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Abstract: Environmental impacts on biogenic emissions of volatile organic compounds (VOCs)

This review summarizes the current knowledge about functions, drivers and impacts of biogenic
VOCs. A particular focus is put on influencing factors other than direct temperature and
radiation, which are known to be positively correlated with emissions and which are
conventionally used for modelling the release of VOCs. Reactive air pollutants, drought stress
and interaction with insects and diseases have been identified as major additional driving forces.
However, none of these are currently considered in regional emission inventories. Nevertheless,
first attempts have been made to implement drought stress as a linear relation to relative
available soil water, disregarding differences in species and plant types as well as shifting
compound composition. In addition, it is investigated how the existing uncertainty in
determining biogenic emissions is influencing the estimation of air quality and regional climate.
However, literature information on this is rudimentary and inconclusive.

Kurzbeschreibung: Einflussfaktoren auf biogene Emissionen volatiler organischer
Kohlenwasserstoffe (VOC)

Die vorliegende Literaturstudie fasst den Stand des Wissens iiber die Funktionen, Triebkrafte,
und Auswirkungen von biogenen VOCs zusammen. Insbesondere wird untersucht, welche
Einfliisse zuséatzlich zu Temperatur und Strahlung - welche seit langem bekannt sind und in
Modellen abgebildet werden kénnen - als bedeutsam angesehen werden. Dies sind vor allem ein
direktes Einwirken von Luftschadstoffen und Trockenheit, sowie indirekte Faktoren wie das
Auftreten von Insekten. Von allen diesen Einfliissen wird erwartet, dass sie sich im Rahmen des
Klimawandels und der Luftreinhaltepolitik &ndern. Allerdings wird keine dieser Triebkrafte in
regionalen Emissionsabschatzungen beriicksichtigt. Existierende Ansétze, die Wirkung des
Trockenstresses in Modellen abzubilden vernachlassigen artspezifische Unterschiede und
Verdanderungen in der Zusammensetzung der Emissionen. Zusatzlich wird untersucht, inwiefern
sich die existierenden Unsicherheiten bei der Bestimmung biogener Emissionen auf die
Abschatzung der Luftqualitit und des regionalen Klimas auswirken. Entsprechende
Informationen aus der Literatur sind jedoch kaum verfiligbar.
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Summary

The aim of this report is to summarize the state of the art about emission of biogenic volatile
organic compounds (BVOCs), their importance for the environment, and the impacts that control
them. Focus is on reactions of living plants in terrestrial ecosystems. BVOCs are known to
contribute to air chemistry processes that determine the formation of ozone and particles
(aerosols) and thus influence air quality as well as the climate system. The mechanistic
description of BVOC emission is needed in order to improve air chemistry and climate modelling
but processes are heavily simplified regarding controlling influences and compound
diversification. Therefore the issue of uncertainty needs to be addressed raising the question if
simplifications are still suitable for providing highly resolved emission amounts as needed for
climate change scenario analysis with regional and global models.

The environmental importance of BVOCs can be distinguished into three topics: Their impact on
aerosol formation, the reactions with nitrous oxide and radicals which influence the
concentration of ozone, and the biological functions such as protection and signaling. Regarding
aerosol, the presence of highly reactive compounds such as isoprene is only slightly favoring
aerosol yield or even tends to have a decreasing effect, while aerosol formation is enhanced in
the presence of other compounds such as mono- or sesquiterpenes. In contrast, the importance
of isoprene for ozone formation is higher than that of other terpenoids. Besides the reactivity of
the compound and the availability of nitrous oxides as reaction partner, recent investigations
show that positive feedbacks exist between biogenic and anthropogenic VOCs for aerosol as well
as ozone formation. This cannot easily be represented by models yet. Regarding biological
functions, various protective effects of terpenoids have been readily described. They can
stabilize membranes and detoxify oxidative substances thus increasing the resistance of the
photosynthetic apparatus against aggressive substances such as ozone. However, production
costs are high so that a positive net-effect on carbon balance could not always be shown.
Without doubt, BVOCs play an important role for signal transfer between leaves, individual
plants, as well as between plants and insects. They repel herbivores and parasites but attract the
enemies of these organisms, thus contributing to numerous interactions within the ecosystem.

Impacts on BVOC emissions are numerous with direct and indirect influences on temperature
and radiation being the most important as well as the ones that are best described. Two model
approaches have been developed that differ in their relation to photosynthesis. CO; air
concentration and drought are known to also impact BVOC emission directly and indirectly (by
affecting the production of precursor compounds as well as the leaf area), but much less is
known about the nature of this relationship. For representing the impact of these two influences,
(almost) only very simplified empirical relations are available. These suffice to represent specific
case studies but are prone to large errors when applied generally. In particular considering
drought impacts is cumbersome since mild stress is not affecting or even increasing emissions,
while prolonged and intensive stress leads to substantial emission reductions. This (in relation
to COy) fast response pattern is difficult to establish in dependence on spatially varying soil- and
vegetation.

There are hardly any modelling approaches for considering other potentially important impacts
(nutrients, air quality, and disturbances) although it seems a ubiquitous feature of BVOCs to be
sensitive to any kind of stress. Emissions are increased when ozone degrades membranes on
subcellular levels as well as in response to damages that are due to hailstorm or insect attacks of
any kind. It should be noted that stress induced emissions mostly consist of non-terpenoids.
Thus, accounting for stress responses not only changes the quantity but also the quality, resp.
the mixture of the emission events. Considering stress-related responses is a major challenge for
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the future, in particular since stress events are supposed to increase in intensity as well as
frequency under climate change conditions. Therefore, a realistic representation of non-
terpenoids without considering this response type seems to be impossible.

The emission of terpenoids, in particular isoprene, is simulated by regional and global emission
models, which are prone with high uncertainties. These result from lumping species-specific
plant properties into inflexible vegetation types, the interaction between direct and indirect
impacts such as leaf biomass change and shift of vegetation types, and the simplified
representation of dynamically changing environmental conditions such as CO; and drought. In
particular the representation of drought requires knowledge of soil conditions that is often not
sufficiently available. Depending on whether indirect effects are considered and how CO; and
drought impacts have been implemented, scenarios of how BVOC emissions develop in future
vary widely not only in amount but also in direction.

10
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Zusammenfassung

Das Ziel dieser Arbeit ist es, den Stand des Wissens iiber die Emission von natiirlichen
Kohlenwasserstoffen zusammen zu tragen, und ihre Bedeutung fiir die Umwelt sowie die sie
beeinflussenden Faktoren zu beschreiben. Dabei liegt der Focus auf den Reaktionen von
lebenden Pflanzen in terrestrischen Okosystemen. Von diesen sogenannten biogenen volatilen
organischen Komponenten (BVOCs) ist bekannt, dass sie an luftchemischen Prozessen beteiligt
sind, die die Ozon- und Partikelbildung wesentlich bestimmen, und damit die Luftqualitdt und
das Klimasystem beeinflussen. Bei ihrer Berticksichtigung im Rahmen von Luftchemie- und
Klimamodellierung werden stark vereinfachte Annahmen hinsichtlich Emissionsmenge und
Zusammensetzung gemacht. Es ist also die Frage, wie grof? die Unsicherheiten sind, die sich aus
diesen Vereinfachungen ergeben, und wie stark sie sich auf Szenarioanalysen auswirken.

Die Bedeutung der BVOCs kann in drei Bereiche gegliedert werden: Ihre Wirkung auf die
Partikelbildung, die Reaktionen mit Stickstoffoxiden und Radikalen, die die Ozonkonzentration
beeinflussen, und die Schutz- und Signalfunktionen, die sie fiir die Pflanzenwelt ausiiben.
Grundsatzlich wird die Partikelbildung durch hoch reaktive Komponenten wie das Isopren nur
wenig gefordert oder sogar gedampft, wahrend die Emission weniger reaktiver Substanzen wie
Mono- und Sesquiterpene sie eher fordern. Umgekehrt, steigt die Bedeutung der BVOC fiir die
Ozonbildung mit der Reaktivitat - ist also fiir [sopren hoher als fiir die meisten anderen
Terpenoide. Neuere Untersuchungen zeigen, dass neben der Reaktivitit der Komponente und
ihrem Mengenverhdltnis zu den Stickstoffoxiden in der Luft auch Wechselwirkungen zwischen
anthropogenen und biogenen Kohlenwasserstoffen sowohl auf die Partikel als auch auf die
Ozonbildung verstarkend wirken. Diese Wechselwirkungen kénnen bisher nur unvollstandig in
Modellen berticksichtigt werden. Bei den biologischen Funktionen sind verschiedene
Schutzeffekte von Terpenoiden beschrieben worden. Sie kdnnen eine Stabilisierung von
Membranen bewirken und haben antioxidative Wirkungen, die vor allem die Empfindlichkeit
des Photosynthese-Apparates gegeniiber aggressiven Substanzen wie Ozon vermindern.
Allerdings sind die Kosten der Produktion von BVOCs oft hoch, so dass eine positive Netto-
Wirkung auf die Kohlenstoffbilanz nicht immer eindeutig nachgewiesen werden kann.
Unbestritten ist die Bedeutung von BVOCs bei der Signaliibermittlung zwischen Pflanzenteilen,
Einzelpflanzen sowie zwischen Pflanzen und Insekten. BVOC Emissionen wirken abwehrend auf
Parasiten und Herbivoren, locken aber Feinde dieser Organismen an. Sie tragen daher
mafdgeblich zum Zusammenwirken von Okosystemen bei.

Von den Umweltbedingungen, die die Emission von BVOCs bestimmen, kénnen sowohl
kurzfristige als auch langfristige Wirkungen von Temperatur und Strahlung relativ gut
beschrieben werden. Dafiir werden zwei unterschiedliche Modellansatze verwendet, die sich in
der Art ihrer Verkniipfung mit der Photosynthese unterscheiden. Uber den Einfluss des CO:
Gehaltes der Luft und von Trockenheit, die beide sowohl direkte als auch indirekte Wirkungen
(Uber die Produktion von Vorldufersubstanzen und die Variation der Blattflache) auf die
Emission haben, ist weniger bekannt. Fiir die direkten Wirkungen dieser beiden Einfliisse
werden bisher (fast) nur stark vereinfachte empirische Funktionen eingesetzt, mit denen sich
zwar Anpassungen an spezifische Fallstudien erreichen lassen, eine allgemeine Anwendung aber
mit hohen Fehlern behaftet ist. Insbesondere die Beriicksichtigung von Folgen einer
verminderten Wasserverfiigbarkeit stellt eine Herausforderung dar, da Trockenheit die
Emissionen bei mildem Stress nicht vermindert sondern eventuell sogar erhoht, wahrend
langere und intensive Trockenheit zu gravierenden Emissionsreduktionen fiihrt. Es ist daher
notwendig, den (relativ zu COz) schnellen Wechsel in Abhangigkeit von raumlich stark
variierenden Boden- und Vegetationsbedingungen darzustellen.
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Fiir die Abbildung weiterer Umweltbedingungen (Nahrstoffe, Luftqualitat, Storungen) sind
bisher kaum Modellansatze beschrieben, obwohl kein Zweifel daran besteht, dass
verschiedenste Stresseinfliisse BVOC Emissionen provozieren oder erhéhen kénnen. Dies
betrifft sowohl die zersetzende Wirkung von Ozon auf subzellularer Ebene wie auch die
Verletzungen die durch Wind, Hagel, kauende oder stechende Insekten hervorgerufen werden.
Allerdings ist zu berticksichtigen, dass hierdurch vor allem Nicht-Terpenoide induziert werden
und dadurch also nicht nur die Intensitdt sondern auch die Mischung der Emissionen verandert
wird. Die Abbildung solcher induzierter Emissionen wird als eine Hauptherausforderung
gesehen, insbesondere unter dem Aspekt einer durch globale Verdnderungen méglicherweise
zunehmenden Storungsintensitiat und -frequenz. Ohne eine Beriicksichtigung dieses Einflusses
erscheint allerdings eine realistische Abbildung der Emission von Nicht-Terpenoiden unmdglich.

Die Emission von Terpenoiden, insbesondere Isopren, wird in regionalen und globalen
Simulationen abgeschitzt, die allerdings mit grofen Unsicherheiten behaftet sind. Diese
resultieren vor allem aus der Zusammenfassung von Arten in grob klassifizierte
Vegetationstypen, der Wechselwirkung mit indirekten Einfliissen wie der Veranderung von
Blattbiomasse oder einem Wechsel der Vegetationsart, und aus der vereinfachten Abbildung von
sich dynamisch verdandernden Umweltbedingungen, insbesondere CO, und Trockenheit. Gerade
die Abbildung der Trockenheit erfordert die Beriicksichtigung von Bodeneigenschaften, die
haufig nur unzureichend bekannt sind und zudem horizontal stark variieren. Je nachdem ob und
wie indirekte Entwicklungen berticksichtigt werden und wie stark der CO, und
Trockenheitseinfluss gewertet wird, unterscheiden sich Szenario-analysen liber die zukiinftigen
Entwicklungen der BVOC Emission nicht nur in der Menge sondern auch im Vorzeichen.

12
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1 Background

Besides reactive nitrogen oxides, VOCs are important precursors for the formation of
tropospheric ozone and secondary aerosols. Excessively high ozone concentrations are
representing a considerable threat to human health, causing yield losses in agriculture and
forestry, and reduce carbon sequestration as well as other ecosystem services. Secondary
aerosols or fine particles are also causing pulmonary diseases and are important cloud
condensation nuclei.

In order to reduce health risks and environmental decline, precursors of air pollutants should be
diminished. Since these are produced and transported across national boundaries, international
agreements are necessary, such as the Convention on Long-Range Transboundary Air Pollution
forged under the umbrella of the UN Economic Commission for Europe (UN ECE) in 1979. Every
such commitment is bound to be founded on scientific evidence as comprehensive as possible.

A considerable share of VOCs originates from biogenic emissions (BVOCs), even in densely
populated regions such as Central Europe. In addition, the reactivity (or ozone forming
potential) of many BVOCs is much higher than the usual blend of anthropogenic VOCs (AVOCs).
Therefore, in order to evaluate the most efficient air pollution reduction strategies, it is
important to know the quantity and composition of BVOC emissions.

BVOC emissions have been studied since the late 1980's and relationships between some main
compounds and environmental conditions have been quantified for many plant species.
However, a growing body of evidence indicates that other drivers than temperature and
radiation exist that cannot be neglected. These drivers as well as the compound variability need
to be quantified in order to be used as input for coupled air chemistry transport models (CTMs)
which can then calculate air quality from emissions and meteorology data.

13
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2 Objectives

This literature review aims to summarize the state of the art regarding function, emission, and
impact of biogenic VOCs. Special interest is put on environmental conditions that affect BVOC
emissions and composition but are not or not sufficiently considered in conventional air
chemistry transport models. These models are important tools to estimate air quality
development under scenarios of climate change or air pollution control. Therefore, it is highly
important to incorporate any mechanism that is sensitive to one or both kinds of scenarios and
that has the potential to significantly alter air pollutant concentrations. Scenario calculations are
needed to develop efficient air pollution mitigation strategies on national and international level.

Furthermore, this study should help to interpret measurement results that are not easily
explained by current knowledge. For example, ozone concentration may be different in years of
similar temperature development, indicating that temperature may not be the major driver
under all circumstances. Results will be provided to working groups of the Long-Range
Transboundary Air Pollution Convention.

14



TEXTE Environmental impacts on biogenic emissions of volatile organic compounds (VOCs) — Final report/Interim
report/Executive summary

3 Literature Basis

The study is mostly based on literature published in international peer-reviewed journals that
has been collected from data repositories of publishers (ScienceDirect (Elsevier), SpringerLink,
Wiley Online Library) and other organizations (Scopus, Clarivate Analytics (formerly Thomson
Reuter), Mendeley, ResearchGate). Additional data sources are book chapters and theses since
they occasionally include complementary data sources not (yet) published or conclusions from
literature summaries that are valuable for this analysis. The literature research has been done
with a special emphasize on temperate regions, i.e. Central Europe, The United States of America
and (to a lesser extent) East Asia (i.e. China). Occasionally, additional areas such as the Amazon
and the Mediterranean region have been included since some mechanisms have been
demonstrated particularly in hotter environments but are - or may be under future conditions -
relevant for temperate regions too.

Overall 2224 peer-reviewed papers and 44 other publications related to BVOC emission and
chemistry, published between 1957 and 2018 (see Figure 1), were evaluated for this report.
These papers were derived from almost 300 journals, the first three contributing 325 (15 %,
'Atmosphere Environment', 224 (10 %, from 'Atmospheric Chemistry and Physics') and 176 (8
%, 'Journal of Geophysical Research') publications. From these, 751 publications were directly
used for the review.

Figure 1: Number of publications with BVOC relation, considered in this review
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In addition to the reference list given in the end of this report, all cited literature is provided in
an EndNote compatible (RIS formatted) literature data base which also includes abstracts, DOI
numbers and web-URLs.
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4 Experimental Basis

Keyword: BVOC measurements

Measurements of BVOC emissions go back until 1957 (Sanadze 1957) but have usually been
conducted by indirect techniques and are analyzed off-line with labor-intensive methods. These
resulted in disjoint results and were generally restricted to only a few compounds. Since the end
of the millennium, new instruments became available that allowed near-continuous
measurements of several compounds combined with on-line spectroscopy analysis (De Gouw et
al. 1999; Fall et al. 1999). An overview about the methodology of biogenic emission
measurements is given in Ortega and Helmig (2008) and Materic et al. (2015).

The majority of measurements available today are from chamber measurements that cover soil
samples, small plants or parts of trees, i.e. branches. They may be carried out in the field where
conditions are fully or partly ambient (e.g. Amin et al. 2013; Bourtsoukidis et al. 2014a;
Bourtsoukidis et al. 2014c; Eller et al. 2016; Genard-Zielinski et al. 2015; Helmig et al. 2013;
Kajos et al. 2013; Kivimdenpaa et al. 2013; Valolahti et al. 2015) but are more frequent in
controlled environments such as a greenhouse or laboratory. Such measurements are particular
useful for estimating emissions under standard temperature and radiation conditions (emission
factors) that can be used as input for models. Thus, determining these emission factors
comprises the majority of emission measurements today.

Controlled experimental studies also serve to observe emission responses under various
environmental gradients and stressors such as drought (e.g. Bamberger et al. 2017; Dani et al.
2014b; Loreto et al. 2001a; Liipke et al. 2017b), heat (e.g. Behnke et al. 2007; Copolovici et al.
2015; Kleistet al. 2012; Velikova et al. 2006), light quality (e.g. Arena et al. 2016; Kegge et al.
2013; Laffineur et al. 2013; Pallozzi et al. 2013b), herbivory (e.g. Copolovici et al. 2011; Faiola et
al. 2015; Litvak and Monson 1998; Prieme et al. 2000), nutrition (e.g. Harley et al. 1994; Hu et al.
2018; Litvak et al. 1996; Muzika et al. 1989), CO, concentration (e.g. Constable et al. 1999b;
Kreuzwieser et al. 2006; Monson et al. 1991; Rosenstiel et al. 2003; Staudt et al. 2001), UV
radiation (e.g. Guidolotti et al. 2016; Pallozzi et al. 2013a; Tiiva et al. 2007a), wounding (e.g.
Brilli et al. 2011; Kanagendran et al. 2018b; Portillo-Estrada et al. 2017; Rinnan et al. 2013), salt
stress (e.g Loreto and Delfine 2000; Teuber et al. 2008), or ozone air exposure (e.g. Cojocariu et
al. 2005; Fares et al. 2010; Llusia et al. 2002; Loreto et al. 2004; Pellegrini et al. 2012; Tani et al.
2017).

Emission determination in open environments is less frequent and long-term measurements
that provide seasonal or even inter-annual information are exceptionally rare. An overview of
ecosystem-scale isoprene flux data until 2010/2011 has been provided by Unger et al. (2013),
which is reproduced in Table 1. A compilation of measurements in tropical sites for the same
period is available from Alves et al. (2016). Further studies on grasslands that concentrate on
methanol emissions are listed in Wohlfahrt et al. (2015), which cover sites in Switzerland,
Austria and Sweden (Brunner et al. 2007; Holst et al. 2010; Hortnagl et al. 2011). Field
campaigns determining BVOC emissions from more recent publications are listed in Table 2.

In addition, remote sensing methodology based on aircrafts (e.g. Davis et al. 1994; Greenberg et
al. 2014; Gu et al. 2017; Wiedinmyer et al. 2005; Yu et al. 2017) or satellites is increasingly
applied. The latter usually serves to determine the concentration of formaldehyde, which is
indicative for BVOC emissions (e.g. Abbot et al. 2003; Barkley et al. 2009; Barkley et al. 2013;
Foster et al. 2014; Han et al. 2013; Marais et al. 2012; Palmer et al. 2006; Stavrakou et al. 2018).
Very recently, a new satellite-based methodology has been put forward that aims to directly
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estimate BVOC emission activity from light use efficiency that can be derived from
photochemical reflectance (Filella et al. 2018).

Overall, BVOC emission fluxes have been measured at a range of ecosystem types and regions. A
focus has been put on measurements in tropical forests since these are the main contributors for
isoprene emissions globally. Despite the efforts at a well-equipped site in Finland, boreal forests
are less well investigated although they are assumed to dominate the world's budget of
monoterpene emissions. However, a closer look also reveals knowledge gaps that occur due to
differences between ecosystems of the same type. For example forests of the same type
generally don't have the same species composition so that the response of African rainforests
might be different from those in South America or Malaysia. The same is valid for temperate
ecosystems that include many high-isoprene emitters in the US (many observations) but hardly
any species of this emitter type in Central Europe (few observations).

Another major deficit is the generally short period of observation, concentrating in one or two
years. Since BVOC emissions very much depend on the previous weather conditions as well as
the general plant health and development state, the extrapolation from a short campaign up to
the full seasonal cycle throughout the years is very questionable. Recognizing the scarcity of
long-term emission data from the field, Rinne et al. (2016) concluded that a ‘reliable network of
observations’ that is equipped with continuous free-air measurement techniques is urgently
needed.

TextBox: Location of BVOC Measurements

Interdisciplinary BVOC measurement campaigns have been conducted mainly in areas where high
isoprene and monoterpene emissions had been expected that are likely to influence global air
chemistry. These are in particular boreal forests (Finland, Canada), tropical areas (Brazil, China)
and the southeast United States. In addition, selected ecosystems have been investigated in order
to determine the potential impacts of expected climate and land-use changes. These are in
particular the Mediterranean area (ltaly, France) and plantation forests (Belgium, China, and USA).
In Germany, integrated measurements were established for the main forest ecosystems with
dominating species pine (Hartheimer Wald, 1998-1999), spruce (Waldstein, 2001-2002), and
mixed beech (Research Centre Jilich, ECHO 2002-2003). Smaller campaigns were carried out for
agricultural sites (POPCORN, 1994; CARBOZALF, 2014-2016). In addition, measurements were
conducted in few urban areas (Stadtwald Frankfurt, 1995; BAERLIN campaign, 2014; Essen, 2012
(Wagner and Kuttler 2014)) and at other particular places (Taunus (Bourtsoukidis et al. 2014c);
Ozone fumigation site Kranzberger Forst (Cojocariu et al. 2005)).
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Table 1: Description of field campaigns determining above-canopy isoprene fluxes, collected
throughout 1995-2010 across a wide range of ecosystem types, regions and
seasons

Site Ecosystem Period Location Reference
Belgium Temperate mixed 08/2009 50°N, 6° E (Laffineur et al. 2011)
06-08/2010-2011 (Laffineur et al. 2012)
Brazil, Manaus Tropical rainforest 07/2001, 2.35°S, 60°W, (Kuhn et al. 2007)
09/2004 2.6°S, 60°W (Karl et al. 2007)
Brazil, Santarem | Tropical rainforest 07/2000 2.9°S, 55°W (Rinne et al. 2002)
04/2001 (Miiller et al. 2008)
Canada Boreal coniferous 07/1994 54° N, 105°W (Pattey et al. 1999)
09/1994
China Plantation (rubber) | 02-03/2002 21°N, 101° E (Baker et al. 2005)
07/2002
Congo Tropical rainforest 03/1996 2°N, 16° E (Greenberg et al. 1999)
Savanna 11/1996 2°N, 16° E
11/1996 4°N, 18° E
Costa Rica Tropical lowland 10/1999 10° N, 84°W (Geron et al. 2002)
Tropical rainforest 03-04/2003 (Karl et al. 2004)
Finland Boreal coniferous 08/2001 61°N, 24°E (Spirig et al. 2004)
10-10/2010-11 (Hakola et al. 2012)
Germany Agriculture (maize) | 08/1994 53°N, 11°E (Koppmann et al. 1998;
Wedel et al. 1998)
Germany Urban forest 08/1995 50°N, 8.4°E (Steinbrecher et al.
2000)
Germany Temperate 07/2002-2003 50°N, 6° E (Spirig et al. 2005)
deciduous
Germany Temperate 04/1998 48°N,7.4°E (Komenda and
coniferous 08/1999 Koppmann 2002)
Germany Temperate 07/2001-2002 50°N, 11°E (Graus et al. 2006;
coniferous Plewka et al. 2006)
Italy Mediterranean 06/2007 41° N, 12° E (Davison et al. 2009)
shrubland
Malaysia, Tropical rainforest 11/2003 3°N, 102° E (Saito et al. 2008)
Borneo 04-07/2008 4.6°N, 118°E (Langford et al. 2010)
Mongolia Mountainous 06—-08/2002, 44° N, 116° E (Bai et al. 2006)
grassland 09/2002
South Africa Savanna 02/2001 25°S,31°E (Harley et al. 2003)
Sweden Plantation (willow) | 07/2001 58°N, 12°E (Olofsson et al. 2005)
US, California Mediterranean 06/1999 39°N, 120°W (Schade and Goldstein
coniferous 2001)
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Site Ecosystem
us, Temperate
Massachusetts deciduous
US, Michigan Temperate

deciduous
US, Wisconsin Temperate

deciduous

Period Location
06-08/1995 45° N, 72°W
06-08/2007

08/1998 46° N, 85°W
06-08/2000-2002

07/1993 46° N, 90°W

Reference

(Goldstein et al. 1998)
(McKinney et al. 2011)

(Westberg et al. 2001)
(Pressley et al. 2005)

(Isebrands et al. 1999)

Reproduced from Unger et al. (2013), with additions for the sites in Finland, Germany, Italy, Malaysia and California (US).

Table 2: Description of campaign results of above-canopy BVOC flux measurements
published since 2013
Site Ecosystem Period Compounds Location Reference
Australia Grassland 02-05/2012 isoprene 44°S,151° E (Emmerson et al.
01-02/2013 monoterpenes 2016)
Australia Eucalypt forest 02/2011 isoprene 36°S, 148°E (Emmerson et al.
04-05/2012 monoterpenes 2016)
Belgium Plantation 06-10/2012 isoprene, 51°N, 3.5°E (Zenone et al. 2016)
(poplar) 01-12/2015 OVOCs* (Brilli et al. 2014)
(Portillo-Estrada et al.
2018)
Belgium Agriculture 05-10/2012 monoterpenes 50° N, 4.4°E (Bachy et al. 2016)
(maize) alkenes
OVOCs*
Brazil Tropical 09-01/2010-11 | isoprene 2.35°S, 60°W | (Alves et al. 2016)
(Manaus) rainforest monoterpenes
sesquiterpenes
China Plantation 05-01/2013- isoprene 26°N, 115° E (Bai et al. 2017)
(pine) 2016 monoterpenes
China Plantation 07-01/2012- isoprene 30°N, 119°E (Bai et al. 2016)
(bamboo) 2013 monoterpenes
China Temperate 07-09/2010-11 | isoprene 42° N, 129°E (Bai et al. 2015)
mixed monoterpenes
Czech Mountainous 07/2014 isoprene 49°N, 18° E (Juran et al. 2017)
Republic coniferous monoterpenes
OVOCs*
England Temperate 06-08/2005 isoprene 51°N, 0.9°E (Langford et al. 2017)
deciduous monoterpenes
OVOCs*
Estonia Hemi-boreal 09-10/2012 Monoterpenes 58°N, 27°E (Bourtsoukidis et al.
mixed sesquiterpenes 2014a)
OVOCs*
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Site

Finland

France

Germany

Germany

Italy

Italy

Sweden

us,
California

us,
Carolina

us,
Colorado

us,
Missouri

Ecosystem

Boreal
coniferous

Mediterranean
deciduous

Urban greens

Agricultural
(maize)

Mediterranean
mixed

Mediterranean
deciduous

Subarctic heath

Temperate
coniferous

Plantation
(pine)

Mountainous
coniferous

Temperate
deciduous

Period

04-06/2013
05-11/2015-16

06/2014

06-08/2014

06—08/2015**

09/2011

06-07/2012

06—08/2012**

06-07/2009

06—08/1995
06—-08/2007

07/2014

05-10/2011
05-10/2012

Compounds

isoprene
monoterpenes
sesquiterpenes
OVOCs*

isoprene
monoterpenes
OVOCs*

monoterpenes,
OVOCs*

monoterpene,
OVOCs*

isoprene
monoterpenes
OVOCs*

isoprene
monoterpenes
OVOCs*

isoprene
monoterpenes
sesquiterpenes
OVOCs*

isoprene
monoterpenes
OVOCs*

monoterpenes
OVOCs*

isoprene
alkenes

isoprene
monoterpenes
methanol

* QOVOCs = oxygenated VOCs including alcohols, ketones, aldehydes, etc.

Location

62°N, 24°E

43°N,5.4°E

53°N, 14°E

53°N, 14°E

42°N,12°E

45°N,11°E

28°N, 18°E

39°N, 121°W

36° N, 79°W

39° N, 105°W

38°N, 92°W

Reference

(Schallhart et al.
2018)

(Hellén et al. 2018a)
(Rantala et al. 2014)

(Zannoni et al. 2016)

(Bonn et al. 2016)

(WiR et al. 2017)

(Fares et al. 2013)
(Langford et al. 2017)

(Schallhart et al.
2016)
(Acton et al. 2016)

(Tang et al. 2018)

(Park et al. 2014)

(Geron et al. 2016b)

(Rhew et al. 2017)

(Potosnak et al. 2014)
(Seco et al. 2015)

** use of a large chamber measurement technique that enclosed representative parts of the ecosystem.
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5 Biogenic Emissions

Keyword: BVOC emissions

Biogenic compounds are emitted from most living beings and are also released during
senescence processes. Therefore BVOCs that potentially affect air chemistry are emitted from
any ecosystem including marine ones (Fischer et al. 2012; Greenberg and Zimmerman 1984;
Loreto et al. 2014; Millet et al. 2008; Monson and Holland 2001; Rinnan et al. 2014; Shaw et al.
2010). However, the focus in this review is on terrestrial processes which are more directly
influencing the environmental quality at places where humans are living. Quantifying terrestrial
emissions and their impacts is also particularly challenging due to the heterogeneity of
ecosystems (Arneth et al. 2010a; Arneth et al. 2011; Guenther 2013; Monson 2002) and because
they are subject to intensive human management.

5.1 Environmental Importance and Quantification of BVOCs

Keyword: Environmental impact

As their name implies, VOCs are bound to develop their impact in or by transport through the
air. The direct impacts are threefold:

a) Particles are formed by aggregation with other organic or inorganic substances (so called
secondary organic compounds, SOA) (Fuentes et al. 2000; Goldstein et al. 2009; Hayden
1998; Riipinen et al. 2012). These particles directly affect the radiation regime and can
influence precipitation patterns by forming cloud condensation nuclei (Carslaw et al. 2010;
Satheesh and Moorthy 2005; Scott et al. 2014). Fine particles may also cause pulmonary
diseases or affect ecosystems by deposition (Burkhardt and Pariyar 2016; Tuet et al. 2017).

b) Many BVOCs are highly reactive and are thus important components of air chemical
processes. This includes their interaction with nitrous oxides that contribute to ozone
formation, but also affects the lifetime of greenhouse gases such as methane (Derwent et al.
1995; Fehsenfeld et al. 1992; Laothawornkitkul et al. 2009; Monson and Holland 2001;
Pike and Young 2009; Shallcross and Monks 2000).

c¢) Finally, BVOCs have to have impacts on plant development and survival which comprises
protection from abiotic stressors and modulate interactions between plant organs,
different plants, and between plants and other organisms (Gershenzon and Dudareva
2007; Holopainen and Gershenzon 2010; Lerdau and Gray 2003; Loreto et al. 2014; Loreto
and Fineschi 2015; Meena et al. 2017; Schnitzler et al. 2010; Sharkey et al. 2008; Theis and
Lerdau 2003).

These impacts are discussed in more detail in the following sections, with the ‘impact’ relating
not only to effectivity but also to quantity. It is therefore interesting to know the amount and
composition of BVOCs that are globally released from terrestrial sources. In total, BVOC
emissions are estimated to be approximately 1 Pg (1015g, 1000 Tg, 1 Gt) yr-! and are thus about
one magnitude (10-fold) larger than anthropogenic non-methane VOC (AVOC) emissions (Piccot
etal 1992).
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Table 3: Global emission estimates for isoprene and monoterpenes in Tg yr™
Isoprene Monoterpene Simulation period Reference
emission emissions

175%* not specified (Went 1960b)
438** not specified (Rasmussen and Went 1965)

285 present (not specified) | (Turner et al. 1991)

568 144 1990 (Guenther et al. 1995)

597 1986-1989 (Wang et al. 1998a)

530 9/1990-8/1991 (Wang and Shallcross 2000)

561 117 present (not specified) | (Adams et al. 2001)

559 not specified (Potter et al. 2001)

549 1990s (Sanderson et al. 2003)

507 33 1990 (Levis et al. 2003)

454 72 1971-1990 (Naik et al. 2004)

601 103 2000 (Tao and Jain 2005)

566 9/1996-8/1997 (Shim et al. 2005)

594 99 Pre-industrial (Valdes et al. 2005)

402 131 1990-1999 (Lathiere et al. 2005)

438 117 2000 (Liao et al. 2006)

522 1990-2000 (Wiedinmyer et al. 2006)

503 2003 (Guenther et al. 2006)

541 121 Pre-industrial (Kaplan et al. 2006)

460 117 1983-1995 (Lathiere et al. 2006)

412 32 1981-2000 (Arneth et al. 2007b; Schurgers et al. 2009)

410 1995-2006 (Mdiller et al. 2008)
350-678 2003 (Pfister et al. 2008)

401 137%** present (not specified) | (Young et al. 2009)
523-560 1981-2002 (Arneth et al. 2011)
529-578 157-167 2006 (Guenther et al. 2012)

460 2000-2009 (Pacifico et al. 2012)

429 2000 (Wu et al. 2012)

467 2000 (Squire et al. 2014)

532 84 1980-2010 (Sindelarova et al. 2014)
465/444 108/98 2000-2009 (Messina et al. 2016)
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Isoprene Monoterpene Simulation period Reference
emission emissions

385 29 1971-2000 (Hantson et al. 2017)

417 76 2000-2012 (Henrot et al. 2017)

363 77 2010 (Harper and Unger 2018)

*  reproduced from Arneth (Arneth et al. 2008a) and Guenther (Guenther et al. 2012), complemented with further studies
** unspecified or not differentiated by compounds, representing total BVOC emissions
*** includes other BVOCs

Isoprene (2-methyl-1,3-butadiene, CsHg) is arguably the most abundant BVOC and contributes
between 360 and 750 Tg yr-! to the total amount (see Table 3, excluding early calculations).
The second largest homogeneous group of BVOC compounds is that of monoterpenes (various
Cio-chains, for example a- and - pinene, limonene, myrcene and sabinene), which emissions are
estimated to be between 30 and 150 Tg yr-1 (see Table 3). The large differences of estimates
depend on various assumptions about land coverage and climate sensitivity and might have
been even larger if the uncertainty in emission parameterization would be included (Arneth et
al. 2008a). Other BVOCs have been differentiated into reactive BVOCs (e.g. alcohols, aldehydes,
acetone, ethane, propene) and less reactive other BVOCs (mostly other terpenoids such as
sesquiterpenes) with net release estimates between 150 and 260 Tg yr-1 for each group
(Guenther et al. 1995; Guenther et al. 2012). However, net terrestrial emission for methanol
alone has been independently estimated to be up to 150 Tg yr-! (Jacob et al. 2002; Wohlfahrt et
al. 2015), indicating large uncertainties in the group of reactive BVOCs others than isoprene and
monoterpenes.

5.1.1 Small Particle Formation and Impact on Regional Climate
Keyword: Aerosol formation

Small particles from various sources such as volcanic eruptions, desert dust, sea salt, pollen, and
industrial combustion that are dispersed in the air are called aerosols. They can have natural or
anthropogenic origins and be directly emitted from its sources or formed in the air by
aggregation of gases, liquids and ions. The latter group is called secondary aerosols; if carbon is
involved they are called secondary organic aerosols (SOA).

SOA from biogenic origin are thought to be about 10-fold more abundant than those of
anthropogenic origin (Farina et al. 2010). Their environmental impacts were first detected when
certain weather conditions produced a blue haze over forest areas emitting BVOCs (Went
1960a). Since then, aerosols have been known to function as seeds for cloud formation, and
boundary conditions as well as processes have been investigated with aerosol chambers and
field measurements. A number of reviews are documenting these developments (Barth et al.
2004; Barthelmie and Pryor 2000; Carlton et al. 2009; Fowler et al. 2009; Kroll and Seinfeld
2008; Lee et al. 2016; Mang et al. 2009; Riipinen et al. 2012; Shrivastava et al. 2017), showing for
example that several oxidation steps have to be considered, seeds need to be differentiated by
their composition and reactivity, and that the interaction of BVOCs can be synergistic or
antagonistic (Hoffmann et al. 1997; Ng et al. 2006; Orlando et al. 2010). In addition, the number
and properties of other compounds, such as sulfuric acid, play important roles for particle
formation from BVOCs (Hu et al. 2017; Spittler et al. 2006). Nevertheless, evidence suggests that
it is also possible that the formation of aerosols can origin solely from BVOCs (Kirkby et al.
2016). The research led to model developments (Archibald et al. 2010; Bonn et al. 2009; Bonn et
al. 2008; Cheng et al. 2010; Jokinen et al. 2015; Taraborrelli et al. 2012; van Donkelaar et al.
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2007) which have recently been evaluated to an overall satisfactory degree under a range of
conditions (Feiner et al. 2016; Fisher et al. 2016). However, other simulations still yield
considerable deviations from measurements pointing towards remaining uncertainties
particular in the field of deposition and radical regeneration (Kelly et al. 2018).

Case studies have tried to specify the role of different BVOCs in aerosol formation. For the
Eastern US, isoprene is suggested to be responsible for more than half of the share with aromatic
compounds, sesquiterpenes and monoterpenes following with shares between 10 and 14 %
(Helmig et al. 2006; Worton et al. 2013). Variability in spatial distribution was related to forest
abundance and species distribution: While over a forest where isoprene emitters were highly
abundant, isoprene oxidation dominated SOA formation (Link et al. 2015), aerosols over
coniferous forests were formed by a larger degree from monoterpenes, while the biological
contribution of SOA formation over agricultural areas seem to be of minor significance
(Barthelmie and Pryor 2000). High isoprene concentrations, however, might also decrease SOA
formation over the Amazon (Kanawade et al. 2011). In Europe, SOA formation seems to be
dominated by monoterpenes and sesquiterpenes (Aksoyoglu et al. 2012), which originates from
the larger share of coniferous forests (Kurpius and Goldstein 2003). However, in the
Mediterranean area with less monoterpene emitters, monoterpene emissions were predicted to
contribute only about 25% to SOA production over forested areas (Andreani-aksoyoglu et al.
2004). In addition, carbonyls may be as important as terpenoids for aerosol formation over
specific areas such as boreal coniferous forests (Hellen et al. 2004), where VOC oxidation
products have been found to play a key role for spatial and temporal distribution of nucleation
events (Laaksonen et al. 2008). Globally, other BVOCs should also be considered. Green leaf
volatiles (GLVs), a heterogeneous group of compounds that includes alcohols, aldehydes and
esters, have shown contrasting experimental results regarding SOA production similar to
isoprene (Mentel et al. 2013) and have been estimated to form about 1-5 TgC yr! of SOA
(Hamilton et al. 2009) which is - depending on the literature source to compare with -
approximately one tenth of the total global biogenic production (Claeys et al. 2004; Kanakidou et
al. 2005).

The effective SOA yield determined from field studies were sometimes puzzling since the
experimentally determined yield (= amount SOA per contributing compound) directly from
isoprene oxidation products is less than 3 % (Kroll et al. 2005; Rollins et al. 2009). The small
yield is likely related to the radical scavenging properties of isoprene which reduces OH radical
concentrations to a level that prevents SOA formation (Kiendler-Scharr et al. 2009; Kleindienst
etal 2007). Furthermore, SOA formation potential of isoprene is supposed to decrease with NOx
air concentrations (Kroll et al. 2006) although this might not hold under very high NOx
conditions (Couvidat and Seigneur 2011). However, if secondary reactions are considered that
form or regenerate radicals, SOA yields can be very high also when isoprene is abundant. Such a
process has first been suggested involving CO and NOx (Lelieveld et al. 2008). Also, the isoprene
reaction with NO3 increases the concentration of nitrate radicals and thus may result in high SOA
yields (Rollins et al. 2009). Another, potentially very important recycling process of OH radicals
is involving epoxide formation. This process has been estimated to be responsible for up to 100
Tg aerosol carbon yr-! (Paulot et al. 2009; Taraborrelli et al. 2012). Overall, isoprene seems to be
able to act in both ways: suppress aerosol formation but can also form SOA in relatively clean air
if temperatures are not too high (Clark et al. 2016), see Figure 2. SOA yield from mono- and
sesquiterpenes tends to increase in polluted air masses (Fry et al. 2009; Ng et al. 2007; Zhang et
al. 2018), which seems to be related to the differences of volatility and O/C ratio in the mixture
of AVOCs and BVOCs (Emanuelsson et al. 2013). In contrast, NOx levels are supposed to decrease
SOA yield but have more effect on particle numbers than mass (Wildt et al. 2014). The
synergistic interaction of biogenic and anthropogenic influences has been shown for the United
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States (Hogrefe et al. 2011), as well as Hong Kong (Hu et al. 2008). In the latter case 21 %
contribution of BVOCs to SOA formation has been estimated for days under local emission
influences but 49% and 10fold higher SOA loads are simulated if rural input is considered.

Scenarios that include climate change up until the end of the century indicate a 5-6fold SOA
increase, dominantly due to increased BVOC emissions with isoprene having a large but not
dominant contribution (Tsigaridis and Kanakidou 2007). Somewhat smaller estimates (plus 36
%) are obtained from another study where BVOCs contributed app. 75 % (Heald et al. 2008). In
a specific investigation of boreal forest emissions, a BVOC emission increase of 50 % has been
estimated due to climate change which yielded a SOA increase of 19 % (Mentel et al. 2009).

TextBox: BVOC Contribution to Secondary Particle Formation

In contrast to early assumptions, BVOCs are assumed to contribute considerably to aerosol
formation and particle growth, often being more important than anthropogenic precursors.
However, despite some progress in chemical understanding the complexity of possible reactions
still precludes general predictions. Overall, isoprene seems to suppress aerosol formation in
polluted air while increasing SOA yields in relatively clean air masses such as over forests in the
eastern United States. Over tropical forests, however, the depletion of radicals seems to prevent
or at least reduce aerosol production based on isoprene. Mono- and sesquiterpenes are increasing
aerosol yields — a process that does not show any apparent decreasing effect of NOs. Interestingly,
a synergistic effect seem to exist between biogenic and anthropogenic VOC emissions that leads to
enhanced SOA formation in areas with intensive urban-rural air mass exchanges.

Figure 2: SOA yield from isoprene and particle size in dependence of temperature

F 3

Isoprene SOA Results

v

Chamber Reaction Temperature

As temperature increases, SOA yield is shown to generally decrease, particle density is shown to be stable (or increase
slightly), and formed SOA is shown to be less volatile (this is expressed in 'Volume Fraction Remaining', VFR, which
describes the fraction of aerosol mass left after heating particles under standardized conditions).

Source: Reproduced from Clark et al. (2016)
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5.1.2 Photochemistry and Ozone Forming Potential

Keyword: Ozone formation

In the early 80's it has been assumed that BVOC emissions are insignificant for ozone formation
(Altshuller 1983) and only play a minor role in cities (Lurmann et al. 1983) although the general
relation between VOCs and nitrous oxides had already been known (see Figure 3) (Dodge 1977).
Significant importance of BVOCs has first been indicated by modelling when only a few years
later realistic emission inventories were available (Chameides et al. 1988; Trainer et al. 1987).
Nevertheless, air chemistry simulations over Europe still indicated only a minor contribution of
BVOCs to ozone concentrations (Simpson 1992; Simpson 1995).

Solid evidence for the contribution of BVOCs to ozone formation were delivered with airborne
measurements in the US, Tennessee (Williams et al. 1997). The importance of BVOCs relative to
other VOCs as has been demonstrated in this study is presented in Figure 4. Dependent on the
precursors, however, reaction time interval of ozone formation is very different (Butler et al
2011) with isoprene being one of the most effective compounds (Aschmann et al. 2002;
Calogirou et al. 1999; Carter 1994; Derwent et al. 1996). In order to cover chemical reactions
with a multitude of partners, air chemistry models processes and parameterizations have been
continuously improved (Atkinson 2000; Carter 1996; Gao et al. 1993; Gill and Hites 2002;
Paulson and Seinfeld 1992; Pierce et al. 1998; Saunders et al. 2003; Zimmermann and Poppe
1996). Nevertheless, many publications show that models were far from perfect (Aumont et al.
2005; Berndt 2012; Fiore et al. 2005; Steiner et al. 2008; von Kuhlmann et al. 2004) or that
compounds are missing (Choi et al. 2010; Dlugi et al. 2010). However, also the initialization of
boundary conditions such as emission inventories contribute to the uncertainty and need to be
improved (Chatani et al. 2015; Huang et al. 2015a). The importance of BVOCs along with
suggestions to improve the estimates of their contributions have been presented and discussed
in a number of reviews (Atkinson and Arey 2003; Calogirou et al. 1999; Fuentes et al. 2000;
Monks et al. 2015; Monson and Holland 2001; Pike and Young 2009; Seinfeld 1988; Shallcross
and Monks 2000; Sillman 1999; Sillman and He 2002; Zimmer 1997).

Ozone formation has been investigated particularly at sites either related to high BVOC emitters
(forests) or at places that are susceptible to ozone damage (urban areas). Isoprene was indeed
responsible for ozone concentration over highly isoprene emitting rainforest sites (Jacob and
Wofsy 1988). Here, even considerable anthropogenic emissions from the oil industry have only a
minor effect on ozone formation (Donoso et al. 1996). Also a plot in Italy showed isoprene
contribution to ozone formation to be 50-75% (Duane et al. 2002), which is similar to the 60 %
that have been measured as maximum for a forested rural area in Greece (Tsigaridis and
Kanakidou 2002). Over coniferous and other Mediterranean evergreen forests, emissions are
dominated by monoterpenes, which however, form only minor portions of ozone (Johansson
and Janson 1993; Thunis and Cuvelier 2000) or even decrease ozone concentrations (Kurpius
and Goldstein 2003). Instead, sesquiterpenes had the greatest impact on ozone chemistry and
ozone forming potential over a boreal forest in Finland (Hellén et al. 2018b). Together, terpenes
and isoprene contributed 50-100 % to net ozone daytime production above a Eucalypt forest in
Portugal (Poisson et al. 2001). Urban areas are more complex to judge since there is usually a
high background of VOCs from anthropogenic sources. For a site in the temperate city of Berlin,
BVOC contribution to ozone formation has been estimated to be small (Thijsse et al. 1999) and
even decrease ozone in the direct vicinity of coniferous urban forests (Bonn et al. 2016). At
Barcelona, however, ozone formation was predominantly driven by local BVOC emissions, with
GLVs and isoprene being equally important (Filella and Pefiuelas 2006). The high importance of
isoprene had also been derived from measurements within Bejing, where it was responsible for
up to 23% of all observed ozone (Pang et al. 2009; Xie et al. 2008).
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Figure 3: Typical ozone isopleths. The NOy -limited region is typical of locations downwind of
urban and suburban areas, whereas the VOC-limited region is typical of highly
polluted urban areas.
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Figure 4: Estimated ozone from BVOCs (BHC-03) is plotted against measured ozone. The

solid lines correspond to 100%, 75%, and 25% BHC-O3 contribution. The dashed line
is the linear least-squares fit and the error bar is the uncertainty of this estimate.
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The relatively short list of measurement-based estimates of the role of vegetation emissions for
ozone concentrations in urban areas is complemented with a rather large number of modelling
studies. These studies are based on inventories of anthropogenic and biogenic emissions and are
driven by local climate. Sensitivity studies for the urban plume in London, where
photochemistry is strongly VOC limited, showed a potentially large effect of BVOCs on ozone
formation (Lee et al. 2006; MacKenzie et al. 1991). More specifically, calculations for Paris,
France, yielded a BVOC contribution of about 18-30 % (Solmon et al. 2004). Similar numbers
were simulated for the region of Berlin, although BVOC contribution for urban ozone
concentration could increase up to 60 % for specific days during a heat wave (Churkina et al.
2017). Also for Osaka, Japan, a substantial contribution of BVOCs to ozone concentration of
about 10 ppb was shown (Nishimura et al. 2015), the same amount as determined for
metropolitan regions in China, where ozone concentrations could be increased by 34 ppb during
warm summer days (Mo et al. 2018; Situ et al. 2013). This means that up to half of the ozone
concentration can be attributed to BVOC emissions at these sites (Kim et al. 2008; Ran et al.
2011).

Regional simulations enable the aggregation of influences that affect site level measurements
but cannot be distinguished or quantified at this level, such as spatial distribution and transport
of emissions. For example an increase of 37 ppb ozone in Seoul, South Korea, has been attributed
to isoprene emission partly originating from nearby forests (Kim et al. 2013; Kwang-Yeon 2013).
At this site, NOx limited (VOC saturated) air was accumulating ozone during air mass transport
and led to high pollutant concentrations quite far away of the city (Jeon et al. 2014).1n a
simulation for Marseille, France, ozone concentration was increased by up to 37 % by means of a
suburban isoprene emitting oak forest (Cortinovis et al. 2005). Similar, about half of the BVOCs
that increased ozone concentration by about 40ppb in Paris, France, originated from outside the
area (Derognat et al. 2003). These case studies demonstrate that the impact of suburban forests
is important and ozone formation depends not only on the kind of vegetation but also on
location and wind direction. Overall, regional simulation studies indicate that anthropogenic
emissions are still the most important for ozone formation in Germany (Vogel et al. 1995),
Europe (Derwent et al. 1996; Simpson 1995), the US (Li et al. 2007; Wiedinmyer et al. 2001) as
well as in Southeast Asia (Qu et al. 2013; Shao et al. 2000), but that the spatial variability is large
(Han et al. 2005). Since the chemical reactions are complex, the input of NOx and BVOC
emissions from highly resolved inventories is crucial for simulations targeting ozone formation
(Vieno et al. 2010; Xiao et al. 2010).

In addition to spatial distribution, the effect of BVOCs can be expected to vary with climate
conditions related to radiation, temperature, and wind - and thus with time. Simulations for
regions in Spain and the US indicated that BVOC emissions are responsible for morning peaks of
ozone concentrations (Andronopoulos et al. 2000; Reissell and Arey 2001). Such morning peaks
have been explained by concentration processes of isoprene during the night when OH radical
concentration as well as air mass mixing is at a low level (Millet et al. 2016; Venkanna et al.
2016). In areas where traffic emissions and BVOC meet, afternoon peaks of ozone commonly
occur for example in the Mediterranean area (Toll and Baldasano 2000), in the area of Santiago
de Chile (Rappengliick et al. 2000), in Mexico City (Jaimes-Palomera et al. 2016) or in the Po
valley, Italy (Steinbacher et al. 2005). These peaks are generally explained by the peak of BVOC
emissions shortly after midday, considering a time-delay for chemical reactions and possible
synergistic interactions with anthropogenic emissions that often also peak in the afternoon due
to increased traffic (Han et al. 2005; Lee and Wang 2006; Lee et al. 2006; Li et al. 2007; Ryu et al.
2013). The important influence of temperature has also been shown at the seasonal and inter-
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annual scale. For example BVOCs played only a minor role for Canadian ozone concentrations
throughout the year (Plummer et al. 1996) but during particular warm summer episodes, the
contribution increased to 13 % (Biesenthal et al. 1997). Similar, the impact of BVOCs on the
summer ozone maxima in Europe is relatively small but increases 2-6-fold in Mediterranean
regions, particularly when the summers are hot (Curci et al. 2009). Also in northern countries,
hot years such as 2003 can increase the contribution of BVOCs to ozone up to alevel of
approximately 20 % (Solberg et al. 2008).

Globally, BVOC emissions dominate tropospheric chemistry (Poisson et al. 2000). However, the
picture is complex; also involving indirect negative effects of isoprene. Some of these have been
assumed to even decrease ozone yield in the presence of isoprene under specific conditions (Ran
etal 2011; Roelofs and Lelieveld 2000) although more recent modelling approaches indicate
that the overall dependence of surface ozone on isoprene emission is always positive (Mao et al.
2013). This might be the reason for some discrepancies in global projections where BVOCs are
sometimes supposed to play the major role for ozone formation in the southern hemisphere
while being driven by AVOCs in the North (Lelieveld and Dentener 2000; Wang et al. 1998b).
Other studies see the larger effect on ozone formation in the northern hemisphere (Wang and
Shallcross 2000). Part of the explanation may also be that in the southern hemisphere more
reactive isoprene is released in great quantities from the tropical rainforests but in the North,
higher emissions of NOx are increasing the efficiency of less reactive or less abundant BVOCs due
to more effective radical recycling (Fuchs et al. 2013; Lelieveld et al. 2008). In addition, also the
interaction between biogenic and anthropogenic emissions is important for the efficiency of
ozone formation (Chen and Brune 2012; Shallcross and Monks 2000; Vlachogiannis et al. 2000),
showing a synergistic behavior that increases ozone formation in particular when AVOC
emission is dominating (Li et al. 2018).

Model simulations have been used for providing decision support, in particular regarding
emission reduction strategies that aim to decrease ozone damages to human health and
agricultural yields. Therefore, sensitivity of ozone concentrations to NOx and AVOC reductions
has been explored e.g. for cities in the Mediterranean area, for Beijing or Sao Paulo (Im and
Kanakidou 2012; Orlando et al. 2010; Shao et al. 2009). Another major line of research explores
the development of ozone concentration under climate change and/or land use changes.
Thereby considering that BVOC emissions are generally assumed to increase due to their
temperature sensitivity, leaf area increases and changes in species composition (see chapter
5.3). For the US, for example, higher NOx and AVOC emissions as well as emissions from wildfires
are calculated to increase ozone concentrations and the duration of high ozone episodes by
2050. This is despite overall BVOC emission is projected to decrease due to land use changes
which overcompensate higher emission rates per unit ground area (Chen et al. 2009; Weaver et
al. 2009). In these simulations it is considered that BVOCs are more effective forming ozone than
AVOCs (Bell and Ellis 2004). For Europe, ozone has been projected to increase mainly due to
increasing BVOC emissions which are estimated to have a larger effect than temperature
increases alone: 2-10 ppb until 2040 (Forkel and Knoche 2007), -2-16 ppb until 2050 (Varotsos
etal 2013), and 6-14 % up until 2095 (Doherty et al. 2013). The change would need a reduction
of NOx larger than 20 % in order to be completely compensated (Doherty et al. 2013). If it would
be considered that a realistic fraction of crop- and grassland would be converted into woody
bioenergy production sites, isoprene emissions could increase by 45 % causing ozone peak
values to rise by another 6% (Beltman et al. 2013). Global scenarios did not yield consistent
results due to the multitude of assumptions, impacts and feedbacks that are differently treated.
The average estimate of global ozone concentration change is an increase of about 10-20 ppbv
by 2090 but can vary between -9 and +55 ppbv (Avise et al. 2012; Sanderson et al. 2003; Squire
et al. 2014; Wiedinmyer et al. 2006).
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TextBox: BVOC Contribution to Ozone Formation

The impact of BVOC to ozone formation depends on various factors, including temperature and
radiation, the concentration and reactivity of other (anthropogenic VOCs), and the availability of
NOXx. In particular the relation between highly reactive BVOCs, i.e. isoprene, and NOx plays a major
role for ozone formation although sesquiterpenes and GLVs are occasionally also important. Some
evidence exist that anthropogenic and biogenic VOCs react synergetic. In general, higher isoprene
emissions increase ozone production, particularly in pollution-influenced regions. Based on
empirical and modelling studies the contribution of isoprene on ozone concentration in the vicinity
of urban areas can rise to more than 50 % at warm sites or during heat waves.

5.1.3 Biological Functions
Keyword: Biological functions

While it is certainly true that some BVOCs are emitted simply because of their physicochemical
properties in solubility and volatility (Niinemets et al. 2004), it is also evolutionary very unlikely
that costly production of a wide array of compounds does not serve a biological function
(Pichersky et al. 2006). Early explanations for BVOC emissions concentrated on isoprene and
hypothesized a role in carbon dioxide assimilation (references in Sanadze 1991b). This theory
could not be supported and the positive relationship between isoprene production and oxygen
concentration led to the assumption that isoprene was a by-product of photorespiration
(Rasmussen and Jones 1973). However, detailed physiological studies in the late 1980s
disproved this putative function (Hewitt et al. 1990). Following investigations that
demonstrated a protective impact of BVOCs for isoprene (Loreto et al. 2001b; Loreto and
Velikova 2001; Velikova et al. 2004; Velikova et al. 2012), several theories about how this
protection is achieved have been brought forward. One possibility is that BVOC formation
presents a "safety valve" to get rid of excess energy and/or carbon accumulating during
dysfunctional photosynthesis under high light and temperature conditions. Other explanations
focus on chemical reactions that protect from dangerous reactive oxygen species (ROS)
(antioxidant hypothesis) (Niyogi 2000; Pefiuelas and Llusia 2004), or assume stabilizing
membrane properties by means of the isoprene molecule (thermal protection hypothesis).

Based on a failure to increase thermotolerance by exogenously given isoprene (Logan and
Monson 1999) the emergency valve theory indicating that the enhanced consumption of energy
and carbon rather than the final product eases heat stress has been brought forward (Logan et
al. 2000) but has also been criticized to be to ineffective (Sharkey and Yeh 2001). Variants of the
theory state that the main effect may be dissipation of excess energy (Sanadze 2004) or a mean
to prevent overflow of intermediate compounds related to assimilation (Rosenstiel et al. 2004).
An antioxidative effect of isoprene has been suggested when it became apparent that isoprene
formation can be located close to the photosynthetic apparatus (Affek and Yakir 2002; Pefiuelas
and Llusia 2002; Zeidler et al. 1997). Indeed, scavenging of ROS by isoprene has been shown
first under specifically controlled conditions (Sauer et al. 1999) and later in various plants
(Behnke et al. 2007; Pollastri et al. 2014; Velikova et al. 2005a; Vickers et al. 2009b). Particular
indicative for the antioxidative role of isoprene before emission was that direct emission of
oxidation products could be detected (Jardine et al. 2012). Another prominent hypothesis to
explain protective effects of BVOCs is that they are deposited within cell membranes and
stabilize their functionality (Loreto et al. 1998; Sharkey and Singsaas 1995; Sharkey et al. 2008;
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Velikova 2008). It has been shown that isoprene (Loreto and Velikova 2001; Sharkey et al. 2001;
Sharkey and Singsaas 1995; Singsaas et al. 1997; Siwko et al. 2007; Velikova et al. 2015; Velikova
etal 2011) and in exceptional cases also monoterpenes (Copolovici et al. 2005; Llorens et al.
2009; Nogues et al. 2014) support membrane stability but the physiological concentrations of
the compounds have been questioned to be sufficient, suggesting indirect effects on stabilizing
proteins instead (Harvey et al. 2015; Velikova et al. 2014; Velikova et al. 2015).

Another function of volatile compounds that has been known for a long time is the role that
BVOCs play in signaling among and between organisms (Ameye et al. 2018; Gershenzon and
Dudareva 2007; Heil and Karban 2009; Kessler and Morrell 2010; Muhlemann et al. 2014; Theis
and Lerdau 2003; Turlings and Erb 2018). Terpenoids are involved in attracting pollinators
(Dobson 1987; Dobson and Bergstrom 2000) as well as deter herbivores (Armbruster et al.
1997) or to attract predatory insect that feed on parasites and herbivores (Dicke and van Loon
2000; Weissbecker et al. 2000). In addition, BVOC signaling has been shown to serve the
coordination of plant responses within and between plants of the same species (Baldwin et al.
2002) and can affect responses in other plant species too. The latter has first been described as
“talking trees” (Baldwin and Schultz 1983; Rhoades 1983) and has been corroborated by
findings of defense induction by volatile compounds (Karban et al. 2000).

[t can be concluded that several direct protection mechanisms exist that indicate an important
role for BVOCs before emitted into the air. The protection from oxidative stress, often occurring
during high radiation episodes (sun flecks) and an accompanying increase of leaf temperature,
seems to be the most important. Since oxidative stress also occurs due to direct oxidant
exposure (such as ozone) the mechanism may be important under a range of environmental
conditions (Fini et al. 2017). Overall, emission seems to assist C3 plants (not C4!) to run efficient
photosynthesis and to overcome transient and mild stresses, especially during periods of active
plant growth in warm seasons (Loreto and Fineschi 2015). It should be noted, however, that
protective functions have almost exclusively been detected for terpenoids, with isoprene being
the single most investigated compound. In contrast, signaling functions have been demonstrated
for a huge array of purposes and for various BVOCs, originating from different biosynthetic
pathways (Fineschi and Loreto 2012; Loreto and Schnitzler 2010).

5.2 Drivers of BVOC emissions
Keyword: Emission determinants

There are various ways to differentiate between emission drivers. For example, many carbon
compounds that are released from the biosphere are due to fire (Pandey and Sahu 2014), which
is however not further considered here. Often, BVOC emissions are distinguished into induced
and constitutive trying to find environmental drivers that act fundamentally different on these
two groups. For example, assuming oxidative and mechanical stress to trigger the first, and
continuously developing boundary conditions to drive the second (Ali et al. 2011; Brilli et al
2009; Copolovici et al. 2017; Jiang et al. 2016; Joo et al. 2011; Litvak and Monson 1998). The
distinction between the two is, however, not a sharp one since already 'normal’ temperature and
radiation conditions can be seen as inducing the build-up of emission potentials over time.
Therefore, the following chapters are focusing on the environmental impacts one by one and
indicate their role as inductors of emission if relevant as has been proposed by Holopainen et al.
(2018). This doesn't exclude that interactions between the different drivers occur. For example,
the immediate impact of drought is a reduction in canopy evaporation that at the same time
increases leaf temperature because evaporative cooling is missing. These interactions are
occasionally mentioned if it is deemed necessary, but a complete coverage is beyond the scope of
this report.
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BVOC emissions are best described if long- and short-term impacts of environmental influences
at the site of emission production are described (Pefiuelas and Llusia 2001). These are not only
different for different plant compartments (e.g. differences within a plant may be triggered by
different nutrient concentrations in leaves of different crown parts) but also within the same
compartment at different locations (e.g. radiation is usually higher at the top of the plant than at
the bottom, resulting in higher emission rates from overstory plants and upper canopy
fractions) (Genard-Zielinski et al. 2015; Harley et al. 1996; 1997; Sharkey et al. 1991).

It should be noted that all emission responses are based on species-specific genetically
determined properties (Fineschi et al. 2013). For example, the ability to produce significant
amounts of isoprene may or may not be shared by members of the same plant family or genus,
but emitting species have been found among bryophytes, ferns, conifers and in approximately
one-third of the 122 angiosperm families examined (Harley et al. 1999; Sharkey and Yeh 2001).
The ability to form particular isoprenoids has seemingly developed and lost repeatedly in
different genera (Dani et al. 2014a). Also, the ability to communicate within and between plants
and insects seems to be very specific depending on the evolutionary history of the species (Dicke
and Baldwin 2010). Thus, all responses described here depend on the sensitivity of the
particular plants and cannot be transferred universally even within the same family.

Focusing on environmental impacts, it is assumed that intrinsic plant developments do not
change the species-specific sensitivity regarding the ability to emit BVOCs. This might not totally
be true since different isoprene emission rates have been detected in young and older eucalypt
plantations despite a similar nutrition (Funk et al. 2006). Furthermore, monoterpene emissions
might be limited by storage size under certain conditions and photosynthetic capacity as well as
storage capacity of leaves depend on properties that change with age (Gray et al. 2003; Lin et al.
2001; Schurgers et al. 2009). However, reports of such impacts are scarce and differentiating
environmental conditions that change due to growth-related structural developments (leaf area
distribution, nutrient distribution, etc.) from real age effects is virtually impossible. Intrinsic
(age related) changes that are disregarded as major driving forces should not be mixed up with
seasonal and phenological changes in potential emission rates. These are either delayed
responses of previously experienced environmental conditions (e.g. enzymatic synthesis and
degradation due to stimuli) or depend on physiological (e.g. photosynthesis apparatus) and
anatomical (e.g. hardening of growing tissue) properties that are part of the seasonal
development (Monson 2013).

Finally, it should be clearly stated that all responses are referred to the leaf scale. For the tree or
canopy scale, it is generally assumed that all leaves of a specific species experiencing the same
environmental conditions are emitting in the same way. This is not contradicting observations of
more BVOCs emitted from sun than from shade leaves under the same light and temperature
conditions since these leaves have a different environmental history as well as different nutrient
concentrations, storage capacities, and precursor supply rates (i.e. different photosynthetic
capacities) (Esposito et al. 2016; Lin et al. 2001; Niinemets et al. 2010). However, it clearly
indicates that environmental within-canopy differences need to be considered for upscaling (Fall
and Wildermuth 1998; Simpraga et al. 2013).

5.2.1 Temperature and Radiation
Keyword: Temperature impact

Temperature and radiation are the most important drivers for photosynthesis and thus for the
provision of energy as well as BVOC precursor compounds (Sanadze 1991a). Thus, all de-novo
emissions somehow depend on these two influences in combination. We distinguish these from
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emissions that are released from specific storage structures mainly by passive diffusion which
has a direct dependency on temperature but not on radiation (Tingey et al. 1991). Apart from
direct impacts, integrated temperature (and radiation) over longer periods affect storage
refilling and enzyme activity and thus have an indirect impact on emission as well (Arneth et al.
2011; Guenther 1997; Peniuelas and Llusia 2001).

5.2.1.1 Emissions from De-novo Production
Keyword: Directly emitted BVOCs

Emissions that are not persistently occurring in the dark are supposed to be synthesized directly
before emissions, requiring energy and precursor compounds that are provided by
photosynthesis. Therefore, the shape of the light response function is a saturation curve, similar
to that of photosynthesis (although at a higher saturation level), which has been demonstrated
in particular for the most important BVOC, isoprene (Monson and Fall 1989; Monson et al. 1991;
Sharkey et al. 1991). A similar behavior has been shown for several other compounds, including
2-methyl-3-buten-2-ol (MBO) (Harley et al. 1998; Rosenstiel et al. 2002), sesquiterpenes (Geron
and Arnts 2010; Staudt and Lhoutellier 2011) and various GLVs (Kesselmeier et al. 1998;
Kesselmeier et al. 1997; Kirstine et al. 1998). Some BVOCs, in particular monoterpenes can be
emitted directly as well as indirectly from storages (see also next chapter). For example for
summer emissions from boreal Scots pine trees, the fraction of de-novo emission was estimated
to be between 30 and 58 % (Ghirardo et al. 2010; Liipke et al. 2017a; Taipale et al. 2011). The
dependency of other BVOC compounds, in particularly highly oxygenated ones (OVOCs), to
radiation intensity is blurred because they are at least partly soluble and thus can be stored
temporarily in the cytosol or rely on pathways with relatively slow Kinetics so that emission
reaches well into the dark periods (Graus et al. 2004; Monson 2013).

Overall, light and temperature influences can be differentiated into two aspects. First they are
modifiers of emission responses while Kinetic properties of the contributing enzymes and
stresses of various kinds are determining the pattern of emission. The shape or peak of a
response curve is therefore generally fixed but the expression might vary. For example emission
shifts from a given maximum at light saturation down to negligible in the dark (Fall and
Wildermuth 1998). Secondly, it is not unlikely that high radiation and temperature can also
function as a stress, inducing the production of BVOCs that directly and indirectly protect the
plant tissue from oxidative damage. This has been demonstrated particularly for heat stress
(Copolovici et al. 2015; Copolovici et al. 2012; Kleist et al. 2012), with not only increasing
emission rates of constitutive emissions but also new emission blends favoring GLV were
induced (Joo et al. 2011; Kask et al. 2016; Kleist et al. 2012; Pazouki et al. 2016). It should be
noted, however, that a separate radiation stress also seem to exist (van Meeningen et al. 2017)
and that in many publications high light and high temperatures (imitating sun- or lightflecks)
are co-occurring so that emission induction cannot easily attributed to either heat or radiation
stress (Behnke et al. 2010; Loreto et al. 2006).

A specific induction effect of light, however, might be related particularly to the ultraviolet (UV)
spectrum of radiation. Investigating the effect of UV-A, isoprene and methanol emission has been
shown to increase (Pallozzi et al. 2013b) or at least not to decrease while photosynthesis was
negatively affected (Fraser et al. 2015; Guidolotti et al. 2016). However, exposition to UV-B did
little to terpenoid production under ambient conditions but modified the responses to heat
stress (Blande et al. 2009; Maja et al. 2016).

While generally light is investigated in the form it occurs in the field, few studies indicate that
emission intensity is not only affected by light quantity but also quality. Higher blue light
fractions seem to decrease isoprene and monoterpene emissions in oaks and poplar (Arena et al.
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2016; Pallozzi et al. 2013b), while emission response of GLVs are suppressed under higher red
light fractions in Arabidopsis (Kegge et al. 2013). This phenomenon might be related to
herbivore behavior, signaling either high defense capability or trying not to attract enemies in
specific places. Overall, the effect of light quality on BVOC emissions is certainly underexplored.
Considering that changes in the aerosol load of the atmosphere due to modified anthropogenic
or increased biogenic emission loads might result in a changed radiation spectrum, further
investigations of these relationships are certainly needed.

5.2.1.2 Emissions from Storage Pools
Keyword: Emissions from storages

Emissions from storages are driven by the concentration difference between ambient air
(generally assumed to tend towards zero) and concentration within the plant tissue (e.g. resin
ducts), and depend on diffusion resistance as well as temperature (Hietz et al. 2005). Stomatal
conductance plays a minor role (Tingey et al. 1991). Storages can be specific for a compound or a
group of compounds such as resin ducts or can be unspecific such as the cytosol (Loreto et al.
2000). In contrast to de-novo synthesis, emission from pools can be considered independent
from photosynthetic production for short-term periods. Since the pool size is generally assumed
to be much larger than emission rates from storages, dynamics only depend on a physical-
derived exponential relation to temperature (Vanhatalo et al. 2018).

It should be noted that the basal assumption about emissions from storages are not always met
in reality. For example, storages need to be filled which takes time or is not possible under
severe stress periods and thus may result in supply limitations (Haberstroh et al. 2018; Llusia et
al. 2010; Schurgers et al. 2009). In addition, resistances are not always constant but may change
due to mechanical damage, as e.g. triggered by parasite colonization (Clancy et al. 2016;
Raisdnen et al. 2009). In case of resin, resistances may even be decreased to zero when resin is
exuded from woody tissue, which may in fact be responsible for more than 10 % of
monoterpene emissions in Ponderosa pine forests (Eller et al. 2013). None of these modifiers,
however, has been considered in upscaling BVOC emission from storages yet.

5.2.1.3 Seasonality of Emission Responses
Keyword: Seasonality impact

Given the same immediate environmental conditions (temperature, radiation, nutrient supply,
degree of physical or chemical stress), a unit of foliage can emit different kinds and amounts of
BVOCs (Demarcke et al. 2010; Genard-Zielinski et al. 2018; Goldstein et al. 1998; Karl et al. 2003;
Nogues et al. 2014; Schade et al. 2000). For emissions originating from de-novo production,
establishment of the precursor provision chain and the specific activity of compound synthesis
determine standard emission rates (Vanhatalo et al. 2018). The first impact is generally relevant
only in the period of flushing when new tissue develops, while the second is hardly reaching a
steady state but is subjected to continuous synthesis and degradation processes (Lehning et al
1999; Monson et al. 1994). The emission capacity thus particularly depends on the climate
conditions of the previous days. The length of this period may differ by the relevant compound
and has been estimated to range between 3 and 10 days (Geron et al. 2000; Gray et al. 2003;
Petron et al. 2001). Under temperate conditions in a Norway spruce forest, terpene emissions
that were dominantly from de-novo synthesis varied from 0.05 to 332.5 pg gdw-! h-1 with a peak
in August (Wang et al. 2017). In contrast, emission capacity dynamics in tropical forests seem
much less intense and are driven by leaf aging and flushing, probably triggered by dry and wet
season (Alves et al. 2018; Barkley et al. 2009; Kuhn et al. 2004; Trostdorf et al. 2004).
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Another reason of seasonality that has long been neglected is also related to tissue development
but independent of precursor production or enzyme activity: Monoterpene and sesquiterpene
emission rates from buds are up to 500 times and OVOCs up to 20 times higher than of mature
needles in Scots pine (Aalto et al. 2014; Duhl et al. 2008) or in the flowering phase of grass
(Fukui and Doskey 1998), maize plants (Wifd et al. 2017) and rapeseed (Miiller et al. 2002).
Similarly, young leaves of various species have been shown to emit much higher rates of
methanol and acetone than their mature counterparts (Bracho-Nunez et al. 2011; Brilli et al.
2016; McKinney et al. 2011; Schade and Goldstein 2006), possibly supporting the dilatation of
cells or providing protection for premature tissues. On the other hand, specific BVOCs are
increased particularly in senescent tissue such as methanol and some other OVOCs in maize
leaves (Mozaffar et al. 2018).

As mentioned in the previous chapter, also emissions from storages perform a certain degree of
seasonal cycles, connected to periods of supply limitations in foliage during early development
stages (Schurgers et al. 2009). It follows that compounds emitted from de-novo synthesis and
those emitted from storages have different seasonal patterns, independent on their sensitivity to
immediate climate conditions (Geron and Arnts 2010; Holzke et al. 2006; Nogués et al. 2015;
Schurgers et al. 2009; Vanhatalo et al. 2018).

5.2.2 CO, Concentration
Keyword: CO2 impact

The impact of CO, on BVOC emission is one of the earliest investigated but the mechanisms of
action are far less well explained than those of temperature and radiation. As has been pointed
out by several reviews, the dominating effect is a decrease of emission with increasing CO-
concentration (Baraldi et al. 2004; Holopainen 2013; Monson et al. 2009). This result is based on
the clear majority of investigations on isoprene that are mainly done on strongly emitting poplar
and oak species (see Table 4). The shape of the response has been described as an exponential
decline by various authors as is exemplarily shown in Figure 5. Nevertheless, the exceptions are
remarkable since they indicate that species with different sensitivities exist (Li et al. 2009) and
that acclimation responses are possible if plants are developing in a high CO, environment
(Tognetti et al. 1998). Other experiments indicate that the response might describe an optimum
curve because very low CO, concentrations are again negatively affecting emission since
precursor supply from alternative sources is slow (Affek and Yakir 2003). It is also noted that
this response pattern depends on boundary conditions, as a decreasing CO; effect has been
observed at increasing temperatures (Loreto and Sharkey 1990). The effect is also apparent for
sesquiterpenes although only one investigation on this compound is available (Huang et al.
2018) but much less obvious for (de-novo synthesized) monoterpenes and OVOCs where equal
numbers of increasing and decreasing or neutral observations have been found.

Several explanations have been brought forward to explain the responses, focusing on the
feedback from carbon metabolism. First, it was hypothesized that high carbon availability leads
to an exhaustion of energy which is then not available for BVOC synthesis (Sharkey et al. 1986)
whereas Sanadze (1991a) and Monson (2009) proposed competing carboxylation schemes that
result in a reduction of essential isoprene precursors with increasing CO;. Similarly,
photorespiration under low carbon availability has been proposed as competition process for
precursors (Dani et al. 2014b). Experimental evidence led to a combination of these theories,
suggesting that DMADP pool size is the decisive carbon compound that is regulated by energetic
metabolites (Rasulov et al. 2009; Rasulov et al. 2016). This has been supported by the finding
that DMADP pool is indeed smaller under elevated CO; (Sun et al. 2012b) and that it is faster
refilled under high temperatures when CO; inhibition is lost (Niinemets and Sun 2015).
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It should be noted that all of these explanations focus on de-novo production, while the effect on

storages is difficult to assess since a higher supply rate is only effective in limiting conditions
(see chapter 5.2.1.2) or over longer time periods. Currently, a general trait cannot be depicted
since investigations about increasing (in pine) (Sallas et al. 2001) as well as decreasing (in
spruce) (Sallas et al. 2003) terpenoid concentrations under elevated CO; have been found.

Table 4:

BVOC emission response to increasing CO, concentrations

Emission type
isoprene
isoprene
isoprene
isoprene
isoprene
isoprene
isoprene
isoprene
isoprene
isoprene
isoprene
isoprene
isoprene
isoprene
isoprene
isoprene
isoprene
isoprene
isoprene
isoprene
isoprene
isoprene
isoprene
isoprene

isoprene

isoprene

Emission response
decrease
decrease
decrease
decrease
decrease
decrease
decrease
decrease
decrease
decrease
decrease
decrease
decrease
decrease
decrease
decrease
decrease
decrease
decrease
decrease
decrease
decrease
decrease / increase
increase
increase

increase

Plant species/ type
Acacia

Arundo, Mucuna
Liquidambar
Phragmites
Platanus
Populus

Populus

Populus

Populus

Populus

Populus

Populus

Populus

Populus

Populus

Quercus (d)*
Quercus (d)*
Quercus (d)*
Quercus (d)*
Quercus (d)*
Quercus (d)*
Tropical rainforest
Populus

Ginkgo

Populus

Quercus (d)*
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Reference

(Possell and Hewitt 2011)
(Possell et al. 2005)
(Monson et al. 2007)
(Scholefield et al. 2004)
(Velikova et al. 2009)
(Monson and Fall 1989)
(Monson et al. 1991)
(Sharkey et al. 1991)
(Rosenstiel et al. 2003)
(Centritto et al. 2004)
(Pegoraro et al. 2004a)
(Monson et al. 2007)
(Pegoraro et al. 2007)
(Wilkinson et al. 2009)
(Eller et al. 2012)

(Jones and Rasmussen 1975)
(Tingey et al. 1981)
(Loreto and Sharkey 1993)
(Rapparini et al. 2004)
(Possell et al. 2004)
(Monson et al. 2007)
(Pegoraro et al. 2005)
(Loreto and Sharkey 1990)
(Li et al. 2009)

(Sun et al. 2013)

(Sharkey et al. 1991)
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Emission type
isoprene

isoprene

isoprene

monoterpenes
monoterpenes
monoterpenes
monoterpenes
monoterpenes
monoterpenes
monoterpenes
monoterpenes
monoterpenes
monoterpenes
monoterpenes
monoterpenes

monoterpenes

monoterpenes
OVOCs

OVOCs

OVOCs

OVOCs (methanol)

sesquiterpenes

Emission response
increase
neutral
neutral
decrease
decrease
decrease
decrease
decrease
decrease
decrease
increase
increase
increase**
neutral
neutral

neutral

neutral
decrease
neutral
neutral
increase

decrease

Plant species/ type
Quercus (d)*
Populus
Quercus (d)*
Betula
Heathland
Larix

Picea
Populus
Quercus (e)*
Quercus (e)*
Brassica
Populus
Pinus
Ginkgo
Pinus

Pinus, Pseudotsuga

Quercus (e)*
Betula
Carpinus
Quercus (d)*
Populus

Picea

*  oak species are differentiated into deciduous (d) and evergreen (e) species

** only plant tissue concentrations were investigated
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Reference

(Tognetti et al. 1998)
(Sun et al. 2012b)
(Buckley 2001)
(Vuorinen et al. 2005)
(Tiiva et al. 2017)
(Mochizuki et al. 2017)
(Huang et al. 2018)
(Eller et al. 2012)
(Loreto et al. 2001a)
(Rapparini et al. 2004)
(Himanen et al. 2009)
(Staudt et al. 2001)
(Sallas et al. 2001)

(Li et al. 2009)
(Raisdnen et al. 2008)

(Constable et al. 1999a;
Constable et al. 1999b)

(Loreto et al. 1996)
(Vuorinen et al. 2005)
(Kreuzwieser et al. 2006)
(Kreuzwieser et al. 2006)
(Eller et al. 2012)

(Huang et al. 2018)
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Figure 5: Leaf-level response of isoprene emissions to varying CO, growth environment
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Source: Reproduced from Arneth et al. (2011)

5.2.3 Drought
Keyword: Drought impact

Plants take up water from the soil in order to provide turgor pressure that enables the uptake of
CO; through stomata. If water supply is insufficient for this task, plants are supposed to suffer on
drought. The first response to this stress is stomata closure which is easily revertible and aims to
establish equilibrium between water uptake and loss, while further water depletion leads to
wilting and tissue damages such as leaf and root senescence as well as embolism (Bartlett et al.
2016; Sperry et al. 2002). Such direct responses to drought result in numerous physical and
biochemical changes that also affect the emission of BVOCs which is elaborated in this chapter.
Long-term water deficits may also lead to acclimation responses such as producing less leaves,
more roots or less susceptible hydraulic systems (Chaves et al. 2003). Together with shifts in
species abundance towards more drought tolerant vegetation communities these are, however,
considered indirect and thus not discussed here.

Stomatal closure leads to a higher internal gas pressure which causes soluble BVOC compounds
such as methanol to be temporarily stored in the cytosol and released when stomata open,
leading e.g. to emission bursts in the morning or after drought release (Niinemets et al. 2018;
Niinemets and Reichstein 2003; Saunier et al. 2017). In contrast, isoprenoid emission doesn't
directly depend on stomata conductance, indicating that it accumulates within the leaf up to a
level that enables exchange through the cuticle or remaining stomata conductance (Harley
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2013). Different from accumulating internally produced gases, CO, within the plant is depleted
due to limited supply. As evaluated in chapter 5.2.2, this effect is generally favoring isoprenoid
production. In fact, an increasing isoprene emission that is attributed to a higher internal CO-
has been reported in various investigations (Dani et al. 2014b; Pegoraro et al. 2004a; Potosnak
2002). However, a competing theory has be developed that residual reducing power unused by
carbon assimilation drives increased isoprene emission under various abiotic stresses
(Niinemets et al. 1999) which is supported by a number of experimental results (Dani et al.
2014b; Morfopoulos et al. 2014; Possell et al. 2004; Zheng et al. 2017). The theory explains
different emission responses with increasing drought stress as is illustrated in Figure 6.

It is difficult to distinguish the biochemical impacts from another BVOC enhancing effect: Due to
the reduced transpiration, evaporative cooling of the leaves is less effective or is not available
anymore at all. Thus, leaf temperature is rising and increases isoprene emission as depicted in
chapter 5.2.1 (Arab et al. 2016; Monson et al. 2007). Nevertheless, decreased internal CO;
concentration and increased temperature might still not be sufficient to explain the wide-spread
phenomenon of increased isoprenoid emissions due to mild and moderate drought stress (Llusia
etal 2008; Llusia et al. 2016; Monson et al. 2007; Ormeno et al. 2007b; Pegoraro et al. 2007;
Staudt et al. 2008; Tattini et al. 2015; Yuan et al. 2016). In addition, higher tissue temperatures
during drought periods may also induce BVOC production in order to protect membranes and
increase antioxidative defense capacity (Velikova 2008; Vickers et al. 2009a) (see also chapter
5.1.3). This is supported by increases in ROS (Marino et al. 2017; Ryan et al. 2013) as well as
emission of methyl salicylate, often found in response to stress conditions (Bourtsoukidis et al.
2014Db). Although seldom investigated, GLV also seem to be emitted in response to acute drought
stress which is strongly indicative for induced emissions (Simpraga et al. 2011; Wenda-Piesik
2011).

Although emission in some arid ecosystems seem not to be affected by drought (Guenther et al.
1999), the majority of investigations indicate a decline of BVOC emission under severe drought
stress (Asensio et al. 2007a; Brilli et al. 2007; Briiggemann and Schnitzler 2002; Fang et al. 1996;
Funk et al. 2005; Geron et al. 2016a; Llusia and Pefiuelas 1998; Llusia et al. 2016; Lusebrink et al.
2011; Nogues et al. 2018; Plaza et al. 2005; Pressley et al. 2006; Seco et al. 2015; Staudt et al.
2008; Tani et al. 2011). This decline has been described as linearly related to soil water potential
(Wuetal 2015). Itis uncoupled from photosynthesis and considerable less expressed as the
response of assimilation (Centritto et al. 2011; Fortunati et al. 2008; Genard-Zielinski et al.
2014). Although most investigations focus on isoprene and monoterpenes, the decline can be
observed on other emissions from de-novo production too (Haberstroh et al. 2018; Niinemets et
al. 2018; Saunier et al. 2017). There are slight indications that sesquiterpenes are more sensible
to decreasing water availability than other isoprenoids but the uncertainty is high due to the
scarcity of measurements (Ormeno et al. 2007b). BVOC emissions from pools are generally less
affected but longer stress periods are likely to decrease these emissions too (see chapter
5.2.1.2). Indeed, observations in a deciduous mixed forest have indicated a slow decline of
methanol emissions throughout the drought period (Seco et al. 2015) and terpenoid emission
development measured at a Mediterranean shrub (Gum rockrose) indicated a depletion of the
leaf storage (Haberstroh et al. 2018). This implies that if the blend of emissions originates from
de-novo production as well as from storages, the emission composition changes during the
drought event as has been documented for the Mediterranean shrub rosemary (Rosmarinus
officinalis L.) (Nogués et al. 2015), eucalypts (Brilli et al. 2013), as well as for Scots pine
seedlings (Liipke et al. 2017a).
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Figure 6: A notional view of the relationship between net assimilation rates (green line in all
images) and electron transport rate, photorespiration rate and isoprene emission
rate (top to bottom) as eucalypts are exposed to diminishing water supply.
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While the responses of isoprenoid emissions seem to have the same general response pattern,
species-specific sensitivities are large. For example the decline of isoprene emission started
earlier in Pedunculate oak than in Holm oak trees (Briiggemann and Schnitzler 2002) and Red
oak species showed to be more sensitive than White oak species in experiments providing the
same boundary conditions (Geron et al. 2016a). Other literature references indicated that some
species such as orange trees are very insensitive, reducing mono- and sesquiterpene emissions
only by 6 % for under severe drought (Hansen and Seufert 1999) while in others such as Aleppo
pine and rubber trees emission declines to levels just above the detection limit (Baker et al.
2005; Seco et al. 2017).

BVOC emissions also recover faster and more complete from severe water limitations than
photosynthesis (Fang et al. 1996; Pegoraro et al. 2004b; Pefiuelas et al. 2009). In some cases,
emission increased considerable beyond the pre-stressed level (Saunier et al. 2017; Sharkey and
Loreto 1993; Staudt et al. 2008). Interestingly, the intensity of emission also determines the
degree of photosynthesis recovery, indicating a protective function so that damages were less
severe and repair was faster (Liipke et al. 2017a; Vanzo et al. 2015). If the drought event led to
tissue damages, the process of senescence, degradation and repair is likely related to particular
BVOC emissions. These processes are known to release OVOCs in substantial amounts e.g. in
senescing grass crops (Karl et al. 2005), poplar (Brilli et al. 2016; Sun et al. 2012a), birch
(Holopainen et al. 2010), and maize (Mozaffar et al. 2018) while costly terpenoids are assumed
to be reduced.

For the ecosystem exchange it may also be important that not only emissions from soil (that are
generally of minor importance) but also its sink strength is altered during drought events. For
example it has been found that sink capacity of the soil decreased with decreasing water content
(Pegoraro et al. 2006). However, results are not consistent and may depend strongly on soil
properties as also increased exchange rates have been observed for which autotrophic
metabolism in roots might be responsible (Asensio et al. 2007b; Geron et al. 2016a).

5.24 Nutrient Supply
Keyword: Nutrient impact

Soil nutrient impact on BVOC fluxes has received relatively little attention (Ormefio and
Fernandez 2012; Pefiuelas and Staudt 2010), despite a number of physiological relations that
seem to indicate a significant relevance of this influence: Nitrogen concentrations in plant tissue
should affect terpenoid emissions due to their effect on electron transport rate and leaf
photosynthesis which provide chemical energy and carbon substrate availability (Lerdau et al.
1995). Phosphorus is expected to influence terpenoid production since terpenoid precursors
contain high-energy phosphate bonds and phosphorus is a key component of ATP and NADP
which are required for terpenoid synthesis (Niinemets et al. 2002). But not only de-novo
emissions but also emissions from storages are related to nutrient availability. For example
resin acid concentrations have been found to increase in fertilized Scots pine trees (Bjorkman et
al. 1991; Kivimdenpaa et al. 2016).

Most studies focused on isoprene emissions under fertilization treatments, indicating that there
is a positive dependence between nutrients and terpenoid concentration within the plants
(Fernandez-Martinez et al. 2018; Litvak et al. 1996; Powell and Raffa 1999) as well as between
nutrient concentrations and BVOC emissions (Materic et al. 2016; Ormeno et al. 2007a). This has
mostly been demonstrated for nitrogen (Gouinguené and Turlings 2002; Lerdau et al. 1997;
Ormeno et al. 2009; Possell et al. 2004). However, a considerable number of invariant and even
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negative relationships have also been found (Blanch et al. 2007; Kainulainen et al. 2000; Llusia
et al. 2014; Mihaliak and Lincoln 1985; Sampedro et al. 2010).

These seemingly contradictory results might be related to responses being triggered on different
time scales. For example, nutrient availability at one point in time might initialize the building of
storage structures that are difficult to fill once they are finished. Therefore, phenology and long-
term allocation processes need to be considered, linking leaf morpho-anatomy with cell
biochemistry and physiology (Lerdau et al. 1997; Lerdau et al. 1995; Ormefio and Fernandez
2012). Another explanation might result from a shift in the blend of emissions that has not been
explored until recently since methodological difficulties prevent the continuous observation of
many compounds at the same time over a prolonged period. For example, a nitrogen-induced
shift has been found from terpenoids towards GLV and LOX products in birch trees (Carriero et
al. 2016).

The effect of nutrients on BVOC emissions is largely indirect, acts on different time scales and
competes with various other processes that might require or release nutrients. Thus,
considering interactions with other environmental factors (abiotic and biotic) is particularly
important. Only few studies have explicitly addressed interactions with drought (Blanch et al.
2007) or light (Lamontagne et al. 2000; Litvak et al. 1996) yet. When growth periods or even
successional developments should be evaluated, even competition among plants needs to be
considered because it strongly affects nutrient uptake and allocation processes (Kegge and
Pierik 2010; Pefiuelas and Llusia 1999).

5.2.5 Air Pollution
Keyword: Air pollution impact

Air pollution is per-definition a detrimental influence on plants with effects on various levels
reaching from reducing radiation due to aerosols and particle deposition (Prajapati 2012) to the
disruption of membranes due to oxygenated stress (Sharma et al. 2012). These influences and
damages reduce the photosynthetic capacity (Dizengremel 2001) and deteriorate stomatal
regulation (Onandia et al. 2011). On the longer term, air pollution-triggered damages reduce
yield, enhance foliage senescence and may finally lead to premature death (Leisner and
Ainsworth 2012). Since BVOC emissions are related to photosynthesis and leaf area, the effect on
constitutive emissions is closely correlated to these damages (Tiwari et al. 2016).

However, the impact of air pollution, in particular that of compounds that exert oxidative stress
such as ozone, on BVOC emissions is not a one-way street but is characterized by a complex net
of interaction. Two aspects have to be considered: First, BVOCs are supposed to play an
important role in defense and damage repair, particularly related to impacts of oxidative stress
(Fineschi and Loreto 2012; Holopainen 2004; Iriti and Faoro 2009; Loreto and Fares 2007;
Tiwari et al. 2016; Velikova 2008; Vickers et al. 2009a). Second, BVOCs can be emitted in
increased amounts and with different composition if exposed to certain stimuli (Calfapietra et al.
2013; Iriti and Faoro 2009; Pinto et al. 2010; Spinelli et al. 2011). In the following, an overview is
presented of case studies that evaluate if air pollution can induce a stimulus that is able to
trigger the production and emission of BVOCs, without going into details regarding the function
of emissions, i.e. the mechanisms of defense and repair. The presented list is only considering
ozone effects since the vast majority of investigations concentrate on this pollutant, but the few
studies that are available on the topic indicate a similar response to NO, and SO, exposure
(Mayer et al. 2018; Wannaz et al. 2003).
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Table 5:

BVOC emission response to increasing ozone concentrations

Emission type

terpenes
terpenes
terpenes
terpenes
terpenes
terpenes
terpenes
terpenes
terpenes
terpenes
terpenes
terpenes
terpenes
terpenes
terpenes
terpenes
terpenes
terpenes
terpenes
terpenes
OVOCs, MeSA
OVOCs, MeSA
OVOCs, MeSA
OVOCs, DMNT
OVOCs
OVOCs
OVOCs
OVOCs
OVOCs
isoprene

isoprene

Emission
response

increase
increase
increase
increase
increase
increase
increase
increase
increase
increase
increase
increase
increase
increase
neutral
neutral
neutral
neutral
decrease
decrease
increase
increase
decrease
increase
increase
increase
increase
increase
increase
increase

increase

Plant species/ type

Broadleaved (Birch)
Broadleaved (Croton)
Broadleaved (Croton)
Broadleaved (Ginkgo)
Broadleaved (Holm oak)
Broadleaved (Holm oak)
Broadleaved (Holm oak, Olive)
Conifers (Pine)

Conifers (Pine)

Conifers (Pine)

Conifers (Spruce)

Gras (Phragmites)
Herbaceous (Tobacco)
Peatland

Broadleaved (Birch)
Conifers (Pine)

Conifers (Spruce)
Conifers (Larch)
Herbaceous (Ornithopus, Trifolium)
Herbaceous (Rapeseed)
Broadleaved (Croton)
Herbaceous (Bean)
Broadleaved (Birch)
Broadleaved (Birch)
Broadleaved (Beech)
Broadleaved (Poplar)
Herbaceous (Tobacco)
Herbaceous (Tobacco)
Peatland

Broadleaved (Downy oak)

Broadleaved (Ginkgo)
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Reference

(Carriero et al. 2016)
(Bison et al. 2018)
(Cardoso-Gustavson et al. 2014)
(Li et al. 2009)

(Loreto et al. 2004)

(Vitale et al. 2008)

(Llusia et al. 2002)

(Heiden et al. 1999)
(Kivim&enpaa et al. 2016)
(Kivimdenpaa et al. 2013)
(Bourtsoukidis et al. 2012)
(Velikova et al. 2005a)
(Kanagendran et al. 2018b)
(Rinnan et al. 2005)
(Vuorinen et al. 2005)
(Pefiuelas et al. 1999)
(Lindskog and Potter 1995)
(Lindskog and Potter 1995)
(Llusia et al. 2014)
(Himanen et al. 2009)
(Cardoso-Gustavson et al. 2014)
(Li et al. 2017)

(Hartikainen et al. 2012)
(Carriero et al. 2016)
(Cojocariu et al. 2005)
(Fares et al. 2010)

(Jud et al. 2016)
(Kanagendran et al. 2018b)
(Rinnan et al. 2005)
(Velikova et al. 2005b)

(Li et al. 2009)
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Emission type Emission Plant species/ type Reference
response

isoprene increase Broadleaved (Poplar) (Fares et al. 2006)
isoprene increase Broadleaved (Eucalypt) (Kanagendran et al. 2018b)
isoprene increase Herbaceous (Tobacco) (Kanagendran et al. 2018a)}
isoprene neutral Broadleaved (Poplar) (Blande et al. 2007)
isoprene neutral Broadleaved (Poplar) (Hartikainen et al. 2009)
isoprene neutral Peatland (Tiiva et al. 2007b)
isoprene decrease Broadleaved (Oaks) (Tani et al. 2017)
isoprene decrease Broadleaved (Poplar) (Calfapietra et al. 2007)
isoprene decrease Broadleaved (Poplar) (Calfapietra et al. 2008)
isoprene decrease Broadleaved (Poplar) (Fares et al. 2010)
isoprene decrease Broadleaved (Poplar) (Yuan et al. 2016)

?? increase Conifers (Pine) (Xu et al. 2012)

?? increase Herbaceous (Tomato) (Pefiuelas et al. 1999)

Despite the difficulties in comparing responses that originate from a wide array of ozone
concentrations and experimental boundary conditions, it is obvious from the overview in table 5
that ozone induced emissions are widespread but differ with respect to compound and species.
While in few studies no emission change has been found, terpene and OVOC emission mostly
increased in response to ozone exposure. Only in two herbaceous species in case of terpenes
(Himanen et al. 2009; Llusia et al. 2014) and one study on birch with respect to OVOCs
(Hartikainen et al. 2012) decreases were recorded. In particular conifers seem to enhance their
de-novo production and emission of monoterpenes. In contrast, isoprene was decreased or
showed no response in the majority of investigations. Still strong indication exist that isoprene
emissions can principally also be enhanced (Fares et al. 2006; Kanagendran et al. 2018b; Li et al.
2009; Velikova et al. 2005b).

Different responses can be explained by different environmental conditions, species and clone
sensitivities (Calfapietra et al. 2008; Pellegrini et al. 2012; Pefiuelas et al. 1999), as well as
experimental setups. For example very high ozone exposure might easily overburden any
defense capacity destroying the basis for BVOC production while intermediate ozone
concentrations stimulate emissions (Pinelli and Tricoli 2008), particularly if applied over longer
periods (Heiden et al. 1999). In the latter cases, BVOCs can play important roles in the defense
system and need to be upregulated on the genetic level such as isoprene and many terpenes
(Fares et al. 2006; Velikova et al. 2005b) (see also chapter 5.1.3). In contrast, the release of
various OVOCs can be very fast, leading to so-called emission bursts that may not be long-lasting
but serve as stress signal to other plants and to initiate a cascade of defense reactions
(Beauchamp et al. 2005; Heiden et al. 2003; Liet al. 2017; Vainonen and Kangasjarvi 2014).
Defensive compounds might not necessarily be de-novo synthesized but can be released from
specialized storage structures, called secretory cavities or oil glands (Jud et al. 2016). Other
OVOCs are indicators for membrane damage and might occur particularly after prolonged
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periods of ozone exposure (Vitale et al. 2008) or during sensitive periods such as leaf flushing
(Fares et al. 2010).

Overall, ozone exposure is likely to increase the emission of BVOCs although it might be more
effective at intermediate than at very high levels. The magnitude of the response depends on the
sensitivity of the exposed tissue, magnifying effects in spring in relation to late summer. On the
short-term, the overall emission blend will tend to increase OVOC emission relative to
terpenoids although this may shift over time (Farré-Armengol et al. 2016).

5.2.6 Pathogen Induced Emissions and Wounding
Keyword: Wounding impact

In addition to induction by light, temperature and oxidative air pollutants, BVOCs may also be
induced mechanically by biting, sucking, cutting or wounding by abrasion due to wind
movement (Haase et al. 2011) or freeze/thaw cycles (Fall et al. 2001). Although the drivers can
be physical, biological or anthropogenic, the signal and thus the responses of plants are often
similar. The emission compounds may be de-novo produced or released from storages when the
diffusive resistance is decreased by wounding of any kind. Both can have direct repellent
properties, serve as signals that induce defensive compounds in other leaves or plants, or
mediate interactions with organisms from higher trophic levels (i.e., parasitoids or carnivores)
(Arimura et al. 2005; Gatehouse 2002). Indeed, BVOC releases are assumed to be one of the
fastest exploited weapons, with respect to minimizing the yield losses and providing tolerance to
various stresses. Many of the volatile terpenes are nonspecific toxins active against a wide range
of organisms (bacteria, fungi, plants and animals) (Meena et al. 2017). This doesn't exclude the
emission of specific BVOC blends particularly in cases where wounding is connected to the
induction of chemical compounds such as the release of saliva from herbivores or while fungi
infest plant tissue (Heil 2014; Jansen et al. 2011; McCormick et al. 2012).

The production and release of BVOCs in response to wounding generally occurs within very
short time periods after the induction event independent of the kind of induction. However, at
least fungal influences seem to increase their inductive strength with time leading to an
increasing effect on production. In general, insects seem to induce the lowest effect on BVOC
production, with piercing/sucking impacts being considerable less effective than chewing
insects (Ameye et al. 2018). In a case study on poplar, an emission cascade was rapidly elicited
after wounding, resulting in sequential emissions of key stress volatiles methanol, acetaldehyde,
and volatiles of the LOX pathway. The maximum emission rates were reached after one to three
minutes after the start of the treatment (Portillo-Estrada et al. 2015).

The emission compounds are numerous but OVOCs, and more specifically GLVs, constitute a
general element in most of these blends, in particular aldehydes, alcohols and acetates (Blande
et al. 2014). In most observed cases, wounding, herbivory or fungal infection doesn't change the
relative composition of GLVs, with the exception of aldehydes that increase particularly after
fungal infection (Ameye et al. 2018). The emission is generally proportional to the extent of
wounding (Mithofer et al. 2005; Niinemets et al. 2013; Portillo-Estrada et al. 2015) and occurs in
attached or detached leaves, and even increases when detached leaves dry out, indicating that a
considerable part of these emission fraction are released from the litter layer (Fall et al. 1999).
However, large and rapid bursts of acetaldehyde have been reported not only at the cutting site
but also on parts of the leaf distant from the cut (Loreto et al. 2006).

Other BVOCs are induced too. For example homoterpenes such as dimethyl-nonatriene (DMNT)
have often been found in response to herbivore attack (Copolovici et al. 2014; Ibrahim et al.
2008; Kigathi et al. 2009; Oluwafemi et al. 2012; Tholl et al. 2011; Vuorinen et al. 2004) and
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together with methyl salicylate (MeSA) are assumed to particularly contribute to so-called "tri-
trophic interactions' (Mooney et al. 2012). By sending a signal which attracts predators of
parasites that feed on the plant, an indirect defense mechanism can be established (Copolovici et
al. 2011; Holopainen et al. 2010; Kigathi et al. 2009). Since wounding is often related to
membrane damage, also isoprene and terpene production may be upregulated in species that
provide the necessary genetic preconditions (Achotegui-Castells et al. 2013; Brilli et al. 2011;
Faiola et al. 2015; Kanagendran et al. 2018b; Litvak et al. 1999; Piesik et al. 2010; Prieme et al.
2000; Semiz et al. 2017; Visakorpi et al. 2018) but may also been downregulated in favor of GLVs
(Brilli et al. 2009; Copolovici et al. 2017). The upregulation of terpenoids have been found to
increase emissions by a factor of approximately 10 to 20 in response to needle damages of
feeding insects (Ghimire et al. 2017) as well as to bark beetle infestations (Amin et al. 2012;
Amin et al. 2013).

It should be noted that wounding includes cutting which is a widespread management activity in
grasslands and forests. Grasslands and pastures release high amount of GLVs, in particular
alcohols into the air (Davison et al. 2008; Karl et al. 2001; Warneke et al. 2002). Due to the large
abundance of this ecosystem and management activity, it has been estimated that the large
transient fluxes, when integrated over time, could be of the same order of magnitude as
constitutive emissions from undisturbed pasture. This would virtually double emission
estimates from these ecosystems (Kirstine et al. 1998). Forest harvests and thinning are by
definition much less frequent. Nevertheless, a thinning of half the trees in a Scots pine forests
has triggered a monoterpene release from wounded tissue that was 40 times the constitutive
emission rate (Schade and Goldstein 2003). Similar increases of monoterpenes have been
observed after hailstorms (Kaser et al. 2013), which didn’t effect MBO releases, indicating that
these emissions originate from damaged storages.

TextBox: The Most Important Drivers for Intensity and Composition of BVOC Emissions

It should be noted that emission potentials, the ability for VOC storage, and the composition of de-
novo produced and constitutive BVOCs are determined on the genetic level. Various
environmental conditions are responsible for the expression of this species-specific potential, from
which temperature and radiation are the most important factors, both for short- and longer term
impacts. Water availability affects BVOC emission directly and indirectly and may act in different
directions dependent on stress severity. While minor stress tends to increase emissions, BVOCs
decline under intensive drought. CO, and nutrient availability do also change BVOC emission
intensity but the exact mechanism is not known indicating considerable uncertainties in the
estimation of future BVOC responses. Induced emission by biotic or abiotic disturbances can
overtop constitutive emissions by more than one order of magnitude and has important functions
for plant defense and repair.

5.3 Expected BVOC Emissions under Global Change
Keyword: Global change impact

Models are required to assess the impacts of future climate- and land-use changes on BVOC
emissions as well as their feedback responses to air chemistry and climate (Arneth et al. 2010b;
Pefiuelas and Llusia 2001). To this end, few approaches have been established that are still
further developed (Grote and Niinemets 2008; Langford et al. 2017). When coupled to dynamic
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vegetation models, it becomes apparent that not only direct impacts on the emission per unit
leaf area have to be considered, but also indirect impacts that are related to the changes in
vegetation properties (Arneth et al. 2011; Harrison et al. 2013; Niinemets and Monson 2013;
Sharkey and Monson 2014). Therefore, management decisions that influence species abundance
and vegetation distribution are expected to have strong influences on BVOC emissions (Pike and
Young 2009).

5.3.1 Model Approaches for Scenario Analysis
Keyword: BVOC emission modelling

A number of model estimates for global BVOC emissions have already been presented in Table 3.
The similarity of results at least with respect to isoprene has been attributed to the application
of the same model approach and similar parameters for potential emissions of widely lumped
ecosystems (Arneth et al. 2008a). Indeed, only few model approaches have been applied starting
with a simple integrated formulation (Tingey 1979), which has been elaborated particularly by
Guenther et al. who differentiated between light and temperature dependency and de-novo and
storage emissions (Guenther 1999; Guenther et al. 1995; Guenther et al. 1993). A different
approach using the dependence of emission from photosynthesis (or more specifically electron
transport) has been developed by Niinemets with elaborations from other authors (Grote et al.
2014; Morfopoulos et al. 2013; Niinemets et al. 1999). Other approaches have been developed
focusing on the precursor supply for BVOC production (Back et al. 2005; Martin et al. 2000) and
enzyme Kinetic properties (Grote et al. 2006; Zimmer et al. 2000), which are however not
adapted in regional models. Besides temperature and radiation, seasonality has been accounted
for by either modifying emission potentials by empirically-derived sinus-shaped curves,
considering an influence on emission parameters by temperature and radiation conditions
averaged over the preceding couple of days, or by calculating enzyme capacity considering
temperature-related formation and degradation processes (Grote et al. 2010; Grote et al. 2013;
Monson et al. 2012). In addition, the age effect has been considered in modelling vegetation
types that are dominated by evergreen plants, by differentiating the canopy in different leaf age
classes and designating specific reduction factors to each (Guenther et al. 2006).

Regional inventory models have been developed with the Model of Emissions of Gases and
Aerosols from Nature, MEGAN, being the most prominent one (Guenther et al. 2006; Heald et al
2008; Jiang et al. 2018). Another very similar approach which is also based on the Guenther
algorithm is the Biogenic Emission Inventory System (BEIS) (Apel et al. 2002; Goldstein et al.
1998; Lamb et al. 1993; Pierce and Waldruff 1991). Both of these models have been run as
stand-alone versions as well as coupled to atmospheric model systems. The Guenther approach
has also been directly implemented in regional chemistry transport models (CTMs) to feed BVOC
into the atmosphere, as well as into dynamic vegetation models in order to produce emission
inventories or to investigate the relationship between BVOC emission and other plant processes.
Prominent examples for the first type of models are EMEP MSC-W (Simpson 1992; Simpson et al.
2012; Vieno et al. 2010) and LOTOS-EUROS (Schaap et al. 2009). Vegetation models that have
been used with the Guenther approach comprising e.g. CANVEG (Baldocchi et al. 1999), IBIS
(Naik et al. 2004), ORCHIDEE (Lathiere et al. 2006), and GOTILWA (Keenan et al. 2011; Keenan
et al. 2009). The Niinemets approach has been used to add the BVOC functionality to the
dynamic global vegetation models (DGVMs) Lund Potsdam Jena General Ecosystem Simulator
(LPJ-GUESS) (Arneth et al. 2007b), the Joint UK Land Environmental Simulator (JULES), and the
Hadley Global Environment Model (HadGEM) (Pacifico et al. 2011). In some models such as the
Yale Interactive terrestrial Biosphere (YIB) model (Unger et al. 2013; Yue and Unger 2015; Yue
etal 2015), both emission approaches have been implemented for uncertainty analysis. Similar

47



TEXTE Environmental impacts on biogenic emissions of volatile organic compounds (VOCs) — Final report/Interim
report/Executive summary

to the models using the Guenther approach, JULES, HadGEM and YIB have also been used as land
surface models that are online-coupled with atmosphere models to evaluate climate and air
chemistry impacts of BVOCs (Harper and Unger 2018; Oliver et al. 2018). Since all models within
one of these two groups use the same emission functions, parameterization and approaches to
scale from the leaf to the canopy are the major source of diverse results (Simpson et al. 1995).

Not only temperature and radiation effects are treated similar, at least within a group of models
using the same mechanism, but also CO; and drought response functions are considered
similarly. In order to account for the CO; effect, both the Guenther and the Niinemets model have
been complemented with negative exponential functions that have been empirically determined
(Arneth et al. 2007a; Arneth et al. 2007b; Goldstein et al. 1998; Heald et al. 2009; Wilkinson et al.
2009). For the consideration of drought effects, a simple linear function has been used that
decreases emission between wilting point and a threshold water capacity (Grote et al. 2009;
Guenther et al. 2006). There is currently no relationship implemented in emission models that
account for induced emissions in response to air pollution, insect gradations, or mechanical
disturbances although this issue has been recognized as important (Arneth and Niinemets
2010). However, experimentally determined relations between stress induced and constitutive
emissions have been used to quantify the impact of spruce aphids in the field (Bergstrém et al.
2014).

Another reason for the relatively small differences in global simulations, at least regarding
isoprene, is that over the course of one or few years, changes in environmental boundary
conditions, i.e. air quality related issues (CO-, nitrogen deposition, ozone concentration) and
land cover properties (vegetation type, species composition, leaf area) can be assumed as fairly
constant. Nevertheless, these effects that are here referred to as 'indirect global change impacts'
can be very large. The ability to capture the influence of boundary conditions on emission
changes depends on:

1. The method of scaling from the leaf to the canopy which needs to be able to differentiate
between different canopy structures (Bryan et al. 2015) and has been shown to be
potentially responsible for large differences in emission (Keenan et al. 2011; Langford et al.
2017).

2. The variation of foliage amount and distribution in time (Gulden et al. 2007; Huang et al.
2014; Messina et al. 2016), particularly in dependence on plant growth influencing factors
(i.e. water, CO; and nutrient availability, air pollution and herbivore impacts).

3. The consideration of changing species abundances within one vegetation type which is
particularly important if transition phases should be covered (Grote et al. 2011; Wang et al.
2018).

4. The consideration of shifted distribution of vegetation types (except changes in vegetation
properties are based on traits and not on species). For example the impact of different
abundance of various vegetation types (mainly expansion of tropical forests) in an early
double CO; scenario has increased isoprene emissions by 25 % (Turner et al. 1991).

These issues are also major topics in research on plant development under climate change and
are therefore particularly addressed in DGVMs. Improvements may be expected also for CTMs
since land-use models are developed in a similar fashion to DGVMs or DGVMs are coupled to
CTMs. Nevertheless, global integrated simulations still adhere to the concept of plant functional
types (PFTs) where transient changes are difficult to realize and the underlying assumption of
static species composition is questionable for different regions as well as future conditions.
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TextBox: State of the Art of Modelling BVOCs

There is some confidence about the representation of short- and long-term impacts on BVOC
emissions. Two model approaches have been implemented in vegetation models of different
complexity and also have been coupled to various CTMs. For the challenging consideration of CO,
and drought impacts simple solution have been found and implemented that are able to
reproduce some observations. However, these implementations rely on uncertain boundary
conditions (soil properties, species-specific water use strategies) and still seem too simple to
respond adequately under dynamic environmental conditions. Induced emissions from abiotic as
well as biotic disturbances have been recognized as extremely important as they can increase
short- and medium term emission by at least one order of magnitude. They are also of a different
blend than emissions in undisturbed conditions. For these processes a general model relationship
with the environment has not been found yet.

5.3.2 Direct Effects of Climate Change on BVOC Emission
Keyword: Direct scenario impact

Due to the exponential relationship between BVOC emission and temperature, it can be assumed
that this will be a dominant impact on constitutive emissions under climate change. For example
simulated BVOC emission for Europe varied between warm and cool years between 1985 and
1991 by a factor of 1.5 (Simpson et al. 1995). Also, equilibrium simulations for the year 2100
that assumed no change in vegetation pattern and neglected direct CO; and drought impacts,
yielded a total BVOC emission increase of approximately 70 % (Liao et al. 2006; Pacifico et al.
2012). However, another study quantified the global emission increase in an expected climate in
the year 2095 as only 17 % (Squire et al. 2014). This expresses an uncertainty related to
different models and model settings but also depends on different assumptions regarding
temperature increases and temperature distribution. For example it has been shown that
climate scenarios for the next 100 years based on different representative concentration
pathways (RCPs) resulted in emission increases of 7, 33 and 83 % for RCP 2.6, 4.5, and 8.5,
respectively (Bauwens et al. 2018). Since temperature is expected to develop differently in
different regions, also emission increases vary with location. For example, simulated isoprene
and terpene emission increases for the year 2052 vary for the United States by 20-92 % (Zhang
et al. 2008), thereby compensating expected decreases of anthropogenic VOC emissions from
several states (Woo et al. 2008). Since climate warming is expected to be much stronger towards
the poles, temperature driven increase of BVOC emission will also be stronger in the northern
hemisphere (Lathiere et al. 2005), which is also the reason why a higher share of monoterpenes,
mainly emitted from temperate and boreal forests, is expected in a future climate (Liao et al.
2006). This is corroborated by results from warming experiments of arctic heathlands that
showed a 280 % increase in response to 4 °C temperature increase (Lindwall et al. 2016). It
should be noted, however, that temperature responses are simulated based on empirical
emission potentials measured at plants that are adapted to their environments today. A high
sensitivity to temperature changes in such plants thus might be related to their physiological
system that might adapt to warmer conditions (within the same species). For example
sensitivity to warming might decrease due to smaller protective requirements or simply due to
less effective surface warming resulting from higher transpiration (Lindwall et al. 2016).

The inhibition of emission due to increasing CO, concentration is mostly only considered for
isoprene de-novo production. Global and regional inventory calculations often (but not always)
include this effect since the end of the last decade. According to the functional relationship
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presented in chapter 5.2.2, the effect is a decrease between 25 and 60 % with a doubling of CO,,
which means that the effect by 2100 mainly depends on the climate change scenario.
Correspondingly, incorporating this effect resulted in global isoprene emissions in the year 2100
that were less than half the amount that would have been expected otherwise (Pacifico et al
2012; Young et al. 2009). In several studies, the CO; effect has been estimated to more than
compensate the positive temperature impact and lead to a net isoprene emissions decrease of
about 5 % in 2050 (Tai et al. 2013) and 24 % in 2100 (Squire et al. 2014). Since monoterpenes
are emitted from de-novo as well as from storage sources, and the response of de-novo
production of monoterpenes to CO; is far less clear, few investigations apply the CO; reduction
impact on monoterpenes as well as to isoprene. In these cases, the decreasing effect on overall
emission is even stronger, and the difference between regions where either isoprene or
monoterpene emitting species dominate is less obvious (Yue et al. 2015).

Incorporating the drought impact using a linear approach as described in the previous chapter
predicts a 50% reduction of isoprene emissions on a global scale, most significantly in specific
regions of Africa, South America and Australia (Sindelarova et al. 2014). For well parameterized
regions such as the United States, the drought impact contributed significantly to explain
variations in isoprene emissions (Tawfik et al. 2012). Similarly in southern France, it has been
estimated that emissions were not only decreased by 50% but also the number of days with high
emission peaks were widely reduced (Lavoir et al. 2011). However, the scheme has been
criticized to overestimate emission responses for central African rainforests (Marais et al. 2012)
and other tropical regions (Zheng et al. 2015) as well as for semi-arid and arid conditions
(Bauwens et al. 2016). It has also been shown to be very sensitive to uncertain soil
parameterization and inventory data (Huang et al. 2015b; Stavrakou et al. 2014). In a new
implementation that relates isoprene production to the drought impact on photosynthesis, a
BVOC emission reduction due to drought of 17 % on a global annual average seems to be
somewhat more realistic (Jiang et al. 2018). The approach, however, still relies on a
parameterization that is based on roughly stratified vegetation types and soil properties that are
difficult to determine on a larger scale.

According to the state of knowledge, induced emissions have hardly been simulated on a
regional or global scale. However, the emissions of sesquiterpenes and MeSA have been
quantified for European forests, based on experimentally determined relations between
emission degrees of infestation by aphids (Bergstrom et al. 2014). Using estimates of current
infestation levels and coupling the emission inventory data to a common CTM, the authors
estimated stress induced emissions to be responsible for 50-70 % of biogenic SOA production.
Coming from a very different angle of research, a module that is suitable for coupling with a
dynamic vegetation model has been developed (Landry et al. 2016). This module describes
insect gradations and their impacts on bio-geochemical and bio-geophysical fluxes. Thus it
would already be possible to account for impacts of insect developments on vegetation
properties in an integrated manner, paving the way for a fully coupled model that also considers
direct impacts of insect damages on BVOC fluxes.

5.3.3 Effects of Vegetation Property Changes

Keyword: Indirect scenario impact

The impact on BVOC emissions due to changes in boundary conditions such as interannual
changes in leaf area, vegetation structure, species abundance and vegetation type distribution
are generally supposed to be in the same order of magnitude than direct impacts. These
vegetation changes are either driven by climate that has a species-specific influence on
physiology and growth or by anthropogenic influences such as planting and harvesting. For
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example higher CO; concentrations are supposed to favor photosynthesis, growth and thus
leaf area index, leading to higher emissions simply because of a larger amount of emitting tissue
(Naik et al. 2004). This effect together with temperature increase was found to increase isoprene
emissions until the end of the century by 15 % (RCP2.6), 52 % (RCP4.5) and 141 % (RCP8.5)
(Bauwens et al. 2018). However, this effect is highly uncertain. Despite similar performance
under current conditions, net ecosystem production and biomass sequestration for decades
ahead can be very different in dynamic vegetation models (Cramer et al. 2001; Friedlingstein et
al. 2014). The reason being that short- and long-term effects of elevated CO; on plant physiology
and growth vary under different temperature and water regimes, among functional groups, and
photosynthetic pathways (Gutschick 2007; Wang et al. 2012). Depending on the assumptions
about how the vegetation responds, BVOC emissions might increase, compensating the assumed
direct effect of CO, on emission, or decrease even more (see Figure 7).

Different species responses to CO; and climate changes affects not only biomass and leaf area
but shifts species competition strength and thus species composition over time, even if the
vegetation cover type remains the same. The impact on BVOCs has been demonstrated by
investigating developments over the past decades, for example plant succession in southern
France has been estimated to cause an increase of total emission by a factor of 4.4 (Schaab et al.
2000). In contrast, the recent decrease of oak abundance within an oak/maple temperate
deciduous forests in the northeastern United States has resulted in in declining isoprene
emission rates (Drewniak et al. 2014). Being in line with the notion that terpenoids providing
some advantage under a higher temperature regime (see chapter 5.1.3), global changes in
natural vegetation composition have been speculated to be responsible for a decreasing trend
for monoterpene emissions over the 20th century (Hantson et al. 2017).

Following a shift in species composition supported by large scale declines and disturbances,
eventually vegetation types will also shift, with shrubland and forests increasing their
abundance in the subarctic regions (Schollert et al. 2014), savannas replacing Mediterranean
ecosystems, and tropical forests increasing or decreasing depending on the assumptions on
precipitation development. For example isoprene emissions under a future vegetation type
distribution were about 25 % higher than current emissions but the dominating reason was not
a direct effect but the expansion of tropical humid forests which had the highest annual emission
rates (Turner et al. 1991). Climate-driven vegetation changes over the period 2000-2100 lead to
general increases in isoprene emissions, globally by 15% in 2050 and 36% (Wu et al. 2012).
Since all of these ecosystems have specific species compositions containing BVOC emitters or
non-emitters to different amounts, emission at a whole varies considerably depending on
vegetation type distribution (Wang et al. 2018).

Also the effect of management-induced land cover changes such as deforestation or increased
bioenergy plantations has been investigated and found to be a key factor for global air quality in
the 21st century (Tai et al. 2013; Wiedinmyer et al. 2006). Deforestation is a widespread
phenomenon in the tropics and is estimated to have led to large decreases of isoprene in the past
(Steiner et al. 2002) which is expected to proceed in the Amazon although at a smaller pace due
to declining coverage as well as leaf area per unit ground (Ganzeveld et al. 2010; Lathiere et al.
2005; Pacifico et al. 2012). If replaced with agriculture and grasslands, isoprene emission until
2100 should decrease by 29 % and methanol emission increase by 22 % (Lathiere et al. 2006).
Similar impacts of deforestation are also expected for the United States (Chen et al. 2009) and
for China (Yue et al. 2015), albeit not to the same degree. Overall, land use change might develop
to be the single most important impact on isoprene production, possibly causing a global decline
of approximately 190 TgC yr-1 by 2100 (Squire et al. 2014).
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The impact of land cover conversion, however, depends on the plant species that replaces the
previous vegetation. With this respect, a particular interest has been dedicated to a conversion
of agricultural areas and grasslands into bioenergy plantations. Since many biofuel plants, in
particular fast growing trees such as poplars, willows and eucalypts, are intensively emitting
isoprene, it has been speculated that this conversion might have detrimental effects on air
pollution and human health. Indeed it has been calculated that turning only 5 % of the crop- and
grassland in Europe into poplar plantations would increase isoprene emissions in Europe by
about 45 % (Ashworth et al. 2015; Beltman et al. 2013). Similarly, isoprene also increased over
Southeast Asia under scenarios of rainforest conversion into oil palm plantations (Ashworth et
al. 2012; Pyle et al. 2011). In contrast, a widespread adoption of biofuel crops such as
Miscanthus would decrease terpenoid emissions (Miresmailli et al. 2013).

Figure 7: Comparison of literature results for European (a) and global (b) changes in
projected isoprene emissions. The different colors indicate the driving parameters
considered in the various simulations. The periods are end-of-century for all
studies.
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TextBox: Expected BVOC Emissions under Climate Change

The direct temperature dependence on BVOC production is expected to considerably increase
emission in the foreseeable future on a ground level basis. This increase, however, will partly be
compensated by increasing CO, levels and more frequent drought events. On a regional and global
scale, total BVOC are likely to strongly increase in the boreal and subarctic regions due to changes
of vegetation properties as well as range shifts of vegetation types. In the Mediterranean region as
well as the tropics, forest decline is expected to decrease emissions, in particularly isoprene while
OVOCs might increase. However, developments in tropical and temperate regions will largely
depend on anthropogenic land-use change, i.e. deforestation and plantation establishment.
Where woody plantations and oil palm fields are established, isoprene is expected to be more
abundant while the increased abundance of bioenergy crops will decrease terpenoid emissions. A
major uncertainty is the interaction between BVOC emissions and disturbances, in particular insect
attacks. Prolonged or more frequent gradations could potentially increase emission loads and air
quality during summer periods.
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