TEXTE

# 68/2017

# Recycling potentials of strategic raw materials (ReStra)

Summary



TEXTE 68/2017

Environmental Research of the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety

Project No. (FKZ) 3711 93 339 Report No. (UBA-FB) 002458/KURZ,ENG

# Recycling potentials of strategic raw materials (ReStra)

Summary

by

Knut Sander Ökopol GmbH, Hamburg

Stefan Gößling-Reisemann Universität Bremen, Bremen

Till Zimmermann Ökopol GmbH, Hamburg

Frank Marscheider-Weidemann Fraunhofer ISI, Karlsruhe

Henning Wilts Wuppertal Institut, Wuppertal

Liselotte Schebeck TU Darmstadt, Darmstadt

Jörg Wagner INTECUS GmbH, Dresden

Hanspeter Heegn UVR Fia, Freiberg

Alexandra Pehlken Universität Oldenburg, Oldenburg

On behalf of the German Environment Agency

# Imprint

#### Publisher:

Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau Tel: +49 340-2103-0 Fax: +49 340-2103-2285 info@umweltbundesamt.de Internet: www.umweltbundesamt.de

#### Study performed by:

Ökopol GmbH Nernstweg 32 – 34 22765 Hamburg

# Study completed in:

July 2016

#### Edited by:

Section III 2.2 Resource Conservation, Material Cycles, Minerals and Metal Industry Jan Kosmol

#### Publication as pdf:

http://www.umweltbundesamt.de/publikationen

ISSN 1862-4804

Dessau-Roßlau, August 2017

The project underlying this report was financed by the Federal Ministry for the Environment, Nature Conservation, Building and Nuclear safety under project number FKZ 3711 93 339. The responsibility for the content of this publication lies with the author(s).

# Content

| 1 | Background and objective                                | 2  |
|---|---------------------------------------------------------|----|
| 2 | Identification of strategic metals                      | 2  |
| 3 | Identification of material flows                        | 3  |
| 4 | Identification of recycling and substitution potentials | 5  |
| 5 | Proposals                                               | 9  |
| 6 | References                                              | 16 |

# 1 Background and objective

Many modern products contain so-called strategic raw materials, which are of major importance for their functioning. In addition to their high economic relevance, strategic raw materials are subject to supply risks, which result from geological, technical, structural, geopolitical, socio-economic and environmental settings. Thus, strategic metals shall be captured at the end of the products use phase and recycled.

It has been the objective of the project 'ReStra' to identify mass flows of strategic metals in selected products and product groups and with regard to the disposal situation in the year 2020, to identify potentials to optimise the disposal chains and to elaborate recommendations to mobilise the potentials.

# 2 Identification of strategic metals

In order to identify strategic metals for the in-depth analysis in ReStra, the concept of criticality matrix, which has been established in recent years for the identification of relative raw material shortages, has been applied. Criticality results in that concept from the dimension of economic relevance and from the dimension of supply risks respectively availability: the higher the supply risk and the higher the economic relevance, the higher the criticality of the examined raw material.

The criteria for the quantification of the supply risk and the economic relevance, which are used in relevant literature have been extended by an environmental perspective. The assessment of the economic relevance has been applied in the project ReStra also with regard to the relevance for next generation technologies with the potential of environmental relief. In addition to the usually applied technical, geopolitical and economic criteria concerning supply risks the criterion of environmental relevance of production of primary raw material has been applied in order to address the environmental relief effect from substitution of primary raw materials by secondary raw materials.

The indicators have been weighted as summarised in the following table.

| Field              | Criterion                                                               | Weighting |  |  |
|--------------------|-------------------------------------------------------------------------|-----------|--|--|
|                    | Relevance for next generation technologies with environmental relevance | 25 %      |  |  |
| Economia relevance | Actual consumption in Germany                                           | 25 %      |  |  |
| Economic relevance | Expected global demand impulse                                          | 25 %      |  |  |
|                    | Possibility for substitution                                            |           |  |  |
|                    | Country concentration reserves                                          | 15 %      |  |  |
|                    | Country risk production                                                 | 10 %      |  |  |
|                    | Company risk                                                            | 10 %      |  |  |
| Supply risk        | Main-/by-product                                                        | 15 %      |  |  |
|                    | Environmental relevance (CED)                                           | 30 %      |  |  |
|                    | Recyclability                                                           | 15 %      |  |  |
|                    | Recycling rate                                                          | 5 %       |  |  |

Table 1: Weighting of criteria concerning economic relevance and supply risk

Two sensitivity analysis have been performed in order to check robustness of the analysis. As a result, strategic metals located in the zone of high or highest criticality have been identified for in depth analysis in the course of the project 'ReStra' ('ReStra target metals'). Since production of primary gold is often characterised by high environmental relevance due to the use of Cyanide and/or Mercury (Blacksmith, 2011), it has been added to the range of metals for the in depth analysis. The following table lists the outcome of the analysis.

Table 2: Selected ReStra target metals

| Element     | Comment                                                                                                                                                                         |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rare Earths | Zone of highest criticality in the basic scenario and in both sensitivity analysis                                                                                              |
| Palladium   | Zone of highest criticality in the basic scenario and in both sensitivity analysis                                                                                              |
| Gallium     | Zone of high criticality in the basic scenario and in one sensitivity analysis                                                                                                  |
| Germanium   | Zone of high criticality in the basic scenario and in one sensitivity analysis                                                                                                  |
| Indium      | Zone of high criticality in the basic scenario and in one sensitivity analysis                                                                                                  |
| Gold        | Zone of high criticality in one sensitivity analysis, environmental relevance (Blacksmith, 2011)                                                                                |
| Rhodium     | Zone of high criticality in the basic scenario and in both sensitivity analysis, due to its character as platinum group metal, Rhodium will be analysed together with Palladium |
| Platinum    | Zone of high criticality in the basic scenario and in one sensitivity analysis, due to its character as platinum group metal, Rhodium will be analysed together with Palladium  |

Further refinement has been performed for Rare Earth Elements (REE). This concerns especially light REE, which are regarded as less critical. Cerium and Lanthanum have been chosen as light REE due to their mass relevance. Neodymium has been chosen for those cases where no sufficient data was available for other REE in the same application field (e.g. magnets).

Less critical elements of the heavy REE like Holmium, Thulium and Lutetium have not been further analysed. Concluding, the following REE have been identified as ReStra target metals: Yttrium (Y), Samarium (Sm), Europium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Erbium (Er), Cerium (Ce) and Lanthanum (La) and, with limitations, Neodymium (Nd).

# 3 Identification of material flows

As a second working step the amount of selected end of life products and their content of ReStra target metals have been determined. The major approach was a (prospective) analysis where the waste volumes from selected products in the year 2020 was determined.

In addition availability and appropriateness of published waste analysis have been analysed regarding the identification of relevant waste streams with ReStra target metals. It has been found that number and characters of the published waste analysis were not appropriate as an input for the project.

A multi stage approach has been applied to determine the amount of strategic raw materials which will be available potentially as waste in the year 2020. As a first step relevant product groups have been identified on the basis of the application areas of the selected ReStra target metals. Within the next step, the product groups have been split into relevant products and prioritised according to their mass relevance of the strategic metal content.

As a subsequent step, the amounts of ReStra target metals in the selected products have been determined by applying a calculation model. This describes the amount of such metals which will potentially be available for recycling in the year 2020 in Germany.

The following table shows the product groups which have been identified based on the selection of ReStra target metals. The second and third column show the pre-selected metals and the finally selected metals, which are relevant for the identified products (column 4).

Metals, where the mass relevance have been unclear in the course of the identification of the product groups are shown in brackets.

| Product group                                                         | Pre-selected met-<br>als from identifi-<br>cation of product<br>groups | Relevant<br>metals after<br>product<br>analysis | Analysed products                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Industry catalysts                                                    | Ge, Pd, Pt, Rh,<br>(Ce), La                                            | Ge, Pd, Pt,<br>Rh, Ce, La,<br>(Nd, Pr)          | FCC-Catalysts, Catalysts of the homogeneous cataly-<br>sis, refinery catalysts, production of nitric acid, pro-<br>duction of hydrocyanic acid, Solid- and flui-<br>dised bed catalysts, powder catalysts, polymerisation<br>catalysts |
| Vehicle catalysts                                                     | Pd, Pt, Rh, Ce, La                                                     | Pd, Pt, Rh,<br>Ce, La                           | Vehicle catalysts                                                                                                                                                                                                                      |
| Vehicle compo-<br>nents                                               | Gd, (Tb), Dy                                                           | Gd, Tb, Dy                                      | Passenger cars, light duty vehicles                                                                                                                                                                                                    |
| Metallurgy / alloys                                                   | Ce, La                                                                 | Ce, La                                          | Mix metal                                                                                                                                                                                                                              |
| Batteries                                                             | Sm, (Ce), La                                                           | SE (Ce, La,<br>Nd, Pr)*                         | NiMH batteries                                                                                                                                                                                                                         |
| Application in opti-<br>cal industry                                  | Er, Ce                                                                 | Ce, La                                          | Polishing agents and -sludge, special glasses                                                                                                                                                                                          |
| Laser applications                                                    | Er                                                                     | Er                                              | Medical laser (Er-YAg)                                                                                                                                                                                                                 |
| Wind energy plant                                                     | Gd, (Tb), Dy                                                           | Nd, Dy, Tb                                      | DA-PM; IA-PM                                                                                                                                                                                                                           |
| Medical devices                                                       | (Tb), Dy, Gd, (Y)                                                      | Nd, Pr, Dy,<br>Tb, Gd                           | MRT-appliances, X-ray appliances                                                                                                                                                                                                       |
| Fuel cells                                                            | (Pt, Pd, Y)                                                            | Y, La                                           | SOFC-BSZ                                                                                                                                                                                                                               |
| Optical fibre appli-<br>cations                                       | Ge, Er                                                                 | Ge, Er                                          | Glass fibre infrastructure in public areas, glass fibres in data processing centres; Erbium-doted fibre amplifiers                                                                                                                     |
| Photovoltaic                                                          | In, Ga, Ge                                                             | In, Ga                                          | CIGS, CdTe, a-Si                                                                                                                                                                                                                       |
| LEDs                                                                  | In, Ga                                                                 | In, Ga, Ce, Y,<br>Au                            | LED display panel                                                                                                                                                                                                                      |
| Home appliances                                                       | (Tb, Dy)                                                               | Nd, Dy, Tb                                      | e-bikes, hub dynamo, air conditioner                                                                                                                                                                                                   |
| Ceramics                                                              | Y, (Ce)                                                                | Y                                               | Grinding ceramics, ceramic heat protection                                                                                                                                                                                             |
| Absorber material<br>and control sticks in<br>nuclear power<br>plants | In, Gd                                                                 | In, Gd                                          | Absorber material and control sticks in nuclear power plants                                                                                                                                                                           |

Table 3: Overview of analysed products and metals

| Product group               | Pre-selected met-<br>als from identifi-<br>cation of product<br>groups | Relevant<br>metals after<br>product<br>analysis | Analysed products       |
|-----------------------------|------------------------------------------------------------------------|-------------------------------------------------|-------------------------|
| High temperature conductors | Y                                                                      | Y                                               | SQUIDs                  |
| Data processing centres     | (Pd)                                                                   | Pt, Pd, Au                                      | Data processing centres |

\* DIRECTIVE 2010/75/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 24 November 2010 on industrial emissions (inte-grated pollution prevention and control) (Recast)

The following table shows the amounts of ReStra target metals estimated to be available as waste potential in Germany in 2020. The average resp. reference values are shown in relation to the global primary production of the respective metals.

| Element          | Mass in 2020 [kg] | Global (primary-) production [kg] | Share of global primary production [%] |
|------------------|-------------------|-----------------------------------|----------------------------------------|
| Pt               | 7.052             | 179.000                           | 3,94                                   |
| Pd               | 14.201            | 200.000                           | 7,101                                  |
| Rh               | 3.253             | 28.000                            | 11,618                                 |
| Au               | 473               | 2.700.000                         | 0,018                                  |
| In               | 121               | 670.000                           | 0,018                                  |
| Ga               | 13                | 273.000                           | 0,005                                  |
| Ge               | 2,3               | 118.000                           | 0,002                                  |
| Y                | 65.440            | 12.300.000                        | 0,532                                  |
| La               | 273.619           | 21.900.000                        | 1,249                                  |
| Ce               | 419.213           | 27.900.000                        | 1,503                                  |
| Nd               | 14.677            | 14.800.000                        | 0,099                                  |
| Gd               | 929               | 2.200.000                         | 0,042                                  |
| Tb               | 491               | 300.000                           | 0,164                                  |
| Dy               | 4.517             | 1.700.000                         | 0,266                                  |
| Er               | 14                | 900.000                           | 0,002                                  |
| SE, unspecified. | 299.152           |                                   |                                        |

Table 4: Summary of the expected amount of ReStra target metals in the year 2020 in Germany

Sources: USGS; Bell 2013; Du und Graedel 2011b. Data for Pt, Pd, Au, In, Ga, Ge result from U.S. Geological Survey for 2012, Data for Rh result from Bell (2013) (no year specified), data for Rare Earths result from Da und Graedel (2011) and are related to 2007.

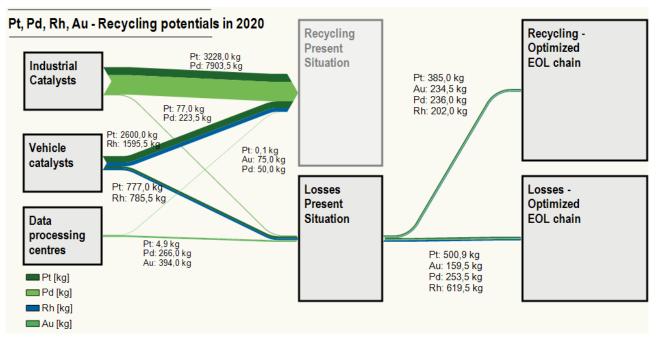
# 4 Identification of recycling and substitution potentials

In the next working step it has been investigated, which technologies are currently applied for the pre-treatment and the reclamation of ReStra target metals in the selected end of life products and which technologies are available but not yet or rarely applied. The optimisation effects on recycling of the selected metals have been estimated and it has been analysed whether path-dependencies are relevant for the existing disposal chains. The applied screening of technologies also comprised technologies which are implemented on laboratory or pilot level. The subsequent analysis of the disposal chains identified losses of ReStra target metals in the current disposal chains in Germany. Based on this, optimised disposal chains have been designed as far as possible.

The following table summarises the prognosis of mass flows.

| Product                                          | Current situation            | Optimised disposal           | Difference                 |
|--------------------------------------------------|------------------------------|------------------------------|----------------------------|
|                                                  |                              | chain                        |                            |
| PGM-containing industry catalysts                | 74-80 kg Pt                  | 58-62 kg Pt                  | 15-18 kg Pt                |
|                                                  | 213-234 kg Pd                | 139-153 kg Pd                | 74-81 kg Pd                |
|                                                  | 34-38 kg Rh                  | 34-38 kg Rh                  | 0 kg Rh                    |
| FCC-catalysts                                    | 189-331 t REE                | 27-48 t REE                  | 162-283 t REE              |
| Vehicle catalysts                                | 756-798 kg Pt                | 427-451 kg Pt                | 329-347 kg Pt              |
|                                                  | 778-793 kg Rh                | 578 – 589 kg Rh              | 200-204 kg Rh              |
|                                                  | 134.077-134.178 kg           | 134.077-134.178              | 0 kg REE                   |
| ~ · · · ·                                        | REE                          | REE                          |                            |
| Other vehicle components                         | 55.102-55.770 kg             | Depends on compo-            | -                          |
| 0                                                | REE                          | nent                         |                            |
| Special glasses<br>Photovoltaic                  | 860 kg Ce                    | -<br>29.200 h I              | -                          |
| Photovoltaic                                     | 41-347 kg In<br>1-62,9 kg Ga | 38-300 kg In<br>0,2-25 kg Ga | 3-47 kg In<br>0,8-38 kg Ga |
| Heat protection ceramics                         | 709-1.786 kg Y               | Unclear                      | *                          |
| Mix metals                                       | 106-133 t Ce                 | Ulicieal                     | -                          |
| with metals                                      | 46-58 t La                   | -                            | -                          |
| Batteries                                        | 187-303 t SE                 | 112-197 t SE                 | 75-106 t SE                |
| Polishing agents                                 | 70-102 t Ce                  | 21-73 t Ce                   | 29-49 t Ce                 |
| r onshing ugents                                 | 1,2-5,5 t La                 | 0,4-3,9 t La                 | 0,9-1,5 t La               |
| Laser applications                               | 14 kg Er                     | -                            | -                          |
| TT                                               | 8 kg Y                       |                              |                            |
| Wind energy plants                               | 1.308-4.470 kg Nd            | 65-224 kg Nd                 | 1.243-4.246 kg             |
|                                                  | 119-409 kg Dy                | 6-20 kg Dy                   | Nd                         |
|                                                  | 3-11 kg Tb                   | 0,2-0,6 kg Tb                | 113-389 kg Dy              |
|                                                  |                              |                              | 2,8-10,4 kg Tb             |
| Medical devices                                  | 1.004-4.923 kg REE           | 134-710 kg REE               | 870-4.213 kg<br>REE        |
| Fuel cell (SOFC)                                 | 50.186 – 78.152 kg Y         | -                            | -                          |
|                                                  | 30.767 – 47.770 kg           |                              |                            |
|                                                  | La                           |                              |                            |
| Optical fibre applications                       | 4 mg Er                      | -                            | -                          |
|                                                  | 1,2-3,4 kg Ge                | TT 1                         |                            |
| LEDs display panels                              | 0,14 kg Ga<br>0,11 kg In     | Unclear                      | -                          |
|                                                  | 0,03 kg Ce                   |                              |                            |
|                                                  | 0,96 kg Y                    |                              |                            |
|                                                  | 3,14 kg Au                   |                              |                            |
| e-bikes                                          | 4.768-6.399 kg Nd            | 691-928 kg Nd                | 4.077-5.471 kg             |
|                                                  | 1.192-1.600 kg Dy            | 173-232 kg Dy                | Nd                         |
|                                                  | 238-320 kg Tb                | 35-46 kg Tb                  | 1.019-1.368 kg             |
|                                                  |                              | C C                          | Dy                         |
|                                                  |                              |                              | 203-284 kg Tb              |
| Hub dynamos                                      | 1.372-1.453 kg Nd            | 199-208 kg Nd                | 1.173-1.227 kg             |
|                                                  |                              |                              | Nd                         |
| Air conditioner                                  | 2.036-2.135 kg Nd            | 585-614 kg Nd                | 1.451-1.521 kg             |
|                                                  | 509-534 kg Dy                | 146-154 kg Dy                | Nd                         |
|                                                  | 102-107 kg Tb                | 29-31 kg Tb                  | 363-380 kg Dy              |
|                                                  |                              | -                            | 73-76 kg Tb                |
| Grinding ceramics                                | 25-2.160 kg Y                | -                            | -                          |
| Absorber materials and control sticks in nuclear | 70 kg Gd                     | -                            | -                          |
| power plants                                     | 650 kg In                    |                              |                            |
| High temperature supra conductors                | 42-140 kg Y                  | Unclear                      | -                          |

Table 5: Comparison of material loss in the current situation and with optimised disposal chains for the year 2020


| Product                 | Current situation                             | Optimised disposal<br>chain                  | Difference                                                                                                                                    |
|-------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Data processing centres | 350-438 kg Au<br>4-5,8 kg Pt<br>239-293 kg Pd | 142-177 kg Au<br>1,7-2 kg Pt<br>97-118 kg Pd | Average scena-<br>rio:<br>75-94 kg Au<br>1,3-2 kg Pt<br>75-93 kg Pd<br>low end scena-<br>rio:<br>142-177 kg Au<br>1,7-2 kg Pt<br>97-118 kg Pd |

Optimising potentials have been identified for the following products:

PGM-containing industry catalysts, FCC catalysts, vehicle catalysts, data processing centres, NiMH-batteries, polishing agents, MRTs, photovoltaic modules, wind power plants, e-bikes, hub dynamos, air conditioner.

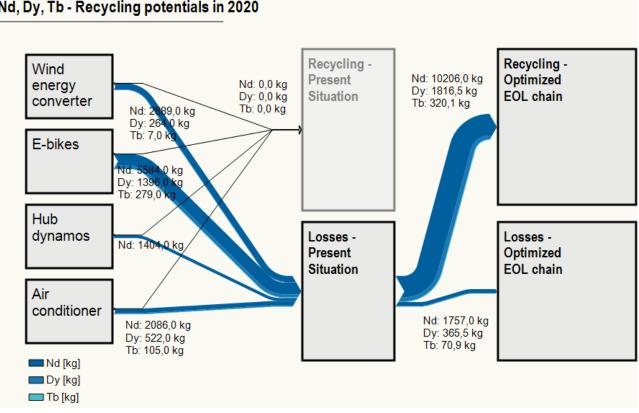

The following graphs display the current and estimated optimised mass flows. The additional mass flows to the recycling in the optimised disposal chains show the potentials for substituting primary by secondary metals<sup>1</sup>.

Figure 1: Mass flows of Pd, Pt, Rh and Au in the current situation and with optimised disposal chains



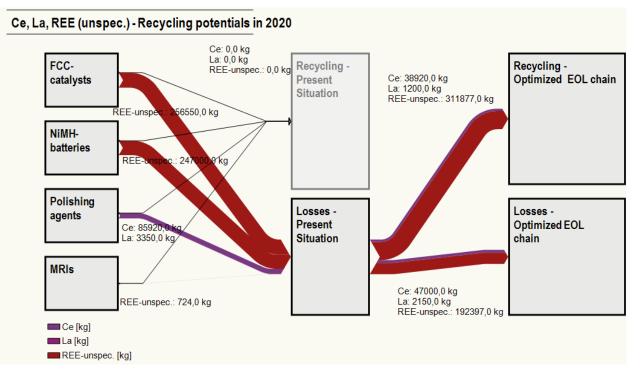

<sup>&</sup>lt;sup>1</sup> The arithmetic averages have been calculated in the case of ranges.

Figure 2: Mass flows of Nd, Dy and Tb in the current situation and with optimised disposal chains



#### Nd, Dy, Tb - Recycling potentials in 2020

Figure 3: Mass flows of Ce, La and unspecified REE in the current situation and with optimised disposal chains



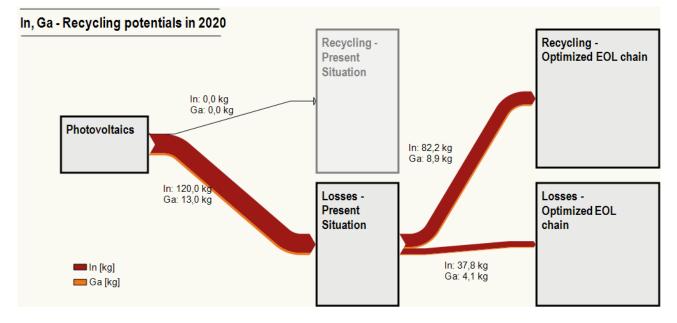



Figure 4: Mass flows of In and Ga in the current situation and with optimised disposal chains

#### 5 Proposals

Based on the analysis in the previous working steps and for cases where optimising potentials have been identified, proposals have been deducted for a resource efficient design of the disposal chains of products.

Basically, economic considerations determine the decisions about the reclamation of strategic metals in the current situation. That should be re-thought with regard to environmental aspects and political resource strategies, especially with regard to the strategic relevance of those metals for a high tech oriented economy. Ensuring partly autarky based on domestic raw material sources and the related robustness against raw material constraints and flexibility for technological developments should be taken into account in that context even where these factors cannot be directly transposed in monetary effects. Recycling becomes even more sensible when avoided environmental costs of primary raw material production are taken into account.

When future framework conditions are developed aspects of prospective supply safety and environmental costs shall be considered in addition to the economic situation which results from the current framework conditions. By considering those aspects, intermediate storage and material pools, where waste fractions are stored until recycling, are sensible even if profitability of reclamation is currently not given in all cases.

Basically, it is seen as sensible also to implement the objectives of resource efficiency and a mass flow oriented circular economy in a revised European Waste List e.g. in the form of a more material oriented structure of the catalogue.

The analysis of the current situation, the restrictions and the path dependencies showed that improved availability of information about the presence of ReStra target metals is an important option for improvement. In order to be efficient and effective the type of information and the way the information is provided must be closely adapted to the waste management practice.

Extended (obligations for) separate collection and implementation of best practice approaches for transport and handling have been identified as important topics to ensure improved recyclability of ReStra target metals.

The example of reclamation of ReStra target metals from automotive components has shown that "design for recycling" might be focussed on "design for dismantling" approaches in order improve the economic situation for the reclamation of ReStra target metals.

Improved circularity can be achieved for the majority of analysed end of life products via extended dismantling and treatment requirements. The requirements shall be made obligatory because an economic self-steering in the right direction currently does not exit.

In addition, development of treatment and reclamation chains shall be promoted (e.g. Yttrium from high temperature ceramics or Gadolinium from x-ray machines).

The analysis also revealed that the highest efficacy of interventions can often be expected when dual approaches are realised. The example of magnets with REE has shown that dual approaches are appropriate to solve the "hen and egg" problem, according to which no reclamation plants are run as long as there is no input material and at the same time no input material is generated as long as no recycling paths are available. Dual approaches support that magnets will be separated in pre-treatment (and ensure that input material is available) and at the same time recycling on industrial level is supported via process related measures.

Efficacy of dual approaches have also been identified in the area of information flows and design for dismantling approaches. By establishing corresponding measures on the product level and for the waste phase it is possible to reduce the risk of ineffective (isolated) measures.

The following table provides an overview of the measures, estimated efforts and expected effects of the measures.

#### ReStra - Executive summary

#### Table 6: Overview of proposed measures

| ReStra-EoL product<br>(ReStra-target metal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Measure                                                                                                      | Efforts initialisation    | Efforts perform-<br>ing | Effect<br>mass | Effect env.<br>(KEA*share) | Criticality<br>EU (2014) |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------|----------------|----------------------------|--------------------------|--|--|--|
| ReStra-target metal)MeasureEfforts InitialisationHomogeny catalysis (Pd,<br>Pt)Optimised informationLowEnvironmental catalyst<br>Pt)Optimised informationLowEnvironmental catalyst<br>Pt)Optimised informationLowFCC catalyst (Ce, La)See raw material related measures belowVehicle catalyst (Pt, Rh,<br>La, Ce)best practice transportHigh (new law)For Ce and La see raw material related measures belowVehicle components (Gd,<br>Dy, Tb, Nd)For Ce and La see raw material related measures belowDesign for dismantling<br>Dismantling requirementsAverage in case of volun<br>in case of new lawsDismantling requirementsHigh (new law)Photovoltaic-module (In)<br>no measures for Ga, Ge)Treatment requirement<br>of recycling technologiesPolishing agent (Ce, La)For La & Ce see raw material related measures belowNiMH batteries (Ce, La,<br>Sm)For La & Ce see raw material related measures below | Low                                                                                                          | Low                       |                         |                |                            |                          |  |  |  |
| Pt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Separate collection                                                                                          | High (new law)            | Average                 | <b>.</b>       | High                       | II: -1-                  |  |  |  |
| Environmental catalyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Optimised information                                                                                        | Low                       | Low                     | Low            |                            | High                     |  |  |  |
| (Pt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Separate collection                                                                                          | High (new law)            | Average                 |                |                            |                          |  |  |  |
| FCC catalyst (Ce, La)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | See raw material related me                                                                                  |                           |                         | <u>.</u>       |                            |                          |  |  |  |
| Vehicle catalyst (Pt, Rh,<br>La, Ce)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | best practice transport High (new law) Low (low number of affected par-<br>ties)                             |                           | Average<br>to high      | High           | High                       |                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For Ce and La see raw material related measures below                                                        |                           |                         |                |                            |                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | General measures regarding                                                                                   | REE see below             |                         |                |                            |                          |  |  |  |
| $\mathbf{V} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Design for dismantling                                                                                       | T                         |                         |                |                            |                          |  |  |  |
| Vehicle components (Gd,<br>Dy, Tb, Nd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Optimised information                                                                                        | in case of new laws       | Low to average          |                |                            |                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dismantling requirements                                                                                     | High (new law)            | High                    | Low            | Low                        | II: -1-                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              | High (new law) Low        |                         | LOW            | LOW                        | High                     |  |  |  |
| Photovoltaic-module (In)<br>(no measures for Ga, Ge)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Treatment requirement                                                                                        | High (new law)            | High                    |                |                            |                          |  |  |  |
| Heat protection ceramics (Y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                              | Low                       | High (financial)        | Low            | Low                        | High                     |  |  |  |
| Polishing agent (Ce, La)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | For La & Ce see raw materi                                                                                   | al related measures below |                         |                |                            |                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For La & Ce see raw materi                                                                                   | al related measures below |                         |                |                            |                          |  |  |  |
| NiMH batteries (Ce, La,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Optimised information                                                                                        | No (already initialised)  | Low                     |                |                            |                          |  |  |  |
| Sm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Average (within the development of the                                                                       |                           | Average                 |                |                            |                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Optimised information                                                                                        | No                        | Low                     | Average        | Average                    | High                     |  |  |  |
| MRT (Dy, Tb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Treatment requirementAverage (within the development of the<br>treatment ordinance of the ElektroG2))Average |                           | Average                 |                |                            |                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | General measures regarding                                                                                   | REE see below             |                         | 1              | 4                          | I                        |  |  |  |
| X ray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Development of treatment<br>and reclamation processes                                                        | Low                       | High (financial)        | Average        | Low                        | High                     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Interface ElektroG2                                                                                          | High (new law)            | Low                     | Low            | 1                          | 111gii                   |  |  |  |

| ReStra – Executive summary                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  |                                                                               |                         |                |                            |                          |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------|----------------|----------------------------|--------------------------|--|--|
| Wind power plant (Nd,<br>Dy)       I reatment requirement       treatment ordinance of the E         General measures regarding REE see below       Treatment requirement       Average (within the develop<br>treatment ordinance of the E         E-bike (Nd, Dy, Tb)       Treatment requirement       Average (within the develop<br>treatment ordinance of the E         General measures regarding REE see below       Treatment requirement       High (new law) |                                                                                                                  | Efforts initialisation                                                        | Efforts perform-<br>ing | Effect<br>mass | Effect env.<br>(KEA*share) | Criticality<br>EU (2014) |  |  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Treatment requirement                                                                                            | Average (within the development of the treatment ordinance of the ElektroG2)) |                         |                |                            |                          |  |  |
| Dy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | General measures regarding                                                                                       | REE see below                                                                 |                         |                |                            |                          |  |  |
| E-bike (Nd, Dy, Tb)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Treatment requirement                                                                                            | Average (within the development of the treatment ordinance of the ElektroG2)) | Average                 | High           | High                       | High                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | General measures regarding REE see below                                                                         |                                                                               |                         |                |                            |                          |  |  |
| Hub dynamos (Nd Dr)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Treatment requirement High (new law) Average                                                                     |                                                                               |                         | Low            | Average                    | High                     |  |  |
| Hub dynamos (Nd, Pr)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | General measures regarding REE see below                                                                         |                                                                               |                         |                |                            |                          |  |  |
| Air conditioner (Nd, Dy)                                                                                                                                                                                                                                                                                                                                                                                                                                                | Treatment requirementAverage (consideration within the development of the treatment ordinance of the ElektroG2)) |                                                                               | Average                 | Low            | Average                    | High                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | General measures regarding                                                                                       | REE see below                                                                 |                         |                |                            |                          |  |  |
| Data processing centre                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Treatment requirement                                                                                            | Average (within the development of the treatment ordinance of the ElektroG2)) | Average                 | Low            | Average                    | High                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | General measures regarding                                                                                       | REE see below                                                                 |                         |                |                            |                          |  |  |
| Dual approach for appliances of REE Magnets<br>Raw material related measures for CE & La                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | Different, mostly average to high                                             |                         | High           | High                       | High                     |  |  |
| Legal framework                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  | Different, mostry average to high                                             |                         | Ingli          | 111511                     | Different                |  |  |

Legend: Categories for mass share and environmental: low: up to 10 %, average: >10 % to 30 %, high: >30 %

D 01

. .

...

The analysis of the legal framework conditions has revealed that interfaces between legal areas should be optimised or realised (example: interface between ELV legislation and WEEE legislation regarding treatment of electronic appliances in vehicles). In other areas concrete legal bases to optimise circularity of strategic raw materials are missing. The following table summarises the findings.

#### ReStra - Executive summary

Table 7: Overview of proposals for the further development of the legal framework regarding the objective of the project ReStra

| Product                            | ReStra tar-<br>get metal       | Legal<br>framework<br>existing                           | Legal frame-<br>work to be de-<br>veloped | Separate collec-<br>tion responsibili-<br>ties<br>existing                                                                        | Separate collection<br>responsibilities<br>to be developed | Treatment re-<br>quirements ex-<br>isting                            | Treatment re-<br>quirements to be<br>developed                                  | Labelling/ infor-<br>mation require-<br>ments existing | Labelling/ infor-<br>mation require-<br>ments to be devel-<br>oped     |
|------------------------------------|--------------------------------|----------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------|
| Industrial catalysts               | Ge, Pd, Pt,<br>Rh, (Ce),<br>La |                                                          | Raw material or-<br>dinance               |                                                                                                                                   | Commercial user                                            |                                                                      | Shipment to recla-<br>mation, for La and<br>Ce long term sto-<br>rage if needed |                                                        | Information obliga-<br>tion producer → u-<br>ser                       |
| Vehicle ca-<br>talysts             | Pd, Pt, Rh,<br>Ce, La          | ELV ordi-<br>nance                                       |                                           | Last owner<br>(shipment to dis-<br>mantling com-<br>pany)                                                                         |                                                            | Separation and<br>shipment to rec-<br>lamation,                      | best practice trans-<br>port and treatment                                      |                                                        | -                                                                      |
| Automotive<br>components           | Gd, Tb, Dy                     | ELV ordi-<br>nance                                       |                                           | Last owner<br>(shipment to dis-<br>mantling com-<br>pany)                                                                         |                                                            |                                                                      | Separation of REE<br>magnets, shipment<br>to reclamation                        |                                                        | Information obliga-<br>tion producer $\rightarrow$<br>waste management |
| Photovoltaic                       | In, Ga                         | ElektroG<br>(WEEE<br>law)                                |                                           | Last owner                                                                                                                        |                                                            |                                                                      | Separation of REE<br>magnets, shipment<br>to reclamation                        |                                                        | Label (PV-module)                                                      |
| Heat protec-<br>tion cera-<br>mics | Y                              |                                                          | Raw material or-<br>dinance               |                                                                                                                                   | User                                                       |                                                                      | Shipment to recla-<br>mation                                                    |                                                        | Information obliga-<br>tion producer → u-<br>ser                       |
| NiMH bat-<br>teries                | SE (Ce, La,<br>Nd, Pr)*        | BattG<br>(Battery<br>law),<br>ElektroG2<br>(WEEE<br>law) |                                           | Last owner (coll-<br>ection system ac-<br>cording to BattG),<br>Waste manage-<br>ment (separation<br>from end of life<br>product) |                                                            | Separation from<br>appliance in the<br>framework of the<br>ElektroG2 | Shipment to Recla-<br>mation                                                    | Label                                                  |                                                                        |
| Polishing agent                    | Ce, La                         |                                                          |                                           | · · · /                                                                                                                           | User                                                       |                                                                      | Shipment to recla-<br>mation or long term<br>storage                            |                                                        | Information obliga-<br>tion producer → u-<br>ser                       |

| ReStra – Executi           | ive summary              |                                |                                           |                                                                    |                                                            |                                           |                                                           |                                                        |                                                                    |
|----------------------------|--------------------------|--------------------------------|-------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|
| Product                    | ReStra tar-<br>get metal | Legal<br>framework<br>existing | Legal frame-<br>work to be de-<br>veloped | Separate collec-<br>tion responsibili-<br>ties<br>existing         | Separate collection<br>responsibilities<br>to be developed | Treatment re-<br>quirements ex-<br>isting | Treatment re-<br>quirements to be<br>developed            | Labelling/ infor-<br>mation require-<br>ments existing | Labelling/ infor-<br>mation require-<br>ments to be devel-<br>oped |
| MRT                        | Nd, Pr, Dy,<br>Tb, Gd    | ElektroG<br>(WEEE<br>law)      |                                           | Last owner, coll-<br>ection system ac-<br>cording to Elekt-<br>roG |                                                            |                                           | Separation of REE<br>magnets, shipment<br>to reclamation  |                                                        |                                                                    |
| X-ray                      |                          | ElektroG<br>(WEEE<br>law)      |                                           | Last owner, col-<br>lection system ac-<br>cording to El-<br>ektroG |                                                            |                                           | Separation Gd-<br>component, ship-<br>ment to reclamation |                                                        | Label (component)                                                  |
| Wind power<br>plant        | Nd, Dy, Tb               |                                | Raw material ordi-<br>nance               |                                                                    | Owner (Destruction<br>company)                             |                                           | Separation of REE<br>magnets, shipment to<br>reclamation  |                                                        |                                                                    |
| e-bike                     |                          | ElektroG<br>(WEEE<br>law)      |                                           | Last owner, col-<br>lection system ac-<br>cording to El-<br>ektroG |                                                            |                                           | Separation of REE<br>magnets, shipment<br>to reclamation  |                                                        |                                                                    |
| Hub-dy-<br>namo            |                          |                                | Raw material or-<br>dinance               |                                                                    | Waste management                                           |                                           | Separation of REE<br>magnets, shipment<br>to reclamation  |                                                        | Label component<br>(hub dynamo)                                    |
| Air conditi-<br>oner       |                          | ElektroG<br>(WEEE<br>law)      |                                           | Last owner, col-<br>lection system ac-<br>cording to El-<br>ektroG |                                                            |                                           | Separation of REE<br>magnets, shipment<br>to reclamation  |                                                        | Label component<br>(compressor)                                    |
| Data proces<br>sing centre | - Pt, Pd, Au             | ElektroG<br>(WEEE<br>law)      |                                           | Last owner, col-<br>lection system ac-<br>cording to El-<br>ektroG |                                                            | Partly                                    | Separation of REE<br>magnets, shipment<br>to reclamation  |                                                        |                                                                    |

ReStra – Executive summary

In addition the instrument of "Best Available Techniques" in the framework of the Industrial Emission Directive<sup>2</sup> is seen as an option to improve recycling of strategic raw materials.

<sup>2</sup> Directive 2010/75/EU

#### 6 References

- Blacksmith Institute (2011): The World's Worst Toxic Pollution Problems. Report 2011. http://www.worst-polluted.org/2011-report.html, last visited 29.5.2012
- BMWi 2010: BMWi: Rohstoffstrategie der Bundesregierung Sicherung einer nachhaltigen Rohstoffversorgung Deutschlands mit nicht-energetischen mineralischen Rohstoffen, Berlin, 2010, http://www.bmwi.de/Dateien/BMWi/PDF/rohstoffstrategie-der-bundesregierung, last visited 02.05.2015
- Bringezu 2011: Bringezu, S., et al.: Metallische Rohstoffe, weltweite Wiedergewinnung von PGM und Materialien f
  ür Infrastrukturen - Abschlussbericht zu AP2 des Projektes MaRess, Wuppertal, 2011, http://ressourcen.wupperinst.org/downloads/MaRess\_AP2\_8\_AbschlussBer.pdf, last visited 30.03.2015
- EU 2014: European Commission: COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PAR-LIAMENT, THE COUNCIL, THE EU ROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMIT-TEE OF THE REGIONS On the review of the list of critical raw materials for the EU and the implementation of the Raw Materials Initiative, Brussels, 2014, and REPORT ON CRITICAL RAW MATERIALS FOR THE EU Report of the Ad hoc Working Group on defining critical raw materials, Brussels, 2014, http://ec.europa.eu/enterprise/policies/raw-materials/files/docs/crm-report-on-critical-raw-materials\_en.pdf, last visited 02.05.2015

FEM 2015: pers.com. Dr. Völker FEM, 11.5.2015

Gößling-Reisemann, S. (2012): Persönliche Mitteilung vom 7.6.2012.

- JRC 2015: European Commission's Joint Research Centre (JRC): Best Environmental Management Practice, Sectoral reference document for the Car Manufacturing sector, http://susproc.jrc.ec.europa.eu/activities/emas/car.html, last visited 30.03.2015
- Kennedy 2014: Kennedy, P.: Aufbereitung und Verarbeitung von Seltenenerdmetallen, in: Kausch, P. et al. (Hrsg.), Strategische Rohstoffe – Risikovorsorge, DOI 10.1007/978-3-642-39704-2\_14, © Springer-Verlag Berlin Heidelberg 2014
- Mitsubishi 2015: Mitsubishi Electric: Newly Developed Automatic Dismantling Equipment Removes and Recovers Rare Earth Magnets in Just 30 Seconds, http://www.mitsubishielectric.com/company/environment/ecotopics/rareearth/how/index.html, last visited 30.03.2015
- MORE 2014: Bast, U, et.al.: Recycling von Komponenten und strategischen Metallen aus elektrischen Fahrantrieben, 2015
- Progress 2012: BMUB (HG): Deutsches Ressourceneffizienz-programm (ProgRess), Stand Kabinettsbeschluss: 29. Februar 2012, Berlin, http://www.bmub.bund.de/service/publikationen/downloads/details/artikel/deutsches-ressourceneffizienzprogramm-progress/, last visited 30.03.2015
- Sander 2010: Sander, K., Schilling, S.: Optimierung der Steuerung und Kontrolle grenzüberschreitender Stoffströme bei Elektroaltgeräten/Elektroschrott, UBA FKZ 3708 93 300, Dessau, 2010, http://www.umweltbundesamt.de/publikationen/optimierung-steuerung-kontrolle, last visited 02.05.2015
- Schöne 2015: pers. com. Dr. F. Schöne, Duesmann und Hensel Recycling GmbH, März 2015

- Stiftung ear 2015: Bestimmung der jeweils relevanten Faktoren für die Berechnung des Garantiebetrages; https://www.stiftung-ear.de/nc/hersteller/produktbereiche-regelsetzung-und-regeln/produktuebergreifende-arbeitsgruppe-pbue/regelsetzung-garantiehoehe/, last visited 30.03.2015
- USGS 2015: Mineral Commodity Summaries Indium 2015, http://minerals.usgs.gov/minerals/pubs/commodity/indium/ last visited 30.03.2015
- USGS 2015a: Mineral Commodity Summaries Gallium 2015, http://minerals.usgs.gov/minerals/pubs/commodity/gallium/ last visited 30.03.2015
- Buchert 2013: Buchert, M., Manhart, A., Sutter, J.: Untersuchung zu Seltenen Erden: Permanentmagnete im industriellen Einsatz in Baden-Württemberg, Feiburg, 2013 http://www.oeko.de/oekodoc/2053/2014-630-de.pdf, last visited 30.03.2015