most expensive method would cost 0.29 $€/m^3$ for GAC filtration at 20 000 person equivalents at 150 g/m³ total oxygen demand. This would correspond to 0.8 to 1.5 billion € per year in treatment for this partial removal for Germany only. Complete removal of persistent and mobile substances like certain perfluorinated substances is neither economically nor technologically feasible. At best, wastewater treatment facilities can be designed to reach target effluent levels. Remediation of persistent and mobile substances in wastewaters is costly; reducing concentrations to drinking water standards would be even more so.


Therefore, relying on retrospective and costly advanced water treatment technology to protect or remediate drinking water is no sustainable solution, particularly because even costly treatments are not completely effective in removing persistent and mobile substances.

7.2 Challenges related to the analysis of water samples

A substantial analytical challenge exists related to the detection and quantification of mobile substance in water samples. Conventional methods using gas-chromatography (GC) and reverse-phase liquid chromatography (RPLC) are not able to detect and quantify the most mobile substances, such as those that are very polar, ionisable or ionic, resulting in high water solubility and low octanol-water partition coefficients (K_{ow}), or low pH-dependant octanol-water distribution coefficients (D_{ow}). This has recently been described as the analytical and monitoring gap (Reemtsma et al., 2016), and is illustrated in Figure 3. The log D_{ow} value of those substances already regulated (presented under b) overlay the range of log D_{ow} easily detectable by GC and RPLC (presented under a). The most mobile substances, with a log D_{ow} value less than -1, require dedicated analytic methods and cannot easily be identified by standard analytic methods or non-target approaches. These cannot be measured without dedicated methods, and thus they remain invisible unless they are being specifically looked for. This implies that due to the lack of existing analytical techniques there are potentially several mobile substances in the aquatic environment that remain undetected, unmonitored and consequently unregulated.

Figure 3 Box and Whisker plots of calculated log Dow values at ph 7.4 (chemaxon)

of: (a) chemicals in water analysed by either GC-MS or RPLC, and (b) contaminants regulated by the Stockholm convention, the list of priority substances according to the water framework directive (WFD) and the so-called watch list of the WFD. The Whiskers point to the 10th and 90th percentile. The coloured numbers show the distribution of the REACH registered substances detected in drinking water (DW) and groundwater (GW) presented in chapter 4 (Table 1), which have been identified in the literature review.

Source: Adapted with permission from (Reemtsma et al., 2016).

The number of REACH registered substances detected in drinking water and groundwater presented in Table 1 are given as a function of their log D_{ow} in Figure 3. This illustrates that there are several chemicals of concern falling within the analytical gap, which require dedicated methods. Examples of some of these which have only recently been detected for the first time in drinking water (Schulze et al., 2019) using state-of-the-art analytical techniques include 1,3-di-o-tolylquanidine (log D_{ow} -3.0), Benzyltrimethyl ammonium (log D_{ow} -1.0), Dimethylbenzene sulfonic acid (log D_{ow} -6.0), 2-acrylamido-2-methylpropanesulphonic acid, ((log D_{ow} -3.7).

REACH Annex IX and X sections 10 requires from every registrant to provide methods for detection and analysis for substances manufactured or imported in quantities of 100 tonnes or more on request only (Annex IX and X, sections 10 of REACH). Therefore, it must be assumed that for many mobile substances under REACH dedicated analytical methods are not available and consequently the extent of an already existing contamination of the sources of our drinking water is unknown.

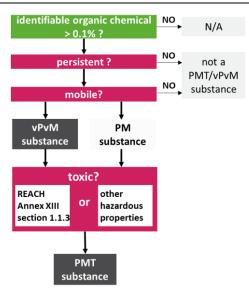
8 Comparing PMT/vPvM substances to PBT/vPvB substances

For the rationales given in ECHA's PBT/vPvB guidance "*PBT or vPvB substances may have the potential to contaminate remote areas that should be protected from further contamination by hazardous substances resulting from human activity because the intrinsic value of pristine environments should be protected" [...] "the effects of such accumulation are unpredictable in the long-term" [...] "such accumulation is in practice difficult to reverse as cessation of emission will not necessarily result in a reduction in substance concentration" (ECHA, 2017), it can be demonstrated that this applies equivalently to PMT/vPvM substances.*

The intrinsic substance property of bioaccumulation is on its own insufficient to imply a hazard to the food chain; therefore, within REACH it is substances that are persistent <u>and</u> bioaccumulative that are considered substances of very high concern (Brown and Wania, 2008, Matthies et al. 2016). Analogously, the intrinsic substance property of mobility in the aquatic environment is on its own insufficient to imply a hazard due to enrichment in the source of drinking water; rather, it is substances that are persistent <u>and</u> mobile which are potential substances of very high concern. The first can potentially bioaccumulate in biota to levels that cause harmful effects; the latter can potentially accumulate in the sources of our drinking water to levels that cause adverse effects through chronic exposure.

For persistent and mobile substances, as with persistent and bioaccumulative substances, "*the level of uncertainty in identifying long-term risk <u>cannot</u> be estimated with sufficient accuracy" (ECHA, 2014). The long-term risks are often only identified retrospectively. Once these risks occur, "<i>consequences of an underestimation of adverse effects are not easily reversible by regulatory action*" (ECHA, 2014). Actions to reduce emissions would be slow to take effect, because of the persistence, with the potential for the risk to persist over multiple generations and even intergenerational time scales. Even after regulatory measures, mobile substances are still problematic, e.g. MTBE (Goldenman et al., 2017) and certain chlorinated solvents (Di Lorenzo et al., 2015). A strategy to precautionarily minimize emissions is needed. Post hoc reactions to observed harm are too late. Collectively, vPvM and vPvB substances would comprise many vP substances, which are in general problematic: "*From the standpoint of public health, environmental protection and economic growth, it appears desirable to take a more precautionary and proactive approach and to prevent and/or minimise releases of vP chemicals in the future"* (EC, 2017a).

The main inherent difference between persistent and bioaccumulative and persistent and mobile substances is their pathways of exposure and transport. For PBT/vPvB substances, human and animal exposure is primarily via the food chain through bioaccumulation. For PMT/vPvM substances, human and ecosystem exposure is primarily through freshwater systems and accumulation in the sources of our drinking water, though other pathways are also possible, such as they can enrich in edible crops (Blaine et al., 2013; Felizeter et al., 2014).


ECHA's PBT/vPvB guidance concludes that "*a* "*safe*" concentration in the environment cannot be established using the methods currently available with sufficient reliability for an acceptable risk to be determined in a quantitative way". This also applies to persistent and mobile substances, particularly in view of the water treatment and analytical challenges presented in chapter 7. For both persistent and bioaccumulative and persistent and mobile substances there are several exposure pathways, and no general removal pathway which could mitigate the contamination unless done at the point of emissions.

9 The assessment procedure for PMT/vPvM substances

The assessment procedure for identifying PMT/vPvM substances is presented in Figure 4. The first step is identical to the assessment of PBT/vPvB substances, and that is to identify if and what organic and organometallic chemical constituents, including impurities, additives, and transformation product precursors, are present in a substance at greater than 0.1% abundance. Although conducting a PMT/vPvM assessment is most straightforward for substances with single constituents, the intention is that it can also be used to assess relevant organic constituents, impurities, additives and transformation/degradation products or metabolites of each substance registered under REACH.

It is not always easy to identify all constituents, for instance for substances of "unknown or variable composition, complex reaction products or biological material" (so-called UVCB substances). For these substances, an identification of all constituents that may be present over 0.1% is recommended, as is done as part of the PBT/vPvB assessment (ECHA, 2017). Regarding transformation products, particular attention should be paid to the ones that are most persistent in the environment, particularly if the pathway to such persistent transformation products and their yields are known. Purely inorganic substances are exempted from this assessment. A formalized definition of organic and inorganic constituents, and an approach to identify transformation products was recently suggested (Arp et al., 2017; Arp and Hale, 2019).

Figure 4: Overview of the assessment procedure to identify PMT/vPvM substances registered under REACH

Source: Original figure

Once the list of relevant constituents has been established, they are assessed for P/vP properties as described herein, and if any of them meet this criteria, they are assessed for M/vM properties, as also described herein. If a substance contains no organic constituent that fulfils the criteria for P/vP or M/vM, no further action is required within this assessment procedure for identifying PMT/vPvM substances. If a substance fulfils *both* the criteria for vP and vM, it is considered a vPvM substance, otherwise it is considered a PM substance (which comprise substances fulfilling P and M, vP and M, or P and vM). In either case, it is assessed for T properties, as also described herein to see if it is considered a PMT substance (which comprises substances fulfilling P and M and T, vP and M and T, or vP and vM and T). Note that some substances may meet the criteria for both vPvM and PMT. Further guidelines is given in Arp and Hale (2019).

10 The criteria for identifying PMT/vPvM substances

10.1 PMT substances

A substance that fulfils the persistence, mobility and toxicity criteria of sections 10.1.1, 10.1.2 and 10.1.3 shall be considered to be a PMT substance.

10.1.1 Persistence

A substance fulfils the persistence criterion (P) in any of the following situations:

- a) the degradation half-life in marine water at 9 °C is higher than 60 days;
- b) the degradation half-life in fresh or estuarine water at 12 °C is higher than 40 days;
- c) the degradation half-life in marine sediment at 9 °C is higher than 180 days;
- d) the degradation half-life in fresh or estuarine water sediment at 12 °C is higher than 120 days;
- e) the degradation half-life in soil at 12 °C is higher than 120 days.

10.1.2 Mobility

A substance fulfils the mobility criterion (M) in the following situation:

a) the lowest organic carbon-water coefficient log K_{oc} over the pH range of 4-9 is less than 4.0

10.1.3 Toxicity

A substance fulfils the toxicity criterion (T) in any of the following situations. Point (a) to (c) are already set out in Annex XIII, 1.1.3 of REACH:

- a) the long-term no-observed effect concentration (NOEC) or EC10 for marine or freshwater organisms is less than 0.01 mg/l;
- b) the substance meets the criteria for classification as carcinogenic (category 1A or 1B), germ cell mutagenic (category 1A or 1B), or toxic for reproduction (category 1A, 1B, or 2) according to Regulation EC No 1272/2008;
- c) there is other evidence of chronic toxicity, as identified by the substance meeting the criteria for classification: specific target organ toxicity after repeated exposure (STOT RE category 1 or 2) according to Regulation EC No 1272/2008;

Beyond these T criteria already now set out in Annex XIII, 1.1.3 of REACH there might be cases, where it is necessary to identify persistent and mobile substances with other hazardous properties posing a risk to human health and the environment. These substances will be addressed as a separate category. In such cases it is proposed to demonstrate according to Art. 57 (f) an overall concern which is equivalent to Art. 57 (a) - (e). Aspects to be considered are comparable to the SVHC-identification for respiratory sensitizers:

- Type and severity of possible health effects,
- Irreversibility of health effects,
- Delay of health effects,
- Is derivation of a 'safe concentration' possible?
- Effects on quality of life, societal concern.

Evidence (so called indicators) for significant risk to human health and the environment for persistent and mobile substances may arise in any of the following situations and need assessment to demonstrate fulfilling the equivalent level of concern of Art. 57 (f). These indicators are:

- d) the substance meets the criteria for classification as carcinogenic (category 2), or germ cell mutagenic (category 2) according to Regulation EC No 1272/2008;
- e) the substance meets the criteria for classification as additional category for "effects on or via lactation", according to Regulation EC No 1272/2008;
- f) the Derived-No-Adverse-Effect-Level (DNEL) is ≤ 9 µg/kg/d (oral, long term, general population), as derived following Annex I;
- g) the substance acts as an endocrine disruptor in humans and/or wildlife species according to the WHO/IPCS definition of an endocrine disruptor.

10.2 vPvM Substances

A substance that fulfils the persistence and mobility criteria of sections 10.2.1 and 10.2.2 shall be considered to be a vPvM substance.

10.2.1 Persistence

A substance fulfils the "very persistent" criterion (vP) in any of the following situations:

- a) the degradation half-life in marine (9 °C), fresh or estuarine water (12 °C) is higher than 60 days;
- b) the degradation half-life in marine (9 °C) fresh or estuarine water sediment (12 °C) is higher than 180 days;
- c) the degradation half-life in soil (12 °C) is higher than is higher than 180 days.

10.2.2 Mobility

A substance fulfils the "very mobile" criterion (vM) in the following situation:

a) the lowest organic carbon-water coefficient log K_{oc} over the pH range of 4-9 is less than 3.0.

10.3 Information relevant for the screening of P, vP, M, vM, and T Properties.

The following information shall be considered for screening for P, vP, M, vM and T properties.

10.3.1 Indication of P and vP properties

- a) Results from tests on ready biodegradation in accordance with Section 9.2.1.1 of Annex VII of REACH;
- b) Results from other screening tests (e.g. enhanced ready test, tests on inherent biodegradability);
- c) Results obtained from biodegradation (Q)SAR models in accordance with Section 1.3 of Annex XI of REACH;
- d) Other information provided that its suitability and reliability can be reasonably demonstrated.

10.3.2 Indication of M and vM properties

- a) For ionisable substances, the lowest pH dependant octanol-water distribution coefficient (D_{ow}) experimentally determined between pH 4-9 in accordance with Section 7.8 of Annex VII of REACH and the dissociation constant in accordance with Section 7.16 of Annex IX of REACH or estimated by (Q)SAR models in accordance with Section 1.3 of Annex XI of REACH.
- b) For other substances, the octanol-water partition coefficient (K_{ow}) experimentally determined in accordance with Section 7.8 of Annex VII of REACH or estimated by (Q)SAR models in accordance with Section 1.3 of Annex XI of REACH.
- c) Other information provided that its suitability and reliability can be reasonably demonstrated.

10.3.3 Indication of T properties

- a) Short-term aquatic toxicity in accordance with Section 9.1 of Annex VII of REACH and Section 9.1.3 of Annex VIII of REACH;
- b) Other information provided that its suitability and reliability can be reasonably demonstrated.

10.4 Information relevant for the assessment of P, vP, M, vM, and T Properties.

The following information shall be considered for assessment for P, vP, M, vM and T properties.

10.4.1 Assessment of P or vP properties

- a) Results from simulation testing on degradation in surface water; though if not available:
- b) Results from simulation testing on degradation in soil;
- c) Results from simulation testing on degradation in sediment;
- d) Other information, such as information from field studies or monitoring studies, provided that its suitability and reliability can be reasonably demonstrated.

10.4.2 Assessment of M or vM properties

- a) The partitioning between soil-water, sediment-water or sludge-water, expressed as log K_{oc} within or across the pH range of 4-9 for neutral and dissociating species, respectively experimentally determined by partitioning studies in accordance with Section 9.3.1 of Annex VIII of REACH or estimated by (Q)SAR in accordance with Section 1.3 of Annex XI of REACH.
- b) Other information, such as information from field studies or monitoring studies, provided that its suitability and reliability can be reasonably demonstrated.
- c) Other information on the mobility in the aquatic environment provided that its suitability and reliability can be reasonably demonstrated on a weight-of-evidence basis, such as:
 - Soil column leaching studies
 - Lysimeter studies
 - Field observations
 - Water treatment breakthrough studies
 - modelling studies

10.4.3 Assessment of T properties

- a) Results from long-term toxicity testing on invertebrates as set out in Section 9.1.5 of Annex IX of REACH;
- b) Results from long-term toxicity testing on fish as set out in Section 9.1.6 of Annex IX of REACH;
- c) Results from growth inhibition study on aquatic plants as set out in in Section 9.1.2 of Annex VII of REACH;
- d) The substance meeting the criteria for classification as carcinogenic in Category 1A, 1B or 2 (assigned hazard phrases: H350, H350i or H351), germ cell mutagenic in Category 1A, 1B or 2 (assigned hazard phrase: H340 or H341), toxic for reproduction in Category 1A, 1B and/or 2 (assigned hazard phrases: H360, H360F, H360D, H360FD, H360Fd, H360fD, H361, H361f, H361d or H361fd), specific target organ toxic after repeated dose in Category 1 or 2 (assigned hazard phrase: H372 or H373), additional category for "effects on or via lactation" (assigned hazard phrase: H362), according to Regulation EC No 1272/2008;
- e) Results from long-term or reproductive toxicity testing with birds as set out in Section 9.6.1 of Annex X of REACH;
- f) The Derived-No-Adverse-Effect-Level (DNEL) is $\leq 9 \mu g/kg/d$ (oral, long term, general population), as derived following Annex I of REACH;
- g) Results from in silico, in vitro and in vivo studies or results from (Q)SAR models that give evidence for endocrine properties of the substance in humans and/or wildlife species. Guidance on how to interpret results from various assays providing endocrine relevant endpoint information is given by the OECD Guidance Document 150 and by the EFSA/ECHA guidance document (Andersson et al., 2018)
- h) Other information provided that its suitability and reliability can be reasonably demonstrated.

11 Regulatory and Scientific Justification

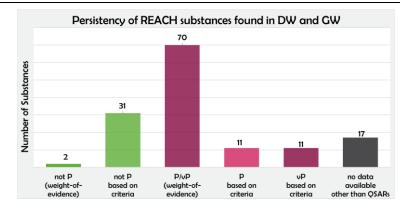
The PMT/vPvM criteria are based on regulatory and scientific justifications. The basis of the regulatory justification is integration with existing data and assessment requirements of the REACH registration process. This is done to allow for the least possible additional workload for REACH registrants. The basis of the scientific justification was the identification and validation of what intrinsic properties make substances a threat to the sources of our drinking water, as evident from (1) monitoring data (Arp and Hale, 2019), (2) simulation and model studies (Arp and Hale, 2019; Kalberlah et al., 2014) and (3) impact considerations (Arp and Hale, 2019).

The PMT/vPvM criteria have been adjusted based on consultations and scientific research, as outlined in chapter 2. As a result of this process, the best balance between the regulatory and scientific justifications was sought to develop criteria and an assessment procedure that meets an appropriate level of precaution to protect the sources of our drinking water. The decisions presented within these final criteria have been discussed during various consultations and workshops and the pro and contra have been evaluated with care.

As the PMT/vPvM criteria are essentially hazard criteria, the appropriate level of precaution is primarily evaluated in terms of avoiding *false negatives*. Herein, false negatives refer to substances that have been shown to cause a risk to the sources of drinking water, but would not be identified by the PMT/vPvM criteria. False negative analysis requires simply analytical data for substances already in the sources of our drinking water as well as the intrinsic substance properties for those substances. If too many false negatives are found, this would imply the PMT/vPvM criteria are not sufficiently protective and the appropriate level of precaution is not met.

Whether the criteria are over-protective can best be evaluated by considering *false positives*. Herein, this would refer to substances that meet the PMT/vPvM criteria but do not threaten the sources of our drinking water, despite being emitted into the environment at a sufficiently large scale. Analysing for false positives is inherently more challenging than analysing of false negatives. There are many potential reasons why a substance cannot be identified in monitoring samples. False positive analysis requires detailed information of use and emission patterns (which is outside the scope of the PMT/vPvM criteria), in addition to the intrinsic substance properties, available analytical techniques and monitoring data.

This chapter 11 presents the regulatory and scientific justifications of P/vP, M/vM and T criteria, individually. Chapter 12 assesses, through analysis of false negatives and false positives, the level of precaution for the entire PMT/vPvM criteria and assessment concept. Chapter 13 presents an impact assessment of implementing these criteria within REACH.


11.1 Justification of the P/vP criteria

The persistence criterion (P) and very persistent criterion (vP) are taken directly from Annex XIII of REACH. The main advantage is that it is consistent with existing regulatory definitions of P and vP. This means that no additional workload is caused for registrants by the PMT/vPvM assessment since an assessment of P and vP within the PBT/vPvB assessment has to be performed for any registration above 10 t/a. The ECHA guidance on the PBT/vPvB assessment (ECHA, 2017) already now recommends in general to first asses the persistence in the freshwater compartment with the OECD TG 309, which is also recommended in the PMT/vPvM assessment.

The P/vP criteria are based on various half-life cut-off values for substances in freshwater, freshwater sediments, marine water, marine water sediments, and soil. For subsurface water transport, such as through aquifers, river banks and lake banks, the most relevant half-life would

be soil and freshwater sediments. For surface water transport, the freshwater half-life would be the most relevant. It has been argued during consultations that the marine water and marine water sediments are irrelevant for the PMT/vPvM criteria, as the focus is on freshwater systems; however, no exception is being proposed to eliminate these criteria because marine water data is considered a suitable proxy for freshwater data, particularly when no freshwater data exists. Also, in practice marine water half-life studies are quite rare compared to freshwater studies.

Arp and Hale (2019) state, that in regard to whether the half-life cut-off values themselves provide the appropriate level of precaution to protect the sources of our drinking water, the concept of persistence would be most relevant in the context of the travel time required for a substance to leave a point of emission to the sources of our drinking water. If a substance was not persistent enough to survive this travel time, it would not pose a threat. An extreme case here is when emissions are occurring directly into a source for drinking water, where there is no barrier and travel time could be negligible, and a P criterion would be irrelevant. A more realistic situation in most of Europe is allowing water to first pass through the banks of river or lake, a process referred to as bank filtration. In Germany and the Netherlands, bank filtration travel times are typically in the range of 5 days or longer (Tufenkji et al., 2002; Schmidt et al., 2003). The most mobile substances sorb negligibly to soil and can travel up to the same speed as water through a river bank. A substance that meets the P criterion of 120 days in soil and travels through a river bank at or near the speed of water would easily breakthrough bank filtration barriers with short travel distances (e.g. 5 days). Regarding remote aquatic ecosystems, one can consider typical flow velocities in groundwater, such as 0.15 to 15 m/day for sandy to gravelly aquifers, respectively (Harter, 2003) which would correspond to 27 to 2700 m over 180 days (vP criteria for fresh or estuarine water sediment at 12 °C). Considering that still 50% of a chemical is present after at the time of half-life, heavily emitted, highly mobile substances with a half-life of 180 days could be transported hundreds of kilometres before degrading to negligible amounts. In river water, where velocities are orders of magnitude faster than in groundwater, transport distances over the freshwater P half-life time of 40 days can be thousands of kilometres. An example would be the river Rhine, which has a length of 1230 km and a flow rate of 86 km/day (Blaser et al., 2008); assuming this flow rate, a substance would be carried along the entire Rhine river in 14 days. Therefore, highly mobile substances meeting the P criterion can contaminate the sources of our drinking water as well as remote aquatic ecosystems and accumulate in the water cycles.

Figure 5 Categories of P evaluations for 142 REACH registered substances detected in drinking water and/or groundwater

Source: Original figure

Anaerobic conditions may be considered within the persistency assessment as part of the weight-of-evidence in the P/vP assessment. Volatilization is not considered, as this process is

only relevant for surface water transport and not for groundwater and bank filtration transport. However, it can be kept in mind that highly volatile substances are likely removed during water treatment through aeration; however, this is not applicable for untreated groundwater.

In chapter 4, the monitoring data of 142 REACH registered substances (as of May 2017) that were measured in drinking water or groundwater were presented. An evaluation of whether these 142 substances meet the P/vP criterion is presented in Figure 5, with information about the P assessment for individual substances in the Appendix Table C1.

A clear outcome of this evaluation is that empirical data to make a definitive P/vP assessment is largely lacking. Good quality half-life data is rare, because of the cost and expense (Goldenman et al., 2017). A 2013 UNEP report found that only 220 out of 95,000 chemicals used by industry have experimentally determined biodegradation half-lives (UNEP, 2013). Here, half-life data or experimental screening test data that indicated P, vP or not P was only available for 53 substances. For the other 89 substances there was no definitive P/vP evaluation data available even after a thorough search. However, for 72 a weight-of-evidence evaluation could be made based on available data, such as enhanced ready tests and QSARs (Arp et al., 2017; Berger et al., 2018; Arp and Hale, 2019). In summary, 92 substances (65%) met or were suspected of meeting the P/vP criterion, 33 (23%) substances did not meet or are suspected not to meet the P criteria, and for 17 substances no conclusion could be made on P/vP. From this analysis, the P criteria on its own is not overprotective of substances reported in drinking water and groundwater; with 23 % false negatives from this analysis, referring to contaminants measured in drinking water that are not P. Two potential explanations are 1) high emissions and 2) local contamination. As an indicator that high emissions is a plausible explanation, Appendix Table D1 presents the publicly available tonnages of these false negatives, showing that many of these substances are indeed high volume substances. A possible instance of false negatives due to local contamination are reports of phthalate plasticizers in drinking water, which are used in water pipes (Amiridou and Voutsa, 2011). Though it could be argued that the P criteria should be more protective, the regulatory considerations presented above justify this level of protection. Another consideration is that substances that are in drinking water and are not persistent would disappear after emissions cease. Substances that do meet the P criteria, however, would be less reversible, and inherently travel farther and be more problematic after emissions cease (see chapter 8).

11.2 Justification of the M/vM criteria

The following justification of the M/vM criteria is presented in Arp and Hale (2019):

REACH defines in Annex II section 12.4 mobility in soil as: "the potential of the substance or the components of a mixture, if released to the environment, to move under natural forces to the groundwater or to a distance from the site of release. The potential for mobility in soil shall be given where available. Information on mobility in soil can be determined from relevant mobility data such as adsorption studies or leaching studies, known or predicted distribution to environmental compartments, or surface tension. For example, K_{oc} values can be predicted from octanol/water partition coefficients (K_{ow}). Leaching and mobility can be predicted from models. This information shall be given where available and appropriate, for each individual substance in the mixture which is required to be listed in Section 3 of the safety data sheet. Where experimental data is available, that data shall, in general, take precedence over models and predictions".

REACH itself points to the use of K_{oc} as the central intrinsic substance property to describe mobility. This has a long history, as since the 1980s persistence and K_{oc} in combination were used to describe mobility (Gustafson, 1989). More recently a modelling exercise by Kalberlah et al. (2014) demonstrated that for persistent substances, K_{oc} was the parameter that correlate best with modelled amounts of breakthrough fractions from wastewater treatment, more so than other mobility descriptors. The use of the lowest organic carbon-water coefficient log K_{oc} over the pH range of 4-9 as the assessment parameter to describe mobility has been widely supported in the consultations, scientific discussions and internal review listed in chapter 2.

There have been two major changes during the development of the M/vM criteria compared to previous versions. (1) Water solubility is considered neither a suitable property to set a threshold for the assessment of mobility, nor for the screening, and was removed from the criteria in chapter 10. While it was already shown that water solubility is not correlated with mobility (Kalberlah et al., 2014), its necessity was further recently questioned through a Quantitative structure–activity relationship (QSAR) model assessment (Holmberg et al., 2019). Other central reasons were difficulties when applying this parameter for ionic and ionisable substances, in which water solubility is dependent on counter ions, and some concerns related to data quality for this parameter. (2) The log D_{ow} is no longer an assessment criterion, but now the main indication (screening) criterion for mobility. Here the main reasons are the compatibility to the screening for B and vB properties and to thereby reduce the work load for registrants, as will be described below.

During consultations, there were some discussions on the role of clays and minerals in reducing mobility in soils. In specific situations, particularly for ionic substances and clay rich environments, clays and minerals can measurably reduce mobility (Droge and Goss, 2013). However, these specific cases are difficult to generalize. Clays and minerals can have widely differing available surface areas and capacities for ion-exchange across different soils, which makes their influence on mobility extremely site specific. Therefore, it is extremely challenging to include a generic parameter to account for clay and mineral sorption as part of a hazard criterion. It is acknowledged that basing the assessment for mobility strictly on K_{oc} may be conservative for specific, local, and substance specific case studies, in which minerals may further reduce mobility (Droge and Goss, 2013). However, for developing a hazard criterion, there is an argument for being conservative, and that is to reduce the number of false negatives.

The pH range of 4-9 is included to account for how variations within this environmentally relevant range can influence the K_{oc} value. This influence is most noticeable for ionisable substances that can be cationic (e.g. bases) or anionic (e.g. acids) within this pH range. Because soils are generally anionically charged, the more the substance is present in a cationic form, the larger its K_{oc} value is. Therefore, most acids and bases are most mobile (have the lowest K_{oc}) at high pH because acids are more anionic and bases less cationic; however, for zwitterions and some soil types, such as those with a large anionic exchange capacity, this general rule of thumb may not apply.

Initially, there was some uncertainty regarding where to set the threshold log K_{oc} value. Before this initiative was commenced there has long been an apparent consensus within the scientific community that a log K_{oc} cut-off of ca 3.0 is a suitable cut-off for the protection of groundwater of persistent substances, regardless of clay and mineral content. For instance, in the late 1980's the "Groundwater ubiquity score", GUS (Gustafson, 1989) was developed based on following metric to assess subsurface mobility:

$$\blacktriangleright \qquad GUS = log DT_{50soil} (4 - log K_{oc}) \tag{M1}$$

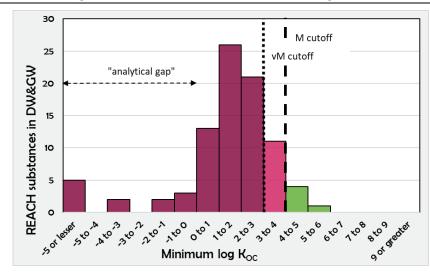
Where DT_{50soil} is the half-life in soil. Based on comparisons with empirical observations of different organic compounds, a GUS value of 2.8 or greater was considered a "soil leacher" that has the potential to reach well water (i.e. mobile), below 1.8 a "non-leacher" (i.e. non-mobile), and those in between in the "transition zone" and capable of leaching (i.e. potentially mobile). Considering the vPvM criteria from this initiative, specifically a vP soil half-life (DT_{50soil}) of 180 days and a vM log K_{oc} value of 3.0, would correspond to a GUS of 2.25. This is in the middle of the

transition zone between "leacher" and "non-leacher", and therefore a value that can be considered protective of groundwater. A cut-off value log K_{oc} of 2.7 would correspond to a "leacher" and would not been protective for groundwater.

The cut-off value of the assessment criterion for vM (log K_{oc} value of 3.0 or smaller) is harmonised with the Groundwater Watch List coordinated by the EU Common Implementation Strategy Working Group Groundwater (EC, 2016), which also uses a log K_{oc} cut-off of 3.0 to identify groundwater relevant substances (EC, 2016; Kozel and Wolter, 2019).

The cut-off value of the assessment criterion for M (log K_{oc} value of 4.0 or smaller) is scientifically justified for the protection against bank filtration breakthrough. In the first version an even higher cut-off value was originally proposed based on the research project by Kalberlah et al. (2014), wherein a simulation of sewage treatment plant outlet concentration was conducted using ECETOC TRA software (http://www.ecetoc.org/TRA). As a result, the authors proposed a log K_{oc} cut-off value of 4.5 or smaller for mobility. The same cut-off value was also used in the JPI Promote project (www.ufz.de/promote/) to successfully identify several high emission PM substances in different stages of drinking water production, many of which for the first time (Schulze et al., 2019). In another independent research project, a log Dow cut-off value of 4.5 or smaller was used successfully to prioritize substances relevant for water supply companies (Nödler et al., 2019). Further, a recent evaluation of mobility within the Stockholm Convention concluded that very persistent substances meeting a log K_{oc} value up to 5.0 may reach remote environments (Crookes and Fisk, 2018). However, despite the success of these cutoff values in these recently completed projects, the log K_{oc} cut-off value of 4.5 or smaller for mobility was criticised during the consultations and scientific discussions as outlined in chapter 2 as being too high and too protective. Motivated by this feedback, a thorough re-evaluation of the cut-off value for mobility was done based on further scientific considerations, and more importantly based on real monitoring data (chapter 4). A summary of this evaluation is presented here.

Regarding theoretical considerations, the breakthrough time of substance in bank filtrate $t_{substance}$ compared to the flow rate of the water, t_{water} is:


$$t_{substance} = t_{water} \left(1 + (\rho/\Theta) K_{oc} foc\right)$$
 (M2)

which includes the fraction of organic carbon (foc), bulk density, ρ , and the porosity, Θ , which are typically 1.7 kg/L and 0.4, respectively, in Europe (ECHA, 2016). The foc for an agricultural soil is typically 0.02 (ECHA, 2016), in less organic rich environments such as sands it is 0.002 (Hale et al., 2017). With these parameters, the breakthrough time of substances relative to the flow rate of the water during bank filtration can be considered as a function of K_{oc}. In an extreme case, the bank filtration t_{water} can be considered 5 days, with a log K_{oc} of 4.0 and considering equation M2, it would take 4255 days in an agricultural soil and 430 days in a sandy soil for the breakthrough of the substance. Both of these breakthrough times are larger than the P criteria for soil of 120 days; however, considering the general equation for exponential decay as a function of half-life (equation M3), some contaminant will still remain after breakthrough:

• fraction of substance remaining = 0.5 time / DT50 (M3)

In the example just presented, 8% of contaminant with a half-life of 120 days and a log K_{oc} of 4.0 would reach the recipient with a t_{water} of 5 days in a sandy river bank. Therefore a log K_{oc} of 4.0 appears as a suitable maximum cut-off for the mobility threshold, for protection against substances that are permeable to bank filtration. However, the ultimate test for the suitability of this cut-off would be an assessment of log K_{oc} values of substances found in the sources of our drinking water. Such an assessment is presented in Figure 6 for the REACH registered

substances detected in drinking water and groundwater in Table 1 from the analytical studies in Appendix Table A1; wherein the number of substances reported is plotted as a function of their K_{oc} range.

Figure 6: Distribution of log K_{oc} values of REACH registered substances detected in drinking water and groundwater from a review of monitoring studies

Figure 6 shows the distribution of the 90 out of 142 substances for which experimental K_{oc} data was available, ranging from -6.0 to 5.4. The "analytical gap" as discussed in section 7.2, is also presented in this chart. This highlights that there may be more substances detected if more analytical methods were available for highly polar substances. There were 11 substances with a log K_{oc} between 3.0 and 4.0 (or 12% of considered substances), implying they meet the M criterion but not vM, and a further 5 (or 6% of 90 substances) ranging from 4.0 to 5.4, implying these are false negatives (substances in drinking water not meeting the M criteria). Thus, lowering the vM and M criteria further would increase the number of false negatives, which is considered insufficiently conservative.

Regarding substances for which log K_{oc} data are not available, the use of the lowest pH dependant octanol-water distribution coefficient (D_{ow}) for ionisable substances, is recommended as an indication criterion for mobility. Consequently, the screening criterion for the mobility assessment is:

the lowest pH-dependant octanol-water distribution coefficient log D_{ow} over the pH range of 4-9 is less than 4.5

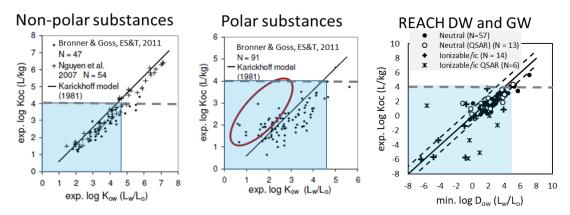
The D_{ow} in the pH range 4-9 can be derived from K_{ow} if the dissociation constant (pKa) is known, such as for monoprotic acids and bases through the following relationships:

$D_{ow} = (1/(1+10^{pH-pKa}))K_{ow}$ (for monoprotic acids)	(M5)
	0.00

 $\blacktriangleright D_{ow} = (1 - 1/(1 + 10^{pH - pKa}))K_{ow} \text{ (for monoprotic bases)}$ (M6)

For neutral and non-ionisable substances over a specified pH range the D_{ow} has the same value as the octanol-water partition coefficient (K_{ow}). Determining the pKa is required under Section 7.16 of Annex IX of REACH when volumes are over 100 tonnes per year. K_{ow} is required for organic substances in Section 9.1 of Annex II ("Requirements for the compilation of safety data sheets") and for volumes of more than 1 tonne per year in Section 7.7 - 7.8 of Annex VII of

Source: Arp and Hale (2019)

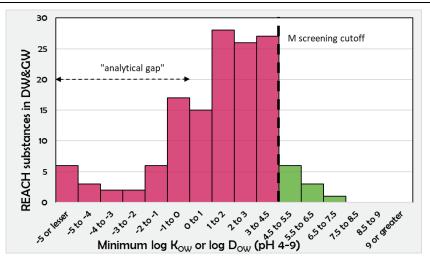

REACH. Furthermore, K_{ow} is already used as an indicator for the bioaccumulation (B) assessment. Specifically, substances with a log K_{ow} larger than 4.5 should be evaluated for B either through direct measurement of bioconcentration factors (BCF) or alternatively a weight-of-evidence approach (ECHA, 2017). If this data is not available, QSAR models for K_{ow} and pKa need to be used. Further guidance to address this is presented in Arp and Hale (2019).

The immense regulatory advantage of this screening cut-off is that persistent substances having a log D_{ow} or log K_{ow} above 4.5 should be assessed for B, and those below should be assessed for M. This provides a seamless integration with the indicator threshold for the bioaccumulation (B) assessment (ECHA, 2017). However, this sharp cut-off between screening for B and screening for M is only expected for neutral, weakly to non-polar molecules. Correlations between K_{oc} and D_{ow} for polar, ionisable or ionic compounds are scattered; similar to correlations between B and D_{ow} . Consequently, some polar, ionisable or ionic substances, are both B and M simultaneously. A log D_{ow} value of 4.5 should therefore not be considered as a strict boundary between B and M substances, but rather a threshold for prioritizing whether to screen for B and M first.

The use of K_{ow} as a K_{oc} surrogate dates back to the late 1970's, when the two parameters were found to be closely correlated for neutral, non-polar molecules, such as in the work of Karickhoff et al. (1979), who presented the general correlation log $K_{oc} = \log K_{ow} - 0.21$. As implied by this correlation, log K_{ow} are generally slightly larger than log K_{oc} for non-polar chemicals. This is supported by more recent data from Bronner and Goss (Bronner and Goss, 2010), as shown in the left panel of Figure 7. However, this correlation is not as good for polar substances, as is presented in the middle panel of the same Figure 7. For some polar substances log K_{ow} can be orders of magnitude smaller than log K_{oc} , as circled in middle panel of Figure 7. Therefore, for polar compounds in particular, the lowest log D_{ow} over the pH range of 4-9 is the recommended indicator for mobility. In the right panel of Figure 7, REACH registered substances with experimental log K_{oc} available are plotted against the minimum log D_{ow} or log K_{ow} . Here it is also evident that the correlation between log K_{oc} and the minimum log $D_{ow}/\log K_{ow}$ is much better for neutral substances than for ionisable and ionic substances.

Figure 7: The log-log correlation between experimental K_{oc} and K_{ow}/D_{ow}

for: left, non-polar substances (defined as having a mass fraction of oxygen + nitrogen atoms in the molecule ≤ 12%); middle, polar substances; right, REACH registered substances detected in drinking water (DW) and groundwater (GW)



Source: Arp and Hale (2019)

The substances meeting the M criteria of log K_{oc} less than 4.0 and screening criterion of the minimum log D_{ow} of 4.5 in the pH range of 4-5 is outlined within blue boxes in Figure 7. As is evident, most substances meeting the M criteria also have a log D_{ow} < 4.5; though there are some exceptions. Thus, the screening criterion captures most M substances but not all. However, increasing to a higher threshold D_{ow} value is not recommended due to

the practical reason of the aforementioned integration with the screening criteria for B. Though it should be kept in mind by registrants that a subset of substances with a log D_{ow} near 4.5 may ultimately meet the criteria for both B and M.

Figure 8: Distribution of 142 REACH registered substances detected in drinking water and groundwater from the review of monitoring studies, organized by their minimum K_{ow} or D_{ow} (pH 4 to 9).

Source: Arp and Hale (2019)

In Figure 8 the 142 REACH substances detected in drinking water and groundwater are categorized by their K_{ow} or lowest D_{ow} (pH 4-9), along with the mobility screening criterion. This screening criterion captures 132 (93%), further indicating its suitability.

An evaluation of whether the 142 detected substances meet the M/vM criterion or M-screening criteria is presented in Appendix Table D2. There were only 8 (5.6%) false negatives for the M criteria, 5 based on experimental K_{oc} values and 3 based on screening using K_{ow}. These are DEHP, galaxolide, butylhydroxytoluene (BHT), tert-octylphenol, nonylphenol, pyrene, 2,4-di-tertiary-butylphenol and butyl benzyl phthalate, all of which are high volume chemicals. Galaxolide is a musk, BHT and 2,4-di-tertiary-butylphenol are widely used as antioxidants, and the remainder are plasticizers associated with leaking from plastic pipes (Junk et al., 1974; Cheng et al., 2016), epoxy-coatings (Rajasärkkä et al., 2016) and bottles (Zaki and Shoeib, 2018). The tonnages of false negatives are presented in Appendix Table D1 and D2. Similar with the false negatives with the P criteria, the false negatives of the M criteria may be due to 1) high emissions and 2) local contamination. Nevertheless, obtaining only 8 of 142 detected REACH registered substances as false negatives is considered in good agreement with the theoretical considerations, and to provide the appropriate level of precaution.

11.3 Justification of the T criteria

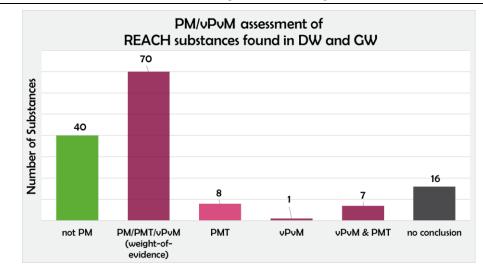
In general, the German authorities consider substances which fulfil both persistence and mobility criteria as priority candidates for further hazard assessment. One of the main concerns over persistent and mobile substances is that they could build up over time in source of our drinking water to levels that may eventually cause hazardous effects, either alone or as mixtures. Further, they can remain there for some time after emissions have ceased. Therefore, considering that human populations and remote environments will be exposed to such substances over long time scales, it is relevant to take a hazard-based approach to their identification. REACH considers exposure to the general human populations, including pregnant women, children and the elderly. The T criterion within the PMT/vPvM assessment reflects this and takes chronic exposure via drinking water into account. Substances that lower the aesthetic quality of drinking water should be considered as well, as expressed in Annex 1, article 0.10 of REACH that "*particular effects, such as [...] strong odour and tainting*" to drinking water should be avoided.

Beyond the T criteria set out in Annex XIII, 1.1.3 of REACH there might be cases, where it is necessary to identify persistent and mobile substances with other hazardous properties posing a risk to human health and the environment. Aspects to be considered are defined in section 10.1.3, including e.g. carcinogenic and cell mutagenic category 2, and endocrine disrupting properties. These additional criteria need assessment to demonstrate fulfilling the equivalent level of concern of Art. 57 (f). Some of these criteria were previously included in an earlier version of the PBT assessment, before Annex XIII was established (Matthies et al., 2016).

Considering these additional criteria for persistent and mobile substances is straightforward from a REACH registration point-of-view. Carcinogenic category 2, cell mutagenic category 2 and effects on lactation are mandatory for reporting according to the CLP registration (Regulation (EC) No 1272/2008); therefore, this data is already required during REACH registration. There is also requirements for reporting DNEL values in REACH, following Annex I. The DNEL cut-off within the PMT/vPvM assessment was proposed and justified by (Kalberlah et al., 2014) based on a study that derived "thresholds for toxicological concern" (TTC), and found that 9 μ g/kg/d was the DNEL (oral, long term, general population) cut-off for 95% of substances exhibiting "moderate or low biological activity" (Barlow, 2005; Kalberlah et al., 2014). In summary, for substances registered with volumes of 10 t/y and fulfilling the criteria for classification in any of the hazard classes or categories listed in Article 14(4) of REACH as amended from 1 December 2010 by Article 58(1) of Regulation (EC) No 1272/2008 (CLP Regulation), the DNEL of the most predominant exposure pathway has to be reported, with key exceptions being intermediates and substances where it is not technically possible to derive DNELs (ECHA, 2012).

Persistent and mobile substances are strongly recommended to be prioritized for the assessment of endocrine disruptor properties. The first step is to assess whether the substance fulfils the hazard criteria of the WHO/IPCS definition of an endocrine disruptor. Guidance on how to interpret results from various assays providing endocrine relevant endpoint information is given by the OECD Guidance Document 150 and by the EFSA/ECHA guidance document (Andersson et al., 2018). Persistent and mobile substances that fulfil the WHO/IPCS definition of an endocrine disruptor meet the criteria set out in section 10.1.3.

However, substances with ED concern should have been identified as SVHC based on the endocrine disrupting properties. Substances with ED concern that have not yet been identified as ED under REACH, should additionally be proposed as SVHC following the WHO/IPCS definition of an endocrine disruptor and the equivalent level of concern of Art. 57 (f).


A comparison of all REACH registered substances (as of May 2017) that meet the T criterion for the PBT/vPvB assessment defined in the Annex XIII of REACH with those, that meet the criteria set out in section 10.1.3 of this document, has been performed recently. This study found an increase from 28.5% (2774 of 9741) to 34.6% (3370 of 9741) Arp and Hale (2019).

In chapter 4, the monitoring data of 142 REACH registered substances (as of May 2017) that were measured in drinking water or groundwater were presented. An evaluation of whether these 142 substances meet the T criterion is presented in Appendix Table C1. In total, 113 of these substances were considered T (or 80%). This percentage is much higher than the 34.6% of the total REACH registered substances (as of May 2017) considered T; this may be due to selection bias, as drinking water and groundwater monitoring studies often target toxic substances.

12 Validation of the PMT/vPvM criteria

The PMT/vPvM criteria were validated in terms false negatives using the 142 REACH registered substances (as of May 2017) that were measured in drinking water or groundwater (chapter 4). The false negatives refer to substances detected in these media that were considered to not meet the PM criteria (regardless of toxicity). The results of the PMT/vPvM assessment for these substances are presented in Figure 9, with details of the assessment of individual substances in Appendix Table C1.

Figure 9 Validation of the PMT/vPvM criteria via comparison to 142 REACH registered substances detected in drinking water and/or groundwater.

Source: Original figure

The occurrence of false negatives is 28% (40 out of 142). This arguably high number is mainly attributed to the P criteria, which is responsible for 33 of the false negatives, respectively, as previously discussed. This may be interpreted as the cut-off for the P criterion being too high and that already shorter half-lives should be considered. The remaining 7 false negatives were due to the M criteria. Only one substance did not meet the P and M criteria (butyl benzyl phthalate). The T criterion was not considered in this analysis, as it is not relevant in the context of drinking water presence; however, there are 19 substances not meeting the T criteria that are PM, but not vPvM. Therefore, the number of these monitored substances fulfilling the PMT/vPvM criteria is 67, or 47%. It should be pointed out that this fraction could rise up to 83 (or 58%) considering the substances where no conclusion was possible. These substances should be urgently tested for persistence. To conclude regarding false negatives, even if a substance would meet the PMT/vPvM criteria and therefore be considered a substantial threat to the sources of our drinking water long after emissions have ceased.

To evaluate for false positives of the PMT/vPvM criteria, referring to substances that would be evaluated as meeting these criteria but are not present in the sources of our drinking water, despite substantial environmental emissions, the 142 REACH substances considered in Figure 9 and chapter 4 are not appropriate as they are in drinking water or groundwater. Recently, however, the JPI Water research project PROMOTE (http://www.ufz.de/promote/) completed a multi-year study that can be used for an analysis of false positives. Within this project, substances that met persistency and mobility criteria very similar to this initiative (Arp et al., 2017) were ranked according to an "Emission Score", which was derived using REACH registration data regarding tonnages and REACH information related to usage (Schulze et al.,

2018). The PROMOTE project ultimately chose 64 substances to screen for in water samples from various stages of drinking water production in Spain, Germany, France and the Netherlands, based on their persistence, mobility and emission profile. For this, new analytical methods needed to be developed, and the project was able to develop analytical methods for 57 of these substances. Ultimately, the PROMOTE project was able to identify 43 of the 57 PM substances selected in the samples. Among these, 23 have never been detected previously in environmental water samples (Schulze et al., 2019). It may be inferred from these results that slightly more conservative PM criteria in combination with emission data generate approximately 25% (14 out of 57) or fewer false positives. This is roughly similar to the amount of false negatives in this study for PM/vPvM substances, 28%.

This, in aggregate, is considered as strong validation of relevance and practical utility of the PM/vPvM assessment criteria, as it strikes a good balance between false negatives and false positives; in other words, it can be used to both describe the intrinsic substance properties of the majority of substances found in the sources of our drinking water (with only 28% false negatives), and can be used to correctly predict if substances with substantial environmental emissions will occur in the sources of our drinking water (with only 25% false positives).

13 Impact Assessment of the PMT/vPvM criteria

The German Environment Agency (UBA) funded recently a research project to assess all REACH registered substances (as of May 2017) (Arp, 2018; Arp and Hale, 2019). In 2018 the project presented a preliminary assessment of how many REACH registered substances would meet the PMT/vPvM criteria as presented here (Arp, 2018). Out of the 15469 substances registered under REACH (as of May 2017), 9741 substances contained an identifiable organic constituent in concentrations > 0.1% (w/w). Impurities and transformation products were not considered in this assessment.

Several limitations related to data availability were evident that prevented a complete assessment of all substances. The largest data limitation is the lack of high-quality half-life data needed for the persistency assessment, similar to that which occurred for the assessment of monitored substances in this report. This is a general shortcoming for conducting P assessments (UNEP, 2013; Goldenman et al., 2017), as mentioned in section 11.1.

Another, more minor but important limitation for the assessments was the lack of experimental K_{oc} data for ionic and ionisable substances, considering the influence of pH (Nödler et al. 2019). This is due in part to the analytical difficulty in measuring highly polar substances (Reemtsma et al., 2016). Other limitations mentioned above is lack of DNEL (long term, oral, general population) and endocrine disruption assessments. Under this assessment (Arp, 2018), it was noted that for 3857 substances there was insufficient data to make a weight-of-evidence based assessment on their persistency. The remainder were divided into the following categories: vP (120 substances), P (76 substances), not P (2542 substances), substances where half-life data is lacking but the initial data cannot rule out a P/vP conclusion (2614). From this pool, the 728 substances that met the vP, P or where weight-of-evidence pointed strongly to a P/vP conclusion were considered further for the M assessment.

After assessing M for the 728 P/vP substances, substances were separated in four categories: vPvM (53 substances), PM (79 substances), potential PM/vPvM based on weight-of-evidence (339 substances), not PM (139 substances), and not enough data to make a weight-of-evidence conclusion on PM (118 substances).

Finally, after the toxicity assessment there were 240 substances of the original 9714 substances that are considered with sufficient weight-of-evidence to fulfil the PMT/vPvM criteria. These included:

- vPvM and not T: 30 substances
- vPvM and PMT: 23 substances
- PMT (but not vPvM): 35 substances
- High Potential to be either PMT/vPvM: 152 substances

Therefore, the impacts of the PMT/vPvM criteria as presented here on the total number of REACH registered substances with organic constituents is 2.5% (240 out of 9741), or 1.6% of all REACH substances (240 of 15469). Further, when emissions and risk assessment is taken into account, the number of substances that are of concern would drop even further. In the update of the preliminary assessment by , only 122 REACH registered substances that were PMT/vPvM were prioritized for follow up based on emission considerations, duplicate chemical structure entries within REACH, and substances that were already being regulated (Arp and Hale, 2019). It may be concluded that fewer REACH registered substances fulfil the PMT/vPvM criteria than the PBT/vPvB criteria.

The Danish Environmental Protection Agency conducted a separate impact assessment in 2019 (Holmberg et al., 2019), based primarily on QSARs from the Danish QSAR database (http://qsar.food.dtu.dk). This assessment was based on primary organic constituents, and not on transformation products and impurities. The Danish impact assessment considered: 1) different levels of strictness on the QSARs used to evaluate P; 2) a sensitivity analysis on different D_{ow} values for the M criterion; and 3) only mono-constituent substances with volumes at 10 tpa per manufacturer or importer, for which a CAS number or structural information could be found (by June 2017). This analysis yielded a total of 2073 substances. Using the PMT/vPvM criteria as presented here, of the 2073 investigated substances a range of 16 to 96 substances were considered to meet the vPvM criteria and a range of 37 to 166 to meet the PMT criteria, depending on the QSAR approach used. Considering all the QSAR approaches tested, 268 substances were identified as either PMT or vPvM in at least one of the approaches. Therefore, here again, a relatively minor portfolio of chemicals were considered to meet the PMT/vPvM criteria, in the order of max 13% of those organic substances registered above 10 tonnes per annum when relying only on QSAR data.

It is concluded that the introduction of the PMT/vPvM criteria will only impact a minor portfolio of REACH registered substances, and would have a relatively small impact on the European chemical industry as a whole.

14 Risk Management Options for PMT/vPvM substances

Removing persistent and mobile substances from raw water for drinking water production is costly, complex and in most cases ineffective (see chapter 7.1). Preventing persistent and mobile substances from contaminating the sources of our drinking water is the best solution providing benefits to all stakeholders and society (see chapter 6). Legislation aimed at ensuring European water quality, including the Water Framework Directive (2000/60/EC), Drinking Water Directive (98/83/EC) and Groundwater Directive (Directive 2006/118/EC), do not implicitly contain any pollution prevention regulation. Consequently, REACH is most suitable for this. Identifying PMT/vPvM substances under REACH is the first step. The second step is an exposure assessment and to ensure that PMT/vPvM substances in commerce under REACH are used in a way resulting in a minimum of emissions.

Demonstration of the safe use of chemicals is a key component of REACH. It serves the purpose to "ensure a high level of protection of human health and the environment" (Article 1,1) and is "underpinned by the precautionary principle" (Article 1,3). REACH, in its aim and scope, states that "it is for manufacturers, importers and downstream users to ensure that they manufacture, place on the market or use such substances that do not adversely affect human health or the environment" (Article 1,3). Through REACH, it becomes the responsibility of the registrants to characterize the intrinsic hazard of the substances and the risk of each of their uses over the complete life cycle. This inherently includes ensuring that their registered substances do not contaminate the sources of our drinking water. This is mentioned in Annex 1, section 0.10 of REACH: "In relation to particular effects, such as [...] strong odour and tainting, [...] the risks associated with such effects shall be assessed on a case-by-case basis and the manufacturer or importer shall include a full description and justification of such assessments in the chemical safety report and summarised in the safety data sheet".

Herein, recommendations are provided as to how diverse sectors can create solutions for the sustainable management of persistent and mobile substances, through the criteria and assessment procedure presented herein, alongside the REACH registration process.

14.1 Manufacturers, importers and downstream users

Registrants are already now able to use the criteria presented in chapter 10 to perform voluntarily a PMT/vPvM assessment in the context of their chemical safety report (CSR). This will allow the identification of PMT/vPvM substances during REACH registration, or already during product development. If the data that is currently available for a PMT/vPvM assessment is of low quality, manufacturers, importers and downstream users should strive to obtain data of better quality in order to carry out a more accurate assessment. When PMT/vPvM substances are identified, manufacturers, importers and downstream users can immediately act to reduce or prevent emissions. For instance, safer alternatives could be considered or risk management measures (RMM) could be put into place to minimize emissions into the environment during the whole life cycle of the substance. This would assist industry in fulfilling their obligation under REACH to guarantee safe use of their registered substances. The German authorities strongly recommend that PMT/vPvM properties should be communicated during the scope of registration and throughout the supply chain the same way as PBT/vPvB properties, i.e. via the Chemical Safety Report and/or the Safety Data Sheet. This should also include recommendations for the minimisation of emissions during the supported use.

An important part of this is to develop and share analytical methods for their mobile substances. It is essential for persistent and mobile substances to ensure appropriate analytical techniques are available. This is of importance, especially with regard to the challenges related to the analysis of mobile substances presented in section 7.2. Registrants should take the lead in

developing analytical methods for mobile substances and include them in their registration dossier.

Registrants should follow a similar assessment procedure for PMT/vPvM substances, as for PBT/vPvB substances and substances meeting the hazard classes in Article 14(4) of REACH. This assessment procedure is comprised of the following steps as outlined in Annex I section 4.0.2 of REACH:

- Step 1: Comparison with the Criteria
- Step 2: Emission Characterization

For PMT/vPvM substances, "Step 1: Comparison with the Criteria", the criteria in chapter 10 herein is to be used. In essence, "Step 2: Emission Characterization" for PMT/vPvM substances can follow a similar procedure as already in place for PBT/vPvB substances. Details of how this characterization can be carried out are given in sections R.11.3.4 and R.11.4.1.4 of the REACH PBT guidance document (ECHA, 2017). The key step is the exposure assessment following Annex I, Section 5 of REACH, which includes recommendations for risk management measures (RMM) to minimise emissions. Analogously to other hazardous substances under REACH, regulatory measures for PMT/vPvM substances may only need to be considered by authorities, if registrants and downstream users do not put the necessary RMM into place.

14.2 Local authorities and water suppliers

Local authorities, water suppliers and producers of drinking water, as well as researchers are invited to consider identified PMT/vPvM substances registered under REACH for their water monitoring programs. That being said, many mobile substances are currently difficult to monitor in the aquatic environment because of a "gap" in suitable analytical methods (Reemtsma et al., 2016); therefore, a future list of PMT/vPvM substances registered under REACH would be of relevance to develop analytical methods (Arp et al., 2017; Arp, 2018; Berger et al., 2018; Schulze et al., 2019).

Local authorities could use such a substance list to improve collaborations with local industry in developing strategies to minimize emissions into the environment and to ensure their effectivity. In this way, more economically feasible costs of pollution prevention can be carried out upstream, ideally covered by the potential polluter. This is the preferred approach compared to dealing with non-economically feasible and less effective clean-up costs downstream, far away from the pollution source, where the contributions of various polluters becomes complex to identify from both a forensic and legal perspective. In this way, situations for tax payers clean-up and health-care costs for pollution they did not create are avoided.

However, if contamination of the sources of our drinking water with persistent and mobile substances does occur, enforcement of remediation action from the polluter are necessary. An example of this can be found in Bavaria, in which regulatory authorities are actively monitoring the presence of 1,4-dioxane. Based on the detected contamination, local industry and local authorities developed strategies to ensure the presence in drinking water is reduced (Körner, 2018). However, such collaborations are most effectively undertaken before the contamination takes place, rather than after it has occurred. In this manner, local authorities, water suppliers and producers of drinking water should also attempt to request a PMT/vPvM assessment of those chemicals that are used in their water catchment area or are already detected in the water bodies.

14.3 European Commission, ECHA and Member States

European Commission, ECHA and Member States have several regulatory options that could be used in order to protect the sources of our drinking water. The current Drinking Water Directive or Water Framework Directive could be extended in order to include individual PMT/vPvM substances or to set a general concentration limit. Likewise, the voluntary watch list of the Groundwater Directive could be used as a tool to detect PMT/vPvM substances and close the monitoring data gap. However, these types of regulatory tools only apply once a contamination and thus a risk has been established. Therefore, options to encourage pre-emptory, voluntary measures by industry to minimize emissions into the environment to effectively protect the sources of our drinking water should be favoured.

It should be discussed if persistent and mobile substances - if not classifiable as hazardous to the aquatic environment - are a case for a classification as Aquatic Chronic 4, H 413 under the CLP regulation (Regulation (EC) No 1272/2008) which are defined in Annex I as "*cases when data do not allow classification under the above criteria but there are nevertheless some grounds for concern*". This would, even in the absence of other classifiable hazard properties, trigger the obligations for classified substances, e.g. with regard to exposure assessment according to REACH Article 14(4). Further, new hazard classes for P, vP, B, vB, M and vM could be implemented separately in Annex I of the CLP regulation. This would permit the combination of these separate new hazard classes to identify PBT, vPvB, PMT, and vPvM substances in a harmonised and hazard-based fashion.

Under REACH there are many possibilities to implement the PMT/vPvM criteria and to establish a PMT/vPvM assessment. One option would be that Annex I could call for the assessment of PMT/vPvM within the registration dossiers and e.g. the determination of K_{oc} could be required at a low tonnage level. Article 14(4) could also include PMT/vPvM substances and ask for an exposure assessment and a risk characterisation. Further, ECHA's REACH guidance documents could be amended to incorporate a PMT/vPvM assessment.

Another option would be to identify PMT/vPvM substances as substances of very high concern (SVHC) following Article 57. Consequently, Article 57 and Annex XIII could be expanded in order to include the PMT/vPvM criteria. On the other hand, the hazard caused by PBT/vPvB substances is comparable (chapter 8) to the hazard caused by PMT/vPvM substance and they are already now relevant for consideration under Article 57 (f), to demonstrate "scientific evidence of probable serious effects to human health or the environment which give rise to an equivalent level of concern".

Restrictions may apply to PMT/vPvM substances without or sequenced to an identification as SVHC. Further, Article 68(2) could be amended to allow fast-track restriction for PMT/vPvM substances for consumer uses.

As reflected in the Preamble, the implementation of the PMT/vPvM criteria is complementary to the underlying principles of REACH and the UN Sustainable Development Goals centred on the realisation of human rights, protection of human health and ensuring a sustainable future.

15 References

Amiridou, D., Voutsa, D., 2011. Alkylphenols and phthalates in bottled waters. J. Hazard. Mater. 185, 281-286.

Andersson, N., Arena, M., Auteri, D., Barmaz, S., Grignard, E., Kienzler, A., Lepper, P., Lostia, A.M., Munn, S., Parra Morte, J.M., Pellizzato, F., Tarazona, J., Terron, A., Van der Linden, S., 2018. Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA Journal 16, e05311.

Arnot, J., Gouin, T., Mackay, D., 2005. Development and application of models of chemical fate in Canada. Practical Methods for Estimating Environmental Biodegradation Rates, Canadian Environmental Modelling Network, Trent University, Peterborough, Ontario, Canada.

Arp, H.P.H., 2018. Preliminary assessment of substances registered under REACH that could fulfil the proposed PMT/vPvM criteria. NGI Technical Note. 20160426-TN-01.

Arp, H.P.H., Brown, T.N., Berger, U., Hale, S., 2017. Ranking REACH registered neutral, ionisable and ionic organic chemicals based on their aquatic persistency and mobility. Environmental Science: Processes & Impacts 19, 939–955.

Arp, H.P.H., Hale, S.E., 2019 UBA Texte 126/2019: REACH: Improvement of guidance methods for the identification and evaluation of PM/PMT substances. German Environment Agency (UBA), Dessau-Roßlau, Germany. ISBN: 1862-4804. 130 pages

Barlow, S., 2005. Threshold of toxicological concern (TTC): A tool for assessing substances of unknown toxicity present at low levels in the diet. ILSI Europe Concise Monograph Series, ILSI Europe. Brussels, Belgium.

Barnes, K.K., Kolpin, D.W., Furlong, E.T., Zaugg, S.D., Meyer, M.T., Barber, L.B., 2008. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—I) Groundwater. Sci. Total Environ. 402, 192-200.

Benotti, M.J., Trenholm, R.A., Vanderford, B.J., Holady, J.C., Stanford, B.D., Snyder, S.A., 2008. Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environ. Sci. Technol. 43, 597-603.

Berg, M., Müller, S.R., Mühlemann, J., Wiedmer, A., Schwarzenbach, R.P., 2000. Concentrations and mass fluxes of chloroacetic acids and trifluoroacetic acid in rain and natural waters in Switzerland. Environ. Sci. Technol. 34, 2675-2683.

Berger, U., Ost, N., Sättler, D., Schliebner, I., Kühne, R., Schüürmann, G., Neumann, M., Reemtsma, T., 2018. Assessment of persistence, mobility and toxicity (PMT) of 167 REACH registered substances. UBA TEXTE 09/2018. Project No. 74925. ISSN 1862-4804. Edited by: Section IV 2.3 Chemicals Michael Neumann, Ivo Schliebner. 61 pages.

Berger, U., Schulze, S., Zahn, D., Montes, R., Rodil, R., Knepper, T.P., Quintana, J.B., Reemtsma, T., 2017. "Analysis of PMOCs and their occurrence in European waters". Presented at the Workshop: PMOCs in the Water Cycle, Leipzig, 23rd-24th November 2017.

Blaine, A.C., Rich, C.D., Hundal, L.S., Lau, C., Mills, M.A., Harris, K.M., Higgins, C.P., 2013. Uptake of perfluoroalkyl acids into edible crops via land applied biosolids: field and greenhouse studies. Environ. Sci. Technol. 47, 14062-14069.

Blaser, S.A., Scheringer, M., MacLeod, M., Hungerbühler, K., 2008. Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Sci. Total Environ. 390, 396-409.

Boutonnet, J.C., Bingham, P., Calamari, D., Rooij, C.d., Franklin, J., Kawano, T., Libre, J.-M., McCul-loch, A., Malinverno, G., Odom, J.M., 1999. Environmental risk assessment of trifluoroacetic acid. Human and Ecological Risk Assessment: An International Journal 5, 59-124. Bronner, G., Goss, K.-U., 2010. Predicting Sorption of Pesticides and Other Multifunctional Organic Chemicals to Soil Organic Carbon. Environ. Sci. Technol. 45, 1313-1319.

Brown, T.N., Wania, F., 2008. Screening Chemicals for the Potential to be Persistent Organic Pollutants: A Case Study of Arctic Contaminants. Environ. Sci. Technol. 42, 5202-5209.

Cheng, Y.-C., Chen, H.-W., Chen, W.-L., Chen, C.-Y., Wang, G.-S., 2016. Occurrence of nonylphenol and bisphenol A in household water pipes made of different materials. Environ. Monit. Assess. 188, 562.

Crookes MJ and Fisk P, 2018. Evaluation of using mobility of chemicals in the environment to fulfil bioaccumulation criteria of the Stockholm Convention; Final report confidential

Di Lorenzo, T., Borgoni, R., Ambrosini, R., Cifoni, M., Galassi, D.M.P., Petitta, M., 2015. Occurrence of volatile organic compounds in shallow alluvial aquifers of a Mediterranean region: Baseline scenario and ecological implications. Sci. Total Environ. 538, 712-723.

Diamond, M.L., de Wit, C.A., Molander, S., Scheringer, M., Backhaus, T., Lohmann, R., Arvidsson, R., Bergman, Å., Hauschild, M., Holoubek, I., 2015. Exploring the planetary boundary for chemical pollution. Environ. Int. 78, 8-15.

Droge, S.T.J., Goss, K.-U., 2013. Development and Evaluation of a New Sorption Model for Organic Cations in Soil: Contributions from Organic Matter and Clay Minerals. Environ. Sci. Technol. 47, 14233-14241.

EC, 2016. Groundwater Watch List: Pharmaceuticals Pilot Study: Monitoring Data Collection and Initial Analysis. p. 65.

EC, 2017a. Study for the strategy for a non-toxic environment of the 7th Environment Action Programme: Final Report. http://ec.europa.eu/environment/chemicals/non-toxic/index_en.htm.

EC, 2017b. Study for the strategy for a non-toxic environment of the 7th Environment Action Programme: Substudy d: Very Persistent Chemicals. http://ec.europa.eu/environment/chemicals/non-toxic/pdf/Substudy%20d%20very%20persistent%20subst.%20NTE%20final.pdf.

ECHA, 2012. Guidance on information requirements and chemical safety assessment chapter R.8: Characterisation of dose [concentration]-response for human health Version: 2.1. November 2012. ECHA-2010-G-19-EN.

ECHA, 2014. Guidance on Information Requirements and Chemical Safety Assessment chapter R.11: PBT/vPvB assessment. ECHA-14-G-07-EN.

ECHA, 2016. Guidance on information requirements and Chemical Safety Assessment chapter R.16: Environmental exposure assessment. Version 3.0. February 2016. ECHA-16-G-03-EN.

ECHA, 2017. Guidance on Information Requirements and Chemical Safety Assessment chapter R.11: PBT/vPvB assessment Version 3.0 June 2017. ECHA-17-G-12-EN.

ERM, 2013. "European River Memorandum". Memorandum regarding the protection of European rivers and watercourses in order to protect the provision of drinking water, http://www.iawr.org/docs/publikation_sonstige/efg-memorandum_2013.pdf.

EurEau, 2017. "PMOCs – Relevance and Consequences for Drinking Water Supply". Presented at the Workshop, "PMOCs in the Water Cycle", Leipzig, 23rd-24'th November, 2017.

Felizeter, S., McLachlan, M.S., De Voogt, P., 2014. Root uptake and translocation of perfluorinated alkyl acids by three hydroponically grown crops. J. Agric. Food Chem. 62, 3334-3342.

Filipovic, M., Berger, U., 2015. Are perfluoroalkyl acids in waste water treatment plant effluents the result of primary emissions from the technosphere or of environmental recirculation? Chemosphere 129, 74-80.

Gebbink, W.A., van Asseldonk, L., van Leeuwen, S.P., 2017. Presence of emerging per-and polyfluoroalkyl substances (PFASs) in river and drinking water near a fluorochemical production plant in the Netherlands. Environ. Sci. Technol. 51, 11057-11065.

Goldenman, G., Pedersen, R., Bradley, H., Fernandez, M., Weber, R., Scheringer, M., Fantke, P., 2017. European Comission. Study for the strategy for a non-toxic environment of the 7th EAP Sub-study d: Very Persistent Chemicals. .

Gustafson, D.I., 1989. Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environ. Toxicol. Chem. 8, 339-357.

Hale, S.E., Arp, H.P.H., Slinde, G.A., Wade, E.J., Bjørseth, K., Breedveld, G.D., Straith, B.F., Moe, K.G., Jartun, M., Høisæter, Å., 2017. Sorbent amendment as a remediation strategy to reduce PFAS mobility and leaching in a contaminated sandy soil from a Norwegian firefighting training facility. Chemosphere 171, 9-18.

Harter, T., 2003. Basic concepts of groundwater hydrology. UCANR Publications.

Holmberg, R., Wedebye, E.B., Nikolov, N.G., Tyle, H., 2019. How many potential vPvM/PMT substances have been registered under REACH? vPvM/PMT-screening by using the Danish (Q)SAR database. Pre-print report version 31.01.2019. Danish Environmental Protection Agency.

Junk, G.A., Svec, H.J., Vick, R.D., Avery, M.J., 1974. Contamination of water by synthetic polymer tubes. Environ. Sci. Technol. 8, 1100-1106.

Jurado, A., Vàzquez-Suñé, E., Carrera, J., de Alda, M.L., Pujades, E., Barceló, D., 2012. Emerging organic contaminants in groundwater in Spain: a review of sources, recent occurrence and fate in a European context. Sci. Total Environ. 440, 82-94.

Kaboré, H.A., Duy, S.V., Munoz, G., Méité, L., Desrosiers, M., Liu, J., Sory, T.K., Sauvé, S., 2018. Worldwide drinking water occurrence and levels of newly-identified perfluoroalkyl and polyfluoroalkyl substances. Sci. Total Environ. 616, 1089-1100.

Kalberlah, F., Oltmanns, J., Schwarz, M., Baumeister, J., Striffler, A., 2014. Guidance for the precautionary protection of raw water destined for drinking water extraction from contaminants regulated under REACH. UFOPLAN Project FKZ 371265416. German Federal Environmental Agency.

Karickhoff, S.W., Brown, D.S., Scott, T.A., 1979. Sorption of hydrophobic pollutants on natural sediments. Wat. Res. 13, 241-248.

Kavcar, P., Odabasi, M., Kitis, M., Inal, F., Sofuoglu, S.C., 2006. Occurrence, oral exposure and risk assessment of volatile organic compounds in drinking water for Izmir. Wat. Res. 40, 3219-3230.

Knepper, T.P., Sacher, F., Lange, F.T., Brauch, H., Karrenbrock, F., Roerden, O., Lindner, K., 1999. Detection of polar organic substances relevant for drinking water. Waste Management 19, 77-99.

Kuhlmann, B., Skark, C., Zullei-Seibert, N., 2010. Definition and assessment of chemicals relevant to drinking water within the framework of the EU regulation REACH and recommendations for screening for potentially critical substances [in German]. Research project FKZ No 363 01 241 funded by the German Environment Agency (UBA), Report by Institut für Wasserforschung (IfW) GmbH. Schwerte, Germany, p. 97.

Körner, W., 2018. 1,4-Dioxane in Surface and Ground Water: Sources, Analysis and Reduction of Emissions. Oral Presentation. NGI and UBA Workshop: PMT/vPvM substances under REACH Voluntary measures and regulatory options to protect the sources of drinking water. 13'th-14'th March. Berlin Germany.

Lapworth, D., Baran, N., Stuart, M., Ward, R., 2012. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ. Pollut. 163, 287-303.

Liu, J., Kattel, G., Arp, H.P.H., Yang, H., 2015. Towards threshold-based management of freshwater ecosystems in the context of climate change. Ecol. Modell. 318, 265-274.

Loos, R., Locoro, G., Comero, S., Contini, S., Schwesig, D., Werres, F., Balsaa, P., Gans, O., Weiss, S., Blaha, L., 2010. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Wat. Res. 44, 4115-4126.

Loraine, G.A., Pettigrove, M.E., 2006. Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in southern California. Environ. Sci. Technol. 40, 687-695.

M.J., C., P., F., 2018. Evaluation of using mobility of chemicals in the environment to fulfil bioaccumulation criteria of the Stockholm Convention; Final report. DRAFT document.

MacLeod, M., Breitholtz, M., Cousins, I.T., Wit, C.A.d., Persson, L.M., Rudén, C., McLachlan, M.S., 2014. Identifying chemicals that are planetary boundary threats. Environ. Sci. Technol. 48, 11057-11063.

Mailler, R., Gasperi, J., Coquet, Y., Deshayes, S., Zedek, S., Cren-Olivé, C., Cartiser, N., Eudes, V., Bressy, A., Caupos, E., Moilleron, R., Chebbo, G., Rocher, V., 2015. Study of a large scale powdered activated carbon pilot: Removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents. Wat. Res. 72, 315-330.

Matthies, M., Solomon, K., Vighi, M., Gilman, A., Tarazona, J.V., 2016. The origin and evolution of assessment criteria for persistent, bioaccumulative and toxic (PBT) chemicals and persistent organic pollutants (POPs). Environmental Science: Processes & Impacts 18, 1114-1128.

Mompelat, S., Le Bot, B., Thomas, O., 2009. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ. Int. 35, 803-814.

Mulder, M., Antakyali, D., Ante, S., 2015. Costs of Removal of Micropollutants from Effluents of Municipal Wastewater Treatment Plants - General Cost Estimates for the Netherlands based on Implemented Full Scale Post Treatments of Effluents of Wastewater Treatment Plants in Germany and Switzerland. STOWA and Waterboard the Dommel, The Netherlands.

Neumann, M., 2017. Proposal for criteria and an assessment concept for the identification of Persistent, Mobile and Toxic (PMT) substances to protect raw water for the production of drinking water under the EU regulation REACH [in German]. Zbl. Geol. Paläont. Teil I 1, 91-101.

Neumann, M., Schliebner, I., 2017a. Protecting the sources of our drinking water: A proposal for implementing criteria and an assessment procedure to identify Persistent, Mobile and Toxic (PM or PMT) substances registered under REACH. German Environmental Agency (UBA), Dessau, Germany. ISBN: 2363-8273. 12 pages.

Neumann, M., Schliebner, I., 2017b. Protecting the sources of our drinking water - A revised proposal for implementing criteria and an assessment procedure to identify Persistent, Mobile and Toxic (PMT) and very Persistent, very Mobile (vPvM) substances registered under REACH. German Environmental Agency (UBA), Dessau, Germany. ISBN: 2363-8273. 20 pages.

Neumann, M., Schwarz, M.A., Sättler, D., Oltmanns, J., Vierke, L., Kalberlah, F., 2015. A proposal for a chemical assessment concept for the protection of raw water resources under REACH. 25th annual meeting of the Society of Environmental Toxicology and Chemistry (SETAC Europe), Barcelona, Spain.

Nödler, K., Happel, O., Scherer, M., Strock, F.R., Brauch, H.-J., 2019. Nödler K, Happel O, Scherer M, Strock FR, Brauch H-J (2019); Selektion von für die Wasserversorgung relevanten prioritären Stoffen und Erarbeitung einer Stoffliste; Abschlußbericht, published by DVGW.

Plumlee, M.H., Larabee, J., Reinhard, M., 2008. Perfluorochemicals in water reuse. Chemosphere 72, 1541-1547.

Rajasärkkä, J., Pernica, M., Kuta, J., Lašňák, J., Šimek, Z., Bláha, L., 2016. Drinking water contaminants from epoxy resin-coated pipes: A field study. Wat. Res. 103, 133-140.

Reemtsma, T., Berger, U., Arp, H.P.H., Gallard, H., Knepper, T.P., Neumann, M., Quintana, J.B., Voogt, P.d., 2016. Mind the Gap: Persistent and Mobile Organic Compounds—Water Contaminants That Slip Through. Environ. Sci. Technol. 50, 10308-10315.

Schmidt, C.K., Lange, F., Brauch, H., Kühn, W., 2003. Experiences with riverbank filtration and infiltration in Germany. DVGW-Water Technology Center (TZW), Karlsruhe, Germany 17.

Schriks, M., Heringa, M.B., van der Kooi, M.M., de Voogt, P., van Wezel, A.P., 2010. Toxicological relevance of emerging contaminants for drinking water quality. Wat. Res. 44, 461-476.

Schröder, H.F., 1991. Polar, hydrophilic compounds in drinking water produced from surface water: Determination by liquid chromatography-mass spectrometry. J. Chromatogr. A 554, 251-266.

Schulze, S., Sättler, D., Neumann, M., Arp, H.P.H., Reemtsma, T., Berger, U., 2018. Using REACH registration data to rank the environmental emission potential of persistent and mobile organic chemicals. Sci. Total Environ. 625, 1122-1128.

Schulze, S., Zahn, D., Montes, R., Rodil, R., Quintana, J.B., Knepper, T.P., Reemtsma, T., Berger, U., 2019. Occurrence of emerging persistent and mobile organic contaminants in European water samples. Wat. Res. doi.org/10.1016/j.watres.2019.01.008.

Skark, C., Kuhlmann, B., Zullei-Seibert, N., 2011. Refinement and validation of an screening for chemicals relevant to drinking water within the frame-work of the EU regulation REACH [in German]. Research project FKZ No 360 010 59 funded by the German Environment Agency (UBA), Report by Institut für Wasserforschung (IfW), Schwerte, Germany. 75 pages.

Stackelberg, P.E., Gibs, J., Furlong, E.T., Meyer, M.T., Zaugg, S.D., Lippincott, R.L., 2007. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci. Total Environ. 377, 255-272.

Steinhäuser, K.G., Richter, S., 2006. Assessment and Management of Chemicals–How Should Persistent Polar Pollutants be Regulated? Organic Pollutants in the Water Cycle: Properties, Occurrence, Analysis and Environmental Relevance of Polar Compounds, 311-339.

Stepien, D.K., Diehl, P., Helm, J., Thoms, A., Püttmann, W., 2014. Fate of 1, 4-dioxane in the aquatic environment: From sewage to drinking water. Wat. Res. 48, 406-419.

Tollefsen, K.E., Nizzetto, L., Huggett, D.B., 2012. Presence, fate and effects of the intense sweetener sucralose in the aquatic environment. Sci. Total Environ. 438, 510-516.

Tröger, R., Klöckner, P., Ahrens, L., Wiberg, K., 2018. Micropollutants in drinking water from source to tapmethod development and application of a multiresidue screening method. Sci. Total Environ. 627, 1404-1432.

Tufenkji, N., Ryan, J.N., Elimelech, M., 2002. Peer reviewed: The promise of bank filtration. Environ. Sci. Technol. 36, 422A–428A.

Ulrich, N., Endo, S., Brown, T.N., Watanabe, N., Bronner, G., Abraham, M.H., Goss, K.-U., 2018. UFZ-LSER database v 3.3 [Internet], Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ.

Umweltbundesamt, 2014. Water Management in Germany Water Supply – Waste Water Disposal. https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/wawiflyer_uba_en_web.pdf

Umweltbundesamt, 2018. Liste der nach GOW bewerteten Stoffe, www.umweltbundesamt.de/dokument/listenach-gow-bewerteten-stoffe.

UNEP, 2013. UNEP Yearbook: Emerging issues in our Global Environment 2013, United Nations Environment Programme, Geneva.

van der Hoek, J.P., Bertelkamp, C., Verliefde, A., Singhal, N., 2014. Drinking water treatment technologies in Europe: state of the art–challenges–research needs. Journal of Water Supply: Research and Technology-Aqua 63, 124-130.

Zahn, D., Frömel, T., Knepper, T.P., 2016. Halogenated methanesulfonic acids: A new class of organic micropollutants in the water cycle. Wat. Res. 101, 292-299.

Zaki, G., Shoeib, T., 2018. Concentrations of several phthalates contaminants in Egyptian bottled water: Effects of storage conditions and estimate of human exposure. Sci. Total Environ. 618, 142-150.

Zogorski, J.S., Carter, J.M., Ivahnenko, T., Lapham, W.W., Moran, M.J., Rowe, B.L., Squillace, P.J., Toccalino, P.L., 2006. Volatile organic compounds in the nation's ground water and drinking-water supply wells. US Geological Survey Circular 1292, 101.

A Studies considered in literature review

Table A1Studies considered in this literature review of drinking water (DW) and
groundwater (GW) contaminants.

Study ID	Type of Media	Chemical Type Targeted	Area	Reference
А	GW	Various	Europe	Loos et al. (2010)
В	GW	Pharmaceuticals	Europe	EC, (2016)
С	GW	Pharmaceuticals	USA	Barnes et al. (2008)
D	GW	Various	International	Lapworth et al. (2012)
E	DW	Various	Europe	EurEau (2017)
F	DW	Industrial	Europe	Berger et al. (2017)
G	DW	Solvents	Europe	EU Regulation 98/83/EC
н	DW&GW	Various	Europe	Kuhlmann et al. (2010)
I	DW	PFAS	International	Kaboré et al. (2018)
J	DW	Various	USA	Stackelberg et al. (2007)
К	DW	Various	USA	Benotti et al. (2008)
L	DW	Various	Europe	Tröger et al. (2018)
М	DW	PFAS	Europe	Gebbink et al. (2017)
Ν	DW	Various	USA	Loraine and Pettigrove (2006)
0	GW	Solvents	USA	Zogorski et al. (2006)
Р	DW	Solvents	International	Kavcar et al. (2006)
Q	GW	Various	Europe	Jurado et al. (2012)
R	DW	Pharmaceuticals	International	Mompelat et al. (2009)
S	DW	Various	International	Schriks et al. (2010)
т	DW	1,4-dioxane	Europe	Stepien et al. (2014)
U	DW	TFAA	International	Boutonnet et al. (1999)
V	GW	disinfection byproducts	Europe	Berg et al. (2000)
W	DW	disinfection byproducts	Europe	Zahn et al.)2016)
х	DW	Various	Europe	Umweltbundesamt (2018)
Y	DW&GW	Sucralose	International	Tollefsen et al. (2012)

Source: Arp and Hale (2019)

B Other Substances detected in drinking water and groundwater

Table B1List of substances detected in drinking water and groundwater that are not REACH
registered substances (as of May 2017).

CAS	Name	Common	Max. conc.	Max. conc.	Study ID
		Usage	(ng/L) in DW	(ng/L) in GW	
75-27-4	Bromodichloromethane	by-product	27450	>10000	О; Р
24-48-1	Dibromochloromethane	by-product	17930	>10000	О; Р
13078-36-9	Trisodium dihydrogen -N,N-[bis[2- [bis(carboxylatomethyl)amino]ethyl]]glycin ate	chelating agent	detected		E
503-52-1	Ethyl N,N-diphenylcarbamate	explosive	detected		х
L40-08-9	(2-Chlorethyl)phosphate	flame retardant	470		н
3665-90-6	Acesulfame	food additive	detected		F
6038-13-2	Sucralose	food additive	2400	2400	L; Y
501-52-0	Hydrocinnamic acid	food additive	20100		N
5013-16-5	Butylated hydroxyanisole	food additive	3450		N
996-12-08	Dibromochloropropane	Fumigant	140	1000-5000	Н; О
6-99-3	Molinate	insecticide		5	Q
6070-16-7	Terbufos-sulfon	insecticide	420		н
08-60-1	Bis(2-chloroisopropyl)ether	metabolite	1900		s
2-75-9	n-Nitrosodimethylamine	metabolite	630		Н; S
2706-90-3	PFPeA	PFAS	5.7		I; M
7619-97-2	6:2FTSA	PFAS	6.3		1
07-24-4	PFHxA	PFAS	5.3		l; L; M
35-67-1	PFOA	PFAS	520	39	A; E; H; I; L; N S
35-76-2	PFDA	PFAS	1	11	A; I; L; M
75-22-4	PFBA	PFAS	13		I; M
75-85-9	PFHpA	PFAS	3.2		l; L; M
75-95-1	PFNA	PFAS	4.5	10	A; I; L; M
871-99-6	PFHxS	PFAS	1	19	A; I; L; M
7906-42-7	PFDS	PFAS	1.5		I; M
14637-49-3	5:3FTCA	PFAS	39		1
'54-91-6	FOSA	PFAS	0.3		L
07-55-1	PFDoDA	PFAS	1.6		L
058-94-8	PFUnDA	PFAS	0.12		L
75-92-8	PFHpS	PFAS	0.03		м
706-91-4	PFPeS	PFAS	detected		х
06266-06-2	Risperidone	pharm.	2.9		к
25-33-7	Primidone	pharm.	40	12000	B; D; E; R
401-69-0	Tylosin	pharm.	detected		н
4698-29-4	Oxolinic acid	pharm.	detected	>100	В; Н
.54-21-2	Lincomycin	pharm.		320	C; D
.672-58-8	4-Formylaminoantipyrine	pharm.	detected		E
2071-15-4	Ketoprofen	pharm.	8	2886	- A; B; D; H; Q;
465-59-0	Oxipurinol	pharm.	detected		E
25812-30-0	Gemfibrozil	pharm.	70	574	L H; K; Q; R
9122-68-7	Atenolol	pharm.	18	106	H; K; L; Q

The Study ID refers to Appendix Table A1. Source: Arp and Hale (2019)

CAS	Name	Common	Max. conc.	Max. conc.	Study ID	
		Usage	(ng/L) in DW	(ng/L) in GW		
298-46-4	Carbamazepine	pharm.	258	99194	A; B; D; E; H; J; K; L; Q; R; S	
37350-58-6	Metoprolol	pharm.	2100	56.3	E; H; L; Q; S	
3930-20-9	Sotalol	pharm.	3.6	16	H; L; Q	
42399-41-7	Diltiazem	pharm.		28	с	
443-48-1	Metronidazol	pharm.		>100	В; Н	
479-92-5	Propyphenazone	pharm.	240	1250	B; D; Q; R	
486-56-6	Cotinine	pharm.	20	400	B; C; D; H; J; L	
525-66-6	Propranolol	pharm.		62	H; Q	
57-53-4	Meprobamate	pharm.	42		H; K; R	
59333-67-4	Fluoxetine	pharm.	8.71		н; к	
60142-96-3	Gabapentin	pharm.	detected	>10000	B; E	
60166-93-0	lopamidol	pharm.	100	2400	B; D; H; S	
604-75-1	Oxazepam	pharm.	2	detected	H; L	
611-59-6	1,7-Dimethylxanthine	pharm.		57	с	
62-73-7	Diazepam	pharm.	23.5	19.4	H; K; Q; R	
6493-05-6	Pentoxifylline	pharm.		>100	В	
657-24-9	Metformin	pharm.		>100	в	
723-46-6	Sulfamethoxazole	pharm.	30	7300	A; B; C; D; E; K; Q; S	
73334-07-3	lopromide	pharm.	86		E; H; R; S	
738-70-5	Trimethoprim	pharm.		>100	В; Н	
81103-11-9	Clarithromycin	pharm.		detected	н	
83-07-8	4-Aminoantipyrine	pharm.	detected		E	
882-09-7	Clofibric acid	pharm.	270	>100	B; D; H; R; S	
28721-07-5	Oxcarbazepine	pharm.		>100	В	
551-92-8	Dimetridazole	pharm.		>100	В	
74-11-3	4-Chlorobenzoic acid	pharm.		>100	В	
15935-54-3	Carboxyibuprofen	pharm.		>100	в	
83-15-8	n-Acetyl-4-aminoantipyrin	pharm.		>100	В	
483-63-6	Crotamiton	pharm.		>3000	В	
125-40-6	Butabarbital	pharm.		>1000	В	
72-44-6	Methagualone	pharm.		>100	В	
2078-54-8	Propofol	pharm.		>1000	В	
54-31-9	Furosemide	pharm.		>100	в	
2206-57-1	Fenofibric acid	pharm.	210	>100	В; Н	
137-58-6	Lidocaine	pharm.	1.2	>10000	B; L	
70288-86-7	Ivermectine	pharm.		>100	В	
27203-92-5	Tramadol	pharm.	3.6	>100	B; L	
28179-44-4	loxithalamic acid	pharm.	-	>100	B	
58-93-5	Hydrochlorothiazide	pharm.		2548	B; Q	
50-36-2	Cocaine	pharm.		>100	B; Q	
90357-06-5	Bicalutamide	pharm.	0.61		L	
84057-84-1	Lamotrigine	pharm.	9.5		L	
22083-74-5	Nicotine	pharm.	0.24	144	L; Q	
72-14-0	Sulfathiazole	pharm.	detected	144	с, Q H; Q	
122-11-2	Sulfadimethoxine	pharm.	uciecieu	91.5	n, Q Q	
122-11-2	Sulfamethizole	pharm.		9.3	Q Q	
1-1-1 0Z-T	SundifictingOle	phann.				
127-79-7	Sulfamerazine	pharm.		744.7	Q	

CAS	Name	Common	Max. conc.	Max. conc.	Study ID
		Usage	(ng/L) in DW	(ng/L) in GW	
L27-69-5	Sulfisoxazole	pharm.		17.1	Q
00-90-3	N4-acetylsulfamethazine	pharm.		57	Q
6-57-3	Codeine	pharm.	30	348.3	H; Q; R
1-68-7	Mefenamic acid	pharm.		32.5	Q
7-27-2	Morphine	pharm.		27.2	Q
19-09-5	Benzoylecgonine	pharm.		19.6	Q
1859-67-0	Bezafibrate	pharm.	27		H; R
8649-41-9	lomeprol (iomeron)	pharm.	10		H; S
7-63-6	Ethinylestradiol	pharm.	23		н
9277-89-3	Aciclovir	pharm.	detected		х
19-65-3	AMDOPH	pharm.	detected		х
79-92-5	4-Isopropylantipyrine	pharm.	detected		х
8955-94-5	10,11-Dihydroxy-10,11– dihydrocarbamazepine	pharm.	detected		X
41-83-3	Guanylurea	pharm.	detected		х
0-06-6	Phenobarbital	pharm.	detected		х
1566-34-5	Ibuprofen methyl ester	pharmmetabolite	4950		N
014-69-3	Desmetryn	pesticide		detected	н
071-83-6	Glyphosate	pesticide	460		E; S
16-06-3	Aldicarb	pesticide		detected	н
18-74-1	Hexachlorobenzene	pesticide	detected		Е; Н
20-36-5	Dichlorprop	pesticide	detected	3199	A; E; S
22-34-9	Simazine	pesticide	190	1690	A; E; H; Q; S
5545-48-9	Chlortoluron	pesticide	detected	1700	A; H; Q
563-66-2	Carbofuran	pesticide		detected	н
5972-60-8	Alachlor	pesticide	17	9950	A; H; Q
610-17-9	Atraton	pesticide	detected	detected	н
8691-97-9	Methabenzthiazuron	pesticide		516	А
5057-89-0	Bentazone	pesticide	280	10550	A; E; L; S
98-00-0	Parathion-methyl	pesticide		detected	н
060-89-7	Metobromuron	pesticide		detected	н
09-00-2	Aldrin	pesticide	detected	detected	н
30-55-2	Linuron	pesticide	6.2	1010	A; H; K; Q
33-41-5	Diazinon	pesticide		300	A; Q
4123-59-6	Isoproturon	pesticide	20	100	A; E; H; Q; S
70-90-6	Chlorfenvinphos	pesticide	detected	2500	H; Q
1218-45-2	Metolachlor	pesticide	2700	5370	A; E; H; K; Q
1235-04-2	Hexazinone	pesticide	detected	589	A; H
8-89-9	Lindane	pesticide	detected	detected	E; H
915-41-3	Terbuthylazine	pesticide	detected	1270	A; E; Q
0-57-1	Dieldrin	pesticide		detected	н
190-65-4	Desethylatrazine	pesticide	320	1980	A; H; Q
7129-08-2	Metazachlor	pesticide	detected	detected	н
7564-91-4	Fenpropimorph	pesticide	actedica	detected	н
2-20-8	Endrin	pesticide		detected	Н
2-20-8 287-19-6	Prometryn	pesticide		detected	н
41-06-5	Methoprotryn	pesticide		detected	н
3-72-1	2,4,5-TP (Fenoprop)	pesticide	datastad	detected	H
3-76-5	2,4,5-T	pesticide	detected	3.7	A; E

CAS	Name	Common Usage	Max. conc. (ng/L) in DW	Max. conc. (ng/L) in GW	Study ID
94-75-7	2,4 D (2,4-Dichlorophenoxyacetic acid)	pesticide	110	12	A; E; S
94-82-6	2,4-DB (4-(2,4-dichlorophenoxy)butyric acid)	pesticide	detected		н
131341-86-1	Fludioxonil	pesticide	0.01		L
50207-90-1	Propiconazole	pesticide	0.23		L
386-50-0	Terbutryn	pesticide		180	Q
1007-28-9	Desisopropylatrazine (DIA)	pesticide	75	790	Н; Q
21725-46-2	Cyanazine	pesticide	12	3.9	H; Q
60-51-5	Dimethoate	pesticide		2277	Q
122-14-5	Fenitrothion	pesticide		550	Q
1582-09-8	Trifluralin	pesticide		2.4	Q
121-75-5	Malathion	pesticide		3500	Q
34256-82-1	Acetochlor	pesticide	500		н
542-75-6	cis-1,3-Dichlorpropene	pesticide	3910		н
542-75-6	trans-1,3-Dichlorpropene	pesticide	11140		н
33164-33-4	Diflufenican	pesticide	0		Н
37674-68-8	Dimethenamide	pesticide	67		н
2212-67-1	Molinat	pesticide	5700		н
L4797-73-0	Prometon	pesticide	96		н
2008-58-4	2,6-Dichlorobenzamide	pesticide-metabolite	230		S
77521-29-0	AMPA	pesticide-metabolite	1100		s
187022-11-3	acetochlor ESA	pesticide-metabolite	1100		Н
194992-44-4	acetochlor OA	pesticide-metabolite	550		н
142363-53-9	alachlor ESA	pesticide-metabolite	1200		н
171262-17-2	alachlor OA	pesticide-metabolite	140		н
1861-32-1	DCPA mono/di-acid degradate	pesticide-metabolite	190000		н
30125-63-4	Desethylterbutylazine	pesticide-metabolite	detected		н
56681-55-1	Hydroxyalachlor	pesticide-metabolite	44		н
171118-09-5	metolachlor ESA	pesticide-metabolite	4000		н
152019-73-3	metolachlor OA	pesticide-metabolite	3500		н
75-69-4	Trichlorofluoromethane	refrigerant	5500	>10000	0
	Trichlorotrifluoroethane	refrigerant		1000-5000	
76-13-1		-	07		
134-62-3	DEET	repellent	97	6500	A; D; H; J; K; S
124-48-1	Dibromochlormethane	solvent	detected	detected	H
75-25-2	Tribrommethane Bromdichlormethane	solvent	4190	5000-10000	Н; О; Р
75-27-4		solvent	detected	200 500	н
104-51-8	n-Butylbenzene	solvent	6000	200-500	0
75-34-3	1,1-Dichloroethane	solvent	6000	5000-10000	Н; О
156-59-2	cis-1,2-Dichloroethene	solvent		1000-5000	0
103-65-1	n-Propylbenzene	solvent	10	1000-5000	0
79-34-5	1,1,2,2-Tetrachlorethane	solvent	10		Н
108-70-3	1,3,5-Trimethylbenzene	solvent	410		н
26636-32-8	Diethoxyoctylphenol	surfactant	0		H
59-89-2	NMOR - N-Nitrosomorpholine	tobacco component		detected	Н
332927-03-4	Acridin-9-carbonsäure	unknown	detected		х
5466-77-3	Octyl methoxy cinnamate	UV filter	450		N
30-14-3	Sodium Naphthalene-1-sulphonate	various	detected		E
8467-77-1	Diprogulic acid	various	detected		E
924-16-3	N-nitrosodibutylamine	various	21		н
55-18-5	N-nitrosodiethylamine	various	85		н

CAS			Max. conc. (ng/L) in DW	Study ID
10595-95-6	N-nitrosomethylethylamine	various	5	н
930-55-2	N-nitrosopyrrolidine	various	24	н
1066-42-8	Dimethylsilandiol (DMSD)	various	detected	х
142-68-7	Tetrahydropyran	various	detected	х
126-54-5	2,4,8,10-Tetraoxaspiro[5.5]undecan (TOSU)	various	detected	х

C PMT/vPvM assessment of REACH registered substances detected in drinking water and groundwater

To assess persistency, substances of very high concern (SVHC) that are on the Candidate List because they met the PBT/vPvB criteria, or which are appearing in the Stockholm Convention's list of Persistent Organic Pollutants (i.e. present on annex I of the Regulation EC 850/200), were assigned P or vP, as appropriate. Existing P assessments based on weight-of-evidence assessments from Berger et al. (Berger et al., 2018) were also employed directly. Further weight-of-evidence assessment for remaining substances was performed using available half-life data (OECD 307, 308, 309 or equivalents) and screening tests (OECD 301, 310, 302b+c) available through eChemPortal (https://echemportal.org/. accessed November 20, 2017); and additionally using the following QSARs: the QSAR Toolbox (v4.1) P predictor (www.qsartoolbox.org); the BIOWIN screening approach as recommended in the PBT guideline (ECHA, 2017); the Arnot-BIOWIN approach for estimating half-lives (Arnot et al., 2005); and a recently developed "IFS QSAR" (Arp et al., 2017). Finally, a confidential database on conclusions on P by ECHA (entitled "Pro.S.P. 2014", which has not been updated since 2014) was also considered within the weight-of-evidence assessment. The P conclusions within the REACH dossiers were considered with some scepticism, as these were found to vary widely in their reliability, and across multiple dossier entries for a specific substance; therefore, the half-life data, screening tests, and other relevant information needed to assess P was used to re-evaluate P, rather than simply accepting the conclusions made within the dossiers. The estimated halflives presented in Appendix Table C1 represent biodegradation rates (Arnot et al., 2005), which are considered accurate within a factor 10 (Arp et al., 2017), therefore outcomes of 4 days can be considered potentially persistent (Arp et al., 2017).

To assess mobility, experimental data was given highest priority in this assessment. The main sources were Arp et al. (Arp et al., 2017) and the eChemPortal database (accessed November 2017). It is noted that assessing the lowest log D_{ow} at environmentally relevant pH range of 4-9 requires both K_{ow} and pKa values; these were also mainly obtained from Arp et al. (Arp et al., 2017) and the eChemPortal database (accessed November 2017).

Sources for the K_{oc} data are REACH registered values from the eChemPortal database available from ECHA and OECD (http://www.echemportal.org), accessed February 2018 as a first priority. Otherwise, values calculated from the use of poly-parameter linear free energy relationships were used, provided experimental sorbent descriptors were available (Bronner and Goss, 2010; Ulrich et al., 2018). For more information see (Arp and Hale, 2019).

When no experimental data was available, QSAR predictions for log D_{ow} were performed using ADMET Predictor 7.1 software by Simulations-plus (http://www.simulationsplus.com) primarily, and ChemAxon (https://www.chemaxon.com) (October 2017 version) as a backup.

To assess toxicity, the C&L registry as of October 06, 2017 was used (https://echa.europa.eu/information-on-chemicals/cl-inventory-database). NOEC/EC₁₀ values were obtained from the eChemPortal database (November 9th, 2017), DNEL values were obtained directly from REACH registration dossiers, as accessed via IUCLID 6 (January 11th, 2017), and *suspected* endocrine disruption were obtained from a 2014 evaluation from ECHA (Pro.S.P., 2014) and SIN List provided by ChemSec (January 10'th, 2019). When multiple NOEC/EC₁₀ or DNEL values were found for one substance, the lowest was chosen by default.

Table C1PMT/vPvM assessment of REACH registered substances (as of May 2017) that have been reported in at least one study as detected in
groundwater (GW) or drinking water (DW).

PMT & vPvM	CAS	Name	tonnage per annum	Ρ	P rationale	М	M rationale	Т	T rationale	De- tected in GW or DW	Max conc. µg/L	Study ID
vPvM & PMT	108-78-1	melamine	100000 - 1000000	vP	All biodegradation results in 301C and 302B tests imply no significant biodegradation. Therefore this substance is assessed to be persistent in water. (Berger et al. 2018)	vM	exp min. log Dow/Kow = -2.3 (ionizable cmpd.)	Т	Carc_2 STOTRE_2	DW	det.	E; F
vPvM & PMT	80-08-0	Dapsone	100 - 1000	vP	No significant biodegradation in 301D tests. The PBT assessment evaluates the substance to be persistent. Therefore this substance is assessed to be persistent in water. (Berger et al. 2018)	vM	exp min. log Doc/Koc = 1.8 (neutral cmpd.)	T	STOTRE_1 STOTRE_2 Suspected ED	DW	det.	F
vPvM & PMT	127-18-4	Tetrachloroethene	100000 - 1000000	vP	No significant biodegradation in 301 C tests. The PBT assessment evaluates the substance to be persistent. Therefore this substance is assessed to be persistent in water. (Berger et al. 2018)	vM	exp min. log Doc/Koc = 2.2 (neutral cmpd.)	Т	Carc_1b Carc_2 Rep_2 STOTRE_2 Suspected ED	DW	180	G; H; J
vPvM & PMT	330-54-1	Diuron	100 - 1000	vP	measured half life = 2 241 d (soil)	vM	exp min. log Doc/Koc = 2.1 (neutral cmpd.)	Т	ecotox Carc_2 STOTRE_2 Suspected ED	DW&G W	2.1	A; E; H; Q; S
vPvM & PMT	56773- 42-3	PFOS	0 - 10	vP	on SVHC list - vPvB substance	vM	exp min. log Doc/Koc = 0.0 (single_anion cmpd.)	Т	SVHC	DW&G W	0.14	A; E; H; l; L; S
vPvM & PMT	62037- 80-3	GenX	10 - 100	vP	All biodegradation results in 301B and 302C imply no significant biodegradation. Therefore this substance is assessed to be persistent in water. (Berger et al. 2018)	vM	exp min. log Doc/Koc = -5.1 (single_anion cmpd.)	Т	STOTRE_2	DW	0.011	M

The Study ID refers to Appendix Table A1. Source: modified from Arp and Hale (2019)

PMT & vPvM	CAS	Name	tonnage per annum	Ρ	P rationale	Μ	M rationale	Т	T rationale	De- tected in GW or DW	Max conc. μg/L	Study ID
vPvM & PMT	127-18-4	Perchloroethene	100000 - 1000000	vP	No significant biodegradation in 301 C tests. The PBT assessment evaluates the substance to be persistent. Therefore this substance is assessed to be persistent in water. (Berger et al. 2018)	vM	exp min. log Doc/Koc = 2.2 (neutral cmpd.)	Т	Carc_1b Carc_2 Rep_2 STOTRE_2 Suspected ED	GW	10	0
vPvM	95-50-1	1,2-Dichlorobenzene	10000 - 100000	vP	measured half life = 191 d (soil)	vM	exp min. log Doc/Koc = 2.7 (neutral cmpd.)	Tscr een	Cramer Class III	DW&G W	10	Н; О
РМТ	3622-84- 2	n- Butylbenzenesulphona mide	1000 - 10000	vP	measured half life = 1 011 d (fresh water)	M/v M	exp min. log Dow/Kow = 2.0, M or vM unclear due to data uncertainty (ionizable cmpd.)	Т	STOTRE_2	DW	0.1	S
РМТ	79-01-6	Trichloroethene	10000 - 100000; 0 - 10	Ρ	No significant biodegradation in 301C and D tests. The PBT assessment evaluates the substance to be persistent. Therefore this substance is assessed to be persistent in water. (Berger et al. 2018)	vM	exp min. log Doc/Koc = 2.2 (neutral cmpd.)	Т	SVHC	DW&G W	21.6	G; H; O; S
РМТ	123-91-1	1,4-dioxane	1000+	Ρ	No significant biodegradation in 301F test. The PBT assessment evaluates the substance to be persistent. Therefore this substance is assessed to be persistent in water. (Berger et al. 2018)	vM	exp min. log Doc/Koc = -0.5 (neutral cmpd.)	Т	Carc_2 STOTRE_1 STOTRE_2	DW	0.6	E; S; T
ΡΜΤ	288-88-0	1,2,4-triazole	1000 - 10000	Ρ	All biodegradation results in 301A and 302B tests imply no significant biodegradation. Therefore this substance is assessed to be persistent in water. (Berger et al. 2018)	vM	exp min. log Doc/Koc = 1.6 (ionizable cmpd.)	Т	Rep_2	DW	det.	E
PMT	834-12-8	Ametryn	1000 - 10000	Ρ	measured half life = 143 d (soil)	٧M	exp min. log Doc/Koc = 1.8 (ionizable cmpd.)	Т	ecotox	DW&G W	det.	H

PMT & vPvM	CAS	Name	tonnage per annum	Ρ	P rationale	Μ	M rationale	Т	T rationale	De- tected in GW or DW	Max conc. μg/L	Study ID
PMT	126-86-3	Surfynol 104	1000+	Ρ	All biodegradation results in 301B and 302B tests imply no significant biodegradation. Therefore this substance is assessed to be persistent in water. (Berger et al. 2018)	vM	exp min. log Doc/Koc = 1.6 (neutral cmpd.)	Т	STOTRE_2	DW	0.2	N
PMT	107-06-2	1,2-Dichloroethane	1000000 - 10000000	Ρ	Due to lack of other information the substance was assessed by PBT assessment in water. Therefore this substance is assessed to be persistent in water. (Berger et al. 2018)	vM	exp min. log Doc/Koc = 1.1 (neutral cmpd.)	Т	SVHC	DW&G W	81.9	Н; О
PMT	120-12-7	Anthracene	Intermedi ate Use Only	Р	On SVHC list - PBT substance	М	exp min. log Doc/Koc = 3.6 (neutral cmpd.)	Т	SVHC	GW	det.	Н
Pot. PM & vPvM	13674- 84-5	ТСРР	0 - 10; 0 - 10	vP	Biodegradation results in 301C and E tests <20% and persistence due to PBT assessment. Therefore this substance is assessed to be persistent in water. (Berger et al. 2018)	M/v M	QSAR min. log Dow/Kow = 2.9, M or vM unclear due to data uncertainty(neutr al cmpd.)	Tscr een	Cramer Class III	DW	0.5	E; F; K
Pot. PM & vPvM	76-05-1	Trifluoroacetatic acid	1000 - 10000	P/vP	est. t1/2 = 20d, weight-of-evidence based on QSARs and no biodeg. observed in majority of biodegradation screen tests e.g. 301 D (Ready Biodegradability: Closed Bottle Test)	vM	QSAR min. log Dow/Kow = -0.6 (ionizable cmpd.)	Tscr een	Cramer Class III	DW	0.2	E; U; V
Pot. PMT	137862- 53-4	Valsartan acid	Intermedi ate Use Only	P/vP	est. t1/2 = 22d, weight-of-evidence (this study) based on all used QSARs and no biodeg. observed in majority of biodegradation screen tests for substance/main transformation products, e.g. 301 B (Ready Biodegradability: CO2 Evolution Test)	M/v M	exp min. log Dow/Kow = 1.2, M or vM unclear due to data uncertainty (ionizable cmpd.)	T	Rep_1a Rep_2	DW	det.	E
Pot. PMT & vPvM	140-01-2	Pentasodium (carboxylatomethyl)imi	10000 - 100000	P/vP	est. t1/2 = 8d, weight-of-evidence based on QSARs and no biodeg.	vM	QSAR min. log Dow/Kow = -15.6	Т	Rep_1a Rep_2 STOTRE_2	DW	det.	E

PMT & vPvM	CAS	Name	tonnage per annum	Ρ	P rationale	Μ	M rationale	т	T rationale	De- tected in GW or DW	Max conc. μg/L	Study ID
		nobis(ethylenenitrilo)t etraacetate			observed in majority of biodegradation screen tests e.g. 301 F (Ready Biodegradability: Manometric Respirometry Test),301 B (Ready Biodegradability: CO2 Evolution Test)		(multiple_anion cmpd.)					
Pot. PMT	15307- 86-5	Diclofenac	Intermedi ate Use Only	P/vP	est. t1/2 = 99d, weight-of-evidence based on consistent indications of P across tested QSARs	М	exp min. log Doc/Koc = 3.8 (ionizable cmpd.)	Т	Lact Rep_2 STOTRE_1	DW&G W	0.6	A; B; D; H; R
Pot. PMT & vPvM	288-13-1	Pyrazole	Intermedi ate Use Only	P/vP	est. t1/2 = 13d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	exp min. log Dow/Kow = 0.3 (ionizable cmpd.)	Т	Rep_2 STOTRE_1	DW	det.	E
Pot. PM & vPvM	461-58-5	Cyanoguanidine	10000 - 100000	Ρ	No significant biodegradation in 301E tests. The PBT assessment evaluates the substance to be persistent. Therefore this substance is assessed to be persistent in water. (Berger et al. 2018)	vM	exp min. log Dow/Kow = 0.1 (neutral cmpd.)	Tscr een	Cramer Class III	DW	det.	F
Pot. PMT & vPvM	60-00-4	EDTA	1000 - 10000	P/vP	est. t1/2 = 6d, weight-of-evidence based on QSARs and no biodeg. observed in majority of biodegradation screen tests e.g. 301 A (new version) (Ready Biodegradability: DOC Die Away Test)	vM	QSAR min. log Dow/Kow = -7.2 (ionizable cmpd.)	Т	Rep_2 STOTRE_1 STOTRE_2	DW&G W	13.6	B; E; S
Pot. PMT & vPvM	67-43-6	N- carboxymethyliminobis (ethylenenitrilo)tetra(a cetic acid)	100 - 1000	P/vP	est. t1/2 = 8d, weight-of-evidence based on QSARs and no biodeg. observed in majority of biodegradation screen tests e.g. 301 D (Ready Biodegradability: Closed Bottle Test)	vM	QSAR min. log Dow/Kow = -8.8 (ionizable cmpd.)	T	Rep_2 STOTRE_2	DW&G W	9	B; S; E
Pot. PMT & vPvM	100-02-7	Nitrophenol	Intermedi ate Use Only	P/vP	est. t1/2 = 31d, weight-of-evidence based on consistent indications of P across tested QSARs	٧M	exp min. log Doc/Koc = -1.4 (ionizable cmpd.)	Т	STOTRE_2 Suspected ED	GW	0.1	A
Pot. PMT	102-06-7	1,3-diphenylguanidine	1000 - 10000	P/vP	est. t1/2 = 68d, weight-of-evidence (this study) based on all used QSARs and no biodeg. observed in majority	M/v M	exp min. log Dow/Kow = 1.4, M or vM unclear	Т	Rep_2	DW	det.	F

PMT & vPvM	CAS	Name	tonnage per annum	Ρ	P rationale	Μ	M rationale	Т	T rationale	De- tected in GW or DW	Max conc. μg/L	Study ID
					of biodegradation screen tests for substance/main transformation products, e.g. 301 D (Ready Biodegradability: Closed Bottle Test)		due to data uncertainty (ionizable cmpd.)					
Pot. PMT & vPvM	114-07-8	Erythromycin	Intermedi ate Use Only	P/vP	est. t1/2 = 768d, weight-of-evidence based on consistent indications of P across tested QSARs	٧M	QSAR min. log Dow/Kow = 0.1 (ionizable cmpd.)	Т	Rep_2	GW	1	В
Pot. PMT & vPvM	115-96-8	ТСЕР	0 - 10	P/vP	est. t1/2 = 35d, weight-of-evidence based on consistent indications of P across tested QSARs	٧M	exp min. log Doc/Koc = 0.7 (neutral cmpd.)	Т	SVHC	DW&G W	0.7	D; E; J; K
Pot. PM & vPvM	117-96-4	Diatrizoic acid	Intermedi ate Use Only	P/vP	est. t1/2 = 797d, weight-of-evidence based on consistent indications of P across tested QSARs	M/v M	QSAR min. log Dow/Kow = 1.1, M or vM unclear due to data uncertainty (ionizable cmpd.)	Tscr een	Cramer Class III	DW&G W	1.2	B; S; R
Pot. PMT & vPvM	121-57-3	Sulfanilic acid	1000 - 10000	P/vP	est. t1/2 = 44d, and consistency across all tested QSARs	٧M	QSAR min. log Dow/Kow = -1.9 (ionizable cmpd.)	Т	Suspected ED	DW	det.	F
Pot. PMT	13674- 87-8	TDIP	1000 - 10000	P/vP	est. t1/2 = 231d, weight-of-evidence (this study) based on all used QSARs and no biodeg. observed in majority of biodegradation screen tests for substance/main transformation products, e.g. 302 C (Inherent Biodegradability: Modified MITI Test (II))	Μ	exp min. log Doc/Koc = 3.7 (neutral cmpd.)	Τ	Carc_2 STOTRE_2	DW	0.5	H:J
Pot. PMT & vPvM	139-40-2	Propazine	Intermedi ate Use Only	P/vP	est. t1/2 = 186d, weight-of-evidence based on consistent indications of P across tested QSARs	٧M	exp min. log Doc/Koc = 1.8 (neutral cmpd.)	Т	Carc_2 Suspected ED	DW&G W	0	A; H; Q
Pot. PMT & vPvM	143-24-8	Tetraglyme	100+	P/vP	est. t1/2 = 83d, weight-of-evidence based on consistent indications of P across tested QSARs	٧M	exp min. log Dow/Kow = -0.8 (neutral cmpd.)	т	Rep_1b	DW	det.	E
Pot. PM & vPvM	1493-13- 6	Trifluoromethansulfoni c acid	100 - 1000	P/vP	est. t1/2 = 39d, weight-of-evidence (this study) based on all used QSARs and no biodeg. observed in majority	٧M	exp min. log Dow/Kow = 0.3 (neutral cmpd.)	Tscr een	Cramer Class III	DW	1	F; W

PMT & vPvM	CAS	Name	tonnage per annum	Ρ	P rationale	Μ	M rationale	Т	T rationale	De- tected in GW or DW	Max conc. μg/L	Study ID
					of biodegradation screen tests for substance/main transformation products, e.g. 301 D (Ready Biodegradability: Closed Bottle Test)							
Pot. PM & vPvM	15214- 89-8	2-acrylamido-2- methylpropanesulphon ic acid	1000 - 10000	Ρ	Due to lack of other information the substance was evaluated by PBT assessment in water. Therefore this substance is assessed to be persistent in water. (Berger et al. 2018)	vM	exp min. log Dow/Kow = -3.7 (ionizable cmpd.)	Tscr een	Cramer Class III	DW	det.	F
Pot. PMT & vPvM	15687- 27-1	Ibuprofen	Intermedi ate Use Only	P/vP	est. t1/2 = 18d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	exp min. log Doc/Koc = 2.5 (neutral cmpd.)	Т	Rep_1b Rep_2 STOTRE 2	DW&G W	12	A; B; C; D; N; R
Pot. PMT & vPvM	1634-04- 4	МТВЕ	1000000 - 10000000	P/vP	Though definitive P conclusions can not be found an evaluation of dossier information could not rule out definitely that the P criteria was not met.	vM	exp min. log Doc/Koc = 0.2 (neutral cmpd.)	Т	Suspected ED	DW	57.8	E; H; O; S
Pot. PMT & vPvM	1912-24- 9	Atrazine	Intermedi ate Use Only	P/vP	est. t1/2 = 153d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	exp min. log Doc/Koc = 1.5 (neutral cmpd.)	т	STOTRE_2 Suspected ED	DW&G W	3.5	A; E; H; K; Q
Pot. PM & vPvM	21145- 77-7	AHTN	0 - 10	P/vP	est. t1/2 = 74d, weight-of-evidence based on consistent indications of P across tested QSARs	Μ	exp min. log Doc/Koc = 3.4 (neutral cmpd.)	Not T	-	DW	0.1	J
Pot. PMT & vPvM	3380-34- 5	Triclosan	10 - 100	P/vP	The P conclusion of triclosan remains controversial, with P assessment still under development.	vM	exp min. log Doc/Koc = 0.9 (ionizable cmpd.)	Т	ecotox Suspected ED	DW&G W	2.1	A; D; K; N; R
Pot. PMT & vPvM	51-28-5	2,4-Dinitrophenol	100 - 1000	P/vP	this is not persistent in soil, but some data in the dossier suggests the vP criteria in fresh water is met. Further, it is evident in monitoring studies (UBA, 2019), there were consistent indications of P across tested QSARs, and this substances was also considered prioritized by Nödler et al.	vM	exp min. log Doc/Koc = -3.4 (ionizable cmpd.)	Τ	muta_2 Rep_2 STOTRE_1 STOTRE_2 DNEL Suspected ED	DW&G W	333	А; Н

PMT & vPvM	CAS	Name	tonnage per annum	Ρ	P rationale	Μ	M rationale	Т	T rationale	De- tected in GW or DW	Max conc. μg/L	Study ID
Pot. PMT & vPvM	56-93-9	Benzyltrimethyl ammonium	100 - 1000	P/vP	est. t1/2 = 21d, weight-of-evidence (this study) based on all used QSARs and no biodeg. observed in majority of biodegradation screen tests for substance/main transformation products, e.g. 301 C (Ready Biodegradability: Modified MITI Test (I))	vM	QSAR min. log Dow/Kow = -1.0 (single_cation cmpd.)	Т	muta_2	DW	det.	F
Pot. PMT	57-83-0	progesterone	Intermedi ate Use Only	P/vP	est. t1/2 = 78d, and consistency across all tested QSARs	Μ	exp min. log Dow/Kow = 3.7 (neutral cmpd.)	Т	Carc_1b Carc_2 Lact muta_1b muta_2 Rep_1a Rep_1b Rep_2 Suspected ED	DW&G W	0.1	В; Н; К
Pot. PMT & vPvM	67-66-3	Chloroform	100000 - 1000000	P/vP	est. t1/2 = 45d, weight-of-evidence based on QSARs and no biodeg. observed in majority of biodegradation screen tests e.g. 301 C (Ready Biodegradability: Modified MITI Test (I))	vM	exp min. log Doc/Koc = 2.0 (neutral cmpd.)	Т	Carc_2 muta_2 Rep_2 STOTRE_1 STOTRE_2	DW&G W	34.6	Н; О; Р
Pot. PMT & vPvM	71-55-6	Trichloroethane, 1,1,1-	Intermedi ate Use Only	P/vP	est. t1/2 = 65d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	exp min. log Doc/Koc = 1.7 (neutral cmpd.)	Т	Carc_1b Carc_2 STOTRE_2	DW&G W	10	0
Pot. PMT & vPvM	80-09-1	Bisphenol S	1000 - 10000	P/vP	The 301C test indicates non readily biodegradable; however, based on readacross with BPA, the likelihood this meets the P requirement are low.	vM	exp min. log Doc/Koc = -0.3 (ionizable cmpd.)	Т	Suspected ED	DW	det.	F
Pot. PM & vPvM	826-36-8	vincubine	Intermedi ate Use Only	P/vP	est. t1/2 = 32d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	exp min. log Doc/Koc = -3.3 (ionizable cmpd.)	Tscr een	Cramer Class III	DW	det.	E
Pot. PMT & vPvM	95-14-7	benzotriazoles	1000 - 10000	P/vP	est. t1/2 = 18d, weight-of-evidence (this study) based on all used QSARs and no biodeg. observed in majority	vM	exp min. log Doc/Koc = 1.5 (ionizable cmpd.)	Т	muta_2	DW&G W	1.5	A; B; E; S

PMT & vPvM	CAS	Name	tonnage per annum	Ρ	P rationale	Μ	M rationale	т	T rationale	De- tected in GW or DW	Max conc. μg/L	Study ID
					of biodegradation screen tests for substance/main transformation products, e.g. 301 D (Ready Biodegradability: Closed Bottle Test)							
Pot. PMT & vPvM	97-39-2	1,3-di-o-tolylguanidine	100 - 1000	P/vP	est. t1/2 = 107d, weight-of-evidence (this study) based on all used QSARs and no biodeg. observed in majority of biodegradation screen tests for substance/main transformation products, e.g. 301 C (Ready Biodegradability: Modified MITI Test (I))	νM	exp min. log Dow/Kow = -3.0 (ionizable cmpd.)	Т	Carc_1b Rep_2	DW	det.	F
Pot. PM & vPvM	83-32-9	Acenaphthene	Intermedi ate Use Only	P/vP	est. t1/2 = 28d, weight-of-evidence based on consistent indications of P across tested QSARs	Μ	exp min. log Doc/Koc = 3.3 (neutral cmpd.)	Tscr een	Cramer Class III	GW	det.	Η
Pot. PM & vPvM	29420- 49-3	PFBS - Potassium 1,1,2,2,3,3,4,4,4- nonafluorobutane-1- sulphonate	Intermedi ate Use Only	P/vP	est. t1/2 = 327d, weight-of-evidence based on QSARs and no biodeg. observed in at least one biodegradation screen test e.g. OECD Guideline 301 E (Ready biodegradability: Modified OECD Screening Test)	vM	QSAR Dow/Kow = -1.0 (ionizable cmpd.)	Tscr een	Cramer Class III	DW&G W	0.03	A; H; I; L; M
Pot. PMT & vPvM	152459- 95-5	Imatinib	Intermedi ate Use Only	P/vP	est. t1/2 = 881d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	QSAR min. log Dow/Kow = -0.7 (ionizable cmpd.)	Т	Carc_2 muta_2 Rep_1b Rep_2 STOTRE_2	GW	0.1	В
Pot. PMT	76-74-4	Pentobarbital	Intermedi ate Use Only	P/vP	est. t1/2 = 45d, weight-of-evidence based on consistent indications of P across tested QSARs	M/v M	QSAR min. log Dow/Kow = 1.1, M or vM unclear due to data uncertainty(ioniza ble cmpd.)	Т	Rep_2	GW	1	В
Pot. PMT & vPvM	93413- 69-5	Venlafaxine	Intermedi ate Use Only	P/vP	est. t1/2 = 83d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	QSAR min. log Dow/Kow = 1.4 (ionizable cmpd.)	Т	Lact Rep_1a	DW	0	L

PMT & vPvM	CAS	Name	tonnage per annum	Ρ	P rationale	Μ	M rationale	Т	T rationale	De- tected in GW or DW	Max conc. μg/L	Study ID
Pot. PMT	119-61-9	benzophenone	1000 - 10000	P/vP	est. t1/2 = 18d, weight-of-evidence (this study) based on all used QSARs and no biodeg. observed in majority of biodegradation screen tests for substance/main transformation products, e.g. 301 C (Ready Biodegradability: Modified MITI Test (I))	Μ	exp min. log Doc/Koc = 3.1 (neutral cmpd.)	T	Carc_2 STOTRE_2 Suspected ED	DW	0.3	N
Pot. PMT & vPvM	78-87-5	1,2-Dichloropropane	1000 - 10000	P/vP	P data for this substance is variable and difficult to conclude; however, its identification in monitoring studies in DW and GW indicates it is persistent enough.	vM	exp min. log Doc/Koc = 1.3 (neutral cmpd.)	Т	Carc_1b	DW&G W	7.5	Н; О
Pot. PMT & vPvM	106-93-4	Ethylene dibromide	1000 - 10000	P/vP	est. t1/2 = 20d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	exp min. log Doc/Koc = 0.3 (neutral cmpd.)	Т	Carc_1a Carc_1b Carc_2 Suspected ED	GW	0.4	0
Pot. PMT & vPvM	96-18-4	1,2,3-Trichloropropane	1000 - 10000	P/vP	P data for this substance is variable and difficult to conclude; however, its identification in monitoring studies in DW and GW indicates it is persistent enough.	vM	exp min. log Doc/Koc = 1.9 (neutral cmpd.)	Т	SVHC	GW	3	0
Pot. PMT & vPvM	98-82-8	Isopropylbenzene	1000000 - 10000000	P/vP	Initial evidnce suggests this si not P under aerobic conditions. This substance is observed in monitoring studies, but this could be mainly due to extensive emissions.	vM	exp min. log Doc/Koc = 2.9 (neutral cmpd.)	Т	STOTRE_1	DW&G W	3	Н; О
Pot. PMT & vPvM	91-20-3	Naphthalene	100000 - 1000000	P/vP	Data indicates certain conditions where Naphthalene is persistent, but no definitive conclusion is given based on Nielsen et al. Environ. Sci. Technol., 1995, 30 (1), pp 31–37; further, many natural causes of naphthalene occur	vM	exp min. log Doc/Koc = 2.5 (neutral cmpd.)	Т	Carc_2 STOTRE_1	DW&G W	3	Н; О; Р

PMT & vPvM	CAS	Name	tonnage per annum	Ρ	P rationale	Μ	M rationale	т	T rationale	De- tected in GW or DW	Max conc. μg/L	Study ID
Pot. PMT & vPvM	108-20-3	Diisopropyl ether	1000 - 10000	P/vP	est. t1/2 = 25d, weight-of-evidence (this study) based on all used QSARs and no biodeg. observed in majority of biodegradation screen tests for substance/main transformation products, e.g. 301 D (Ready Biodegradability: Closed Bottle Test)	VM	exp min. log Doc/Koc = 0.6 (neutral cmpd.)	Т	Rep_2	GW	10	0
Pot. PMT & vPvM	75-35-4	1,1-Dichloroethene	10000 - 100000	P/vP	est. t1/2 = 28d, weight-of-evidence based on QSARs and no biodeg. observed in majority of biodegradation screen tests e.g. 301 D (Ready Biodegradability: Closed Bottle Test)	vM	exp min. log Doc/Koc = 1.4 (neutral cmpd.)	Т	Carc_1b Carc_2 STOTRE_1 STOTRE_2	GW	10	0
Pot. PM & vPvM	75-71-8	Dichlorodifluorometha ne	100 - 1000	P/vP	est. t1/2 = 44d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	exp min. log Doc/Koc = 1.0 (neutral cmpd.)	Tscr een	Cramer Class III	GW	7.5	0
Pot. PMT & vPvM	56-23-5	Carbon tetrachloride	1000 - 10000	P/vP	est. t1/2 = 97d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	exp min. log Doc/Koc = 1.9 (neutral cmpd.)	Т	Carc_1b Carc_2 Rep_2 STOTRE_1 STOTRE_2	DW&G W	3	Н; О
Pot. PMT & vPvM	108-90-7	Chlorobenzene	10000 - 100000	P/vP	est. t1/2 = 23d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	exp min. log Doc/Koc = 2.4 (neutral cmpd.)	Т	Carc_1a muta_1b Rep_2 STOTRE 1	GW	7.5	0
Pot. PMT & vPvM	74-87-3	Chloromethane	1000000 - 10000000	P/vP	est. t1/2 = 16d, weight-of-evidence based on QSARs and no biodeg. observed in majority of biodegradation screen tests e.g. 301 D (Ready Biodegradability: Closed Bottle Test)	vM	exp min. log Doc/Koc = 1.1 (neutral cmpd.)	Т	Carc_2 Rep_2 STOTRE_2	GW	10	0
Pot. PMT & vPvM	144-83-2	Sulfapyridine	Intermedi ate Use Only	P/vP	est. t1/2 = 88d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	QSAR min. log Dow/Kow = 0.5 (ionizable cmpd.)	Т	Rep_2 Suspected ED	GW	0.1	Q
Pot. PMT & vPvM	18559- 94-9	Salbutamol	Intermedi ate Use Only	P/vP	est. t1/2 = 13d, weight-of-evidence (this study) based on all used QSARs and no biodeg. observed in majority	vM	QSAR min. log Dow/Kow = -0.6 (ionizable cmpd.)	Т	Suspected ED	GW	0.009	Q

PMT & vPvM	CAS	Name	tonnage per annum	Ρ	P rationale	Μ	M rationale	Т	T rationale	De- tected in GW or DW	Max conc. μg/L	Study ID
					of biodegradation screen tests for substance/main transformation products, e.g. 301 B (Ready Biodegradability: CO2 Evolution Test)							
Pot. PMT & vPvM	50-48-6	Amitryptilline	Intermedi ate Use Only	P/vP	est. t1/2 = 100d, weight-of-evidence based on consistent indications of P across tested QSARs	٧M	exp min. log Doc/Koc = -1.3 (ionizable cmpd.)	Т	Rep_2	DW	0.001	R
Pot. PMT	95-16-9	Benzothiazole	10 - 100	P/vP	est. t1/2 = 20d, weight-of-evidence (this study) based on all used QSARs and no biodeg. observed in majority of biodegradation screen tests for substance/main transformation products, e.g. 301 F (Ready Biodegradability: Manometric Respirometry Test) (1992)	M/v M	exp min. log Dow/Kow = 2.0 M or vM unclear due to data uncertainty (ionizable cmpd.)	Т	STOTRE_2	DW	0.010	S
Pot. PMT & vPvM	111-96-6	Diethylene glycol dimethyl ether	100 - 1000	P/vP	est. t1/2 = 38d, weight-of-evidence (this study) based on all used QSARs and no biodeg. observed in majority of biodegradation screen tests for substance/main transformation products, e.g. 302 B (Inherent biodegradability: Zahn- Wellens/EMPA Test)	vM	exp min. log Dow/Kow = -0.4 (neutral cmpd.)	Т	SVHC	DW	0.2	S
Pot. PM & vPvM	66108- 95-0	lohexol	Intermedi ate Use Only	P/vP	est. t1/2 = 224d, weight-of-evidence based on consistent indications of P across tested QSARs	٧M	QSAR min. log Dow/Kow = -2.5 (neutral cmpd.)	Tscr een	Cramer Class III	DW	11.1	H; S
Pot. PM & vPvM	791-28-6	Triphenyl phosphorus oxide	Intermedi ate Use Only	P/vP	est. t1/2 = 31d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	exp min. log Doc/Koc = 3.0 (neutral cmpd.)	Tscr een	Cramer Class III	DW	0.1	S
Pot. PM & vPvM	1506-02- 1	AHTN	1000 - 10000	P/vP	est. t1/2 = 74d, weight-of-evidence based on consistent indications of P across tested QSARs	М	exp min. log Doc/Koc = 3.4 (neutral cmpd.)	Not T	-	DW	0	Н
Pot. PM & vPvM	74-95-3	Dibromomethane	Intermedi ate Use Only	P/vP	est. t1/2 = 20d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	exp min. log Doc/Koc = 1.3 (neutral cmpd.)	Tscr een	Cramer Class	DW	0.7	Н

PMT & vPvM	CAS	Name	tonnage per annum	Ρ	P rationale	Μ	M rationale	Т	T rationale	De- tected in GW or DW	Max conc. μg/L	Study ID
Pot. PMT & vPvM	541-73-1	Dichlorbenzene, 1,3-	1000 - 10000	P/vP	est. t1/2 = 48d, weight-of-evidence (this study) based on all used QSARs and no biodeg. observed in majority of biodegradation screen tests for substance/main transformation products, e.g. 301 C (Ready Biodegradability: Modified MITI Test (I))	VM	exp min. log Doc/Koc = 2.6 (neutral cmpd.)	Τ	STOTRE_2 Suspected ED	DW	0.1	Н
Pot. PMT & vPvM	98-95-3	Nitrobenzene	Intermedi ate Use Only	P/vP	est. t1/2 = 31d, weight-of-evidence (this study) based on all used QSARs and no biodeg. observed in majority of biodegradation screen tests for substance/main transformation products, e.g. 301 F (Ready Biodegradability: Manometric Respirometry Test)	vM	exp min. log Doc/Koc = 1.7 (neutral cmpd.)	Т	SVHC	DW	100	Н
Pot. PMT	131-57-7	Oxybezone	100 - 1000	P/vP	est. t1/2 = 16d, weight-of-evidence based on consistent indications of P across tested QSARs	М	exp min. log Dow/Kow = 3.6 (neutral cmpd.)	Т	STOTRE_2 Suspected ED	DW	det.	Н
Pot. PMT & vPvM	121-82-4	RDX	1000 - 10000	P/vP	est. t1/2 = 33d, weight-of-evidence based on consistent indications of P across tested QSARs	٧M	exp min. log Dow/Kow = 0.9 (neutral cmpd.)	Т	STOTRE_1 STOTRE_2	DW	1.1	Н
Pot. PM & vPvM	87-61-6	Trichlorobenzene, 1,2,3-	Intermedi ate Use Only	P/vP	est. t1/2 = 88d, weight-of-evidence (this study) based on all used QSARs and no biodeg. observed in majority of biodegradation screen tests for substance/main transformation products, e.g. 301 C (Ready Biodegradability: Modified MITI Test (I))	vM	exp min. log Doc/Koc = 2.9 (neutral cmpd.)	Tscr een	Cramer Class III	DW	0.2	Н
Pot. PMT	120-82-1	Trichlorobenzene, 1,2,4-	Intermedi ate Use Only	P/vP	est. t1/2 = 88d, weight-of-evidence based on consistent indications of P across tested QSARs	М	exp min. log Doc/Koc = 3.4 (neutral cmpd.)	Т	Suspected ED	DW	0.9	Н
Pot. PMT & vPvM	79-00-5	Trichlorethane, 1,1,2-	Intermedi ate Use Only	P/vP	est. t1/2 = 47d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	exp min. log Doc/Koc = 1.7 (neutral cmpd.)	Т	Carc_1b Carc_2	DW	0.1	Н

PMT & vPvM	CAS	Name	tonnage per annum	Ρ	P rationale	Μ	M rationale	т	T rationale	De- tected in GW or DW	Max conc. µg/L	Study ID
Pot. PM & vPvM	78-51-3	(2- butoxyethyl)phosphate	1000 - 10000	P/vP	est. t1/2 = 10d, weight-of-evidence based on QSARs and no biodeg. observed in majority of biodegradation screen tests e.g. 302 C (Inherent Biodegradability: Modified MITI Test (II))	vM	exp min. log Doc/Koc = 2.5 (neutral cmpd.)	Tscr een	Cramer Class III	DW	0.4	Н
Pot. PM & vPvM	85-98-3	1,3- diethyldiphenylurea	100 - 1000	P/vP	est. t1/2 = 31d, weight-of-evidence based on consistent indications of P across tested QSARs	٧M	exp min. log Doc/Koc = 2.5 (neutral cmpd.)	Tscr een	Cramer Class	DW	det.	x
Pot. PM & vPvM	96-76-4	2,4-Di-tertiary- butylphenol	100 - 1000	P/vP	est. t1/2 = 48d, weight-of-evidence (this study) based on all used QSARs and no biodeg. observed in majority of biodegradation screen tests for substance/main transformation products, e.g. 302 C (Inherent Biodegradability: Modified MITI Test (II))	not M	exp min. log Dow/Kow = 4.8 (neutral cmpd.)	Т	STOTRE_2 Suspected ED	DW	det.	x
Pot. PM & vPvM	144689- 24-7	Olmesartan	Intermedi ate Use Only	P/vP	est. t1/2 = 112d, weight-of-evidence based on consistent indications of P across tested QSARs	M/v M	QSAR min. log Dow/Kow = 1.5. M or vM unclear due to data uncertainty (ionizable cmpd.)	Tscr een	Cramer Class III	DW	det.	x
not PMT	1222-05- 5	Galaxolide	1000 - 10000	vP	measured half life = 203 d (soil)	not M	exp min. log Doc/Koc = 4.3 (neutral cmpd.)	Т	Rep_2	DW&G W	23	D; H; Q
not PMT	140-66-9	tert-Octylphenol	10000 - 100000	Р	measured half life = 49 d (fresh water)	not M	exp min. log Doc/Koc = 4.0 (neutral cmpd.)	Т	SVHC	GW	1.8	A; Q
not PMT	80-05-7	Bisphenol A	1000000 - 10000000	not P	inherently biodeg: 302 A (Inherent Biodegradability: Modified SCAS Test)	٧M	exp min. log Doc/Koc = 2.3 (ionizable cmpd.)	Т	SVHC	DW&G W	9.3	A; B; D; H; J; K; Q
not PMT	117-81-7	DEHP	10000 - 100000	Ρ	measured half life = 176 d (soil)	not M	exp min. log Doc/Koc = 5.7 (neutral cmpd.)	Т	SVHC	DW&G W	5.7	N; Q

PMT & vPvM	CAS	Name	tonnage per annum	Ρ	P rationale	Μ	M rationale	т	T rationale	De- tected in GW or DW	Max conc. µg/L	Study ID
not PMT	106-46-7	1,4-Dichlorobenzene	10000 - 100000	not P	readily biodeg: 301 D (Ready Biodegradability: Closed Bottle Test)	vM	exp min. log Doc/Koc = 2.4 (neutral cmpd.)	Т	Carc_2	GW	10	0
not PMT	50-78-2	Acetylsalicylic acid	100 - 1000	not P	est. t1/2 = 7d, and consistency across all tested QSARs	vM	exp min. log Doc/Koc = -5.7 (ionizable cmpd.)	Т	Rep_1a Rep_1b Rep_2 STOTRE_2	GW	0.1	B; S
not PMT	139-13-9	NTA	100 - 1000; 0 - 10	not P	readily biodeg: 301 E (Ready biodegradability: Modified OECD Screening Test)	vM	exp min. log Doc/Koc = 1.4 (ionizable cmpd.)	Т	Carc_2 muta_1b STOTRE_2	GW	det.	Н
not PMT	126-73-8	ТВР	1000 - 10000; 0 - 10	not P	readily biodeg: 301 C (Ready Biodegradability: Modified MITI Test (I))	vM	exp min. log Doc/Koc = 1.9 (neutral cmpd.)	Т	Carc_2 STOTRE_2	DW	0.2	J
not PMT	77-93-0	Triethyl citrate	1000 - 10000; 100 - 1000	not P	readily biodeg: 301 F (Ready Biodegradability: Manometric Respirometry Test)	vM	exp min. log Dow/Kow = 0.7 (neutral cmpd.)	Т	Carc_1b muta_1b	DW	0.1	Н; Ј
not PMT	102-76-1	Triacetin	10000 - 100000	not P	readily biodeg: 301 B (Ready Biodegradability: CO2 Evolution Test)	vM	QSAR min. log Dow/Kow = 0.1 (neutral cmpd.)	Not T	-	DW	det.	E
not PMT	105-60-2	e-caprolactam	1000000 - 10000000	not P	readily biodeg: 301 C (Ready Biodegradability: Modified MITI Test (I))	vM	exp min. log Doc/Koc = 1.8 (neutral cmpd.)	Т	STOTRE_1	DW	det.	F
not PMT	120-18-3	Naphthalenesulfonic acid	1000 - 10000	not P	OECD tests (301B and E) for surrogate imply no persistence. Therefore the substance is assessed not to be persistent. (Berger et al. 2018)	vM	exp min. log Doc/Koc = -5.9 (ionizable cmpd.)	Т	Carc_2	DW	det.	F
not PMT	128-37-0	Butylhydroxytoluene	10000 - 100000	P/vP	est. t1/2 = 53d, weight-of-evidence (this study) based on all used QSARs and no biodeg. observed in majority of biodegradation screen tests for substance/main transformation products, e.g. 301 C (Ready Biodegradability: Modified MITI Test (I))	not M	exp min. log Doc/Koc = 4.4 (neutral cmpd.)	Τ	Carc_1b Carc_2 muta_1b muta_2 Rep_2 STOTRE_2	DW	0.03	К; Н

PMT & vPvM	CAS	Name	tonnage per annum	Ρ	P rationale	Μ	M rationale	т	T rationale	De- tected in GW or DW	Max conc. µg/L	Study ID
not PMT	128-44-9	Saccharine	1000 - 10000	not P	readily biodeg: 310 (Ready Biodegradability - CO2 in Sealed Vessels (Headspace Test)	vM	exp min. log Doc/Koc = -6.0 (single_anion cmpd.)	Т	Carc_1a Carc_1b Carc_2	DW	det.	F
not PMT	129-00-0	Pyrene	Intermedi ate Use Only	P/vP	est. t1/2 = 139d, weight-of-evidence based on consistent indications of P across tested QSARs	not M	exp min. log Doc/Koc = 4.1 (neutral cmpd.)	Т	ecotox	GW	det.	Н
not PMT	25321- 41-9	Dimethylbenzene sulfonic acid	1000 - 10000	not P	Several read-across studies including 301B and D tests imply no persistence. Therefore the substance is assessed not to be persistent. (Berger et al. 2018)	vM	exp min. log Dow/Kow = -6.0 (ionizable cmpd.)	Not T	-	DW	det.	F
not PMT	50-28-2	17b-Estradiol	Intermedi ate Use Only	not P	readily biodeg: 301 B (Ready Biodegradability: CO2 Evolution Test)	Μ	QSAR min. log Dow/Kow = 3.9 (neutral cmpd.)	Т	ecotox Carc_1a Carc_1b Carc_2 Lact Rep_1a Rep_1b Rep_2 STOTRE_1 STOTRE_2 Suspected ED	DW&G W	0.1	D; H
not PMT	58-08-2	Caffeine	100 - 1000	not P	readily biodeg: 301 A (new version) (Ready Biodegradability: DOC Die Away Test)	vM	exp min. log Doc/Koc = 1.0 (neutral cmpd.)	Not T	-	DW&G W	110	A; B; C; D; H; J; L; Q; R
not PMT	69-72-7	Salicylic acid	10000 - 100000	not P	readily biodeg: 301 C (Ready Biodegradability: Modified MITI Test (I))	vM	exp min. log Doc/Koc = -5.7 (ionizable cmpd.)	Т	Rep_2 STOTRE_1	GW	1.2	D; H
not PMT	76-22-2	Camphor	100 - 1000	not P	readily biodeg: 301 F (Ready Biodegradability: Manometric Respirometry Test)	vM	exp min. log Doc/Koc = 2.1 (neutral cmpd.)	Т	muta_2 Rep_1a STOTRE_2	DW	0.02	H; J
not PMT	53-16-7	Estrone	0 - 10; 0 - 10	not P	inherently biodeg: 301 B (Ready Biodegradability: CO2 Evolution Test)	М	exp min. log Dow/Kow = 2.6 (neutral cmpd.)	Т	Carc_1a Carc_1b Carc_2 Lact Rep_1a	GW	0.05	A; D

PMT & vPvM	CAS	Name	tonnage per annum	Р	P rationale	Μ	M rationale	Т	T rationale	De- tected in GW or DW	Max conc. μg/L	Study ID
									Rep_1b Rep_2 Suspected ED			
not PMT	7085-19- 0	Mecoprop	Intermedi ate Use Only	not P	longest measured half life all media = 50 d (sediment)	٧M	exp min. log Dow/Kow = -4.2 (ionizable cmpd.)	Tscr een	Cramer Class III	DW&G W	0.8	A; E
not PMT	63-05-8	Androstenedione	100 - 1000	not P	readily biodeg: 301 B (Ready Biodegradability: CO2 Evolution Test)	Μ	exp min. log Dow/Kow = 2.7 (neutral cmpd.)	Т	Carc_1b Carc_2 Lact Rep_1a Suspected ED	DW&G W	0.1	В; Н
not PMT	131-11-3	Dimethyl phthalate	1000 - 10000; 0 - 10	not P	readily biodeg: 301 E (Ready biodegradability: Modified OECD Screening Test)	٧M	exp min. log Doc/Koc = 1.9 (neutral cmpd.)	Т	Rep_2 Suspected ED	DW	0.5	N
not PMT	84-66-2	Diethyl phthalate	1000 - 10000; 0 - 10	not P	est. t1/2 = 6d, and consistency across all tested QSARs	٧M	exp min. log Doc/Koc = 2.4 (neutral cmpd.)	Т	Rep_2 STOTRE_2 Suspected ED	DW	2.5	N; Q; S
not PMT	84-74-2	Dibutyl phthalate	1000 - 10000	not P	readily biodeg: 301 C (Ready Biodegradability: Modified MITI Test (I))	М	exp min. log Doc/Koc = 3.1 (neutral cmpd.)	т	SVHC	DW	2.7	N
not PMT	85-68-7	Butyl benzyl phthalate	1000 - 10000	not P	inherently biodeg: 302 B (Inherent biodegradability: Zahn- Wellens/EMPA Test)	not M	exp min. log Dow/Kow = 4.8 (neutral cmpd.)	т	SVHC	DW	0.9	N
not PMT	71-43-2	Benzene	1000000 - 10000000	not P	readily biodeg: 301 F (Ready Biodegradability: Manometric Respirometry Test)	vM	exp min. log Doc/Koc = 1.4 (neutral cmpd.)	T	ecotox Carc_1a Carc_1b muta_1a muta_1b STOTRE_1	DW&G W	25.8	H; O; S
not PMT	100-41-4	Ethylbenzene	1000000 - 10000000 ; 0 - 10	not P	inherently biodeg: 302 C (Inherent Biodegradability: Modified MITI Test (II))	vM	exp min. log Doc/Koc = 2.7 (neutral cmpd.)	Т	Carc_2 STOTRE_2	DW&G W	10	Н; О
not PMT	108-88-3	Toluene	1000000 - 10000000	not P	readily biodeg: 301 C (Ready Biodegradability: Modified MITI Test (I))	٧M	exp min. log Doc/Koc = 1.9 (neutral cmpd.)	Т	Rep_1a Rep_2 STOTRE_1 STOTRE_2	DW&G W	63.1	Н; О; Р

PMT & vPvM	CAS	Name	tonnage per annum	Ρ	P rationale	Μ	M rationale	Т	T rationale	De- tected in GW or DW	Max conc. µg/L	Study ID
not PMT	95-63-6	1,2,4- Trimethylbenzene	10000 - 100000	not P	readily biodeg: 301 C (Ready Biodegradability: Modified MITI Test (I))	М	exp min. log Doc/Koc = 3.0 (neutral cmpd.)	Т	STOTRE_1	DW&G W	3	Н; О
not PMT	95-47-6	Total xylenes	100000 - 1000000	not P	readily biodeg: 301 F (Ready Biodegradability: Manometric Respirometry Test)	vM	exp min. log Doc/Koc = 2.7 (neutral cmpd.)	Т	Rep_2	DW&G W	16.5	Н; О
not PMT	98-86-2	Acetophenone	10000 - 100000	not P	readily biodeg: 301 C (Ready Biodegradability: Modified MITI Test (I))	٧M	exp min. log Doc/Koc = 1.5 (neutral cmpd.)	Not T	-	DW	0.5	Η
not PMT	84-65-1	Anthraquinone	1000 - 10000; 0 - 10	not P	readily biodeg: 301 C (Ready Biodegradability: Modified MITI Test (I))	Μ	exp min. log Doc/Koc = 3.2 (neutral cmpd.)	Т	Carc_2	DW	0.1	Η
not PMT	75-09-2	Dichloromethane	100000 - 1000000; 0 - 10	not P	readily biodeg: 301 D (Ready Biodegradability: Closed Bottle Test)	vM	exp min. log Doc/Koc = 0.9 (neutral cmpd.)	Т	Carc_2 Lact muta_1a muta_2 Rep_1a STOTRE_1 STOTRE_2	DW	0.5	H
not PMT	100-42-5	Styrene	1000000 - 10000000 ; 0 - 10; 0 - 10	not P	readily biodeg: 301 D (Ready Biodegradability: Closed Bottle Test)	vM	exp min. log Doc/Koc = 2.1 (neutral cmpd.)	Т	SVHC	DW	46.4	Н
not PMT	107-07-3	2-Chlorethanol	10 - 100	not P	readily biodeg: 302 B (Inherent biodegradability: Zahn- Wellens/EMPA Test),301 F (Ready Biodegradability: Manometric Respirometry Test)	vM	exp min. log Doc/Koc = 0.3 (neutral cmpd.)	Т	Carc_1a muta_1b STOTRE_1	DW	det.	X
not PMT	70-55-3	(4- Methylbenzolsulfonam id)	0 - 10	not P	readily biodeg: 301 D (Ready Biodegradability: Closed Bottle Test)	٧M	QSAR min. log Dow/Kow = 0.6 (neutral cmpd.)	Т	Rep_2	DW	det.	x
no conclusion	103-90-2	Paracetamol	10 - 100	no conc lusio n	est. t1/2 = 11d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	exp min. log Doc/Koc = 0.0 (ionizable cmpd.)	Т	Carc_2 muta_2 STOTRE_1 STOTRE_2	DW&G W	120	B; C; D; H; J; Q; R

PMT & vPvM	CAS	Name	tonnage per annum	Ρ	P rationale	Μ	M rationale	Т	T rationale	De- tected in GW or DW	Max conc. μg/L	Study ID
no conclusion	104-40-5	Nonylphenol	0 - 10	no conc lusio n	est. t1/2 = 13d, weight-of-evidence based on consistent indications of P across tested QSARs	not M	QSAR min. log Dow/Kow = 6.1 (neutral cmpd.)	Т	Rep_2, SVHC Endocrine disrupting properties Article 57f - environment	DW&G W	84	A; D; H; J; K; Q
no conclusion	108-80-5	Cyanuric acid	10000 - 100000	no conc lusio n	est. t1/2 = 20d, found in several water samples in Schulze et al. (2019) and consistent indications of P across tested QSARs	vM	exp min. log Doc/Koc = 1.7 (neutral cmpd.)	Not T	-	DW	det.	F
no conclusion	22204- 53-1	Naproxen	Intermedi ate Use Only	no conc lusio n	est. t1/2 = 12d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	QSAR min. log Dow/Kow = -0.2 (ionizable cmpd.)	т	Carc_2 Lact Rep_1b Rep_2 STOTRE_2	DW&G W	det.	н
no conclusion	532-02-5	Sodium naphthalene-2- sulphonate	0 - 10	no conc lusio n	est. t1/2 = 32d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	QSAR min. log Dow/Kow = -1.5 (single_anion cmpd.)	Tscr een	Cramer Class III	DW	det.	E
no conclusion	57-41-0	Phenytoin	Intermedi ate Use Only	no conc lusio n	est. t1/2 = 43d, weight-of-evidence based on consistent indications of P across tested QSARs	M/v M	QSAR min. log Dow/Kow = 1.1 M or vM unclear due to data uncertainty (ionizable cmpd.)	Т	Carc_1a Carc_1b Carc_2 muta_1b Rep_1a Rep_1b STOTRE_1	DW	0.02	H; K; R
no conclusion	57-68-1	Sulfamethazine	Intermedi ate Use Only	no conc lusio n	est. t1/2 = 83d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	QSAR min. log Dow/Kow = -0.7 (ionizable cmpd.)	Т	Lact Rep_2	GW	0.6	C; D; H; Q
no conclusion	60-80-0	Phenazone	Intermedi ate Use Only	no conc lusio n	est. t1/2 = 24d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	QSAR min. log Dow/Kow = 0.9 (neutral cmpd.)	Not T	-	DW&G W	4	B; D; H; R; S
no conclusion	637-92-3	ETBE	1000000 - 10000000	no conc	est. t1/2 = 29d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	exp min. log Doc/Koc = 0.6 (neutral cmpd.)	Tscr een	Cramer Class	GW	det.	Н

PMT & vPvM	CAS	Name	tonnage per annum	Ρ	P rationale	Μ	M rationale	Т	T rationale	De- tected in GW or DW	Max conc. μg/L	Study ID
				lusio n								
no conclusion	68-35-9	Sulfadiazin	Intermedi ate Use Only	no conc lusio n	est. t1/2 = 66d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	QSAR min. log Dow/Kow = -1.7 (ionizable cmpd.)	Т	Lact Rep_2	GW	0.1	B; H; Q
no conclusion	74-83-9	Bromomethane	Intermedi ate Use Only	no conc lusio n	est. t1/2 = 14d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	exp min. log Doc/Koc = 0.7 (neutral cmpd.)	Т	muta_2 STOTRE_2 Suspected ED	GW	0.4	0
no conclusion	994-05-8	tert-Amyl methyl ether	100000 - 1000000	no conc lusio n	est. t1/2 = 29d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	exp min. log Doc/Koc = 0.7 (neutral cmpd.)	Т	Carc_1b	GW	0.4	0
no conclusion	75-01-4	Vinyl chloride	1000000 - 10000000 ; 0 - 10; 0 - 10	no conc lusio n	est. t1/2 = 17d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	exp min. log Doc/Koc = 0.8 (neutral cmpd.)	Т	Carc_1a muta_2	DW&G W	7.5	Н; О
no conclusion	75-00-3	Chloroethane	100 - 1000	no conc lusio n	est. t1/2 = 17d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	exp min. log Doc/Koc = 0.8 (neutral cmpd.)	Т	Carc_2	GW	3	0
no conclusion	156-60-5	trans-1,2- Dichloroethene	100 - 1000	no conc lusio n	est. t1/2 = 28d, weight-of-evidence based on consistent indications of P across tested QSARs	M/v M	QSAR min. log Dow/Kow = 2.0, M or vM unclear due to data uncertainty (neutral cmpd.)	Т	STOTRE_2	GW	10	0
no conclusion	83905- 01-5	Azithromycin	Intermedi ate Use Only	no conc lusio n	est. t1/2 = 1 469d, weight-of- evidence based on consistent indications of P across tested QSARs	vM	QSAR min. log Dow/Kow = -0.5 (ionizable cmpd.)	Т	STOTRE_2	DW	det.	X
no conclusion	139481- 59-7	Candesartan	Intermedi ate Use Only	no conc	est. t1/2 = 48d, weight-of-evidence based on consistent indications of P across tested QSARs	vM	QSAR min. log Dow/Kow = -0.6 (ionizable cmpd.)	Т	Rep_2	DW	det.	X

PMT &	CAS	Name	tonnage	Р	P rationale	Μ	M rationale	Т	T rationale	De-	Max	Study
vPvM			per							tected	conc.	ID
			annum							in GW	μg/L	
										or DW		
				lusio								
				n								

D False Negatives in PMT/vPvM assessment

The identity and publicly available REACH registered tonnage band of these false negatives is presented in Table D1 and D2. As evident, the majority have registered tonnages 1000 tonnes per year or greater, the exceptions are substances that are also used as pharmaceuticals (acetylsalicylic acid, DTPA and caffeine at 100-1000 tpa, estrone at 0-10 tpa, and 17b-Estradiol as an intermediate) or plant protection product (Mecoprop), which have additional emission sources through industrial use. Further, it may be the case that an additional local source of some of the phthalate plasticizers in Table D1 may be plastic piping or from plastic bottles they may have been stored in (Amiridou and Voutsa, 2011).

Table D1List of false negatives for the P criterion.

List of those REACH registered substances presented in Table 1 detected in drinking water and/or groundwater which do not fulfil the P criterion with the publicly available REACH registered tonnage band.

CAS	Name	Rational for Not P	tonnage per annum
80-05-7	Bisphenol A	inherently biodeg: 302 A (Inherent Biodegradability: Modified SCAS Test)	1000000 - 10000000
106-46-7	1,4-Dichlorobenzene	readily biodeg: 301 D (Ready Biodegradability: Closed Bottle Test)	10000 - 100000
50-78-2	Acetylsalicylic acid	est. t1/2 = 7d, and consistency across all tested QSARs	100 - 1000
139-13-9	NTA	readily biodeg: 301 E (Ready biodegradability: Modified OECD Screening Test)	100 - 1000
126-73-8	ТВР	readily biodeg: 301 C (Ready Biodegradability: Modified MITI Test (I))	1000 - 10000
77-93-0	Triethyl citrate	readily biodeg: 301 F (Ready Biodegradability: Manometric Respirometry Test)	1000 - 10000
102-76-1	Triacetin	readily biodeg: 301 B (Ready Biodegradability: CO2 Evolution Test)	10000 - 100000
105-60-2	e-caprolactam	readily biodeg: 301 C (Ready Biodegradability: Modified MITI Test (I))	1000000 - 10000000
120-18-3	Naphthalenesulfonic acid	OECD tests (301B and E) for surrogate imply no persistence. Therefore the substance is assessed not to be persistent. (Berger et al. 2018)	1000 - 10000
128-44-9	Saccharine	readily biodeg: 310 (Ready Biodegradability - CO2 in Sealed Vessels (Headspace Test)	1000 - 10000
25321-41-9	Dimethylbenzene sulfonic acid	Several read-across studies including 301B and D tests imply no	1000 - 10000

ХХ

TEXTE	The criteria for identifying PMT/vPvM substant	ces under EU Regulation REACH (EC) No 1907/2006

CAS	Name	Rational for Not P	tonnage per annum
		persistence. Therefore the substance is assessed not to be persistent. (Berger et al. 2018)	
50-28-2	17b-Estradiol	readily biodeg: 301 B (Ready Biodegradability: CO2 Evolution Test)	Intermediate Use Only
58-08-2	Caffeine	readily biodeg: 301 A (new version) (Ready Biodegradability: DOC Die Away Test)	100 - 1000
69-72-7	Salicylic acid	readily biodeg: 301 C (Ready Biodegradability: Modified MITI Test (I))	10000 - 100000
76-22-2	Camphor	readily biodeg: 301 F (Ready Biodegradability: Manometric Respirometry Test)	100 - 1000
53-16-7	Estrone	inherently biodeg: 301 B (Ready Biodegradability: CO2 Evolution Test)	0 - 10
7085-19-0	Mecoprop	longest measured half life all media = 50 d (sediment)	Intermediate Use Only
63-05-8	Androstenedione	readily biodeg: 301 B (Ready Biodegradability: CO2 Evolution Test)	100 - 1000
131-11-3	Dimethyl phthalate	readily biodeg: 301 E (Ready biodegradability: Modified OECD Screening Test)	1000 - 10000
84-66-2	Diethyl phthalate	est. t1/2 = 6d, and consistency across all tested QSARs	1000 - 10000
84-74-2	Dibutyl phthalate	readily biodeg: 301 C (Ready Biodegradability: Modified MITI Test (I))	1000 - 10000
85-68-7	Butyl benzyl phthalate	inherently biodeg: 302 B (Inherent biodegradability: Zahn- Wellens/EMPA Test)	1000 - 10000
71-43-2	Benzene	readily biodeg: 301 F (Ready Biodegradability: Manometric Respirometry Test)	1000000 - 10000000
100-41-4	Ethylbenzene	inherently biodeg: 302 C (Inherent Biodegradability: Modified MITI Test (II))	1000000 - 10000000
108-88-3	Toluene	readily biodeg: 301 C (Ready Biodegradability: Modified MITI Test (I))	1000000 - 10000000
95-63-6	1,2,4-Trimethylbenzene	readily biodeg: 301 C (Ready Biodegradability: Modified MITI Test (I))	10000 - 100000

ХХ

TEXTE	The criteria for identifying PMT/vPvM substan	ces under EU Regulation REACH (EC) No 1907/2006

CAS	Name	Rational for Not P	tonnage per annum
95-47-6	Total xylenes	readily biodeg: 301 F (Ready Biodegradability: Manometric Respirometry Test)	100000 - 1000000
98-86-2	Acetophenone	readily biodeg: 301 C (Ready Biodegradability: Modified MITI Test (I))	10000 - 100000
84-65-1	Anthraquinone	readily biodeg: 301 C (Ready Biodegradability: Modified MITI Test (I))	1000 - 10000
75-09-2	Dichloromethane	readily biodeg: 301 D (Ready Biodegradability: Closed Bottle Test)	100000 - 1000000
100-42-5	Styrene	readily biodeg: 301 D (Ready Biodegradability: Closed Bottle Test)	1000000 - 10000000
107-07-3	2-Chlorethanol	readily biodeg: 302 B (Inherent biodegradability: Zahn- Wellens/EMPA Test),301 F (Ready Biodegradability: Manometric Respirometry Test)	10 - 100
70-55-3	4-Methylbenzolsulfonamide	readily biodeg: 301 D (Ready Biodegradability: Closed Bottle Test)	0 - 10

Table D2List of false negatives for the M criterion.

List of those REACH registered substances presented in Table 1 detected in drinking water and/or groundwater which do not Fulfil the M criterion with the publically available REACH registered tonnage band.

CAS	Name	Rational for Not M	tonnage per annum
1222-05-5	Galaxolide	exp min. log Doc/Koc = 4.3	1000 - 10000
128-37-0	Butylhydroxytoluene	exp min. log Doc/Koc = 4.4	10000 - 100000
129-00-0	Pyrene	exp min. log Doc/Koc = 4.1	Intermediate Use Only*
140-66-9	tert-Octylphenol	exp min. log Doc/Koc = 4.0	10000 - 100000
117-81-7	DEHP	exp min. log Doc/Koc = 5.7	10000 - 100000
104-40-5	Nonylphenol	QSAR min. log Dow/Kow = 6.1 (neutral)	0 - 10
96-76-4	2,4-Di-tertiary- butylphenol	exp min. log Dow/Kow = 4.8 (neutral)	100 - 1000
85-68-7	Butyl benzyl phthalate	exp min. log Dow/Kow = 4.8 (neutral)	1000 - 10000

*pyrene is also produced by combustion processes (e.g. diesel combustion), and could transport in water via soot particles